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Prefa
eAs the title reveals, the topi
 of this dissertation is the Impulse Control MaximumPrin
iple, whi
h is part of optimal 
ontrol theory. My �rst en
ounter with this topi
was in the 
ourse Dynami
 Capital Investment taught by Peter Kort and Ja
ob Eng-werda. This 
ourse made me very 
urious about how to 
ope with non-stati
 behaviorin optimization models. This was one of the main reasons I de
ided to write a thesiswith the topi
 optimal 
ontrol theory. Not surprisingly, under the supervision of Pe-ter Kort, and with Ja
ob Engwerda as se
ond reader. The �rst steps in my s
ienti�
journey were made. This journey has almost 
ome to an end. I would like to takethe opportunity to express my gratitude to the people who have a

ompanied meand made it possible for me to rea
h this destination.First, I would like to thank my promotores, Ri
hard Hartl, Di
k den Hertog andPeter Kort, for all the help I re
eived and their faith in me.I met Ri
hard at one of his many visits to Tilburg University. During my Resear
hMaster I sent one of the �rst versions of my Resear
h Master thesis to Ri
hard. He
arefully made 
omments on it and later joined as a se
ond reader. Ri
hard wasalways eager to dis
uss my resear
h during our frequent en
ounters.During the 
ourse orientation OR/MS I was amazed by a very enthusiasti
 professor,whose (OR related) ane
dotes I will never forget. I also enjoyed our 
onversationsabout life (espe
ially the purpose of life) and politi
al dis
ussions. Di
k, thank youfor your guidan
e. Thank you, for being honest and tea
hing me to be very 
riti
al.Besides this dissertation, Peter also supervised my Master and Resear
h Master the-sis. He was the �rst one to introdu
e me into the world of 
ontrol theory. He wasalways willing to share his wide spread network, and he made it possible for me tovisit the optimal 
ontrol resear
h group in Vienna (ORCOS) on several o

asions.He taught me that doing resear
h requires good brain and good ideas, but also plainhard work.



iiFurthermore, I am grateful to Ja
ob Engwerda, Hans S
huma
her, Dolf Talman andGeorge Za

our for joining Ri
hard, Di
k, and Peter in my dissertation 
ommittee.Thank you for taking the time to read my dissertation and for o�ering many sugges-tions for improvement.It was a pleasure to work with Ruud Brekelmans whi
h resulted in a paper pre-sented in Chapter 3. Spe
ial thanks goes to Dieter Grass, who I visited several timesin Vienna. These visits turned out to be very fruitful (as it resulted in two resear
hpapers presented in Chapter 4 and 5). Thanks for inviting me at your home inPurkersdorf Sanatorium and the pasta you made when we took a break from doingresear
h. It think my programming skills improved every time I talked with you,whether this was in Vienna or via Skype. I would also like to thank the sta� andstudents of ORCOS at the Vienna University of Te
hnology for their hospitality.Under the guidan
e of Peter and Di
k I wrote a resear
h proposal that was awardeda Mosai
 grant from the Netherlands Organization for S
ienti�
 Resear
h (NWO).I would like to express my gratitude to the organization, sin
e they made it possi-ble to write this dissertation. This resear
h was supported under proje
t number:017.005.047.Besides doing resear
h, I had the pleasure to 
ooperate with Carol, Elleke, Fei
o,Gert, Hans B., Ja
ob, Jo
hem, Marieke, Marloes, Thijs, and Willem in various
ourses at Tilburg University. Spe
ial mention go to Elleke, Marieke, and Ja
ob forall the tea
hing related tips and feedba
k I re
eived from them. This �nally resultedin re
eiving an �Ex
ellent tea
hing award� in 2012 for the 
ourse �Statisti
s for HBO�.I would like to thank CentER Graduate S
hool and the department of E
onometri
sand Operations Resear
h for hosting a 
heerful work environment. First, I wouldlike to thank Elleke, with whom I shared room K513. Thanks for tolerating all thepeople that visited me during that time. For me it was very delightful to have youas a roommate. Every time I had a question, or got stu
k you were there to listen. Ithank you and Vishwa for the many LATEX and MATLAB tips and for providing mewith your LATEX dissertation framework.Vishwa, thanks for the many dis
ussions we had (about 
areer, resear
h and life), butfar most for being a good friend. Many thanks go to Salima for the many pleasant
onversations we had, for always making time when I entered your o�
e and for lis-tening to (and laughing at) my ane
dotes. I also should mention John here, Salima's



iiiroommate, as he many times took part in our dis
ussions (although sometimes I feltit was against his will).Now, it would be the time to thank all (other) people at Tilburg University. Amongthem are Anja, Bar�³, Bas, Bertrand, Christian, Edwin, Gerwald, Hans R., Henk,Herbert, Jalal, Jarda, Kuno, Lu
, Martin, Mi
hele, Miguel, Mohammadi, Moazzam,Ning, Özer, Peter B., Ramon, Rene, Roy, Ruud, Takamasa, Tural. A spe
ial mentiongoes to �hsan whose o�
e I always visited whenever I needed a break. He made thetrip to Germany, to attend the SIAM 
onferen
e on optimization, very amusing. I amalso thankful to the departmental se
retaries, Anja, Annemiek, Heidi, and Korine,who were always there for me.I thank my fellow board members from student asso
iation Menara for organizingmany dis
ussions, workshops and study trips. I express my gratitude to Bauke, Bilal,Tarik and Tom, with whom I organized most a
tivities with, for being good friends.Spe
ial thanks goes to Henri Geerts for all the a
tivities we organized together, forall the dis
ussions about the Netherlands, our multi
ultural so
iety and many othersubje
ts. Henry, thanks for be
oming su
h a good friend.I am indebted to the people of the PvdA (the Dut
h Labour Party) in Helmond,with whom I intensively worked with in the last seven years and always had interestfor my work in Tilburg. I want to thank all my friends and former 
lassmates. Spe-
ial mention for Bram and Paul, with whom I spent a lot of time while working onassignments and studying in the library. Thanks go to Mostapha and Mustafa forbeing very 
lose friends.Finally, I would like to show my appre
iation to the people 
losest to me. To mybrothers and sister, for 
reating su
h a 
ompetitive environment at home. This hashelped shape me as the person I am today. Thank you so mu
h for all your en
our-agements. I am glad to �nd two of my brothers Morad and Anoir willing to be myparanymphs and stand by my side during the defense of my dissertation. To myparents, Omar and Yamna: I will eternally be grateful for everything you have donefor me. To you mama and baba I dedi
ate this book. Last, but 
ertainly not least,a �nal words of thanks and sin
ere gratitude to my wife Hoyem. She is always therefor me when I need her. Thank you for your un
onditional love and endless support.Mohammed ChahimHelmond/Tilburg, De
ember 2012
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CHAPTER 1Introdu
tion1.1 Impulse ControlThe Mathemati
al Optimization So
iety de�nes optimization or mathemati
al opti-mization as follows: �In a mathemati
al optimization (or programming) problem, oneseeks to minimize or maximize a real fun
tion of real or integer variables, subje
t to
onstraints on the variables. The term mathemati
al optimization refers to the studyof these problems: their mathemati
al properties, the development and implementa-tion of algorithms to solve these problems, and the appli
ation of these algorithmsto real world problems�. Mathemati
al optimization has found wide appli
ations inmany dis
iplines in
luding e
onomi
s, management, physi
s, and engineering. In thisthesis we fo
us on deterministi
 optimization problems, where 
ontrary to sto
hasti
optimization the problem does not generate or use random variables.For systems that evolve smoothly through time (i.e. dynami
 systems), (
ontinu-ous) dynami
 optimization is a frequently used tool. Optimal 
ontrol theory is thebran
h of mathemati
al optimization developed to �nd optimal 
ontrol regimes for(
ontinuous) dynami
al systems. Let x(t) denote the state variable of the system attime t ∈ [0, T ], where T > 0 stands for the time horizon of the problem or planningperiod. Examples for x(t) 
ould be the amount of natural resour
e at time t, thesto
k or inventory level at time t, or the 
apital sto
k at time t. In optimal 
on-trol theory it is assumed that the system 
an be 
ontrolled using a so 
alled 
ontrolvariable. Let the (real) variable u(t) be a 
ontrol variable of the system at time t.For example, u(t) 
an be the amount of natural resour
e being used at time t, theprodu
tion rate at time t, or the (
ontinuous) maintenan
e at time t. The dynami
sof the system is often represented by a state equation that spe
i�es the rate of 
hangein the state variable as a fun
tion of the state variable itself, the 
ontrol variable and
t:

ẋ(t) = f(x(t), u(t), t), x(0) = x0, (1.1)



2 CHAPTER 1. INTRODUCTIONwhere ẋ(t) stands for the derivative of x with respe
t to t, i.e. dx(t)/dt, f is a givenfun
tion representing the 
hange in the state variable, and x0 is the initial value of thestate variable. When the initial value of the state and the optimal traje
tory of the
ontrol variable u(t) are known (
ontrol traje
tory), we 
an determine the state tra-je
tory , i.e. the value of the state variable x(t) during the planning period. We 
hoosethe 
ontrol variable su
h that the state and 
ontrol traje
tory maximize/minimizethe obje
tive fun
tion
∫ T

0

F (x(t), u(t), t)dt+ S(x(T ), T ), (1.2)where F is a fun
tion of x(t), u(t) and t, whi
h stands for pro�ts/
osts and thefun
tion S is the salvage value, whi
h is a fun
tion of the �nal value of the stateat the end of the planing period, x(T ), and time T . Most of the time the 
ontrolvariable u(t) is 
onstrained by a set Ωu of possible out
omes of the 
ontrol variable
u(t), i.e. u(t) ∈ Ωu. The optimal 
ontrol problem is given by



















maxu
∫ T

0
F (x(t), u(t), t)dt+ S(x(T ), T ),subje
t to

ẋ(t) = f(x(t), u(t), t), for t ∈ [0, T ],

x(0) = x0, u(t) ∈ Ωu.

(1.3)Continuous dynami
 optimization has its own limitation, however, namely that 
on-tinuity is assumed, whereas in the real world sho
ks (i.e. abrupt 
hanges) 
an o

urthat fundamentally 
hange the dynami
 of the system at parti
ular points in time.For example, the entran
e of a rival is a singular event that 
hanges the groundrules for a monopolist. It 
ould also o

ur that de
isions a�e
t the system su
h thatthe system does not 
hange 
ontinuously but instantaneously. An example is a �rmthat de
ides to invest in new (more e�
ient) ma
hines. Sin
e we try to build math-emati
al models su
h that they represent an a
tual or real life situation as mu
has possible, theory is developed to analyze systems that allow these dis
ontinuous
hanges to o

ur in the system.Impulse Control theory allows dis
ontinuity in the states 
ontrolled by so 
alledimpulse 
ontrol variables v. At 
ertain moments in time disruptive 
hanges are al-lowed and the value of the state variable 
hanges. Let τi (i = 1, . . . , N , where N isa variable denoting the number of 
hanges in the time interval [0, T ]) represent thetimes at whi
h the state variable en
ounters this dis
ontinuous 
hange given by
x(τ+i )− x(τ−i ) = g(x(τi), v(τi), τi), (1.4)



Impulse Control 3where g is a fun
tion of the state variable x at time τi, the impulse 
ontrol variable
v at time τi and τi, representing the (�nite) 
hange of the state variable at the jumpinstan
es. For example, v(τ) 
an represent the amount of natural resour
es that isdrilled out for use and N the number of times drilled, v(τ) 
an denote the totalprodu
tion that is added to the inventory and N the number of times produ
tionis added to the inventory, or v(τ) 
ould stand for the repla
ement of (parts of) thema
hine and N the number of times a (part of a) ma
hine is repla
ed. Also, theimpulse 
ontrol variable v(τ) 
an be 
onstrained by a set Ωv. Usually, these impulse
hanges are asso
iated with 
osts/pro�ts 
on
erning the system at these jump timeinstan
es. Let G(x(τi), v(τi), τi) denote the 
osts/pro�ts asso
iated with ea
h 
hangeof the system 
aused by the impulse 
ontrol variable at time τi. Then the obje
tive(1.2) is 
hanged into

∫ T

0

F (x(t), u(t), t)dt+
N
∑

i=1

G(x(τi), v(τi), τi) + S(x(T ), T ). (1.5)Summing up, an Impulse Control problem 
an be presented as


























maxv,u,τ,N
∫ T

0
F (x(t), u(t), t)dt+

∑N
i=1G(x(τi), v(τi), τi) + S(x(T ), T ),subje
t to

ẋ(t) = f(x(t), u(t), t), x(0) = x0, for t 6= τi, i = 1, . . . , N,

x(τ+i )− x(τ−i ) = g(x(τi, v(τi), τi), for t = τi, i = 1, . . . , N,

u(t) ∈ Ωu, v(τi) ∈ Ωv, i ∈ {1, . . . , N}.

(1.6)
This thesis fo
uses on deterministi
 Impulse Control problems that are analyzed byusing the Impulse Control Maximum Prin
iple. This implies that we do not 
onsidersto
hasti
 Impulse Control problems. This ex
ludes the theory of real options (seeDixit and Pindy
k (1994)). Another alternative is the theory of (Hamilton-Ja
obi-Bellman) quasi-variational inequalities (see Bensoussan and Lions (1984)). Althoughquasi-variational inequalities 
an also be applied to deterministi
 Impulse Controlproblems, it is mainly related to a sto
hasti
 framework (quasi-variational inequali-ties is quite 
omparable to the Hamilton-Ja
obi-Bellman framework, i.e. as is statedin Bensoussan et al. (2006), under the framework of impulse 
ontrol, the Hamilton-Ja
obi-Bellman equation redu
es to quasi-variational inequalities). In sto
hasti
 op-timal 
ontrol problems the state variables in the system are not known with 
ertainty.Moreover, in sto
hasti
 optimal 
ontrol it might not even be possible to measure thevalue of a state variable at a 
ertain time. There is a lot of literature that deals withthese types of problems and the methodology di�ers a lot from the deterministi
 
ase.Most of the literature that deals with sto
hasti
 optimal 
ontrol problems use the



4 CHAPTER 1. INTRODUCTIONHamilton-Ja
obi-Bellman framework (see e.g. Sethi and Thompson (2006)) or (moregeneral) dynami
 programming (see e.g. Bertsekas (2005)).As Impulse Control, Multi-Stage optimal 
ontrol (see e.g. Grass et al. (2008)) istailored to the sorts of situations that have fallen between the 
ra
ks with the tradi-tional partition into stati
 and dynami
 optimization. In the last few years there hasbeen rapidly growing interest in Multi-Stage optimal 
ontrol. As mentioned before,like Impulse Control theory, this theory allows sudden dis
ontinuous 
hanges at dis-
rete points in time. These 
hanges 
an a�e
t the state variables, but also the valuesof parameters, or even the equations des
ribing the system itself. Unlike ImpulseControl, Multi-Stage optimal 
ontrol does not allow jumps in the state variables. InImpulse Control models found in the literature dis
ontinuous 
hanges in the statesare allowed. This is in 
ontrast with Multi-Stage optimal 
ontrol. There ea
h regimeis de�ned by di�erent dynami
s and the main 
on
ern is to �nd the optimal swit
hingtimes between the regimes. Here, a regime is understood as the spe
i�
ation of asystem dynami
s and an obje
tive fun
tional during a 
ertain time interval. In thisthesis we fo
us on models that allow the state variables to jump at some time points.Take, for example, dike maintenan
e, where the problem is to determine the optimaldike heightening s
heme for a 
ertain time horizon. Here, the dike is the state vari-able and its height is in
reased at 
ertain time points. This model 
annot be solvedusing Multi-Stage optimal 
ontrol, be
ause we have jumps in the state variable.1.2 Impulse Control Maximum Prin
ipleIn 1977 Blaquière derives a Maximum Prin
iple that provides ne
essary (and su�-
ient) optimality 
onditions to solve deterministi
 Impulse Control problems, the so
alled Impulse Control Maximum Prin
iple see e.g. Blaquière (1977a; 1977b; 1979;1985). In 1981 Seierstad derives ne
essary optimality 
onditions that 
oin
ide withthose of Blaquière, see Seierstad (1981) and Seierstad and Sydsæter (1987). Anothergood sour
e presenting the Impulse Control Maximum Prin
iple is Sethi and Thomp-son (2006, pp. 324�330).In Blaquière (1979) an example of an Impulse Control model is given that dealswith the optimal maintenan
e and life time of ma
hines. Here the �rm has to de
idewhen a 
ertain ma
hine has to be repaired (impulse 
ontrol variable), and it hasto determine the rate of maintenan
e expenses (ordinary 
ontrol variable), so thatthe pro�t is maximized over the planning period. In Gaimon (1985; 1986) a �rmdetermines the optimal times of impulse a
quisition of automation and the 
hange



Impulse Control Maximum Prin
iple 5for manual output. The obje
tive is to minimize 
osts asso
iated with the deviationfrom a goal level of output. The pur
hase of automation is used to dire
tly sub-stitute for output resulting from manually operated equipment. Sin
e automationis a
quired at dis
rete times, the author solves the model using the Impulse Con-trol Maximum Prin
iple. In Luhmer (1986) the theory is applied to an inventorymodel and in Kort (1989) a dynami
 model of the �rm is designed in whi
h 
api-tal sto
k jumps upward at dis
rete points in time that the �rm invests. Rempala(1990) des
ribes three di�erent kinds of Impulse Control problems where the num-ber of jumps is not �xed, i.e. there are N impulse moments. He distinguishes between(a) the impulse times are �xed and the size of the impulse is free,(b) the size of the jump is �xed and the impulse moments are free,(
) both the size of the jump and the impulse moments are free.In Rempala (1990) it is shown that 
ases (b) and (
) 
an be redu
ed to 
ase (a),and �nally gives a simple proof for the Impulse Control Maximum Prin
iple in 
ase(a).The theory of optimal 
ontrol has its origin in physi
s and engineering where dis-
ounting 
ash �ows does not o

ur. For this reason, Blaquière (1977a; 1977b; 1979;1985) derived his Maximum Prin
iple 
onsidering Impulse Control problems withoutusing 
urrent value Hamiltonians. Instead, he presents his Maximum Prin
iple in thepresent value Hamiltonian form. In Chapter 2 of this thesis we transform Blaquière'spresent value analysis to a 
urrent value one and we in
lude an overview of the lit-erature that makes use of the Impulse Control Maximum Prin
iple.Besides approa
hes using the Impulse Control Maximum Prin
iple, there exist manyother approa
hes in the literature to solve Impulse Control problems. We have seenmixed integer nonlinear programming (see e.g. Brekelmans et al. (2012)), dynami
programming (see e.g. Eijgenraam et al. (2011) and/or Erdlenbru
h et al. (2011)),value fun
tion approa
h (see e.g. Neuman and Costanza (1990)) and �nally the gra-dient method approa
h (see e.g. Hou and Wong (2011)) as an alternative for theImpulse Control Maximum Prin
iple. All approa
hes have advantages and disadvan-tages. We will 
ome ba
k to this in Se
tion 1.3.



6 CHAPTER 1. INTRODUCTION1.3 Approa
hes to Solve Impulse Control ProblemsThis thesis 
onsiders optimal 
ontrol problems in whi
h the state variable is allowedto jump at some time instant. Both the size of the jump and the time instant aretaken as (additional) de
ision variables. Hen
e, we are dealing with problems asdes
ribed by 
ase (3) in Rempala (1990). The Impulse Control Maximum Prin
ipleprovides ne
essary optimality 
onditions that 
an be used to �nd the optimal solutionto problems de�ned by (1.6). In ordinary optimal 
ontrol also su�
ien
y 
onditionsare given that ensure that the 
andidate solution that is found using the ne
essaryoptimality 
onditions is the optimal solution. Remarkably, for the Impulse ControlMaximum Prin
iple we have not found any models in the literature that also ful�llthe su�
ien
y 
onditions derived by Blaquière (more on this in Se
tion 1.4).As mentioned earlier, there are several ways to solve Impulse Control problems.In this se
tion we present eight di�erent approa
hes and their main 
hara
teristi
s.An overview of the approa
hes and their 
hara
teristi
s is presented in Table 1.1.Forward algorithm (FA) Luhmer (1986) derives a forward algorithm that makesuse of the Impulse Control Maximum Prin
iple. It starts at t = 0 and uses the valueof the 
ostates (i.e. dual variable, in e
onomi
s this is known as the shadow pri
e) toinitialize the algorithm. The forward algorithm has a drawba
k. Namely, the initialvalue of the 
ostates is the 
hoi
e variable, i.e. we have to guess the initial valuesfor the 
ostate variables. A wrong guess of the 
ostate variables at the initial timeresults in a solution that does not satisfy the transversality 
onditions for the 
ostatevariables, whi
h implies that the ne
essary optimality 
onditions are not satis�ed.The algorithm returns the solution for the given input, it does not need dis
retizationin time.Ba
kward algorithm (BA) Kort (1989) develops a ba
kward algorithm that startsat the end of the planning period, i.e. t = T , and goes ba
kwards in time. For theba
kward algorithm we start with 
hoosing values for the state variables at time T ,i.e. the state variable at time T is the 
hoi
e variable. The resulting solution alwayssatis�es the ne
essary optimality 
onditions, but here the problem is that the algo-rithm has to end up at the right value of the states at t = 0. In other words, with theba
kward algorithm one 
an apply the right ne
essary 
onditions to the wrong prob-lem. In Chapter 3 of this thesis we des
ribe and apply the ba
kward algorithm to areal-life dike height optimization problem. As the forward algorithm, the ba
kwardalgorithm returns the solution for the given input, it does not need dis
retization intime.



Approa
hes to Solve Impulse Control Problems 7(multipoint) Boundary value problem (BVP) In Chapter 5 of this thesis we de-s
ribe the (multipoint) boundary value problem. For the (multipoint) boundary valueproblem approa
h we do not need to spe
ify inputs for the state or the 
ostate (un-like the forward and ba
kward algorithm). The idea behind this approa
h is that the
anoni
al system (the set of di�erential equations) is solved su
h that all (boundary)
onditions on the state(s) and 
ostate(s) (e.g. initial 
onditions and transversality
onditions) are satis�ed. To �nd the solution of the problem we 
an apply a 
ontinu-ation strategy with respe
t to the time horizon T , i.e. T is our 
ontinuation variable.To initialize the algorithm, the problem is solved for T = 0. Given a solution for
T = 0, T is in
reased (
ontinued) during the 
ontinuation pro
ess whereas the 
on-ditions for possible jumps are monitored. If the 
onditions for a jump are satis�ed,the boundary value problem is adapted to this situation. With this new solution the
ontinuation is pursued. No dis
retization of time or state variables is needed.Continuation algorithm (CA) The 
ontinuation algorithm is only appli
able ifthe 
anoni
al system of the Impulse Control problem 
an be solved expli
itly in [0, T ].The problem 
an be restated as a dis
rete dynami
al system (without numeri
al dis-
retization). As for the boundary value problem approa
h, to �nd the solution ofthe problem we 
an apply a 
ontinuation strategy with respe
t to the time horizon
T , i.e. T is our 
ontinuation variable. To initialize the algorithm, the problem issolved for T = 0. Given a solution for T = 0, T is in
reased (
ontinued) during the
ontinuation pro
ess whereas the 
onditions for possible jumps are monitored. Nodis
retization of time or state variables is needed.Gradient algorithm (GA) If the dynami
s (i.e. the 
anoni
al system) of an Im-pulse Control problem 
an be solved expli
itly, the problem 
an be restated (withoutnumeri
al dis
retization) as a �nite dimensional problem/ dis
rete dynami
al system.In this method the ne
essary optimality 
onditions are derived, whi
h, of 
ourse, re-produ
e the ne
essary optimality 
onditions of the Impulse Control Maximum Prin-
iple. First, the derivatives (gradients) of the equality 
onstraints and the derivativesof the obje
tive are determined. This gives a set of equations and equal number ofvariables. For this method the number of jumps needs to be �xed beforehand inorder to solve the problem.Value fun
tion approa
h (VFA) In Neuman and Costanza (1990) the value fun
-tion method is used to solve an Impulse Control problem. For the value fun
tionapproa
h the number of jumps is �xed beforehand in order to solve the problem. For



8 CHAPTER 1. INTRODUCTIONa �xed number of jumps the value fun
tion is de�ned and the optimum of this valuefun
tion is derived. This problem is solved for di�erent numbers of �xed jumps untilthe optimal number of jumps is found. Sin
e we do not know the optimal numberof jumps beforehand, this approa
h is only useful if the optimal number of jumps issmall.Dynami
 programming (DP) Eijgenraam et al. (2011) solves the same prob-lem as in Chapter 3 of this thesis using dynami
 programming. Unlike the ba
kwardand forward algorithm, dynami
 programming requires dis
retization in time and thestates for ea
h stage.Mixed integer nonlinear programming (MINLP) The mixed integer non-linearprogramming approa
h seems very fruitful for high dimensional problems, see e.g.Brekelmans et al. (2012), where the nonhomogeneous dike optimization problem isanalyzed. On the other hand, mixed integer nonlinear programming requires dis-
retization of the planning period. For these dis
rete time points Brekelmans et al.(2012) introdu
e a {0, 1}-variable, whi
h takes the value 1 if a dike heightening o
-
urs and the value 0 otherwise. The size of the dike heightening is then given by a
ontinuous variable. Finally, this {0, 1}-variable is also used to add �xed 
ost.In this thesis only in Chapter 4 a higher dimensional Impulse Control problem o

urs,i.e. an Impulse Control problem with more than one state variable. We there studythe investment behavior of a �rm that has two state variables. The �rst state vari-able is the 
apital sto
k, and the se
ond state variable is the state of te
hnology. Wesolve the model using the boundary value problem approa
h. Be
ause the 
anoni
alsystem of the problem des
ribed in Chapter 4 is expli
itly solvable, also the 
ontinu-ation algorithm 
ould be used. In the literature we �nd another higher dimensionalImpulse Control problem in Brekelmans et al. (2012) where a dike heightening prob-lem for nonhomogenous dikes is studied. The problem is solved using a mixed integernonlinear programming approa
h. Comparing (i.e. with respe
t to 
omputation timeet
.) the di�erent approa
hes for higher dimensional Impulse Control problems re-mains a topi
 for future resear
h. However, some �rst ideas 
an be given. For boththe forward algorithm and the ba
kward algorithm the solution is derived using a
hoi
e variable. For a higher dimensional 
hoi
e variable it is mu
h harder to �ndthe optimal value. For dynami
 programming it is known that it works really wellfor problems with low dimensions, sin
e the numeri
al dis
retization of the problemin
reases exponentially when the problems in
reases in dimension. Finally, for boththe value fun
tion approa
h and the gradient algorithm the number of �rst order



Contribution and Outline 9Approa
haFA BA BVP CA GA VFA DP MINLPDis
retize timeb O O O O O O X XDis
retize state O X
 O O O O X
 XDis
retize 
ostate X
 O O O O O O OFixed number of jumps O O O O X X O OHigher dimensional problems O O R R R R O XExpli
it solution X X O X X O O O
anoni
al systema Forward algorithm (FA), ba
kward algorithm (BA), (multipoint) boundary valueproblem (BVP), 
ontinuation algorithm (CA), gradient algorithm (GA), valuefun
tion approa
h (VFA), dynami
 programming (DP), and mixed integer non-linear programming (MINLP).b We mark ea
h approa
h by O, X, or R, meaning does not in
lude this 
hara
ter-isti
, in
ludes this 
hara
teristi
 or more resear
h is needed, respe
tively.
 BA only needs dis
retization of the state at the end of the time horizon (�nalstage), unlike dynami
 programming where dis
retization is needed for time andfor the heights (states) for ea
h stage. Similar to the FA, the BA only needsdis
retization for the 
ostate at the start of the time horizon (�rst stage).Table 1.1 � Chara
teristi
s of di�erent approa
hes
onditions in
reases. The problem for both still is how to determine the optimalnumber of jumps, sin
e this needs to be �xed beforehand in order to �nd a solution.
1.4 Contribution and OutlineThe 
ontribution of this thesis is threefold. First, it extends the existing theory onImpulse Control by deriving the ne
essary optimality 
onditions in 
urrent value for-mulation and providing a transformation su
h that the Impulse Control MaximumPrin
iple 
an be applied to problems having a �xed 
ost. Moreover, this thesis pointsout that meaningful problems found in the literature do not satisfy the su�
ien
y
onditions. Se
ond, in this thesis the Impulse Control Maximum Prin
iple is appliedto dike height optimization and produ
t innovation. Third, it des
ribes several algo-rithms that 
an be used to solve Impulse Control problems. In this subse
tion, wedes
ribe these 
ontributions in more detail.



10 CHAPTER 1. INTRODUCTIONTheoryIn this thesis we use Blaquière's Impulse Control Maximum Prin
iple to present thene
essary optimality 
onditions in 
urrent value formulation. As mentioned before,Blaquière (1977a; 1977b; 1979; 1985) derived his Maximum Prin
iple 
onsideringImpulse Control problems without using the 
urrent value Hamiltonian. Instead, hepresents his Maximum Prin
iple in the present value Hamiltonian form. The mainreason for this is that the theory of optimal 
ontrol has its origin in physi
s andengineering where dis
ounting 
ash �ows does not o

ur. Furthermore, by reviewingthe existing Impulse Control models in the literature, we point out that meaningfulproblems do not satisfy the su�
ien
y 
onditions. In parti
ular, su
h problems eitherhave a 
on
ave 
ost fun
tion, 
ontain a �xed 
ost, or have a 
ontrol-state intera
tion,whi
h have in 
ommon that they ea
h violate the 
on
avity hypothesis used in thesu�
ien
y theorem. The impli
ation is that the 
orresponding problem may havemultiple solutions that satisfy the ne
essary optimality 
onditions. Moreover, weshow that problems with a �xed 
ost do not satisfy the 
onditions under whi
h thene
essary optimality 
onditions 
an be applied. However, we propose a transforma-tion, whi
h ensures that the appli
ation of the Impulse Control Maximum Prin
iplestill provides the optimal solution. Finally, we show that for some existing models inthe literature no optimal solution exists.Appli
ationsIn the literature there are not many appli
ations of the Impulse Control MaximumPrin
iple. In this thesis we analyze two di�erent appli
ations. The �rst 
on
ernsdike height optimization in the Netherlands. As far as we know it is one of the �rstreal life appli
ation of the Impulse Control Maximum Prin
iple.1 We 
ompare ouranalysis with the dynami
 programming approa
h used in Eijgenraam et al. (2011)and show that the Impulse Control approa
h has some bene�ts over the dynami
programming approa
h. The se
ond appli
ation deals with produ
t innovations. We
onsider a �rm that wants to undertake a produ
t innovation where the number ofinnovations is endogenously determined by the model. We 
ompare our results with aMulti-Stage optimal 
ontrol approa
h derived in Grass et al. (2012) where the numberof produ
t innovations is predetermined before solving the model. One interestingfa
t is that we �nd that the �rm does not invest when marginal pro�t (with respe
tto 
apital) be
omes zero, but invests when marginal pro�t is negative. Finally, wesolve the forest management problem des
ribed in Neuman and Costanza (1990).Sin
e we do not need to �x the number of jumps and do not need to dis
retize time,1The data is provided by Rijkswaterstaat, part of the Dut
h ministry of Infrastru
ture andEnvironment.



Contribution and Outline 11we �nd a solution with a better obje
tive value than Neuman and Costanza (1990) do.AlgorithmsIn Chapter 3 of this thesis we des
ribe and apply the ba
kward algorithm to a real-lifedike height optimization problem. We 
ompare the results found with the ba
kwardalgorithm to the dynami
 programming approa
h used in Eijgenraam et al. (2011).In Chapter 5 of this thesis we des
ribe three di�erent algorithms, from whi
h two(as far as we know) are new in the literature. The �rst (new) algorithm 
onsidersan Impulse Control problem as a (multipoint) Boundary Value Problem and uses a
ontinuation te
hnique to solve it. The se
ond (new) approa
h is the 
ontinuationalgorithm that requires the 
anoni
al system to be solved expli
itly. This redu
esthe in�nite dimensional problem to a �nite dimensional system of, in general, non-linear equations, without dis
retizing the problem. Finally, we present a gradientalgorithm, where we reformulate the problem as a �nite dimensional problem, whi
h
an be solved using some standard optimization te
hniques. This method has beendeveloped in Hou and Wong (2011).Outline of thesisThis thesis is based on four self 
ontained independent 
hapters in the �eld of Im-pulse Control. There are some di�eren
es in notation between 
hapters.In Chapter 2 (
onsists of Chahim et al. (2012
)) we 
onsider a 
lass of optimal
ontrol problems that allows jumps in the state variable. We present the ne
essaryoptimality 
onditions of the Impulse Control Maximum Prin
iple based on the 
ur-rent value formulation. Moreover, we present a transformation su
h that the ImpulseControl Maximum Prin
iple 
an be applied to problems having a �xed 
ost. Finally,we give an overview of several problems in the literature that apply the ImpulseControl Maximum Prin
iple, show that these problems do not satisfy the su�
ien
y
onditions, and that some of these models have re
eived in
omplete treatment, inparti
ular, some of them do not have an optimal solution.In Chapter 3 (
onsists of Chahim et al. (2012a)) we apply the Impulse ControlMaximum Prin
iple to determine the optimal timing of dike heightenings as wellas the 
orresponding optimal dike heightenings to prote
t against �oods. This 
hap-ter presents one of the �rst real life appli
ations of the Impulse Control MaximumPrin
iple developed by Blaquière. We show that the proposed Impulse Control Max-imum Prin
iple approa
h performs better than dynami
 programming with respe
t



12 CHAPTER 1. INTRODUCTIONto 
omputational time. This is 
aused by the fa
t that Impulse Control does notneed dis
retization in time.Chapter 4 (
onsists of Chahim et al. (2012b)) 
onsiders a �rm that has the op-tion to undertake produ
t innovations. For ea
h produ
t innovation the �rm has toinstall a new produ
tion plant. We �nd that investments are larger and o

ur ina later stage when more of the old 
apital sto
k needs to be s
rapped. Moreover,we obtain that the �rm's investments in
rease when the te
hnology produ
es morepro�table produ
ts. We see that the �rm in the beginning of the planning periodadopts new te
hnologies faster as time pro
eeds, but later on the opposite happens.Furthermore, we �nd that the �rm does not invest when marginal pro�t (with respe
tto 
apital) be
omes zero, but investes when marginal pro�t is negative. Moreover,numeri
al experiments show that if the time it takes to double the e�
ien
y of ate
hnology is larger than the time it takes for the 
apital sto
k to depre
iate to halfof its original level, the �rm undertakes an initial investment. Finally, we show thatwhen demand de
reases over time and when �xed investment 
ost is higher, then the�rm invests less throughout the planning period, the time between two investmentsin
reases, and the �rst investment is delayed.In Chapter 5 (
onsists of Grass and Chahim (2012)) we present three di�erent al-gorithms that 
an be used to solve Impulse Control problems. The �rst algorithm
onsiders the problem as a (multipoint) BVP. The se
ond and third algorithm 
anbe used if the 
anoni
al system of the problem 
an be solved expli
itly. If that is the
ase, we 
an rewrite our Impulse Control problem as a dis
rete dynami
al system(without numeri
al dis
retization) and solve it.Bibliography Chapter 1Bensoussan, A. and Lions, J. L. (1984). Impulse Control and Quasi-VariationalInequalities. Gauthier-Villars, Paris.Bensoussan, A., Liu, R. H., and Sethi, S. P. (2006). Optimality of an (s, S) poli
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h. SIAM Journal on Control and Optimization, 44(5):1650�1676.Bertsekas, D. (2005). Dynami
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ienti�
.Blaquière, A. (1977a). Di�erential games with pie
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tories. InHagedorn, P., Knoblo
h, H. W., and Olsder, G. J., editors, Di�ential Games andAppli
ations, pages 34�69. Springer-Verlag, Berlin.Blaquière, A. (1977b). Ne
essary and su�
ient 
onditions for optimal strategies in
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CHAPTER 2A Tutorial on the Deterministi
 Impulse ControlMaximum Prin
iple: Ne
essary and Su�
ientOptimality ConditionsAbstra
t This 
hapter 
onsiders a 
lass of optimal 
ontrol problemsthat allows jumps in the state variable. We present the ne
essary op-timality 
onditions of the Impulse Control Maximum Prin
iple basedon the 
urrent value formulation. By reviewing the existing impulse
ontrol models in the literature, we point out that meaningful prob-lems typi
ally do not satisfy the su�
ien
y 
onditions. In parti
ular,su
h problems either have a 
on
ave 
ost fun
tion, 
ontain a �xed 
ost,or have a 
ontrol-state intera
tion, whi
h have in 
ommon that theyea
h violate the 
on
avity hypotheses used in the su�
ien
y theorem.The impli
ation is that the 
orresponding problem in prin
iple mayhave multiple solutions that satisfy the ne
essary optimality 
ondi-tions. Moreover, we argue that problems with �xed 
ost do not satisfythe 
onditions under whi
h the ne
essary optimality 
onditions 
an beapplied. However, we design a transformation, whi
h ensures that theappli
ation of the Impulse Control Maximum Prin
iple still providesthe optimal solution. Finally, we show that for some existing modelsin the literature no optimal solution exists.2.1 Introdu
tionFor many problems in the area of e
onomi
s and operations resear
h it is realisti
 toallow for jumps in the state variable. This 
hapter therefore 
onsiders optimal 
ontrolmodels in whi
h the time moment of these jumps as well as the size of the jumps aretaken as (additional) de
ision variables. An example is Blaquière (1979) that dealswith optimal maintenan
e and life time of ma
hines. Here the �rm has to de
ide



16 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEwhen a 
ertain ma
hine has to be repaired (impulse 
ontrol variable), and it has todetermine the rate of maintenan
e expenses (ordinary 
ontrol variable), so that thepro�t is maximized over the planning period. Blaquière (1977a; 1977b; 1979; 1985)extends the standard theory on optimal 
ontrol by deriving a Maximum Prin
iple,the so 
alled Impulse Control Maximum Prin
iple, that gives ne
essary (and su�-
ient) optimality 
onditions for solving su
h problems. Like Blaquière (1977a; 1977b;1979; 1985), we 
onsider a framework where the number of jumps is not restri
ted.This distinguishes our approa
h from, e.g., Liu et al. (1998), Augustin (2002, pp.71�81) and Wu and Teo (2006), where the number of jumps is �xed (i.e. is taken asgiven).This 
ontribution fo
uses on deterministi
 impulse 
ontrol problems that are ana-lyzed by using the Impulse Control Maximum Prin
iple. This implies that we donot 
onsider sto
hasti
 impulse 
ontrol problems. This ex
ludes the theory of realoptions (see Dixit and Pindy
k (1994)). Another alternative is the theory of Quasi-Variational Inequalities (QVI; see Bensoussan and Lions (1984)). Although QVI 
analso be applied to deterministi
 impulse 
ontrol problems, it is mainly related toa sto
hasti
 framework. Other insightful QVI referen
es in
lude Bensoussan et al.(2006) on an inventory model employing an (s, S) poli
y and Øksendal and Sulem(2007).The 
ontribution of this 
hapter is fourfold. First, we give a 
orre
t formulationof the ne
essary optimality 
onditions of the Impulse Control Maximum Prin
iplebased on the 
urrent value formulation. In this way we 
orre
t Fei
htinger and Hartl(1986, Appendix 6) and Kort (1989, pp. 62�70). Se
ond, by reviewing the existingimpulse 
ontrol models in the literature, we point out that meaningful problems donot satisfy the su�
ien
y 
onditions. In parti
ular, su
h problems either have a 
on-
ave 
ost fun
tion, 
ontain a �xed 
ost, or have a 
ontrol-state intera
tion that ea
hviolate the 
on
avity hypotheses used in the su�
ien
y theorem. The impli
ation ofnot satisfying the su�
ien
y 
onditions is that the 
orresponding problem in prin
i-ple has multiple solutions that satisfy the ne
essary optimality 
onditions. In many
ases, these multiple solutions 
an be represented by a so 
alled tree-stru
ture (see,e.g., Luhmer (1986), Kort (1989), Chahim et al. (2012)). Third, we show that sev-eral existing problems (Blaquière (1977a; 1977b; 1979), Kort (1989, pp. 62�70)) donot have an optimal solution. In parti
ular, the solution of these problems 
ontainan interval where a singular ar
 is approximated as mu
h as possible by applyingimpulse 
hattering. Fourth, we observe that problems with a �xed 
ost have theproperty that the 
ost fun
tion is not a C1 fun
tion i.e. it is not 
ontinuously dif-



Impulse Control 17ferentiable. This implies that in prin
iple, also the ne
essary optimality 
onditionsdo not hold, although they were applied in Luhmer (1986), Gaimon (1985; 1986a;1986b) and Chahim et al. (2012) leading to 
orre
t solutions. This 
hapter providesa transformation, whi
h ensures that the Impulse Control Maximum Prin
iple 
anstill be applied to problems with a �xed 
ost.This 
hapter is organized as follows. Se
tion 2.2 gives the general formulation ofan impulse 
ontrol model with dis
ounting and presents the 
orre
t Impulse Con-trol Maximum Prin
iple in 
urrent value formulation (i.e. the ne
essary optimality
onditions). Further we give su�
ient 
onditions for optimality and provide a trans-formation whi
h makes 
lear why the Impulse Control Maximum Prin
iple 
an stillbe applied to problems with a �xed 
ost. In Se
tion 2.3 we 
lassify existing e
onomi
models involving impulse 
ontrol, show why optimal solutions for some of them donot exist, and dis
uss the problems that arise with the su�
ien
y 
onditions. Se
tion2.4 
ontains our 
on
lusion and further remarks.
2.2 Impulse ControlThe theory of optimal 
ontrol has its origin in physi
s and engineering where dis-
ounting 
ash �ows does not o

ur. For this reason Blaquière (1977a; 1977b; 1979;1985) derived his Maximum Prin
iple 
onsidering impulse 
ontrol problems withoutusing 
urrent value Hamiltonians. Instead, he presents his Maximum Prin
iple inthe present value Hamiltonian form.Se
tion 2.2.1 transforms Blaquière present value analysis to a 
urrent value one,whereas Se
tion 2.2.2 presents su�
ien
y 
onditions. Se
tion 2.2.3 
onsiders a sub-
lass of impulse 
ontrol problems, where the 
ost fun
tion 
ontains a �xed 
ost.2.2.1 Ne
essary Optimality ConditionsIn this se
tion we derive ne
essary optimality 
onditions for impulse 
ontrol in 
urrentvalue Hamiltonian form. In doing so, we 
orre
t the ne
essary optimality 
onditionsfor impulse 
ontrol given in Fei
htinger and Hartl (1986, Appendix 6). Their theoremis based on the 
urrent value present value transformation. However, applying it hereturns out to be not as straightforward as usual.



18 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEA general formulation of the impulse 
ontrol problem with dis
ounting is:
max
u,N,τ,v

∫ T

0

e−rtF (x(t),u(t), t)dt+

N
∑

i=1

e−rτiG(x(τ−i ), v
i, τi)+ e−rTS(x(T+)), (IC)subje
t to

ẋ(t) = f (x(t),u(t), t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = g(x(τ−i ), v
i, τi), for i ∈ {1, . . . , N},

x(t) ∈ R
n, u(t) ∈ Ωu, vi ∈ Ωv, i ∈ {1, . . . , N},

x(0−) = x0, 0 ≤ τ1 < τ2 < . . . < τN ≤ T.Here, x is the state variable, u is an ordinary 
ontrol variable and v is the impulse
ontrol variable (and vi = v(τi)), where x and u are pie
ewise 
ontinuous fun
tionsof time1. Future 
ash �ows are dis
ounted at a 
onstant rate r leading to the dis
ountfa
tor e−rt. The number of jumps is denoted by N , τi is the time moment of the
i-th jump, and x(τ−i ) and x(τ+i ) represent the left-hand and right-hand limit of xat τi, respe
tively (i.e. the state value just before a possible jump and immediatelyafter a possible jump at time τi). The terminal time or horizon date of the system orpro
ess is denoted by T > 0, and T+ stands for the time moment just after T . Thepro�t of the system at time t is given by F (x,u, t), G(x, v, τ) is the pro�t fun
tionasso
iated with the i-th jump at τi, and S(x(T+)) is the salvage value, i.e. the total
osts or pro�t asso
iated with the system after time T (where x(T+) stands for thestate value immediately after a possible jump at time T ). Finally, f (x,u, t) des
ribesthe 
ontinuous 
hange of the state variable over time between the jump points and
g(x, v, τ) is a fun
tion that represents the instantaneous (�nite) 
hange of the statevariable when there is an impulse or jump at τ .We assume that the domains Ωu and Ωv are bounded 
onvex sets in R

n. Furtherwe impose that F , f , g and G are 
ontinuously di�erentiable in x on R
n and vi on

Ωv, S(x(T+)) is 
ontinuously di�erentiable in x(T+) on R
n, and that g and G are
ontinuous in t. Finally, when there is no impulse or jump, i.e. vi = 0, we assumethat

g(x, 0, t) = 0,for all x and t. A typi
al solution for an Impulse Control problem is presented inFigure 2.1.1Note that the ne
essary 
onditions also hold for measurable 
ontrols. We restri
t ourselvesto pie
ewise 
ontinuous fun
tions sin
e this is needed for su�
ien
y. Appli
ations typi
ally havepie
ewise 
ontinuous fun
tions.
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Figure 2.1 � Solution of Impulse Control system.Let us de�ne the present value Hamiltonian
Ham(x,u,µ, t) = e−rtF (x,u, t) + µf (x,u, t),and the present value Impulse Hamiltonian
IHam(x, v,µ, t) = e−rtG(x, v, t) + µg(x, v, t),where µ denotes the present value 
ostate variable. The following theorem presentsne
essary optimality 
onditions asso
iated with the impulse 
ontrol problem de�nedin (IC).Theorem 2.2.1 (Impulse Control Maximum Prin
iple (present value)).Let (x∗(·),u∗(·), N, τ ∗1 , . . . , τN , v

1∗, . . . , vN∗) be an optimal solution for the impulse
ontrol problem de�ned in (IC). Then there exists a pie
ewise 
ontinuous 
ostatevariable µ(t) su
h that the following 
onditions hold:
u∗(t) = arg max

u∈Ωu

Ham(x∗(t),u,µ(t), t), (2.1)
µ̇(t) = −

∂Ham

∂x
(x∗(t),u∗(t),µ(t), t), for all t 6= τi, i = 1, . . . , N. (2.2)At the impulse or jump points, it holds that (i.e. at t = τi, i = 1, . . . , N)

∂IHam

∂v
(x∗(τ ∗−i ), vi∗,µ(τ ∗+i ), τ ∗i )(v

i − vi∗) ≤ 0, for all vi ∈ Ωv, (2.3)
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µ(τ ∗+i )− µ(τ ∗−i ) = −

∂IHam

∂x
(x∗(τ ∗−i ), vi∗,µ(τ ∗+i ), τ ∗i ), (2.4)

Ham(x∗(τ ∗+i ),u∗(τ ∗+i ),µ(τ ∗+i ), τ ∗i ))−Ham(x∗(τ ∗−i ),u∗(τ ∗−i ),µ(τ ∗−i ), τ ∗i )

−
∂IHam

∂τ
(x∗(τ ∗−i ), vi∗,µ(τ ∗+i ), τ ∗i )







> 0 if τ ∗i = 0

= 0 if τ ∗i ∈ (0, T )

< 0 if τ ∗i = T.

(2.5)For all points in time at whi
h there is no jump, i.e. t 6= τi (i = 1, . . .N), it holdsthat
∂IHam

∂v
(x∗(t), 0,µ(t), t)v ≤ 0, for all v ∈ Ωv. (2.6)At the horizon date the transversality 
ondition

µ(T+) = e−rT ∂S

∂x
(x∗(T+)), (2.7)holds, with x(T+) = x(T ) if there is no jump at time T , and τ ∗1 < τ ∗2 < . . . < τ ∗N ≤ T.Proof: See Blaquière (1977a; 1985) or Rempala and Zab
zyk (1988).In Blaquière (1977a; 1985) it is assumed that the Impulse Hamiltonian is 
on
ave in

v. In this 
ase (2.3) and (2.6) are repla
ed by
vi∗ = argmax

v∈Ωv

IHam(x∗(τ ∗−i ), vi,µ(τ ∗+i ), τ ∗i ), for i = 1, . . . , N,and
0 = argmax

v∈Ωv

IHam(x∗(t), v,µ(t), t), for all v ∈ Ωv,respe
tively.Next we determine the 
urrent value formulation of Theorem 1. By doing this we
orre
t Fei
htinger and Hartl (1986, Appendix 6), in whi
h the 
urrent value versionof 
ondition (2.5) is wrongly stated. First, we de�ne the 
urrent value HamiltonianHam(x,u,λ, t) = F (x,u, t) + λf (x,u, t),and the 
urrent value Impulse HamiltonianIHam(x, v,λ, t) = G(x, v, t) + λg(x, v, t),with λ the 
urrent value 
ostate variable. The following theorem presents ne
essaryoptimality 
onditions to solve the impulse 
ontrol problem de�ned in (IC), based onthe 
urrent value approa
h.
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iple (
urrent value)).Let (x∗(·),u∗(·), N, τ ∗1 , . . . , τN , v
1∗, . . . , vN∗) be an optimal solution for the impulse
ontrol problem de�ned in (IC). Then there exists a pie
ewise 
ontinuous 
ostatevariable λ(t) su
h that the following 
onditions hold:

u∗(t) = arg max
u∈Ωu

Ham(x∗(t),u,λ(t), t), (2.8)
λ̇(t) = rλ(t)−

∂Ham
∂x

(x∗(t),u(t),λ(t), t), for all t 6= τi, i = 1, . . . , N. (2.9)At the impulse or jump points, it holds that (i.e. at t = τi, i = 1, . . . , N)
∂IHam
∂v

(x∗(τ ∗−i ), vi∗,λ(τ ∗+i ), τ ∗i )(v
i − vi∗) ≤ 0, for all vi ∈ Ωv, (2.10)

λ(τ ∗+i )− λ(τ ∗−i ) = −
∂IHam
∂x

(x∗(τ ∗−i ), vi∗,λ(τ ∗+i ), τ ∗i ), (2.11)Ham(x∗(τ ∗+i ),u∗(τ ∗+i ),λ(τ ∗+i ), τ ∗i ))− Ham(x∗(τ ∗−i ), u∗(τ ∗−i ),λ(τ ∗−i ), τ ∗i )

−

[

∂G

∂τ
(x∗(τ ∗−i ), vi∗, τ ∗i )− rG(x∗(τ ∗−i ), vi∗, τ ∗i )

]

−λ(τ+i )
∂g

∂τ
(x(τ−i ), v

i∗, τi)







> 0 if τ ∗i = 0

= 0 if τ ∗i ∈ (0, T )

< 0 if τ ∗i = T.

(2.12)For all points in time at whi
h there is no jump, i.e. t 6= τ ∗i (i = 1, . . .N), it holdsthat:
∂IHam
∂v

(x∗(t), 0,λ(t), t)v ≤ 0, for all v ∈ Ωv. (2.13)At the horizon date the transversality 
ondition
λ(T+) =

∂S

∂x
(x∗(T+)), (2.14)holds, with x(T+) = x(T ) if there is no jump at time T , and τ ∗1 < τ ∗2 < . . . < τ ∗N ≤ T.Proof: The relation between present value and 
urrent value Hamiltonian, ImpulseHamiltonian and 
ostate variables is given by

Ham(x,u,µ, t) = e−rtHam(x,u,µ, t),

IHam(x, v,µ, t) = e−rtIHam(x, v,µ, t),
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µ(t) = e−rtλ(t).Under these transformations, 
onditions (2.8)-(2.11),(2.13) and (2.14) are equal to
onditions (2.1)-(2.4),(2.6) and (2.7). In this proof we show that (2.12) is the 
urrentvalue equivalent of the analogous 
ondition (2.5) derived by Blaquière (1977a; 1977b;1979; 1985). From the de�nitions of IHam and IHam we obtain that
e−rtIHam(x(t), vi,λ(t), t) = e−rtG(x(t), vi, t) + e−rtλ(t)g(x(t), vi, t)

= e−rtG(x(t), vi, t) + µ(t)g(x(t), vi, t)

= IHam(x(t), vi,µ(t), t).Combining this with (2.5) we get for τ ∗i ∈ (0, T ):
Ham(x∗(τ ∗+i ),u∗(τ ∗+i ),µ(τ ∗+i ), τ ∗i ))−Ham(x∗(τ ∗−i ),u∗(τ ∗−i ),µ(τ ∗−i ), τ ∗i ) =

e−rτ∗i

(

∂G(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
− rG(x∗(τ ∗−i ), vi∗, τ ∗i )

)

+ µ(τ ∗+i )
∂g(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
,whi
h implies thatHam(x∗(τ ∗+i ),u∗(τ ∗+i ),µ(τ ∗+i ), τ ∗i ))− Ham(x∗(τ ∗−i ),u∗(τ ∗−i ),µ(τ ∗−i ), τ ∗i )

= erτ
∗

i

(

e−rτ∗i

(∂G(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
− rG(x∗(τ ∗−i ), vi∗, τ ∗i )

))

+erτ
∗

i µ(τ ∗+i )
∂g(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ

=
∂G(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
− rG(x∗(τ ∗−i ), vi∗, τ) + λ(τ ∗+i )

∂g(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
.This is 
ondition (2.12) for τ ∗i ∈ (0, T ). The other two 
ases, τ ∗i = 0 and τ ∗i = T ,follow the same steps.2.2.2 Su�
ien
y ConditionsThe following theorem 
an be found in Seierstad and Sydsæter (1987, pp. 198�199).Theorem 2.2.3 (Su�
ient Conditions for Impulse Control). Let there be a feasi-ble solution, (x∗(·),u∗(·), N, τ ∗1 , . . . , τN , v

1∗, . . . , vN∗), for the impulse 
ontrol problem(IC) and a pie
ewise 
ontinuous 
ostate traje
tory, so that the ne
essary optimal-ity 
onditions of Theorem 2.2.2 hold. When the maximized Hamiltonian fun
tionHam0(x,λ, t) = maxuHam(x,u,λ, t) is 
on
ave in x for all (λ, t), the IHam, 
on-
ave in (x, v) for all t and S(x) 
on
ave in x, then that solution, (x∗(·),u∗(·), N,

τ ∗1 , . . . , τN , v
1∗, . . . , vN∗), is optimal.



Impulse Control 23For the proof of this theorem we refer to Theorem 1 in Seierstad (1981), whi
h isequivalent to the theorem stated above. However, we will show in Se
tion 2.3 thatthis result is not very useful sin
e most (relevant) problems given in the literature donot ful�l these 
onditions.2.2.3 Impulse Control: In
luding a Fixed CostWhen there is some �xed 
ost involved in the impulse 
ost fun
tion, the fun
tion Ghas a jump dis
ontinuity at point vi = 0. The impli
ation is that G is not 
ontinu-ously di�erentiable. Consequently, stri
tly speaking the Impulse Control MaximumPrin
iple 
annot be applied. However, the Impulse Control Maximum Prin
iple hasbeen applied a few times while ignoring this 
ontinuity requirement (see, e.g., Luh-mer (1986), Gaimon (1985; 1986a; 1986b) and Chahim et al. (2012)). In this se
tionwe show that by applying some transformation, a general �xed 
ost problem 
an berepresented by a problem with 
ontinuous 
ost fun
tion so that still the ne
essaryoptimality 
onditions 
an be applied.Re
onsider the above general impulse 
ontrol problem. For the remaining of this
hapter we assume Ωv = [0, v̄] for some v̄ > 0 and g(x, 0, t) = 0 (see e.g., Blaquière(1977a; 1977b; 1979; 1985) and Seierstad and Sydsæter (1987)). Furthermore, theimpulse 
ost fun
tion needs to be 
ontinuously di�erentiable. As said before, thisis not the 
ase in the spe
i�
ation where G is dis
ontinuous be
ause of a �xed 
ostterm (for simpli
ity we delete the supers
ript i in vi):
G(x, v, τ) =

{

0 for v = 0

K(τ) + α(v, τ)v for 0 < v ≤ v̄,where K(τ) > 0. Clearly G is lower semi-
ontinuous.The idea is to approximate the impulse 
ost fun
tion K + αv by a 
ontinuouslydi�erentiable one that assumes the same value for v > ε, where we let ε go to zero.A possible spe
i�
ation would be
Gε(x, v, τ) =

{

−K(τ)
ε2

v2 + (2K(τ)
ε

+ α(v, τ))v for v ∈ [0, ε]

K(τ) + α(v, τ)v for ε < v ≤ v̄.Letting ε tend to zero it follows that Gε approa
hes G. Other spe
i�
ations of
Gε(x, v, τ) are also possible, but the 
ommon property is that lim

ε→0

∂

∂v
Gε(x, 0, τ) = ∞.The argument is that the optimal solution of a problem with 
ost G will never have�very small� jumps be
ause of the �xed 
osts. Then, for ε small enough, Gε will al-ways generate the same 
ost as G and the optimal solutions will be the same. Hen
e,
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essary optimality 
onditions still hold for G with �xed 
ost. The followinglemma and proposition formalize these statements.Lemma 2.2.1. Let 0 < ε1 < ε0 and let (xε, uε, vε) (for simpli
ity we omit τ and N)be an optimal solution of the problem with 
ost fun
tion Gε, while (x∗, u∗, v∗) is anoptimal solution of problem (IC). Furthermore, we denote by J (x, u, v) the value ofthe obje
tive fun
tion of the original problem evaluated at (x, u, v) , and by Jε (x, u, v)the value of the obje
tive fun
tion of the approximated problem with 
ost fun
tion Gεevaluated at (x, u, v). Then
J(x, u, v) ≤ Jε1(x, u, v) ≤ Jε0(x, u, v), (2.15)and
J(x∗, u∗, v∗) ≤ Jε1(xε1 , uε1, vε1) ≤ Jε0(xε0 , uε0, vε0). (2.16)Proof: The �rst result (2.15) follows dire
tly from Gε0 ≤ Gε1 ≤ G, whereas (2.16)follows from (2.15) and
Jε1(xε1, uε1, vε1) ≤ Jε0(xε1 , uε1, vε1) ≤ Jε0(xε0, uε0, vε0).Proposition 2.2.1. Let (x∗, u∗, v∗) (for simpli
ity we omit τ and N) be an optimalsolution of problem (IC). Then the Impulse Control Maximum Prin
iple providesne
essary optimality 
onditions, even though the model fun
tion G is not 
ontinuous.More pre
isely, if the optimal solution is unique, it satis�es these ne
essary optimality
onditions. Otherwise there is at least one optimal solution for whi
h this holds.Proof: Let ε0 be some small positive number and let (xε0, uε0, vε0) be an optimalsolution of the problem with 
ost fun
tion Gε0, whi
h thus satis�es the ne
essaryoptimality 
onditions. Let further viε0 be the smallest jump parameter in this optimalsolution. If viε0 ≥ ε0, the proposition automati
ally holds. If viε0 < ε0, 
hoose a lower

ε0, and 
he
k again whether viε0 ≥ ε0. If yes we are done, if not 
ontinue thispro
edure.2.3 Classi�
ation of Existing Operations Resear
hModels Involving Impulse ControlThis se
tion 
lassi�es existing operations resear
h impulse 
ontrol problems found inthe literature. When 
onsidering impulse 
ontrol problems in an operations resear
h
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ontext, a 
ommon feature is dis
ounting. The resulting general impulse 
ontrolproblem (where for reasons of exposition both the state and impulse 
ontrol are onedimensional) 
an be represented by
max
u,v,τ,N

∫ T

0

e−rtF (x(t), u(t), t)dt+

N
∑

i=1

e−rτiG(x(τ−i ), vi, τi)+ e−rTS(x(T+)), (2.17)subje
t to
ẋ(t) = f(x(t), u(t), t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = g(x(τ−i ), vi, τi), for i ∈ {1, . . . , N},

x ∈ R, u ∈ Ωu, vi ∈ Ωv, x(0−) = x0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T .The obje
tive is typi
ally to maximize pro�t or minimize 
ost. We distinguish be-tween
• linear impulse 
ontrol problem, i.e. a problem where the impulse 
ontrol variableo

urs linearly in the Impulse Hamiltonian, and no 
ontinuous 
ontrol present(Case A);
• linear impulse 
ontrol problem and 
ontinuous 
ontrol present (Case B);
• non-linear impulse 
ontrol problem and no 
ontinuous 
ontrol present (CaseC );
• non-linear impulse 
ontrol problem and 
ontinuous 
ontrol present (Case D).In the linear impulse 
ontrol 
ase where no 
ontinuous 
ontrol u is present (CaseA), a typi
al solution would be to rea
h some kind of singular ar
 by applying im-pulse 
ontrol, but, if the state equation 
ontains some de
ay term (for instan
e δK(t)with δ the depre
iation rate and K(t) the 
apital sto
k), then it might be formallyimpossible to stay there. One has to use some kind of impulse 
hattering, i.e. an in-�nitely large number of impulses of in�nitely small size. We elaborate on this whendis
ussing the model by Blaquière (1977a; 1977b) in Se
tion 2.3.1.In the linear impulse 
ontrol 
ase where also a 
ontinuous 
ontrol u is present (CaseB) and both the ordinary 
ontrol and the impulse 
ontrol go into the same dire
tioni.e. in
rease or de
rease the state, the two 
ontrols (i.e. the ordinary and impulse
ontrol) are in some sense substitutes to ea
h other. Then one 
an distinguish thefollowing 
ases
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ontrol u and impulse 
ontrol v have the same monetary e�e
t (e.g.
ost or pro�t). An example is the model by Seierstad and Sydsæter (1987, pp.199�202) where just the impulse 
ontrol is used to sell the 
omplete sto
k ofthe resour
e at the best point in time. It is a non-autonomous model were thetwo 
ontrols appear in the model in the same way and are substitutes. Thejump o

urs at one time instant and in that sense this model is 
omparable to amodel that has the most rapid approa
h path (MRAP) property (see e.g. Hartland Fei
htinger (1987)), where the singular ar
 is rea
hed by applying impulse
ontrol at one point of time (usually the initial time point), followed by a sin-gular ar
 whi
h is maintained using the 
ontinuous 
ontrol. The same analysishold for the model by Seierstad and Sydsæter (1987, pp. 202�206). Other ex-isting optimal 
ontrol models having this MRAP property are, e.g., Jorgenson(1963; 1967), and Sethi (1973). These kinds of models are not 
onsidered inthis 
hapter any further.2. The impulse 
ontrol has a higher 
ost. An example is the model by Blaquière(1979)(see Se
tion 2.3.2), where, for suitable values of x(0), only the 
ontin-uous 
ontrol is used to apply preventive maintenan
e for the ma
hine but noimpulse 
ontrol to repair or upgrade the ma
hine. If x(0) is very low an im-pulse jump o

urs at the initial time (MRAP-property), after whi
h preventivemaintenan
e is applied.3. The impulse 
ontrol has a lower 
ost. An example would be the model byBlaquière (1979)(see Se
tion 2.3.2), with modi�ed parameters so that repair ismore attra
tive than preventive maintenan
e. Then one would not do preven-tive maintenan
e but only repair during the planning period. This will lead toan impulse 
hattering solution. We demonstrate in Se
tion 2.3.1 that in su
h
ases no optimal solution exists.In some sense, these results are trivial, i.e. there is no interesting 
ombination ofthe two types of 
ontrol. Su
h interesting 
ases o

ur when there is some �xed 
ostinvolved in the impulse 
ost fun
tion. In the non-linear impulse 
ontrol 
ase whereno 
ontinuous 
ontrol u is present (Case C ) this �xed 
ost in the impulse 
ost fun
-tion often o

urs, examples are e.g. Luhmer (1986) and Chahim et al. (2012). InKort (1989) a model is given that analyzes the behavior of a �rm under a 
on
aveadjustment 
ost fun
tion where impulse 
ontrol is applied. However, in Se
tion 2.3.5we demonstrate that an optimal impulse 
ontrol solution does not exist!In the literature no problems exist dealing with the non-linear impulse 
ontrol 
asewhere the 
ontinuous 
ontrol u is present (Case D). This is di�erent in the litera-
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hasti
 impulse 
ontrol, where, e.g., Bensoussan and Lions (1984, Chapter1, Se
tion 4) dis
uss an inventory problem with 
ontinuous produ
tion and impulseordering of goods. However, as said before, this 
hapter restri
ts itself to a determin-isti
 impulse 
ontrol framework, and, sin
e �Case D problems� do not o

ur in thisliterature, we will not 
onsider this 
ase any further.In the next se
tions we will dis
uss several (relevant) problems, 
he
k whether thesu�
ien
y 
onditions of Theorem 2.2.3 hold, and des
ribe the nature of the solu-tions. In parti
ular we prove that in the roadside inn problem (Se
tion 2.3.1), in ones
enario of the maintenan
e problem in Se
tion 2.3.2, and in the investment problemof Se
tion 2.3.5 no optimal solution exists. These problems have in 
ommon that�impulse 
hattering� o

urs on a time interval with positive length. This impulse
hattering is 
alled �mi
ro-impulse poli
y� in Erdlenbru
h et al. (2011). On the otherhand, for problems in Se
tion 2.3.3 (Luhmer (1986)), Se
tion 2.3.4 (Gaimon (1985;1986a; 1986b)) and Se
tion 2.3.6 (Chahim et al. (2012)) an algorithm is designedthat employs the ne
essary optimality 
onditions to �nd all 
andidate solutions foroptimality, as is shown in Luhmer (1986) (see also Kort (1989) and Chahim et al.(2012). Out of these 
andidate solutions, we 
an simply sele
t the one with the high-est obje
tive value. Provided that an optimal solution exists, this is then for sure theoptimal solution.2.3.1 Maximizing the Pro�t of a Roadside Inn (Case A)In Blaquière (1977a; 1977b) an example is given that deals with maximizing the pro�tof the owner of a roadside inn. The owner attra
ts more 
ustomers if he repaints theinn. The following model is given:
W (T ) = max

v,N
A

∫ T

0

x(t)dt− C
N
∑

i=1

vi, (2.18)subje
t to
ẋ(t) = −kx(t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = vi(1− x(τ−i )), for i ∈ {1, . . . , N},

x(t) ∈ [0, 1], vi ∈ [0, 1], x(0−) = x0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T ,where N is the number of times the inn is (re)painted, C > 0, the marginal 
ostof ea
h (re)paint job, A a stri
tly positive 
onstant, and vi denotes the part of theroadside inn that needs to be repainted, where vi = 1 denotes a full repaint. Theappearan
e of the roadside inn is denoted by x. It is assumed that 0 ≤ x ≤ 1, andea
h time the inn is repainted the index of appearan
es of the inn x undergoes an



28 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEupward jump from its previous value x(τ−i ). Between (re)painting x de
ays as givenabove, with the depre
iation rate k being a positive 
onstant. Furthermore, we as-sume that after the planning period the inn will not be used (i.e. the salvage valueis set to zero). In Sethi and Thompson (2006, pp. 324�330) this problem has beenreinterpreted as �The Oil Driller's Problem�.The Hamiltonian and Impulse Hamiltonian in short hand notation are
Ham(x, µ) = Ax+ µ(−kx),

IHam(x, v, µ) = v(−C) + µv(1− x) = v(−C + µ(1− x)).Both the impulse 
ontrol variable and state variable are linear in IHam and Ham.Due to the intera
tion term between the impulse 
ontrol variable and the state vari-able in the Impulse Hamiltonian, IHam is not 
on
ave in (x, vi) jointly, so that thene
essary optimality 
onditions are not su�
ient.To solve the above stated model we �rst 
onsider the 
ontinuous version of thisproblem (i.e. the problem where the impulse 
ontrol vi is repla
ed by a 
ontinuous
ontrol u):
max

u
W (T ) =

∫ T

0

(Ax(t)− Cu(t))dt, (2.19)subje
t to
ẋ(t) = −kx(t) + u(t)(1− x(t)),

x(t) ∈ R, u(t) ∈ [0,∞) x(0) = x0.We 
an identify this model as the Vidale-Wolfe advertising model dis
ussed in Sethi(1973). The solution for this model is given in Figure 2.2. If the initial value of x(0) islower than the singular ar
 value of x(t) (i.e. x̂s) at t∗ = 0, we set the 
ontrol u = ∞so that the singular ar
 is rea
hed immediately (MRAP property). If the initial valueof x(0) is higher than x̂s the 
ontrol u = 0 is applied until x has rea
hed x̂s. At thesingular ar
 the 
ontrol is set at u = ûs = kx̂s/(1− x̂s), so that x(t) is kept 
onstantat the level x̂s. At the �nal planning period the 
ontrol is equal to zero, sin
e theremaining time period is too short to defray the 
ost uC. To solve the Blaquièreimpulse 
ontrol model, we need to approximate the Vidale-Wolfe advertising modelas mu
h as possible. This is straightforward for the solution part where u = 0 (thensimply put vi = 0) or where u = ∞. In the latter 
ase apply an initial impulse
ontrol jump, where v1 = x̂s − x′(0). On the singular ar
 we divide the interval
[tsa, T ] (with tsa the time the singular ar
 is rea
hed) in l parts of equal length and
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x(t)

x̂s

T
t

u = 0

u = û

t
∗ = 0

u = ∞

x
′(0) (a) x′(0) < x̂s.

x(t)

x̂s

T
t

u = 0

u = û

x
′′(0)

u = 0

(b) x′′(0) > x̂s.Figure 2.2 � Vidale-Wolfe model solution.set within ea
h interval �rst vi = v̄ (where v̄ is su
h that x̃ + v̄ − x̂s = x̂s − x̃ with
x̃ = x(τ−1 ) = . . . = x(τ−N )) and then vi = 0. In this way we 
reate a �saw-toothed�shape around the singular ar
. This 
ontrol poli
y is shown in Figure 2.3 and is theimpulse 
ontrol equivalent of 
hattering 
ontrol (see e.g. Fei
htinger and Hartl (1986,pp. 78�81) or Kort (1989, pp. 62�70)). It is important to note that for ea
h given�saw-toothed� solution, a better solution is available by in
reasing l and de
reasing
v̄. We 
on
lude that an optimal solution does not exist. This observation 
annot befound in Blaquière (1977a; 1977b), or in Sethi and Thompson (2006, pp. 324�330).
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(b) x′′(0) > x̂s.Figure 2.3 � Blaquière (1977) model solution with impulse 
hattering.
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e of Ma
hines (Case B)The following problem is taken from Blaquière (1979) and is also extensively analyzedin Sethi and Thompson (2006, pp. 331�337). This example deals with the optimalmaintenan
e of ma
hines:
W (T ) = max

v,u,τ,N

∫ T

0

(Ax(t)− u(t))dt−
N
∑

i=1

vi(C −Kx(τ−i )), (2.20)subje
t to
ẋ(t) = −kx(t) +mu(t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = vi(1− x(τ−i )), for i ∈ {1, . . . , N},

x ∈ [0, 1], vi ∈ [0, 1], u(t) ∈ [0, ū], x(0−) = x0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where N is the number of times the ma
hines is repaired, C−Kx(τi), i = 1, ..., N , themarginal unit 
ost of ea
h repair, and A a stri
tly positive 
onstant. It is assumedthat 0 ≤ x ≤ 1, and ea
h time the ma
hine is repaired (where full repair, i.e.
vi = 1 stands for repla
ing the ma
hine with a new one) the index of appearan
es ofthe ma
hine, x, undergoes an upward jump starting from its previous value x(τ−i ).Between repairs x de
ays as given above, with k and m positive 
onstants. The rateof maintenan
e expenses is denoted by u (i.e. the 
ontinuous 
ontrol). Moreover itis assumed that the 
ost of a repair is of the form vi(C −Kx), where C and K arestri
tly positive 
onstants. Furthermore, we assume that after the planning periodthe ma
hine will not be used (i.e. the salvage value is set to zero). The Hamiltonianand Impulse Hamiltonian are

Ham(x, u, µ) = Ax− u+ µ(−kx+mu),

IHam(x, v, µ) = v(Kx− C) + µv(1− x) = v(Kx− C + µ(1− x)).Both the impulse 
ontrol variable and state variable are linear in IHam and Ham.Due to the intera
tion term between the impulse 
ontrol variable and the state vari-able in the Impulse Hamiltonian the ne
essary optimality 
onditions are not su�
ient,sin
e IHam is not 
on
ave in (x, vi). Be
ause the ne
essary optimality 
onditions arenot su�
ient we know that multiple 
andidate solutions 
an o

ur for this problem.Here we will distinguish between two 
ases:
• The impulse 
ontrol (repair) has a higher 
ost than the 
ontinuous 
ontrol(preventive maintenan
e). When x(0) is su�
iently large, only the 
ontinuous
ontrol is used to do preventive maintenan
e for the ma
hine, so no impulse
ontrol is applied to repair or upgrade the ma
hine. In this 
ase the 
oe�
ients
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k
. When x(0) is very low, besides preventivemaintenan
e, an impulse jump o

urs at the initial time and in that sensethis model is 
omparable to a model that has the most rapid approa
h path(MRAP) property. For the analysis of this 
ase we refer to Blaquière (1979).

• The impulse 
ontrol (repair) has lower 
ost than the 
ontinuous 
ontrol (preven-tive maintenan
e). Then one would not do preventive maintenan
e but repairduring the planning period. This results in impulse 
hattering analogous tothe Blaquière (1977a; 1977b) model in Se
tion 2.3.1. Hen
e, for this 
ase nooptimal solution exists.2.3.3 Minimizing Inventory Cost (Case C )Luhmer (1986) applies the Impulse Control Maximum Prin
iple to solve an inventoryproblem. The following model is presented:
C(T ) = min

v,τ,N

∫ T

0

h(I(t), t)e−rtdt+

N
∑

i=1

(

p(vi, τi)v
i + C(τi)

)

e−rτi

−S(I(T ))e−rT , (2.21)subje
t to
İ(t) = −d(t)− g(I(t), t), for t /∈ {τ1, . . . , τN},

I(τ+i )− I(τ−i ) = vi, for i ∈ {1, . . . , N},

I(t) ∈ R
+, vi ∈ (0,∞), I(0) = I0, I(T ) = Ie, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where h denotes the holding or shortage 
ost and I(t) the inventory level at time t.

I(t) de
reases over time by the demand rate d(t) and leakage losses g(I(t), t). Atany time instan
e τi the inventory is in
reased by a quantity vi and the unit ordering
osts are given by p(vi, τi). An order of size vi at time τi results in a variable 
ost of
(p(vi, τi)v

i plus a �xed ordering 
ost C(τi). At the end of the planning period a s
rapvalue for inventory Ie is left over, whi
h is denoted by S(I(T )). Finally, r stands forthe risk-free dis
ount rate.Due to the �xed 
ost, the model violates the requirement that the 
ost fun
tionshould be 
ontinuously di�erentiable in the 
ontrol in order for the Impulse Con-trol Maximum Prin
iple to be appli
able. However, performing our transformationof Se
tion 2.2.3 ensures that the Impulse Control Maximum Prin
iple 
an still beapplied. Moreover, the dis
ontinuity in the 
ost fun
tion 
auses that the su�
ient
onditions do not hold, i.e. the Impulse Hamiltonian is not 
on
ave in (I, vi) jointly.This implies that we 
an have multiple solutions satisfying the ne
essary optimality
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onditions. To solve this problem, Luhmer (1986) des
ribes an algorithm that �ndsall these 
andidate solutions. Typi
ally, this produ
es a tree stru
ture in whi
h thejumps of all 
andidate solutions are presented (
f. Se
tion 2.3.6). Given that anoptimal solution exists, it is that 
andidate solution with the highest obje
tive value.2.3.4 Optimal Dynami
 Mix of Manual and Automati
 Out-put (Case B)Gaimon(1985; 1986a) determines the optimal times of impulse a
quisition of automa-tion and the 
hange for manual output. The obje
tive is to minimize 
ost asso
iatedwith deviation from a goal level of output. The pur
hase of automation is used todire
tly substitute for output resulting from manually operated equipment. Sin
eautomation is a
quired at dis
rete times in the planning period the author solves themodel using the impulse 
ontrol maximum prin
iple. The following model is given:
J(T ) = min

h,s,v,τ,N

∫ T

0

(

w[p(t) + q(t)− g(t)]2 + c1(t)h
2(t)

+c2(t)s
2(t) + f1(t)p(t) + f2(t)q(t)

)

e−rtdt,

+
N
∑

i=1

c3(τi)v
ie−rτi − β[p(T ) + q(T )]e−rT , (2.22)subje
t to

ṗ(t) = −d(t) + h(t)− s(t), for t /∈ {τ1, . . . , τN},

q(τ+i )− q(τ−i ) = µvi, for i ∈ {1, . . . , N},

h(t) ∈ [0, H(t)], s(t) ∈ [0, S(t)], p(0) = p0,

q(0−) = q0, vi ∈ {0, 1}, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where N is the number of times automation equipment is a
quired. c3(τi)v
i, i =

0, ..., N , the 
ost of a
quiring the ith automation at time τi, where vi denotes the ithte
hnology pur
hase. The level of automation output and manual output are given by
q(t) and p(t) respe
tively. The 
ost of produ
ing output manually at time t is givenby f1(t) and the 
ost of produ
ing output automati
ally at time t is given by f2(t).The 
ost of in
reasing and redu
ing the level of manual output per unit squared attime t is represented by c1(t)h

2(t) and c2(t)s
2(t), respe
tively, where h(t) denotes thelevel of in
rease in manual output at time t, with H(t) the available supply of laborand s(t) denotes the level of redu
tion in manual output at time t, with S(t) themaximum permitted level of redu
tion at time t. The level of redu
tion in manualoutput at time t in units of output is represented by d(t), and g(t) represents thegoal level of output at time t also in units of output. Finally, w stands for the weight
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ost of the squared deviation between the a
tual and the goal levels of output, µthe units of in
rease in output due to pur
hased automation, r is the dis
ount rate,and β the value of the produ
tion per unit of output at the end of the planning period.The di�eren
e with the other impulse 
ontrol models is that the impulse 
ontrolvariable vi 
an takes only two values: 0 or 1. It follows that the term c3(τi)v
i worksas a �xed 
ost. Hen
e, analogous to the model in Se
tion 2.3.3, su�
ient 
onditionsdo not hold, so that in prin
iple multiple solutions 
an satisfy the ne
essary opti-mality 
onditions. Furthermore some transformation as in Se
tion 2.2.3 is needed toapply the Impulse Control Maximum Prin
iple. This is not mentioned in Gaimon(1985; 1986a). A similar reasoning holds for Gaimon and Thompson (1984).Gaimon (1986b) determines the optimal times and levels of impulse a
quisition ofautomation and the levels of 
hange for manual output with a similar obje
tive. Themain di�eren
e is that in Gaimon (1986b) the magnitude of automation output 
anhave di�erent values. So Gaimon (1986b) not only determines the time of a
quiringautomation but also the size of this a
quisition. The model is:

J(T ) = min
h,s,f2,v,τ,N

∫ T

0

{w[p(t) + q(t)− g(t)]2 + c1(t)h
2(t)

+c2(t)s
2(t) + f1(t)p(t) + [F2(t) + f2(t)]q(t)}e

−rtdt,

+

N
∑

i=1

c3(v
i, τi)e

−rτi − β[p(T ) + q(T )]e−rT , (2.23)subje
t to
ṗ(t) = −d(t) + h(t)− s(t), for t /∈ {τ1, . . . , τN},

q(τ+i )− q(τ−i ) = vi, for i ∈ {1, . . . , N},

f2(τ
+
i ) = f2(τ

−
i )[1− αvi],

h(t) ∈ [0, H(t)], s(t) ∈ [0, S(t)], p(0) = p0, p(t) ≥ 0,

q(0−) = q0, vi ∈ [0, A(τi)], 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where in addition to the notation also used in model (2.22), F2(t) is the 
ompo-nent of the per unit 
ost of operating automati
 equipment that is una�e
ted by thea
quisition of automation at time t, f2(t) is the per unit 
ost of obtaining outputautomati
ally at time t, whereas α stands for the e�e
tiveness of a unit a
quisitionof automation on redu
ing f2(τi) at time τi (0 ≤ α ≤ 1/A(τi)).All examples in Gaimon (1986b) have an impulse 
ost fun
tion of the form c3(v
i, τi) =

C0 + C1v
i2. This again implies that the problem 
ontains a �xed 
ost, and thus suf-
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ien
y 
onditions do not hold so that multiple solutions 
an satisfy the ne
essaryoptimality 
onditions.2.3.5 Firm Behavior under a Con
ave Adjustment Cost Fun
-tion (Case C )In Kort (1989) a model is given that analyzes the behavior of a �rm under a 
on
aveadjustment 
ost fun
tion. Kort (1989) applies impulse 
ontrol be
ause the 
on
ave
ost fun
tion results in a Hamiltonian that is 
onvex in the 
ontrol. The followingmodel is studied:
C(T ) = max

v,τ,N

∫ T

0

S(K(t))e−rtdt−
N
∑

i=1

(

vi + A(vi)
)

e−rτi +K(T )e−rT , (2.24)subje
t to
K̇(t) = −aK(t), for t /∈ {τ1, . . . , τN},

K(τ+i )−K(τ−i ) = vi, for i ∈ {1, . . . , N},

K(t) ∈ R+, vi ∈ (0,∞) K(0) = K0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where vi stands for the i-th investment impulse, and τi is the time of the i-th impulse.The adjustment 
osts of the i-th investment impulse are given by A(vi) (with ∂A(v)
∂v

>

0 and ∂2A(v)
∂v2

< 0), K(t) is the amount of 
apital goods at time t, and a is a 
onstantdepre
iation rate. Like Fei
htinger and Hartl (1986), Kort (1989) applies the in
orre
t
urrent value Impulse Control Maximum Prin
iple and designs an algorithm to �ndall 
andidate solutions that starts at time T and works ba
kward in time (this isdi�erent from Luhmer (1986), whose algorithm starts at time zero). The Hamiltonianand Impulse Hamiltonian are
Ham(K, λ) = S(K)− λaK,

IHam(v, λ) = −
(

v + A(v)
)

+ λv.Note that the Impulse Hamiltonian does not depend on K so here there is no state-
ontrol intera
tion. However the su�
ient 
onditions do not hold due to the 
on
aveadjustment 
ost fun
tion whi
h implies that the Impulse Hamiltonian is not 
on
avein vi. The 
ontinuous 
ase of this problem is also des
ribed in Kort (1989, pp. 57�62) and 
onsists of a 
hattering 
ontrol solution. Consequently, the impulse 
ontrolmodel has a �singular� ar
 with 
hattering too. Analogous to the Blaquière (1977a;1977b) model in se
tion 2.3.1, also here we have to 
on
lude that no optimal solutionexists. This was not noted in Kort (1989, pp. 62�70).
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h Models Involving ImpulseControl 352.3.6 Dike Height Optimization (Case C )This se
tion analyzes the problem of the optimal timing of heightening a dike. The
ost-bene�t-e
onomi
 de
ision problem 
ontains two types of 
ost, namely investment
ost and 
ost due to damage (
aused by failure of prote
tion by the dikes). Clearly,there is a trade o� between investment 
ost and damage 
ost. The model in Chahimet al. (2012) is as follows:
min
v,τ,N

{

∫ T

0

S(t)e−rtdt +
N
∑

i=1

I(vi, H(τ−i ))e
−rτi + e−rT S(T )

r

}

, (2.25)subje
t to
Ḣ(t) = 0, for t /∈ {τ1, . . . , τN},

H(τ+i )−H(τ−i ) = vi, for i ∈ {1, . . . , N},

H(t) ∈ R+, vi ∈ [0,∞) H(0−) = 0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where vi stands for the i-th dike heightening, H(t) is the height in 
entimeter (
m)of the dike at time t relative to the initial situation, i.e. H(0) = 0, τ stands for thetime of the dike update (years), and r is the risk-free dis
ount rate. The obje
tive(2.25) 
onsists of two parts. The �rst part is the total (dis
ounted) expe
ted damage
ost, whi
h is given by
∫ T

0

S(t)e−rtdt+
S(T )e−rT

r
,where S(t) denotes the expe
ted damage at time t, S(t) = P (t)V (t). The �oodprobability P (t) (1/year) in year t is de�ned as

P (t) = P0e
αηte−αH(t), (2.26)where α (1/
m) stands for the parameter in the exponential distribution regardingthe �ood probability, η (
m/year) is the parameter that indi
ates the in
rease of thewater level per year, and P0 denotes the �ood probability at t = 0. The damage ofa �ood V(t) (million e) is given by

V (t) = V0e
γteζH(t), (2.27)in whi
h γ (per year) is the parameter for e
onomi
 growth, and ζ (1/
m) stands forthe damage in
rease per 
m dike height. V0 (million e) denotes the loss by �oodingat time t = 0. The se
ond part of the obje
tive is the total (dis
ounted) investment
ost

N
∑

i=1

I(vi, H(τ−i ))e
−rτi ,



36 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEwhere N is the number of dike heightenings and H(τ−) the height of the dike (in 
m)just before the dike update at time τ (left-limit of H(t) at t = τ). The investment
ost is given by
I(vi, H(τ−)) =

{

A0(H(τ−) + vi)2 + b0v
i + c0 for vi > 0

0 for vi = 0,for suitably 
hosen 
onstants A0, b0 and c0. The 
urrent value Hamiltonian isHam(t, H(t)) = −S0e
βte−θH(t),while the Impulse Hamiltonian is given byIHam(t, H(τ−), vi, λ(τ)) = −I(vi, H(τ−i )) + λ(τ)vi

= −A0(H(τ−) + vi)2 − b0v
i − c0 + λ(τ)vi.This problem is modeled as an impulse 
ontrol problem due to the �xed 
ost, c0,involved with ea
h dike heightening. As was the 
ase for Luhmer (1986), due to this�xed 
ost a dis
ontinuity arises in the 
ost fun
tion. The �rst impli
ation is that theImpulse Control Maximum Prin
iple 
annot be straightforwardly applied (althoughour transformation in Se
tion 2.2.3 makes up for this), and, se
ond, the su�
ien
y
onditions do not hold (i.e. the Impulse Hamiltonian is not 
on
ave in (H, vi) jointly).Chahim et al. (2012) implement the ba
kward algorithm designed by Kort (1989, pp.62�70). This algorithm solves the above stated problem (2.25) for di�erent values of

H(T ). We sele
t that H(T ), whi
h 
orresponds to the solution with the lowest valueof the obje
tive fun
tion. In Figure 2.4 the tree for the Dut
h dike ring area 10 ispresented. The tree shows all 
andidate solutions for (the optimal) H(T ) = 282.57.Due to the �xed 
osts, small jumps 
annot be optimal whi
h is why one 
an 
ut awayall the upper bran
hes in Figure 2.4. Formally this 
an be proved by observing that asolution that 
ontains su
h a small jump, is dominated by a solution where the smalljump is deleted, while instead it is added to the previous jump. This implies that onlythe optimal solution is left. In Table 3.5 this optimal solution (and 
orresponding
ost) are presented.
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τ6=45.23STOPFigure 2.4 � Example Tree, Dike ring area 10, H(T ) = 282.57.No. 10
τi (years) vi(cm)Updates 275.93 57.15213.08 61.35153.43 57.3097.98 53.9945.24 52.78

H(T )(cm) 282.57Investment 
ost (million e) 10.17Damage 
ost (million e) 29.96Total 
ost (million e) 40.13Table 2.1 � Impulse 
ontrol solutions for dike ring area 10 with quadrati
investment 
ost.2.4 Con
lusions and Re
ommendationsThis 
hapter gives a 
orre
t formulation of a ne
essary optimality 
onditions of theImpulse Control Maximum Prin
iple based on the 
urrent value formulation. In thisway we 
orre
t Fei
htinger and Hartl (1986, Appendix 6) and Kort (1989, pp. 62�70). We review the existing impulse 
ontrol models in the literature and show thatall meaningful problems found in the literature do not satisfy the su�
ien
y 
ondi-tions. We observe that these problems either have a 
on
ave 
ost fun
tion, 
ontain a�xed 
ost, or have a 
ontrol-state intera
tion, whi
h all lead to non-
on
avities vio-lating su�
ien
y. The impli
ation of not satisfying the su�
ien
y 
onditions is that
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an arise and a so 
alled tree-stru
ture of jumps 
an be identi�ed.We also show that for some problems no optimal solution exists sin
e part of thetraje
tory 
onsists of staying on the singular ar
 by applying some kind of impulse
hattering. Finally, we provide a transformation, whi
h makes 
lear why the ImpulseControl Maximum Prin
iple 
an still be applied to problems with a �xed 
ost de-spite the fa
t that this violates the 
ontinuous di�erentiability property of the model.In this 
hapter, we 
lassify existing operations resear
h models involving impulse
ontrol in four 
ategories. In doing so we observe that non-linear deterministi
 im-pulse 
ontrol problems in whi
h a 
ontinuous 
ontrol is present (
ase D) are missingin the literature. Some possibilities for future resear
h arise here. A possibility is toextend Chahim et al. (2012) with 
ontinuous dike maintenan
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CHAPTER 3An Impulse Control Approa
h to Dike HeightOptimizationAbstra
t This 
hapter determines the optimal timing of dike heighten-ings as well as the 
orresponding optimal dike heightenings to prote
tagainst �oods. To derive the optimal poli
y we design an algorithmbased on the Impulse Control Maximum Prin
iple. In this way this
hapter presents one of the �rst real life appli
ations of the ImpulseControl Maximum Prin
iple. We show that the proposed Impulse Con-trol approa
h performs better than dynami
 programming with respe
tto 
omputational time. This is 
aused by the fa
t that Impulse Controldoes not need dis
retization in time.
3.1 Introdu
tionIn February 1953 the south-western part of the Netherlands was stru
k by a �ooddisaster. The �ood o

urred in the night and resulted into the death of 1,835 people.Almost 200,000 he
tares of land were �ooded, 3,000 homes and 300 farms destroyed,and 47,000 herd of 
attle drowned. In total there were 67 dike breaks. It was thebiggest �ood in the Netherlands for 300 years. Soon after this �ood the Dut
hgovernment installed the Delta Committee with the main obje
tive to prevent theo

urren
e of su
h events in the future, taking into a

ount that 40% of the Nether-lands is below sea level. The Delta Committee asked Van Dantzig (1956) to solve thee
onomi
 
ost-bene�t de
ision model 
on
erning the dike height problem. Be
auseof sea-level rise and e
onomi
 growth at some spe
i�
 moments in time the height ofthe dike must be raised.In 1995 again a 
riti
al situation o

urred, where the water level of the major riversRhine and Meuse in
reased so mu
h that 200,000 people where for
ed to eva
uate.



42 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONAfter all, there was no serious �ood and people 
ould safely return to their homes.Prote
tion against �ooding is be
oming an important issue all over the world. Thereare many deltas that need prote
tion against �oods. In Adikari and Yoshitania (2009)it is shown that the total number of natural disasters are 
ontinuously in
reasing inmost regions of the world. They state that: �Among all natural [...℄ disasters, water-related disasters are undoubtedly the most re
urrent and pose major impediments tothe a
hievement and sustainable so
io-e
onomi
 development.�In Table 3.1 an overview of all re
orded natural water-related disasters between 1900-2006 is presented. Between 1900 en 2006 �oods a

ounted for more than 29.8% of1900-2006 Number of Number Total Real damagedisasters killed (×103) a�e
ted (×106) US$ (×109)Flood 3,050 (42,34%) 6,899 (37,35%) 3,028 (50,18%) 343 (36,07%)Windstorm 2,758 (38,28%) 10,009 (54,19%) 753 (12,48%) 536 (56,36%)Drought 836 (11,60%) 1,209 (6,55%) 2,240 (37,12%) 61 (6,41%)Slides 508 (7,05%) 56 (0,30%) 10 (0,17%) 3 (0,32%)Wave/Surge 52 (0,72%) 296 (1,60%) 3 (0.05%) 8 (0,84%)Total 7,204 (100%) 18,469 (100%) 6,034 (100%) 951 (100%)Table 3.1 � Statisti
s of re
orded natural water-related disasters globally be-tween 1900 and 2006.1the total number of natural disasters (in
luding non-water related, like epidemi
s,earthquakes et
; see Adikari and Yoshitania (2009)). Of all 
asualties 
aused bynatural disasters, 18,5% was due to �ooding. Moreover more than 48% of the totalnumber of people a�e
ted by natural disasters was �ood related. In Table 3.2 thenumber of fatalities due to �oods for di�erent parts of the world between 1986 and2006 are presented. These statisti
s show that not only the Netherlands, but manyregions in the world have to deal with water-related disasters, su
h as �oods. In2007 the Delta Committee 2 was installed in the Netherlands. The obje
tive of this
ommittee was to advise the Dut
h government 
on
erning the 
onsequen
es of thewater level rise for the Dut
h 
oast and the large river deltas. The Delta Committee2 warned that the sea level 
ould in
rease more than what was expe
ted in the past.In parti
ular, we should take into a

ount a rise in sea water level between 0.65 meter(m) and 1.30 m around 2100 and a rise between 2 m and 4 m around 2200. In 2009the Dut
h government 
ommissioned a proje
t to develop a 
ost-bene�t analysis anddesign a method to solve the resulting optimization model in order to set new safety1EM-DAT, The International Disaster Database of the Centre for Resear
h on the Epidemiologyof Disasters (CRED).



Introdu
tion 431986-2006 Number offatalitiesAsia 117,325 (64.4%)Afri
a 14,573 (8.1%)Ameri
a 47,782 (26.2%)Europe 2,120 (1.2%)O
eania 218 (0.1%)Total 182,118 (100%)Table 3.2 � The reported number of fatalities due to �oods between 1986 and2006 per 
ontinent.1standards. Results of this proje
t 
an be found in Hertog and Roos (2009) and Eij-genraam et al. (2011).This 
hapter presents an Impulse Control approa
h as an alternative method to thedynami
 programming approa
h used in Eijgenraam et al. (2011) to solve the dikeheight problem. Brekelmans et al. (2012) develop a mixed integer nonlinear program(MINLP), but for homogeneous2 dikes the best approa
h turns out to be dynami
programming. Therefore we 
hoose to 
ompare it with the Impulse Control approa
h.To develop the optimal poli
y we design an algorithm based on the Impulse ControlMaximum Prin
iple. We show that the proposed Impulse Control approa
h performsbetter than dynami
 programming in 
omputation time. This is 
aused by the fa
tthat Impulse Control does not need dis
retization in time. Furthermore, this 
hap-ter presents one of the �rst real life appli
ations of the Impulse Control MaximumPrin
iple. In the literature there are not many problems solved using the ImpulseControl Maximum Prin
iple. Luhmer (1986) and Kort (1989) design an algorithmto apply the Impulse Control Maximum Prin
iple to theoreti
ally solve (e
onomi
)problems. We 
onsider a framework where the number of jumps is not restri
ted.This distinguishes our approa
h from, e.g., Liu et al. (1998), Augustin (2002, pp.71�81) and Wu and Teo (2006), where the number of jumps is �xed (i.e. is taken asgiven).The e
onomi
 
ost-bene�t problem raised by the �ood prevention is formulated byVan Dantzig (1956) as:�Taking into a

ount, the 
ost of dikebuilding, the materiallosses when a dike-break o

urs, and the frequen
y distribution of di�erent sea lev-els, determine the optimal height of the dikes�. He assumes that both the e
onomi
2A homogeneous dike or dike ring 
onsists of one segment.



44 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONvalue prote
ted by the dikes and the probability of a dike breakthrough are 
on-stant over time. In his analysis he determines how mu
h to invest in the heighteningof a dike, but did not answer the question �when� to heighten this dike. Eijgen-raam et al. (2011) adjusted Van Dantzig's analysis with respe
t to e
onomi
 growth.Van Dantzig (1956) found that the height of a dike after every heightening shouldbe su
h that the resulting �ood probabilities are the same. E
onomi
 growth impliesin
reasing potential damage, so it is optimal to have lower �ood probabilities afterevery dike height in
rease. This 
an be a
hieved by raising the dike height to higherlevels. In this 
hapter all model assumptions are similar to Eijgenraam et al. (2011).Impulse Control theory is a variant of optimal 
ontrol theory where dis
ontinuities(i.e. jumps) in the state variable are allowed. In Impulse Control the moments ofthese jumps as well as the sizes of the jumps are taken as (new) de
ision variables.In Blaquière (1985) an example is given that deals with optimal maintenan
e and lifetime of ma
hines. Here one has to de
ide when to repla
e a ma
hine by a new one(impulse 
ontrol variable), and has to determine the rate of maintenan
e expenses(ordinary 
ontrol variable), so that the pro�t is maximized over the planning period.In Kort (1989) a dynami
 model of the �rm is designed in whi
h 
apital sto
k jumpsupward at dis
rete points in time at whi
h the �rm invests. Blaquière (1977a; 1977b;1979; 1985) extends the standard theory on optimal 
ontrol by deriving a MaximumPrin
iple, the so-
alled Impulse Control Maximum Prin
iple, that gives ne
essaryand su�
ient optimality 
onditions for solving su
h problems.Blaquière's Impulse Control analysis is based on the present value Hamiltonian form.In this 
hapter we apply the Impulse Control theorem in the 
urrent value Hamilto-nian framework as derived in Chahim et al. (2012).This 
hapter is organized as follows. In Se
tion 3.2 we �rst build up the ImpulseControl model and derive the ne
essary optimality 
onditions. In Se
tion 3.3 we de-s
ribe the algorithm used to solve the model and obtain an upper bound for the �naldike height using the ne
essary optimality 
onditions. In Se
tion 3.4 we 
ompare theImpulse Control model to the dynami
 programming approa
h used in Eijgenraamet al. (2011) and present numeri
al results. Finally, in Se
tion 3.5 we 
on
lude.3.2 Impulse Control ModelA dike or dike ring is an uninterrupted ring of water defen
es. There are 53 dike ringareas in the Netherlands with a higher safety standard (i.e. lower �ood probability)



Impulse Control Model 45than 1/1,000 per year. Ea
h dike ring prote
ts a 
ertain area against �ooding, seeFigure 3.1. The model des
ribed in this se
tion 
an be used for ea
h dike ringseparately. In the �rst se
tion we build up the mathemati
al model and show that

Figure 3.1 � Dike ring areas and safety standards in the Netherlands.this problem 
an be des
ribed as an Impulse Control problem. In the se
ond se
tionwe derive ne
essary optimality 
onditions.3.2.1 The ModelThe e
onomi
 
ost-bene�t de
ision problem de�ned in Eijgenraam (2006) 
ontainstwo types of 
ost that we deal with in this problem, namely investment 
ost and
ost due to damage (
aused by failure of prote
tion by the dikes). Clearly, there is atrade o� between in
urring 
ost due to investing or 
hoosing not to invest and a

eptthe probability that a dike is less prote
tive leading to higher expe
ted damage 
ost.



46 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONThe model minimizes the sum of the total expe
ted damage 
ost and total investment
ost. For a thorough dis
ussion of the validity of the underlying model assumptionsand parameter values we refer to Eijgenraam et al. (2011).Let τ (with 0 ≤ τ1 < τ2 < . . . < τK ≤ T ) stand for the time of the dike height-ening (years) and H(t) denotes the dike height at time t (years) relative to the initialsituation, i.e. H(0) = 0 (
m). The investment 
ost will be denoted as I(u,H(τ−)),with H(τ−) the height of the dike (in 
m) just before the dike heightening at time τ(i.e. H(τ−) = limt↑τ H(t)) and u the amount of the dike heightening. Con
erning theinvestment 
ost fun
tions, we 
onsider two di�erent spe
i�
ations. The exponentialinvestment 
ost fun
tion is given by
I(u,H(τ−)) =

{

(c0 + b0u) e
a0(H(τ−)+u) for u > 0

0 for u = 0,
(3.1)where a0, b0 and c0 are positive 
onstants. The quadrati
 investment 
ost fun
tionsis given by

I(u,H(τ−)) =

{

a1(H(τ−) + u)2 + b1u+ c1 for u > 0

0 for u = 0,
(3.2)for suitably 
hosen 
onstants a1, b1 and c1. Observe that both the exponential andthe quadrati
 investment 
ost fun
tions depend on the height of the dike at themoment of heightening. This is 
ontrary to Van Dantzig (1956), who uses a linear
ost fun
tion that does not depend on the 
urrent height of the dike. Our investment
ost spe
i�
ations are in line with the engineering experien
e that making a dikehigher also requires making it wider, implying that an additional dike height in
rease
osts more if the 
urrent height is higher (see e.g. Sprong (2008)). Total (dis
ounted)investment 
ost is then given by

K
∑

i=1

I(ui, H(τ−i ))e
−rτi ,where r is the dis
ount rate, ui (
m) denotes the size of the i-th dike heightening,and τi is the time of the i-th dike heightening. Following Eijgenraam et al. (2011),we de�ne the �ood probability P (t) (1/year) at time t as

P (t) = P0e
αηte−αH(t), (3.3)where α (1/
m) stands for the parameter in the exponential distribution regardingthe �ood probability and η (
m/year) is the parameter that represents the in
rease



Impulse Control Model 47of the water level per year. The �ood probability at time t = 0 (i.e. the 
urrent �oodprobability) is denoted by P0 (1/year), note that P (0−) = P0. We next des
ribe thevalue of the damage by a �ood, V (t) (million euros):
V (t) = V0e

γteζH(t), (3.4)in whi
h γ (per year) is the parameter representing e
onomi
 growth, and ζ (1/
m)stands for the damage in
rease per 
m dike height. The loss by �ooding at time
t = 0 is denoted by V0 (million euros). Note that V (0−) = V0. If ζ > 0 (1/
m),the damage of a �ood in
reases with the height of the dike. The intuition behindthis is that when there is a �ood, it holds that the higher the dike the longer a highwater level will be maintained on the �ooded land. This 
auses higher damage 
ost.Multiplying the �ood probability with the value of the damage by a �ood leads tothe expe
ted loss due to a �ood. From (3.3) and (3.4) it follows that the expe
teddamage at time t equals

S (t) = P (t) V (t) = S0e
βte−θH(t), (3.5)with S0 = P0V0, β = αη + γ, and θ = α− ζ .We 
onsider a �nite time horizon [0, T ]. The total expe
ted damage 
ost on thetime interval [0, T ] equals

∫ T

0

S(t)e−rtdt =

∫ T

0

S0e
βte−θH(t)e−rtdt,and the expe
ted damage 
ost after T , the so-
alled salvage value, is given by

S(T )

∫ ∞

T

e−rtdt =
S(T )e−rT

r
.Hen
e, total (dis
ounted) damage 
ost is given by

S0

∫ T

0

eβte−θH(t)e−rtdt+
S(T )e−rT

r
.The aim is to minimize the sum of the investment and expe
ted damage 
ost:

min

∫ T

0

S0e
βte−θH(t)e−rtdt+

K
∑

i=1

I
(

ui, H
(

τ−i
))

e−rτi + e−rT S (T )

r
,where K is the endogenous number of dike heightening in [0, T ].



48 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONThe height of the dike, H(t), between two dike heightening does not 
hange overtime3:
Ḣ(t) = 0 for t /∈ {τ1, . . . , τK}.Dike heightenings o

ur at times τ1, . . . , τK . Then we have that
H
(

τ+i
)

−H
(

τ−i
)

= ui for i ∈ {1, . . . , K},where H(τ+) denotes the height of the dike (in 
m) just after the dike heighteningat time τ . The dike heightening problem then be
omes
min
u,τ,K

∫ T

0

S0e
βte−θH(t)e−rtdt+

K
∑

i=1

I
(

ui, H(τ−i )
)

e−rτi + e−rT S0e
βT e−θH(T )

r
, (3.6)subje
t to

H(0−) = 0,

Ḣ (t) = 0, for t /∈ {τ1, . . . , τK}

H
(

τ+i
)

−H
(

τ−i
)

= ui, for i ∈ {1, . . . , K},

H(t) ∈ R+, ui ∈ [0,∞), 0 ≤ τ1 < τ2 < . . . , < τN ≤ T.This is an Impulse Control problem as des
ribed in Blaquière (1977a; 1977b; 1979;1985). Note that this dike heightening model only 
ontains an impulse 
ontrol vari-able and not an ordinary 
ontrol variable. In Blaquière (1979) an example is given ofa linear model that 
ontains both an ordinary and an impulse 
ontrol variable. Theexample of Blaquière deals with ma
hine maintenan
e, where the �rm has to 
hoosebetween preventive maintenan
e (ordinary 
ontrol) and repair (or upgrade) of thema
hine (impulse 
ontrol), see Se
tion 2.3.2.3.2.2 Ne
essary Optimality ConditionsIn this se
tion we state ne
essary optimality 
onditions to solve the Impulse Controldike heightening model given by (3.6). Here we employ the 
urrent value Hamiltonianform derived in Chahim et al. (2012). This is done, be
ause the model des
ribed inthis 
hapter involves dis
ounting. Other referen
es stating the ne
essary optimality
onditions for impulse 
ontrol problems are Blaquière (1977a; 1977b; 1979; 1985),Seierstad (1981) and Seierstad and Sydsæter (1987).To apply the Impulse Control Maximum Prin
iple the fun
tions S(t) and I(u,H(τ−))3The dike height 
an de
rease slightly due to damage and wear, however these 
hanges are sosmall that we negle
t them in our model.



Impulse Control Model 49should be 
ontinuously di�erentiable in H and ui on R+. Moreover S(T )/r shouldbe 
ontinuously di�erentiable in H(T ) on R+, and �nally that I(ui, H(τ−)) is 
on-tinuous in τ .The 
urrent value Hamiltonian isHam(t, H) = −S0e
βte−θH ,and the 
urrent value Impulse Hamiltonian is given byIHam(t, H, u, λ) = −I(u,H) + λu,in whi
h λ represents the 
ostate variable.Applying the ne
essary optimality 
onditions from Chahim et al. (2012) to our prob-lem yields:
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















λ̇(t) = rλ(t)− θS0e
βte−θH(t) t 6= τi (i = 1, . . . , K)

λ (T ) =
θS0e

βT e−θH(T )

r

λ
(

τ+i
)

− λ
(

τ−i
)

= IH
(

ui, H(τ−i )
) for i = 1, . . . , K

−Iu
(

ui, H
(

τ−i
))

+ λ
(

τ+i
)

= 0 for i = 1, . . . , K

S0e
βτi
(

e−θH(τ−i ) − e−θH(τ+i )
)

− rI
(

ui, H(τ−i )
)







> 0 if τi = 0

= 0 if τi ∈ (0, T )

< 0 if τi = T

for i = 1, . . . , K

∂IHam(t, H(t), 0, λ(t))

∂u
u ≤ 0 for u ≥ 0, t 6= τi (i = 1, . . . , K),

(3.7)(3.8)(3.9)(3.10)(3.11)(3.12)where λ̇(t) denotes the time derivative of the 
ostate variable λ(t), IH and Iu denotethe partial derivatives of the investment 
ost fun
tion with respe
t to the state vari-able H(t) and u, respe
tively. The state variable H(t) as well as the 
ostate variable
λ(t) are pie
ewise-
ontinuous fun
tions in R+. The domain of the impulse 
ontrol uis R+.When there is no jump (i.e. t 6= τi (i = 1, . . . , K)) equation (3.7) denotes the 
hangeof the 
ostate variable and (3.8) gives the transversality 
ondition at the end. Both(3.9) and (3.10) state that at a jump point the marginal 
ost is equal to the 
orre-sponding marginal gains. In equation (3.9) the jump in the 
ostate variable is equalto IH , whi
h 
an be interpreted as the marginal investment 
ost of in
reasing the



50 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONdike height just before a dike height jump of size ui o

urs. Equation (3.10) statesthat the 
ostate variable λ(t), whi
h 
an be interpreted as the redu
tion in expe
teddamage of an additional 
entimeter dike in
rease, equals the investment 
ost of anadditional 
entimeter of a dike in
rease, i.e. Iu. When dividing equation (3.11) by thedis
ount rate r, the �rst term 
an be interpreted as the de
rease of the dis
ountedvalue of expe
ted future damage due to the in
rease of the dike at τi, while the lastterm is the investment 
ost of the dike heightening. So, at the jump point τi it mustalso hold that the total gain of in
reasing the dike should be equal to the 
ost ofin
reasing the dike. It follows that optimal behavior requires that the Net PresentValue (NPV) of the investment to in
rease the dike height equals zero. The NPVequals the di�eren
e between dis
ounted future gains and 
urrent investment 
ost.Sin
e I(ui, H(τ−)) is not 
ontinuously di�erentiable in ui (i.e. the derivative at ui = 0does not exist, due to the �xed 
ost) one of the 
onditions for applying the ImpulseControl Maximum Prin
iple is violated and we have a problem applying 
ondition(3.12). Chahim et al. (2012) deals with this problem and provides a transforma-tion for the impulse 
ost fun
tion I(ui, H(τ−)), whi
h ensures that the appli
ationof the Impulse Control Maximum Prin
iple still provides the optimal solution evenin the 
ase of a �xed 
ost. This transformation is based on a 
ontinuously di�eren-tiable approximation of the impulse 
ost fun
tion (see Se
tion 2.3 of Chahim et al.(2012)). Combining equation (3.12) with the 
orre
t approximation implies that
limǫ↓0

∂IHamǫ

∂u
(t, H(t), 0, λ(t))u = −∞·u ≤ 0 for every u ∈ [0,∞), where IHamǫ is the
ontinuously di�erentiable approximation of IHam. Hen
e, (3.12) is satis�ed, sin
eit holds for all t 6= τi (i = 1, . . . , K).3.3 Impulse Control Algorithm for a Dike RingIn this se
tion we present an algorithm that 
an be used to solve the problem de-s
ribed in the previous se
tion and explain how we apply the ne
essary optimality
onditions to �nd all dike heightenings that are 
andidates for o

urren
e in our op-timal solution. In the algorithmH(T ) (i.e. the height of the dike at t = T ) is a sear
hvariable. We show how to obtain an upper bound for the optimal H(T ) using thene
essary optimality 
onditions. Finally, we explain how to �nd the optimal H(T ).3.3.1 AlgorithmIn Chahim et al. (2012) it is shown that the Impulse Control su�
ient 
onditionsdo not hold in all relevant e
onomi
 problems found in the literature. For our dikeheight problem the su�
ient 
onditions do not hold due to the �xed 
ost in the
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ost fun
tion, whi
h breaks down the 
on
avity of the Impulse Hamilto-nian. Therefore, solutions satisfying the ne
essary optimality 
onditions presentedin the previous subse
tion are just 
andidate optimal solutions. Based on the ne
es-sary optimality 
onditions, we design an algorithm that �nds all 
andidate solutions(i.e. a solution that satis�es the ne
essary optimality 
onditions). The 
andidatethat minimizes (3.6) is the optimal solution. This algorithm 
an lead to multiple
andidate solutions already des
ribed in Luhmer (1986). Contrary to Luhmer, whodesigns a forward algorithm, we implement a ba
kward algorithm, as des
ribed byKort (1989). This algorithm starts at the horizon date T instead of starting at t = 0.We do this sin
e the forward algorithm uses the 
ostate variable λ(0) as a sear
hparameter to start the algorithm. In other words, the forward algorithm needs λ(0)as input to initialize the algorithm. Contrary to the forward algorithm, the ba
k-ward algorithm uses the dike height at the end of the planning period, H(T ), as thesear
h parameter. Sin
e λ(t) is only an auxiliary variable, λ(0) is harder to guessthan H(T ). Moreover, Se
tion 3.3.3 shows that an upper bound for H(T ) 
an beeasily derived using the model 
hara
teristi
s. Figure 3.2 shows a �ow
hart of thealgorithm. The next paragraph explains the algorithm in broad terms. In Appendix3A the algorithm is presented in more detail.First, we de�ne X as a set of triples (τ, u, λ) that represents (part of) a solutionbased on the ne
essary optimality 
onditions, S as the sta
k (set) of un�nished (par-tial) solutions, and C the set of 
andidate solutions represented by a set of triples.Let ts denote the time of the earliest update in X or T if X is empty. We referto the �ow
hart depi
ted in Figure 3.2 using roman 
apital numbers. To initializethe algorithm (I ) we 
hoose a �nal dike height H(T ) and 
al
ulate λ(T ) via equa-tion (3.8). Then we 
he
k whether a dike in
rease 
an o

ur at the horizon date
T , and whether it satis�es the ne
essary optimality 
onditions (II ). If it does notsatisfy these 
onditions, we go via (IV.i), where we set X = {(T, 0, λ(T ))}, to (V ).If the ne
essary optimality 
onditions are satis�ed, we go via (IV.ii), where we set
X = {(T, u(T ), λ(T−))}, to (V ). In (V ) we 
he
k whether a dike in
rease 
an o

urat t = 0. If a dike heightening at t = 0 
an o

ur and satis�es the ne
essary op-timality 
onditions we save this 
andidate solution. More pre
ise, in (VII ) we addthis triple to X , i.e. X = X ∪ {(0, u(0), λ(0))} and save this sequen
e of triples as a
andidate solution in (IX ), i.e. C = C ∪ {X}. Parallel to this we go to (VI ) to �ndall other 
andidate solutions (i.e. in (VI ) we 
he
k whether other 
andidate solutions
an be found, negle
ting the jump at t = 0). If a dike heightening at t = 0 
annot o

ur or does not satisfy the ne
essary optimality 
onditions, we go to (VI ). In(VI ) we solve the ne
essary optimality 
onditions to �nd the set J of all triples,
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(I ) initialization: 
hoose H(T ), 
al
u-late λ(T ), and set X = S = C = ∅(II ) 
he
k whether a dike in
rease 
an o

ur at t =

T 
onditions (3.9), (3.10) and (3.11) for optimality
(III ) pi
k X ∈ S, S = S \ {X} (IV.i) X = {(T, 0, λ(T ))} (IV.ii) X = {(T, u(T ), λ(T−))}

(V ) 
he
k whether a dike in
rease 
an o

urat t = 0 
onditions (3.9), (3.10) and (3.11)(VI ) solve ne
essary 
onditions (3.9),(3.10) and (3.11) to �nd the set Jof triples (τ, u, λ), with τ ∈ (0, ts),and dike heightenings, u. For ea
h
(τ, u, λ) ∈ J 
he
k Obs. 1. If atriple (τ, u, λ) ful�lls Obs. 1 then

J = J \ {(τ, u, λ)}. (VII ) X = X∪{(0, u(0), λ(0))}

(VIII ) S = S ∪
(

∪{τ,u,λ}∈J {X ∪{(τ, u, λ−)}}
)

(IX) C = C ∪ {X}

STOP no yesS = ∅

S 6= ∅

no yes
J = ∅

J 6= ∅

Figure 3.2 � Flow
hart of Impulse Control Algorithm for a given H(T ).



Impulse Control Algorithm for a Dike Ring 53with τ ∈ (0, ts) and dike heightenings u. If no su
h triple is found we go to (IX ) andsave the 
urrent sequen
e X of triples as a 
andidate solution. If at least one tripleis found, then in (VIII ) we add ea
h triple (τ, u, λ) ∈ J to the 
urrent sequen
e X ,and add the results to the set of un�nished sequen
es. From (VIII ) and (IX ) we goto (III ) where we pi
k a sequen
e X from the set of open solutions and 
ontinue thepro
edure as shown in Figure 3.2. Finally, if the sta
k (set) of un�nished (partial)solutions is empty, we stop.We negle
t solutions that are asso
iated with a negative dike heightening, sin
e theseare infeasible. Su
h solutions are dis
arded and not investigated any further. Wealso negle
t sequen
es of triples for whi
h the sum of the investment 
ost for the dikeheightening uj and its prede
essor uj−1 is larger than the investment 
ost for in
reas-ing the dike with uj + uj−1 at time τj . If this is the 
ase, this solution 
an never bepart of the optimal solution sin
e updating with uj +uj−1 at τj has lower dis
ountedinvestment 
ost and indu
es more safety (note that τj < τj−1). This results in thefollowing observation.Observation 1. If:
(i) uj ≤ 0,or
(ii) e−rτjI(uj, H(τ−j )) + e−rτj−1I(uj−1, H(τ−j−1)) ≥ e−rτjI(uj + uj−1, H(τ−j )),then the 
orresponding solution 
an never be optimal.This approa
h yields a set of 
andidates and we sele
t the 
andidate with the lowestexpe
ted 
ost. Furthermore, we have to 
he
k whether H(0) = 0. If this is notsatis�ed, then the initial H(T ) is not optimal and we restart the algorithm with anew initial H(T ), more on this in Se
tion 3.3.4.3.3.2 Solving the Ne
essary Optimality ConditionsIn Figure 3.2 it stated in box (VI ) that the ne
essary optimality 
onditions are usedto �nd all 
andidate solutions, i.e. all 
andidate dike heightenings. Equation (3.10)is of the following form
y1e

α1t + y2e
α2t + y3e

α3t − Iu = 0, (3.13)where y1, y2, y3, α1, α2 and α3 are 
onstants. Expression (3.11) is of the followingform:
z1e

β1t + z2e
β2t+β3u − rI







> 0 for t = 0

= 0 for t ∈ (0, T )

< 0 for t = T,

(3.14)



54 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONwhere z1, z2, β1, β2 and β3 are 
onstants. If (3.13) depends on u and t this 
an berewritten into a fun
tion u(t) whi
h 
an be substituted into (3.14). The resultingnon-linear equation has only one unknown t. Solving this leads to all possible jumpspoints τ , and u(τ) gives us the 
orresponding jump size. It 
an also be the 
ase that(3.13) depends only on t. Then (3.13) 
an be solved to �nd all τ . Using (3.14) we�nd all 
orresponding jump sizes u. Finally, equation (3.9) gives us the value of the
ostate variable before the dike update. This results in a set of triples (τ, u, λ).3.3.3 Finding an Upper Bound for the Optimal Ending DikeHeightLetH∗(T ) denote the end dike height (i.e. the height at t = T ) of the optimal solutionto our problem (3.6). An upper bound 
an be obtained by using the ne
essaryoptimality 
onditions. Investing in a dike is only �pro�table� if the marginal 
ost ofthe investment is at most equal to the marginal revenue. In the 
ases of exponentialand quadrati
 
ost fun
tion the following results 
an be established.Proposition 3.3.1.For exponential 
ost (see (3.1)):Let T > 1
β
ln r(b0+a0c0)

θS0
, and let H̄e be de�ned by the solution of the following equation:

θS0e
βT e−θH̄e

r
= b0e

a0H̄e + a0c0e
a0H̄e . (3.15)Furthermore, let

Ĥe =
1

θ + a0
ln

(

θS0e
βT

rb0

)

.Then, it holds that H∗(T ) ≤ H̄e ≤ Ĥe.For quadrati
 
ost (see (3.2)):Let T > 1
β
ln rb1

θS0
, and let H̄q be de�ned by the solution of the following equation:

θS0e
βT e−θH̄q

r
= 2a1H̄q + b1.Furthermore, let

Ĥq =
1

θ
ln

(

θS0e
βT

rb1

)

.



Impulse Control Algorithm for a Dike Ring 55Then, it holds that H∗(T ) ≤ H̄q ≤ Ĥq.Proof: An upper bound for H∗(T ) is the end height for whi
h the following equation(3.10) holds at time horizon T :
λ(T+) = Iu (ui, H

∗(T )) ,with
λ
(

T+
)

= λ (T ) =
θS0e

βT e−θH∗(T )

r
.For exponential investment 
ost this (with no dike heightening at t = T ) boils downto solving the following equation:

θS0e
βT e−θH̄e

r
= b0e

a0H̄e + a0(c0 + b0u)e
a0H̄e, (3.16)where H̄e denotes the upper bound for H∗(T ). The left-hand side of (3.16) gives themarginal gain of a dike heightening and is de
reasing in H̄e. The right-hand sideof (3.16) gives the marginal 
ost of su
h a heightening and is in
reasing in H̄e. Welower the right-hand side of (3.16) by omitting a0b0ue

a0H̄e ; this shifts the graph tothe right and results in a lower marginal 
ost at t = T . Additionally, this gives usequation (3.15). Sin
e T > 1
β
ln r(b0+a0c0)

θS0
, we have that the left-hand side of (3.15)is larger than the right-hand side of (3.15) at H̄e = 0. Combining the latter withthe fa
t that left-hand side of (3.15) is de
reasing in H̄e, that the right-hand side of(3.15) is in
reasing in H̄e, that

lim
H̄e→∞

b0e
a0H̄e + a0c0e

a0H̄e = ∞,and that
lim

H̄e→∞

θS0e
βT e−θH̄e

r
= 0,results in a unique solution H̄e for equation (3.15). Furthermore, we lower the right-hand side of (3.15) by now omitting a0(c0 + b0u)e

a0H̄e, this again shifts the graph ofthe right-hand side to the right and results in a lower marginal 
ost at t = T . Hen
e,an upper bound for H̄e results from
θS0e

βT e−θĤe

r
= b0e

a0Ĥe , (3.17)



56 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONwhere Ĥe denotes the upper bound for H̄e (i.e. H∗(T ) ≤ H̄e ≤ Ĥe). Solving (3.17)we get that Ĥe is given by:
Ĥe =

1

θ + a0
ln

(

θS0e
βT

rb0

)

.The proof for the quadrati
 
ost fun
tion is analogous.Note that these upper bounds for H(T ) 
an also be used for the dynami
 program-ming approa
h in Eijgenraam et al. (2011) to de
rease the number of states, seeSe
tion 3.4.2. Moreover, we have that θS0 > r(b0 + a0c0) and θS0 > rb1 for all dikes(in the Netherlands).4 Hen
e, we have that the 
ondition on T for both 
ost fun
tionsis always satis�ed.3.3.4 Finding the Optimal Ending Dike HeightRe
all that an ending dike height H(T ) is required as an input to the algorithm inSe
tion 3.3. For an arbitrary H(T ), the algorithm is not guaranteed to produ
e a fea-sible solution to problem (3.6), be
ause the 
ondition on the initial height H(0) = 0might be violated. In that 
ase we always have H(0) > 0�sin
e negative heighteningsare not allowed�and apparently there does not exist a feasible solution for the 
hosen
H(T ) that satis�es all ne
essary optimality 
onditions. Thus, we need a pro
edureto �nd an ending dike height for whi
h the algorithm returns a feasible solution.If we �nd all ending heights for whi
h the algorithm returns feasible solutions, thenwe know that the optimal solution must be among them, be
ause all solutions, by
onstru
tion, satisfy all ne
essary optimality 
onditions�and there are no other so-lutions with this property. The dependen
y on H(T ) of any solution produ
ed bythe algorithm is pie
ewise 
ontinuous, with dis
ontinuities o

urring when the totalnumber of heightenings in [0, T ] 
hanges. This is illustrated by Figure 3.3, whi
hshows the residual height H(0) 
orresponding to the 
andidate solution that resultsfrom the sele
ted ending height H(T ). At ea
h dis
ontinuity point the total numberof heightenings 
hanges as indi
ated in the �gure. Hen
e, a bise
tion method onH(0)
ould be used to sear
h for an ending height that produ
es a feasible solution, i.e.,
H(0) = 0. For now, we propose the simpler approa
h of dis
retization of H(T ) as isalso ne
essary for the dynami
 programming approa
h to the problem (see Eijgen-raam et al. (2011)) An upper bound for the dis
retization of H(T ) is readily providedby H̄ (see Se
tion 3.3.3) and a suitable lower bound is the 
urrent dike height plus the4The data is provided by Rijkswaterstaat, part of the Dut
h ministry of Infrastru
ture andEnvironment.
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4 heightenings

5 heightenings(b) Quadrati
 investment 
ost.Figure 3.3 � Plot of the residual height (i.e. H(0)) vs. H(T ) for dike 10.(future) sea-level rise. The set of solutions produ
ed by the algorithm applied to adis
retization of H(T ) in this range is unlikely to 
ontain exa
t feasible solutions. To
ope with the infeasibility of the solutions, we transform ea
h solution to a feasiblesolution by adding the residual height H(0) to the solution's �rst heightening. Inthat way, both the investment 
ost of the �rst heightening and the expe
ted damagefrom t = 0 until the �rst heightening in
rease, whi
h makes that there is some di�er-en
e between the obje
tive values of the original and the transformed solution. Notethat if the residual height H(0) is small�and for any reasonably �ne grid, solutionswith H(0) 
lose to zero should be found�then this di�eren
e will be small as well.Of all transformed solutions obtained in this way, we pi
k the one with the smallestobje
tive value.3.4 Comparing Impulse Control to Dynami
 Pro-grammingThis se
tion 
onsists of two parts. First, we 
ompare the numeri
al results obtainedusing the Impulse Control approa
h to the results found in Eijgenraam et al. (2011)using dynami
 programming. Se
ond, we derive the 
omputation time of both meth-ods.3.4.1 Numeri
al Results for Five Dike RingsIn this se
tion we apply the algorithm des
ribed in Se
tion 3.3. The data used inthis se
tion are taken from Hertog and Roos (2009) and are presented in Table 3.3.



58 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONThe data are made available by Rijkswaterstaat/Deltares (i.e. a bureau 
on
ernedwith pra
ti
al exe
ution of the publi
 works and water management part of theDut
h Ministry of Infrastru
ture and the Environment) and were generated by waterexperts. It is 
lear that the 
hoi
e of T will in�uen
e the solution. If we 
hoose Ttoo small then this 
an a�e
t the solution in the beginning of the planning period.We 
hoose T su
h that the solution in the beginning of the planning period remainsstable when T in
reases. As in Eijgenraam et al. (2011) we set T = 300. Taking
T = 600 gives similar results for the beginning of the planning period 
ompared to
T = 300. This is 
aused by the fa
t that the dis
ount fa
tor (e−0.04∗300 ≈ 0.00000614)is small for large values of t. Hen
e, the e�e
t of the salvage value is very smallwhen T = 300. In Tables 3.4 and 3.5 the solutions obtained by using the algorithmdes
ribed in Se
tion 3.3 for both exponential and quadrati
 investment 
ost 
an befound. Dike No. 10 11 15 16 22

a0 0.0014 0 0.0098 0.01 0.0066

b0 0.6258 1.7068 1.1268 2.1304 0.9325

c0 16.6939 42.62 125.6422 324.6287 154.4388

a1 0.0004 0 0.027 0.102 0.0154

b1 0.7637 1.7168 3.779 3.1956 2.199

c1 12.603 42.3003 67.699 319.25 141.01

V0 1564.9 1700.1 11810.4 22656.5 9641.1

r 0.04 0.04 0.04 0.04 0.04

P0 1/2270 1/855 1/729 1/906 1/1802

H0 0 0 0 0 0

α 0.033027 0.032 0.0502 0.0574 0.07

η 0.32 0.32 0.76 0.76 0.62

γ 0.02 0.02 0.02 0.02 0.02

ζ 0.003774 0.003469 0.003764 0.002032 0.002893Table 3.3 � Parameter values for dikes 10, 11, 15, 16 and 22.Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 272.8 : 52.18 275.9 : 54.56 259.2 : 57.33 271.6 : 47.89 261.6 : 50.97217.0 : 56.43 218.9 : 61.71 206.2 : 54.16 219.2 : 51.69 199.9 : 53.37160.1 : 56.90 160.2 : 62.35 154.3 : 53.47 165.3 : 52.41 137.6 : 53.65103.0 : 56.95 101.3 : 62.42 103.7 : 53.32 111.5 : 52.55 75.2 : 53.6845.9 : 56.96 42.4 : 62.42 51.2 : 53.29 57.5 : 52.57 12.7 : 53.710 : 55.82 3.5 : 52.58
H(T ) 279.41 303.47 327.39 309.69 265.37
H̄e 290.93 311.48 347.14 320.48 278.75
Ĥe 292.12 311.48 360.28 334.65 288.77Investment 
ost 10.16 30.18 414.59 797.75 198.42Damage 
ost 29.87 80.05 130.55 291.84 110.82Total 
ost 40.03 110.23 545.14 1089.59 309.24Table 3.4 � Impulse Control solutions for dikes 10, 11, 15, 16 and 22, withexponential 
ost fun
tion.
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 Programming 59Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 275.9 : 57.15 274.6 : 55.09 282.0 : 62.62 245.3 : 76.90 262.1 : 56.36213.0 : 61.35 217.8 : 61.39 214.1 : 77.43 176.7 : 69.35 194.5 : 58.53153.4 : 57.30 159.4 : 61.97 149.7 : 69.92 113.8 : 61.03 130.5 : 54.1398.0 : 53.99 100.9 : 62.03 92.3 : 59.86 56.9 : 52.51 70.7 : 50.1545.2 : 52.78 42.4 : 62.05 42.6 : 49.39 3.2 : 48.25 12.7 : 49.740 : 46.44
H(T ) 282.57 302.53 365.66 308.04 268.91
H̄q 290.22 311.28 370.28 331.79 283.82
Ĥq 299.30 311.28 410.25 387.76 304.39Investment 
ost 10.17 30.16 421.30 822.41 201.35Damage 
ost 29.96 80.06 160.91 334.72 115.74Total 
ost 40.13 110.23 582.21 1157.13 317.09Table 3.5 � Impulse Control solutions for dikes 10, 11, 15, 16, 22, withquadrati
 
ost fun
tion.Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 274 : 51.84 272 :42.24 262 : 54.72 274 : 45.60 254 : 52.08219 : 55.68 218 :59.52 209 : 54.72 223 : 50.16 194 : 52.08162 : 57.60 160 :61.44 156 : 54.72 171 : 50.16 133 : 52.08104 : 57.60 101 :63.36 103 : 54.72 116 : 54.72 73 : 52.0846 : 57.60 43 :61.44 50 : 54.72 60 : 54.72 12 : 52.080 : 54.72 4 : 54.72

H(T ) 280.32 288.00 328.32 310.08 260.4Investment 
ost 10.16 29.33 413.39 796.31 202.09Damage 
ost 29.87 80.90 131.95 294.13 107.33Total 
ost 40.04 110.24 545.34 1090.44 309.41Table 3.6 � Dynami
 programming solutions for dikes 10, 11 15, 16, 22, withexponential 
ost fun
tion.Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 277 : 55.68 272 : 42.24 280 : 63.84 274 : 45.60 265 : 55.80214 : 61.44 218 : 59.52 212 : 77.52 223 : 50.16 197 : 59.52155 : 57.60 160 : 61.44 149 : 68.40 171 : 50.16 131 : 55.8099 : 53.76 101 : 63.36 92 : 59.28 116 : 54.72 69 : 52.0846 : 53.76 43 : 61.44 42 : 50.16 60 : 54.72 12 : 48.360 : 45.60 4 : 54.72
H(T ) 282.24 288.00 364.80 310.08 271.56Investment 
ost 9.97 29.33 418.94 840.70 208.15Damage 
ost 30.17 80.90 163.35 317.51 112.09Total 
ost 40.14 110.24 582.28 1158.21 317.24Table 3.7 � Dynami
 programming solutions for dikes 10, 11, 15, 16, 22, withquadrati
 
ost fun
tion.After 
omparing the results presented in Table 3.4 and 3.5 with the dynami
 pro-gramming results taken from Eijgenraam et al. (2011) presented in Table 5.5 and 3.7,we 
an make the following observations:

• The (total) 
ost using the Impulse Control approa
h is always lower. Thereason for this (minor) di�eren
e is due to the dis
retization of the problem in
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 programming approa
h.
• Comparing the results between the exponential and quadrati
 investment 
ostfun
tions for the Impulse Control approa
h given in Table 3.4 and 3.5, re-spe
tively, no signi�
ant di�eren
e 
an be found. The �rst dike heighteningfor Impulse 
ontrol using a quadrati
 
ost fun
tion takes pla
e slightly earlier
omparing it with the exponential 
ost fun
tion. However, the 
orrespondingamount of this �rst dike heightening is lower. This di�eren
e is also observedfor the dynami
 programming approa
h.
• Dike 15 needs to be heightened immediately (i.e. at τ1 = 0). This result isfound for both the exponential and the quadrati
 
ost fun
tion, and for bothapproa
hes.
• The Impulse Control approa
h results in a signi�
antly higher H(T ) for dike11 
ompared to the dynami
 programming approa
h. This is observed for both
ost fun
tions.
• For exponential investment 
ost the upper bound H̄e is very 
lose to the optimal
H(T ) found for all �ve dikes. Comparing the upper bound for quadrati
 
ost,
H̄q, with H̄e we observe that H̄q is higher than H̄e for dikes 15, 16 and 20. Thevalues are 
omparable for dike rings 10 and 11.

• When the �rst dike heightening is far from time zero, H̄e and Ĥe are 
loserto ea
h other (same holds for H̄q and Ĥq). For dike ring 11 we have that
a1 = a0 = 0 and hen
e H̄e = Ĥe and H̄q = Ĥq.In Figures 3.4 and 3.5 the optimal dike height and the 
orresponding �ood probabilityof dike 10 are presented for the exponential and quadrati
 investment 
ost, respe
-tively. It is striking to see that the upper bound(s) are very 
lose to the optimal dikeheight at time T . Finally, in Figures 3.4 and 3.5 one 
an observe that at the timemoments where a dike heightening o

urs the �ood probability drops instantaneously.We also observe that after ea
h dike heightening at most three 
andidate dike height-enings were found by the algorithm (stage V I). In 
ase of three 
andidates we alwaysfound that two out of the three 
andidates 
ould not be optimal, sin
e one was al-ways negative (Observation 1, (i))) and for the other one it holds that 
ombiningthis heightening with its prede
essor was an improvement (see Observation 1, (ii)).
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orresponding to the optimal dikeheight.Figure 3.5 � Optimal dike height of dike 10 and the 
orresponding �oodprobability using quadrati
 investment 
ost.3.4.2 Computation TimeIn Se
tion 4 of Eijgenraam et al. (2011) a dynami
 programming approa
h is de-s
ribed that 
orresponds to the above des
ribed Impulse Control model. A drawba
k



62 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONof this approa
h is that the �nite time horizon [0, T ] as well as the height of the dike
H(t) are dis
retized. This dire
tly has an e�e
t on the a

ura
y of the method. This
an partly be resolved by taking a ��ner� dis
retization. However, this will a�e
tthe 
omputation time of the problem. The dis
retization 
hosen in Eijgenraam et al.(2011) seemed to be �ne enough for the dike heightening problem.Dynami
 programming (DP)The number of 
omputations that have to be made in the DP approa
h depends onthe number of stages and states (for ea
h stage the value of ea
h state should be
al
ulated). The problem is dis
retized in both time and dike height. Let us 
all Mthe number of states per stage and T the number of stages. Cost are related to thetransition from one state to another. The DP problem 
an be presented in a graphwhere the verti
es in the graph are the states, and the ar
s of the graph representthe transition. The aim of DP is to �nd the shortest path in the graph. In the DPapproa
h used to solve the dike heightening problem in Eijgenraam et al. (2011),the stages de�ned as the years t = −1, 0, 1, 2, ...T, in whi
h t = −1 is the time justbefore t = 0. The state at stage t is de�ned as H(t). For the initial state at stage
t = −1 it holds that H(−1) = 0. Also we know that a transition 
an only o

ur fromstate H(t) in stage t to state H(t + 1) in stage t + 1 su
h that H(t + 1) ≥ H(t). InEijgenraam et al. (2011) the dis
ounted investment and damage 
ost in the period
[t, t+ 1], for t = 0, 1, . . . , T − 1 are given by

ct(H(t), H(t+ 1)) =

∫ t+1

t

S(t)e−rtdt + I(H(t+ 1)−H(t), H(t))e−r(t+1),and for t = −1, by
c−1(H(−1), H(0)) = I(H(0)−H(−1), H(0)) = I(0, 0).The re
ursive relation for the DP approa
h is

ft(H(T )) = min
H(t)<H(t+1)∈Ht+1

{ft+1(H(t+1)+ct(H(t), H(t+1))}, t < T, H(T ) ∈ Ht,where Ht denotes the set of all feasible dike heights at time t. Starting in state H(T ),
ft(H(T )) denotes the minimal 
ost to 
over the years t, t + 1, . . . , T, T + 1, . . . ,∞.The 
osts after t = T are given by

fT (H(T )) =
S(T )e−rT

r
.It is easy to see that this DP approa
h is of order O(αDPM

2T ), where αDP denotesthe basi
 operations needed to 
al
ulate the transitions 
ost from one state to another.



Con
lusions and Re
ommendations 63Impulse Control (IC)Let J be the number of dike heightenings found. To make an easy 
omparison withDP we run the algorithm for the same 
andidate �nal dike heights, i.e. we take thestates used in the DP approa
h as input determining the optimal �nal dike height.In the dynami
 programming approa
h for ea
h stage a 
ertain number of dis
retizedstates are de�ned. Clearly, for the impulse 
ontrol approa
h this is not ne
essary.Let us 
all the number of basi
 operations needed to solve the ne
essary optimality
onditions (see Se
tion 3.3.2) to �nd all 
andidate dike heightenings αIC . Then it iseasy to see that this problem is of order O(αICJM). In the previous se
tion we haveseen that the number of dike heightenings (5 or 6) in the dike heightening problemnever ex
eeds the number of states (M = 300) used in the DP approa
h and αDPand αIC are 
omparable. Hen
e, we 
an 
on
lude that IC needs less 
omputationtime than DP.3.5 Con
lusions and Re
ommendationsIn this 
hapter we present the �rst real life appli
ation of the Impulse Control Maxi-mum Prin
iple. In doing so, we propose an alternative for the dynami
 programmingapproa
h used in Eijgenraam et al. (2011). We show that, 
ompared to the dynami
programming approa
h, the Impulse Control approa
h has lower 
omputation time.This 
an be explained sin
e the Impulse Control approa
h does not need dis
retiza-tion in time and only dis
retization for the dike height at the end of the time horizon(�nal stage), unlike dynami
 programming where dis
retization is needed for timeand for the heights (states) for ea
h stage. Comparing the total 
ost for the dikeupdating s
heme for the �ve dikes presented in this 
hapter with the total 
ost usingthe dynami
 programming approa
h, we observe that the total 
ost for the ImpulseControl approa
h is always lower. However, the di�eren
es are very small. Further,we identify upper bounds for the �nal dike height, by using the ne
essary optimal-ity 
onditions at the end of the planning period. It is striking to see that bothproposed upper bounds are very 
lose to the optimal dike height at the end of theplanning period. The way we derive these upper bounds 
an be used in general, sothat these upper bounds 
an also be implemented in the dynami
 programming ap-proa
h. We show that the Impulse Control approa
h works well for both exponentialand quadrati
 investment 
ost.A possible extension of this 
hapter would be adding some preventive dike main-tenan
e. It would be interesting to analyze the intera
tion between preventive dike



64 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONmaintenan
e and the impulse dike heightening. This extension will quadrati
ally in-
rease the number of states for the dynami
 programming approa
h and hen
e takemore time to 
ompute. Another possible extension is applying Impulse Control tononhomogeneous dikes (i.e. dikes or dike rings that 
onsist of multiple segments) forwhi
h the dynami
 programming approa
h is not useful sin
e it su�ers from the well-known 
ombinatorial explosion. Also other maintenan
e problems 
an be 
onsidered.Appendix 3A: Ba
kward Algorithm for Impulse Con-trolIn this se
tion the algorithm des
ribed in Se
tion 3.3 is presented in more detail.Before we start we de�ne X as a sequen
e of triples (τ, u, λ), S the sta
k (set) ofopen solutions, and C the set of 
andidate solutions. We need one more variable tsde�ned as
ts =

{

T if X = ∅,

min(τ,u,λ)∈X τ if X 6= ∅.Step I : Initialization:Choose H(T ).Determine the value of the 
o-state variable:
λ (T ) =

θS0e
βT e−θH(T )

r
.Step II : Che
k whether a dike height in
rease 
an o

ur at time t = T and whetherit is optimal. Derive H (T−) and u (T ) from

H
(

T+
)

−H
(

T−
)

= u (T ) ,and
−Iu

(

u(T ), H
(

T−
))

+ λ
(

T+
)

= 0.The dike height in
rease is optimal at time T if
−S0e

βT e−θH(T+) + S0e
βT e−θH(T−) − rI

(

u (T ) , H
(

T−
))

< 0.If so, go to step IV.ii. Otherwise, de�ne
H
(

T+
)

= H (T ) ,

λ
(

T+
)

= λ (T ) ,



Appendix 3A 65and go to step IV.i.Step III : If S = ∅ STOP. Else pi
k X ∈ S, set S = S \ {X} and go to stepV .Step IV.i : Set X = {(T, 0, λ(T ))}.Step IV.ii : Set X = {(T, u(T ), λ(T−))}.Step V : Che
k whether a dike height in
rease 
an o

ur at time 0 and whetherit is optimal.Solve (3.10) to �nd u(0). The dike height in
rease is optimal if
−S0e

βT e−θH(0+) + S0e
βT e−θH(0−) − rI

(

u (0) , H
(

0−
))

> 0.If so, go to VI and to VII . If not, go to step VI .Step VI : Find all τ ∈ (0, ts) su
h that
λ(t+) = e−r(ts−t)λ(ts) +

∫ ts

t

e−r(s−t)θS0e
βse−θ(H(ts))ds. (3.18)At the point in time where a dike in
rease 
an o

ur, equations (3.9), (3.10) and(3.11) hold.Combining equation (3.10) and (3.18) gives a 
ondition that holds at the jump point

e−r(ts−t)λ(ts) +

∫ ts

t

e−r(s−t)θS0e
βse−θ(H(ts))ds− Iu(u,H(ts)) = 0. (3.19)Solving equation (3.19) results either in an expli
it fun
tion u(t) for the dike height-ening or gives all τ for whi
h (3.19) holds. When u(t) 
an expli
itly be identi�ed, goto step IV.i , else go to step VI.ii .Step VI.i : Substituting u(t) in equation (3.11) yields

−S0e
βte−θH(ts) + S0e

βte−θ(H(ts)−u(t)) − rI(u(t), H(ts)) = 0, (3.20)whi
h is an equation that only depends on t and holds for ea
h jump point τ ∈ (0, ts).If equation (3.20) is solvable, it gives us all potential jump points τ . Using this,we get all dike heightenings u using u(t) (from equation (3.19)). This gives a set
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J of triples (τ, u, λ). For ea
h triple (τ, u, λ) ∈ J 
he
k Observation 1 
onditions
(i) and (ii). If a triple (τ, u, λ) satis�es 
ondition (i) or (ii) of Observation 1 then
J = J \ {(τ, u, λ)}. If J 6= ∅, go to VIII , else go to step IX .Step VI.ii : For ea
h τ found in step V solve

−S0e
βτe−θH(ts) + S0e

βτe−θ(H(ts)−u(τ)) − rI(u(τ), H(ts)) = 0, (3.21)to �nd the 
orresponding u. This gives a set J of triples (τ, u, λ). For ea
h triple
(τ, u, λ) ∈ J 
he
k Observation 1. If a triple (τ, u, λ) ful�lls Observation 1 then
J = J \ {(τ, u, λ)}. If J 6= ∅, go to VIII , else go to step IX .StepVII : Save X = X ∪ {(0, u(0), λ(0))} and go to step IX .Step VIII : Add ea
h triple (τ, u, λ) ∈ J to the 
urrent sequen
e X and add theresult to the sta
k (set) of un�nished (partial) solutions, i.e.:
S = S ∪

(

∪(τ,u,λ)∈J {X ∪ {(τ, u, λ−)}}
)and go to step III .StepIX : Save the set of sequen
es X as 
andidate solution, i.e.:
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CHAPTER 4Produ
t Innovation with Lumpy InvestmentsAbstra
t This 
hapter 
onsiders a �rm that has the option to under-take produ
t innovations. For ea
h produ
t innovation the �rm has toinstall a new produ
tion plant. We �nd that investments are largerand o

ur in a later stage when more of the old 
apital sto
k needsto be s
rapped. Moreover, we obtain that the �rm's investments in-
rease when the te
hnology produ
es more pro�table produ
ts. Wesee that the �rm in the beginning of the planning period adopts newte
hnologies faster as time pro
eeds, but later on the opposite happens.Furthermore, we �nd that the �rm does not invest when marginal pro�t(with respe
t to 
apital) be
omes zero, but invests when marginal pro�tis negative. Moreover, we �nd that if the time it takes to double thee�
ien
y of te
hnology is larger than the time it takes for the 
apitalsto
k to depre
iate, the �rm undertakes an initial investment. Finally,we show that, when demand de
reases over time and when �xed in-vestment 
ost is higher, the �rm invests less throughout the planningperiod, the time between two investments in
reases and the �rst in-vestment is delayed.4.1 Introdu
tionIn today's knowledge e
onomy innovation is of prime importan
e. Innovation has ledto extraordinary produ
tivity gains in the 1990s. In 
urrent business pra
ti
e it isfelt that the heat is on and that �rms must innovate faster just to stand still (TheE
onomist, O
tober 13th 2007, Innovation: Something new under the sun). There-fore, te
hnologi
al progress is a 
ru
ial input for �rms in taking their investmentde
isions. Greenwood et al. (1997) argue that te
hnologi
al progress is the maindriver of e
onomi
 growth. They dis
overed that in the post-war period in the USabout 60% of labor produ
tivity growth was investment spe
i�
. Yorukoglu (1998)



70 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSnotes that information te
hnology is a prime example where embodied te
hnologi
alprogress led to an improvement of 
omputing te
hnology on the order of 20 timeswithin less than a de
ade in the 1980s-90s.This 
hapter 
ombines te
hnology adoption with 
apital a

umulation, taking intoa

ount te
hnologi
al progress. The aim of this 
hapter is to study the de
ision ofwhen to introdu
e a new produ
t. To do so we employ the Impulse Control modelingapproa
h that is perfe
tly suitable to take into a

ount the disruptive 
hanges 
ausedby innovations. This also enables us to determine the length of the time interval thatthe �rm uses a parti
ular te
hnology, when it is time to laun
h a new produ
t genera-tion, and how these de
isions intera
t with the �rm's 
apital a

umulation behavior.In Kort (1989) a dynami
 model of the �rm is designed in whi
h 
apital sto
k jumpsupward at dis
rete points in time at whi
h the �rm invests. However, te
hnologi
alprogress in not taken into a

ount.An example where a �rm has to de
ide about investments in new generations ofprodu
ts is the LCD industry. With every new generation the size of the motherglass or substrate in
reases. As the LCD panels are 
ut out of the substrate, thesubstrate on the one hand determines whi
h panel sizes 
an be produ
ed and on theother hand how e�
ient ea
h possible panel size 
an be produ
ed. We have a pro
essinnovation, be
ause a larger glass area provides a more e�
ient solution of the �
ut-ting problem�, and thus lower 
osts in the produ
tion pro
ess. A produ
t innovationarises, be
ause the larger area of the substrate makes it possible to produ
e largers
reens. For a �rm it is important to determine when it is optimal to introdu
e anew produ
t. However, sin
e the new produ
t will de
rease the demand of the oldprodu
t, the moment of introdu
tion is 
ru
ial.Fei
htinger et al. (2006) employs a vintage 
apital goods stru
ture to study the e�e
tof embodied te
hnologi
al progress on the investment behavior of the �rm. Theyshow that in the 
ase that a �rm has market power a negative anti
ipation e�e
to

urs, i.e. when te
hnologi
al progress goes faster in the future, it is optimal for the�rm to de
rease investments in the 
urrent generation of 
apital goods. However, adire
t impli
ation of the vintage 
apital approa
h is that the �rm adopts an in�niteamount of di�erent te
hnologies. Of 
ourse, in pra
ti
e a �rm 
an adopt a new te
h-nology a limited number of times.Grass et al. (2012) also 
ombines te
hnology adoption with 
apital a

umulation,while taking into a

ount te
hnologi
al progress. They �nd that investment jumps



Introdu
tion 71upward right at the moment that a new te
hnology is adopted, and that the largerthe �rm the later the investment in a new te
hnology takes pla
e. Moreover, they�nd that when a �rm has market power, the �rm 
uts down on investment beforea new te
hnology is adopted. Whereas Grass et al. (2012) limits itself to pro
essinnovation, we 
on
entrate on studying produ
t innovation. Grass et al. (2012) use aMulti-Stage optimal 
ontrol approa
h where a �rm adopts a new te
hnology in ea
hstage. Unlike Fei
htinger et al. (2006), the number of te
hnology adoptions is limited.However, the number of innovations is not determined by the model, but �xed exoge-nously instead. Unlike Fei
htinger et al. (2006) and Grass et al. (2012), in this paper
apital a

umulation only o

urs in lumps. Moreover, these lumps are determinedby the model, i.e. the lumpy investments are endogenous. In Saglam (2011) a multi-stage optimal 
ontrol model is studied where the number of te
hnology adoptions areendogenous. However, unlike our paper, the model does not in
orporate any (�xed)
ost asso
iated with the adoption and the 
onsidered �rm has no market power.In Bou
ekkine et al. (2004) a two-stage optimal 
ontrol model is 
onsidered, whereonly one adoption o

urs, without adoption (�xed) 
ost. Both Bou
ekkine et al.(2004) and Saglam (2011) in
orporate learning, were the �rm raises produ
tivity ofa given te
hnology over time due to learning and revenue is linear in the 
apital sto
k.This 
hapter is 
omparable with Grass et al. (2012). However, unlike Grass et al.(2012), we do not need to �x the number of te
hnology adoptions beforehand andwe do in
orporate a (�xed) 
ost asso
iated with this adoption. When dealing withprodu
t innovation, �rms do not always have to s
rap all 
apital goods. Sometimesmeasures are taken to allow new or updated parts to be �tted to old or outdatedassemblies. As in Grass et al. (2012), we 
an model all situations in between theextreme 
ases where after every new investment the old 
apital goods are s
rappedand the 
ase where all the 
apital goods 
an be kept after adopting a new te
hnology.The method used to study �rm behavior in this paper is Impulse Control. ImpulseControl theory is a variant of optimal 
ontrol theory where dis
ontinuities (i.e. jumps)in the state variable are allowed. In Impulse Control the moments of these jumpsas well as the sizes of the jumps are de
ision variables. Blaquière (1977a; 1977b;1979; 1985) extends the standard theory on optimal 
ontrol by deriving a MaximumPrin
iple, the so-
alled Impulse Control Maximum Prin
iple, that gives ne
essaryand su�
ient optimality 
onditions for solving su
h problems. Blaquière's ImpulseControl analysis is based on the present value Hamiltonian form. In this 
hapter weapply the Impulse Control theorem in the 
urrent value Hamiltonian framework asderived in Chahim et al. (2012).



72 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSOne of the striking results is that the �rm does not invest when the marginal pro�t(with respe
t to 
apital) be
omes zero, but invests when marginal pro�t is nega-tive. Furthermore, we obtain that the �rm in the beginning of the planning periodadopts new te
hnologies faster as time pro
eeds, but after some moment in timelater te
hnologies are used for a longer time period. This behavior is di�erent fromGrass et al. (2012), who �nds that the �rm adopts new te
hnologies faster as timepro
eeds for the whole planning period, but this also di�ers from the results foundin Saglam (2011), who �nds that later te
hnologies are used during a longer timeperiod. Our results are somehow a 
ombination of both. Moreover, we �nd that ifthe time it takes to double the e�
ien
y of te
hnology is larger than the time it takesfor the 
apital sto
k to depre
iate, the �rm undertakes an initial investment. Finally,we show that when demand de
reases over time the �rm invest less throughout theplanning period and that the �rst investment is delayed.This 
hapter is organized as follows. In Se
tion 4.2 we give the general setting andbuild up the Impulse Control model. Se
tion 4.3 derives the ne
essary optimality
onditions, whereas Se
tion 4.4 gives a brief des
ription of the algorithms present inthe literature dealing with the Impulse Control Maximum Prin
iple. In Se
tion 4.5we study the investment behavior of the �rm, and in Se
tion 4.6 we extend this analy-sis by adding de
reasing demand, i.e. demand de
reases over time due to 
ompetitorsprodu
ing better produ
ts be
ause of te
hnologi
al progress. Finally, in Se
tion 4.7we 
on
lude and give some re
ommendations for future resear
h.
4.2 The ModelConsider a �rm that invests in lumps over time. Ea
h time it invests it installs aprodu
tion plant suitable to produ
e the new produ
t. Due to produ
t innovationthe quality of the produ
ts, and thus also demand, in
reases over time. This impliesthat the later an investment takes pla
e, the better produ
ts 
an be made due tothese investments.This is formalized as follows. A plant being installed at time τ will make produ
tsfrom whi
h the pri
e is given by the following inverse demand fun
tion:

p(t) = θ(τ)− q(t), for t ≥ τ,



The Model 73where q(t) is the output at time t and θ(τ) = 1 + bτ is the state of te
hnology thatthe �rm adopts at time τ 1. We further assume that te
hnology within the �rm doesnot 
hange between two te
hnology adoptions, i.e. θ̇(t) = 0 for all t 6= τ . At themoment the �rm adopts a te
hnology, the �rm's te
hnology 
hange is given by
θ(τ+i )− θ(τ−i ) = 1 + bτi − θ(τ−i ).Hen
e, as in Fei
htinger et al. (2006) and Grass et al. (2012) we impose that te
hno-logi
al progress in
reases linearly over time, where b is a positive 
onstant. In Saglam(2011) te
hnology in
reases exponentially over time and in Bou
ekkine et al. (2004)there are only two di�erent te
hnologies available. We assume a simple produ
tionfun
tion in the sense that one 
apital good produ
es one unit of output. Denotingthe sto
k of 
apital goods by K(t), this gives
K(t) = q(t).We impose that only the 
apital sto
k of the new plant is able to produ
e the newprodu
ts, i.e. ea
h plant has its own 
apital sto
k that produ
es the produ
ts with aquality asso
iated with the timing of the investment in this plant. In this setting we
an also model a situation where just 100γ%, where γ ∈ [0, 1], of the 
apital sto
k iss
rapped, while the remaining ma
hines or tools 
an be reused for the new produ
t.Hen
e, full s
rapping 
orresponds to the 
ase where γ = 1. This implies that oldprodu
ts, and thus also old 
apital goods, be
ome worthless after the new plant isinstalled, implying that the old 
apital goods 
an be s
rapped.Denoting investment by I(t), at the moment the �rm invests (adopts a new te
h-nology) 
apital sto
k 
hanges by
K(τ+)−K(τ−) = I(τ)− γK(τ−).At time zero the 
apital sto
k is equal to zero, i.e.
K(0) = 0.For ea
h plant it holds that 
apital sto
k depre
iates with rate δ, i.e.
K̇(t) = −δK(t).Investing in a plant implies that the �rm has to pay a �xed 
ost, i.e. part of the 
ostis independent of the plant size, and a variable 
ost that more than proportionally1We assume that te
hnology is 
ontinuously 
hanging with rate b. However, the te
hnologywithin the �rm is the te
hnology that the �rm adopts at time τ .



74 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSin
reases with the size of the plant. In parti
ular, we assume that the investment
ost is given by
C(I) =

{

C + αI + βI2 for I > 0

0 for I = 0.This type of investment 
ost fun
tion, without the �xed 
ost, is 
ommon in theliterature (e.g., among others, see Grass et al. (2012), Sethi and Thompson (2006)and Seierstad and Sydsæter (1987)), where besides the �xed 
ost, the linear term
onsists of a
quisition 
ost, where the unit pri
e is equal to α and the quadrati
term represents the adjustment 
ost. In �ordinary� optimal 
ontrol the investment
ost fun
tion does not in
lude a �xed 
ost, be
ause this violates the 
ontinuity ofthe 
ost fun
tion with respe
t to its arguments, i.e. the 
ontrol and the state variable.Total dis
ounted revenue in [0, T ] is given by
T
∫

0

e−rt [θ (t)−K (t)]K(t)dt,where revenue is determined by output pri
e times output. Sin
e we have a �nitetime planning period, a salvage value has to be de�ned. This salvage value is equalto the value of the �rm at the time horizon T . We assume that this value is given by
e−rT [θ(τN )−K(T+)]K(T+)

r + δ
,where τN denotes the time of the last investment. The salvage value (4.1) is a lowerbound of the dis
ounted revenue stream of the �rm after the planning period.Total dis
ounted investment 
ost are given by the sum of the 
ost of adopting anew te
hnology, dis
ounted at the time the adoption takes pla
e, i.e. τ1, . . . τN , with

0 ≤ τ1 < τ2 . . . < τN ≤ T . This results in
N
∑

i=1

e−rτi
(

C + αI (τi) + βI (τi)
2) .The above gives rise to the following impulse 
ontrol model:

max
I,τi,N

T
∫

0

e−rt [θ (t)−K (t)]K(t)dt

−
N
∑

i=1

e−rτi
(

C + αI (τi) + βI (τi)
2)

+ e−rT [θ(τN)−K(T+)]K(T+)

r + δ
(4.1)
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essary Optimality Conditions 75subje
t to
K̇ (t) = −δK (t) , for t 6= τi (i = 1, ..., N), (4.2)
θ̇(t) = 0, for t 6= τi (i = 1, ..., N), (4.3)

K(τ+i )−K(τ−i ) = I(τi)− γK(τ−i ), for i = 1, ..., N, (4.4)
θ(τ+i )− θ(τ−i ) = 1 + bτi − θ(τ−i ), for i = 1, ..., N, (4.5)

K(0) = 0, (4.6)
θ (0) = 1. (4.7)This is an Impulse Control problem as des
ribed in Blaquière (1977a; 1977b; 1979;1985). Note that this innovation model only 
ontains an impulse 
ontrol variable andno ordinary 
ontrol variable. This approa
h di�ers from the multi-stage approa
hused in Grass et al. (2012), be
ause here investment takes pla
e in lumps and everyinvestment goes along with a �xed 
ost. As in Grass et al. (2012) we 
an modelall situations between the extreme 
ases where after every new investment the old
apital goods are s
rapped (γ = 1) and where all the 
apital 
an be kept (γ = 0) toprodu
e the new produ
t. Another bene�t of the above model is that the number ofte
hnology 
hanges are endogenous.4.3 Ne
essary Optimality ConditionsWe apply the impulse 
ontrol maximum prin
iple in 
urrent value formulation derivedin Chahim et al. (2012). Other referen
es deriving the ne
essary optimality 
onditionsfor the Impulse Control problems are Blaquière (1977a; 1977b; 1979; 1985), Seierstad(1981) and Seierstad and Sydsæter (1987). We de�ne the Hamiltonian Ham and theImpulse Hamiltonian IHamHam(θ,K, λ1, t) = [θ −K]K − λ1δK, (4.8)IHam(K, I, λ1, λ2, t) = −C − αI − βI2 + λ1(I − γK) (4.9)

+λ2 (1 + bt− θ)) ,and obtain the adjoint equations
λ̇1 (t) = (r + δ)λ1 (t)− θ (t) + 2K (t) , for t 6= τi, i = 1, . . . , N, (4.10)
λ̇2 (t) = rλ2 (t)−K (t) , for t 6= τi, i = 1, . . . , N. (4.11)The jump 
onditions at t = τi (i = 1, . . . , N) are
− α− 2βI (τi) + λ1

(

τ+i
)

= 0, (4.12)
λ1

(

τ+i
)

− λ1

(

τ−i
)

= γλ1

(

τ+i
)

, (4.13)
λ2

(

τ+i
)

− λ2

(

τ−i
)

= λ2

(

τ+i
)

, (4.14)
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h we 
on
lude that
λ1

(

τ−i
)

= (1− γ)λ1

(

τ+i
)

,whi
h equals zero for γ = 1, and
λ2

(

τ−i
)

= 0.The 
ondition for determining the optimal swit
hing time τi is
[

θ
(

τ+i
)

−K
(

τ+i
)]

K
(

τ+i
)

−
[

θ
(

τ−i
)

−K
(

τ−i
)]

K
(

τ−i
)

−λ1

(

τ+i
)

δK
(

τ+i
)

+ λ1

(

τ−i
)

δK
(

τ−i
)

− rC − rαI (τi)− rβI (τi)
2 − bλ2

(

τ+i
)







> 0 for τi = 0

= 0 for τi ∈ (0, T )

< 0 for τi = T.

(4.15)The transversality 
onditions are
λ1

(

T+
)

=
θ(τN )− 2K (T+)

r + δ
, (4.16)and

λ2

(

T+
)

=
K(T+)

r + δ
. (4.17)At the non-jump points t 6= τI (i = 1, , ..., N) it holds that limI→0

∂IHam
∂I

= ∞ dueto the �xed 
ost. Hen
e, the 
onditions for applying the Impulse Control MaximumPrin
iple are met, see Se
tion 2.2.4.4 AlgorithmIn the literature three di�erent algorithms are derived based on the Impulse ControlMaximum Prin
iple (Blaquière (1977a; 1977b; 1979; 1985) and Chahim et al. (2012)).Luhmer (1986) derived a forward algorithm (starts at time 0) and Kort (1989, pp.62�70) derived a ba
kward algorithm (starts at �nal time horizon T ). Luhmer (1986)starts at t = 0 and uses the 
ostate variable, as input to initialize his algorithm. Kort(1989) implements a ba
kward algorithm that starts at the time horizon, i.e. t = T ,and initializes the algorithm using the values of the state variables. Finally, Grassand Chahim (2012) design an algorithm that is a 
ombination of 
ontinuation te
h-niques and a (multipoint) Boundary Value Problem (BVP) to solve Impulse Controlproblems (see Chapter 5).



Algorithm 77The problem des
ribed by (4.1)�(4.7) has two state variables, the sto
k of 
apital
K(t) and te
hnology θ(t). The question is whi
h algorithm is most suitable forthis model. Applying the forward algorithm to problem (4.1)�(4.7) has a drawba
k.Namely, we have to guess the initial values for the two 
ostate variables, λ1(0) and
λ2(0). A wrong guess of the 
ostate variables at the initial time results in a solutionthat does not satisfy the transversality 
onditions (4.16) and (4.17), whi
h impliesthat the ne
essary optimality 
onditions are not satis�ed. For the ba
kward algo-rithm we start with 
hoosing values for the state variables at time T . The resultingsolution always satis�es the ne
essary optimality 
onditions, but here the problem isthat the algorithm has to end up at the right K(0). In other words, with the ba
k-ward algorithm one 
an apply the right ne
essary 
onditions to the wrong problem.An example where the ba
kward algorithm is applied su

essfully 
an be found inChapter 3. Moreover, in Chapter 3 
lear upper and lower bounds have been derivedfor the state variable.In addition, the ba
kward algorithm has another drawba
k. When we apply it tothe problem des
ribed by (4.1)�(4.7), starting at the time horizon and going ba
kin time requires knowledge of the te
hnology before the investment. In parti
u-lar, we obtain from equation (4.15) that we need to know θ(τ+N ) = 1 + bτN and
θ(τ−N ) = θ(τN−1) = 1 + bτN−1. Hen
e, solving this equation for τN requires that weknow τN−1. And with the ba
kward algorithm, this prede
essor is not known. We
on
lude that the ba
kward algorithm is not suitable to solve our model as presentedin this 
hapter.The third algorithm des
ribed in the literature is an algorithm that 
onsiders theproblem des
ribed by (4.1)�(4.7) as a (multipoint) Boundary Value Problem (BVP)and uses a 
ontinuation te
hnique to solve it. The main idea behind the algorithm isas follows. To �nd the solution of the problem des
ribed by (4.1)�(4.7) we 
an applya 
ontinuation strategy with respe
t to the time horizon T , i.e. T is our 
ontinuationvariable. The algorithm for this approa
h is des
ribed in Box 4.1. To initialize thealgorithm, the problem is solved for T = 0. Assuming that a unique solution existsfor T = 0, the initial 
onditions together with the transversality 
onditions 
ombinedwith the ne
essary 
onditions results in a set of n equation with n unknowns. Givena solution for T = 0, T is in
reased (
ontinued) during the 
ontinuation pro
esswhereas the 
onditions for possible jumps are monitored. If the 
onditions for ajump are satis�ed, the BVP is adapted to this situation. With this new solutionthe 
ontinuation is pursued. In Chapter 5 this algorithm more extensively. In Grass(2012) also a BVP approa
h in 
ombination with 
ontinuation is des
ribed, but that
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us is on ordinary optimal 
ontrol problems.De�ne T as time horizon for the problem.De�ne T̄ to be a 
ontinuation variable.Set T̄ = 0 and τl = 0.Step 1: Find jump in [τl, T̄ ] for:
ase 1: A jump o

urs at the end, i.e. at t = T̄ , save asJumpSol.
ase 2: No jump at the end, save as noJumpSol.Step 2: Start the 
ontinuation for T̄ ∈ (τl, T ) with JumpSol untilinterior jump 
ondition is satis�ed, i.e. let T̄ in
rease until(4.12)�(4.15) are satis�ed for some t = τ . Set τl = τ , saveas JumpSol. Also 
ontinue the result of noJumpSol until
T̄ = τl, save as noJumpSol. If T̄ ≥ T without satisfyinginterior jump 
onditions, stop.
ase 1: Obje
tive of JumpSol higher than obje
tive no-JumpSol, add ar
 and go to step 1.
ase 2: Obje
tive of JumpSol is lower than obje
tive no-JumpSol, go to step 3.Step 3: Continue the solution of noJumpSol until the interiorjump 
ondition (4.12)�(4.15) is satis�ed for t = τ ∈ (τl, T ).Set τl = τ , save as JumpSol, add ar
, and go to step 1. If
T̄ ≥ T without satisfying interior jump 
onditions, stop.Box 4.1 � (Multipoint) BVP and 
ontinuation algorithm

4.5 Endogenous Lumpy InvestmentsWhen a �rm is dealing with market power, the output pri
e de
reases with thequantity that is produ
ed. Sin
e it holds in this model that with one unit of 
apitalsto
k one unit of output is produ
ed, we have that the output pri
e de
reases withthe amount of 
apital. So during the time period between two investments the outputpri
e in
reases, sin
e depre
iation de
reases 
apital sto
k. We 
onsider no s
rapping,
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rapping and total s
rapping, i.e. we 
onsider γ = 0, γ = 0.5 and γ = 1. Weprovide a numeri
al analysis starting with the parameter values
b =

1

n
log 2 =

1

2
log 2, α = 0, β = 0.2, C = 2 r = 0.04, δ = 0.2,whi
h we 
onsider as the ben
hmark throughout this 
hapter. As in Grass et al.(2012), we base our value for b on Moore's law2, where the value for b is su
h thatthe e�
ien
y of the te
hnology doubles every n years where we put n = 2. Theresults of the �rst ten investments, are presented in Table 4.1 for T = 100. Table 4.6of Appendix 4A presents all investments up until T = 100.Ignoring the �rst and last investment, we see that the better the te
hnology is,the larger the investment be
omes. It seems as if the �rm delays the �rst investment(
ompared to the others) to start produ
tion of a new good. In Figure 4.1a this is
learly seen (also see Figure 4.4a and Figure 4.6a in Appendix 4A). To understandwhat happens with the �rst investment we have to distinguish between γ < 1 and

γ = 1. When γ < 1 
apital growth is in
reased with ea
h investment without fullys
rapping the old 
apital sto
k. Be
ause there is only limited s
rapping, at an earlystage the �rm undertakes a relatively high investment to start produ
tion. A �rmonly undertakes this relatively high investment if there is limited s
rapping, be
ausethe investments help to in
rease the 
apital sto
k in the future. This behavior is
learly seen in Figure 4.1a. Conne
ting the points in Figure 4.1a ignoring the �rstand last investment not only tells us that the �rst investment is relatively large, butalso that the last investment is small. This last investment being small o

urs due tothe fa
t that the salvage value of the problem is (too) low, be
ause it does not takeinto a

ount te
hnologi
al improvement after time T .Table 4.1 shows that the higher the s
rapping per
entage the larger the investmentsbe
ome. This makes sense be
ause a �rm that wants similar produ
tion has to in-vest extra to repla
e the s
rapped parts. This s
rapping in
reases the investment
ost and at the same time, due to the quadrati
 term in the investment 
ost fun
-tion, investing su
h that the same level of 
apital is rea
hed as in the 
ase of nos
rapping, is too expensive. Hen
e, the optimal level of 
apital sto
k in the 
ase ofs
rapping is lower than under no s
rapping, whi
h explains the lower revenue. Table4.6 of Appendix 4A presents all investments up until T = 100 (Table 4.7, 4.8 and4.9 present full results for γ = 0, 1
2
and 1, respe
tively). It shows that a highers
rapping per
entage de
reases the number of investments during the planning pe-2Moore's law still holds, The E
onomist, July 14th 2012, Chipping in: A deal to keep Moore'slaw alive.
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γ = 0 γ = 0.5 γ = 1

(τi : I) 4.1651 : 1.4877 4.1462 : 1.4682 3.8509 : 1.36897.3464 : 1.3571 7.4147 : 1.7204 7.1308 : 1.958910.0022 : 1.4032 10.1649 : 2.0101 9.9511 : 2.461412.3693 : 1.4610 12.6433 : 2.2785 12.5559 : 2.926214.5474 : 1.5188 14.9499 : 2.5312 15.0389 : 3.371616.5895 : 1.5751 17.1370 : 2.7731 17.4476 : 3.806718.5276 : 1.6299 19.2361 : 3.0070 19.8100 : 4.236520.3835 : 1.6837 21.2682 : 3.2353 22.1437 : 4.663922.1724 : 1.7365 23.2479 : 3.4594 24.4606 : 5.091023.9056 : 1.7887 25.1861 : 3.6805 26.7688 : 5.5191Rev 802.4809 790.1920 771.3955ICost 35.3109 67.8103 97.6050Pro�t 767.1700 722.3817 673.7904Table 4.1 � First ten investments of Impulse Control solutions for di�erent γ,where T = 100, r = 0.04, δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0. C = 2, K0 = 0and θ(0) = 1. Furthermore, Rev and ICost denote the dis
ounted revenue andthe dis
ounted investment 
ost, respe
tively.riod. Another striking e�e
t 
an be noti
ed when looking at Figure 4.1b. We see
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ounted revenue forthe �rst ten investments.Figure 4.1 � Lumpy investments and undis
ounted revenue, where T = 100,
r = 0.04, δ = 0.2, γ = 0, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and
θ(0) = 1.that the �rm invests in a new produ
t su
h that marginal revenue (with respe
t to
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apital) is negative. In a �stati
� model (i.e. a model that does not depend on time)we know that the �rms optimize pro�t and hen
e invest at the moment that marginal
ost is equal to marginal revenue. Sin
e we did not in
lude any operation 
ost, weknow that marginal 
ost is equal to zero. Hen
e, when marginal revenue is equalto zero, (i.e. K(τ) = θ(τ)/2) investment would be optimal a

ording to this rule.In our dynami
 setting it is impossible to stay at the point where marginal revenueis equal to zero, due to depre
iation. In Table 4.2 we show the results for a 
asewhere we have no depre
iation. We see that indeed the investments are su
h thatthe level of 
apital is set to K(τ) = θ(τ)/2. In the 
ase that we have depre
iation,the �rm overinvests, i.e., invests su
h that marginal revenue is negative. Then upuntil the next investment, marginal revenue in
reases, be
omes zero after some time,and then turns positive. In Figure 4.2 we have plotted the length of the time interval
τi θ(τ+i ) K(τ+i ) θ

K19.6234 7.8009 3.8574 2.022434.5329 12.9682 6.4650 2.005950.7184 18.5777 9.2706 2.003970.6244 25.4766 12.7165 2.003499.7453 35.5691 17.7443 2.0045Table 4.2 � Te
hnology level and 
apital, where T = 100, γ = 0, r = 0.04,
δ = 0, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
between two investments. We see that in the beginning of the planning period the�rm adopts new te
hnologies faster as time pro
eeds and after some moment it useslater te
hnologies for a longer time period. This behavior is di�erent from Grasset al. (2012), who �nds that the �rm adopt new te
hnologies faster as time pro
eedsfor the whole planning period, but this also di�ers from the results found in Saglam(2011), who �nds that later te
hnologies are used during a longer time period. Ourresults are somehow a 
ombination of both. An explanation for this 
ould be that the�rm in the beginning of the planning period does not invest mu
h sin
e produ
tivityis low. After some time te
hnologi
al progress is su
h that ea
h investment is morepro�table, whi
h 
auses the 
orresponding 
apital goods are used for a longer time.For this reason the time between investments in
reases. Also for higher T a similare�e
t is found.
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Figure 4.2 � The length between two investments, where T = 100, r = 0.04,
δ = 0.2, γ = 0, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.4.5.1 Sensitivity Analysis with Respe
t to the Rate of Te
h-nology ChangeHere we study how the rate of te
hnologi
al progress a�e
ts the investment behaviorof a �rm. Remember that we have assumed, using Moore's law, that e�
ien
y ofte
hnology doubles every n years, setting n = 2 for our ben
hmark 
ase. Table 4.3shows the �rst ten investments for di�erent values of the te
hnology rate b. For allinvestments up until T = 100 see Table 4.10 of Appendix 4A (or Table 4.11-4.15 forea
h level of te
hnology 
hange separately). When n > 5 an investment takes pla
eat t = 0. The explanation behind this is that for n > 5 we have, under Moore's law,that it takes more than �ve years for the e�
ien
y of a te
hnology to double. Sin
ewe have a depre
iation rate of 20%, this means it takes more time to double thee�
ien
y of a te
hnology than the 
apital sto
k to depre
iate to half of its originallevel. So the �rm has no in
entive to wait and invests at t = 0.4.5.2 Sensitivity Analysis with Respe
t to the Fixed CostOne of the main di�eren
es between Grass et al. (2012), Bou
ekkine et al. (2004)and Saglam (2011) is that they do not in
orporate any (�xed) 
ost and this 
hapterassumes that a �xed 
ost is in
luded for ea
h investment. Here we study how in
reas-ing these �xed 
ost a�e
ts the investment behavior of a �rm. Table 4.4 shows the�rst ten investments for ea
h size of �xed 
ost. For all investments up until T = 100see Table 4.16 of Appendix 4A (or Table 4.17-4.20 for ea
h for ea
h size of �xed 
ostseparately). It is easily seen, that if we in
rease the �xed 
ost, the �rst investmentis delayed and at the same time the time period between two investments in
reases.Hen
e, the number of investments de
reases if the �xed 
ost in
rease. Comparing
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b = 1

3
log 2 b = 1

4
log 2 b = 1

5
log 2 b = 1

6
log 2 b = 1

10
log 2

(τi : I) 4.6759 : 1.3116 5.1658 : 1.2381 5.5832 : 1.1914 0 : 0.7418 0 : 0.77528.6561 : 1.5392 9.7814 : 1.4539 10.7534 : 1.3980 7.7656 : 1.2080 9.7219 : 1.14321.9662 : 1.7807 13.5911 : 1.6692 14.9977 : 1.5949 13.0448 : 1.4152 16.3705 : 1.313214.9229 : 1.9995 16.9755 : 1.8614 18.7535 : 1.7685 17.4932 : 1.5907 21.9534 : 1.452417.6530 : 2.2025 20.0857 : 2.0378 22.1932 : 1.9266 21.4683 : 1.7459 26.9204 : 1.573020.2231 : 2.3943 23.0005 : 2.2031 25.4066 : 2.0736 25.1251 : 1.8873 31.4676 : 1.681022.6732 : 2.5779 25.7678 : 2.3601 28.4478 : 2.2125 28.5485 : 2.0188 35.7025 : 1.779725.0300 : 2.7553 28.4191 : 2.5108 31.3530 : 2.3450 31.7914 : 2.1429 39.6921 : 1.871227.3121 : 2.9280 30.9766 : 2.6566 34.1472 : 2.4725 34.8894 : 2.2610 43.4813 : 1.956929.5335 : 3.0970 33.4569 : 2.7986 36.8494 : 2.5960 37.8681 : 2.3745 47.1023 : 2.0376Rev 371.5616 220.0775 148.0959 108.6965 47.4170ICost 39.2258 27.6829 21.7123 19.5772 12.9673Pro�t 332.3358 192.3946 126.3837 89.1193 34.4497Table 4.3 � First ten investments of Impulse Control solutions for di�erent b,where T = 100, γ = 0.5, r = 0.04. δ = 0.2, β = 0.2, α = 0. C = 2, K0 = 0and θ(0) = 1. Furthermore, Rev and ICost denote the dis
ounted revenue andthe dis
ounted investment 
ost, respe
tively.the results more 
arefully, we see that the size of the lumpy investments (i.e. jumps)in
reases when the �xed 
ost in
reases.
C = 4 C = 8 C = 16 C = 32

(τi : I) 5.7915 : 1.8832 8.0844 : 2.4856 11.1517 : 3.3199 15.2866 : 4.47549.6593 : 2.2099 12.7147 : 2.9206 16.6712 : 3.8947 21.8148 : 5.224112.8816 : 2.5607 16.5386 : 3.3546 21.1933 : 4.4297 27.1293 : 5.878915.7638 : 2.8797 19.9372 : 3.7422 25.1901 : 4.8993 31.8052 : 6.444318.4283 : 3.1763 23.0621 : 4.0984 28.8471 : 5.3256 36.0657 : 6.951320.9394 : 3.4571 25.9923 : 4.4325 32.2606 : 5.7215 40.0266 : 7.416923.3358 : 3.7265 28.7755 : 4.7502 35.4889 : 6.0947 43.7577 : 7.851525.6433 : 3.9871 31.4435 : 5.0556 38.5705 : 6.4506 47.3050 : 8.261827.8799 : 4.2412 34.0186 : 5.3513 41.5327 : 6.7926 50.7012 : 8.652530.0590 : 4.4903 36.5173 : 5.6394 44.3957 : 7.1237 53.9701 : 9.0270Rev 780.7835 769.1875 747.0746 712.6433ICost 79.5936 96.8939 120.5584 150.9987Pro�t 701.1899 672.2936 626.5162 561.6447Table 4.4 � Impulse Control solutions for di�erent C, where T = 100, γ = 0.5,
r = 0.04, δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.Furthermore, Rev and ICost denote the dis
ounted revenue and the dis
ountedinvestment 
ost, respe
tively.



84 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS4.6 Lumpy Investments under De
reasing DemandIn this se
tion we 
onsider the 
ase where the demand for an existing produ
t de-
reases over time. A main reason 
ould be that the 
ompetitors' produ
ts be
omebetter due to their produ
t innovations. We in
orporate de
reasing demand by set-

t

O
u

tp
u

t 
p

ri
c
e

 

τ
iFigure 4.3 � Output pri
e as a fun
tion of time for δ > η.ting θ̇(t) = −ηt, where η is some positive 
onstant. Sin
e it is reasonable to assume

δ > η > 0,3 the output pri
e after investment is �rst in
reasing and then de
reasing,see Figure 4.3. Hen
e, if a �rm invests, 
apital sto
k depre
iates and the output pri
ein
reases, and after some time this output pri
e is de
reasing due to this de
reasingdemand. Then the model be
omes
max
I,τ,N

T
∫

0

e−rt [θ (t)−K (t)]K(t)dt

−
N
∑

i=1

e−rτi
(

C + αI (τi) + βI (τi)
2)

+ e−rT [θ (T
+)−K(T+)]K(T+)

r + δ + η
, (4.18)3Sin
e we are dealing with produ
t innovation and assume a depre
iation rate of 20% it is unlikelythat demand de
reases by more than (or equal to) 20% and hen
e we do not 
onsider η ≥ δ > 0.
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t to
K̇ (t) = −δK (t) , for t 6= τi (i = 1, ..., N), (4.19)
θ̇ (t) = −ηθ (t) , for t 6= τi (i = 1, ..., N), (4.20)

K(τ+i )−K(τ−i ) = I(τi)− γK(τ−i ), for i = 1, ..., N, (4.21)
θ(τ+i )− θ(τ−i ) = 1 + bτi − θ(τ−i ), for i = 1, ..., N, (4.22)

K(0) = 0, (4.23)
θ (0) = 1. (4.24)Re
all that in Se
tion 4.5 the output pri
e was de
reasing in 
apital. Hen
e, dueto depre
iation the output pri
e is in
reasing in the time period between two in-vestments. Sin
e we are 
onsidering produ
t innovation, it makes more sense thatdemand of a given produ
t during the time period de
reases. This is be
ause overtime new produ
ts are invented by other �rms, whi
h redu
e demand of the 
urrentprodu
t. This demand de
rease has a negative e�e
t on output pri
e and hen
e the�rm has even a greater in
entive to invest in a new te
hnology.Looking at the results of Table 4.5 and Table 4.21 (or Table 4.22-4.24 for ea
h de
ayrate of the demand separately) we 
an see that a 
hange in the de
rease of demanddire
tly a�e
ts the investment behavior. It is 
lear to see, that if we in
rease η the�rst investment is delayed and at the same time the time period between two in-vestments also in
reases. Hen
e, the number of investments de
reases if the de
ayrate of the demand in
reases. This makes sense, sin
e less demand makes investingless attra
tive. This results in a lower investment 
ost for higher η. Moreover, thelarger η the lower the output pri
e (
ompared to a lower η) and hen
e the lower therevenue.4.7 Con
lusions and Re
ommendationsThis 
hapter employs an Impulse Control modeling approa
h that is suitable to takeinto a

ount the disruptive 
hanges 
aused by innovations. We des
ribe and im-plement an algorithm based on 
urrent value ne
essary optimality 
onditions. Thene
essary 
onditions are solved using a (multipoint) Boundary Value Problem (BVP)
ombined with some 
ontinuation te
hniques.From an e
onomi
 point of view we have derived some guidelines for lumpy invest-ments in new te
hnology:

• A striking result is that the �rm does not invest when marginal pro�t (with
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η = 0.01 η = 0.02 η = 0.03

(τi : I) 5.2730 : 1.7250 6.3504 : 1.9594 7.5126 : 2.20428.9696 : 2.0366 10.4003 : 2.3175 11.902 : 2.606012.0850 : 2.3821 13.8098 : 2.7062 15.5932 : 3.035914.9011 : 2.7029 16.8941 : 3.0676 18.9345 : 3.436617.5308 : 3.0067 19.7779 : 3.4110 22.0629 : 3.818820.0327 : 3.2991 22.5261 : 3.7427 25.0493 : 4.189722.4425 : 3.5837 25.1779 : 4.0670 27.9368 : 4.554224.7835 : 3.8631 27.7594 : 4.3869 30.7539 : 4.915627.0723 : 4.1393 30.2889 : 4.7047 33.5212 : 5.276529.3212 : 4.4136 32.7803 : 5.0219 36.2541 : 5.6390Rev 762.5966 733.2291 701.2148ICost 61.1145 56.6083 52.6074Pro�t 701.4821 676.6208 648.6074Table 4.5 � First ten investments of Impulse Control solutions for di�erent η,where T = 100, γ = 0.5, r = 0.04, δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2,

K0 = 0 and θ(0) = 1. Furthermore, Rev and ICost denote the dis
ountedrevenue and the dis
ounted investment 
ost, respe
tively.respe
t to 
apital) is zero, but invests when marginal pro�t is negative. In-deed, due to depre
iation 
apital sto
k de
reases in between two investments,implying that marginal pro�t goes up there due to the de
reasing returns tos
ale assumption. The impli
ation is that during su
h an interval �rst marginalpro�t is negative, but then after a while it turns positive and this stays thatway until it is time for the next investment.
• We �nd that investments are larger and the time between investments is largerwhen more of the old 
apital sto
k needs to be s
rapped. If a 
hange in te
h-nology permits the �rm to keep, update and reuse part of its 
apital sto
k, theinvestments are smaller.
• A nontrivial result is the optimal timing of investments. We see that the�rm in the beginning of the planning period adopts new te
hnologies fasteras time pro
eeds, but later on the opposite happens. Moreover, we obtain thatthe �rm's investments in
rease when the te
hnology produ
es more pro�tableprodu
ts.
• The experiments show that if the time it takes to double the e�
ien
y of ate
hnology is larger than the time it takes for the 
apital sto
k to depre
iate
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ommendations 87to half of its original level, the �rm undertakes an initial investment.
• Further sensitivity results were provided for a s
enario of de
reasing demand.We �nd that when demand de
reases over time and when �xed investment 
ostis higher, then the �rm invests less throughout the planning period, the timebetween two investments in
reases and the �rst investment is delayed.Interesting dire
tions for further work would be to 
onsider running 
ost in the modelor to introdu
e a learning e�e
t. Another possible extension would be to let thes
rapping per
entage depend on time.
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γ = 0 γ = 0.5 γ = 1

(τi : I) 4.1651 : 1.4877 4.1462 : 1.4682 3.8509 : 1.36897.3464 : 1.3571 7.4147 : 1.7204 7.1308 : 1.958910.0022 : 1.4032 10.1649 : 2.0101 9.9511 : 2.461412.3693 : 1.4610 12.6433 : 2.2785 12.5559 : 2.926214.5474 : 1.5188 14.9499 : 2.5312 15.0389 : 3.371616.5895 : 1.5751 17.1370 : 2.7731 17.4476 : 3.806718.5276 : 1.6299 19.2361 : 3.0070 19.8100 : 4.236520.3835 : 1.6837 21.2682 : 3.2353 22.1437 : 4.663922.1724 : 1.7365 23.2479 : 3.4594 24.4606 : 5.091023.9056 : 1.7887 25.1861 : 3.6805 26.7688 : 5.519125.5920 : 1.8407 27.0909 : 3.8994 29.0742 : 5.949027.2385 : 1.8924 28.9689 : 4.1168 31.3809 : 6.381328.8508 : 1.9443 30.8252 : 4.3333 33.6920 : 6.816430.4336 : 1.9964 32.6640 : 4.5493 36.0096 : 7.254531.9908 : 2.0488 34.4889 : 4.7652 38.3355 : 7.695733.5258 : 2.1018 36.3027 : 4.9814 40.6707 : 8.140335.0416 : 2.1554 38.1081 : 5.1982 43.0162 : 8.588136.5406 : 2.2098 39.9072 : 5.4157 45.3723 : 9.039338.0252 : 2.2651 41.7019 : 5.6343 47.7396 : 9.493739.4975 : 2.3214 43.4940 : 5.8541 50.1182 : 9.951440.9591 : 2.3788 45.2849 : 6.0753 52.5083 : 10.412342.4119 : 2.4374 47.0759 : 6.2982 54.9099 : 10.876343.8573 : 2.4973 48.8684 : 6.5229 57.3230 : 11.343545.2968 : 2.5586 50.6635 : 6.7495 59.7474 : 11.813646.7317 : 2.6214 52.4621 : 6.9783 62.1832 : 12.286748.1632 : 2.6859 54.2654 : 7.2094 64.6300 : 12.762749.5925 : 2.7520 56.0743 : 7.4431 67.0879 : 13.241551.0207 : 2.8200 57.8895 : 7.6793 69.5566 : 13.723152.4488 : 2.8900 59.7121 : 7.9184 72.0359 : 14.207553.8779 : 2.9620 61.5428 : 8.1606 74.5258 : 14.694555.3089 : 3.0362 63.3824 : 8.4059 77.0260 : 15.184356.7427 : 3.1127 65.2318 : 8.6546 79.5364 : 15.676658.1804 : 3.1917 67.0917 : 8.9070 82.0568 : 16.171659.6228 : 3.2732 68.9629 : 9.1631 84.5872 : 16.6692
ontinued on next page
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γ = 0 γ = 0.5 γ = 1

(τi : I) 61.0707 : 3.3574 70.8463 : 9.4233 87.1274 : 17.169362.5251 : 3.4445 72.7426 : 9.6878 89.6772 : 17.672063.9868 : 3.5347 74.6526 : 9.9569 92.2367 : 18.177465.4567 : 3.6279 76.5773 : 10.2307 94.8058 : 18.685366.9357 : 3.7246 78.5174 : 10.5097 97.3844 : 19.195968.4245 : 3.8248 80.4738 : 10.7940 99.9725 : 17.096969.9242 : 3.9287 82.4476 : 11.084171.4355 : 4.0366 84.4396 : 11.380372.9593 : 4.1486 86.4508 : 11.682974.4967 : 4.2650 88.4824 : 11.992576.0484 : 4.3860 90.5354 : 12.309377.6154 : 4.5120 92.6110 : 12.634079.1987 : 4.6431 94.7105 : 12.966880.7994 : 4.7798 96.8355 : 13.284682.4183 : 4.9222 99.0358 : 10.853584.0566 : 5.070885.7154 : 5.226087.3959 : 5.388189.0991 : 5.557690.8264 : 5.734992.5790 : 5.920694.3584 : 6.115296.1659 : 6.318198.0055 : 6.479699.9896 : 4.0490Rev 802.4809 790.1920 771.3955ICost 35.3109 67.8103 97.6050Pro�t 767.1700 722.3817 673.7904Table 4.6 � Impulse Control solutions for di�erent γ, where T = 100, r = 0.04,
δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1. Furthermore,Rev and ICost denote the dis
ounted revenue and the dis
ounted investment
ost, respe
tively.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )4.1651 1.4877 0 1.4877 2.44357.3464 1.3571 0.7874 2.1445 3.546110.0022 1.4032 1.2608 2.6640 4.466512.3693 1.4610 1.6593 3.1204 5.286914.5474 1.5188 2.0184 3.5372 6.041816.5895 1.5751 2.3512 3.9263 6.749518.5276 1.6299 2.6646 4.2946 7.421220.3835 1.6837 2.9629 4.6466 8.064422.1724 1.7365 3.2490 4.9855 8.684423.9056 1.7887 3.5250 5.3138 9.285125.5920 1.8407 3.7925 5.6332 9.869527.2385 1.8924 4.0526 5.9451 10.440228.8508 1.9443 4.3064 6.2507 10.998930.4336 1.9964 4.5546 6.5510 11.547531.9908 2.0488 4.7979 6.8467 12.087233.5258 2.1018 5.0368 7.1386 12.619235.0416 2.1554 5.2718 7.4272 13.144536.5406 2.2098 5.5033 7.7131 13.664038.0252 2.2651 5.7316 7.9968 14.178539.4975 2.3214 5.9571 8.2786 14.688840.9591 2.3788 6.1801 8.5589 15.195442.4119 2.4374 6.4007 8.8381 15.698843.8573 2.4973 6.6193 9.1166 16.199845.2968 2.5586 6.8359 9.3945 16.698746.7317 2.6214 7.0509 9.6723 17.196048.1632 2.6859 7.2642 9.9501 17.692149.5925 2.7520 7.4762 10.2282 18.187551.0207 2.8200 7.6869 10.5069 18.682452.4488 2.8900 7.8964 10.7864 19.177453.8779 2.9620 8.1049 11.0670 19.672655.3089 3.0362 8.3125 11.3488 20.168656.7427 3.1127 8.5193 11.6320 20.665558.1804 3.1917 8.7253 11.9170 21.163859.6228 3.2732 8.9307 12.2039 21.6637
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )61.0707 3.3574 9.1355 12.4929 22.165562.5251 3.4445 9.3398 12.7843 22.669663.9868 3.5347 9.5437 13.0783 23.176165.4567 3.6279 9.7472 13.3751 23.685666.9357 3.7246 9.9503 13.6749 24.198168.4245 3.8248 10.1532 13.9780 24.714169.9242 3.9287 10.3559 14.2846 25.233971.4355 4.0366 10.5584 14.5950 25.757772.9593 4.1486 10.7607 14.9093 26.285874.4967 4.2650 10.9630 15.2279 26.818676.0484 4.3860 11.1651 15.5511 27.356477.6154 4.5120 11.3671 15.8791 27.899479.1987 4.6431 11.5691 16.2122 28.448280.7994 4.7798 11.7710 16.5508 29.002982.4183 4.9222 11.9729 16.8951 29.564084.0566 5.0708 12.1747 17.2455 30.131885.7154 5.2260 12.3764 17.6023 30.706787.3959 5.3881 12.5780 17.9660 31.289189.0991 5.5576 12.7794 18.3370 31.879490.8264 5.7349 12.9807 18.7156 32.478092.5790 5.9206 13.1817 19.1023 33.085494.3584 6.1152 13.3824 19.4975 33.702196.1659 6.3181 13.5825 19.9006 34.328698.0055 6.4796 13.7746 20.2542 34.966199.9896 4.0490 13.6201 17.6691 35.6538Revenue (dis
ounted) 790.1920Investment 
ost (dis
ounted)) 67.8103Total pro�t (dis
ounted) 722.3817Table 4.7 � Impulse Control solutions for γ = 0, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )4.1462 1.4682 0.0000 1.4682 2.43707.4147 1.7204 0.7637 2.1022 3.569710.1649 2.0101 1.2128 2.6165 4.522912.6433 2.2785 1.5938 3.0754 5.381814.9499 2.5312 1.9389 3.5007 6.181217.1370 2.7731 2.2604 3.9033 6.939219.2361 3.0070 2.5651 4.2896 7.666721.2682 3.2353 2.8570 4.6638 8.371023.2479 3.4594 3.1390 5.0289 9.057125.1861 3.6805 3.4129 5.3869 9.728827.0909 3.8994 3.6803 5.7395 10.389028.9689 4.1168 3.9424 6.0880 11.039930.8252 4.3333 4.1999 6.4332 11.683232.6640 4.5493 4.4536 6.7761 12.320534.4889 4.7652 4.7041 7.1173 12.952936.3027 4.9814 4.9518 7.4574 13.581638.1081 5.1982 5.1972 7.7968 14.207339.9072 5.4157 5.4406 8.1360 14.830841.7019 5.6343 5.6823 8.4754 15.452843.4940 5.8541 5.9225 8.8153 16.073945.2849 6.0753 6.1615 9.1561 16.694547.0759 6.2982 6.3994 9.4979 17.315348.8684 6.5229 6.6364 9.8411 17.936550.6635 6.7495 6.8727 10.1859 18.558652.4621 6.9783 7.1083 10.5325 19.182054.2654 7.2094 7.3434 10.8812 19.807056.0743 7.4431 7.5781 11.2321 20.433957.8895 7.6793 7.8125 11.5856 21.063059.7121 7.9184 8.0466 11.9417 21.694661.5428 8.1606 8.2805 12.3008 22.329163.3824 8.4059 8.5142 12.6630 22.966765.2318 8.6546 8.7479 13.0286 23.607667.0917 8.9070 8.9815 13.3977 24.252268.9629 9.1631 9.2151 13.7707 24.9007
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )70.8463 9.4233 9.4486 14.1477 25.553572.7426 9.6878 9.6822 14.5290 26.210774.6526 9.9569 9.9159 14.9148 26.872676.5773 10.2307 10.1495 15.3055 27.539778.5174 10.5097 10.3832 15.7013 28.212080.4738 10.7940 10.6169 16.1025 28.890182.4476 11.0841 10.8506 16.5094 29.574184.4396 11.3803 11.0843 16.9224 30.264586.4508 11.6829 11.3179 17.3419 30.961688.4824 11.9925 11.5514 17.7682 31.665790.5354 12.3093 11.7848 18.2017 32.377292.6110 12.6340 12.0179 18.6429 33.096594.7105 12.9668 12.2506 19.0921 33.824196.8355 13.2846 12.4817 19.5255 34.560699.0358 10.8535 12.5743 17.1406 35.3232Revenue (dis
ounted) 802.4809Investment 
ost (dis
ounted) 35.3109Total pro�t (dis
ounted) 767.1700Table 4.8 � Impulse Control solutions for γ = 0.5, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )3.8509 1.3689 0 1.3689 2.33467.1308 1.9589 0.7104 1.9589 3.47139.9511 2.4614 1.1144 2.4614 4.448812.5559 2.9262 1.4619 2.9262 5.351615.0389 3.3716 1.7809 3.3716 6.212117.4476 3.8067 2.0827 3.8067 7.046919.8100 4.2365 2.3733 4.2365 7.865622.1437 4.6639 2.6564 4.6639 8.674424.4606 5.0910 2.9343 5.0910 9.477426.7688 5.5191 3.2086 5.5191 10.277429.0742 5.9490 3.4804 5.9490 11.076331.3809 6.3813 3.7505 6.3813 11.875833.6920 6.8164 4.0195 6.8164 12.676736.0096 7.2545 4.2879 7.2545 13.480038.3355 7.6957 4.5560 7.6957 14.286140.6707 8.1403 4.8241 8.1403 15.095443.0162 8.5881 5.0924 8.5881 15.908345.3723 9.0393 5.3610 9.0393 16.724847.7396 9.4937 5.6301 9.4937 17.545350.1182 9.9514 5.8997 9.9514 18.369752.5083 10.4123 6.1700 10.4123 19.198054.9099 10.8763 6.4409 10.8763 20.030357.3230 11.3435 6.7125 11.3435 20.866659.7474 11.8136 6.9849 11.8136 21.706962.1832 12.2867 7.2580 12.2867 22.551064.6300 12.7627 7.5319 12.7627 23.399167.0879 13.2415 7.8065 13.2415 24.250969.5566 13.7231 8.0818 13.7231 25.106572.0359 14.2075 8.3579 14.2075 25.965874.5258 14.6945 8.6348 14.6945 26.828777.0260 15.1843 8.9123 15.1843 27.695279.5364 15.6766 9.1906 15.6766 28.565282.0568 16.1716 9.4696 16.1716 29.438784.5872 16.6692 9.7492 16.6692 30.3157
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )87.1274 17.1693 10.0294 17.1693 31.196089.6772 17.6720 10.3103 17.6720 32.079892.2367 18.1774 10.5918 18.1774 32.966894.8058 18.6853 10.8739 18.6853 33.857297.3844 19.1959 11.1565 19.1959 34.750999.9725 17.0969 11.4396 17.0969 35.6478Revenue (dis
ounted) 771.3955Investment 
ost (dis
ounted) 97.6050Total pro�t (dis
ounted) 673.7904Table 4.9 � Impulse Control solutions for γ = 1, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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0 (b) Undis
ounted revenue forthe �rst ten investments.Figure 4.4 � Lumpy investments and undis
ounted revenue, where T = 100,
r = 0.04, δ = 0.05, γ = 0.5, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and
θ(0) = 1.



96 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

∆
 τ

i=
τ
i+

1
−
τ
i

Figure 4.5 � The length between two investments for T = 100 and parametervalues r = 0.04, δ = 0.2, γ = 0.5, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.
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0 (b) Undis
ounted revenue forthe �rst ten investments.Figure 4.6 � Lumpy investments and undis
ounted revenue, where T = 100,
r = 0.04, δ = 0.05, γ = 1, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and
θ(0) = 1.
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Figure 4.7 � The length between two investments for T = 100 and parametervalues r = 0.04, δ = 0.2, γ = 1, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.

b = 1

3
log 2 b = 1

4
log 2 b = 1

5
log 2 b = 1

6
log 2 b = 1

10
log 2

(τi : I) 4.6759 : 1.3116 5.1658 : 1.2381 5.5832 : 1.1914 0 : 0.7418 0 : 0.77528.6561 : 1.5392 9.7814 : 1.4539 10.7534 : 1.3980 7.7656 : 1.2080 9.7219 : 1.14321.9662 : 1.7807 13.5911 : 1.6692 14.9977 : 1.5949 13.0448 : 1.4152 16.3705 : 1.313214.9229 : 1.9995 16.9755 : 1.8614 18.7535 : 1.7685 17.4932 : 1.5907 21.9534 : 1.452417.6530 : 2.2025 20.0857 : 2.0378 22.1932 : 1.9266 21.4683 : 1.7459 26.9204 : 1.573020.2231 : 2.3943 23.0005 : 2.2031 25.4066 : 2.0736 25.1251 : 1.8873 31.4676 : 1.681022.6732 : 2.5779 25.7678 : 2.3601 28.4478 : 2.2125 28.5485 : 2.0188 35.7025 : 1.779725.0300 : 2.7553 28.4191 : 2.5108 31.3530 : 2.3450 31.7914 : 2.1429 39.6921 : 1.871227.3121 : 2.9280 30.9766 : 2.6566 34.1472 : 2.4725 34.8894 : 2.2610 43.4813 : 1.956929.5335 : 3.0970 33.4569 : 2.7986 36.8494 : 2.5960 37.8681 : 2.3745 47.1023 : 2.037631.7048 : 3.2631 35.8726 : 2.9373 39.4737 : 2.7162 40.7466 : 2.4841 50.5789 : 2.114133.8341 : 3.4270 38.2335 : 3.0736 42.0316 : 2.8337 43.5397 : 2.5905 53.9292 : 2.186935.9284 : 3.5893 40.5479 : 3.2079 44.5320 : 2.9489 46.2589 : 2.6942 57.1675 : 2.256337.9929 : 3.7502 42.8221 : 3.3405 46.9826 : 3.0623 48.9138 : 2.7957 60.3051 : 2.322640.0324 : 3.9103 45.0617 : 3.4720 49.3895 : 3.1741 51.5122 : 2.8952 63.3512 : 2.386142.0508 : 4.0697 47.2715 : 3.6024 51.7580 : 3.2847 54.0606 : 2.9931 66.3131 : 2.447044.0513 : 4.2289 49.4554 : 3.7322 54.0927 : 3.3943 56.5646 : 3.0897 69.1972 : 2.505246.0368 : 4.3879 51.6169 : 3.8615 56.3977 : 3.5031 59.0290 : 3.1851 72.0083 : 2.561048.0100 : 4.5471 53.7592 : 3.9905 58.6762 : 3.6113 61.4580 : 3.2795 74.7508 : 2.614349.9730 : 4.7067 55.8849 : 4.1195 60.9316 : 3.7190 63.8553 : 3.3731 77.4280 : 2.665251.9280 : 4.8668 57.9966 : 4.2485 63.1664 : 3.8265 66.2241 : 3.4661 80.0427 : 2.713753.8767 : 5.0275 60.0964 : 4.3779 65.3833 : 3.9339 68.5673 : 3.5586 82.5974 : 2.759955.8207 : 5.1892 62.1864 : 4.5077 67.5845 : 4.0413 70.8876 : 3.6507 85.0937 : 2.803557.7618 : 5.3518 64.2685 : 4.6381 69.7722 : 4.1488 73.1873 : 3.7426 87.5331 : 2.844759.7012 : 5.5156 66.3445 : 4.7692 71.9481 : 4.2566 75.4687 : 3.8343 89.9166 : 2.883461.6403 : 5.6808 68.4159 : 4.9012 74.1143 : 4.3649 77.7338 : 3.9260 92.2448 : 2.9194
ontinued on next page
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b = 1

3
log 2 b = 1

4
log 2 b = 1

5
log 2 b = 1

6
log 2 b = 1

10
log 2

(τi : I) 63.5803 : 5.8475 70.4843 : 5.0342 76.2723 : 4.4736 79.9845 : 4.0178 94.5183 : 2.952765.5226 : 6.0158 72.5512 : 5.1684 78.4238 : 4.5831 82.2225 : 4.1098 96.7374 : 2.978467.4682 : 6.1859 74.6181 : 5.3039 80.5704 : 4.6933 84.4495 : 4.2021 98.9488 : 2.414269.4182 : 6.3579 76.6862 : 5.4409 82.7134 : 4.8044 86.6672 : 4.294871.3738 : 6.5321 78.7570 : 5.5795 84.8544 : 4.9166 88.8770 : 4.387973.3360 : 6.7086 80.8317 : 5.7199 86.9948 : 5.0299 91.0803 : 4.481775.3058 : 6.8876 82.9116 : 5.8623 89.1359 : 5.1445 93.2787 : 4.576277.2844 : 7.0692 84.9980 : 6.0068 91.2791 : 5.2606 95.4734 : 4.671579.2727 : 7.2536 87.0922 : 6.1536 93.4257 : 5.3783 97.6662 : 4.760781.2718 : 7.4412 89.1954 : 6.3029 95.5770 : 5.4977 99.9020 : 3.972983.2828 : 7.6320 91.3090 : 6.4549 97.7349 : 5.610085.3067 : 7.8263 93.4344 : 6.6098 99.9462 : 4.638887.3447 : 8.0243 95.5727 : 6.767889.3980 : 8.2264 97.7260 : 6.918191.4676 : 8.4327 99.9410 : 5.731193.5549 : 8.643795.6610 : 8.859497.7878 : 9.064799.9841 : 7.4363Rev 371.5616 220.0775 148.0959 108.6965 47.4170ICost 39.2258 27.6829 21.7123 19.5772 12.9673Pro�t 332.3358 192.3946 126.3837 89.1193 34.4497Table 4.10 � Impulse Control solutions for di�erent b, where T = 100, γ = 0.5,
r = 0.04, δ = 0.2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1. Furthermore,Rev and ICost denote the dis
ounted revenue and the dis
ounted investment
ost, respe
tively.

τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )4.6759 1.3116 0.0000 1.3116 2.08048.6561 1.5392 0.5917 1.8351 3.000011.9662 1.7807 0.9465 2.2540 3.764814.9229 1.9995 1.2478 2.6234 4.447917.6530 2.2025 1.5196 2.9623 5.078720.2231 2.3943 1.7717 3.2801 5.672522.6732 2.5779 2.0094 3.5826 6.238625.0300 2.7553 2.2361 3.8733 6.783227.3121 2.9280 2.4539 4.1549 7.310429.5335 3.0970 2.6645 4.4292 7.8237
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )31.7048 3.2631 2.8690 4.6976 8.325433.8341 3.4270 3.0685 4.9613 8.817335.9284 3.5893 3.2636 5.2210 9.301237.9929 3.7502 3.4549 5.4776 9.778240.0324 3.9103 3.6429 5.7317 10.249542.0508 4.0697 3.8280 5.9837 10.715844.0513 4.2289 4.0106 6.2342 11.178046.0368 4.3879 4.1910 6.4834 11.636848.0100 4.5471 4.3693 6.7318 12.092749.9730 4.7067 4.5459 6.9797 12.546251.9280 4.8668 4.7209 7.2272 12.997953.8767 5.0275 4.8945 7.4748 13.448255.8207 5.1892 5.0669 7.7226 13.897357.7618 5.3518 5.2380 7.9708 14.345859.7012 5.5156 5.4082 8.2197 14.793961.6403 5.6808 5.5774 8.4695 15.241963.5803 5.8475 5.7457 8.7203 15.690265.5226 6.0158 5.9133 8.9724 16.138967.4682 6.1859 6.0802 9.2260 16.588569.4182 6.3579 6.2465 9.4812 17.039071.3738 6.5321 6.4121 9.7382 17.490973.3360 6.7086 6.5773 9.9972 17.944275.3058 6.8876 6.7419 10.2585 18.399377.2844 7.0692 6.9061 10.5222 18.856579.2727 7.2536 7.0698 10.7885 19.315981.2718 7.4412 7.2331 11.0577 19.777883.2828 7.6320 7.3959 11.3299 20.242485.3067 7.8263 7.5584 11.6055 20.710087.3447 8.0243 7.7204 11.8845 21.180989.398 8.2264 7.8821 12.1674 21.655391.4676 8.4327 8.0433 12.4544 22.133593.5549 8.6437 8.204 12.7457 22.615895.661 8.8594 8.3642 13.0415 23.102497.7878 9.0647 8.5231 13.3263 23.593899.9841 7.4363 8.5889 11.7308 24.1012Revenue (dis
ounted) 371.5616Investment 
ost (dis
ounted) 39.2258Total pro�t (dis
ounted) 332.3358Table 4.11 � Impulse Control solutions for b = 1

3 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.1658 1.2381 0 1.2381 1.89529.7814 1.4539 0.4919 1.6998 2.69513.5911 1.6692 0.7934 2.0659 3.355216.9755 1.8614 1.0499 2.3864 3.941620.0857 2.0378 1.2811 2.6784 4.480623.0005 2.2031 1.4952 2.9507 4.985725.7678 2.3601 1.6965 3.2084 5.465228.4191 2.5108 1.888 3.4548 5.924630.9766 2.6566 2.0715 3.6924 6.367833.4569 2.7986 2.2484 3.9228 6.797635.8726 2.9373 2.4197 4.1472 7.216238.2335 3.0736 2.5863 4.3668 7.625440.5479 3.2079 2.7488 4.5823 8.026442.8221 3.3405 2.9077 4.7944 8.420545.0617 3.472 3.0634 5.0036 8.808647.2715 3.6024 3.2162 5.2105 9.191549.4554 3.7322 3.3666 5.4155 9.570051.6169 3.8615 3.5147 5.6188 9.944553.7592 3.9905 3.6607 5.8209 10.315855.8849 4.1195 3.805 6.0219 10.684157.9966 4.2485 3.9475 6.2223 11.050060.0964 4.3779 4.0885 6.4221 11.413962.1864 4.5077 4.2281 6.6217 11.776164.2685 4.6381 4.3664 6.8213 12.136966.3445 4.7692 4.5035 7.0210 12.496668.4159 4.9012 4.6395 7.2210 12.855670.4843 5.0342 4.7746 7.4215 13.21472.5512 5.1684 4.9086 7.6227 13.572274.6181 5.3039 5.0418 7.8248 13.930376.6862 5.4409 5.1741 8.0280 14.288778.7570 5.5795 5.3057 8.2324 14.647580.8317 5.7199 5.4365 8.4382 15.0071
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )82.9116 5.8623 5.5666 8.6456 15.367584.9980 6.0068 5.6961 8.8548 15.72987.0922 6.1536 5.8248 9.0660 16.091989.1954 6.3029 5.9529 9.2794 16.456491.3090 6.4549 6.0804 9.4951 16.822793.4344 6.6098 6.2072 9.7134 17.190995.5727 6.7678 6.3334 9.9345 17.561597.7260 6.9181 6.4583 10.1472 17.934699.9410 5.7311 6.5156 8.9889 18.3185Revenue (dis
ounted) 220.0775Investment 
ost (dis
ounted) 27.6829Total pro�t (dis
ounted) 192.3946Table 4.12 � Impulse Control solutions for b = 1

4 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.

τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.5832 1.1914 0 1.1914 1.77410.7534 1.398 0.4236 1.6098 2.490714.9977 1.5949 0.6888 1.9393 3.079118.7535 1.7685 0.915 2.226 3.599822.1932 1.9266 1.1188 2.486 4.076625.4066 2.0736 1.3073 2.7273 4.522128.4478 2.2125 1.4845 2.9547 4.943731.353 2.345 1.6527 3.1714 5.346434.1472 2.4725 1.8136 3.3793 5.733836.8494 2.596 1.9685 3.5802 6.108439.4737 2.7162 2.1182 3.7753 6.472242.0316 2.8337 2.2635 3.9654 6.826844.532 2.9489 2.4049 4.1514 7.173446.9826 3.0623 2.543 4.3338 7.513249.3895 3.1741 2.678 4.5131 7.846851.758 3.2847 2.8103 4.6899 8.175254.0927 3.3943 2.9401 4.8644 8.498856.3977 3.5031 3.0678 5.037 8.818458.6762 3.6113 3.1934 5.208 9.134360.9316 3.719 3.3172 5.3777 9.4469
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )63.1664 3.8265 3.4393 5.5462 9.756765.3833 3.9339 3.5599 5.7138 10.064167.5845 4.0413 3.679 5.8808 10.369269.7722 4.1488 3.7968 6.0472 10.672571.9481 4.2566 3.9134 6.2133 10.974174.1143 4.3649 4.0288 6.3793 11.274476.2723 4.4736 4.1431 6.5452 11.573678.4238 4.5831 4.2564 6.7113 11.871880.5704 4.6933 4.3688 6.8776 12.169482.7134 4.8044 4.4802 7.0445 12.466584.8544 4.9166 4.5907 7.2119 12.763386.9948 5.0299 4.7005 7.3801 13.060089.1359 5.1445 4.8094 7.5492 13.356991.2791 5.2606 4.9176 7.7194 13.654093.4257 5.3783 5.0250 7.8908 13.951595.5770 5.4977 5.1317 8.0635 14.249897.7349 5.6100 5.2372 8.2286 14.548999.9462 4.6388 5.2876 7.2826 14.8555Revenue (dis
ounted) 148.0959Investment 
ost (dis
ounted) 21.7123Total pro�t (dis
ounted) 126.3837Table 4.13 � Impulse Control solutions for b = 1

5 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.

τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )0 0.7418 0 0.7418 17.7656 1.208 0.1570 1.2865 1.897113.0448 1.4152 0.4476 1.6390 2.507017.4932 1.5907 0.6733 1.9274 3.020921.4683 1.7459 0.8703 2.1811 3.480125.1251 1.8873 1.0496 2.4121 3.902628.5485 2.0188 1.2163 2.6270 4.298131.7914 2.1429 1.3734 2.8296 4.6727
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )34.8894 2.2610 1.5227 3.0224 5.030637.8681 2.3745 1.6658 3.2074 5.374740.7466 2.4841 1.8036 3.3859 5.707243.5397 2.5905 1.9367 3.5589 6.029946.2589 2.6942 2.0660 3.7272 6.344048.9138 2.7957 2.1917 3.8915 6.650751.5122 2.8952 2.3143 4.0524 6.950954.0606 2.9931 2.4342 4.2102 7.245356.5646 3.0897 2.5516 4.3655 7.534659.0290 3.1851 2.6667 4.5184 7.819361.4580 3.2795 2.7798 4.6694 8.099963.8553 3.3731 2.8909 4.8186 8.376966.2241 3.4661 3.0003 4.9663 8.650568.5673 3.5586 3.1082 5.1127 8.921270.8876 3.6507 3.2145 5.2580 9.189373.1873 3.7426 3.3194 5.4023 9.454975.4687 3.8343 3.4231 5.5459 9.718577.7338 3.9260 3.5255 5.6888 9.980279.9845 4.0178 3.6268 5.8312 10.240282.2225 4.1098 3.7271 5.9733 10.498784.4495 4.2021 3.8263 6.1152 10.756086.6672 4.2948 3.9245 6.2570 11.012288.8770 4.3879 4.0219 6.3989 11.267591.0803 4.4817 4.1183 6.5409 11.522093.2787 4.5762 4.2140 6.6832 11.776095.4734 4.6715 4.3088 6.8259 12.029597.6662 4.7607 4.4024 6.9619 12.282899.9020 3.9729 4.4517 6.1988 12.5411Revenue (dis
ounted) 108.6965Investment 
ost (dis
ounted) 19.5772Total pro�t (dis
ounted) 59.1193Table 4.14 � Impulse Control solutions for b = 1

6 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )0 0.7752 0 0.7752 19.7219 1.1432 0.1109 1.1987 1.673916.3705 1.3132 0.3171 1.4717 2.134721.9534 1.4524 0.4818 1.6934 2.521726.9204 1.5730 0.6271 1.8866 2.866031.4676 1.6810 0.7598 2.0609 3.181235.7025 1.7797 0.8835 2.2215 3.474739.6921 1.8712 1.0003 2.3713 3.751243.4813 1.9569 1.1114 2.5125 4.013947.1023 2.0376 1.2179 2.6465 4.264950.5789 2.1141 1.3204 2.7743 4.505953.9292 2.1869 1.4195 2.8966 4.738157.1675 2.2563 1.5157 3.0142 4.962660.3051 2.3226 1.6093 3.1273 5.180063.3512 2.3861 1.7006 3.2364 5.391266.3131 2.4470 1.7897 3.3418 5.596569.1972 2.5052 1.8771 3.4437 5.796472.0083 2.5610 1.9627 3.5423 5.991274.7508 2.6143 2.0468 3.6377 6.181377.4280 2.6652 2.1295 3.7300 6.366980.0427 2.7137 2.2110 3.8192 6.548182.5974 2.7599 2.2913 3.9055 6.725285.0937 2.8035 2.3706 3.9888 6.898287.5331 2.8447 2.4489 4.0692 7.067389.9166 2.8834 2.5263 4.1465 7.232592.2448 2.9194 2.6029 4.2208 7.393994.5183 2.9527 2.6787 4.2920 7.551596.7374 2.9784 2.7537 4.3553 7.705398.9488 2.4142 2.7985 3.8134 7.8586Revenue (dis
ounted) 47.417Investment 
ost (dis
ounted) 12.9673Total pro�t (dis
ounted) 34.4497Table 4.15 � Impulse Control solutions for b = 1

10 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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C = 4 C = 8 C = 16 C = 32

(τi : I) 5.7915 : 1.8832 8.0844 : 2.4856 11.1517 : 3.3199 15.2866 : 4.47549.6593 : 2.2099 12.7147 : 2.9206 16.6712 : 3.8947 21.8148 : 5.224112.8816 : 2.5607 16.5386 : 3.3546 21.1933 : 4.4297 27.1293 : 5.878915.7638 : 2.8797 19.9372 : 3.7422 25.1901 : 4.8993 31.8052 : 6.444318.4283 : 3.1763 23.0621 : 4.0984 28.8471 : 5.3256 36.0657 : 6.951320.9394 : 3.4571 25.9923 : 4.4325 32.2606 : 5.7215 40.0266 : 7.416923.3358 : 3.7265 28.7755 : 4.7502 35.4889 : 6.0947 43.7577 : 7.851525.6433 : 3.9871 31.4435 : 5.0556 38.5705 : 6.4506 47.3050 : 8.261827.8799 : 4.2412 34.0186 : 5.3513 41.5327 : 6.7926 50.7012 : 8.652530.0590 : 4.4903 36.5173 : 5.6394 44.3957 : 7.1237 53.9701 : 9.027032.1907 : 4.7354 38.9523 : 5.9215 47.1748 : 7.4458 57.1301 : 9.387934.2832 : 4.9775 41.3336 : 6.1989 49.8823 : 7.7606 60.1956 : 9.737336.3429 : 5.2174 43.6692 : 6.4726 52.5280 : 8.0694 63.1782 : 10.076738.3751 : 5.4557 45.9658 : 6.7433 55.1200 : 8.3732 66.0873 : 10.407540.3842 : 5.6929 48.2290 : 7.0118 57.6651 : 8.6731 68.9309 : 10.730742.3740 : 5.9295 50.4635 : 7.2788 60.1692 : 8.9698 71.7156 : 11.047244.3476 : 6.1658 52.6734 : 7.5447 62.6371 : 9.2641 74.4470 : 11.357946.3080 : 6.4022 54.8622 : 7.8101 65.0733 : 9.5565 77.1303 : 11.663448.2575 : 6.6390 57.0331 : 8.0754 67.4816 : 9.8476 79.7695 : 11.964350.1983 : 6.8765 59.1889 : 8.3409 69.8655 : 10.1379 82.3685 : 12.261152.1324 : 7.1149 61.3321 : 8.6072 72.2281 : 10.4280 84.9306 : 12.554254.0615 : 7.3546 63.4651 : 8.8745 74.5721 : 10.7183 87.4588 : 12.844155.9872 : 7.5957 65.5899 : 9.1432 76.9002 : 11.0092 89.9557 : 13.131157.9112 : 7.8386 67.7086 : 9.4136 79.2148 : 11.3012 92.4238 : 13.415659.8346 : 8.0833 69.8230 : 9.6860 81.5182 : 11.5947 94.8653 : 13.697861.7589 : 8.3302 71.9347 : 9.9609 83.8124 : 11.8901 97.2825 : 13.962563.6852 : 8.5795 74.0455 : 10.2384 86.0995 : 12.1878 99.7136 : 12.032465.6147 : 8.8313 76.1570 : 10.5191 88.3813 : 12.488367.5486 : 9.0860 78.2706 : 10.8031 90.6599 : 12.792069.4879 : 9.3438 80.3880 : 11.0909 92.9369 : 13.099471.4338 : 9.6049 82.5104 : 11.3829 95.2143 : 13.410773.3871 : 9.8696 84.6394 : 11.6793 97.4939 : 13.708175.3490 : 10.1381 86.7765 : 11.9807 99.8182 : 11.6236
ontinued on next page



106 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
ontinued from previous page
C = 4 C = 8 C = 16 C = 32

(τi : I) 77.3205 : 10.4107 88.9230 : 12.287579.3027 : 10.6877 91.0805 : 12.600081.2965 : 10.9694 93.2503 : 12.918883.3031 : 11.2562 95.4341 : 13.244185.3235 : 11.5483 97.6337 : 13.556287.3588 : 11.8462 99.8944 : 11.335189.4101 : 12.150391.4786 : 12.460993.5657 : 12.778695.6724 : 13.103697.8006 : 13.4128Rev 780.7835 769.1875 747.0746 712.6433ICost 79.5936 96.8939 120.5584 150.9987Pro�t 701.1899 672.2936 626.5162 561.6447Table 4.16 � Impulse Control solutions for di�erent C, where T = 100,
γ = 0.5, r = 0.04, δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.Furthermore, Rev and ICost denote the dis
ounted revenue and the dis
ountedinvestment 
ost, respe
tively.
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.7915 1.8832 0 1.8832 3.00729.6593 2.2099 0.8688 2.6444 4.347712.8816 2.5607 1.3881 3.2548 5.464415.7638 2.8797 1.8289 3.7941 6.463318.4283 3.1763 2.2267 4.2897 7.386820.9394 3.4571 2.5960 4.7552 8.257023.3358 3.7265 2.9445 5.1987 9.087625.6433 3.9871 3.2770 5.6256 9.887327.8799 4.2412 3.5967 6.0396 10.662430.0590 4.4903 3.9060 6.4433 11.417632.1907 4.7354 4.2067 6.8387 12.156534.2832 4.9775 4.5001 7.2276 12.881736.3429 5.2174 4.7873 7.6111 13.5955
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )38.3751 5.4557 5.0691 7.9903 14.299840.3842 5.6929 5.3463 8.3661 14.996142.3740 5.9295 5.6194 8.7392 15.685744.3476 6.1658 5.8890 9.1103 16.369746.3080 6.4022 6.1554 9.4799 17.049148.2575 6.6390 6.4191 9.8485 17.724850.1983 6.8765 6.6803 10.2166 18.397452.1324 7.1149 6.9393 10.5846 19.067754.0615 7.3546 7.1963 10.9528 19.736355.9872 7.5957 7.4517 11.3216 20.403757.9112 7.8386 7.7054 11.6913 21.070559.8346 8.0833 7.9578 12.0622 21.737161.7589 8.3302 8.2089 12.4347 22.404063.6852 8.5795 8.4589 12.8089 23.071665.6147 8.8313 8.7079 13.1853 23.740367.5486 9.0860 8.9560 13.5640 24.410669.4879 9.3438 9.2033 13.9455 25.082771.4338 9.6049 9.4498 14.3298 25.757173.3871 9.8696 9.6956 14.7174 26.434075.3490 10.1381 9.9408 15.1085 27.114077.3205 10.4107 10.1853 15.5034 27.797379.3027 10.6877 10.4294 15.9024 28.484281.2965 10.9694 10.6728 16.3058 29.175283.3031 11.2562 10.9158 16.7141 29.870785.3235 11.5483 11.1582 17.1275 30.570987.3588 11.8462 11.4001 17.5463 31.276289.4101 12.1503 11.6415 17.9711 31.987291.4786 12.4609 11.8823 18.4021 32.704193.5657 12.7786 12.1225 18.8398 33.427495.6724 13.1036 12.3620 19.2846 34.157597.8006 13.4128 12.5995 19.7126 34.8951Revenue (dis
ounted) 780.7835Investment 
ost (dis
ounted) 79.5936Total pro�t (dis
ounted) 701.1899Table 4.17 � Impulse Control solutions for C = 4, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.



108 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )8.0844 2.4856 0.0000 2.4856 3.801812.7147 2.9206 0.9846 3.4129 5.406616.5386 3.3546 1.5885 4.1489 6.731819.9372 3.7422 2.1025 4.7935 7.909723.0621 4.0984 2.5658 5.3813 8.992725.9923 4.4325 2.9949 5.9299 10.008228.7755 4.7502 3.3986 6.4495 10.972831.4435 5.0556 3.7826 6.9468 11.897534.0186 5.3513 4.1507 7.4266 12.789936.5173 5.6394 4.5056 7.8922 13.655938.9523 5.9215 4.8495 8.3463 14.499841.3336 6.1989 5.1839 8.7909 15.325143.6692 6.4726 5.5101 9.2276 16.134645.9658 6.7433 5.8292 9.6579 16.930548.2290 7.0118 6.1419 10.0828 17.714950.4635 7.2788 6.4491 10.5033 18.489352.6734 7.5447 6.7512 10.9203 19.255254.8622 7.8101 7.0489 11.3345 20.013857.0331 8.0754 7.3425 11.7466 20.766259.1889 8.3409 7.6324 12.1572 21.513361.3321 8.6072 7.9190 12.5667 22.256163.4651 8.8745 8.2026 12.9758 22.995365.5899 9.1432 8.4834 13.3849 23.731767.7086 9.4136 8.7617 13.7944 24.466069.8230 9.6860 9.0376 14.2048 25.198871.9347 9.9609 9.3113 14.6165 25.930774.0455 10.2384 9.5830 15.0299 26.662276.1570 10.5191 9.8527 15.4454 27.394078.2706 10.8031 10.1207 15.8635 28.126580.3880 11.0909 10.3870 16.2844 28.860382.5104 11.3829 10.6517 16.7087 29.595984.6394 11.6793 10.9149 17.1368 30.333886.7765 11.9807 11.1765 17.5690 31.074488.9230 12.2875 11.4367 18.0058 31.818491.0805 12.6000 11.6955 18.4477 32.566193.2503 12.9188 11.9528 18.8952 33.318195.4341 13.2441 12.2087 19.3485 34.074997.6337 13.5562 12.4621 19.7872 34.837399.8944 11.3351 12.5899 17.6300 35.6208Revenue (dis
ounted) 769.1875Investment 
ost (dis
ounted) 96.8939Total pro�t (dis
ounted) 672.2936Table 4.18 � Impulse Control solutions for C = 8, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )11.1517 3.3199 0.0000 3.3199 4.864916.6712 3.8947 1.1008 4.4451 6.777821.1933 4.4297 1.7993 5.3294 8.345025.1901 4.8993 2.3961 6.0974 9.730228.8471 5.3256 2.9343 6.7928 10.997632.2606 5.7215 3.4320 7.4375 12.180735.4889 6.0947 3.8996 8.0445 13.299538.5705 6.4506 4.3434 8.6223 14.367541.5327 6.7926 4.7679 9.1766 15.394144.3957 7.1237 5.1762 9.7118 16.386447.1748 7.4458 5.5707 10.2312 17.349549.8823 7.7606 5.9533 10.7372 18.287952.5280 8.0694 6.3254 11.2321 19.204855.1200 8.3732 6.6884 11.7174 20.103157.6651 8.6731 7.0431 12.1947 20.985260.1692 8.9698 7.3905 12.6651 21.853062.6371 9.2641 7.7312 13.1297 22.708465.0733 9.5565 8.0658 13.5894 23.552767.4816 9.8476 8.3949 14.0450 24.387469.8655 10.1379 8.7189 14.4974 25.213572.2281 10.4280 9.0382 14.9471 26.032374.5721 10.7183 9.3531 15.3949 26.844776.9002 11.0092 9.6640 15.8412 27.651679.2148 11.3012 9.9711 16.2868 28.453881.5182 11.5947 10.2747 16.7321 29.252083.8124 11.8901 10.5749 17.1776 30.047286.0995 12.1878 10.8720 17.6238 30.839888.3813 12.4883 11.1660 18.0714 31.630690.6599 12.7920 11.4572 18.5206 32.420392.9369 13.0994 11.7456 18.9722 33.209595.2143 13.4107 12.0313 19.4263 33.998797.4939 13.7081 12.3135 19.8649 34.788899.8182 11.6236 12.4796 17.8634 35.5944Revenue (dis
ounted) 747.0746Investment 
ost (dis
ounted) 120.5584Total pro�t (dis
ounted) 626.5162Table 4.19 � Impulse Control solutions for C = 16, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.



110 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )15.2866 4.4754 0.0000 4.4754 6.297921.8148 5.2241 1.2128 5.8305 8.560427.1293 5.8789 2.0142 6.8860 10.402331.8052 6.4443 2.7029 7.7957 12.022836.0657 6.9513 3.3250 8.6138 13.499440.0266 7.4169 3.9008 9.3673 14.872243.7577 7.8515 4.4416 10.0723 16.165347.3050 8.2618 4.9546 10.7391 17.394750.7012 8.6525 5.4448 11.3748 18.571753.9701 9.0270 5.9158 11.9848 19.704657.1301 9.3879 6.3703 12.5730 20.799860.1956 9.7373 6.8104 13.1425 21.862263.1782 10.0767 7.2379 13.6956 22.895966.0873 10.4075 7.6542 14.2345 23.904168.9309 10.7307 8.0604 14.7609 24.889671.7156 11.0472 8.4574 15.2759 25.854774.4470 11.3579 8.8461 15.7810 26.801477.1303 11.6634 9.2273 16.2771 27.731379.7695 11.9643 9.6014 16.7650 28.646082.3685 12.2611 9.9692 17.2457 29.546784.9306 12.5542 10.3309 17.7196 30.434787.4588 12.8441 10.6871 18.1876 31.310989.9557 13.1311 11.0381 18.6501 32.176392.4238 13.4156 11.3842 19.1077 33.031794.8653 13.6978 11.7258 19.5607 33.877897.2825 13.9625 12.0624 19.9937 34.715599.7136 12.0324 12.2950 18.1799 35.5581Revenue (dis
ounted) 712.6433Investment 
ost (dis
ounted) 150.9987Total pro�t (dis
ounted) 561.6447Table 4.20 � Impulse Control solutions for C = 32, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.
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η = 0.01 η = 0.02 η = 0.03

(τi : I) 5.2730 : 1.7250 6.3504 : 1.9594 7.5126 : 2.20428.9696 : 2.0366 10.4003 : 2.3175 11.902 : 2.606012.0850 : 2.3821 13.8098 : 2.7062 15.5932 : 3.035914.9011 : 2.7029 16.8941 : 3.0676 18.9345 : 3.436617.5308 : 3.0067 19.7779 : 3.4110 22.0629 : 3.818820.0327 : 3.2991 22.5261 : 3.7427 25.0493 : 4.189722.4425 : 3.5837 25.1779 : 4.0670 27.9368 : 4.554224.7835 : 3.8631 27.7594 : 4.3869 30.7539 : 4.915627.0723 : 4.1393 30.2889 : 4.7047 33.5212 : 5.276529.3212 : 4.4136 32.7803 : 5.0219 36.2541 : 5.639031.5397 : 4.6871 35.2443 : 5.3400 38.9647 : 6.004933.7353 : 4.9607 37.6894 : 5.6602 41.6632 : 6.375735.9140 : 5.2353 40.1229 : 5.9836 44.3578 : 6.752938.0810 : 5.5115 42.5509 : 6.3111 47.0561 : 7.137840.2406 : 5.7900 44.9786 : 6.6436 49.7647 : 7.531942.3967 : 6.0713 47.411 : 6.9821 52.4898 : 7.936544.5525 : 6.3560 49.8523 : 7.3274 55.2371 : 8.353246.7110 : 6.6445 52.3066 : 7.6804 58.0124 : 8.783448.8751 : 6.9374 54.7778 : 8.0421 60.8212 : 9.228851.0474 : 7.2352 57.2696 : 8.4135 63.6691 : 9.691353.2301 : 7.5385 59.7857 : 8.7955 66.562 : 10.172955.4257 : 7.8477 62.3297 : 9.1893 69.5058 : 10.675757.6364 : 8.1634 64.9055 : 9.5961 72.5068 : 11.202359.8643 : 8.4863 67.5167 : 10.0172 75.5718 : 11.755662.1118 : 8.8168 70.1673 : 10.4539 78.7082 : 12.338664.3809 : 9.1557 72.8614 : 10.9080 81.9241 : 12.955166.6739 : 9.5037 75.6034 : 11.3811 85.2281 : 13.609468.9931 : 9.8616 78.3978 : 11.8752 88.6304 : 14.306471.3408 : 10.2301 81.2498 : 12.3925 92.1421 : 15.051873.7194 : 10.6101 84.1647 : 12.9354 95.7764 : 15.817776.1314 : 11.0026 87.1483 : 13.5069 99.595 : 12.3688
ontinued on next page



112 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
ontinued from previous page
η = 0.01 η = 0.02 η = 0.03

(τi : I) 78.5796 : 11.4087 90.2071 : 14.110181.0668 : 11.8296 93.3484 : 14.748383.5959 : 12.2664 96.5805 : 15.392686.1701 : 12.7208 99.9593 : 12.127388.793 : 13.194291.4683 : 13.688594.1999 : 14.205396.9928 : 14.718299.8973 : 11.8801Rev 762.5966 733.2291 701.2148ICost 61.1145 56.6083 52.6074Pro�t 701.4821 676.6208 648.6074Table 4.21 � Impulse Control solutions for di�erent η, where T = 100, γ = 0.5,
r = 0.04, δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.Furthermore, Rev and ICost denote the dis
ounted revenue and the dis
ountedinvestment 
ost, respe
tively.
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.2730 1.7250 0.0000 1.725 2.82758.9696 2.0366 0.8236 2.4483 4.108612.0850 2.3821 1.3130 3.0386 5.188414.9011 2.7029 1.7301 3.568 6.164317.5308 3.0067 2.1087 4.0611 7.075720.0327 3.2991 2.4622 4.5302 7.942822.4425 3.5837 2.7977 4.9825 8.778024.7835 3.8631 3.1197 5.423 9.589327.0723 4.1393 3.4311 5.8548 10.382529.3212 4.4136 3.7340 6.2806 11.162031.5397 4.6871 4.0300 6.702 11.930833.7353 4.9607 4.3202 7.1208 12.691835.9140 5.2353 4.6056 7.5381 13.446938.0810 5.5115 4.8870 7.955 14.197940.2406 5.7900 5.1649 8.3724 14.946342.3967 6.0713 5.4398 8.7912 15.693644.5525 6.3560 5.7121 9.212 16.440746.7110 6.6445 5.9822 9.6356 17.1888
ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )48.8751 6.9374 6.2504 10.0626 17.938851.0474 7.2352 6.5168 10.4936 18.691753.2301 7.5385 6.7816 10.9293 19.448155.4257 7.8477 7.0451 11.3702 20.209157.6364 8.1634 7.3072 11.817 20.975259.8643 8.4863 7.5681 12.2703 21.747462.1118 8.8168 7.8279 12.7308 22.526364.3809 9.1557 8.0865 13.199 23.312766.6739 9.5037 8.3439 13.6757 24.107468.9931 9.8616 8.6002 14.1617 24.911271.3408 10.2301 8.8552 14.6576 25.724873.7194 10.6101 9.1088 15.1645 26.549276.1314 11.0026 9.3609 15.6831 27.385178.5796 11.4087 9.6113 16.2144 28.233681.0668 11.8296 9.8598 16.7595 29.095683.5959 12.2664 10.1062 17.3195 29.972186.1701 12.7208 10.3499 17.8958 30.864388.793 13.1942 10.5908 18.4896 31.773391.4683 13.6885 10.8283 19.1026 32.700594.1999 14.2053 11.0618 19.7362 33.647296.9928 14.7182 11.2896 20.363 34.615199.8973 11.8801 11.3909 17.5756 35.6218Revenue (dis
ounted) 762.5966Investment 
ost (dis
ounted) 61.1145Total pro�t (dis
ounted) 701.4821Table 4.22 � Impulse Control solutions for η = 0.01, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.



114 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )6.3504 1.9594 0 1.9594 3.200910.4003 2.3175 0.8717 2.7533 4.604513.8098 2.7062 1.3922 3.4023 5.786116.8941 3.0676 1.8360 3.9856 6.855019.7779 3.4110 2.2388 4.5304 7.854522.5261 3.7427 2.6147 5.0500 8.807025.1779 4.0670 2.9714 5.5527 9.726027.7594 4.3869 3.3135 6.0437 10.620730.2889 4.7047 3.6441 6.5267 11.497332.7803 5.0219 3.9655 7.0046 12.360835.2443 5.3400 4.2793 7.4796 13.214737.6894 5.6602 4.5867 7.9536 14.062240.1229 5.9836 4.8887 8.4279 14.905542.5509 6.3111 5.1860 8.9041 15.747044.9786 6.6436 5.4792 9.3832 16.588447.411 6.9821 5.7687 9.8664 17.431449.8523 7.3274 6.0550 10.3549 18.277552.3066 7.6804 6.3382 10.8495 19.128154.7778 8.0421 6.6186 11.3514 19.984557.2696 8.4135 6.8963 11.8616 20.848159.7857 8.7955 7.1713 12.3812 21.720162.3297 9.1893 7.4437 12.9112 22.601864.9055 9.5961 7.7133 13.4527 23.494567.5167 10.0172 7.9800 14.0072 24.399570.1673 10.4539 8.2437 14.5758 25.318172.8614 10.9080 8.5040 15.1600 26.251875.6034 11.3811 8.7606 15.7614 27.202178.3978 11.8752 9.0130 16.3817 28.170681.2498 12.3925 9.2606 17.0228 29.15984.1647 12.9354 9.5028 17.6868 30.169287.1483 13.5069 9.7386 18.3762 31.203390.2071 14.1101 9.9670 19.0936 32.263493.3484 14.7483 10.1868 19.8417 33.352196.5805 15.3926 10.3954 20.5903 34.472399.9593 12.1273 10.4758 17.3652 35.6432Revenue (dis
ounted) 733.2291Investment 
ost (dis
ounted) 56.6083Total pro�t (dis
ounted) 676.6208Table 4.23 � Impulse Control solutions for η = 0.02, T = 100 and parametervalues r = 0.04, δ = 0.2, b = 1

2 log 2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.



Bibliography Chapter 4 115
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )7.5126 2.2042 0 2.2042 3.603711.9020 2.6060 0.9162 3.0641 5.124915.5932 3.0359 1.4645 3.7681 6.404218.9345 3.4366 1.9315 4.4024 7.562222.0629 3.8188 2.3548 4.9962 8.646425.0493 4.1897 2.7494 5.5644 9.681427.9368 4.5542 3.1233 6.1158 10.682130.7539 4.9156 3.4815 6.6563 11.658533.5212 5.2765 3.8271 7.1901 12.617636.2541 5.6390 4.1625 7.7203 13.564738.9647 6.0049 4.4894 8.2496 14.504241.6632 6.3757 4.8090 8.7802 15.439444.3578 6.7529 5.1221 9.3139 16.373347.0561 7.1378 5.4295 9.8526 17.308449.7647 7.5319 5.7317 10.3977 18.247152.4898 7.9365 6.0290 10.9510 19.191655.2371 8.3532 6.3215 11.5139 20.143758.0124 8.7834 6.6095 12.0881 21.105660.8212 9.2288 6.8927 12.6752 22.079063.6691 9.6913 7.1711 13.2769 23.066066.5620 10.1729 7.4443 13.8951 24.068669.5058 10.6757 7.7120 14.5317 25.088972.5068 11.2023 7.9736 15.1891 26.128975.5718 11.7556 8.2282 15.8697 27.191278.7082 12.3386 8.4750 16.5761 28.278281.9241 12.9551 8.7129 17.3115 29.392785.2281 13.6094 8.9402 18.0795 30.537888.6304 14.3064 9.1552 18.8840 31.717092.1421 15.0518 9.3557 19.7296 32.934095.7764 15.8177 9.5378 20.5867 34.193699.5950 12.3688 9.5919 17.1648 35.5170Revenue (dis
ounted) 701.2148Investment 
ost (dis
ounted) 52.6074Total pro�t (dis
ounted) 648.6074Table 4.24 � Impulse Control solutions for η = 0.03, T = 100 and parametervalues r = 0.04, δ = 0.2, b = 1

2 log 2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.
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CHAPTER 5Numeri
al Algorithms for Deterministi
 ImpulseControl models with appli
ationsAbstra
t In this 
hapter we des
ribe three di�erent algorithms, two ofwhi
h are new in the literature. We take both the size of the jump andthe jump times as de
ision variables. The �rst (new) algorithm 
on-siders an Impulse Control problem as a (multipoint) Boundary ValueProblem and uses a 
ontinuation te
hnique to solve it. The se
ond(new) approa
h is the 
ontinuation algorithm that requires the 
anoni-
al system to be solved expli
itly. This redu
es the in�nite dimensionalproblem to a �nite dimensional system of, in general, nonlinear equa-tions, without dis
retizing the problem. Finally, we present a gradientalgorithm, where we reformulate the problem as a �nite dimensionalproblem, whi
h 
an be solved using some standard optimization te
h-niques. As an appli
ation we solve a forest management problem anda dike heightening problem. We numeri
ally 
ompare the e�
ien
yof our methods to other approa
hes, su
h as dynami
 programming,ba
kward algorithm and value fun
tion approa
h.
5.1 Introdu
tionFor many problems in the area of e
onomi
s and operations resear
h it is realisti
 toallow for jumps in the state variable. Take, for example, a �rm that in
reases the
apital sto
k by a lumpy investment, or the de
rease of the volume of a natural re-sour
e after ea
h drilling. This 
hapter therefore 
onsiders optimal 
ontrol models inwhi
h the time moment of these jumps and the size of the jumps are taken as (new)de
ision variables. Blaquière (1977a; 1977b; 1979; 1985) extends the standard theoryon optimal 
ontrol by deriving a Maximum Prin
iple, the so 
alled Impulse ControlMaximum Prin
iple, that gives ne
essary (and su�
ient) optimality 
onditions for



120 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSsolving su
h problems. In Chapter 2 we present the ne
essary optimality 
onditionsof the Impulse Control Maximum Prin
iple based on the 
urrent value formulation.In Chapter 2 we also design a transformation, whi
h ensures that the appli
ationof the Impulse Control Maximum Prin
iple 
an be applied to problems with a �xed
ost. For a review of the literature applying the impulse 
ontrol maximum prin
iple,we refer to Chapter 2 of this thesis.Like Blaquière (1977a; 1977b; 1979; 1985) and Chahim et al. (2012b), we 
onsider aframework where the number of jumps is not known. This distinguishes our approa
hfrom, e.g., Liu et al. (1998) and Wu and Teo (2006) where a gradient method is usedassuming the number of jumps is known, and Augustin (2002, pp. 71�81) where theImpulse Control Maximum Prin
iple is used for a �xed number of jumps (see e.g.Rempala (1990)). Other approa
hes in the literature in
lude the value fun
tion ap-proa
h found in Neuman and Costanza (1990), where a value fun
tion is de�ned fora �xed number of jumps and Erdlenbru
h et al. (2011) or Eijgenraam et al. (2011)where dynami
 programming is the tool of 
hoi
e.In the literature two di�erent algorithms based on the Impulse Control MaximumPrin
iple (Blaquière (1977a; 1977b; 1979; 1985) and Chahim et al. (2012b)) are de-rived. Luhmer (1986) derived a forward algorithm (starts at time 0) and Kort (1989,pp. 62�70) derived a ba
kward algorithm (starts at �nal time horizon T ). Both algo-rithms have some drawba
ks. To initialize the forward algorithm the initial 
ostate(s)value(s) is the 
hoi
e variable. A similar drawba
k holds for the ba
kward algorithm.Here information on the state variable(s) at the end of the planning period is needed,i.e. this (these) value(s) is (are) the 
hoi
e variables(s).In this 
hapter we des
ribe three di�erent algorithms, from whi
h two (as far aswe know) are new in the literature. We take both the size of the jump and thejump times as de
ision variables. The �rst (new) algorithm 
onsiders an ImpulseControl problem as a (multipoint) Boundary Value Problem and uses a 
ontinuationte
hnique to solve it. The se
ond (new) approa
h is the 
ontinuation algorithm thatrequires the 
anoni
al system to be solved expli
itly. This redu
es the in�nite di-mensional problem to a �nite dimensional system of, in general, nonlinear equations,without dis
retizing the problem. Finally, we present a gradient algorithm, wherewe reformulate the problem as a �nite dimensional problem, whi
h 
an be solvedusing some standard optimization te
hniques. As an appli
ation we solve a forestmanagement problem and a dike heightening problem. We numeri
ally 
ompare thee�
ien
y of our methods to other approa
hes, su
h as dynami
 programming, ba
k-



An Impulse Control Model 121ward algorithm and value fun
tion approa
h.This 
hapter is organized as follows. In Se
tion 5.2.1 we introdu
e the type of op-timal 
ontrol problem we 
onsider in this 
hapter. In Se
tion 5.3 we des
ribe thethree algorithm suitable for solving Impulse Control problems. In Se
tion 5.3.1 weintrodu
e some notation and show that the ne
essary 
onditions 
an be restated asa (multipoint) boundary value problem (BVP). Se
ond, we des
ribe the 
ontinua-tion algorithm in Se
tion 5.3.2. Third, we des
ribe the gradient algorithm in Se
tion5.3.3, whi
h is developed by Hou and Wong (2011). In Se
tion 5.4 we introdu
etwo appli
ations, one deals with forest management (Se
tion 5.4.1), and one dealswith dike heightening (Se
tion 5.4.2). The numeri
al results for both appli
ationsare presented in Se
tion 5.5. We 
ompare our found results with the results foundin the literature. Finally, in Se
tion 5.6 we 
on
lude and give re
ommendations forfuture resear
h.
5.2 An Impulse Control ModelIn this se
tion we introdu
e a general Impulse Control model and provide ne
essaryoptimality 
onditions.5.2.1 The ModelLet us denote x as the state variable, u as an ordinary 
ontrol variable and vi asthe impulse 
ontrol variable, where x and u are pie
ewise 
ontinuous fun
tions oftime1. We denote r as the dis
ount rate leading to the dis
ount fa
tor e−rt at time
t. The terminal time or horizon date of the system or pro
ess is denoted by T > 0,and x(T+) stands for the state value immediately after a possible jump at time T .The pro�t of the system between jumps is given by F (x, u, t), whereas G(x, v, t) isthe pro�t fun
tion asso
iated with a jump, and S(x(T+)) is the salvage value, i.e.the total 
osts or pro�t asso
iated with the system after time T . Finally, f(x, u, t)des
ribes the 
ontinuous 
hange of the state variable over time between the jumppoints and g(x, v, t) is a fun
tion that represents the instantaneous (�nite) 
hange ofthe state variable when there is an impulse or jump.1Note that the ne
essary optimality 
onditions presented in Theorem 5.2.1 also hold for measur-able 
ontrols. Appli
ations typi
ally have pie
ewise 
ontinuous fun
tions.



122 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSThe above results in the following optimal 
ontrol problem
max

u(·),N,τi,vi

{
∫ T

0

e−rt F (x(t), u(t), t) dt

}

+

N
∑

i=1

e−rτi G(x(τ−i ), vi, τi) + e−rT S(x(T+)),

(5.1a)s.t. ẋ(t) = f(x(t), u(t), t), for t ∈ [0, T ] \ {τ1, . . . , τN}, (5.1b)
x(τ+i )− x(τ−i ) = g(x(τ−i ), v

i, τi), for i ∈ {1, . . . , N}, (5.1
)
x(0−) = x0, u(t) ∈ U , vi ∈ V, i ∈ {1, . . . , N}. (5.1d)For N ∈ N we assume the jump times to be sorted as
τi ∈ [0, T ] with 0 ≤ τ1 < . . . < τN ≤ T, (5.1e)

x(τ+i ) = lim
t↓τi

x(t) and x(τ−i ) = lim
t↑τi

x(t), for i = 1, . . . , N,and
x0 ∈ R

n.We assume that the domains U ⊂ R
m and V ⊂ R

l are bounded 
onvex sets. Furtherwe impose that F , f , g and G are 
ontinuously di�erentiable in x on R
n and vi on

V, S(x) is 
ontinuously di�erentiable in x on R
n, and that g and G are 
ontinuousin τ . Finally, when there is no jump, i.e. v = 0, we assume that

g(x, 0, t) = 0,for all x and t.5.2.2 Ne
essary Optimality ConditionsWe apply the Impulse Control Maximum Prin
iple in 
urrent value formulation de-rived in Chahim et al. (2012b) to (5.1).2 The resulting ne
essary optimality 
ondi-tions are presented in Theorem 5.2.1.Before we state Theorem 5.2.1, let us de�ne the Hamiltonian H and the ImpulseHamiltonian IH as
H(x, u, λ, t) := F (x, u, t) + λf(x, u, t), (5.2a)
IH(x, v, λ, t) := G(x, v, t) + λg(x, v, t), (5.2b)2Other referen
es deriving the ne
essary optimality 
onditions for the Impulse Control problemsare Blaquière (1977a; 1977b; 1979; 1985), Seierstad (1981) and Seierstad and Sydsæter (1987).



An Impulse Control Model 123and de�ne the following abbreviations
H[s] := H(x(s), u(s), λ(s), s), (5.2
)
IH[s, v] := IH(x(s−), v, λ(s+), s), (5.2d)
G[s, v] := G(x(s−), v, s), (5.2e)
g[s, v] := g(x(s−), v, s). (5.2f)Theorem 5.2.1 (Impulse 
ontrol maximum prin
iple).Let for N ∈ N with N > 0 (x∗(·), u∗(·), N, τ ∗1 , . . . , τ

∗
N , v

1∗, . . . , vN∗) be an optimal so-lution of (5.1). Then there exists a (pie
ewise absolutely 
ontinuous) adjoint variable
λ(·) su
h that the following 
onditions hold:

u∗(t) ∈ argmax
u

H(x∗(t), u(t), λ(t), t), t ∈ [0, T ], (5.3a)
λ̇(t) = rλ(t)−

∂

∂x
H(x∗(t), u∗(t), λ(t), t), t ∈ [0, T ] \ {τ ∗1 , . . . , τ

∗
N}. (5.3b)For every t = τ ∗i , (i = 1, . . . N), we have

∂

∂v
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i )(v − vi∗) ≤ 0, v ∈ V, (5.3
)

λ(τ ∗+i )− λ(τ ∗−i ) = −
∂

∂x
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i ), (5.3d)

H[τ ∗+i ]−H[τ ∗−i ] + rG[τ ∗i , v
i∗]−

∂

∂τ
IH[τ ∗i , v

i∗]















> 0 τ ∗i = 0

= 0 τ ∗i ∈ (0, T )

< 0 τ ∗i = T.

(5.3e)For t ∈ [0, T ] \ {τ ∗1 , . . . , τ
∗
N} it holds that

∂

∂v
IH(x∗(t), 0, λ(t), t)v ≤ 0, v ∈ V. (5.3f)The transversality 
ondition is

λ(T+) =
∂

∂x
S(x∗(T+)). (5.3g)Proof: See Blaquière (1977a; 1985).To simplify the presentation and to 
on
entrate on the main 
on
epts of the nu-meri
al algorithm, besides the earlier assumptions, we further make the followingassumptions.Assumption 5.2.1. For every time horizon T ≥ 0 there exists a unique optimal solu-tion of (5.1), with a �nite number of jumps (whi
h in general depends on T ).This assumption is needed for the boundary value problem approa
h and the 
ontin-uation algorithm. If this assumption does not hold, both algorithms will not generatea solution sin
e the number of jumps is not �nite. This assumption is not requiredfor the gradient algorithm, sin
e the number of jumps is �xed.



124 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSAssumption 5.2.2. Let for T > 0 the jump times be (τi)Ni=1 with 0 < τ1 < . . . < τN <

T , and x̄(T ) := (x(τ−1 ), x(τ+1 ), v1, . . . , x(τ
−
N ), x(τ

+
N ), vN) be the ve
tor of left and rightlimits of the states together with the optimal impulse 
ontrol values for the giventime horizon T . Then in a neighborhood of T the solution ve
tor x̄(T ) is 
ontinuous.We need this assumption again for both the boundary value problem approa
h andthe 
ontinuation algorithm. For both algorithms T is a 
ontinuation variable. Duringthe 
ontinuation pro
ess T is in
reased and the 
onditions for possible jumps aremonitored.Assumption 5.2.3. The model does not in
lude a 
ontinuous 
ontrol.For simpli
ity we state this assumption. Then the boundary value problem approa
his still a suitable method to solve the problem. The gradient method and the 
on-tinuation algorithm depend on whether the system is expli
itly solvable or not.Assumption 5.2.4. Condition (5.3
) together with Assumption 5.2.3 implies

∂

∂v
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i ) = 0, (5.4)and with ∂2

∂v2
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i ) < 0 this yields

vi∗ = v(x∗(τ ∗−i ), λ(τ ∗+i ), τ ∗i ). (5.5)In general 
ondition (5.3
) does not imply that the optimal impulse 
ontrol value
an be found as the arg max of the Impulse Hamiltonian. For simpli
ity we restri
tourself to su
h fun
tion in this 
hapter.5.3 Numeri
al AlgorithmsIn this se
tion we des
ribe three di�erent algorithms to solve Impulse Control prob-lems. We state a (multipoint) boundary value problem for Impulse Control problemsin Se
tion 5.3.1 whi
h is (as far as we know) new in the literature, des
ribe the gra-dient method approa
h developed by Hou and Wong (2011) in Se
tion 5.3.3, and�nally we des
ribe a se
ond new approa
h that we 
all the 
ontinuation algorithm inSe
tion 5.3.2.5.3.1 (Multipoint) Boundary Value Approa
hIn this se
tion we des
ribe a (multipoint) boundary value problem (BVP), that isuseful to solve Impulse Control problems. The idea behind the boundary value ap-proa
h is that between two jumps the system of di�erential equations (
anoni
al sys-tem) 
ombined with the boundary 
onditions (initial and �nal 
onditions) is solved.After ea
h found jump the (multipoint) BVP is updated to �nd the next jump.



Numeri
al Algorithms 125To formulate the (multipoint) BVP we introdu
e the following notation for the 
anon-i
al system dynami
s:
ẋ(t) = h1(x(t), λ(t), t), (5.6a)
λ̇(t) = h2(x(t), λ(t), t). (5.6b)For the 
onditions at a jumping time τ we de�ne:
jx(x(τ+), x(τ−), λ(τ+), τ) := x(τ+)− x(τ−)− g[τ, x(τ+)− x(τ−)], (5.6
)
jλ(x(τ−), λ(τ+), λ(τ−), τ) := λ(τ+)− λ(τ−) +

∂

∂x
IH[τ, x(τ+)− x(τ−)], (5.6d)

jτ (x(τ−), x(τ+), λ(τ+), λ(τ−), τ) := H[τ+]−H[τ−]+

rG[τ, v]−
∂

∂τ
IH[τ, x(τ+)− x(τ−)].

(5.6e)Now let (x∗(·), u∗(·), N, τ ∗1 , . . . , τ
∗
N , v

1∗, . . . , vN∗) be the optimal solution of (5.1) with
0 < τ ∗1 < . . . < τ ∗N < T . Then the ne
essary 
onditions yield the following (multi-point) BVP:

ẋi(t) = h1(xi(t), λi(t), t), t ∈ [τi−1, τi], i = 1, . . . , N + 1, (5.7a)
λ̇i(t) = h2(xi(t), λi(t), t), t ∈ [τi−1, τi], i = 1, . . . , N + 1, (5.7b)
jx(xi(τ

+
i ), xi(τ

−
i ), λi(τ

+
i ), τi) = 0, i = 1, . . . , N, (5.7
)

jλ(xi(τ
−
i ), λi(τ

+
i ), λi(τ

−
i ), τi) = 0, i = 1, . . . , N, (5.7d)

jτi(xi(τ
−
i ), xi(τ

+
i ), λi(τ

+
i ), λi(τ

−
i ), τi) = 0, i = 1, . . . , N, (5.7e)

S(xN+1(T ), λN+1(T )) = 0, (5.7f)
x1(0)− x0 = 0, (5.7g)where (5.7f) denotes the transversality 
ondition (5.3g), τ0 = 0 and τN+1 = T .After de�ning t(s) := τi − (i− s)∆τi, with ∆τi := τi − τi−1, we rewrite (5.7) into
ẋi(s) = ∆τih1(xi(s), λi(s), t(s)), s ∈ [i− 1, i], i = 1, . . . , N + 1, (5.8a)
λ̇i(s) = ∆τih2(xi(s), λi(s), t(s)), s ∈ [i− 1, i], i = 1, . . . , N + 1, (5.8b)
jx(xi(i

+), xi(i
−), λi(i

+), τi) = 0, i = 1, . . . , N, (5.8
)
jλ(xi(i

−), λi(i
+), λi(i

−), τi) = 0, i = 1, . . . , N, (5.8d)
ji(xi(i

−), xi(i
+), λi(i

+), λi(i
−), τi) = 0, i = 1, . . . , N, (5.8e)

S(xN+1(N + 1), λN+1(N + 1)) = 0, (5.8f)
x1(0)− x0 = 0. (5.8g)



126 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSThe jump times τi, i = 1 . . . , N , appear as unknown variables.To handle the 
ase τN = T we introdu
e the (unknown) variables
xT := xN+1(T

+),

lT := λN+1(T
+),together with the additional boundary 
onditions

jx(xT, xN+1(N + 1), lT, T ) = 0, (5.9a)
jλ(xN+1(N + 1), lT, λN+1(N + 1), T ) = 0, (5.9b)and repla
e (5.8f) by
S(xT, lT) = 0. (5.9
)The 
ase τ1 = 0 
an be treated in an analogous way. We therefore set
x0 := x1(0

+),

l0 := λ1(0
+),together with the additional boundary 
onditions

jx(x0, x0, l0, 0) = 0, (5.10a)
jλ(x0, l0, λ1(0), 0) = 0, (5.10b)and repla
e (5.8g) by
x1(0)− x0 = 0. (5.10
)During the 
ontinuation pro
ess it may be of interest to determine the exa
t value ofend time T where the solution jumps at the end time and additionally the 
ondition(5.8e) is satis�ed. In general this 
hara
terizes the 
rossing from a jump at theboundary to an interior jump. For that 
ase the time horizon T is 
onsidered as afree variable and the 
ondition
jN+1(xN+1(N + 1), xT, λN+1(N + 1), lT, T ) = 0, (5.11)is appended to (5.9).Initializing the BVPTo �nd the solution of a spe
i�
 problem of type (5.1) we 
an apply a 
ontinua-tion strategy with respe
t to the time horizon T . Therefore, as a �rst step we haveto determine an initial (optimal) solution.



Numeri
al Algorithms 127Due to Assumption 5.2.1, the initial 
ondition together with the transversality 
ondi-tion yield the ne
essary equations for T = 0. This solution 
an be used as a startingpoint for paths, whi
h for a �small� time horizon do not exhibit a jumping point.5.3.2 Continuation AlgorithmLet us 
onsider the initial value problem (IVP) (5.8a) and (5.8b) on the time interval
[i− 1, i] with

ẏ(s) = ∆τih1(y(s), µ(s), t(s)), s ∈ [i− 1, i], (5.12a)
µ̇(s) = ∆τih2(y(s), µ(s), t(s)), s ∈ [i− 1, i]. (5.12b)With initial 
onditions
y(i− 1) = x(τi), µ(i− 1) = λ(τi), (5.12
)the solution 
an formally be written as
y(i)− y(i− 1) = ∆τi

∫ i

i−1

h1(y(s), µ(s), t(s)) ds,

µ(i)− µ(i− 1) = ∆τi

∫ i

i−1

h2(y(s), µ(s), t(s)) ds,or even more general as an impli
it equation
F (y(i− 1), µ(i− 1), y(i), µ(i), τi−1, τi) = 0.To simplify notation, we introdu
e the following notation:
y2i :=

(

x(τ−i )

λ(τ−i )

)

y2i+1 :=

(

x(τ+i )

λ(τ+i )

)

, i = 0, 1, . . . , N.Then the system (5.8) 
an be stated as
Ω0(y0, y1, τ0) = 0 ∈ R

3n, (5.13a)
ΩN+1(y2N , y2N+1, τN+1) = 0 ∈ R

3n, (5.13b)
Ωi = Υ(y2i, y2i+1, τi) = 0 ∈ R

2n+1, i = 1, . . . , N, (5.13
)
Γi = F (y2i+1, y2(i+1), τi, τi+1) = 0 ∈ R

2n, i = 0, 1, . . . , N, (5.13d)where (5.13a) denotes the initial 
ondition, (5.13b) the transversality 
ondition,(5.13
) the 
onne
ting 
ondition for interior jumping points, and (5.13d) the so-lution of the IVP. Thus in total we have 8n+N(4n+1) equations ((5.13a) generates
3n equations, (5.13b) also generates 3n equations, (5.13
) generates N(2n+1) equa-tions, and �nally (5.13d) generates (N + 1)2n equations) and the same number of



128 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSunknowns (y0, . . . , y2(N+1)+1, τ1, . . . , τN ) (y0, . . . , y2(N+1)+1 are 2n(2(N + 1) + 2) vari-ables and τ1, . . . , τN are N variables, gives a total of 8n+N(4n+1) variables). Then
Ω = [Ω0 Ω1 . . .ΩN ]

′ ∈ R
8n+N(2n+1), (5.14a)

Γ = [Γ0 Γ1 . . .ΓN+1]
′ ∈ R

2nN . (5.14b)If the IVP (5.12) 
an be solved expli
itly, the formulation (5.14) has the advantageof redu
ing the in�nite dimensional problem to a �nite dimensional system of, ingeneral, nonlinear equations, without dis
retizing the problem.5.3.3 Gradient AlgorithmIf the dynami
s (5.1b) and the integral part of the obje
tive fun
tion (5.1a) are simpleenough to solve them expli
itly, then the problem 
an be restated (without numeri
aldis
retization) as a �nite dimensional problem. This 
an then be solved by some stan-dard optimization algorithm, e.g. the numeri
al optimizer fmin
on under MATLAB.Problem (5.1) 
an be written as
max
N,τi,vi

N
∑

i=0

Γ(x(τ+i ), x(τ−i+1), ti, ti+1)+

N
∑

i=1

e−rτi G(x(τ−i ), vi, τi) + e−rT S(x(T+)), i = 0, . . . , N,

(5.15a)s.t. x(t−i+1) = Φ(x(t+i ), ti, ti+1), for i = 0, . . . , N, (5.15b)
x(τ+i )− x(τ−i ) = g(x(τ−i ), v

i, τi), for i = 1, . . . , N, (5.15
)
x(0−) = x0 ∈ R

n, (5.15d)with
τk = tk, k ∈ {0, 1, . . . , N,N + 1}, tN+1 = T, (5.15e)
Γ(x(t+i ), x(t

−
i+1), ti, ti+1) =

∫ ti+1

ti

e−rt F (x(t), t) dt, (5.15f)
Φ(x(t+i ), ti, ti+1) = x(t+i ) +

∫ ti+1

ti

f(x(t), t) dt. (5.15g)Setting
y = (x(t−0 ), x(t

+
0 ), . . . , x(T

−), x(T+), v1, . . . , vN , τ1, . . . , τN)
′, (5.16)problem (5.15) be
omes a �nite dimensional maximization problem. To keep thenotation simple, in a �rst step we subsequently assume that the jumps only o

ur
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al Algorithms 129within the interior of the interval [t0, T ]. Therefore τk = tk, k = 1, . . . , N , and
y ∈ R

4N+4 (i.e. y 
onsists of N +2 left and N +2 right limits, N jumps, and N jumptimes). In that 
ase the doubling (left and right limit) of the initial and end state issuper�uous but allows an immediate generalization in 
ase that a jump also o

ursat the beginning or the end.Next we derive the ne
essary optimality 
onditions, whi
h, of 
ourse, reprodu
e thene
essary optimality 
onditions from the Impulse Control Maximum Prin
iple. Firstwe start with the derivatives (gradients) of the equality 
onstraints (5.15b)-(5.15d).In the new 
oordinates yi these 
onstraints be
ome
c1 = y1 − x0 = 0,

c2+k = y2k+1 − y2k − Φ(y2k, y2(N+2)+N+k, y2(N+2)+N+k+1) = 0, k = 0, . . . , N,

c2+N+1+k = y2(k+1) − y2k+1 = 0, k = 0, N + 1,

c2+N+1+k = y2(k+1) − y2k+1 − g(y2k+1, y2(N+2)+k, y2(N+2)+N+k) = 0, k = 1, . . . , N.Therefore the derivatives are 
al
ulated as
∂c1
∂y1

= 1,

∂c2+k

∂y2k+1

= 1,

∂c2+k

∂y2k
= −1− ∂(1)Φ,

∂c2+k

∂y2(N+2)+N+k

= −∂(2)Φ,

∂c2+k

∂y2(N+2)+N+k+1

= −∂(3)Φ,

∂c2+N+1+k

∂y2(k+1)

= 1, k = 0, . . . , N + 1,

∂c2+N+1+k

∂y2k+1

= −1, k = 0, N + 1,

∂c2+N+1+k

∂y2k+1

= −1 − ∂(1)g, k = 1, . . . , N,

∂c2+N+1+k

∂y2(N+2)+k

= −∂(2)g, k = 1, . . . , N,

∂c2+N+1+k

∂y2(N+2)+N+k

= −∂(3)g, k = 1, . . . , N,
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tion with respe
t to its i-th argu-ment. Rewriting the obje
tive fun
tion (5.15a) in the 
oordinates y we �nd
V (y) = Γ(y1, y2, y2(N+2)+N+1, y2(N+2)+N+2)

+

N
∑

i=1

Γ(x(t+i ), x(t
−
i+1), ti, ti+1)

+
N
∑

i=1

e−rτi G(x(τ−i ), vi, τi) + e−rT S(x(T+)),and the derivatives are given as
∂V (y)

∂y1
= 1.For a thorough dis
ussion and motivation we refer to Hou and Wong (2011).In order to �nd the optimal solution using the gradient algorithm we need someinformation about the stru
ture of the problem, i.e. have some knowledge about theoptimal number of jumps. Neuman and Costanza (1990) use the value fun
tion ap-proa
h and assume that for ea
h initial state, the value fun
tion V is well behaved,in the sense that there is an index k su
h that Vk (where Vk denotes the value fun
-tion having k jumps) is greater than other Vi, i.e. Vis are nonde
reasing for i ≤ kand monotoni
ally de
reasing for i ≥ k. The main reason for this assumption is thatthis guarantees that only a �nite number of steps is ne
essary to a
hieve the optimum.To over
ome this problem we use the solution provided by the 
ontinuation algo-rithm to initialize the gradient method approa
h. From numeri
al experiments weknow that the 
ontinuation algorithm has provided the same (optimal) solution forimpulse 
ontrol problems solved using the ba
kward algorithm, dynami
 program-ming, or the value fun
tion approa
h. We have no proof that the algorithm 
onvergesor �nds the optimal solution for all Impulse Control problems.5.4 Two Appli
ations5.4.1 A Forest Management ModelTo exemplify the numeri
al te
hniques we use a model des
ribed in Neuman andCostanza (1990) where the optimal solution for forest management is derived usingimpulse 
ontrol. It 
onsists, at time t, of one state w(t) ∈ R+ denoting the size of
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ations 131the forest and one impulse 
ontrol z ∈ R+ denoting the size of the 
ut (of the forest).The dynami
s of the forest is des
ribed by a logisti
 term g(y(t)). Forest growth isthen presented by
ẇ(t) = g(w(t)) := w(t)(a− bw(t)), t ≥ 0,with a and b positive 
onstants. At time zero the size of the forest is equal to someinitial value, i.e.
w(0) = x ≥ 0.When management is imposed on forest evolution, the forest is 
ut at times τi ∈ R+

(i = 1, . . .N) with N the number of 
uts su
h that the size of the forest 
hanges by:
w(τ+i )− w(τ−i ) = zi, for i ∈ {1, . . . , N}.The total bene�t generated by the dynami
 system is given by
q(x) +

∫ T

0

f(w(s), s)e−rtdt+
N
∑

i=1

k(w(τi), τi, z
i)e−rτi + p(w(T+)e−rT ,where q(x) is the initial 
ost fun
tion, f(w, t) is the pro�t fun
tion of the system perunit time, and k(w, τi, z

i) is the 
ost of the impulse zi applied to the state w(τi) attime τi.The impulse 
ost fun
tion is given by
k(w, τ, z) = D +K(w, z) = D − g0z + g1z

2 for z > 0,where D < 0 
an be 
onsidered as a �xed 
ost for 
utting the forest and K(w, z)being the variable pro�t generated by 
utting the forest, g0 and g1 are some positive
onstants. If z = 0 we assume that k(w, τ, 0) = 0. The initial 
ost fun
tion is givenby
q(x) = −q0(x− x0),where q0 is a positive 
onstant and x0 is some bound imposed on the states, due toeither e
ologi
al or pra
ti
al 
onstraints. The pro�t of the system is given by
f(w, t) = f0,with f0 some positive 
onstant. Finally, the salvage value is de�ned as
p(w(T+)) = g0(w(T

+)− x0)− g1(w(T
+)− x0)

2.
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ontrol problem 
an be written as
max
N,τ,z

{

−q0(x− x0) +

∫ T

0

e−rt f0dt

+
N
∑

i=1

e−rτi(D − g0z
i) + e−rT (g0(w(T

+)− x0)− g1(w(T
+)− x0)

2)

}

,(5.17a)s.t. ẇ(t) = w(t)(a− bw(t)), for t ∈ [0, T ] \ {τ1, . . . , τN}, (5.17b)
w(τ+i )− w(τ−i ) = zi, for i ∈ {1, . . . , N}, (5.17
)
w(0−) = x ≥ 0, (5.17d)
w(t) ∈ R+, zi ∈ (−∞, 0], 0 ≤ τ1 < τ2 < . . . < τN ≤ T, (5.17e)where r denotes the dis
ount rate. For the analysis of this model the Impulse ControlMaximum Prin
iple is used, where the details are presented in Appendix 5A.1.5.4.2 Dike Heightening ProblemThis se
tion des
ribes a problem taken from Chahim et al. (2012a) where the optimaltiming of the heightening of a dike is studied. The 
ost-bene�t-e
onomi
 de
isionproblem 
ontains two types of 
ost, namely investment 
ost and 
ost due to damage(
aused by failure of prote
tion by the dikes). It 
onsists, at time t, of one state

H(t) ∈ R+ denoting the height of the dike relative to the initial situation, i.e. H(0) =

0 (
m) and one impulse 
ontrol variable vi denoting the i-th dike heightening of thedike. It is assumed that between two heightenings the dike height does not 
hange,i.e. the dynami
s of the dike are presented by
Ḣ(t) = 0.The dike in
reases at times τi ∈ R+ (i = 1, . . . N), with N the number of heighteningssu
h that the height of the dike is in
reased by
H(τ+i )−H(τ−i ) = vi, for i ∈ {1, . . . , N}.The obje
tive 
onsists of two parts. The �rst part is the total (dis
ounted) expe
teddamage 
ost, whi
h is given by
∫ T

0

S(t)e−rtdt+
S(T )e−rT

r
,where S(t) denotes the expe
ted damage at time t, i.e. S(t) = P (t)V (t), where P (t)stands for the �ood probability and V (t) the damage of a �ood (million e) at time
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t. The �ood probability P (t) (1/year) in year t is de�ned as

P (t) = P0e
αηte−αH(t), (5.18)where α (1/
m) stands for the parameter in the exponential distribution regardingthe �ood probability, η (
m/year) is the parameter that indi
ates the in
rease of thewater level per year, and P0 denotes the �ood probability at t = 0. The damage ofa �ood V (t) (million e) is given by

V (t) = V0e
γteζH(t), (5.19)in whi
h γ (per year) is the parameter for e
onomi
 growth, and ζ (1/
m) stands forthe damage in
rease per 
m dike height. V0 (million e) denotes the loss by �oodingat time t = 0. The se
ond part of the obje
tive is the total (dis
ounted) investment
ost

N
∑

i=1

I(vi, H(τ−i ))e
−rτi ,where H(τ−) denotes the height of the dike (in 
m) just before the dike update attime τ (left-limit of H(t) at t = τ). The investment 
ost is given by

I(vi, H(τ−)) =

{

a0(H(τ−) + vi)2 + b0v
i + c0 for vi > 0

0 for vi = 0,for suitably 
hosen 
onstants a0, b0 and c0. Summing up, the Impulse Control model
an be written as
min
v,τ,N

{

∫ T

0

S(t)e−rtdt+
N
∑

i=1

I(vi, H(τ−i ))e
−rτi + e−rT S(T )

r

}

, (5.20a)s.t. Ḣ(t) = 0, for t ∈ [0, T ] \ {τ1, . . . , τN}, (5.20b)
H(τ+i )−H(τ−i ) = vi, for i ∈ {1, . . . , N}, (5.20
)
H(0−) = 0, (5.20d)
H(t) ∈ R+, vi ∈ [0,∞), 0 ≤ τ1 < τ2, . . . < τN ≤ T. (5.20e)For the analysis of this model the impulse 
ontrol maximum prin
iple is used, wherethe details are 
arried out in Appendix 5A.2. For an extensive des
ription of themodel we refer to Chahim et al. (2012a).5.5 Numeri
al ResultsIn this se
tion we present results for two di�erent appli
ations using the 
ontinuationalgorithm and make a 
omparison with results derived using other approa
hes.



134 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONS5.5.1 The Forest ModelIn this se
tion we present the results for the optimal forest management problemdes
ribed in the previous se
tion. The parameter value presented in Table 5.1 aretaken from Neuman and Costanza (1990).
r a b D f0 g0 g1 q0 x0 y0 T0.05 0.2059 0.00344 -190 -15 24.5 0 40 5 34.4 8Table 5.1 � Parameter values for the optimal forest management model.

τ zi w(τ−) w(τ+)0 0 34.4 34.41 -24.2 37.35 13.088 0 32.43 32.43Dis
ounted revenue -441.1751Table 5.2 � Result of value fun
tion approa
h found in Neuman and Costanza(1990).
τ zi w(τ−) w(τ+)0 0 34.400 34.4000.8216 -23.5757 36.8383 13.26268 0 33.290 33.290Dis
ounted revenue -438.2973Table 5.3 � Result of the 
ontinuation algorithm.The results we derive using the 
ontinuation algorithm are presented in Table 5.3.The results of Table 5.3 are similar to the results found in Neuman and Costanza(1990) presented in Table 5.2. The 
ontinuation algorithm (same holds for BVPalgorithm) has two advantages over the value fun
tion approa
h des
ribed in Neumanand Costanza (1990). First, we do not have to dis
retize the time horizon. Thisresults in a better obje
tive value and hen
e a better solution to the original problem.In Figure 5.1 we plot the size of the forest as a fun
tion of time. Initially, the size ofthe forest in
reases, then at a some time instan
e the forest is 
ut. Hen
e, the size ofthe forest jumps downward and then grows again. Se
ond, we did not have to solvethe problems for di�erent number of 
uts to �nd the optimal solution to our forestmanagement problem.
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Figure 5.1 � Dynami
s of the forest over time.5.5.2 The Dike Heightening ModelIn this se
tion we present the optimal solution for a dike. The parameter valuespresented in Table 5.4 are taken from Eijgenraam et al. (2011).In Table 5.5 the solution for three di�erent approa
hes are presented. In the
a0 b0 c0 V0 r P00.0014 0.6258 16.6939 1564.9 0.04 1/2270
H0 α η γ ζ T0 0.33027 0.32 0.02 0.003774 300Table 5.4 � Parameter values for dike 10.se
ond 
olumn the results for the 
ontinuation algorithm are given, the third 
olumnpresents the results found by the ba
kward algorithm used in Se
tion 3.3, and inthe fourth 
olumn the results for dynami
 programming (DP) are given taken fromEijgenraam et al. (2011).Unlike dynami
 programming, both the 
ontinuation algorithm and the ba
kwardalgorithm do not need to dis
retize time. However, for the initialization of the ba
k-ward algorithm, we need the dis
retization of the state at the end of the time horizon(�nal stage), H(T ), and dynami
 programming requires the dis
retization of timeand of the heights (states) for ea
h stage. The 
ontinuation algorithm does not needany input on the state variable H(T ). Even though the solutions for the ba
kwardalgorithm and the 
ontinuation algorithm are similar, the 
ontinuation algorithm(same holds for the BVP approa
h) �nds the optimal solution without running the



136 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSalgorithm for di�erent end heights H(T ). In Chahim et al. (2012a) the authors dis-
retize the state variable as is required for the dynami
 programming approa
h inEijgenraam et al. (2011) and take that H(T ) that minimizes (5.20a).Approa
ha BA DP CA(τi : ui) 272.8 : 52.18 274 : 51.84 272.7 :52.21217.0 : 56.43 219 : 55.68 217.0 :56.45160.1 : 56.90 162 : 57.60 160.0:56.90103.0 : 56.95 104 : 57.60 103.0 :56.9645.9 : 56.96 46 : 57.60 45.8 :56.96
H(T ) 279.41 280.32 279.48Total 
ost 40.03 40.04 40.03a Ba
kward algorithm (BA), dynami
 programming(DP), and 
ontinuation algorithm (CA)Table 5.5 � Results for dike 10.

5.6 Con
lusions and Re
ommendationsWe des
ribe three di�erent numeri
al methods to solve Impulse Control problems.The �rst (new) algorithm 
onsiders an Impulse Control problem as a (multipoint)Boundary Value Problem and uses a 
ontinuation te
hnique to solve it. The se
ond(new) approa
h is the 
ontinuation algorithm that requires the 
anoni
al system tobe solved expli
itly. This redu
es the in�nite dimensional problem to a �nite dimen-sional system of, in general, nonlinear equations, without dis
retizing the problem.The third algorithm is a gradient algorithm, where the problem is reformulated asa �nite dimensional problem, whi
h 
an be solved using some standard optimizationte
hniques. We use the 
ontinuation algorithm to solve the optimal forest manage-ment problem (same results found for the boundary value problem approa
h) andthe dike heightening problem. Although numeri
al results found by the 
ontinuationalgorithm (same holds for the boundary value problem approa
h) are at least as goodas the results found in the literature, a formal proof that the boundary value problemapproa
h and the 
ontinuation algorithm provide the optimal solution is subje
t forfuture resear
h.



Appendix 5A 137Appendix 5A Ne
essary Optimality Conditions forthe Appli
ations5A.1 The Forest Management ModelLet us de�ne the 
urrent value Hamiltonian
H(w, λ, t) := f0 + λw(a− bw), (5.21)and the 
urrent value Impulse Hamiltonian
IH(z, λ, t) := D − g0z + g1z

2 + λz. (5.22)We obtain the adjoint equation
λ̇(t) = (r − a+ 2bw(t))λ(t), for t 6= τi, i = 1, . . . , N, (5.23)with the transversality 
ondition
λ(T ) = g0 − 2g1w(T

−). (5.24)The jump 
onditions are
−g0 + g1z

i + λ(τ+i ) = 0, for i = 1, . . . , N, (5.25)and
λ(τ+i )− λ(τ−i ) = 0, for i = 1, . . . , N, (5.26)from whi
h we 
an 
on
lude that the 
ostate λ(t) is 
ontinuous at every jump point.The 
ondition for determining the optimal swit
hing time τi is
λ(τ+i )w(τ

+
i )(a− bw(τ+i ))− λ(τ−i )w(τ

−
i )(a− bw(τ−i ))

+ rD − rg0z
i + rg1z

i2







> 0 if τi = 0

= 0 if τi ∈ (0, T )

< 0 if τi = T.

(5.27)
5A.2 The Dike Heightening ModelLet us de�ne the 
urrent value Hamiltonian

H(t, H) = −S0e
βte−θH , (5.28)
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urrent value Impulse Hamiltonian
IH(H, v, λ, t) = −I(v,H) + λv = −A0(H + v)2

−b0v − c0 + λv, (5.29)and obtain the adjoint equation
λ̇(t) = rλ(t)− θS0e

βte−θH(t), for t 6= τi, i = 1, . . . , N, (5.30)with the transversality 
ondition
λ(T ) =

θS0e
βT e−θH(T )

r
. (5.31)The jump 
onditions are

−Iu
(

ui, H
(

τ−i
))

+ λ
(

τ+i
)

= 0, for i = 1, . . . , N, (5.32)
λ(τ+i )− λ(τ−i ) == IH

(

ui, H(τ−i )
)

, for i = 1, . . . , N (5.33)The 
ondition for determining the optimal swit
hing time τi is
S0e

βτi
(

e−θH(τ−i ) − e−θH(τ+i )
)

− rI
(

ui, H(τ−i )
)







> 0 if τi = 0

= 0 if τi ∈ (0, T )

< 0 if τi = T.

(5.34)Appendix 5B Implementation in MATLABFor the subsequent se
tions we assume that a solution of (5.1) and time horizon Thas already been dete
ted given by (x∗(·), v∗i , τi), i = 1, . . . , N with 0 < τ1 < τ2 <

. . . < τN < T . In the �rst se
tion we 
onsider the 
ase where a solution of the
anoni
al system between two adja
ent jumps 
an be found analyti
ally. Thereforethe problem 
an be redu
ed to a �nite number of nonlinear equations, see Se
tion5.3.2 and 5.3.3.5B.1 Continuation AlgorithmFor the a
tual implementation in MATLAB a ve
tor x is introdu
ed
x = (y(τ−1 ), y(τ

+
1 ), . . . , y(τ

−
N ), y(τ

+
N ), τ1, . . . , τN )

′ (5.35a)with
y(t) := (x∗(t), λ(t)). (5.35b)
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tor 
onsists of the left and right side limits of the states and 
ostates at thejumping times and the (interior) jumping times appended at the end. To 
ontinue thesolution along a parameter value, the initial states or time horizon MATCONT is used.Therefore the main MATCONT �le, where the system is de�ned, has to be provided.fun
 t i on out = io
modelDis
rete4mat
ont%% Standard ode f i l e f o r MATCONTout {1} = �in i t ;out {2} = �fun_eval ;out{10}= �inter ior jumpfun
 ;out{11}= �rea
htimehorizon ;out{12}= �jumpingtimesvstimehorizon ;out{13}= �negativetime ;%% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un
 t i on out = fun_eval ( t , geny , x0 , par ,T)g l oba l GIVaid=GIV. aid ;ar
num=GIV. ar
num ;j i d=GIV. j i d ;y=geny (GIV.gDVC) ;tp=[GIV. IT geny (GIV.JTC) . ' T ℄ ;i n i t r e s = [ ℄ ;t r a n s r e s = [ ℄ ;
onne
res = [ ℄ ;dynres = [ ℄ ;i n t e r i o r j umpr e s = [ ℄ ;f o r i i =1:ar
num+1yLR=y ( : , ( 2 ∗ i i −1):2∗ i i ) ;i f i i==1i n i t r e s=GIV. IC ( tp ( i i ) ,yLR , [ par ,T℄ , a id ( 1 ) , x0 ) ;e l s e i f i i==ar
num+1t r an s r e s=GIV.TC( tp ( i i ) ,yLR , [ par ,T℄ , a id ( end ) ) ;end
onne
res =[ 
onne
res ; . . .GIV . JC( tp ( i i ) ,yLR , [ par ,T℄ , j i d ( i i ) ) ℄ ;
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num>1 && i i >=2 && i i<=ar
numin t e r i o r j umpr e s=[ i n t e r i o r j umpr e s ; . . .GIV . IJC ( tp ( i i ) ,yLR , [ par ,T℄ , a id ( i i −1) , j i d ( i i ) ) ℄ ;endi f i i <=ar
numyI=y ( : , 2 ∗ i i : ( 2∗ i i +1)) ;dynres=[ dynres ; . . .GIV .CS( tp ( i i : i i +1) , yI , [ par ,T℄ , a id ( i i ) ) ℄ ;endendout=[ i n i t r e s ; t r a n s r e s ; 
onne
res ; dynres ; i n t e r i o r j umpr e s ℄ ;%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un
 t i on out=int e r i o r jumpfun
 ( t , geny , x0 , par ,T)g l oba l GIVaid=GIV. aid ;ar
num=GIV. ar
num ;j i d=GIV. j i d ;y=geny (GIV.gDVC) ;yLR=y ( : , ( 2 ∗ ( ar
num+1)−1):2∗(ar
num+1)) ;i f j i d ( end )out=GIV. IJC (T,yLR , [ par ,T℄ , a id ( end ) , j i d ( end ) ) ;e l s e out=1;end%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un
 t i on out=rea
ht imehor i zon ( t , geny , x0 , par ,T)g l oba l GIVout=GIV.TH−T;%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un
 t i on out=jumpingt imesvst imehor izon ( t , geny , x0 , par ,T)g l oba l GIVtp=[geny (GIV.JTC ) ℄ ;i f isempty ( tp )out=1;e l s e



Appendix 5B 141out=min(T−tp ) ;endfun
 t i on out=negat ivet ime ( t , geny , x0 , par ,T)g l oba l GIV%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−out=min ( [ geny (GIV.JTC) ;T ℄ ) ;AbbreviationsGIV=GlobalImpulseVariablegenDynVarCoordinates=gDVCIn i t i a lT ime=ITJumpTimeCoordinates=JTCTimeHorizon=THInter iorJumpCondit ion=IJCCanoni
alSystem=CSTransve r sa l i t yCond i t i on=TCThe fun
tion fun_eval �le de�nes the as
ribing equations. These equations are statedin model spe
i�
 fun
tions and the fun
tion names are de�ned in the global variableGIV. The �elds of the global variable GIV arear
num the number of ar
s y(t), t ∈ [τi, τi+1], i = 0, . . . , N between two adja
entjumping times.jumparg (jid) an integer ve
tor storing an identi�er for ea
h jump. The �rst andlast entry denotes if a jump at the initial or end time o

urs. If no jump o

ursit is set to zero, otherwise to some integer larger than zero.InitialTime (IT) stores the initial time t0.TimeHorizon (TH) stores the time horizon of the problem T .Canoni
alSystem (CS) fun
tion where the 
anoni
al system is des
ribed.InteriorJumpCondition (IJC) fun
tion for the interior jumping 
ondition (5.7e).TransversalityCondition (TC) fun
tion for the transversality 
ondition (5.7f).genDynVarCoordinates (gDVC) the matrix of 
oordinates for the left and rightside limits of the states and 
ostates of ve
tor x.
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oordinates of ve
tor x storing the jumpingtimes.Further variables used in the listing aregeny variable denoting x of (5.35a).y matrix, where the 
olumn 
onsist of y(τ±i ), i = 1, . . . , N , as de�ned in (5.35b).yLR the left and right side limits y(τ±) at a spe
i�
 jumping time τ .yI the two 
olumn matrix 
onsisting of the right side limit y(τ+i ) and the left sidelimit of the next jumping time y(τ+i+1).tp a ve
tor 
onsisting of the initial time, jumping times and time horizon.x0 is a ve
tor of the initial states x(0).par is a ve
tor of the parameter values of the model.T is the a
tual time horizon, whi
h need not be equal to the time horizon of theproblem stored in GIV.TH.initres residual of the initial 
ondition.transres residual of the transversality 
ondition.
onne
res residual of the 
onne
tion between two adja
ent ar
s.dynres residual derived from the equations of the 
anoni
al system.interiorjumpres residual derived from the interior jumping 
onditions.The user fun
tions used within the MATCONT syntax areinteriorjumpfun
 returns the value of the interior jumping 
ondition at jumpingtimes. This value is monitored during the 
ontinuation pro
ess. If it 
hangessign the ne
essary jumping 
ondition for an interior jump is satis�ed and aninterior jump may o

ur.rea
htimehorizon if the 
ontinuation is done with respe
t to the time horizon thisvalue is monitored to 
he
k if the �nal time horizon is rea
hed.
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ally the MATLAB fun
tion fmin
on 
an be used.For that purpose a �le des
ribing the obje
tive fun
tion and its derivative has tobe provided together with a �le des
ribing the 
onstraints and the 
orrespondingderivatives. The syntax (as we need it) of the fun
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on denote the �les for the obje
tive fun
tion and (nonlinear)
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ontrol spa
e is 
overed. If during the 
al
ulations thebounds are hit one 
an in
rease the bounds to stay in the interior. Furthermore we
an assure that the jumping times are ordered and do not ex
eed the time horizon.These are linear inequalities
τ1 − τ2 ≤ 0, . . . , τN−1 − τN ≤ 0,whi
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