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This article presents a novel combination of robust optimization developed in mathematical programming,

and robust parameter design developed in statistical quality control. Robust parameter design uses metamod-

els estimated from experiments with both controllable and environmental inputs (factors). These experiments

may be performed with either real or simulated systems; we focus on simulation experiments. For the envi-

ronmental inputs, classic robust parameter design assumes known means and covariances, and sometimes

even a known distribution. We, however, develop a robust optimization approach that uses only experimen-

tal data, so it does not need these classic assumptions. Moreover, we develop ‘adjustable’ robust parameter

design which adjusts the values of some or all of the controllable factors after observing the values of some

or all of the environmental inputs. We also propose a new decision rule that is suitable for adjustable integer

decision variables. We illustrate our novel method through several numerical examples, which demonstrate

its effectiveness.

Key words : robust optimization; simulation optimization; robust parameter design; phi-divergence

JEL classification: C00, C15, C44, C61, C63, C67

1. Introduction

The goal of many experiments is to estimate the best solution for a given practical problem. Such

experiments may be conducted with a physical system (e.g., an airplane model in a wind tunnel) or

a mathematical model of a physical system (e.g., a computerized simulation model of an airplane or

an inventory management system). These experiments produce data on the outputs or responses for

the given inputs or factors. Output may be univariate (a single or scalar response) or multivariate

(multiple responses or a vector with responses). The number of inputs may range from a single

input to ‘many’ inputs (e.g., thousands of inputs), but we focus on practical problems with no

more than (say) twenty inputs.

Taguchi (1987)—for an update see Myers et al. (2009, pp. 483–485)—distinguishes between the

following two types of inputs: (i) Controllable or decision factors (say) dj (j = 1, . . . , k), collected in

the k-dimensional vector d = (d1, . . . , dk)
T

. (ii) Environmental or noise factors (say) eg (g= 1, . . . , c),

collected in the c-dimensional vector e = (e1, . . . , ec)
T

. By definition, the first type of inputs is under

the control of the users; e.g., in an inventory system, management controls the order quantity. The

second type of inputs is not controlled by the users; e.g., demand in an inventory system. Taguchi

1
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emphasizes that the noise factors create variability in the outputs. Consequently, the combination

of decision factors that (say) maximizes the expected univariate output may cause the variance of

that output to be much larger than a combination that ‘nearly’ maximizes the mean output; i.e.,

a little sacrifice in expected output may save a lot of problems caused by the variability in the

output (or as the French proverb states: “the good is the enemy of the best”).

Taguchian robust parameter design (RPD) has been criticized by statisticians; see the panel

discussion reported in Nair et al. (1992). Their main critique concerns the statistical design and

analysis in the Taguchian approach; for details we refer to Taguchi (1987) and Myers et al. (2009,

pp. 483–495). An alternative RPD approach is given by Myers et al. (2009, pp. 502–506). Like Myers

et al. do, we assume that the unknown input/output (I/O) function (say) w= g(e,d) for a single

output w of the system is approximated by the following ‘incomplete’ second-order polynomial

regression metamodel:

y(e,d) =β0 +β
T

d + d
T

Bd +γ
T

e + d
T

∆e + ε (1)

where y denotes the output of the regression metamodel of the simulation model with output w;

β0 the intercept; β = (β1, . . . , βk)
T

the first-order effects of the decision variables d; B the k× k

symmetric matrix of second-order effects of d with on the main diagonal the ‘purely quadratic’

effects βj;j and off this diagonal half the interactions between pairs of decision factors βj;j′/2 (j 6= j′);

γ = (γ1, . . . , γc)
T

the first-order effects of the environmental factors e; ∆ = (δj;g) the k× c pairwise

(two-factor) interactions between d and e; ε the residual with E(ε) = 0 if this model has no ‘lack

of fit’ (so it is a valid or adequate approximation of g(e,d)) and with constant variance σ2
ε .

Myers et al. (2009) assume experiments with real systems; whereas we assume experiments

with simulation models of real systems. These simulation models may be either deterministic

(especially in engineering) or random (stochastic, possibly with discrete events). Deterministic

simulation models have noise if a parameter or input variable has a fixed but unknown value;

this is called subjective or epistemic uncertainty; see Iman and Helton (2006). Random simulation

models also have objective, aleatory or inherent uncertainty; again see Iman and Helton. We focus

on random simulation, but shall also discuss deterministic simulation. Simulation analysts use

different names for metamodels, such as response surfaces, surrogates, and emulators; see the

many references in Kleijnen (2008, p. 8). There are different types of metamodels, but the most

popular types are low-order polynomials such as (1) and Kriging (Gaussian process) models. These

polynomials are nonlinear in the inputs (e,d) but linear in the regression parameters (β0, . . . , δk;c)

so the analysis may use classic linear regression models estimated using the least squares (LS)

criterion; see Kleijnen (2008, pp. 15–72) and Myers et al. (2009, pp. 13–71). Kriging models are
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more flexible so they can accurately approximate the true I/O function over bigger experimental

areas; see Kleijnen (2008, pp. 139–156).

Classic RPD assumes that the mean and variance—and sometimes even the probability

distribution—of e are known. The final parameter design may be sensitive to these assumptions.

We therefore propose a robust optimization approach that takes the distribution ambiguity into

account, and that uses historical data on the environmental inputs. The developments in robust

optimization (RO) started with Ben-Tal and Nemirovski (1998, 1999) and El-Ghaoui and Lebret

(1997). Optimization problems usually have uncertain coefficients in the objective function and

the constraints, so the “nominal” optimal solution—i.e., the optimal solution if there would be no

uncertainties—may easily violate the constraints for some realizations of the uncertain coefficients.

Therefore, it is better to find a “robust” solution, which is immune to the uncertainty in a so-

called uncertainty set. The robust reformulation of a given uncertain mathematical optimization

problem is called the robust counterpart (RC) problem. The mathematical challenge in RO is to

find computationally tractable RCs; see Ben-Tal et al. (2009).

Optimization of systems being simulated—called simulation optimization (SO)—is a popular

research topic in discrete-event simulation; see Fu (2007), and Fu and Nelson (2003). ‘Robust’ SO,

however, is hardly discussed in that literature; only recently, Angün (2011) combines Taguchi’s

worldview with response surface methodology (RSM). This RSM is a stepwise optimization heuris-

tic that in the various steps uses local first-order polynomial metamodels and in the final step uses a

local second-order polynomial metamodel (obviously, these polynomials are linear regression mod-

els). Instead of Taguchi’s various criteria, Angün (2011) uses the average value-at-risk (also known

as conditional value-at-risk). Miranda and Del Castillo (2011) perform RPD optimization through

a well-known SO method; namely, simultaneous perturbation stochastic approximation, which is

detailed in Spall (2003). More precisely, Miranda and Del Castillo’s (2011, p. 201) “objective is to

determine the operating conditions for a process so that a performance measure y is as close as pos-

sible to the desired target value and the variability around that target is minimum”. Wiedemann

(2010, p. 31) applies Taguchian RPD to an agent-based simulation, ensuring that the mean response

meets the target value and the variability around that level is sufficiently small. Some years ago,

Al-Aomar (2006) used Taguchi’s signal-to-noise ratio and a quality loss function, together with a

genetic algorithm with a scalar fitness measure that is a combination of the estimated mean and

variance. An older paper is Sanchez (2000), who used Taguchi’s worldview with a loss function that

incorporates both system’s mean and variability, and RSM; the author gave many more references.

Robust approaches are discussed—albeit briefly—not only in discrete-event simulation but also in

deterministic simulation if that simulation has uncertain environmental variables, which (by defi-

nition) are beyond management’s control. A recent example is Hu et al. (2012), who apply RO to a
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climate simulation model (called ‘DICE’) with input parameters that have a multivariate Gaussian

distribution with uncertain or ‘ambiguous’ mean vector and covariance matrix. Another recent

example is Dellino et al. (2012), who investigate the well-known economic order quantity model

with an uncertain demand rate. Dellino et al. use Taguchi’s worldview, but replace his experimen-

tal designs (namely, orthogonal arrays) and metamodels (namely, low-order polynomials) by Latin

hypercube sampling and Kriging metamodels. Many more applications can be found in engineering.

For example, Chan and Ewins (2010) use Taguchi’s RPD to manage the vibrations in bladed discs.

Urval et al. (2010) use Taguchi’s RPD in powder injection moulding of microsystems’ components.

Delpiano and Sepulveda (2006) also study RPD in engineering. Vanlı and Del Castillo (2009) study

on-line RPD (ORPD) to account for control variables that are adjusted over time according to

the on-line observations of environmental factors. They assume the posterior predictive densities of

responses and environmental factors are known; moreover, they assume that the uncertain param-

eters follow a specific time series model. They propose two Bayesian approaches for ORPD. In

both approaches, controllable factors can be adjusted on-line using an expected loss function and

the on-line observations. Joseph (2003) proposes RPD with feed-forward control for measurement

systems where true values of the responses cannot be observed but estimated. Using the on-line

observable environmental factors, the author proposes a control law that periodically updates the

online measurement of the system. Dasgupta and Wu (2006) propose an on-line feedback control

mechanism that adjusts the observed output error using a controllable factor—called adjustment

factor—that is set on-line during production. All these ORPD methods assume that the mean and

variance—sometimes even the probability distribution—of environmental factors are known.

We present a methodology that is a novel combination of RPD and RO. Based on Ben-Tal et al.

(2013) and Yanıkoğlu and den Hertog (2012), we use experimental data on the simulated system

to derive uncertainty sets—to be used in RO—for the unknown probability distribution of the

environmental factors. Furthermore, we also use Ben-Tal, den Hertog, and Vial (2012) to convert

associated RCs into explicit and computationally tractable optimization problems. Bingham and

Nair (2012) point out that “the noise distributions are rarely known, and the choices are often

based on convenience”. The advantage of our approach is that it uses the distribution-free structure

of RO; i.e., unlike standard approaches we do not make any assumptions about the distribution

of the environmental factors such as a Gaussian (or Normal) distribution. Moreover, we develop

adjustable RPD for those situations in which some or all of the controllable inputs have a ‘wait

and see’ character; i.e., their values can be adjusted after observing the values of some or all of

the environmental inputs. Examples are the adjustment of several controllable chemical process

parameters after observing environmental inputs such as temperature and humidity, or the adjust-

ment of the replenishment order at time t according to the realized demands in the preceding
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t− 1 periods in a multistage inventory system. We develop adjustable RO for such situations, and

show that the corresponding robust counterpart problems can again be reformulated as tractable

optimization problems.

The major contributions of our research can be summarized as follows: (i) We propose a RO

methodology for a class of RPD problems where the distributional parameters are unknown

but historical data on the uncertain parameters are available. (ii) We propose adjustable robust

approach for RPD. Unlike classic adjustable RO techniques, our adjustable robust reformulations

are tractable even for nonlinear decision rules. (iii) We propose tractable RC formulations of uncer-

tain optimization problems that have quadratic terms in the uncertain parameters. Compared with

other studies in the literature, our formulations can handle more general classes of uncertainty sets,

and lead to easier tractable formulations. (iv) Last but not least, to the best of our knowledge, our

study is the first publication that introduces adjustable integer decision variables in the context of

RO, and proposes a specific decision rule for such variables.

We organize this article as follows. §2 summarizes Taguchi’s world view and the corresponding

regression model formulated in (1), and alternative RPD approaches. §3 proposes our RO approach

accounting for distribution ambiguity. §4 develops adjustable RPD. §5 presents numerical examples.

§6 summarizes our conclusions, and indicates topics for future research.

2. Robust Parameter Design

In this section, we first present the Taguchian RPD approach, and then other popular RPD

approaches. To estimate the regression parameters in (1) we need an experiment with the under-

lying system: Design of experiments (DoE) uses coded—also called standardized or scaled—values

(say) xj for the factors. So the experiment consists of (say) n combinations of the coded factors x,

which correspond with d and e in (1). Coding is further discussed in Kleijnen (2008, p. 29) and

Myers et al. (2009, p. 78).

We reformulate the Taguchian model (1) as the following linear regression model :

y= ζ
T

x + ε (2)

with the `-dimensional vector of regression parameters or coefficients ζ = (β0, . . . , δk;c)
T

and the

corresponding vector of regression explanatory variables x defined in the obvious way; e.g., the

explanatory variable corresponding with the interaction effect β1;2 is d1d2. Then (2) leads to the

LS estimator:

ζ̂ = (X
T

X)
−1

X
T

y (3)

where X is the n × ` matrix of explanatory variables with n denoting the number of scenarios

(combinations of control and environmental factors) determined by the DoE that are actually
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observed (in a real or simulated system); y is the vector with the n observed outputs. The covariance

matrix of the estimator (3) is

Cov(ζ̂) = σ2
ε (X

T

X)
−1

(4)

where σ2
ε was defined in (1). Hence, the variance σ2

ε may be estimated by the mean squared

residuals:

σ̂2
ε =

(ŷ−y)
T

(ŷ−y)

n− `
(5)

where ŷ = Xζ̂; see (2) and (3).

We denote the expected values of the environmental factors through E(e) =µe. We allow depen-

dence between the environmental factors so the covariance matrix is Cov(e) = Ωe. Analogous to

Myers et al. (2009, pp. 504–506), we derive that the metamodel (1) implies that the regression

predictor for the mean E(y) is

Ee[y(e,d)] =β0 +β
T

d + d
T

Bd +γ
T

µe + d
T

∆µe (6)

and the regression predictor for the variance Var(y) is

Vare[y(e,d)] = (γ
T

+ d∆)Ωe(γ+ ∆
T

d) +σ2
ε (7)

where (γ+∆
T
d) = (∂y/∂e1, . . . , ∂y/∂ec)

T
is the gradient with respect to the environmental factors.

Obviously, the larger the gradient’s elements are, the larger the variance of the predicted output

is. Furthermore, if ∆ = 0 (no control-by-noise interactions), then Var(y) cannot be controlled

through the decision variables d. Note the difference between the predicted variance, Var(y), and

the variance of the predictor, Var(ŷ) with ŷ= x
T
ζ̂. Obviously, the mean vector and the covariance

matrix completely define a multi-variate Gaussian distribution.

Taguchi focuses his analysis on the signal-to-noise ratios (SNRs), which depend on

E(y)/
√

Var(y) (the standard deviation
√

Var(y) has the same scale as the mean E(y)); see Myers

et al. (2009, pp. 486–488). The precise definitions of these SNRs vary with the following goals of

RPD: (i) ‘The smaller, the better’: minimize the response. (ii) ‘The larger, the better’: maximize

the response. (iii) ‘The target is best’: realize a target value (say) T for the response.

We do not further dwell on Taguchi’s SNRs, because we think there are better formulations of

the various goals of RPD; Myers et al. (2009, pp. 488–495) also question the utility of SNRs. We

use the following optimization problem formulation, also formulated by Myers et al. (2009, p. 506):

min
d

Vare[y(e,d)] s.t. Ee[y(e,d)]≤ T. (8)

We may also consider the optimization problem given by Dellino et al. (2012); namely,

min
d

Ee[y(e,d)] s.t. Vare[y(e,d)]≤ T, (9)
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or the following variant:

min
d

Ee[(y(e,d)−T )2]. (10)

Remark 1 The optimal ‘coded’ controllable factors d∗—that minimize the process mean or vari-

ance in (8), (9) or (10)—must lie in −1≤ d≤ 1, where 1 denotes the all ones vector. Otherwise,

the simulation or physical experiment must be rerun with a larger experimental region for the orig-

inal (non-coded) input factors to obtain a new response model y(e,d) satisfying the associated

requirement for the given RPD problem.

In the rest of this paper we focus on (9), since (8) and (10) can be treated analogously.

3. Robust Optimization with Unknown Distributions

In this section, we derive the robust reformulations of the class of optimization problems presented

in §2. We assume that data on the environmental factors e is available or can be obtained via

simulation.

3.1. Uncertainty Sets

Instead of relying on the normal distribution, RO derives an uncertainty set for the unknown

density function of the noise factors. There are several RO approaches, but we follow Ben-Tal et

al. (2013) and Yanıkoğlu and den Hertog (2012), who develop RO accounting for historical data on

the noise factors. They do not use a specific distribution to this data; instead, they use the more

general concept of phi-divergence—as follows.

Given N historical observations on the noise factors e, we construct m cells such that the number

of observations oi in cell i (i= 1, . . . ,m) is at least five:∑m

i=1oi =N such that ∀i : oi ≥ 5.

The historical data on e give the frequencies q = [q1, . . . , qm]
T

, where qi is the observed frequency

in cell i so

qi =
oi
N
.

The phi-divergence measure is

Iφ(p,q) =
m∑
i=1

qiφ

(
pi
qi

)
where φ(.) satisfy certain mathematical requirements such as φ (1) = 0, φ (a/0) := a lim

t→∞
φ(t)/t for

a> 0, and φ (0/0) = 0; for details on phi-divergence we refer to Pardo (2006). It can be proven that

the test statistic
2N

φ′′(1)
Iφ(p,q)
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is asymptotically distributed as a chi-squared random variable with (m−1) degrees of freedom. So

an asymptotic (1−α)-confidence set for p is

Iφ(p,q)≤ ρ with ρ= ρ(N,m,α) =
φ′′(1)

2N
χ2
m−1;1−α. (11)

Using (11), Ben-Tal et al. (2013) derive the following uncertainty set U for the unknown probability

vector p:

U = {p∈Rm|p≥ 0,
m∑
i=1

pi = 1, Iφ(p,q)≤ ρ}. (12)

Table 1 Phi-Divergence Examples

Divergence φ(t), t > 0 Iφ(p,q) φ∗(s)

Kullback-Leibler t log t
∑
i

pi log

(
pi

qi

)
es−1

Burg entropy − log t
∑
i

qi log

(
pi

qi

)
−1− log(−s), s≤ 0

χ2-distance 1

t
(t− 1)2

∑
i

(pi− qi)2

pi
2− 2

√
1− s, s≤ 1

Pearson χ2-distance (t− 1)2
∑
i

(pi− qi)2

qi

s+ s2/4, s≥−2
−1, s <−2

Hellinger distance (1−
√
t)2

∑
i

(
√
pi−
√
qi)

2 s

1−s , s≤ 1

Table 1 taken from Ben-Tal et al. (2013) presents common choices of the phi-divergence function;

φ∗ (s) := supt≥0 {st−φ (t)} denotes the conjugate of a phi-divergence distance that will be used for

the derivations of RCs in the next section. In various examples, we shall use the χ2-distance in this

paper.

3.2. Robust Counterparts of Mean and Variance

In this section we derive the robust reformulation of the optimization problem (9), given in §2.

Slight modifications of the derivations in this section enable the derivation of the RC of any problem

based on mean and variance; e.g., (8) and (10).

We represent each cell i by its center point ei; e.g., eig is the gth (g = 1, . . . , c) coordinate of cell

i’s center point. To apply the phi-divergence in (12), we discretize y(e,d) by replacing e by ei.

This substitution gives

yi(d) = y(ei,d) =β0 +β
T

d + d
T

Bd + (γ
T

+ d
T

∆)ei. (13)

Consequently, the mean of y(e,d) becomes approximated by

Ee[y(e,d)] =
∑
i∈V

yi(d)pi =
∑
i∈V

[β0 +β
T

d + d
T

Bd + (γ
T

+ d
T

∆)ei]pi (14)
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where pi denotes the probability of e falling into cell i. Note that p is in the uncertainty set U

given by (12) and the empirical estimate q of p is obtained using the data on e; see §3.1. If we

define

ψi(d) := (γ
T

+ d
T

∆)ei, (15)

then the variance of y(e,d) becomes approximated by

Vare[y(e,d)] =
∑
i∈V

ψi(d)2pi−

[∑
i∈V

ψi(d)pi

]2
. (16)

Eventually, the robust reformulation of (9) is the following semi-infinite optimization problem:

(SI1) min
d

max
p∈U

∑
i∈V

[β0 +β
T

d + d
T

Bd + (γ
T

+ d
T

∆)ei]pi

s.t.
∑
i∈V

ψi(d)2pi−

[∑
i∈V

ψi(d)pi

]2
≤ T ∀p∈U, (17)

where U = {p ∈Rm|p≥ 0,
∑m

i=1 pi = 1, Iφ(p,q)≤ ρ}. (SI1) is a difficult optimization problem that

has infinitely many constraints (see ∀p ∈ U), and includes quadratic terms in p. Ben-Tal et al.

(2009, p. 382) propose a tractable RC of a linear optimization problem with uncertain parameters

that appear quadratically, and an ellipsoidal uncertainty. The resulting formulation is a semidefinite

programming (SDP) problem; see also Remark 2 below. The following theorem provides tractable

RC reformulations of (SI1) for more general ‘phi-divergence’ uncertainty sets.

Theorem 1 The vector d solves (SI1) if and only if d,λ,η, and z solve the following RC problem:

(RC1) min
d,λ,η,z

β0 +β
T

d + d
T

Bd +λ1 + ρη1 + η1
∑
i∈V

qiφ
∗
(
ψi(d)−λ1

η1

)

s.t. λ2 + ρη2 + η2
∑
i∈V

qiφ
∗

(
(ψi(d) + z)

2−λ2

η2

)
≤ T (18)

η1, η2 ≥ 0

where ρ is given by (11), φ∗ (s) := supt≥0 {st−φ (t)} denotes the conjugate of φ(.), V = {1, ...,m}

is the set of cell indices in the uncertainty set U , qi is the data frequency in cell i ∈ V using the

historical data on e, and λ, η, and z are additional variables.

Proof. Using Yanıkoğlu and den Hertog (2012, Theorem 1), we can easily derive the explicit RC of

the objective function of (SI1) that is linear in p∈U . Next we consider the ‘more difficult’ variance

constraint (17), which is quadratic in p. In the following parts of the proof we use Ben-Tal, den
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Hertog, and Vial (2012) to account for the nonlinear uncertainty in the constraint. Using a linear

transformation, we reformulate (17) as

max
a∈Û

g(a)≤ T, (19)

where Û := {a : a = Ap,p∈U}, A
T

= [ψ2(d),ψ(d)] and g(a) = a1−a22. Using the indicator function

δ(a|Û) :=

{
0, a∈ Û

+∞, elsewhere,

we reformulate (19) as

max
a∈R2
{g(a)− δ(a|Û)} ≤ T. (20)

The Fenchel dual of (20)—for details see Rockafellar (1970, pp. 327–341)— is equivalent to

min
v∈Rn
{δ∗(v|Û)− g∗(v)} ≤ T (21)

where v denotes the dual variable, and δ∗(v|Û) := supp∈U{aTv|a = Ap} and g∗(v) := infa∈R2{aTv−

g(a)} denote the convex and concave conjugates of the functions δ and g, respectively. Going from

(20) to (21) is justified since the intersection of the relative interiors of the domains of g(.) and

δ(.|Û) is non-empty, since a = Aq is always in the relative interiors of both domains. Moreover it

is easy to show that δ∗(v|Û) = δ∗(A
T
v|U). Then we delete the minimization in (21) because the

constraint has the ≤ operator, and the RC reformulation of (17) becomes

δ∗(A
T

v|U)− g∗(v)≤ T.

Now we derive the complete formulas of the conjugate functions δ∗ and g∗. If v
T

= [w,z], then the

concave conjugate of g is equivalent to

g∗(v) = inf
a∈R2
{a1w+ a2z− g(a)}=

{
−z2/4, w= 1
−∞, elsewhere.

Using Theorem 1 in Yanıkoğlu and den Hertog (2012) once more, the convex conjugate of δ is

equivalent to

δ∗(A
T

v|U) = inf
λ,η2≥0

{
ρη2 +λ+ η2

∑
i∈V

qiφ
∗
(
ψ2
i (d) +ψi(d)z−λ

η2

)}
.

Thus the RC reformulation of (17) becomes

λ+ ρη2 + η2
∑
i∈V

qiφ
∗
(
ψ2
i (d) +ψi(d)z−λ

η2

)
+
z2

4
≤ T,η2 ≥ 0. (22)

Substituting λ2 = λ+ z2/4 into (22) gives the final RC reformulation (RC1) �
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Remark 2 An ellipsoidal uncertainty set is a special case of the phi-divergence uncertainty set (12)

when the Pearson chi-squared distance is used as the phi-divergence. Moreover, we can reformulate

(RC1) as a second order cone problem (SOCP) for the associated distance measure. Notice that

SOCP is an ‘easier’ formulation of the problem compared with the SDP by Ben-Tal et al. (2009).

Remark 3 Ben-Tal et al. (2012) also propose an RC for the variance uncertainty, however the

associated RC introduces additional non-convexity. We overcome this difficulty by using the substi-

tution λ2 = λ+ z2/4 in the proof of Theorem 1.

We now discuss the ‘general’ computational tractability of (RC1). First, φ∗(h(d, λ2, z)) is convex,

since the convex conjugate φ∗ (s) := supt≥0 {st−φ (t)} is non-decreasing in s, and h(d, λ2, z) =

(ψi(d) + z)2 − λ2 is convex in d, z, and λ2. It is easy to show that η2φ
∗(·/η2) is convex, since the

perspective of a convex function is always convex. Eventually, the convexity of the perspective

implies that (18) is convex. On the other hand, the objective function of (RC1) is not necessarily

convex, since y is non-convex in d unless B is a positive semidefinite (PSD) matrix. Nevertheless,

(RC1) does not introduce additional non-convexity into the general optimization problem (9).

3.3. Alternative Metamodels and Risk Measures

In this subsection, we focus on extensions of our method. §3.3.1 presents a generalization of our

method for other metamodels besides (2), and §3.3.2 presents an extension of our method to SNRs.

Finally, §3.3.3 shows how to apply our method to tail-risk measures.

3.3.1. Alternative Metamodels In this paper we focus on the low-order polynomial (1),

since most of the literature and real-life applications use low-order polynomials to approximate the

I/O function of the underlying simulation or physical experiment. However, our methodology can

also be used to other metamodel types such as higher-order polynomials, Kriging, and radial basis

functions. More precisely, consider

y(d,e) = f(d) +ψ(d,e)

where f(d) is the part that affects only the mean of the response (e.g., it is f(d) = β0 +β
T
d+d

T
Bd

in (1)), and ψ(d,e) is the part that affects the response variance (e.g., it is ψ(d,e) = γ
T
e + d

T
∆e

in (1)). We then reformulate the RC in Theorem 1 as

min
d,λ,η,z

f(d) +λ1 + ρη1 + η1
∑
i∈V

qiφ
∗
(
ψi(d)−λ1

η1

)

s.t. λ2 + ρη2 + η2
∑
i∈V

qiφ
∗

(
(ψi(d) + z)

2−λ2

η2

)
≤ T

η1, η2 ≥ 0.
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The complexity of f(d) and ψi(d) (=ψ(d,ei)) determines the complexity of the RC; the problem

can be non-convex depending on f(d) and ψi(d). Again our robust reformulation does introduces

additional variables, but does not introduce additional non-convexity to y(e,d).

3.3.2. Signal-to-Noise Ratios SNRs are performance criteria used in many areas including

engineering, chemistry, and physics. As we have mentioned earlier in §2, Taguchi (1987) focuses

on three performance measures in his SNRs. Our method can be applied for any given function,

including the first two measures; namely, (y(e,d) − 0)
2

and (1/y(e,d))
2

. Therefore, the robust

reformulations of the given problems are special cases of Theorem 1, when we have no constraint on

the variance. The third measure involves a true SNR that is in line with the following expression:

max
d

Ee[y(e,d)]√
Vare[y(e,d)]

, (23)

which we reformulate as

max
d,w

w s.t. −Ee[y(e,d)] +w
√

Vare[y(e,d)]≤ 0. (24)

Like in §3.3.1, we define the response model through y(e,d) = f(d) +ψ(e,d). Using the associated

notation, the general RC of (24) after discretization is given by

(SI2) max
d,λ,η,w,v

w

s.t. − f(d)−
∑
i∈V

ψ(d)pi +w

√√√√∑
i∈V

ψi(d)2pi−

[∑
i∈V

ψi(d)pi

]2
≤ 0 ∀p∈U.

The left-hand side of the inequality in (SI2) is concave in p when w≥ 0. The next theorem provides

the tractable RC of (SI2).

Theorem 2 The vector d and w solve (SI2) if and only if d, λ, η,w, and v = [v1, v2] solve the

following RC constraints:

(RC2) max
d,λ,η,w,v

w

s.t. − f(d) +λ+ ρη+
w2

4v1
+ η

∑
i∈V

qiφ
∗
(
η
−1
[
(ψi(d)

√
v1 + v2)

2

−ψi(d)−λ1

])
≤ 0,

η≥ 0,w≥ 0.

Proof. We reformulate the semi-infinite problem (SI2) as

max
p∈U

−f(d)−
∑
i∈V

ψ(d)pi +w

√√√√∑
i∈V

ψ
2

i (d)pi−

[∑
i∈V

ψi(d)pi

]2≤ T. (25)
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Analogous to the proof of Theorem 1, we reformulate (25) as

−f(d) + max
a∈Û

g(a)≤ T, (26)

where Û := {a : a = Ap,p ∈ U}, A
T

= [ψ2(d),ψ(d)] and g(a) =−a2 +w
√
a1− a22. Using the indi-

cator function

δ(a|Û) :=

{
0, a∈ Û

+∞, elsewhere,

we reformulate (26) as

−f(d) + max
a∈R2
{g(a)− δ(a|Û)} ≤ T.

Deleting the minimization in the Fenchel dual of max
a∈R2
{g(a)− δ(a|Û)} as in Theorem 1, the RC is

equivalent to

−f(d) + δ∗(v|Û)− g∗(v)≤ T (27)

where the concave conjugate is

g∗(v) = inf
a∈R2
{a1v1 + a2v

′
2− g(a)}=

{
−[w2 + (1 + v′2)

2]/4v1, v1 > 0
−∞, elsewhere,

and v = [v1;v
′
2] denotes the additional dual variables. The convex conjugate of δ is equivalent to

δ∗(A
T

v|U) = inf
λ′,η≥0

{
ρη+λ′+ η

∑
i∈V

qiφ
∗
(
ψ2
i (d)v1 +ψi(d)v′2−λ′

η

)}
where η and λ′ are the additional Lagrangian dual variables. Thus (27) becomes

− f(d) + ρη+λ′+ η
∑
i∈V

qiφ
∗
(
ψ2
i (d)v1 +ψi(d)v′2−λ′

η

)
+
w2 + (1 + v′2)

2

4v1
≤ T

η≥ 0,w≥ 0.

Using the substitutions λ= λ′+ (1 + v2)
2
/4v1 and v2 = v′2 + 1/2

√
v1, the final RC becomes RC2 �

Notice that when v1 is fixed, RC2 does not introduce extra non-convexity. We can find the

optimal v1 by solving the problem for various values of v1.

3.3.3. Tail-Risk Constraint Tail-risk measures are used in finance and engineering to quan-

tify the worst-case risk. In this subsection, we examine the robust reformulation of such constraint

given as

Ee[y(e,d)] + k
√

Vare[y(e,d)]≤ T

where k≥ 0. Analogous to the previous subsection, the general RC is given by

(SI3) f(d) +
∑
i∈V

ψ(d)pi + k

√√√√∑
i∈V

ψi(d)2pi−

[∑
i∈V

ψi(d)pi

]2
≤ T ∀p∈U.
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Corollary 1 The vector d solves constraint (SI3) if and only if d, λ, η, and v = [v1, v2] solve the

following RC constraints:

f(d)+λ+ ρη+
k2

4v1
+ η

∑
i∈V

qiφ
∗ ((ψi(d)

√
v1 + v2)

2 +ψi(d)−λ1

)
≤ T,

η≥ 0.

Proof. The proof follows from Theorem 2, when g(a) = a2 + k
√
a1− a22 �

4. Adjustable Robust Optimization

In the preceding sections the controllable factors d are ‘here and now’ decisions; i.e., decisions on

d must be made before e are realized, and hence d do not depend on the actual values of e. In

practice, a part of the controllable factors can often be adjusted after observing the actual values

of e. For example, in a multi-stage inventory system with uncertain demand, the decisions on the

replenishment orders are made one-at-a-time, and the replenishment order t is placed when the

actual demands in periods 1 through t−1 are known. Hence it is realistic to allow the replenishment

order for period t to be adjusted according to the demands in the preceding periods, even though

the upcoming demands remain uncertain. The adjustable factors are called ‘wait and see’ decisions.

Often here-and-now and wait-and-see decisions appear together in the same problem setting.

To model this situation, Ben-Tal et al. (2009, Chapter 14) reformulate adjustable factors as

functions of the uncertain parameters as follows:

dj =Dj(xj,Pje) j ∈ {1, . . . , n}, (28)

where Dj(.) are the so-called decision rules that define the class of functions (e.g., affine functions),

xj is the vector of coefficient variables to be optimized for the associated function class, and Pj

is the information-base matrix; e.g., if Pj is a zero matrix, then d and e become functionally

independent and we are back to here-and-now decisions; if Pj is a unit matrix, then we allow dj to

depend on all components of e. In addition, dj can depend on a portion of the observed data on e;

e.g., in the multi-stage inventory example, Pj has the value 1 in the first j − 1 diagonal elements

and zero elsewhere.

To obtain the adjustable robust counterpart (ARC) of the mean-variance problem (SI1), we

replace d by D(X,Pe)=[D1(x1,P1e), . . . ,Dn(xn,Pne)]
T

in the general RC:

min
X

max
p∈U

∑
i∈V

[β0 +β
T

D(X,Pei) + X,Pei)
T

B D(X,Pei) + (γ
T

+ D(X,Pei)
T

∆)ei]pi

s.t.
∑
i∈V

yi
(
D(X,Pei)

)2
pi−

[∑
i∈V

yi
(
D(X,Pei)

)
pi

]2
≤ T ∀p∈U.



Yanıkoğlu, den Hertog, and Kleijnen: Adjustable Robust Parameter Design with Unknown Distributions
15

The tractable ARC of the above problem results from Theorem 1 in §3.2. The adjustable reformu-

lation has the following advantages as we shall detail below. First, the optimal solution of ARC

is less conservative than that of the non-adjustable RC, since it is flexible in adjusting the robust

optimal decisions according to revealed data. Second, our approach is tractable even for nonlinear

decision rules because we translate the uncertainty from e to p. To point out, in classic adjustable

robust optimization (ARO) tractability is generally scarce for non-linear decision rules; Ben-Tal et

al. (2009, pp. 382-387) show that the explicit ARC for a quadratic decision rule is derivable only for

an ellipsoidal uncertainty set, and the resulting ARC is an SDP problem. Third, we propose a new

decision rule that enables modeling integer adjustable decision variables, and this is completely

new in the RO literature.

To present the associated decision rules we use the following illustrative example:

min
d

Ee

[
(1 + 5d1 + 5d2 + e1− e2)2 + (1 + 5d1 + 10d2 + e1 + e2)

2
]

(29)

where all factors are coded. We divide the support of e—namely, the unit box in two dimension

[−1,1]
2
—into four cells of equal size. Hence the center points of the cells are {e1,e2,e3,e4}={(-0.5,

-0.5), (-0.5, 0.5), (0.5, -0.5), (0.5, 0.5)}). So the nominal problem after discretization is

min
d

4∑
i=1

[(
1 + 5d1 + 5d2 + ei1− ei2

)2
+
(
1 + 5d1 + 10d2 + ei1 + ei2

)2]
qi. (30)

Suppose the observed data are q = [0.4,0.3,0.2,0.1]
T

. It is easy to derive the optimal solution of

this nominal problem: (d1, d2) =(-0.08, -0.08). The uncertainty set for the RC is given by

P :=
{

p = (p1, p2, p3, p4)∈R
4
∣∣∣p1 + p2 + p3 + p4 = 1,

4∑
i=1

(pi− qi)
2

pi
≤ 0.5,p≥ 0

}
.

Using this uncertainty set, we derive that the worst-case objective value for the nominal solution

is 1.2; moreover, the non-adjustable robust counterpart of (29) is

min
d

max
p∈P

4∑
i=1

[(
1 + 5d1 + 5d2 + ei1− ei2

)2
+
(
1 + 5d1 + 10d2 + ei1 + ei2

)2]
pi,

and its robust optimal solution is (-0.2, 0) with objective value 1.0. Next we shall examine three

adjustable formulations; namely, linear, nonlinear, and cell-based decision rules.

Linear Decision Rule Now we assume that the functions of the adjustable controllable factors

d are linear in the observed values of the environmental factors e. The fully adjustable linear

decision rule is

dj =Dj(xj, I2e) := xj0 +xj1e1 +xj2e2 ∀j ∈ {1,2} (31)
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where I2 = [1,0; 0,1]. When both controllable factors are fully adjustable, all decisions are made

only after the uncertainty is revealed. Consequently, the ARC of (29) with linear decision rule is

min
X

max
p∈P

4∑
i=1

[(
1 + 5D1(x1,e

i) + 5D2(x2,e
i) + ei1− ei2

)2
+

(
1 + 5D1(x1,e

i) + 10D2(x2,e
i) + ei1 + ei2

)2 ]
pi.

The optimal solution is x1
∗=(−0.2,−0.2,0.6)

T
and x2

∗=(0,0,−0.4)
T

; i.e., the linear decision rules

are D1(x1,e)=−(1 + e1− 3e2)/5 and D2(x2,e)=−2e2/5, so we have

5d1 + 5d2 = 5D1(x1,e) + 5D2(x2,e) =−1− e1 + e2

5d1 + 10d2 = 5D1(x1,e) + 10D2(x2,e) =−1− e1− e2.

Therefore, the ARC yields the lowest possible optimal objective value; namely, zero for the problem,

whereas the non-adjustable RC yields one.

Table 2 Linear Decision Rules (LDR) and Objective Values

LDR D1(.) D2(.) Obj.
d1 d2 (x10, x11, x12) (x20, x21, x22)

na na (-0.2,−,−) (0,−,−) 1.00
na e1 (-0.189,−,−) (-0.009,-0.103,−) 0.66
na e2 (-0.2,−,−) (0,−,0) 1.00
e1 na (-0.2,-0.2,−) (0,−,−) 0.50
e2 na (-0.2,−,0) (0,−,−) 1.00
na e[1,2] (-0.186,−,−) (-0.008,-0.12,-0.04) 0.62

e[1,2] na (-0.2,-0.2,0) (0,−,−) 0.50
e1 e1 (-0.2,-0.2,−) (0,−,−) 0.50
e1 e2 (-0.2,-0.2,0) (0,−,-0.04) 0.45
e2 e1 (-0.21,−,0.04) (-0.001,-0.09,−) 0.68
e2 e2 (-0.2,−,0.6) (0,−,-0.4) 0.50

e[1,2] e1 (-0.2,-0.2,0) (0,−,−) 0.50
e[1,2] e2 (-0.2,-0,2,0.6) (−,−,0.4) 0.00
e1, e[1,2] (-0.2,-0.2,−) (0,0,-0.04) 0.45
e2, e[1,2] (-0.2,−,0.6) (0,-0.12,-0.4) 0.05

e[1,2] e[1,2] (-0.2,-0.2,0.6) (0,0,-0.4) 0.00

More interesting cases have wait-and-see and here-and-now decisions together or at least one

of the controllable factors is not fully adjustable. Table 2 presents the numerical results for all

possible combinations of linear decision rules. The first column gives the possible linear decision

rules for the two adjustable factors d1 and d2, where ‘na’ denotes non-adjustable, ‘e1’ denotes a

factor that is adjustable on e1; similarly, ‘e2’ denotes adjustability on e2, and ‘e[1,2]’ denotes a
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fully adjustable factor. The second and third columns are the optimal coefficients (variables) x1

and x2 of the decision rules D1(.) and D2(.), where (−) denotes a variable that vanishes in the

associated decision rule. The final column (Obj.) presents the robust optimal objective value for

the associated decision rule. Altogether, the numerical results show that when one of the factors

is non-adjustable and the other is adjustable on e2—see row (na, e2) or (e2, na) in Table 2—the

optimal objective value of the ARC is the same as that of the non-adjustable RC. In all other cases

the optimal objective value of the non-adjustable RC improves with at least 32% (see row (e2,

e1)) for the ARC, and the highest improvement (100%) is attained when the first factor is fully

adjustable and the second one is non-adjustable; see row (e[1,2], e2). Another interesting outcome

is that introducing an adjustable factor into the problem may change the optimal decision for the

non-adjustable factor; i.e., an optimal here-and-now factor can have different values in the ARC

and RC. For example, if d1 is adjustable on e1 and d2 is non-adjustable, then the optimal d2 is

-0.189 in the ARC, but it is -0.2 in the RC; see (na, na) and (na, e1).

Nonlinear Decision Rule Table 3 shows the following nonlinear (quadratic) decision rule:

Dj(xj, I2e) := xj0 +xj1e1 +xj2e2 +x
(j)

11 e
2
1 +x

(j)

22 e
2
2 +x

(j)

12 e1e2 (32)

where xj = [xj0, xj1, xj2, x
(j)

11 , x
(j)

12 , x
(j)

22 ]. For example, if the controllable factors are only adjustable

in e1, then the decision rule is

Dj(xj, Pje) := xj0 +xj1e1 +x
(j)

11 e
2
1

where Pj = [1,0; 0,0]. Obviously, the nonlinear decision rule is more general than the linear rule,

so it is at least as good as the linear decision rule used in Table 2.

We denote the cases where the nonlinear decision rule performs better than the linear by (*)

in the last column of Table 3. The highest improvement compared with Table 2 is obtained when

the first factor is non-adjustable and the second factor is fully adjustable; compare (na, e[1,2]) in

Table 3, where the optimal objective value is 0.584, with the objective 0.621 for the same situation

in Table 2. Quantifying the value of information is an important topic in both adjustable robust

decision making and in general decision making; Table 3 shows that having extra information on

e2 but not on e1 for one of the controllable factors has no added value in the adjustable decision

making; i.e., the non-adjustable and the adjustable RCs have the same optimal objective at (na,

e2) and (e2, na). On the other hand, having information on e1 for one of the controllable factors

yields improvement in the objective; see (na, e1) and (e1, na) in Table 3. Moreover, if d1 responds to

both environmental factors, and d2 uses information on e2 only, then we obtain the lowest possible

optimal objective value (namely, zero); see (e[1,2], e2) in Table 3.



Yanıkoğlu, den Hertog, and Kleijnen: Adjustable Robust Parameter Design with Unknown Distributions
18

Table 3 Nonlinear Decision Rules (NDR) and Objective Values

NDR D1(.) D2(.) Obj.
d1 d2 (x10, x11, x12, x

(1)
11 , x

(1)
22 , x

(1)
12 ) (x20, x21, x22, x

(2)
11 , x

(2)
22 , x

(2)
12 )

na na (-0.2,-,-,-,-,-) (0,-,-,-,-,-) 1.00
na e1 (-0.196,-,-,-,-,-) (0.014,0.093,-,-0.079,-,-) 0.65∗

na e2 (-0.2,-,-,-,-,-) (-0.33,-,0,-,1.33,-) 1.00
e1 na (-0.195,-0.2,-,-0.02,-,-) (0,-,-,-,-,-) 0.50
e2 na (-0.192,-,0,-,-,-) (-,-0.03,-,-,-,-) 1.00
na e[1,2] (-0.188,-,-,-,-,-) (0.062,-0.106,-0.053,-0.244,0.015,0.05) 0.58∗

e[1,2] na (-0.178,-0.2,0,-0.044,-0.044,0) (0,-,-,-,-,-) 0.50
e1 e1 (-0.213,-0.2,-,0.05,-,-) (-0.002,0,-,0.008,-,-) 0.50
e1 e2 (-0.533,-0.2,-,1.33,-,-) (-0.005,-,-0.04,-,0.02,-) 0.45
e2 e1 (-0.19,-,0.044,-,-0.047,-) (-0.045,-0.063,-,0.197,-,-) 0.65∗

e2 e2 (-0.223,-,0.6,-,0.094,-) (-0.002,-,-0.4,-0.008,-) 0.50
e[1,2] e1 (-0.186,-0.2,0,-0.028,0.028,0) (-0.006,-,-,0.023,-,-) 0.50
e[1,2] e2 (-0.253,-0.2,0.6,0.107,0.107,0) (-0.002,-,-0.4,-,0.008,-) 0.00

e1 e[1,2] (-0.146,-0.199,-,-0.214,-,-) (-0.052,-0.003,-0.047,0.148,0.057,-0.001) 0.44∗

e2 e[1,2] (-0.233,0,0.6,-,0.133,0) (-0.151,-0.12,-0.4,0.105,0.5,-) 0.05
e[1,2] e[1,2] (-0.214,-0.2,0.6,0.028,0.028,0) (0.013,0,-0.4,-0.066,0.014,0) 0.00

(∗) denotes an improved optimal objective value compared with that in Table 2

Cell-Based Decision Rule Now we propose a new type of decision rule that we call the

cell-based decision rule:

Dj(xj,e) := xji if e∈ cell(i), i∈ Vj, (33)

where xj is the decision vector for the jth adjustable variable (xji being the decision for the ith cell),

cell(i) is the region determined by the ith cell, and Vj is the set of cell indices for the associated

information-base.

Remark 4 Cells used in the decision rule are non-intersecting—excluding the boundaries—squares

in two dimensions, cubes in three dimensions, and hypercubes in higher dimensional uncertainty

spaces. For the sake of simplicity, we assume that—given the dimension—all cells have the same

volume.

If in the illustrative example (29), d1 is fully adjustable, then the decision rule is

D1(x1,e) :=


x11, e∈ cell(1)
x12, e∈ cell(2)
x13, e∈ cell(3)
x14, e∈ cell(4)

(34)

where cell(i) := {(e1, e2) ∈ R2
: `1i ≤ e1 ≤ u1i, `2i ≤ e2 ≤ u2i} (i ∈ {1,2,3,4}), `1 = [0,−1,−1,0],

u1 = [1,0,0,1], `2 = [0,0,−1,−1], u2 = [1,1,0,0], and V1 = {1,2,3,4}; cells are represented by their
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center points in (30). To show the difference between full and partial information, we assume that

d1 is adjustable on e1 but not on e2. The associated decision then becomes

D1(x1, e1) :=

{
x11, e1 ∈ cell(1)
x12, e1 ∈ cell(2)

(35)

where cell(1) := {e1 ∈ R : 0 ≤ e1 ≤ 1} and cell(2) := {e1 ∈ R : −1 ≤ e1 ≤ 0}, and V1 = {1,2}). It is

easy to see that (35) implies that when e2 is extracted from the information-base, the new cells are

projections from the cells in the two-dimensional space in (34) onto the one-dimensional space on

e1 in (35). The disadvantage of the cell-based decision rule is that this rule often has more variables

compared with the linear and nonlinear decision rules, especially when the number of cells is high.

Nevertheless the numerical results for the example show that the new decision rule is better than

the linear, and is ‘almost’ as good as the nonlinear decision rule—even when the total number of

cells is only four; see Table 4.

Table 4 Cell-Based Decision Rules (CDR) and Objective Values

CDR D1(.) D2(.) Obj.
d1 d2 (x11, x12, x13, x14) (x21, x22, x23, x24)

na na (-0.2,−,−,−) (0,−,−,−) 1.00
na e1 (-0.19,−,−,−) (-0.06,0.04,−,−) 0.66
na e2 (-0.2,−,−,−) (0,0,−,−) 1.00
e1 na (-0.3,-0.1,−,−) (0,−,−,−) 0.50
e2 na (-0.2,-0.2,−,−) (0,−,−,−) 1.00
na e[1,2] (-0.19,−,−,−) (-0.09,0.03,0.07,-0.05) 0.62

e[1,2] na (-0.3,-0.1,-0.1,-0.3) (0,−,−,−) 0.50
e1 e1 (-0.3,-0.1,−,−) (0,0,−,−) 0.50
e1 e2 (-0.3,-0.1,−,−) (-0.02,0.02,−,−) 0.45
e2 e1 (-0.18,-0.2,−,−) (-0.06,0.04,−,−) 0.65
e2 e2 (0.1,-0.5,−,−) (-0.2,0.2,−,−) 0.50

e[1,2] e1 (-0.3,-0.1,-0.1,-0.3) (0,0,−,−) 0.50
e[1,2] e2 (0,0.2,-0.4,-0.6) (-0.2,0.2,−,−) 0.00

e1 e[1,2] (-0.3,-0.1,−,−) (-0.02,-0.02,0.02,0.02) 0.45
e2 e[1,2] (0.1,-0.5,−,−) (-0.26,-0.14,0.26,0.14) 0.05

e[1,2] e[1,2] (0,0.2,-0.4,-0.6) (-0.2,-0.2,0.2,0.2) 0.00

To the best of our knowledge, decision rules in the RO literature cannot handle adjustable integer

variables, since the adjustable decision is a function of the uncertain parameter e, and the function

does not necessarily take integer values for all e; see (31) and (32). However, our cell-based decision

rule can handle such variables. As we can see from (33), the adjustable decision xji can take integer

values since the cell-based decision rule relates e and xij through an ‘if’ statement. Therefore, if

we make xij an integer variable, then the cell-based decision rule gives integer decisions. Using the

illustrative example, we show the validity of our approach for such a problem. We modify the old
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example in the following way: We assume d1 and d2 are adjustable, and they take values that are

multiples of 1/4.

Table 5 Integer Cell-Based Decision Rules and Objective Values

CDR D1(.) D2(.) Obj.
d1 d2 (x11, x12, x13, x14) (x21, x22, x23, x24)

na na (-0.25,−,−,−) (0,−,−,−) 1.41
na e1 (-0.25,−,−,−) (0,0,−,−) 1.41
na e2 (-0.25,−,−,−) (0,0,−,−) 1.41
e1 na (-0.25,0,−,−) (0,−,−,−) 0.92
e2 na (-0.25,-0.25,−,−) (0,−,−,−) 1.41
na e[1,2] (-0.25,−,−,−) (0,0,0,0) 1.41

e[1,2] na (-0.25,0,0,-0.25) (0,−,−,−) 0.92
e1 e1 (-0.25,0,−,−) (0,0,−,−) 0.92
e1 e2 (-0.25,0,−,−) (0,0,−,−) 0.92
e2 e1 (-0.25,-0.25,−,−) (0,0,−,−) 1.41
e2 e2 (0.25,-0.5,−,−) (-0.25,0.25,−,−) 1.29

e[1,2] e1 (-0.25,0,0,-0.25) (0,0,−,−) 0.92
e[1,2] e2 (0,0.25,-0.50,-0.75) (-0.25,0.25,−,−) 0.26

e1 e[1,2] (-0.25,0,−,−) (0,0,0,0) 0.92
e2 e[1,2] (0,-0.50,−,−) (-0.25,0,0.25,0.25) 0.99

e[1,2] e[1,2] (0,0.25,-0.50,-0.75) (-0.25,-0.25,0.25,0.25) 0.26

Table 5 presents optimal decision rules and resulting objective values for all possible combinations

of adjustability. These numerical results show that we obtain important improvements for the non-

adjustable optimal objective value by using the cell-based decision rule. As may be anticipated, the

integer formulation yields higher (worse) optimal objective values. For example, we can no longer

get a zero objective in Table 5. Moreover, in contrast to the continuous case, we can no longer

improve the optimal objective of the non-adjustable RC at decision rule combinations: (na, e1),

(na, e[1,2]), and (e2, e1); see the corresponding rows of Tables 4 and 5.

5. Realistic Examples

In this section, we present realistic examples to demonstrate the effectiveness of our methods. We

use a 64-bit Windows PC with a 2.2 GHz Intel Core i7 processor, and 8 GB of RAM. To solve the

mathematical optimization problems, we use KNITRO 8.0 embedded in MATLAB (2012a) and

AIMMS 3.12.

5.1. Television Images

In color televisions the quality of signals is determined by the power signal-to-noise-ratios in the

image transmitted. We take the response function y(d,e) from Myers et al. (2009, p. 512), where



Yanıkoğlu, den Hertog, and Kleijnen: Adjustable Robust Parameter Design with Unknown Distributions
21

the response y measures the quality of transmitted signals in decibels. The controllable factors are

the number of tabs in a filter d1, and the sampling frequency d2; the environmental factors are

the number of bits in an image e1, and the voltage applied e2. The least-square estimate of the

metamodel is

ŷ(d,e) = 33.389− 4.175d1 + 3.748d2 + 3.348d1d2− 2.328d21− 1.867d22

− 4.076e1 + 2.985e2− 2.324d1e1 + 1.932d1e2 + 3.268d2e1− 2.073d2e2

where all factors are coded; for details on the DoE we refer to Myers et al. (2009, pp. 511–515).

We find the optimal design settings of d1 and d2 using the optimization problem (9):

max
d

Ee[ŷ(d,e)]

s.t. Vare[ŷ(d,e)]≤ T.
(36)

The robust counterpart of (36) is given by Theorem 1 in §3.2. To estimate q, we use the historical

data in Figure 1. Since we have no real data, we have randomly created these data. The sample

size is N = 350, and the support of e is divided into 25 cells of the same volume so V = {1, . . . ,25},

q = [q1, . . . , q25]
T

and ρ = χ2
0.999,24/350; see (11). We shall use the same data in our two realistic

examples so the data do not favor our method.
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Figure 1 Historical Data on e

The goal of these examples is to compare the optimal solutions of the nominal and robust

counterpart problems. In §5.1.1 we shall compare the worst-case and average performances of these

two solutions via the objective value and the constraint violation. In §5.1.2 we shall compare the

confidence levels probabilities of the nominal and robust optimal solutions.
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5.1.1. Robust versus Nominal Solutions We vary the right-hand side value T of the

variance constraint from 0.1 to 0.8; see column one in Table 6. We solve the nominal and the RC

problems for these T values, and compare the worst-case performances of the nominal and robust

optimal solutions.

Table 6 Worst-Case Analysis for TV Image Example

T
Robust Nominal

(d
∗
1, d

∗
2) y∗ Var.(%) (d

∗
1, d

∗
2) W-C(E) W-C(Var)(%)

0.1 (-0.43,0.83) 35.27 0.10(0%) (-0.4472,0.7755) 35.27 0.19(88%)
0.2 (-0.44,0.79) 35.28 0.15(-25%) (-0.4625,0.6853) 35.26 0.37(87%)
0.3 (-0.44,0.79) 35.28 0.15(-50%) (-0.4763,0.6152) 35.23 0.56(86%)
0.4 (-0.44,0.79) 35.28 0.15(-62%) (-0.4867,0.5648) 35.20 0.71(79%)
0.5 (-0.44,0.79) 35.28 0.15(-70%) (-0.4867,0.5648) 35.20 0.71(43%)
0.6 (-0.44,0.79) 35.28 0.15(-75%) (-0.4867,0.5648) 35.20 0.71(19%)
0.7 (-0.44,0.79) 35.28 0.15(-78%) (-0.4867,0.5648) 35.20 0.71( 2%)
0.8 (-0.44,0.79) 35.28 0.15(-81%) (-0.4867,0.5648) 35.20 0.71(-11%)

Columns two and three are the robust optimal solution (d
∗
1, d

∗
2) and its objective value (y∗).

Column four (Var.) is the robust variance of the response. Column five is the nominal optimum

solution. Column six presents the mean (Ee[y(e,d)]) when the decision factors are fixed to the

nominal optimum solution d
∗

and the worst-case probability vector p∗ that minimizes the expec-

tation is realized. Column seven (W.-C.(Var)) gives the worst-case value of the variance for the

nominal solution; now we consider the probability vector p∗ that maximizes the variance, as the

worst-case. Notice that we also report the percentages of the worst-case constraint violations for the

nominal and robust optimal solutions; these values are shown within brackets (%) in the columns

four and seven. We use the formula [(W.-C.(Var)-T )× 100/T ] to calculate the constraint violation

percentage of the nominal solution when the worst-case uncertain parameters are realized. If the

violation percentage is negative, then the constraint is satisfied; 0% means the constraint is binding

(see column four, row T=0.1); a positive percentage means constraint violation at column seven.

Table 6 reveals that the robust reformulation of the variance constraint becomes redundant

when T ≥ 0.2; e.g., the left-hand side value of the constraint for the robust optimal solution (-

0.4439,0.7988) when T = 0.2 is 0.149. Therefore we have the same robust optimal solution for T ≥

0.2. The nominal variance constraint (not the worst-case) also becomes redundant when T ≥ 0.389,

and therefore we have the same nominal optimum solution when T ≥ 0.4. Notice that the robust

optimal objective values and the worst-case objective values of the nominal optimum solutions are

within 1% of each other. However, the constraint violation percentages favor our robust approach;

e.g., the percentages in column seven show that when T ≤ 0.4, the nominal optimal solution violates
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the constraint on average 85% in the worst-case. When T ≥ 0.715 the nominal optimum solution

no longer violates the constraint in the worst-case, but it is closer to be binding than the robust

solution. All together, using our robust optimization method for this example, we gain immunity

to the worst-case uncertainty without being penalized by the objective.

Now we analyze the average mean (Avg(Ee[y(e,d)])) and variance (Avg(Vare[y(e,d)])) of the

response for the nominal and robust optimal solutions, randomly sampling 1,000 probability vectors

p from the uncertainty set that is used in the RC; see (12). We sample as follows: First we uniformly

sample 25 individual probabilities (p̂i). Then to guarantee that the probabilities sum up to one, we

use the adjustment: pi = p̂i/
∑25

j=1 p̂j. Finally, if the probability vector p is within the uncertainty

set, we keep p in the sample; else we discard p and sample again. We repeat this procedure until

we have 1,000 accepted vectors that are within the set. The confidence level of the uncertainty set

(12) is 99.9%. From the p in the sample we estimate the mean in (14) and the variance in (16) for

a given solution, and then take the averages; see Table 7.

Table 7 Average (Avg) Mean (E) and Variance (Var)

T
Robust Nominal

Avg(E) Avg(Var) Avg(E) Avg(Var)

0.1 35.37 0.064 35.41 0.12
0.2 35.40 0.095 35.45 0.24
0.3 35.40 0.095 35.46 0.35
0.4 35.40 0.095 35.47 0.46

Table 7 shows that the average expected response for the nominal solutions are less than 1%

better than that of the robust solutions (we maximize E(y); see (29)). Nevertheless, the average

response variances of the robust optimal solutions are more than 100% better (smaller) than that of

the nominal solutions when T ≤ 0.2, and the improvement becomes more than 350% when T ≥ 0.3.

Moreover, we found that on average the nominal solutions violate 5% of the variance constraint,

whereas the robust solutions are not at all binding. The effectiveness of our approach is further

analyzed in the following subsection.

5.1.2. Confidence Level The uncertainty set (12) coincides with the (1−α)-confidence set

for the unknown probability vector p centered at the empirical estimate q. In the numerical exam-

ples we use α= 0.001, which means that the robust optimal solution is immune to uncertainty with

at least 99.9% probability. These uncertainties are ignored in the nominal problem; nevertheless,

the nominal solution may be robust for some part of the uncertainty set. To find the confidence

level of a nominal solution, we calculate the tightest uncertainty set for which the nominal solution

at hand is robust; i.e., we adjust the ρ value in (12); see Table 8.



Yanıkoğlu, den Hertog, and Kleijnen: Adjustable Robust Parameter Design with Unknown Distributions
24

Table 8 Confidence Levels (1-α) of Nominal Solutions

T ≤ 0.4 0.5 0.6 0.7 ≥ 0.8

(1−α) 0% 2% 70% 98% 99.9%

Table 8 shows that when T ≤ 0.4 the nominal solutions have no immunity to uncertainty at

all; i.e., a ‘small’ change in the given empirical estimate q results in infeasibility in the nominal

variance constraint. We may anticipate this result, since the nominal solutions are binding for the

associated cases. On the other hand, for T = 0.5 to T = 0.7 we see important improvement in the

immunity to uncertainty for the nominal solution. In addition, when T ≥ 0.8, the immunity of the

nominal optimum solution is as good as the robust optimum solution—even though the nominal

optimum solution is closer to be binding in the constraint than the robust solution. Concerning the

objective, we have already shown in the last row of Table 6 that the robust and the ‘worst-case’

nominal optimum objective values are almost the same; i.e., the robust solutions are less than 1%

better than the nominal solutions. In conclusion, the robust reformulation improves the immunity

to uncertainty when T ≤ 0.8 and the improvement is even better when T ≤ 0.4. Additionally, we

prefer the robust solution when T ≥ 0.8, since it performs better in the worst-case.

5.2. Distribution Center

In this example we focus on the simulation of a cross-docking distribution center (CDDC) developed

by Shi (2011). The CDDC is used by a Chinese automobile manufacturer that needs to improve the

physical flow in its supply chain. The objective of the company is steady production. The challenge

in such production is the supply uncertainty due to environmental factors, mentioned below. To

model the associated supply chain system, Shi proposes a hybrid approach that combines discrete-

event simulation, RSM, and Taguchi’s world view. We focus on Shi’s linear regression metamodel

for the total throughput with five controllable factors; namely, the number of receiving doors d1,

the number of shipping doors d2, the number of forklifts d3, the number of conveyors d4, and

the supply chain threshold in storage d5. The model has two environmental factors; namely, the

variability in less-than-truckload supply shipments e1, and the production interruption or delay

probabilities of the suppliers e2. Using the simulation’s I/O data, Shi approximates the unknown

I/O function of the total throughput by the following least-squares estimate ŷ:

ŷTT(e,d) =10
4

×
[
47.97 + 3.982d1 + 2.025d2− 0.031d3 + 0.734d4 + 0.034d5

+ 0.789d1d2 + 0.012d1d3 + 0.003d1d4− 0.002d1d5 + 0.0007d2d3

− 0.065d2d4− 0.1131d2d5− 0.078d3d4− 0.041d3d5 + 0.11d4d5

− 3.406d
2

1− 1.781d
2

2 + 0.011d
2

3− 1.033d
2

4 + 0.111d
2

5
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+ (16.66 + 1.511d1 + 2.374d2− 0.059d3 + 0.824d4− 0.093d5)e1

− (0.005 + 0.27d1 + 0.661d2− 0.086d3 + 0.335d4− 0.005d5)e2

]
,

where all factors are coded such that −1 ≤ d ≤ 1, and −1 ≤ e ≤ 1. More precisely, the coded

controllable factors are between -1 and 1 because of the physical restrictions of the production

facility. Shi’s ANOVA shows that the metamodel ŷTT have non-significant lack-of-fit; and for the

estimated parameters the level-of-significance is 0.05. Using Shi’s response model, we focus on the

robust reformulation of the following optimization problem:

min
1≤d≤1

Vare[ŷ(d,e)]

s.t. Ee[ŷ[d,e)]≥ T.
(37)

To estimate the frequencies q used by the nominal and RC problems, we use the same historical

data as in Figure 1.

Table 9 Worst-Case Comparison for CDDC Example

T
Robust Nominal (Worst-Case)

σe(ŷ) Ee[ŷ] Ee[ŷ]± 3σ̂e σe(ŷ) Ee[ŷ] Ee[ŷ]± 3σ̂e

≤339 67 339 (136, 541) 67 339 (136, 541)
340 67 340 (137, 542) 67 339 (136, 541)
370 70 370 (158, 581) 68 348 (143, 552)
400 74 400 (176, 623) 71 377 (163, 590)
420 79 420 (182, 657) 73 396 (174, 617)
430 81 430 (184, 675) 75 405 (178, 632)
440 85 440 (184, 695) 77 414 (181, 648)
450 88 450 (183, 716) 80 424 (183, 664)

∗ ∗ ∗ all entries should be multiplied by 1,000

Table 9 compares the worst-case performances of the nominal and robust optimal solutions.

Besides the worst-case mean and standard deviation, we construct the worst-case confidence inter-

val for ŷ; namely, Ee[ŷ]± 3σ̂e. Because the probability distribution of the environmental factors is

unknown, we cannot say much about the confidence level of this interval. The numerical results

show that in the worst-case the nominal solutions are on average 6% lower than the target T for

the expected total throughput; i.e., the average violation of the constraint is 6%. The worst-case

standard deviations of the total throughput for the nominal solutions are on average 8% lower

than that of the robust ones. Nevertheless the confidence intervals for the robust optimal solu-

tions are always shifted to the right compared with the nominal solutions, which is in favor of the

robust approach since a higher total throughput is better. Altogether the numerical results favor

the robust approach when T >339000; when T ≤ 339000 both methods yield the same outcome.
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Table 10 Average Comparison for CDDC Example (Simulation Results)

T
Robust Nominal

σ̄e(ŷ) Ēe[ŷ] Ēe[ŷ]± 3σ̄e σ̄e(ŷ) Ēe[ŷ] Ēe[ŷ]± 3σ̄e

≤339 58 361 (186, 536) 58 360 (185, 535)
340 58 361 (186, 536) 58 360 (185, 535)
370 61 392 (209, 575) 59 369 (192, 547)
400 64 423 (229, 618) 61 399 (214, 585)
420 68 445 (238, 652) 64 419 (227, 612)
430 71 456 (241, 670) 65 429 (232, 627)
440 74 467 (244, 690) 67 439 (236, 643)
450 77 478 (245, 711) 69 449 (239, 659)

∗ ∗ ∗ all entries should be multiplied by 1,000

In Table 10 we compare the average performance of robust and nominal solutions via Monte

Carlo simulation. First, using the given historical data in Figure 1 as the nominal value (q) of

the uncertainty set, we generate 1,000 probability vectors, like we did for the TV images example.

Then we calculate the expected response and variance for the nominal and robust solutions at

each probability vector, and take the averages. Table 10 shows higher means and lower variances

than Table 9 in the worst-case. Table 9 is based on the worst-case scenario; i.e., we maximize the

variance and minimize the expectation; Table 10 is based on the average performance. Table 10

shows that the confidence intervals for the robust solutions are always shifted to the right compared

with the nominal solutions, so we prefer the robust approach, however, the robust solutions have

slightly higher variations (from 0% to 10%) than the nominal solutions.

Adjustable Robust Optimization One of the most important decision factors in the CDDC

is the number of shipping doors d2. A moderate number of shipping doors may increase the inven-

tory in the temporary storage area, whereas an excessive number causes a low utilization of doors.

We now assume that d2 is adjustable according to the uncertain parameter e1—namely, the vari-

ability in less-than-truckload supply shipments. More precisely, we assume that the number of

shipping doors can be adjusted after the variability in supply shipments has been observed. We

use the cell-based decision rule introduced in §4; the data and the 25 cells are presented in Figure

1. Notice that the domain of e1 is divided into five equal intervals; for each interval we have a

different decision.

In Table 11, columns two through four present the actual ‘worst-case’ performance of the ARC,

and columns five through eight present the average performance of adjustable robust solutions via

Monte Carlo simulation as in Table 10. We use the same probability vector sample as in the televi-

sion images example. These numerical results show that the worst-case confidence intervals of the

ARC are tighter than those of the general RC in Table 9. This is because of the improved response
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Table 11 ARO Results for CDDC Example

Worst-Case Average

T σe(ŷ) Ee[ŷ] Ee[ŷ]± 3σe σ̄e(ŷ) Ēe[ŷ] Ēe[ŷ]± 3σ̄e

≤339 67 (0%) 339 (136, 541) 58 367 (192, 541)
340 67 (0%) 340 (137, 542) 58 367 (193, 542)
370 68 (2%) 370 (167, 572) 59 389 (194, 543)
400 71 (3%) 400 (188, 611) 61 418 (212, 566)
420 73 (6%) 420 (201, 639) 63 425 (235, 615)
430 74 (7%) 430 (209, 650) 64 448 (246, 630)
440 75 (10%) 440 (215, 665) 65 449 (254, 644)
450 78 (10%) 450 (216, 684) 69 456 (249, 661)

∗ ∗ ∗ all entries should be multiplied by 1,000

variances of the adjustable robust solutions, the improvement percentages (%) are reported in

column two within brackets; e.g., it is as high as 10% when T =450000. As we anticipated, the

simulation results show that the average performance of the adjustable robust solutions is better

than the worst-case; i.e., the average of the response mean Ēe[ŷ] is higher than the worst-case mean

Ee[ŷ], and the average variance σ̄e(ŷ)2 is lower than the worst-case variance σe(ŷ)2. Comparing the

average performances of the non-adjustable and adjustable robust solutions in Tables 10 and 11

shows that the ARC yields tighter confidence intervals that are subintervals of the confidence inter-

vals in the general RC. Therefore, the ARC reduces the response uncertainty compared with the

general RC. Finally, additional experimentation showed that making ‘only’ d3, d4 or d5 adjustable

on e1 has an improvement less than 1% in the objective; i.e., in those cases the non-adjustable solu-

tions are as good as the adjustable solutions. This shows that the quantitative value of information

may significantly change for different parameters in ARO.

6. Conclusions and Future Research

In this paper, we proposed a novel methodology for RPD through RO. By definition, RPD distin-

guishes between decision and environmental variables. Our RO methodology uses an uncertainty

set based on historical data on the environmental variables; this data may be collected from either

real or simulated systems. Adding RO to RPD has the following advantages: (i) Unlike the clas-

sical RPD, we do not make any distributional assumptions on the uncertain parameters. (ii) We

do account for the ambiguity caused by the lack of knowledge about distributions by using the

so-called phi-divergence uncertainty sets based on historical data. (iii) Both RO and ARO meth-

ods are computationally tractable; ARO is tractable even for nonlinear decision rules. (iv) Our

ARO approach can be used for modeling adjustable integer decision variables; to the best of our

knowledge this is the first publication that models such variables.
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In future research, we shall investigate our methodology for other metamodel types, such as

higher-order polynomials, Kriging, and radial basis functions. We shall also apply our cell-based

decision rules to general classes of optimization problems with limited number of ‘integer’ variables.
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