
  

 

 

Tilburg University

Monotonicity-preserving bootstrapped kriging metamodels for expensive simulations

Kleijnen, Jack P.C.; van Beers, W.C.M.

Published in:
The Journal of the Operational Research Society

Publication date:
2013

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C., & van Beers, W. C. M. (2013). Monotonicity-preserving bootstrapped kriging metamodels for
expensive simulations. The Journal of the Operational Research Society, 64(5), 708-717. http://www.palgrave-
journals.com/jors/journal/v64/n5/abs/jors2011148a.html

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420819753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/6b0d8c68-19f5-485b-b3e2-9e92770efae5
http://www.palgrave-journals.com/jors/journal/v64/n5/abs/jors2011148a.html
http://www.palgrave-journals.com/jors/journal/v64/n5/abs/jors2011148a.html


Online Appendix for
"Monotonicity-preserving
bootstrapped Kriging metamodels
for expensive simulations"

Jack P.C. Kleijnen1 and Wim C.M. van Beers2
1Tilburg University, Postbox 90153, 5000 LE Tilburg,
Netherlands, Kleijnen@tilburguniversity.edu 2University of
Amsterdam, Postbox 19268, 1000 GG Amsterdam,
Netherlands, e-mail: W.C.M.vanBeers@uva.nl

Abstract

This appendix consists of two subappendixes; namely, one
with basic Kriging formulas, and one with basic linear regres-
sion formulas and the estimated coverages for classic Kriging,
monotonicity-preserving bootstrapped Kriging, and polynomial
regression metamodels.

Version: August 30, 2011

Basic Kriging Formulas

Ordinary Kriging assumes

w(x) = µ+ δ(x) (1)

where µ is the simulation output averaged over the experimental area,
and δ(x) is the additive noise that forms a covariance stationary process
with zero mean. Ordinary Kriging uses the linear predictor

y = λ′w (2)

with the optimal weights under the MSE criterion are

λo= Γ−1[γ + 1
1− 1′Γ−1γ

1′Γ−11
] (3)

where Γ = (cov(wi, wi′)) with i, i′ = 1, . . . , n is the n × n symmetric
and positive semi-definite matrix with the covariances between the n
old outputs, and γ =(cov(wi, w0)) is the n-dimensional vector with the
covariances between the n old outputs wi and w0, the output of the
combination to be predicted– which may be either new or old. The
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correlation function for a k-dimensional input vector is assumed to be
the product of k one-dimensional functions ρj (j = 1, . . . , k); a popular
one-dimensional correlation function is the Gaussian one:

ρj = exp[−θjh2j ] (4)

where hj = |xi;j − xi′;j| denotes the Euclidean distance between the val-
ues of input j in the two input combinations i and i′; θj denotes the
importance of input j; i.e., the higher θj is, the less effect input j has.
In practice, these covariances (or correlations) are unknown so they are
estimated, usually by Maximum Likelihood Estimation (MLE), which
gives µ̂, Γ̂ and γ̂ (or θ̂j). Combining these estimators with (1), (2), and
(3) gives the predictor

ŷ = µ̂+ γ̂′Γ̂−1(w−µ̂1) (5)

where µ̂ = (1′Γ̂−11)−11′Γ̂−1w; this predictor is nonlinear because it uses
estimators for the covariances.
An alternative for Ordinary Kriging is Universal Kriging, which re-

places the constant µ in (1) by a linear combination of known functions;
e.g., a low-order polynomial (Cressie, 1993, p. 151), (Lophaven et al.,
2002, p. 13). Ordinary Kriging is recommended by most authors; nev-
ertheless, some authors recommend Blind Kriging (Joseph et al., 2008).

Basic Linear Regression Formulas

In our linear regression we assume

y(x) =
q∑
j=1

βjxj + ε(x) = x′β+ε(x) (6)

where xj is the jth explanatory regression variable, x = (x1, . . . , xq)
′

is the input combination, β = (β1, . . . , βq)
′ is the vector of regression

parameters, and ε(x) is the additive noise with zero mean and variances
that may vary with x; because we do not use CRN, the noise terms at
different points are independent.
Because the variances of the simulation outputs are unknown, we

proceed as follows– but there are alternatives (Kleijnen, 2008, pp. 87-
91). We use OLS to estimate β from the bootstrapped outputs w∗b
(b = 1, . . . , B) with bootstrap sample size B (e.g., B = 100 in our
experiment):

β̂∗b = (X
′X)−1X′w∗b (b = 1, . . . , B)
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lower bound median upper bound
KA 0.150 0.192 0.234
BA 0.454 0.503 0.552
PA 0.160 0.173 0.186
KQ 0.204 0.251 0.298
BQ 0.339 0.365 0.391
PQ 0.183 0.194 0.206

Table 1: Coverage in classic Kriging (K) and monotonicity-preserving
bootstrapped Kriging (B), and Polynomial regression (P), for the Aver-
age (A) and the 90% Quantile (Q), ), with n = 5, m = 5, T = 1000

where X is the n× q matrix of explanatory variables in the n simulated
combinations.The corresponding regression predictor for point xu is

ŷ∗u;b =
q∑
j=1

β̂∗j;bxj;u = x′uβ̂
∗
b (u = 1, . . . , υ).

Our corresponding (1− α) confidence interval for the true output ζu is

̂y∗u;(b0.05Bc) < ζu < ̂y∗u;(d0.95Be).

This gives Table 1.
Note: The known shape of the polynomial regression model may be

preserved through semidefinite programming and real algebraic geome-
try (Siem et al., 2008).
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