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PrefaeAs the title reveals, the topi of this dissertation is the Impulse Control MaximumPriniple, whih is part of optimal ontrol theory. My �rst enounter with this topiwas in the ourse Dynami Capital Investment taught by Peter Kort and Jaob Eng-werda. This ourse made me very urious about how to ope with non-stati behaviorin optimization models. This was one of the main reasons I deided to write a thesiswith the topi optimal ontrol theory. Not surprisingly, under the supervision of Pe-ter Kort, and with Jaob Engwerda as seond reader. The �rst steps in my sienti�journey were made. This journey has almost ome to an end. I would like to takethe opportunity to express my gratitude to the people who have aompanied meand made it possible for me to reah this destination.First, I would like to thank my promotores, Rihard Hartl, Dik den Hertog andPeter Kort, for all the help I reeived and their faith in me.I met Rihard at one of his many visits to Tilburg University. During my ResearhMaster I sent one of the �rst versions of my Researh Master thesis to Rihard. Hearefully made omments on it and later joined as a seond reader. Rihard wasalways eager to disuss my researh during our frequent enounters.During the ourse orientation OR/MS I was amazed by a very enthusiasti professor,whose (OR related) anedotes I will never forget. I also enjoyed our onversationsabout life (espeially the purpose of life) and politial disussions. Dik, thank youfor your guidane. Thank you, for being honest and teahing me to be very ritial.Besides this dissertation, Peter also supervised my Master and Researh Master the-sis. He was the �rst one to introdue me into the world of ontrol theory. He wasalways willing to share his wide spread network, and he made it possible for me tovisit the optimal ontrol researh group in Vienna (ORCOS) on several oasions.He taught me that doing researh requires good brain and good ideas, but also plainhard work.



iiFurthermore, I am grateful to Jaob Engwerda, Hans Shumaher, Dolf Talman andGeorge Zaour for joining Rihard, Dik, and Peter in my dissertation ommittee.Thank you for taking the time to read my dissertation and for o�ering many sugges-tions for improvement.It was a pleasure to work with Ruud Brekelmans whih resulted in a paper pre-sented in Chapter 3. Speial thanks goes to Dieter Grass, who I visited several timesin Vienna. These visits turned out to be very fruitful (as it resulted in two researhpapers presented in Chapter 4 and 5). Thanks for inviting me at your home inPurkersdorf Sanatorium and the pasta you made when we took a break from doingresearh. It think my programming skills improved every time I talked with you,whether this was in Vienna or via Skype. I would also like to thank the sta� andstudents of ORCOS at the Vienna University of Tehnology for their hospitality.Under the guidane of Peter and Dik I wrote a researh proposal that was awardeda Mosai grant from the Netherlands Organization for Sienti� Researh (NWO).I would like to express my gratitude to the organization, sine they made it possi-ble to write this dissertation. This researh was supported under projet number:017.005.047.Besides doing researh, I had the pleasure to ooperate with Carol, Elleke, Feio,Gert, Hans B., Jaob, Johem, Marieke, Marloes, Thijs, and Willem in variousourses at Tilburg University. Speial mention go to Elleke, Marieke, and Jaob forall the teahing related tips and feedbak I reeived from them. This �nally resultedin reeiving an �Exellent teahing award� in 2012 for the ourse �Statistis for HBO�.I would like to thank CentER Graduate Shool and the department of Eonometrisand Operations Researh for hosting a heerful work environment. First, I wouldlike to thank Elleke, with whom I shared room K513. Thanks for tolerating all thepeople that visited me during that time. For me it was very delightful to have youas a roommate. Every time I had a question, or got stuk you were there to listen. Ithank you and Vishwa for the many LATEX and MATLAB tips and for providing mewith your LATEX dissertation framework.Vishwa, thanks for the many disussions we had (about areer, researh and life), butfar most for being a good friend. Many thanks go to Salima for the many pleasantonversations we had, for always making time when I entered your o�e and for lis-tening to (and laughing at) my anedotes. I also should mention John here, Salima's
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CHAPTER 1Introdution1.1 Impulse ControlThe Mathematial Optimization Soiety de�nes optimization or mathematial opti-mization as follows: �In a mathematial optimization (or programming) problem, oneseeks to minimize or maximize a real funtion of real or integer variables, subjet toonstraints on the variables. The term mathematial optimization refers to the studyof these problems: their mathematial properties, the development and implementa-tion of algorithms to solve these problems, and the appliation of these algorithmsto real world problems�. Mathematial optimization has found wide appliations inmany disiplines inluding eonomis, management, physis, and engineering. In thisthesis we fous on deterministi optimization problems, where ontrary to stohastioptimization the problem does not generate or use random variables.For systems that evolve smoothly through time (i.e. dynami systems), (ontinu-ous) dynami optimization is a frequently used tool. Optimal ontrol theory is thebranh of mathematial optimization developed to �nd optimal ontrol regimes for(ontinuous) dynamial systems. Let x(t) denote the state variable of the system attime t ∈ [0, T ], where T > 0 stands for the time horizon of the problem or planningperiod. Examples for x(t) ould be the amount of natural resoure at time t, thestok or inventory level at time t, or the apital stok at time t. In optimal on-trol theory it is assumed that the system an be ontrolled using a so alled ontrolvariable. Let the (real) variable u(t) be a ontrol variable of the system at time t.For example, u(t) an be the amount of natural resoure being used at time t, theprodution rate at time t, or the (ontinuous) maintenane at time t. The dynamisof the system is often represented by a state equation that spei�es the rate of hangein the state variable as a funtion of the state variable itself, the ontrol variable and
t:

ẋ(t) = f(x(t), u(t), t), x(0) = x0, (1.1)



2 CHAPTER 1. INTRODUCTIONwhere ẋ(t) stands for the derivative of x with respet to t, i.e. dx(t)/dt, f is a givenfuntion representing the hange in the state variable, and x0 is the initial value of thestate variable. When the initial value of the state and the optimal trajetory of theontrol variable u(t) are known (ontrol trajetory), we an determine the state tra-jetory , i.e. the value of the state variable x(t) during the planning period. We hoosethe ontrol variable suh that the state and ontrol trajetory maximize/minimizethe objetive funtion
∫ T

0

F (x(t), u(t), t)dt+ S(x(T ), T ), (1.2)where F is a funtion of x(t), u(t) and t, whih stands for pro�ts/osts and thefuntion S is the salvage value, whih is a funtion of the �nal value of the stateat the end of the planing period, x(T ), and time T . Most of the time the ontrolvariable u(t) is onstrained by a set Ωu of possible outomes of the ontrol variable
u(t), i.e. u(t) ∈ Ωu. The optimal ontrol problem is given by



















maxu
∫ T

0
F (x(t), u(t), t)dt+ S(x(T ), T ),subjet to

ẋ(t) = f(x(t), u(t), t), for t ∈ [0, T ],

x(0) = x0, u(t) ∈ Ωu.

(1.3)Continuous dynami optimization has its own limitation, however, namely that on-tinuity is assumed, whereas in the real world shoks (i.e. abrupt hanges) an ourthat fundamentally hange the dynami of the system at partiular points in time.For example, the entrane of a rival is a singular event that hanges the groundrules for a monopolist. It ould also our that deisions a�et the system suh thatthe system does not hange ontinuously but instantaneously. An example is a �rmthat deides to invest in new (more e�ient) mahines. Sine we try to build math-ematial models suh that they represent an atual or real life situation as muhas possible, theory is developed to analyze systems that allow these disontinuoushanges to our in the system.Impulse Control theory allows disontinuity in the states ontrolled by so alledimpulse ontrol variables v. At ertain moments in time disruptive hanges are al-lowed and the value of the state variable hanges. Let τi (i = 1, . . . , N , where N isa variable denoting the number of hanges in the time interval [0, T ]) represent thetimes at whih the state variable enounters this disontinuous hange given by
x(τ+i )− x(τ−i ) = g(x(τi), v(τi), τi), (1.4)



Impulse Control 3where g is a funtion of the state variable x at time τi, the impulse ontrol variable
v at time τi and τi, representing the (�nite) hange of the state variable at the jumpinstanes. For example, v(τ) an represent the amount of natural resoures that isdrilled out for use and N the number of times drilled, v(τ) an denote the totalprodution that is added to the inventory and N the number of times produtionis added to the inventory, or v(τ) ould stand for the replaement of (parts of) themahine and N the number of times a (part of a) mahine is replaed. Also, theimpulse ontrol variable v(τ) an be onstrained by a set Ωv. Usually, these impulsehanges are assoiated with osts/pro�ts onerning the system at these jump timeinstanes. Let G(x(τi), v(τi), τi) denote the osts/pro�ts assoiated with eah hangeof the system aused by the impulse ontrol variable at time τi. Then the objetive(1.2) is hanged into

∫ T

0

F (x(t), u(t), t)dt+
N
∑

i=1

G(x(τi), v(τi), τi) + S(x(T ), T ). (1.5)Summing up, an Impulse Control problem an be presented as


























maxv,u,τ,N
∫ T

0
F (x(t), u(t), t)dt+

∑N
i=1G(x(τi), v(τi), τi) + S(x(T ), T ),subjet to

ẋ(t) = f(x(t), u(t), t), x(0) = x0, for t 6= τi, i = 1, . . . , N,

x(τ+i )− x(τ−i ) = g(x(τi, v(τi), τi), for t = τi, i = 1, . . . , N,

u(t) ∈ Ωu, v(τi) ∈ Ωv, i ∈ {1, . . . , N}.

(1.6)
This thesis fouses on deterministi Impulse Control problems that are analyzed byusing the Impulse Control Maximum Priniple. This implies that we do not onsiderstohasti Impulse Control problems. This exludes the theory of real options (seeDixit and Pindyk (1994)). Another alternative is the theory of (Hamilton-Jaobi-Bellman) quasi-variational inequalities (see Bensoussan and Lions (1984)). Althoughquasi-variational inequalities an also be applied to deterministi Impulse Controlproblems, it is mainly related to a stohasti framework (quasi-variational inequali-ties is quite omparable to the Hamilton-Jaobi-Bellman framework, i.e. as is statedin Bensoussan et al. (2006), under the framework of impulse ontrol, the Hamilton-Jaobi-Bellman equation redues to quasi-variational inequalities). In stohasti op-timal ontrol problems the state variables in the system are not known with ertainty.Moreover, in stohasti optimal ontrol it might not even be possible to measure thevalue of a state variable at a ertain time. There is a lot of literature that deals withthese types of problems and the methodology di�ers a lot from the deterministi ase.Most of the literature that deals with stohasti optimal ontrol problems use the



4 CHAPTER 1. INTRODUCTIONHamilton-Jaobi-Bellman framework (see e.g. Sethi and Thompson (2006)) or (moregeneral) dynami programming (see e.g. Bertsekas (2005)).As Impulse Control, Multi-Stage optimal ontrol (see e.g. Grass et al. (2008)) istailored to the sorts of situations that have fallen between the raks with the tradi-tional partition into stati and dynami optimization. In the last few years there hasbeen rapidly growing interest in Multi-Stage optimal ontrol. As mentioned before,like Impulse Control theory, this theory allows sudden disontinuous hanges at dis-rete points in time. These hanges an a�et the state variables, but also the valuesof parameters, or even the equations desribing the system itself. Unlike ImpulseControl, Multi-Stage optimal ontrol does not allow jumps in the state variables. InImpulse Control models found in the literature disontinuous hanges in the statesare allowed. This is in ontrast with Multi-Stage optimal ontrol. There eah regimeis de�ned by di�erent dynamis and the main onern is to �nd the optimal swithingtimes between the regimes. Here, a regime is understood as the spei�ation of asystem dynamis and an objetive funtional during a ertain time interval. In thisthesis we fous on models that allow the state variables to jump at some time points.Take, for example, dike maintenane, where the problem is to determine the optimaldike heightening sheme for a ertain time horizon. Here, the dike is the state vari-able and its height is inreased at ertain time points. This model annot be solvedusing Multi-Stage optimal ontrol, beause we have jumps in the state variable.1.2 Impulse Control Maximum PrinipleIn 1977 Blaquière derives a Maximum Priniple that provides neessary (and su�-ient) optimality onditions to solve deterministi Impulse Control problems, the soalled Impulse Control Maximum Priniple see e.g. Blaquière (1977a; 1977b; 1979;1985). In 1981 Seierstad derives neessary optimality onditions that oinide withthose of Blaquière, see Seierstad (1981) and Seierstad and Sydsæter (1987). Anothergood soure presenting the Impulse Control Maximum Priniple is Sethi and Thomp-son (2006, pp. 324�330).In Blaquière (1979) an example of an Impulse Control model is given that dealswith the optimal maintenane and life time of mahines. Here the �rm has to deidewhen a ertain mahine has to be repaired (impulse ontrol variable), and it hasto determine the rate of maintenane expenses (ordinary ontrol variable), so thatthe pro�t is maximized over the planning period. In Gaimon (1985; 1986) a �rmdetermines the optimal times of impulse aquisition of automation and the hange



Impulse Control Maximum Priniple 5for manual output. The objetive is to minimize osts assoiated with the deviationfrom a goal level of output. The purhase of automation is used to diretly sub-stitute for output resulting from manually operated equipment. Sine automationis aquired at disrete times, the author solves the model using the Impulse Con-trol Maximum Priniple. In Luhmer (1986) the theory is applied to an inventorymodel and in Kort (1989) a dynami model of the �rm is designed in whih api-tal stok jumps upward at disrete points in time that the �rm invests. Rempala(1990) desribes three di�erent kinds of Impulse Control problems where the num-ber of jumps is not �xed, i.e. there are N impulse moments. He distinguishes between(a) the impulse times are �xed and the size of the impulse is free,(b) the size of the jump is �xed and the impulse moments are free,() both the size of the jump and the impulse moments are free.In Rempala (1990) it is shown that ases (b) and () an be redued to ase (a),and �nally gives a simple proof for the Impulse Control Maximum Priniple in ase(a).The theory of optimal ontrol has its origin in physis and engineering where dis-ounting ash �ows does not our. For this reason, Blaquière (1977a; 1977b; 1979;1985) derived his Maximum Priniple onsidering Impulse Control problems withoutusing urrent value Hamiltonians. Instead, he presents his Maximum Priniple in thepresent value Hamiltonian form. In Chapter 2 of this thesis we transform Blaquière'spresent value analysis to a urrent value one and we inlude an overview of the lit-erature that makes use of the Impulse Control Maximum Priniple.Besides approahes using the Impulse Control Maximum Priniple, there exist manyother approahes in the literature to solve Impulse Control problems. We have seenmixed integer nonlinear programming (see e.g. Brekelmans et al. (2012)), dynamiprogramming (see e.g. Eijgenraam et al. (2011) and/or Erdlenbruh et al. (2011)),value funtion approah (see e.g. Neuman and Costanza (1990)) and �nally the gra-dient method approah (see e.g. Hou and Wong (2011)) as an alternative for theImpulse Control Maximum Priniple. All approahes have advantages and disadvan-tages. We will ome bak to this in Setion 1.3.



6 CHAPTER 1. INTRODUCTION1.3 Approahes to Solve Impulse Control ProblemsThis thesis onsiders optimal ontrol problems in whih the state variable is allowedto jump at some time instant. Both the size of the jump and the time instant aretaken as (additional) deision variables. Hene, we are dealing with problems asdesribed by ase (3) in Rempala (1990). The Impulse Control Maximum Prinipleprovides neessary optimality onditions that an be used to �nd the optimal solutionto problems de�ned by (1.6). In ordinary optimal ontrol also su�ieny onditionsare given that ensure that the andidate solution that is found using the neessaryoptimality onditions is the optimal solution. Remarkably, for the Impulse ControlMaximum Priniple we have not found any models in the literature that also ful�llthe su�ieny onditions derived by Blaquière (more on this in Setion 1.4).As mentioned earlier, there are several ways to solve Impulse Control problems.In this setion we present eight di�erent approahes and their main harateristis.An overview of the approahes and their harateristis is presented in Table 1.1.Forward algorithm (FA) Luhmer (1986) derives a forward algorithm that makesuse of the Impulse Control Maximum Priniple. It starts at t = 0 and uses the valueof the ostates (i.e. dual variable, in eonomis this is known as the shadow prie) toinitialize the algorithm. The forward algorithm has a drawbak. Namely, the initialvalue of the ostates is the hoie variable, i.e. we have to guess the initial valuesfor the ostate variables. A wrong guess of the ostate variables at the initial timeresults in a solution that does not satisfy the transversality onditions for the ostatevariables, whih implies that the neessary optimality onditions are not satis�ed.The algorithm returns the solution for the given input, it does not need disretizationin time.Bakward algorithm (BA) Kort (1989) develops a bakward algorithm that startsat the end of the planning period, i.e. t = T , and goes bakwards in time. For thebakward algorithm we start with hoosing values for the state variables at time T ,i.e. the state variable at time T is the hoie variable. The resulting solution alwayssatis�es the neessary optimality onditions, but here the problem is that the algo-rithm has to end up at the right value of the states at t = 0. In other words, with thebakward algorithm one an apply the right neessary onditions to the wrong prob-lem. In Chapter 3 of this thesis we desribe and apply the bakward algorithm to areal-life dike height optimization problem. As the forward algorithm, the bakwardalgorithm returns the solution for the given input, it does not need disretization intime.



Approahes to Solve Impulse Control Problems 7(multipoint) Boundary value problem (BVP) In Chapter 5 of this thesis we de-sribe the (multipoint) boundary value problem. For the (multipoint) boundary valueproblem approah we do not need to speify inputs for the state or the ostate (un-like the forward and bakward algorithm). The idea behind this approah is that theanonial system (the set of di�erential equations) is solved suh that all (boundary)onditions on the state(s) and ostate(s) (e.g. initial onditions and transversalityonditions) are satis�ed. To �nd the solution of the problem we an apply a ontinu-ation strategy with respet to the time horizon T , i.e. T is our ontinuation variable.To initialize the algorithm, the problem is solved for T = 0. Given a solution for
T = 0, T is inreased (ontinued) during the ontinuation proess whereas the on-ditions for possible jumps are monitored. If the onditions for a jump are satis�ed,the boundary value problem is adapted to this situation. With this new solution theontinuation is pursued. No disretization of time or state variables is needed.Continuation algorithm (CA) The ontinuation algorithm is only appliable ifthe anonial system of the Impulse Control problem an be solved expliitly in [0, T ].The problem an be restated as a disrete dynamial system (without numerial dis-retization). As for the boundary value problem approah, to �nd the solution ofthe problem we an apply a ontinuation strategy with respet to the time horizon
T , i.e. T is our ontinuation variable. To initialize the algorithm, the problem issolved for T = 0. Given a solution for T = 0, T is inreased (ontinued) during theontinuation proess whereas the onditions for possible jumps are monitored. Nodisretization of time or state variables is needed.Gradient algorithm (GA) If the dynamis (i.e. the anonial system) of an Im-pulse Control problem an be solved expliitly, the problem an be restated (withoutnumerial disretization) as a �nite dimensional problem/ disrete dynamial system.In this method the neessary optimality onditions are derived, whih, of ourse, re-produe the neessary optimality onditions of the Impulse Control Maximum Prin-iple. First, the derivatives (gradients) of the equality onstraints and the derivativesof the objetive are determined. This gives a set of equations and equal number ofvariables. For this method the number of jumps needs to be �xed beforehand inorder to solve the problem.Value funtion approah (VFA) In Neuman and Costanza (1990) the value fun-tion method is used to solve an Impulse Control problem. For the value funtionapproah the number of jumps is �xed beforehand in order to solve the problem. For



8 CHAPTER 1. INTRODUCTIONa �xed number of jumps the value funtion is de�ned and the optimum of this valuefuntion is derived. This problem is solved for di�erent numbers of �xed jumps untilthe optimal number of jumps is found. Sine we do not know the optimal numberof jumps beforehand, this approah is only useful if the optimal number of jumps issmall.Dynami programming (DP) Eijgenraam et al. (2011) solves the same prob-lem as in Chapter 3 of this thesis using dynami programming. Unlike the bakwardand forward algorithm, dynami programming requires disretization in time and thestates for eah stage.Mixed integer nonlinear programming (MINLP) The mixed integer non-linearprogramming approah seems very fruitful for high dimensional problems, see e.g.Brekelmans et al. (2012), where the nonhomogeneous dike optimization problem isanalyzed. On the other hand, mixed integer nonlinear programming requires dis-retization of the planning period. For these disrete time points Brekelmans et al.(2012) introdue a {0, 1}-variable, whih takes the value 1 if a dike heightening o-urs and the value 0 otherwise. The size of the dike heightening is then given by aontinuous variable. Finally, this {0, 1}-variable is also used to add �xed ost.In this thesis only in Chapter 4 a higher dimensional Impulse Control problem ours,i.e. an Impulse Control problem with more than one state variable. We there studythe investment behavior of a �rm that has two state variables. The �rst state vari-able is the apital stok, and the seond state variable is the state of tehnology. Wesolve the model using the boundary value problem approah. Beause the anonialsystem of the problem desribed in Chapter 4 is expliitly solvable, also the ontinu-ation algorithm ould be used. In the literature we �nd another higher dimensionalImpulse Control problem in Brekelmans et al. (2012) where a dike heightening prob-lem for nonhomogenous dikes is studied. The problem is solved using a mixed integernonlinear programming approah. Comparing (i.e. with respet to omputation timeet.) the di�erent approahes for higher dimensional Impulse Control problems re-mains a topi for future researh. However, some �rst ideas an be given. For boththe forward algorithm and the bakward algorithm the solution is derived using ahoie variable. For a higher dimensional hoie variable it is muh harder to �ndthe optimal value. For dynami programming it is known that it works really wellfor problems with low dimensions, sine the numerial disretization of the probleminreases exponentially when the problems inreases in dimension. Finally, for boththe value funtion approah and the gradient algorithm the number of �rst order



Contribution and Outline 9ApproahaFA BA BVP CA GA VFA DP MINLPDisretize timeb O O O O O O X XDisretize state O X O O O O X XDisretize ostate X O O O O O O OFixed number of jumps O O O O X X O OHigher dimensional problems O O R R R R O XExpliit solution X X O X X O O Oanonial systema Forward algorithm (FA), bakward algorithm (BA), (multipoint) boundary valueproblem (BVP), ontinuation algorithm (CA), gradient algorithm (GA), valuefuntion approah (VFA), dynami programming (DP), and mixed integer non-linear programming (MINLP).b We mark eah approah by O, X, or R, meaning does not inlude this harater-isti, inludes this harateristi or more researh is needed, respetively. BA only needs disretization of the state at the end of the time horizon (�nalstage), unlike dynami programming where disretization is needed for time andfor the heights (states) for eah stage. Similar to the FA, the BA only needsdisretization for the ostate at the start of the time horizon (�rst stage).Table 1.1 � Charateristis of di�erent approahesonditions inreases. The problem for both still is how to determine the optimalnumber of jumps, sine this needs to be �xed beforehand in order to �nd a solution.
1.4 Contribution and OutlineThe ontribution of this thesis is threefold. First, it extends the existing theory onImpulse Control by deriving the neessary optimality onditions in urrent value for-mulation and providing a transformation suh that the Impulse Control MaximumPriniple an be applied to problems having a �xed ost. Moreover, this thesis pointsout that meaningful problems found in the literature do not satisfy the su�ienyonditions. Seond, in this thesis the Impulse Control Maximum Priniple is appliedto dike height optimization and produt innovation. Third, it desribes several algo-rithms that an be used to solve Impulse Control problems. In this subsetion, wedesribe these ontributions in more detail.



10 CHAPTER 1. INTRODUCTIONTheoryIn this thesis we use Blaquière's Impulse Control Maximum Priniple to present theneessary optimality onditions in urrent value formulation. As mentioned before,Blaquière (1977a; 1977b; 1979; 1985) derived his Maximum Priniple onsideringImpulse Control problems without using the urrent value Hamiltonian. Instead, hepresents his Maximum Priniple in the present value Hamiltonian form. The mainreason for this is that the theory of optimal ontrol has its origin in physis andengineering where disounting ash �ows does not our. Furthermore, by reviewingthe existing Impulse Control models in the literature, we point out that meaningfulproblems do not satisfy the su�ieny onditions. In partiular, suh problems eitherhave a onave ost funtion, ontain a �xed ost, or have a ontrol-state interation,whih have in ommon that they eah violate the onavity hypothesis used in thesu�ieny theorem. The impliation is that the orresponding problem may havemultiple solutions that satisfy the neessary optimality onditions. Moreover, weshow that problems with a �xed ost do not satisfy the onditions under whih theneessary optimality onditions an be applied. However, we propose a transforma-tion, whih ensures that the appliation of the Impulse Control Maximum Priniplestill provides the optimal solution. Finally, we show that for some existing models inthe literature no optimal solution exists.AppliationsIn the literature there are not many appliations of the Impulse Control MaximumPriniple. In this thesis we analyze two di�erent appliations. The �rst onernsdike height optimization in the Netherlands. As far as we know it is one of the �rstreal life appliation of the Impulse Control Maximum Priniple.1 We ompare ouranalysis with the dynami programming approah used in Eijgenraam et al. (2011)and show that the Impulse Control approah has some bene�ts over the dynamiprogramming approah. The seond appliation deals with produt innovations. Weonsider a �rm that wants to undertake a produt innovation where the number ofinnovations is endogenously determined by the model. We ompare our results with aMulti-Stage optimal ontrol approah derived in Grass et al. (2012) where the numberof produt innovations is predetermined before solving the model. One interestingfat is that we �nd that the �rm does not invest when marginal pro�t (with respetto apital) beomes zero, but invests when marginal pro�t is negative. Finally, wesolve the forest management problem desribed in Neuman and Costanza (1990).Sine we do not need to �x the number of jumps and do not need to disretize time,1The data is provided by Rijkswaterstaat, part of the Duth ministry of Infrastruture andEnvironment.



Contribution and Outline 11we �nd a solution with a better objetive value than Neuman and Costanza (1990) do.AlgorithmsIn Chapter 3 of this thesis we desribe and apply the bakward algorithm to a real-lifedike height optimization problem. We ompare the results found with the bakwardalgorithm to the dynami programming approah used in Eijgenraam et al. (2011).In Chapter 5 of this thesis we desribe three di�erent algorithms, from whih two(as far as we know) are new in the literature. The �rst (new) algorithm onsidersan Impulse Control problem as a (multipoint) Boundary Value Problem and uses aontinuation tehnique to solve it. The seond (new) approah is the ontinuationalgorithm that requires the anonial system to be solved expliitly. This reduesthe in�nite dimensional problem to a �nite dimensional system of, in general, non-linear equations, without disretizing the problem. Finally, we present a gradientalgorithm, where we reformulate the problem as a �nite dimensional problem, whihan be solved using some standard optimization tehniques. This method has beendeveloped in Hou and Wong (2011).Outline of thesisThis thesis is based on four self ontained independent hapters in the �eld of Im-pulse Control. There are some di�erenes in notation between hapters.In Chapter 2 (onsists of Chahim et al. (2012)) we onsider a lass of optimalontrol problems that allows jumps in the state variable. We present the neessaryoptimality onditions of the Impulse Control Maximum Priniple based on the ur-rent value formulation. Moreover, we present a transformation suh that the ImpulseControl Maximum Priniple an be applied to problems having a �xed ost. Finally,we give an overview of several problems in the literature that apply the ImpulseControl Maximum Priniple, show that these problems do not satisfy the su�ienyonditions, and that some of these models have reeived inomplete treatment, inpartiular, some of them do not have an optimal solution.In Chapter 3 (onsists of Chahim et al. (2012a)) we apply the Impulse ControlMaximum Priniple to determine the optimal timing of dike heightenings as wellas the orresponding optimal dike heightenings to protet against �oods. This hap-ter presents one of the �rst real life appliations of the Impulse Control MaximumPriniple developed by Blaquière. We show that the proposed Impulse Control Max-imum Priniple approah performs better than dynami programming with respet



12 CHAPTER 1. INTRODUCTIONto omputational time. This is aused by the fat that Impulse Control does notneed disretization in time.Chapter 4 (onsists of Chahim et al. (2012b)) onsiders a �rm that has the op-tion to undertake produt innovations. For eah produt innovation the �rm has toinstall a new prodution plant. We �nd that investments are larger and our ina later stage when more of the old apital stok needs to be srapped. Moreover,we obtain that the �rm's investments inrease when the tehnology produes morepro�table produts. We see that the �rm in the beginning of the planning periodadopts new tehnologies faster as time proeeds, but later on the opposite happens.Furthermore, we �nd that the �rm does not invest when marginal pro�t (with respetto apital) beomes zero, but investes when marginal pro�t is negative. Moreover,numerial experiments show that if the time it takes to double the e�ieny of atehnology is larger than the time it takes for the apital stok to depreiate to halfof its original level, the �rm undertakes an initial investment. Finally, we show thatwhen demand dereases over time and when �xed investment ost is higher, then the�rm invests less throughout the planning period, the time between two investmentsinreases, and the �rst investment is delayed.In Chapter 5 (onsists of Grass and Chahim (2012)) we present three di�erent al-gorithms that an be used to solve Impulse Control problems. The �rst algorithmonsiders the problem as a (multipoint) BVP. The seond and third algorithm anbe used if the anonial system of the problem an be solved expliitly. If that is thease, we an rewrite our Impulse Control problem as a disrete dynamial system(without numerial disretization) and solve it.Bibliography Chapter 1Bensoussan, A. and Lions, J. L. (1984). Impulse Control and Quasi-VariationalInequalities. Gauthier-Villars, Paris.Bensoussan, A., Liu, R. H., and Sethi, S. P. (2006). Optimality of an (s, S) poliywith ompound poisson and di�usion demands: A quasi-variational inequilitiesapproah. SIAM Journal on Control and Optimization, 44(5):1650�1676.Bertsekas, D. (2005). Dynami Programming and Optimal Control. Athena Sienti�.Blaquière, A. (1977a). Di�erential games with piee-wise ontinuous trajetories. InHagedorn, P., Knobloh, H. W., and Olsder, G. J., editors, Di�ential Games andAppliations, pages 34�69. Springer-Verlag, Berlin.Blaquière, A. (1977b). Neessary and su�ient onditions for optimal strategies in



Bibliography Chapter 1 13impulsive ontrol and appliation. In Aoki, M. and Morzzolla, A., editors, Newtrends in Dynami System Theory and Eonomis, pages 183�213. Aademi Press,New York.Blaquière, A. (1979). Neessary and su�ient onditions for optimal strategies inimpulsive ontrol. In Lui, P. T. and Roxin, E. O., editors, Di�erential Games andControl Theory III, Part A, pages 1�28. Marel Dekker, New York.Blaquière, A. (1985). Impulsive optimal ontrol with �nite or in�nite time horizon.Journal of Optimization Theory and Appliations, 46(4):431�439.Brekelmans, R. C. M., den Hertog, D., Roos, C., and Eijgenraam, C. J. J. (2012). Safedike heights at minimal osts: The nonhomogenous ase. To appear in OperationsResearh.Chahim, M., Brekelmans, R. C. M., den Hertog, D., and Kort, P. M. (2012a). Animpulse ontrol approah for dike height optimization. To appear in OptimizationMethods and Software.Chahim, M., Grass, D., Hartl, R. F., and Kort, P. M. (2012b). Produt innovationwith lumpy investment. CentER Disussion Paper 2012-074, Tilburg University,Tilburg.Chahim, M., Hartl, R. F., and Kort, P. M. (2012). A tutorial on the deterministiimpulse ontrol maximum priniple: Neessary and su�ient optimality onditions.European Journal of Operations Researh, 219(1):18�26.Dixit, A. K. and Pindyk, R. S. (1994). Investment under Unertainty. PrinetonUniversity Press, Prineton.Eijgenraam, C. J. J., Brekelmans, R. C. M., den Hertog, D., and Roos, C. (2011).Safe dike heights at minimal osts: the homogenous ase. Working Paper, TilburgUniversity, Tilburg.Erdlenbruh, K., Jean-Marie, A., Moreaux, M., and Tidball, M. (2011). Optimalityof impulse harvesting poliies. Eonomi Theory, pages 1�31.Gaimon, C. (1985). The dynamial optimal aquisition of automation. Annals ofOperations Researh, 3(2):59�79.Gaimon, C. (1986). An impulsive ontrol approah to deriving the optimal dynamimix of manual and automati output. European Journal of Operations Researh,24(3):360�368.Grass, D., Caulkings, J., Feihtinger, G., Tragler, G., and Behrens, D. (2008). Opti-mal Control of Nonlinear Proesses: With Appliations in Drugs, Corruption, andTerror. Springer, Berlin.Grass, D. and Chahim, M. (2012). Numerial algorithm for impulse ontrol models.Working Paper, Vienna University of Tehnology, Vienna.



14 CHAPTER 1. INTRODUCTIONGrass, D., Hartl, R. F., and Kort, P. M. (2012). Capital aumulation and em-bodied tehnologial progress. Journal of Optimization Theory and Appliations,154(2):558�614.Hou, S. and Wong, K. (2011). Optimal impulsive ontrol problem with appliationto human immunode�ieny virus treatment. Journal of Optimization Theory andAppliations, 151(2):385�401.Kort, P. M. (1989). Optimal Dynami Investment Poliies of a Value MaximizingFirm. Springer, Berlin.Luhmer, A. (1986). A ontinuous time, deterministi, nonstationary model of eo-nomi ordering. European Journal of Operations Researh, 24(1):123�135.Neuman, C. and Costanza, V. (1990). Deterministi impulse ontrol in native for-est eosystems management. Journal of Optimization Theory and Appliations,66(2):173�196.Rempala, R. (1990). Leture notes in ontrol and information sienes. In Sebastian,H. and Tammer, K., editors, System Modelling and Optimization, pages 387�393.Springer, Berlin.Seierstad, A. (1981). Neessary onditions and su�ient onditions for optimal on-trol with jumps in the state variables. Memorandum from Institute of Eonomis,University of Oslo, Oslo.Seierstad, A. and Sydsæter, K. (1987). Optimal Control Theory with Eonomi Ap-pliations. Elsevier, Amsterdam.Sethi, S. P. and Thompson, G. L. (2006). Optimal Control Theory: Appliations toManagement Siene and Eonomis. Springer, Berlin.



CHAPTER 2A Tutorial on the Deterministi Impulse ControlMaximum Priniple: Neessary and Su�ientOptimality ConditionsAbstrat This hapter onsiders a lass of optimal ontrol problemsthat allows jumps in the state variable. We present the neessary op-timality onditions of the Impulse Control Maximum Priniple basedon the urrent value formulation. By reviewing the existing impulseontrol models in the literature, we point out that meaningful prob-lems typially do not satisfy the su�ieny onditions. In partiular,suh problems either have a onave ost funtion, ontain a �xed ost,or have a ontrol-state interation, whih have in ommon that theyeah violate the onavity hypotheses used in the su�ieny theorem.The impliation is that the orresponding problem in priniple mayhave multiple solutions that satisfy the neessary optimality ondi-tions. Moreover, we argue that problems with �xed ost do not satisfythe onditions under whih the neessary optimality onditions an beapplied. However, we design a transformation, whih ensures that theappliation of the Impulse Control Maximum Priniple still providesthe optimal solution. Finally, we show that for some existing modelsin the literature no optimal solution exists.2.1 IntrodutionFor many problems in the area of eonomis and operations researh it is realisti toallow for jumps in the state variable. This hapter therefore onsiders optimal ontrolmodels in whih the time moment of these jumps as well as the size of the jumps aretaken as (additional) deision variables. An example is Blaquière (1979) that dealswith optimal maintenane and life time of mahines. Here the �rm has to deide



16 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEwhen a ertain mahine has to be repaired (impulse ontrol variable), and it has todetermine the rate of maintenane expenses (ordinary ontrol variable), so that thepro�t is maximized over the planning period. Blaquière (1977a; 1977b; 1979; 1985)extends the standard theory on optimal ontrol by deriving a Maximum Priniple,the so alled Impulse Control Maximum Priniple, that gives neessary (and su�-ient) optimality onditions for solving suh problems. Like Blaquière (1977a; 1977b;1979; 1985), we onsider a framework where the number of jumps is not restrited.This distinguishes our approah from, e.g., Liu et al. (1998), Augustin (2002, pp.71�81) and Wu and Teo (2006), where the number of jumps is �xed (i.e. is taken asgiven).This ontribution fouses on deterministi impulse ontrol problems that are ana-lyzed by using the Impulse Control Maximum Priniple. This implies that we donot onsider stohasti impulse ontrol problems. This exludes the theory of realoptions (see Dixit and Pindyk (1994)). Another alternative is the theory of Quasi-Variational Inequalities (QVI; see Bensoussan and Lions (1984)). Although QVI analso be applied to deterministi impulse ontrol problems, it is mainly related toa stohasti framework. Other insightful QVI referenes inlude Bensoussan et al.(2006) on an inventory model employing an (s, S) poliy and Øksendal and Sulem(2007).The ontribution of this hapter is fourfold. First, we give a orret formulationof the neessary optimality onditions of the Impulse Control Maximum Priniplebased on the urrent value formulation. In this way we orret Feihtinger and Hartl(1986, Appendix 6) and Kort (1989, pp. 62�70). Seond, by reviewing the existingimpulse ontrol models in the literature, we point out that meaningful problems donot satisfy the su�ieny onditions. In partiular, suh problems either have a on-ave ost funtion, ontain a �xed ost, or have a ontrol-state interation that eahviolate the onavity hypotheses used in the su�ieny theorem. The impliation ofnot satisfying the su�ieny onditions is that the orresponding problem in prini-ple has multiple solutions that satisfy the neessary optimality onditions. In manyases, these multiple solutions an be represented by a so alled tree-struture (see,e.g., Luhmer (1986), Kort (1989), Chahim et al. (2012)). Third, we show that sev-eral existing problems (Blaquière (1977a; 1977b; 1979), Kort (1989, pp. 62�70)) donot have an optimal solution. In partiular, the solution of these problems ontainan interval where a singular ar is approximated as muh as possible by applyingimpulse hattering. Fourth, we observe that problems with a �xed ost have theproperty that the ost funtion is not a C1 funtion i.e. it is not ontinuously dif-



Impulse Control 17ferentiable. This implies that in priniple, also the neessary optimality onditionsdo not hold, although they were applied in Luhmer (1986), Gaimon (1985; 1986a;1986b) and Chahim et al. (2012) leading to orret solutions. This hapter providesa transformation, whih ensures that the Impulse Control Maximum Priniple anstill be applied to problems with a �xed ost.This hapter is organized as follows. Setion 2.2 gives the general formulation ofan impulse ontrol model with disounting and presents the orret Impulse Con-trol Maximum Priniple in urrent value formulation (i.e. the neessary optimalityonditions). Further we give su�ient onditions for optimality and provide a trans-formation whih makes lear why the Impulse Control Maximum Priniple an stillbe applied to problems with a �xed ost. In Setion 2.3 we lassify existing eonomimodels involving impulse ontrol, show why optimal solutions for some of them donot exist, and disuss the problems that arise with the su�ieny onditions. Setion2.4 ontains our onlusion and further remarks.
2.2 Impulse ControlThe theory of optimal ontrol has its origin in physis and engineering where dis-ounting ash �ows does not our. For this reason Blaquière (1977a; 1977b; 1979;1985) derived his Maximum Priniple onsidering impulse ontrol problems withoutusing urrent value Hamiltonians. Instead, he presents his Maximum Priniple inthe present value Hamiltonian form.Setion 2.2.1 transforms Blaquière present value analysis to a urrent value one,whereas Setion 2.2.2 presents su�ieny onditions. Setion 2.2.3 onsiders a sub-lass of impulse ontrol problems, where the ost funtion ontains a �xed ost.2.2.1 Neessary Optimality ConditionsIn this setion we derive neessary optimality onditions for impulse ontrol in urrentvalue Hamiltonian form. In doing so, we orret the neessary optimality onditionsfor impulse ontrol given in Feihtinger and Hartl (1986, Appendix 6). Their theoremis based on the urrent value present value transformation. However, applying it hereturns out to be not as straightforward as usual.



18 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEA general formulation of the impulse ontrol problem with disounting is:
max
u,N,τ,v

∫ T

0

e−rtF (x(t),u(t), t)dt+

N
∑

i=1

e−rτiG(x(τ−i ), v
i, τi)+ e−rTS(x(T+)), (IC)subjet to

ẋ(t) = f (x(t),u(t), t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = g(x(τ−i ), v
i, τi), for i ∈ {1, . . . , N},

x(t) ∈ R
n, u(t) ∈ Ωu, vi ∈ Ωv, i ∈ {1, . . . , N},

x(0−) = x0, 0 ≤ τ1 < τ2 < . . . < τN ≤ T.Here, x is the state variable, u is an ordinary ontrol variable and v is the impulseontrol variable (and vi = v(τi)), where x and u are pieewise ontinuous funtionsof time1. Future ash �ows are disounted at a onstant rate r leading to the disountfator e−rt. The number of jumps is denoted by N , τi is the time moment of the
i-th jump, and x(τ−i ) and x(τ+i ) represent the left-hand and right-hand limit of xat τi, respetively (i.e. the state value just before a possible jump and immediatelyafter a possible jump at time τi). The terminal time or horizon date of the system orproess is denoted by T > 0, and T+ stands for the time moment just after T . Thepro�t of the system at time t is given by F (x,u, t), G(x, v, τ) is the pro�t funtionassoiated with the i-th jump at τi, and S(x(T+)) is the salvage value, i.e. the totalosts or pro�t assoiated with the system after time T (where x(T+) stands for thestate value immediately after a possible jump at time T ). Finally, f (x,u, t) desribesthe ontinuous hange of the state variable over time between the jump points and
g(x, v, τ) is a funtion that represents the instantaneous (�nite) hange of the statevariable when there is an impulse or jump at τ .We assume that the domains Ωu and Ωv are bounded onvex sets in R

n. Furtherwe impose that F , f , g and G are ontinuously di�erentiable in x on R
n and vi on

Ωv, S(x(T+)) is ontinuously di�erentiable in x(T+) on R
n, and that g and G areontinuous in t. Finally, when there is no impulse or jump, i.e. vi = 0, we assumethat

g(x, 0, t) = 0,for all x and t. A typial solution for an Impulse Control problem is presented inFigure 2.1.1Note that the neessary onditions also hold for measurable ontrols. We restrit ourselvesto pieewise ontinuous funtions sine this is needed for su�ieny. Appliations typially havepieewise ontinuous funtions.
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Figure 2.1 � Solution of Impulse Control system.Let us de�ne the present value Hamiltonian
Ham(x,u,µ, t) = e−rtF (x,u, t) + µf (x,u, t),and the present value Impulse Hamiltonian
IHam(x, v,µ, t) = e−rtG(x, v, t) + µg(x, v, t),where µ denotes the present value ostate variable. The following theorem presentsneessary optimality onditions assoiated with the impulse ontrol problem de�nedin (IC).Theorem 2.2.1 (Impulse Control Maximum Priniple (present value)).Let (x∗(·),u∗(·), N, τ ∗1 , . . . , τN , v

1∗, . . . , vN∗) be an optimal solution for the impulseontrol problem de�ned in (IC). Then there exists a pieewise ontinuous ostatevariable µ(t) suh that the following onditions hold:
u∗(t) = arg max

u∈Ωu

Ham(x∗(t),u,µ(t), t), (2.1)
µ̇(t) = −

∂Ham

∂x
(x∗(t),u∗(t),µ(t), t), for all t 6= τi, i = 1, . . . , N. (2.2)At the impulse or jump points, it holds that (i.e. at t = τi, i = 1, . . . , N)

∂IHam

∂v
(x∗(τ ∗−i ), vi∗,µ(τ ∗+i ), τ ∗i )(v

i − vi∗) ≤ 0, for all vi ∈ Ωv, (2.3)
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µ(τ ∗+i )− µ(τ ∗−i ) = −

∂IHam

∂x
(x∗(τ ∗−i ), vi∗,µ(τ ∗+i ), τ ∗i ), (2.4)

Ham(x∗(τ ∗+i ),u∗(τ ∗+i ),µ(τ ∗+i ), τ ∗i ))−Ham(x∗(τ ∗−i ),u∗(τ ∗−i ),µ(τ ∗−i ), τ ∗i )

−
∂IHam

∂τ
(x∗(τ ∗−i ), vi∗,µ(τ ∗+i ), τ ∗i )







> 0 if τ ∗i = 0

= 0 if τ ∗i ∈ (0, T )

< 0 if τ ∗i = T.

(2.5)For all points in time at whih there is no jump, i.e. t 6= τi (i = 1, . . .N), it holdsthat
∂IHam

∂v
(x∗(t), 0,µ(t), t)v ≤ 0, for all v ∈ Ωv. (2.6)At the horizon date the transversality ondition

µ(T+) = e−rT ∂S

∂x
(x∗(T+)), (2.7)holds, with x(T+) = x(T ) if there is no jump at time T , and τ ∗1 < τ ∗2 < . . . < τ ∗N ≤ T.Proof: See Blaquière (1977a; 1985) or Rempala and Zabzyk (1988).In Blaquière (1977a; 1985) it is assumed that the Impulse Hamiltonian is onave in

v. In this ase (2.3) and (2.6) are replaed by
vi∗ = argmax

v∈Ωv

IHam(x∗(τ ∗−i ), vi,µ(τ ∗+i ), τ ∗i ), for i = 1, . . . , N,and
0 = argmax

v∈Ωv

IHam(x∗(t), v,µ(t), t), for all v ∈ Ωv,respetively.Next we determine the urrent value formulation of Theorem 1. By doing this weorret Feihtinger and Hartl (1986, Appendix 6), in whih the urrent value versionof ondition (2.5) is wrongly stated. First, we de�ne the urrent value HamiltonianHam(x,u,λ, t) = F (x,u, t) + λf (x,u, t),and the urrent value Impulse HamiltonianIHam(x, v,λ, t) = G(x, v, t) + λg(x, v, t),with λ the urrent value ostate variable. The following theorem presents neessaryoptimality onditions to solve the impulse ontrol problem de�ned in (IC), based onthe urrent value approah.



Impulse Control 21Theorem 2.2.2 (Impulse Control Maximum Priniple (urrent value)).Let (x∗(·),u∗(·), N, τ ∗1 , . . . , τN , v
1∗, . . . , vN∗) be an optimal solution for the impulseontrol problem de�ned in (IC). Then there exists a pieewise ontinuous ostatevariable λ(t) suh that the following onditions hold:

u∗(t) = arg max
u∈Ωu

Ham(x∗(t),u,λ(t), t), (2.8)
λ̇(t) = rλ(t)−

∂Ham
∂x

(x∗(t),u(t),λ(t), t), for all t 6= τi, i = 1, . . . , N. (2.9)At the impulse or jump points, it holds that (i.e. at t = τi, i = 1, . . . , N)
∂IHam
∂v

(x∗(τ ∗−i ), vi∗,λ(τ ∗+i ), τ ∗i )(v
i − vi∗) ≤ 0, for all vi ∈ Ωv, (2.10)

λ(τ ∗+i )− λ(τ ∗−i ) = −
∂IHam
∂x

(x∗(τ ∗−i ), vi∗,λ(τ ∗+i ), τ ∗i ), (2.11)Ham(x∗(τ ∗+i ),u∗(τ ∗+i ),λ(τ ∗+i ), τ ∗i ))− Ham(x∗(τ ∗−i ), u∗(τ ∗−i ),λ(τ ∗−i ), τ ∗i )

−

[

∂G

∂τ
(x∗(τ ∗−i ), vi∗, τ ∗i )− rG(x∗(τ ∗−i ), vi∗, τ ∗i )

]

−λ(τ+i )
∂g

∂τ
(x(τ−i ), v

i∗, τi)







> 0 if τ ∗i = 0

= 0 if τ ∗i ∈ (0, T )

< 0 if τ ∗i = T.

(2.12)For all points in time at whih there is no jump, i.e. t 6= τ ∗i (i = 1, . . .N), it holdsthat:
∂IHam
∂v

(x∗(t), 0,λ(t), t)v ≤ 0, for all v ∈ Ωv. (2.13)At the horizon date the transversality ondition
λ(T+) =

∂S

∂x
(x∗(T+)), (2.14)holds, with x(T+) = x(T ) if there is no jump at time T , and τ ∗1 < τ ∗2 < . . . < τ ∗N ≤ T.Proof: The relation between present value and urrent value Hamiltonian, ImpulseHamiltonian and ostate variables is given by

Ham(x,u,µ, t) = e−rtHam(x,u,µ, t),

IHam(x, v,µ, t) = e−rtIHam(x, v,µ, t),



22 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEand
µ(t) = e−rtλ(t).Under these transformations, onditions (2.8)-(2.11),(2.13) and (2.14) are equal toonditions (2.1)-(2.4),(2.6) and (2.7). In this proof we show that (2.12) is the urrentvalue equivalent of the analogous ondition (2.5) derived by Blaquière (1977a; 1977b;1979; 1985). From the de�nitions of IHam and IHam we obtain that
e−rtIHam(x(t), vi,λ(t), t) = e−rtG(x(t), vi, t) + e−rtλ(t)g(x(t), vi, t)

= e−rtG(x(t), vi, t) + µ(t)g(x(t), vi, t)

= IHam(x(t), vi,µ(t), t).Combining this with (2.5) we get for τ ∗i ∈ (0, T ):
Ham(x∗(τ ∗+i ),u∗(τ ∗+i ),µ(τ ∗+i ), τ ∗i ))−Ham(x∗(τ ∗−i ),u∗(τ ∗−i ),µ(τ ∗−i ), τ ∗i ) =

e−rτ∗i

(

∂G(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
− rG(x∗(τ ∗−i ), vi∗, τ ∗i )

)

+ µ(τ ∗+i )
∂g(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
,whih implies thatHam(x∗(τ ∗+i ),u∗(τ ∗+i ),µ(τ ∗+i ), τ ∗i ))− Ham(x∗(τ ∗−i ),u∗(τ ∗−i ),µ(τ ∗−i ), τ ∗i )

= erτ
∗

i

(

e−rτ∗i

(∂G(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
− rG(x∗(τ ∗−i ), vi∗, τ ∗i )

))

+erτ
∗

i µ(τ ∗+i )
∂g(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ

=
∂G(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
− rG(x∗(τ ∗−i ), vi∗, τ) + λ(τ ∗+i )

∂g(x∗(τ ∗−i ), vi∗, τ ∗i )

∂τ
.This is ondition (2.12) for τ ∗i ∈ (0, T ). The other two ases, τ ∗i = 0 and τ ∗i = T ,follow the same steps.2.2.2 Su�ieny ConditionsThe following theorem an be found in Seierstad and Sydsæter (1987, pp. 198�199).Theorem 2.2.3 (Su�ient Conditions for Impulse Control). Let there be a feasi-ble solution, (x∗(·),u∗(·), N, τ ∗1 , . . . , τN , v

1∗, . . . , vN∗), for the impulse ontrol problem(IC) and a pieewise ontinuous ostate trajetory, so that the neessary optimal-ity onditions of Theorem 2.2.2 hold. When the maximized Hamiltonian funtionHam0(x,λ, t) = maxuHam(x,u,λ, t) is onave in x for all (λ, t), the IHam, on-ave in (x, v) for all t and S(x) onave in x, then that solution, (x∗(·),u∗(·), N,

τ ∗1 , . . . , τN , v
1∗, . . . , vN∗), is optimal.



Impulse Control 23For the proof of this theorem we refer to Theorem 1 in Seierstad (1981), whih isequivalent to the theorem stated above. However, we will show in Setion 2.3 thatthis result is not very useful sine most (relevant) problems given in the literature donot ful�l these onditions.2.2.3 Impulse Control: Inluding a Fixed CostWhen there is some �xed ost involved in the impulse ost funtion, the funtion Ghas a jump disontinuity at point vi = 0. The impliation is that G is not ontinu-ously di�erentiable. Consequently, stritly speaking the Impulse Control MaximumPriniple annot be applied. However, the Impulse Control Maximum Priniple hasbeen applied a few times while ignoring this ontinuity requirement (see, e.g., Luh-mer (1986), Gaimon (1985; 1986a; 1986b) and Chahim et al. (2012)). In this setionwe show that by applying some transformation, a general �xed ost problem an berepresented by a problem with ontinuous ost funtion so that still the neessaryoptimality onditions an be applied.Reonsider the above general impulse ontrol problem. For the remaining of thishapter we assume Ωv = [0, v̄] for some v̄ > 0 and g(x, 0, t) = 0 (see e.g., Blaquière(1977a; 1977b; 1979; 1985) and Seierstad and Sydsæter (1987)). Furthermore, theimpulse ost funtion needs to be ontinuously di�erentiable. As said before, thisis not the ase in the spei�ation where G is disontinuous beause of a �xed ostterm (for simpliity we delete the supersript i in vi):
G(x, v, τ) =

{

0 for v = 0

K(τ) + α(v, τ)v for 0 < v ≤ v̄,where K(τ) > 0. Clearly G is lower semi-ontinuous.The idea is to approximate the impulse ost funtion K + αv by a ontinuouslydi�erentiable one that assumes the same value for v > ε, where we let ε go to zero.A possible spei�ation would be
Gε(x, v, τ) =

{

−K(τ)
ε2

v2 + (2K(τ)
ε

+ α(v, τ))v for v ∈ [0, ε]

K(τ) + α(v, τ)v for ε < v ≤ v̄.Letting ε tend to zero it follows that Gε approahes G. Other spei�ations of
Gε(x, v, τ) are also possible, but the ommon property is that lim

ε→0

∂

∂v
Gε(x, 0, τ) = ∞.The argument is that the optimal solution of a problem with ost G will never have�very small� jumps beause of the �xed osts. Then, for ε small enough, Gε will al-ways generate the same ost as G and the optimal solutions will be the same. Hene,



24 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEthe neessary optimality onditions still hold for G with �xed ost. The followinglemma and proposition formalize these statements.Lemma 2.2.1. Let 0 < ε1 < ε0 and let (xε, uε, vε) (for simpliity we omit τ and N)be an optimal solution of the problem with ost funtion Gε, while (x∗, u∗, v∗) is anoptimal solution of problem (IC). Furthermore, we denote by J (x, u, v) the value ofthe objetive funtion of the original problem evaluated at (x, u, v) , and by Jε (x, u, v)the value of the objetive funtion of the approximated problem with ost funtion Gεevaluated at (x, u, v). Then
J(x, u, v) ≤ Jε1(x, u, v) ≤ Jε0(x, u, v), (2.15)and
J(x∗, u∗, v∗) ≤ Jε1(xε1 , uε1, vε1) ≤ Jε0(xε0 , uε0, vε0). (2.16)Proof: The �rst result (2.15) follows diretly from Gε0 ≤ Gε1 ≤ G, whereas (2.16)follows from (2.15) and
Jε1(xε1, uε1, vε1) ≤ Jε0(xε1 , uε1, vε1) ≤ Jε0(xε0, uε0, vε0).Proposition 2.2.1. Let (x∗, u∗, v∗) (for simpliity we omit τ and N) be an optimalsolution of problem (IC). Then the Impulse Control Maximum Priniple providesneessary optimality onditions, even though the model funtion G is not ontinuous.More preisely, if the optimal solution is unique, it satis�es these neessary optimalityonditions. Otherwise there is at least one optimal solution for whih this holds.Proof: Let ε0 be some small positive number and let (xε0, uε0, vε0) be an optimalsolution of the problem with ost funtion Gε0, whih thus satis�es the neessaryoptimality onditions. Let further viε0 be the smallest jump parameter in this optimalsolution. If viε0 ≥ ε0, the proposition automatially holds. If viε0 < ε0, hoose a lower

ε0, and hek again whether viε0 ≥ ε0. If yes we are done, if not ontinue thisproedure.2.3 Classi�ation of Existing Operations ResearhModels Involving Impulse ControlThis setion lassi�es existing operations researh impulse ontrol problems found inthe literature. When onsidering impulse ontrol problems in an operations researh



Classi�ation of Existing Operations Researh Models Involving ImpulseControl 25ontext, a ommon feature is disounting. The resulting general impulse ontrolproblem (where for reasons of exposition both the state and impulse ontrol are onedimensional) an be represented by
max
u,v,τ,N

∫ T

0

e−rtF (x(t), u(t), t)dt+

N
∑

i=1

e−rτiG(x(τ−i ), vi, τi)+ e−rTS(x(T+)), (2.17)subjet to
ẋ(t) = f(x(t), u(t), t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = g(x(τ−i ), vi, τi), for i ∈ {1, . . . , N},

x ∈ R, u ∈ Ωu, vi ∈ Ωv, x(0−) = x0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T .The objetive is typially to maximize pro�t or minimize ost. We distinguish be-tween
• linear impulse ontrol problem, i.e. a problem where the impulse ontrol variableours linearly in the Impulse Hamiltonian, and no ontinuous ontrol present(Case A);
• linear impulse ontrol problem and ontinuous ontrol present (Case B);
• non-linear impulse ontrol problem and no ontinuous ontrol present (CaseC );
• non-linear impulse ontrol problem and ontinuous ontrol present (Case D).In the linear impulse ontrol ase where no ontinuous ontrol u is present (CaseA), a typial solution would be to reah some kind of singular ar by applying im-pulse ontrol, but, if the state equation ontains some deay term (for instane δK(t)with δ the depreiation rate and K(t) the apital stok), then it might be formallyimpossible to stay there. One has to use some kind of impulse hattering, i.e. an in-�nitely large number of impulses of in�nitely small size. We elaborate on this whendisussing the model by Blaquière (1977a; 1977b) in Setion 2.3.1.In the linear impulse ontrol ase where also a ontinuous ontrol u is present (CaseB) and both the ordinary ontrol and the impulse ontrol go into the same diretioni.e. inrease or derease the state, the two ontrols (i.e. the ordinary and impulseontrol) are in some sense substitutes to eah other. Then one an distinguish thefollowing ases



26 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLE1. Continuous ontrol u and impulse ontrol v have the same monetary e�et (e.g.ost or pro�t). An example is the model by Seierstad and Sydsæter (1987, pp.199�202) where just the impulse ontrol is used to sell the omplete stok ofthe resoure at the best point in time. It is a non-autonomous model were thetwo ontrols appear in the model in the same way and are substitutes. Thejump ours at one time instant and in that sense this model is omparable to amodel that has the most rapid approah path (MRAP) property (see e.g. Hartland Feihtinger (1987)), where the singular ar is reahed by applying impulseontrol at one point of time (usually the initial time point), followed by a sin-gular ar whih is maintained using the ontinuous ontrol. The same analysishold for the model by Seierstad and Sydsæter (1987, pp. 202�206). Other ex-isting optimal ontrol models having this MRAP property are, e.g., Jorgenson(1963; 1967), and Sethi (1973). These kinds of models are not onsidered inthis hapter any further.2. The impulse ontrol has a higher ost. An example is the model by Blaquière(1979)(see Setion 2.3.2), where, for suitable values of x(0), only the ontin-uous ontrol is used to apply preventive maintenane for the mahine but noimpulse ontrol to repair or upgrade the mahine. If x(0) is very low an im-pulse jump ours at the initial time (MRAP-property), after whih preventivemaintenane is applied.3. The impulse ontrol has a lower ost. An example would be the model byBlaquière (1979)(see Setion 2.3.2), with modi�ed parameters so that repair ismore attrative than preventive maintenane. Then one would not do preven-tive maintenane but only repair during the planning period. This will lead toan impulse hattering solution. We demonstrate in Setion 2.3.1 that in suhases no optimal solution exists.In some sense, these results are trivial, i.e. there is no interesting ombination ofthe two types of ontrol. Suh interesting ases our when there is some �xed ostinvolved in the impulse ost funtion. In the non-linear impulse ontrol ase whereno ontinuous ontrol u is present (Case C ) this �xed ost in the impulse ost fun-tion often ours, examples are e.g. Luhmer (1986) and Chahim et al. (2012). InKort (1989) a model is given that analyzes the behavior of a �rm under a onaveadjustment ost funtion where impulse ontrol is applied. However, in Setion 2.3.5we demonstrate that an optimal impulse ontrol solution does not exist!In the literature no problems exist dealing with the non-linear impulse ontrol asewhere the ontinuous ontrol u is present (Case D). This is di�erent in the litera-



Classi�ation of Existing Operations Researh Models Involving ImpulseControl 27ture on stohasti impulse ontrol, where, e.g., Bensoussan and Lions (1984, Chapter1, Setion 4) disuss an inventory problem with ontinuous prodution and impulseordering of goods. However, as said before, this hapter restrits itself to a determin-isti impulse ontrol framework, and, sine �Case D problems� do not our in thisliterature, we will not onsider this ase any further.In the next setions we will disuss several (relevant) problems, hek whether thesu�ieny onditions of Theorem 2.2.3 hold, and desribe the nature of the solu-tions. In partiular we prove that in the roadside inn problem (Setion 2.3.1), in onesenario of the maintenane problem in Setion 2.3.2, and in the investment problemof Setion 2.3.5 no optimal solution exists. These problems have in ommon that�impulse hattering� ours on a time interval with positive length. This impulsehattering is alled �miro-impulse poliy� in Erdlenbruh et al. (2011). On the otherhand, for problems in Setion 2.3.3 (Luhmer (1986)), Setion 2.3.4 (Gaimon (1985;1986a; 1986b)) and Setion 2.3.6 (Chahim et al. (2012)) an algorithm is designedthat employs the neessary optimality onditions to �nd all andidate solutions foroptimality, as is shown in Luhmer (1986) (see also Kort (1989) and Chahim et al.(2012). Out of these andidate solutions, we an simply selet the one with the high-est objetive value. Provided that an optimal solution exists, this is then for sure theoptimal solution.2.3.1 Maximizing the Pro�t of a Roadside Inn (Case A)In Blaquière (1977a; 1977b) an example is given that deals with maximizing the pro�tof the owner of a roadside inn. The owner attrats more ustomers if he repaints theinn. The following model is given:
W (T ) = max

v,N
A

∫ T

0

x(t)dt− C
N
∑

i=1

vi, (2.18)subjet to
ẋ(t) = −kx(t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = vi(1− x(τ−i )), for i ∈ {1, . . . , N},

x(t) ∈ [0, 1], vi ∈ [0, 1], x(0−) = x0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T ,where N is the number of times the inn is (re)painted, C > 0, the marginal ostof eah (re)paint job, A a stritly positive onstant, and vi denotes the part of theroadside inn that needs to be repainted, where vi = 1 denotes a full repaint. Theappearane of the roadside inn is denoted by x. It is assumed that 0 ≤ x ≤ 1, andeah time the inn is repainted the index of appearanes of the inn x undergoes an



28 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEupward jump from its previous value x(τ−i ). Between (re)painting x deays as givenabove, with the depreiation rate k being a positive onstant. Furthermore, we as-sume that after the planning period the inn will not be used (i.e. the salvage valueis set to zero). In Sethi and Thompson (2006, pp. 324�330) this problem has beenreinterpreted as �The Oil Driller's Problem�.The Hamiltonian and Impulse Hamiltonian in short hand notation are
Ham(x, µ) = Ax+ µ(−kx),

IHam(x, v, µ) = v(−C) + µv(1− x) = v(−C + µ(1− x)).Both the impulse ontrol variable and state variable are linear in IHam and Ham.Due to the interation term between the impulse ontrol variable and the state vari-able in the Impulse Hamiltonian, IHam is not onave in (x, vi) jointly, so that theneessary optimality onditions are not su�ient.To solve the above stated model we �rst onsider the ontinuous version of thisproblem (i.e. the problem where the impulse ontrol vi is replaed by a ontinuousontrol u):
max

u
W (T ) =

∫ T

0

(Ax(t)− Cu(t))dt, (2.19)subjet to
ẋ(t) = −kx(t) + u(t)(1− x(t)),

x(t) ∈ R, u(t) ∈ [0,∞) x(0) = x0.We an identify this model as the Vidale-Wolfe advertising model disussed in Sethi(1973). The solution for this model is given in Figure 2.2. If the initial value of x(0) islower than the singular ar value of x(t) (i.e. x̂s) at t∗ = 0, we set the ontrol u = ∞so that the singular ar is reahed immediately (MRAP property). If the initial valueof x(0) is higher than x̂s the ontrol u = 0 is applied until x has reahed x̂s. At thesingular ar the ontrol is set at u = ûs = kx̂s/(1− x̂s), so that x(t) is kept onstantat the level x̂s. At the �nal planning period the ontrol is equal to zero, sine theremaining time period is too short to defray the ost uC. To solve the Blaquièreimpulse ontrol model, we need to approximate the Vidale-Wolfe advertising modelas muh as possible. This is straightforward for the solution part where u = 0 (thensimply put vi = 0) or where u = ∞. In the latter ase apply an initial impulseontrol jump, where v1 = x̂s − x′(0). On the singular ar we divide the interval
[tsa, T ] (with tsa the time the singular ar is reahed) in l parts of equal length and
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x(t)

x̂s
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u = 0

u = û

t
∗ = 0

u = ∞

x
′(0) (a) x′(0) < x̂s.

x(t)

x̂s

T
t

u = 0

u = û

x
′′(0)

u = 0

(b) x′′(0) > x̂s.Figure 2.2 � Vidale-Wolfe model solution.set within eah interval �rst vi = v̄ (where v̄ is suh that x̃ + v̄ − x̂s = x̂s − x̃ with
x̃ = x(τ−1 ) = . . . = x(τ−N )) and then vi = 0. In this way we reate a �saw-toothed�shape around the singular ar. This ontrol poliy is shown in Figure 2.3 and is theimpulse ontrol equivalent of hattering ontrol (see e.g. Feihtinger and Hartl (1986,pp. 78�81) or Kort (1989, pp. 62�70)). It is important to note that for eah given�saw-toothed� solution, a better solution is available by inreasing l and dereasing
v̄. We onlude that an optimal solution does not exist. This observation annot befound in Blaquière (1977a; 1977b), or in Sethi and Thompson (2006, pp. 324�330).
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(b) x′′(0) > x̂s.Figure 2.3 � Blaquière (1977) model solution with impulse hattering.



30 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLE2.3.2 Optimal Maintenane of Mahines (Case B)The following problem is taken from Blaquière (1979) and is also extensively analyzedin Sethi and Thompson (2006, pp. 331�337). This example deals with the optimalmaintenane of mahines:
W (T ) = max

v,u,τ,N

∫ T

0

(Ax(t)− u(t))dt−
N
∑

i=1

vi(C −Kx(τ−i )), (2.20)subjet to
ẋ(t) = −kx(t) +mu(t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = vi(1− x(τ−i )), for i ∈ {1, . . . , N},

x ∈ [0, 1], vi ∈ [0, 1], u(t) ∈ [0, ū], x(0−) = x0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where N is the number of times the mahines is repaired, C−Kx(τi), i = 1, ..., N , themarginal unit ost of eah repair, and A a stritly positive onstant. It is assumedthat 0 ≤ x ≤ 1, and eah time the mahine is repaired (where full repair, i.e.
vi = 1 stands for replaing the mahine with a new one) the index of appearanes ofthe mahine, x, undergoes an upward jump starting from its previous value x(τ−i ).Between repairs x deays as given above, with k and m positive onstants. The rateof maintenane expenses is denoted by u (i.e. the ontinuous ontrol). Moreover itis assumed that the ost of a repair is of the form vi(C −Kx), where C and K arestritly positive onstants. Furthermore, we assume that after the planning periodthe mahine will not be used (i.e. the salvage value is set to zero). The Hamiltonianand Impulse Hamiltonian are

Ham(x, u, µ) = Ax− u+ µ(−kx+mu),

IHam(x, v, µ) = v(Kx− C) + µv(1− x) = v(Kx− C + µ(1− x)).Both the impulse ontrol variable and state variable are linear in IHam and Ham.Due to the interation term between the impulse ontrol variable and the state vari-able in the Impulse Hamiltonian the neessary optimality onditions are not su�ient,sine IHam is not onave in (x, vi). Beause the neessary optimality onditions arenot su�ient we know that multiple andidate solutions an our for this problem.Here we will distinguish between two ases:
• The impulse ontrol (repair) has a higher ost than the ontinuous ontrol(preventive maintenane). When x(0) is su�iently large, only the ontinuousontrol is used to do preventive maintenane for the mahine, so no impulseontrol is applied to repair or upgrade the mahine. In this ase the oe�ients



Classi�ation of Existing Operations Researh Models Involving ImpulseControl 31satisfy mK ≤ 1 < mC < mA
k
. When x(0) is very low, besides preventivemaintenane, an impulse jump ours at the initial time and in that sensethis model is omparable to a model that has the most rapid approah path(MRAP) property. For the analysis of this ase we refer to Blaquière (1979).

• The impulse ontrol (repair) has lower ost than the ontinuous ontrol (preven-tive maintenane). Then one would not do preventive maintenane but repairduring the planning period. This results in impulse hattering analogous tothe Blaquière (1977a; 1977b) model in Setion 2.3.1. Hene, for this ase nooptimal solution exists.2.3.3 Minimizing Inventory Cost (Case C )Luhmer (1986) applies the Impulse Control Maximum Priniple to solve an inventoryproblem. The following model is presented:
C(T ) = min

v,τ,N

∫ T

0

h(I(t), t)e−rtdt+

N
∑

i=1

(

p(vi, τi)v
i + C(τi)

)

e−rτi

−S(I(T ))e−rT , (2.21)subjet to
İ(t) = −d(t)− g(I(t), t), for t /∈ {τ1, . . . , τN},

I(τ+i )− I(τ−i ) = vi, for i ∈ {1, . . . , N},

I(t) ∈ R
+, vi ∈ (0,∞), I(0) = I0, I(T ) = Ie, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where h denotes the holding or shortage ost and I(t) the inventory level at time t.

I(t) dereases over time by the demand rate d(t) and leakage losses g(I(t), t). Atany time instane τi the inventory is inreased by a quantity vi and the unit orderingosts are given by p(vi, τi). An order of size vi at time τi results in a variable ost of
(p(vi, τi)v

i plus a �xed ordering ost C(τi). At the end of the planning period a srapvalue for inventory Ie is left over, whih is denoted by S(I(T )). Finally, r stands forthe risk-free disount rate.Due to the �xed ost, the model violates the requirement that the ost funtionshould be ontinuously di�erentiable in the ontrol in order for the Impulse Con-trol Maximum Priniple to be appliable. However, performing our transformationof Setion 2.2.3 ensures that the Impulse Control Maximum Priniple an still beapplied. Moreover, the disontinuity in the ost funtion auses that the su�ientonditions do not hold, i.e. the Impulse Hamiltonian is not onave in (I, vi) jointly.This implies that we an have multiple solutions satisfying the neessary optimality



32 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEonditions. To solve this problem, Luhmer (1986) desribes an algorithm that �ndsall these andidate solutions. Typially, this produes a tree struture in whih thejumps of all andidate solutions are presented (f. Setion 2.3.6). Given that anoptimal solution exists, it is that andidate solution with the highest objetive value.2.3.4 Optimal Dynami Mix of Manual and Automati Out-put (Case B)Gaimon(1985; 1986a) determines the optimal times of impulse aquisition of automa-tion and the hange for manual output. The objetive is to minimize ost assoiatedwith deviation from a goal level of output. The purhase of automation is used todiretly substitute for output resulting from manually operated equipment. Sineautomation is aquired at disrete times in the planning period the author solves themodel using the impulse ontrol maximum priniple. The following model is given:
J(T ) = min

h,s,v,τ,N

∫ T

0

(

w[p(t) + q(t)− g(t)]2 + c1(t)h
2(t)

+c2(t)s
2(t) + f1(t)p(t) + f2(t)q(t)

)

e−rtdt,

+
N
∑

i=1

c3(τi)v
ie−rτi − β[p(T ) + q(T )]e−rT , (2.22)subjet to

ṗ(t) = −d(t) + h(t)− s(t), for t /∈ {τ1, . . . , τN},

q(τ+i )− q(τ−i ) = µvi, for i ∈ {1, . . . , N},

h(t) ∈ [0, H(t)], s(t) ∈ [0, S(t)], p(0) = p0,

q(0−) = q0, vi ∈ {0, 1}, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where N is the number of times automation equipment is aquired. c3(τi)v
i, i =

0, ..., N , the ost of aquiring the ith automation at time τi, where vi denotes the ithtehnology purhase. The level of automation output and manual output are given by
q(t) and p(t) respetively. The ost of produing output manually at time t is givenby f1(t) and the ost of produing output automatially at time t is given by f2(t).The ost of inreasing and reduing the level of manual output per unit squared attime t is represented by c1(t)h

2(t) and c2(t)s
2(t), respetively, where h(t) denotes thelevel of inrease in manual output at time t, with H(t) the available supply of laborand s(t) denotes the level of redution in manual output at time t, with S(t) themaximum permitted level of redution at time t. The level of redution in manualoutput at time t in units of output is represented by d(t), and g(t) represents thegoal level of output at time t also in units of output. Finally, w stands for the weight



Classi�ation of Existing Operations Researh Models Involving ImpulseControl 33or ost of the squared deviation between the atual and the goal levels of output, µthe units of inrease in output due to purhased automation, r is the disount rate,and β the value of the prodution per unit of output at the end of the planning period.The di�erene with the other impulse ontrol models is that the impulse ontrolvariable vi an takes only two values: 0 or 1. It follows that the term c3(τi)v
i worksas a �xed ost. Hene, analogous to the model in Setion 2.3.3, su�ient onditionsdo not hold, so that in priniple multiple solutions an satisfy the neessary opti-mality onditions. Furthermore some transformation as in Setion 2.2.3 is needed toapply the Impulse Control Maximum Priniple. This is not mentioned in Gaimon(1985; 1986a). A similar reasoning holds for Gaimon and Thompson (1984).Gaimon (1986b) determines the optimal times and levels of impulse aquisition ofautomation and the levels of hange for manual output with a similar objetive. Themain di�erene is that in Gaimon (1986b) the magnitude of automation output anhave di�erent values. So Gaimon (1986b) not only determines the time of aquiringautomation but also the size of this aquisition. The model is:

J(T ) = min
h,s,f2,v,τ,N

∫ T

0

{w[p(t) + q(t)− g(t)]2 + c1(t)h
2(t)

+c2(t)s
2(t) + f1(t)p(t) + [F2(t) + f2(t)]q(t)}e

−rtdt,

+

N
∑

i=1

c3(v
i, τi)e

−rτi − β[p(T ) + q(T )]e−rT , (2.23)subjet to
ṗ(t) = −d(t) + h(t)− s(t), for t /∈ {τ1, . . . , τN},

q(τ+i )− q(τ−i ) = vi, for i ∈ {1, . . . , N},

f2(τ
+
i ) = f2(τ

−
i )[1− αvi],

h(t) ∈ [0, H(t)], s(t) ∈ [0, S(t)], p(0) = p0, p(t) ≥ 0,

q(0−) = q0, vi ∈ [0, A(τi)], 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where in addition to the notation also used in model (2.22), F2(t) is the ompo-nent of the per unit ost of operating automati equipment that is una�eted by theaquisition of automation at time t, f2(t) is the per unit ost of obtaining outputautomatially at time t, whereas α stands for the e�etiveness of a unit aquisitionof automation on reduing f2(τi) at time τi (0 ≤ α ≤ 1/A(τi)).All examples in Gaimon (1986b) have an impulse ost funtion of the form c3(v
i, τi) =

C0 + C1v
i2. This again implies that the problem ontains a �xed ost, and thus suf-



34 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLE�ieny onditions do not hold so that multiple solutions an satisfy the neessaryoptimality onditions.2.3.5 Firm Behavior under a Conave Adjustment Cost Fun-tion (Case C )In Kort (1989) a model is given that analyzes the behavior of a �rm under a onaveadjustment ost funtion. Kort (1989) applies impulse ontrol beause the onaveost funtion results in a Hamiltonian that is onvex in the ontrol. The followingmodel is studied:
C(T ) = max

v,τ,N

∫ T

0

S(K(t))e−rtdt−
N
∑

i=1

(

vi + A(vi)
)

e−rτi +K(T )e−rT , (2.24)subjet to
K̇(t) = −aK(t), for t /∈ {τ1, . . . , τN},

K(τ+i )−K(τ−i ) = vi, for i ∈ {1, . . . , N},

K(t) ∈ R+, vi ∈ (0,∞) K(0) = K0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where vi stands for the i-th investment impulse, and τi is the time of the i-th impulse.The adjustment osts of the i-th investment impulse are given by A(vi) (with ∂A(v)
∂v

>

0 and ∂2A(v)
∂v2

< 0), K(t) is the amount of apital goods at time t, and a is a onstantdepreiation rate. Like Feihtinger and Hartl (1986), Kort (1989) applies the inorreturrent value Impulse Control Maximum Priniple and designs an algorithm to �ndall andidate solutions that starts at time T and works bakward in time (this isdi�erent from Luhmer (1986), whose algorithm starts at time zero). The Hamiltonianand Impulse Hamiltonian are
Ham(K, λ) = S(K)− λaK,

IHam(v, λ) = −
(

v + A(v)
)

+ λv.Note that the Impulse Hamiltonian does not depend on K so here there is no state-ontrol interation. However the su�ient onditions do not hold due to the onaveadjustment ost funtion whih implies that the Impulse Hamiltonian is not onavein vi. The ontinuous ase of this problem is also desribed in Kort (1989, pp. 57�62) and onsists of a hattering ontrol solution. Consequently, the impulse ontrolmodel has a �singular� ar with hattering too. Analogous to the Blaquière (1977a;1977b) model in setion 2.3.1, also here we have to onlude that no optimal solutionexists. This was not noted in Kort (1989, pp. 62�70).



Classi�ation of Existing Operations Researh Models Involving ImpulseControl 352.3.6 Dike Height Optimization (Case C )This setion analyzes the problem of the optimal timing of heightening a dike. Theost-bene�t-eonomi deision problem ontains two types of ost, namely investmentost and ost due to damage (aused by failure of protetion by the dikes). Clearly,there is a trade o� between investment ost and damage ost. The model in Chahimet al. (2012) is as follows:
min
v,τ,N

{

∫ T

0

S(t)e−rtdt +
N
∑

i=1

I(vi, H(τ−i ))e
−rτi + e−rT S(T )

r

}

, (2.25)subjet to
Ḣ(t) = 0, for t /∈ {τ1, . . . , τN},

H(τ+i )−H(τ−i ) = vi, for i ∈ {1, . . . , N},

H(t) ∈ R+, vi ∈ [0,∞) H(0−) = 0, 0 ≤ τ1 < τ2 > . . . , < τN ≤ T,where vi stands for the i-th dike heightening, H(t) is the height in entimeter (m)of the dike at time t relative to the initial situation, i.e. H(0) = 0, τ stands for thetime of the dike update (years), and r is the risk-free disount rate. The objetive(2.25) onsists of two parts. The �rst part is the total (disounted) expeted damageost, whih is given by
∫ T

0

S(t)e−rtdt+
S(T )e−rT

r
,where S(t) denotes the expeted damage at time t, S(t) = P (t)V (t). The �oodprobability P (t) (1/year) in year t is de�ned as

P (t) = P0e
αηte−αH(t), (2.26)where α (1/m) stands for the parameter in the exponential distribution regardingthe �ood probability, η (m/year) is the parameter that indiates the inrease of thewater level per year, and P0 denotes the �ood probability at t = 0. The damage ofa �ood V(t) (million e) is given by

V (t) = V0e
γteζH(t), (2.27)in whih γ (per year) is the parameter for eonomi growth, and ζ (1/m) stands forthe damage inrease per m dike height. V0 (million e) denotes the loss by �oodingat time t = 0. The seond part of the objetive is the total (disounted) investmentost

N
∑

i=1

I(vi, H(τ−i ))e
−rτi ,



36 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLEwhere N is the number of dike heightenings and H(τ−) the height of the dike (in m)just before the dike update at time τ (left-limit of H(t) at t = τ). The investmentost is given by
I(vi, H(τ−)) =

{

A0(H(τ−) + vi)2 + b0v
i + c0 for vi > 0

0 for vi = 0,for suitably hosen onstants A0, b0 and c0. The urrent value Hamiltonian isHam(t, H(t)) = −S0e
βte−θH(t),while the Impulse Hamiltonian is given byIHam(t, H(τ−), vi, λ(τ)) = −I(vi, H(τ−i )) + λ(τ)vi

= −A0(H(τ−) + vi)2 − b0v
i − c0 + λ(τ)vi.This problem is modeled as an impulse ontrol problem due to the �xed ost, c0,involved with eah dike heightening. As was the ase for Luhmer (1986), due to this�xed ost a disontinuity arises in the ost funtion. The �rst impliation is that theImpulse Control Maximum Priniple annot be straightforwardly applied (althoughour transformation in Setion 2.2.3 makes up for this), and, seond, the su�ienyonditions do not hold (i.e. the Impulse Hamiltonian is not onave in (H, vi) jointly).Chahim et al. (2012) implement the bakward algorithm designed by Kort (1989, pp.62�70). This algorithm solves the above stated problem (2.25) for di�erent values of

H(T ). We selet that H(T ), whih orresponds to the solution with the lowest valueof the objetive funtion. In Figure 2.4 the tree for the Duth dike ring area 10 ispresented. The tree shows all andidate solutions for (the optimal) H(T ) = 282.57.Due to the �xed osts, small jumps annot be optimal whih is why one an ut awayall the upper branhes in Figure 2.4. Formally this an be proved by observing that asolution that ontains suh a small jump, is dominated by a solution where the smalljump is deleted, while instead it is added to the previous jump. This implies that onlythe optimal solution is left. In Table 3.5 this optimal solution (and orrespondingost) are presented.
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τ6=45.23STOPFigure 2.4 � Example Tree, Dike ring area 10, H(T ) = 282.57.No. 10
τi (years) vi(cm)Updates 275.93 57.15213.08 61.35153.43 57.3097.98 53.9945.24 52.78

H(T )(cm) 282.57Investment ost (million e) 10.17Damage ost (million e) 29.96Total ost (million e) 40.13Table 2.1 � Impulse ontrol solutions for dike ring area 10 with quadratiinvestment ost.2.4 Conlusions and ReommendationsThis hapter gives a orret formulation of a neessary optimality onditions of theImpulse Control Maximum Priniple based on the urrent value formulation. In thisway we orret Feihtinger and Hartl (1986, Appendix 6) and Kort (1989, pp. 62�70). We review the existing impulse ontrol models in the literature and show thatall meaningful problems found in the literature do not satisfy the su�ieny ondi-tions. We observe that these problems either have a onave ost funtion, ontain a�xed ost, or have a ontrol-state interation, whih all lead to non-onavities vio-lating su�ieny. The impliation of not satisfying the su�ieny onditions is that
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CHAPTER 3An Impulse Control Approah to Dike HeightOptimizationAbstrat This hapter determines the optimal timing of dike heighten-ings as well as the orresponding optimal dike heightenings to protetagainst �oods. To derive the optimal poliy we design an algorithmbased on the Impulse Control Maximum Priniple. In this way thishapter presents one of the �rst real life appliations of the ImpulseControl Maximum Priniple. We show that the proposed Impulse Con-trol approah performs better than dynami programming with respetto omputational time. This is aused by the fat that Impulse Controldoes not need disretization in time.
3.1 IntrodutionIn February 1953 the south-western part of the Netherlands was struk by a �ooddisaster. The �ood ourred in the night and resulted into the death of 1,835 people.Almost 200,000 hetares of land were �ooded, 3,000 homes and 300 farms destroyed,and 47,000 herd of attle drowned. In total there were 67 dike breaks. It was thebiggest �ood in the Netherlands for 300 years. Soon after this �ood the Duthgovernment installed the Delta Committee with the main objetive to prevent theourrene of suh events in the future, taking into aount that 40% of the Nether-lands is below sea level. The Delta Committee asked Van Dantzig (1956) to solve theeonomi ost-bene�t deision model onerning the dike height problem. Beauseof sea-level rise and eonomi growth at some spei� moments in time the height ofthe dike must be raised.In 1995 again a ritial situation ourred, where the water level of the major riversRhine and Meuse inreased so muh that 200,000 people where fored to evauate.



42 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONAfter all, there was no serious �ood and people ould safely return to their homes.Protetion against �ooding is beoming an important issue all over the world. Thereare many deltas that need protetion against �oods. In Adikari and Yoshitania (2009)it is shown that the total number of natural disasters are ontinuously inreasing inmost regions of the world. They state that: �Among all natural [...℄ disasters, water-related disasters are undoubtedly the most reurrent and pose major impediments tothe ahievement and sustainable soio-eonomi development.�In Table 3.1 an overview of all reorded natural water-related disasters between 1900-2006 is presented. Between 1900 en 2006 �oods aounted for more than 29.8% of1900-2006 Number of Number Total Real damagedisasters killed (×103) a�eted (×106) US$ (×109)Flood 3,050 (42,34%) 6,899 (37,35%) 3,028 (50,18%) 343 (36,07%)Windstorm 2,758 (38,28%) 10,009 (54,19%) 753 (12,48%) 536 (56,36%)Drought 836 (11,60%) 1,209 (6,55%) 2,240 (37,12%) 61 (6,41%)Slides 508 (7,05%) 56 (0,30%) 10 (0,17%) 3 (0,32%)Wave/Surge 52 (0,72%) 296 (1,60%) 3 (0.05%) 8 (0,84%)Total 7,204 (100%) 18,469 (100%) 6,034 (100%) 951 (100%)Table 3.1 � Statistis of reorded natural water-related disasters globally be-tween 1900 and 2006.1the total number of natural disasters (inluding non-water related, like epidemis,earthquakes et; see Adikari and Yoshitania (2009)). Of all asualties aused bynatural disasters, 18,5% was due to �ooding. Moreover more than 48% of the totalnumber of people a�eted by natural disasters was �ood related. In Table 3.2 thenumber of fatalities due to �oods for di�erent parts of the world between 1986 and2006 are presented. These statistis show that not only the Netherlands, but manyregions in the world have to deal with water-related disasters, suh as �oods. In2007 the Delta Committee 2 was installed in the Netherlands. The objetive of thisommittee was to advise the Duth government onerning the onsequenes of thewater level rise for the Duth oast and the large river deltas. The Delta Committee2 warned that the sea level ould inrease more than what was expeted in the past.In partiular, we should take into aount a rise in sea water level between 0.65 meter(m) and 1.30 m around 2100 and a rise between 2 m and 4 m around 2200. In 2009the Duth government ommissioned a projet to develop a ost-bene�t analysis anddesign a method to solve the resulting optimization model in order to set new safety1EM-DAT, The International Disaster Database of the Centre for Researh on the Epidemiologyof Disasters (CRED).



Introdution 431986-2006 Number offatalitiesAsia 117,325 (64.4%)Afria 14,573 (8.1%)Ameria 47,782 (26.2%)Europe 2,120 (1.2%)Oeania 218 (0.1%)Total 182,118 (100%)Table 3.2 � The reported number of fatalities due to �oods between 1986 and2006 per ontinent.1standards. Results of this projet an be found in Hertog and Roos (2009) and Eij-genraam et al. (2011).This hapter presents an Impulse Control approah as an alternative method to thedynami programming approah used in Eijgenraam et al. (2011) to solve the dikeheight problem. Brekelmans et al. (2012) develop a mixed integer nonlinear program(MINLP), but for homogeneous2 dikes the best approah turns out to be dynamiprogramming. Therefore we hoose to ompare it with the Impulse Control approah.To develop the optimal poliy we design an algorithm based on the Impulse ControlMaximum Priniple. We show that the proposed Impulse Control approah performsbetter than dynami programming in omputation time. This is aused by the fatthat Impulse Control does not need disretization in time. Furthermore, this hap-ter presents one of the �rst real life appliations of the Impulse Control MaximumPriniple. In the literature there are not many problems solved using the ImpulseControl Maximum Priniple. Luhmer (1986) and Kort (1989) design an algorithmto apply the Impulse Control Maximum Priniple to theoretially solve (eonomi)problems. We onsider a framework where the number of jumps is not restrited.This distinguishes our approah from, e.g., Liu et al. (1998), Augustin (2002, pp.71�81) and Wu and Teo (2006), where the number of jumps is �xed (i.e. is taken asgiven).The eonomi ost-bene�t problem raised by the �ood prevention is formulated byVan Dantzig (1956) as:�Taking into aount, the ost of dikebuilding, the materiallosses when a dike-break ours, and the frequeny distribution of di�erent sea lev-els, determine the optimal height of the dikes�. He assumes that both the eonomi2A homogeneous dike or dike ring onsists of one segment.



44 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONvalue proteted by the dikes and the probability of a dike breakthrough are on-stant over time. In his analysis he determines how muh to invest in the heighteningof a dike, but did not answer the question �when� to heighten this dike. Eijgen-raam et al. (2011) adjusted Van Dantzig's analysis with respet to eonomi growth.Van Dantzig (1956) found that the height of a dike after every heightening shouldbe suh that the resulting �ood probabilities are the same. Eonomi growth impliesinreasing potential damage, so it is optimal to have lower �ood probabilities afterevery dike height inrease. This an be ahieved by raising the dike height to higherlevels. In this hapter all model assumptions are similar to Eijgenraam et al. (2011).Impulse Control theory is a variant of optimal ontrol theory where disontinuities(i.e. jumps) in the state variable are allowed. In Impulse Control the moments ofthese jumps as well as the sizes of the jumps are taken as (new) deision variables.In Blaquière (1985) an example is given that deals with optimal maintenane and lifetime of mahines. Here one has to deide when to replae a mahine by a new one(impulse ontrol variable), and has to determine the rate of maintenane expenses(ordinary ontrol variable), so that the pro�t is maximized over the planning period.In Kort (1989) a dynami model of the �rm is designed in whih apital stok jumpsupward at disrete points in time at whih the �rm invests. Blaquière (1977a; 1977b;1979; 1985) extends the standard theory on optimal ontrol by deriving a MaximumPriniple, the so-alled Impulse Control Maximum Priniple, that gives neessaryand su�ient optimality onditions for solving suh problems.Blaquière's Impulse Control analysis is based on the present value Hamiltonian form.In this hapter we apply the Impulse Control theorem in the urrent value Hamilto-nian framework as derived in Chahim et al. (2012).This hapter is organized as follows. In Setion 3.2 we �rst build up the ImpulseControl model and derive the neessary optimality onditions. In Setion 3.3 we de-sribe the algorithm used to solve the model and obtain an upper bound for the �naldike height using the neessary optimality onditions. In Setion 3.4 we ompare theImpulse Control model to the dynami programming approah used in Eijgenraamet al. (2011) and present numerial results. Finally, in Setion 3.5 we onlude.3.2 Impulse Control ModelA dike or dike ring is an uninterrupted ring of water defenes. There are 53 dike ringareas in the Netherlands with a higher safety standard (i.e. lower �ood probability)



Impulse Control Model 45than 1/1,000 per year. Eah dike ring protets a ertain area against �ooding, seeFigure 3.1. The model desribed in this setion an be used for eah dike ringseparately. In the �rst setion we build up the mathematial model and show that

Figure 3.1 � Dike ring areas and safety standards in the Netherlands.this problem an be desribed as an Impulse Control problem. In the seond setionwe derive neessary optimality onditions.3.2.1 The ModelThe eonomi ost-bene�t deision problem de�ned in Eijgenraam (2006) ontainstwo types of ost that we deal with in this problem, namely investment ost andost due to damage (aused by failure of protetion by the dikes). Clearly, there is atrade o� between inurring ost due to investing or hoosing not to invest and aeptthe probability that a dike is less protetive leading to higher expeted damage ost.



46 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONThe model minimizes the sum of the total expeted damage ost and total investmentost. For a thorough disussion of the validity of the underlying model assumptionsand parameter values we refer to Eijgenraam et al. (2011).Let τ (with 0 ≤ τ1 < τ2 < . . . < τK ≤ T ) stand for the time of the dike height-ening (years) and H(t) denotes the dike height at time t (years) relative to the initialsituation, i.e. H(0) = 0 (m). The investment ost will be denoted as I(u,H(τ−)),with H(τ−) the height of the dike (in m) just before the dike heightening at time τ(i.e. H(τ−) = limt↑τ H(t)) and u the amount of the dike heightening. Conerning theinvestment ost funtions, we onsider two di�erent spei�ations. The exponentialinvestment ost funtion is given by
I(u,H(τ−)) =

{

(c0 + b0u) e
a0(H(τ−)+u) for u > 0

0 for u = 0,
(3.1)where a0, b0 and c0 are positive onstants. The quadrati investment ost funtionsis given by

I(u,H(τ−)) =

{

a1(H(τ−) + u)2 + b1u+ c1 for u > 0

0 for u = 0,
(3.2)for suitably hosen onstants a1, b1 and c1. Observe that both the exponential andthe quadrati investment ost funtions depend on the height of the dike at themoment of heightening. This is ontrary to Van Dantzig (1956), who uses a linearost funtion that does not depend on the urrent height of the dike. Our investmentost spei�ations are in line with the engineering experiene that making a dikehigher also requires making it wider, implying that an additional dike height inreaseosts more if the urrent height is higher (see e.g. Sprong (2008)). Total (disounted)investment ost is then given by

K
∑

i=1

I(ui, H(τ−i ))e
−rτi ,where r is the disount rate, ui (m) denotes the size of the i-th dike heightening,and τi is the time of the i-th dike heightening. Following Eijgenraam et al. (2011),we de�ne the �ood probability P (t) (1/year) at time t as

P (t) = P0e
αηte−αH(t), (3.3)where α (1/m) stands for the parameter in the exponential distribution regardingthe �ood probability and η (m/year) is the parameter that represents the inrease



Impulse Control Model 47of the water level per year. The �ood probability at time t = 0 (i.e. the urrent �oodprobability) is denoted by P0 (1/year), note that P (0−) = P0. We next desribe thevalue of the damage by a �ood, V (t) (million euros):
V (t) = V0e

γteζH(t), (3.4)in whih γ (per year) is the parameter representing eonomi growth, and ζ (1/m)stands for the damage inrease per m dike height. The loss by �ooding at time
t = 0 is denoted by V0 (million euros). Note that V (0−) = V0. If ζ > 0 (1/m),the damage of a �ood inreases with the height of the dike. The intuition behindthis is that when there is a �ood, it holds that the higher the dike the longer a highwater level will be maintained on the �ooded land. This auses higher damage ost.Multiplying the �ood probability with the value of the damage by a �ood leads tothe expeted loss due to a �ood. From (3.3) and (3.4) it follows that the expeteddamage at time t equals

S (t) = P (t) V (t) = S0e
βte−θH(t), (3.5)with S0 = P0V0, β = αη + γ, and θ = α− ζ .We onsider a �nite time horizon [0, T ]. The total expeted damage ost on thetime interval [0, T ] equals

∫ T

0

S(t)e−rtdt =

∫ T

0

S0e
βte−θH(t)e−rtdt,and the expeted damage ost after T , the so-alled salvage value, is given by

S(T )

∫ ∞

T

e−rtdt =
S(T )e−rT

r
.Hene, total (disounted) damage ost is given by

S0

∫ T

0

eβte−θH(t)e−rtdt+
S(T )e−rT

r
.The aim is to minimize the sum of the investment and expeted damage ost:

min

∫ T

0

S0e
βte−θH(t)e−rtdt+

K
∑

i=1

I
(

ui, H
(

τ−i
))

e−rτi + e−rT S (T )

r
,where K is the endogenous number of dike heightening in [0, T ].



48 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONThe height of the dike, H(t), between two dike heightening does not hange overtime3:
Ḣ(t) = 0 for t /∈ {τ1, . . . , τK}.Dike heightenings our at times τ1, . . . , τK . Then we have that
H
(

τ+i
)

−H
(

τ−i
)

= ui for i ∈ {1, . . . , K},where H(τ+) denotes the height of the dike (in m) just after the dike heighteningat time τ . The dike heightening problem then beomes
min
u,τ,K

∫ T

0

S0e
βte−θH(t)e−rtdt+

K
∑

i=1

I
(

ui, H(τ−i )
)

e−rτi + e−rT S0e
βT e−θH(T )

r
, (3.6)subjet to

H(0−) = 0,

Ḣ (t) = 0, for t /∈ {τ1, . . . , τK}

H
(

τ+i
)

−H
(

τ−i
)

= ui, for i ∈ {1, . . . , K},

H(t) ∈ R+, ui ∈ [0,∞), 0 ≤ τ1 < τ2 < . . . , < τN ≤ T.This is an Impulse Control problem as desribed in Blaquière (1977a; 1977b; 1979;1985). Note that this dike heightening model only ontains an impulse ontrol vari-able and not an ordinary ontrol variable. In Blaquière (1979) an example is given ofa linear model that ontains both an ordinary and an impulse ontrol variable. Theexample of Blaquière deals with mahine maintenane, where the �rm has to hoosebetween preventive maintenane (ordinary ontrol) and repair (or upgrade) of themahine (impulse ontrol), see Setion 2.3.2.3.2.2 Neessary Optimality ConditionsIn this setion we state neessary optimality onditions to solve the Impulse Controldike heightening model given by (3.6). Here we employ the urrent value Hamiltonianform derived in Chahim et al. (2012). This is done, beause the model desribed inthis hapter involves disounting. Other referenes stating the neessary optimalityonditions for impulse ontrol problems are Blaquière (1977a; 1977b; 1979; 1985),Seierstad (1981) and Seierstad and Sydsæter (1987).To apply the Impulse Control Maximum Priniple the funtions S(t) and I(u,H(τ−))3The dike height an derease slightly due to damage and wear, however these hanges are sosmall that we neglet them in our model.



Impulse Control Model 49should be ontinuously di�erentiable in H and ui on R+. Moreover S(T )/r shouldbe ontinuously di�erentiable in H(T ) on R+, and �nally that I(ui, H(τ−)) is on-tinuous in τ .The urrent value Hamiltonian isHam(t, H) = −S0e
βte−θH ,and the urrent value Impulse Hamiltonian is given byIHam(t, H, u, λ) = −I(u,H) + λu,in whih λ represents the ostate variable.Applying the neessary optimality onditions from Chahim et al. (2012) to our prob-lem yields:























































































λ̇(t) = rλ(t)− θS0e
βte−θH(t) t 6= τi (i = 1, . . . , K)

λ (T ) =
θS0e

βT e−θH(T )

r

λ
(

τ+i
)

− λ
(

τ−i
)

= IH
(

ui, H(τ−i )
) for i = 1, . . . , K

−Iu
(

ui, H
(

τ−i
))

+ λ
(

τ+i
)

= 0 for i = 1, . . . , K

S0e
βτi
(

e−θH(τ−i ) − e−θH(τ+i )
)

− rI
(

ui, H(τ−i )
)







> 0 if τi = 0

= 0 if τi ∈ (0, T )

< 0 if τi = T

for i = 1, . . . , K

∂IHam(t, H(t), 0, λ(t))

∂u
u ≤ 0 for u ≥ 0, t 6= τi (i = 1, . . . , K),

(3.7)(3.8)(3.9)(3.10)(3.11)(3.12)where λ̇(t) denotes the time derivative of the ostate variable λ(t), IH and Iu denotethe partial derivatives of the investment ost funtion with respet to the state vari-able H(t) and u, respetively. The state variable H(t) as well as the ostate variable
λ(t) are pieewise-ontinuous funtions in R+. The domain of the impulse ontrol uis R+.When there is no jump (i.e. t 6= τi (i = 1, . . . , K)) equation (3.7) denotes the hangeof the ostate variable and (3.8) gives the transversality ondition at the end. Both(3.9) and (3.10) state that at a jump point the marginal ost is equal to the orre-sponding marginal gains. In equation (3.9) the jump in the ostate variable is equalto IH , whih an be interpreted as the marginal investment ost of inreasing the



50 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONdike height just before a dike height jump of size ui ours. Equation (3.10) statesthat the ostate variable λ(t), whih an be interpreted as the redution in expeteddamage of an additional entimeter dike inrease, equals the investment ost of anadditional entimeter of a dike inrease, i.e. Iu. When dividing equation (3.11) by thedisount rate r, the �rst term an be interpreted as the derease of the disountedvalue of expeted future damage due to the inrease of the dike at τi, while the lastterm is the investment ost of the dike heightening. So, at the jump point τi it mustalso hold that the total gain of inreasing the dike should be equal to the ost ofinreasing the dike. It follows that optimal behavior requires that the Net PresentValue (NPV) of the investment to inrease the dike height equals zero. The NPVequals the di�erene between disounted future gains and urrent investment ost.Sine I(ui, H(τ−)) is not ontinuously di�erentiable in ui (i.e. the derivative at ui = 0does not exist, due to the �xed ost) one of the onditions for applying the ImpulseControl Maximum Priniple is violated and we have a problem applying ondition(3.12). Chahim et al. (2012) deals with this problem and provides a transforma-tion for the impulse ost funtion I(ui, H(τ−)), whih ensures that the appliationof the Impulse Control Maximum Priniple still provides the optimal solution evenin the ase of a �xed ost. This transformation is based on a ontinuously di�eren-tiable approximation of the impulse ost funtion (see Setion 2.3 of Chahim et al.(2012)). Combining equation (3.12) with the orret approximation implies that
limǫ↓0

∂IHamǫ

∂u
(t, H(t), 0, λ(t))u = −∞·u ≤ 0 for every u ∈ [0,∞), where IHamǫ is theontinuously di�erentiable approximation of IHam. Hene, (3.12) is satis�ed, sineit holds for all t 6= τi (i = 1, . . . , K).3.3 Impulse Control Algorithm for a Dike RingIn this setion we present an algorithm that an be used to solve the problem de-sribed in the previous setion and explain how we apply the neessary optimalityonditions to �nd all dike heightenings that are andidates for ourrene in our op-timal solution. In the algorithmH(T ) (i.e. the height of the dike at t = T ) is a searhvariable. We show how to obtain an upper bound for the optimal H(T ) using theneessary optimality onditions. Finally, we explain how to �nd the optimal H(T ).3.3.1 AlgorithmIn Chahim et al. (2012) it is shown that the Impulse Control su�ient onditionsdo not hold in all relevant eonomi problems found in the literature. For our dikeheight problem the su�ient onditions do not hold due to the �xed ost in the



Impulse Control Algorithm for a Dike Ring 51investment ost funtion, whih breaks down the onavity of the Impulse Hamilto-nian. Therefore, solutions satisfying the neessary optimality onditions presentedin the previous subsetion are just andidate optimal solutions. Based on the nees-sary optimality onditions, we design an algorithm that �nds all andidate solutions(i.e. a solution that satis�es the neessary optimality onditions). The andidatethat minimizes (3.6) is the optimal solution. This algorithm an lead to multipleandidate solutions already desribed in Luhmer (1986). Contrary to Luhmer, whodesigns a forward algorithm, we implement a bakward algorithm, as desribed byKort (1989). This algorithm starts at the horizon date T instead of starting at t = 0.We do this sine the forward algorithm uses the ostate variable λ(0) as a searhparameter to start the algorithm. In other words, the forward algorithm needs λ(0)as input to initialize the algorithm. Contrary to the forward algorithm, the bak-ward algorithm uses the dike height at the end of the planning period, H(T ), as thesearh parameter. Sine λ(t) is only an auxiliary variable, λ(0) is harder to guessthan H(T ). Moreover, Setion 3.3.3 shows that an upper bound for H(T ) an beeasily derived using the model harateristis. Figure 3.2 shows a �owhart of thealgorithm. The next paragraph explains the algorithm in broad terms. In Appendix3A the algorithm is presented in more detail.First, we de�ne X as a set of triples (τ, u, λ) that represents (part of) a solutionbased on the neessary optimality onditions, S as the stak (set) of un�nished (par-tial) solutions, and C the set of andidate solutions represented by a set of triples.Let ts denote the time of the earliest update in X or T if X is empty. We referto the �owhart depited in Figure 3.2 using roman apital numbers. To initializethe algorithm (I ) we hoose a �nal dike height H(T ) and alulate λ(T ) via equa-tion (3.8). Then we hek whether a dike inrease an our at the horizon date
T , and whether it satis�es the neessary optimality onditions (II ). If it does notsatisfy these onditions, we go via (IV.i), where we set X = {(T, 0, λ(T ))}, to (V ).If the neessary optimality onditions are satis�ed, we go via (IV.ii), where we set
X = {(T, u(T ), λ(T−))}, to (V ). In (V ) we hek whether a dike inrease an ourat t = 0. If a dike heightening at t = 0 an our and satis�es the neessary op-timality onditions we save this andidate solution. More preise, in (VII ) we addthis triple to X , i.e. X = X ∪ {(0, u(0), λ(0))} and save this sequene of triples as aandidate solution in (IX ), i.e. C = C ∪ {X}. Parallel to this we go to (VI ) to �ndall other andidate solutions (i.e. in (VI ) we hek whether other andidate solutionsan be found, negleting the jump at t = 0). If a dike heightening at t = 0 annot our or does not satisfy the neessary optimality onditions, we go to (VI ). In(VI ) we solve the neessary optimality onditions to �nd the set J of all triples,



52 CHAPTER 3. DIKE HEIGHT OPTIMIZATION
(I ) initialization: hoose H(T ), alu-late λ(T ), and set X = S = C = ∅(II ) hek whether a dike inrease an our at t =

T onditions (3.9), (3.10) and (3.11) for optimality
(III ) pik X ∈ S, S = S \ {X} (IV.i) X = {(T, 0, λ(T ))} (IV.ii) X = {(T, u(T ), λ(T−))}

(V ) hek whether a dike inrease an ourat t = 0 onditions (3.9), (3.10) and (3.11)(VI ) solve neessary onditions (3.9),(3.10) and (3.11) to �nd the set Jof triples (τ, u, λ), with τ ∈ (0, ts),and dike heightenings, u. For eah
(τ, u, λ) ∈ J hek Obs. 1. If atriple (τ, u, λ) ful�lls Obs. 1 then

J = J \ {(τ, u, λ)}. (VII ) X = X∪{(0, u(0), λ(0))}

(VIII ) S = S ∪
(

∪{τ,u,λ}∈J {X ∪{(τ, u, λ−)}}
)

(IX) C = C ∪ {X}

STOP no yesS = ∅

S 6= ∅

no yes
J = ∅

J 6= ∅

Figure 3.2 � Flowhart of Impulse Control Algorithm for a given H(T ).



Impulse Control Algorithm for a Dike Ring 53with τ ∈ (0, ts) and dike heightenings u. If no suh triple is found we go to (IX ) andsave the urrent sequene X of triples as a andidate solution. If at least one tripleis found, then in (VIII ) we add eah triple (τ, u, λ) ∈ J to the urrent sequene X ,and add the results to the set of un�nished sequenes. From (VIII ) and (IX ) we goto (III ) where we pik a sequene X from the set of open solutions and ontinue theproedure as shown in Figure 3.2. Finally, if the stak (set) of un�nished (partial)solutions is empty, we stop.We neglet solutions that are assoiated with a negative dike heightening, sine theseare infeasible. Suh solutions are disarded and not investigated any further. Wealso neglet sequenes of triples for whih the sum of the investment ost for the dikeheightening uj and its predeessor uj−1 is larger than the investment ost for inreas-ing the dike with uj + uj−1 at time τj . If this is the ase, this solution an never bepart of the optimal solution sine updating with uj +uj−1 at τj has lower disountedinvestment ost and indues more safety (note that τj < τj−1). This results in thefollowing observation.Observation 1. If:
(i) uj ≤ 0,or
(ii) e−rτjI(uj, H(τ−j )) + e−rτj−1I(uj−1, H(τ−j−1)) ≥ e−rτjI(uj + uj−1, H(τ−j )),then the orresponding solution an never be optimal.This approah yields a set of andidates and we selet the andidate with the lowestexpeted ost. Furthermore, we have to hek whether H(0) = 0. If this is notsatis�ed, then the initial H(T ) is not optimal and we restart the algorithm with anew initial H(T ), more on this in Setion 3.3.4.3.3.2 Solving the Neessary Optimality ConditionsIn Figure 3.2 it stated in box (VI ) that the neessary optimality onditions are usedto �nd all andidate solutions, i.e. all andidate dike heightenings. Equation (3.10)is of the following form
y1e

α1t + y2e
α2t + y3e

α3t − Iu = 0, (3.13)where y1, y2, y3, α1, α2 and α3 are onstants. Expression (3.11) is of the followingform:
z1e

β1t + z2e
β2t+β3u − rI







> 0 for t = 0

= 0 for t ∈ (0, T )

< 0 for t = T,

(3.14)



54 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONwhere z1, z2, β1, β2 and β3 are onstants. If (3.13) depends on u and t this an berewritten into a funtion u(t) whih an be substituted into (3.14). The resultingnon-linear equation has only one unknown t. Solving this leads to all possible jumpspoints τ , and u(τ) gives us the orresponding jump size. It an also be the ase that(3.13) depends only on t. Then (3.13) an be solved to �nd all τ . Using (3.14) we�nd all orresponding jump sizes u. Finally, equation (3.9) gives us the value of theostate variable before the dike update. This results in a set of triples (τ, u, λ).3.3.3 Finding an Upper Bound for the Optimal Ending DikeHeightLetH∗(T ) denote the end dike height (i.e. the height at t = T ) of the optimal solutionto our problem (3.6). An upper bound an be obtained by using the neessaryoptimality onditions. Investing in a dike is only �pro�table� if the marginal ost ofthe investment is at most equal to the marginal revenue. In the ases of exponentialand quadrati ost funtion the following results an be established.Proposition 3.3.1.For exponential ost (see (3.1)):Let T > 1
β
ln r(b0+a0c0)

θS0
, and let H̄e be de�ned by the solution of the following equation:

θS0e
βT e−θH̄e

r
= b0e

a0H̄e + a0c0e
a0H̄e . (3.15)Furthermore, let

Ĥe =
1

θ + a0
ln

(

θS0e
βT

rb0

)

.Then, it holds that H∗(T ) ≤ H̄e ≤ Ĥe.For quadrati ost (see (3.2)):Let T > 1
β
ln rb1

θS0
, and let H̄q be de�ned by the solution of the following equation:

θS0e
βT e−θH̄q

r
= 2a1H̄q + b1.Furthermore, let

Ĥq =
1

θ
ln

(

θS0e
βT

rb1

)

.



Impulse Control Algorithm for a Dike Ring 55Then, it holds that H∗(T ) ≤ H̄q ≤ Ĥq.Proof: An upper bound for H∗(T ) is the end height for whih the following equation(3.10) holds at time horizon T :
λ(T+) = Iu (ui, H

∗(T )) ,with
λ
(

T+
)

= λ (T ) =
θS0e

βT e−θH∗(T )

r
.For exponential investment ost this (with no dike heightening at t = T ) boils downto solving the following equation:

θS0e
βT e−θH̄e

r
= b0e

a0H̄e + a0(c0 + b0u)e
a0H̄e, (3.16)where H̄e denotes the upper bound for H∗(T ). The left-hand side of (3.16) gives themarginal gain of a dike heightening and is dereasing in H̄e. The right-hand sideof (3.16) gives the marginal ost of suh a heightening and is inreasing in H̄e. Welower the right-hand side of (3.16) by omitting a0b0ue

a0H̄e ; this shifts the graph tothe right and results in a lower marginal ost at t = T . Additionally, this gives usequation (3.15). Sine T > 1
β
ln r(b0+a0c0)

θS0
, we have that the left-hand side of (3.15)is larger than the right-hand side of (3.15) at H̄e = 0. Combining the latter withthe fat that left-hand side of (3.15) is dereasing in H̄e, that the right-hand side of(3.15) is inreasing in H̄e, that

lim
H̄e→∞

b0e
a0H̄e + a0c0e

a0H̄e = ∞,and that
lim

H̄e→∞

θS0e
βT e−θH̄e

r
= 0,results in a unique solution H̄e for equation (3.15). Furthermore, we lower the right-hand side of (3.15) by now omitting a0(c0 + b0u)e

a0H̄e, this again shifts the graph ofthe right-hand side to the right and results in a lower marginal ost at t = T . Hene,an upper bound for H̄e results from
θS0e

βT e−θĤe

r
= b0e

a0Ĥe , (3.17)



56 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONwhere Ĥe denotes the upper bound for H̄e (i.e. H∗(T ) ≤ H̄e ≤ Ĥe). Solving (3.17)we get that Ĥe is given by:
Ĥe =

1

θ + a0
ln

(

θS0e
βT

rb0

)

.The proof for the quadrati ost funtion is analogous.Note that these upper bounds for H(T ) an also be used for the dynami program-ming approah in Eijgenraam et al. (2011) to derease the number of states, seeSetion 3.4.2. Moreover, we have that θS0 > r(b0 + a0c0) and θS0 > rb1 for all dikes(in the Netherlands).4 Hene, we have that the ondition on T for both ost funtionsis always satis�ed.3.3.4 Finding the Optimal Ending Dike HeightReall that an ending dike height H(T ) is required as an input to the algorithm inSetion 3.3. For an arbitrary H(T ), the algorithm is not guaranteed to produe a fea-sible solution to problem (3.6), beause the ondition on the initial height H(0) = 0might be violated. In that ase we always have H(0) > 0�sine negative heighteningsare not allowed�and apparently there does not exist a feasible solution for the hosen
H(T ) that satis�es all neessary optimality onditions. Thus, we need a proedureto �nd an ending dike height for whih the algorithm returns a feasible solution.If we �nd all ending heights for whih the algorithm returns feasible solutions, thenwe know that the optimal solution must be among them, beause all solutions, byonstrution, satisfy all neessary optimality onditions�and there are no other so-lutions with this property. The dependeny on H(T ) of any solution produed bythe algorithm is pieewise ontinuous, with disontinuities ourring when the totalnumber of heightenings in [0, T ] hanges. This is illustrated by Figure 3.3, whihshows the residual height H(0) orresponding to the andidate solution that resultsfrom the seleted ending height H(T ). At eah disontinuity point the total numberof heightenings hanges as indiated in the �gure. Hene, a bisetion method onH(0)ould be used to searh for an ending height that produes a feasible solution, i.e.,
H(0) = 0. For now, we propose the simpler approah of disretization of H(T ) as isalso neessary for the dynami programming approah to the problem (see Eijgen-raam et al. (2011)) An upper bound for the disretization of H(T ) is readily providedby H̄ (see Setion 3.3.3) and a suitable lower bound is the urrent dike height plus the4The data is provided by Rijkswaterstaat, part of the Duth ministry of Infrastruture andEnvironment.
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5 heightenings(b) Quadrati investment ost.Figure 3.3 � Plot of the residual height (i.e. H(0)) vs. H(T ) for dike 10.(future) sea-level rise. The set of solutions produed by the algorithm applied to adisretization of H(T ) in this range is unlikely to ontain exat feasible solutions. Toope with the infeasibility of the solutions, we transform eah solution to a feasiblesolution by adding the residual height H(0) to the solution's �rst heightening. Inthat way, both the investment ost of the �rst heightening and the expeted damagefrom t = 0 until the �rst heightening inrease, whih makes that there is some di�er-ene between the objetive values of the original and the transformed solution. Notethat if the residual height H(0) is small�and for any reasonably �ne grid, solutionswith H(0) lose to zero should be found�then this di�erene will be small as well.Of all transformed solutions obtained in this way, we pik the one with the smallestobjetive value.3.4 Comparing Impulse Control to Dynami Pro-grammingThis setion onsists of two parts. First, we ompare the numerial results obtainedusing the Impulse Control approah to the results found in Eijgenraam et al. (2011)using dynami programming. Seond, we derive the omputation time of both meth-ods.3.4.1 Numerial Results for Five Dike RingsIn this setion we apply the algorithm desribed in Setion 3.3. The data used inthis setion are taken from Hertog and Roos (2009) and are presented in Table 3.3.



58 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONThe data are made available by Rijkswaterstaat/Deltares (i.e. a bureau onernedwith pratial exeution of the publi works and water management part of theDuth Ministry of Infrastruture and the Environment) and were generated by waterexperts. It is lear that the hoie of T will in�uene the solution. If we hoose Ttoo small then this an a�et the solution in the beginning of the planning period.We hoose T suh that the solution in the beginning of the planning period remainsstable when T inreases. As in Eijgenraam et al. (2011) we set T = 300. Taking
T = 600 gives similar results for the beginning of the planning period ompared to
T = 300. This is aused by the fat that the disount fator (e−0.04∗300 ≈ 0.00000614)is small for large values of t. Hene, the e�et of the salvage value is very smallwhen T = 300. In Tables 3.4 and 3.5 the solutions obtained by using the algorithmdesribed in Setion 3.3 for both exponential and quadrati investment ost an befound. Dike No. 10 11 15 16 22

a0 0.0014 0 0.0098 0.01 0.0066

b0 0.6258 1.7068 1.1268 2.1304 0.9325

c0 16.6939 42.62 125.6422 324.6287 154.4388

a1 0.0004 0 0.027 0.102 0.0154

b1 0.7637 1.7168 3.779 3.1956 2.199

c1 12.603 42.3003 67.699 319.25 141.01

V0 1564.9 1700.1 11810.4 22656.5 9641.1

r 0.04 0.04 0.04 0.04 0.04

P0 1/2270 1/855 1/729 1/906 1/1802

H0 0 0 0 0 0

α 0.033027 0.032 0.0502 0.0574 0.07

η 0.32 0.32 0.76 0.76 0.62

γ 0.02 0.02 0.02 0.02 0.02

ζ 0.003774 0.003469 0.003764 0.002032 0.002893Table 3.3 � Parameter values for dikes 10, 11, 15, 16 and 22.Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 272.8 : 52.18 275.9 : 54.56 259.2 : 57.33 271.6 : 47.89 261.6 : 50.97217.0 : 56.43 218.9 : 61.71 206.2 : 54.16 219.2 : 51.69 199.9 : 53.37160.1 : 56.90 160.2 : 62.35 154.3 : 53.47 165.3 : 52.41 137.6 : 53.65103.0 : 56.95 101.3 : 62.42 103.7 : 53.32 111.5 : 52.55 75.2 : 53.6845.9 : 56.96 42.4 : 62.42 51.2 : 53.29 57.5 : 52.57 12.7 : 53.710 : 55.82 3.5 : 52.58
H(T ) 279.41 303.47 327.39 309.69 265.37
H̄e 290.93 311.48 347.14 320.48 278.75
Ĥe 292.12 311.48 360.28 334.65 288.77Investment ost 10.16 30.18 414.59 797.75 198.42Damage ost 29.87 80.05 130.55 291.84 110.82Total ost 40.03 110.23 545.14 1089.59 309.24Table 3.4 � Impulse Control solutions for dikes 10, 11, 15, 16 and 22, withexponential ost funtion.



Comparing Impulse Control to Dynami Programming 59Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 275.9 : 57.15 274.6 : 55.09 282.0 : 62.62 245.3 : 76.90 262.1 : 56.36213.0 : 61.35 217.8 : 61.39 214.1 : 77.43 176.7 : 69.35 194.5 : 58.53153.4 : 57.30 159.4 : 61.97 149.7 : 69.92 113.8 : 61.03 130.5 : 54.1398.0 : 53.99 100.9 : 62.03 92.3 : 59.86 56.9 : 52.51 70.7 : 50.1545.2 : 52.78 42.4 : 62.05 42.6 : 49.39 3.2 : 48.25 12.7 : 49.740 : 46.44
H(T ) 282.57 302.53 365.66 308.04 268.91
H̄q 290.22 311.28 370.28 331.79 283.82
Ĥq 299.30 311.28 410.25 387.76 304.39Investment ost 10.17 30.16 421.30 822.41 201.35Damage ost 29.96 80.06 160.91 334.72 115.74Total ost 40.13 110.23 582.21 1157.13 317.09Table 3.5 � Impulse Control solutions for dikes 10, 11, 15, 16, 22, withquadrati ost funtion.Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 274 : 51.84 272 :42.24 262 : 54.72 274 : 45.60 254 : 52.08219 : 55.68 218 :59.52 209 : 54.72 223 : 50.16 194 : 52.08162 : 57.60 160 :61.44 156 : 54.72 171 : 50.16 133 : 52.08104 : 57.60 101 :63.36 103 : 54.72 116 : 54.72 73 : 52.0846 : 57.60 43 :61.44 50 : 54.72 60 : 54.72 12 : 52.080 : 54.72 4 : 54.72

H(T ) 280.32 288.00 328.32 310.08 260.4Investment ost 10.16 29.33 413.39 796.31 202.09Damage ost 29.87 80.90 131.95 294.13 107.33Total ost 40.04 110.24 545.34 1090.44 309.41Table 3.6 � Dynami programming solutions for dikes 10, 11 15, 16, 22, withexponential ost funtion.Dike ring no. 10 11 15 16 22Heightenings(τi : ui) 277 : 55.68 272 : 42.24 280 : 63.84 274 : 45.60 265 : 55.80214 : 61.44 218 : 59.52 212 : 77.52 223 : 50.16 197 : 59.52155 : 57.60 160 : 61.44 149 : 68.40 171 : 50.16 131 : 55.8099 : 53.76 101 : 63.36 92 : 59.28 116 : 54.72 69 : 52.0846 : 53.76 43 : 61.44 42 : 50.16 60 : 54.72 12 : 48.360 : 45.60 4 : 54.72
H(T ) 282.24 288.00 364.80 310.08 271.56Investment ost 9.97 29.33 418.94 840.70 208.15Damage ost 30.17 80.90 163.35 317.51 112.09Total ost 40.14 110.24 582.28 1158.21 317.24Table 3.7 � Dynami programming solutions for dikes 10, 11, 15, 16, 22, withquadrati ost funtion.After omparing the results presented in Table 3.4 and 3.5 with the dynami pro-gramming results taken from Eijgenraam et al. (2011) presented in Table 5.5 and 3.7,we an make the following observations:

• The (total) ost using the Impulse Control approah is always lower. Thereason for this (minor) di�erene is due to the disretization of the problem in



60 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONtime and dike height in the dynami programming approah.
• Comparing the results between the exponential and quadrati investment ostfuntions for the Impulse Control approah given in Table 3.4 and 3.5, re-spetively, no signi�ant di�erene an be found. The �rst dike heighteningfor Impulse ontrol using a quadrati ost funtion takes plae slightly earlieromparing it with the exponential ost funtion. However, the orrespondingamount of this �rst dike heightening is lower. This di�erene is also observedfor the dynami programming approah.
• Dike 15 needs to be heightened immediately (i.e. at τ1 = 0). This result isfound for both the exponential and the quadrati ost funtion, and for bothapproahes.
• The Impulse Control approah results in a signi�antly higher H(T ) for dike11 ompared to the dynami programming approah. This is observed for bothost funtions.
• For exponential investment ost the upper bound H̄e is very lose to the optimal
H(T ) found for all �ve dikes. Comparing the upper bound for quadrati ost,
H̄q, with H̄e we observe that H̄q is higher than H̄e for dikes 15, 16 and 20. Thevalues are omparable for dike rings 10 and 11.

• When the �rst dike heightening is far from time zero, H̄e and Ĥe are loserto eah other (same holds for H̄q and Ĥq). For dike ring 11 we have that
a1 = a0 = 0 and hene H̄e = Ĥe and H̄q = Ĥq.In Figures 3.4 and 3.5 the optimal dike height and the orresponding �ood probabilityof dike 10 are presented for the exponential and quadrati investment ost, respe-tively. It is striking to see that the upper bound(s) are very lose to the optimal dikeheight at time T . Finally, in Figures 3.4 and 3.5 one an observe that at the timemoments where a dike heightening ours the �ood probability drops instantaneously.We also observe that after eah dike heightening at most three andidate dike height-enings were found by the algorithm (stage V I). In ase of three andidates we alwaysfound that two out of the three andidates ould not be optimal, sine one was al-ways negative (Observation 1, (i))) and for the other one it holds that ombiningthis heightening with its predeessor was an improvement (see Observation 1, (ii)).
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62 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONof this approah is that the �nite time horizon [0, T ] as well as the height of the dike
H(t) are disretized. This diretly has an e�et on the auray of the method. Thisan partly be resolved by taking a ��ner� disretization. However, this will a�etthe omputation time of the problem. The disretization hosen in Eijgenraam et al.(2011) seemed to be �ne enough for the dike heightening problem.Dynami programming (DP)The number of omputations that have to be made in the DP approah depends onthe number of stages and states (for eah stage the value of eah state should bealulated). The problem is disretized in both time and dike height. Let us all Mthe number of states per stage and T the number of stages. Cost are related to thetransition from one state to another. The DP problem an be presented in a graphwhere the verties in the graph are the states, and the ars of the graph representthe transition. The aim of DP is to �nd the shortest path in the graph. In the DPapproah used to solve the dike heightening problem in Eijgenraam et al. (2011),the stages de�ned as the years t = −1, 0, 1, 2, ...T, in whih t = −1 is the time justbefore t = 0. The state at stage t is de�ned as H(t). For the initial state at stage
t = −1 it holds that H(−1) = 0. Also we know that a transition an only our fromstate H(t) in stage t to state H(t + 1) in stage t + 1 suh that H(t + 1) ≥ H(t). InEijgenraam et al. (2011) the disounted investment and damage ost in the period
[t, t+ 1], for t = 0, 1, . . . , T − 1 are given by

ct(H(t), H(t+ 1)) =

∫ t+1

t

S(t)e−rtdt + I(H(t+ 1)−H(t), H(t))e−r(t+1),and for t = −1, by
c−1(H(−1), H(0)) = I(H(0)−H(−1), H(0)) = I(0, 0).The reursive relation for the DP approah is

ft(H(T )) = min
H(t)<H(t+1)∈Ht+1

{ft+1(H(t+1)+ct(H(t), H(t+1))}, t < T, H(T ) ∈ Ht,where Ht denotes the set of all feasible dike heights at time t. Starting in state H(T ),
ft(H(T )) denotes the minimal ost to over the years t, t + 1, . . . , T, T + 1, . . . ,∞.The osts after t = T are given by

fT (H(T )) =
S(T )e−rT

r
.It is easy to see that this DP approah is of order O(αDPM

2T ), where αDP denotesthe basi operations needed to alulate the transitions ost from one state to another.



Conlusions and Reommendations 63Impulse Control (IC)Let J be the number of dike heightenings found. To make an easy omparison withDP we run the algorithm for the same andidate �nal dike heights, i.e. we take thestates used in the DP approah as input determining the optimal �nal dike height.In the dynami programming approah for eah stage a ertain number of disretizedstates are de�ned. Clearly, for the impulse ontrol approah this is not neessary.Let us all the number of basi operations needed to solve the neessary optimalityonditions (see Setion 3.3.2) to �nd all andidate dike heightenings αIC . Then it iseasy to see that this problem is of order O(αICJM). In the previous setion we haveseen that the number of dike heightenings (5 or 6) in the dike heightening problemnever exeeds the number of states (M = 300) used in the DP approah and αDPand αIC are omparable. Hene, we an onlude that IC needs less omputationtime than DP.3.5 Conlusions and ReommendationsIn this hapter we present the �rst real life appliation of the Impulse Control Maxi-mum Priniple. In doing so, we propose an alternative for the dynami programmingapproah used in Eijgenraam et al. (2011). We show that, ompared to the dynamiprogramming approah, the Impulse Control approah has lower omputation time.This an be explained sine the Impulse Control approah does not need disretiza-tion in time and only disretization for the dike height at the end of the time horizon(�nal stage), unlike dynami programming where disretization is needed for timeand for the heights (states) for eah stage. Comparing the total ost for the dikeupdating sheme for the �ve dikes presented in this hapter with the total ost usingthe dynami programming approah, we observe that the total ost for the ImpulseControl approah is always lower. However, the di�erenes are very small. Further,we identify upper bounds for the �nal dike height, by using the neessary optimal-ity onditions at the end of the planning period. It is striking to see that bothproposed upper bounds are very lose to the optimal dike height at the end of theplanning period. The way we derive these upper bounds an be used in general, sothat these upper bounds an also be implemented in the dynami programming ap-proah. We show that the Impulse Control approah works well for both exponentialand quadrati investment ost.A possible extension of this hapter would be adding some preventive dike main-tenane. It would be interesting to analyze the interation between preventive dike



64 CHAPTER 3. DIKE HEIGHT OPTIMIZATIONmaintenane and the impulse dike heightening. This extension will quadratially in-rease the number of states for the dynami programming approah and hene takemore time to ompute. Another possible extension is applying Impulse Control tononhomogeneous dikes (i.e. dikes or dike rings that onsist of multiple segments) forwhih the dynami programming approah is not useful sine it su�ers from the well-known ombinatorial explosion. Also other maintenane problems an be onsidered.Appendix 3A: Bakward Algorithm for Impulse Con-trolIn this setion the algorithm desribed in Setion 3.3 is presented in more detail.Before we start we de�ne X as a sequene of triples (τ, u, λ), S the stak (set) ofopen solutions, and C the set of andidate solutions. We need one more variable tsde�ned as
ts =

{

T if X = ∅,

min(τ,u,λ)∈X τ if X 6= ∅.Step I : Initialization:Choose H(T ).Determine the value of the o-state variable:
λ (T ) =

θS0e
βT e−θH(T )

r
.Step II : Chek whether a dike height inrease an our at time t = T and whetherit is optimal. Derive H (T−) and u (T ) from

H
(

T+
)

−H
(

T−
)

= u (T ) ,and
−Iu

(

u(T ), H
(

T−
))

+ λ
(

T+
)

= 0.The dike height inrease is optimal at time T if
−S0e

βT e−θH(T+) + S0e
βT e−θH(T−) − rI

(

u (T ) , H
(

T−
))

< 0.If so, go to step IV.ii. Otherwise, de�ne
H
(

T+
)

= H (T ) ,

λ
(

T+
)

= λ (T ) ,



Appendix 3A 65and go to step IV.i.Step III : If S = ∅ STOP. Else pik X ∈ S, set S = S \ {X} and go to stepV .Step IV.i : Set X = {(T, 0, λ(T ))}.Step IV.ii : Set X = {(T, u(T ), λ(T−))}.Step V : Chek whether a dike height inrease an our at time 0 and whetherit is optimal.Solve (3.10) to �nd u(0). The dike height inrease is optimal if
−S0e

βT e−θH(0+) + S0e
βT e−θH(0−) − rI

(

u (0) , H
(

0−
))

> 0.If so, go to VI and to VII . If not, go to step VI .Step VI : Find all τ ∈ (0, ts) suh that
λ(t+) = e−r(ts−t)λ(ts) +

∫ ts

t

e−r(s−t)θS0e
βse−θ(H(ts))ds. (3.18)At the point in time where a dike inrease an our, equations (3.9), (3.10) and(3.11) hold.Combining equation (3.10) and (3.18) gives a ondition that holds at the jump point

e−r(ts−t)λ(ts) +

∫ ts

t

e−r(s−t)θS0e
βse−θ(H(ts))ds− Iu(u,H(ts)) = 0. (3.19)Solving equation (3.19) results either in an expliit funtion u(t) for the dike height-ening or gives all τ for whih (3.19) holds. When u(t) an expliitly be identi�ed, goto step IV.i , else go to step VI.ii .Step VI.i : Substituting u(t) in equation (3.11) yields

−S0e
βte−θH(ts) + S0e

βte−θ(H(ts)−u(t)) − rI(u(t), H(ts)) = 0, (3.20)whih is an equation that only depends on t and holds for eah jump point τ ∈ (0, ts).If equation (3.20) is solvable, it gives us all potential jump points τ . Using this,we get all dike heightenings u using u(t) (from equation (3.19)). This gives a set
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J of triples (τ, u, λ). For eah triple (τ, u, λ) ∈ J hek Observation 1 onditions
(i) and (ii). If a triple (τ, u, λ) satis�es ondition (i) or (ii) of Observation 1 then
J = J \ {(τ, u, λ)}. If J 6= ∅, go to VIII , else go to step IX .Step VI.ii : For eah τ found in step V solve

−S0e
βτe−θH(ts) + S0e

βτe−θ(H(ts)−u(τ)) − rI(u(τ), H(ts)) = 0, (3.21)to �nd the orresponding u. This gives a set J of triples (τ, u, λ). For eah triple
(τ, u, λ) ∈ J hek Observation 1. If a triple (τ, u, λ) ful�lls Observation 1 then
J = J \ {(τ, u, λ)}. If J 6= ∅, go to VIII , else go to step IX .StepVII : Save X = X ∪ {(0, u(0), λ(0))} and go to step IX .Step VIII : Add eah triple (τ, u, λ) ∈ J to the urrent sequene X and add theresult to the stak (set) of un�nished (partial) solutions, i.e.:
S = S ∪

(

∪(τ,u,λ)∈J {X ∪ {(τ, u, λ−)}}
)and go to step III .StepIX : Save the set of sequenes X as andidate solution, i.e.:
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CHAPTER 4Produt Innovation with Lumpy InvestmentsAbstrat This hapter onsiders a �rm that has the option to under-take produt innovations. For eah produt innovation the �rm has toinstall a new prodution plant. We �nd that investments are largerand our in a later stage when more of the old apital stok needsto be srapped. Moreover, we obtain that the �rm's investments in-rease when the tehnology produes more pro�table produts. Wesee that the �rm in the beginning of the planning period adopts newtehnologies faster as time proeeds, but later on the opposite happens.Furthermore, we �nd that the �rm does not invest when marginal pro�t(with respet to apital) beomes zero, but invests when marginal pro�tis negative. Moreover, we �nd that if the time it takes to double thee�ieny of tehnology is larger than the time it takes for the apitalstok to depreiate, the �rm undertakes an initial investment. Finally,we show that, when demand dereases over time and when �xed in-vestment ost is higher, the �rm invests less throughout the planningperiod, the time between two investments inreases and the �rst in-vestment is delayed.4.1 IntrodutionIn today's knowledge eonomy innovation is of prime importane. Innovation has ledto extraordinary produtivity gains in the 1990s. In urrent business pratie it isfelt that the heat is on and that �rms must innovate faster just to stand still (TheEonomist, Otober 13th 2007, Innovation: Something new under the sun). There-fore, tehnologial progress is a ruial input for �rms in taking their investmentdeisions. Greenwood et al. (1997) argue that tehnologial progress is the maindriver of eonomi growth. They disovered that in the post-war period in the USabout 60% of labor produtivity growth was investment spei�. Yorukoglu (1998)



70 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSnotes that information tehnology is a prime example where embodied tehnologialprogress led to an improvement of omputing tehnology on the order of 20 timeswithin less than a deade in the 1980s-90s.This hapter ombines tehnology adoption with apital aumulation, taking intoaount tehnologial progress. The aim of this hapter is to study the deision ofwhen to introdue a new produt. To do so we employ the Impulse Control modelingapproah that is perfetly suitable to take into aount the disruptive hanges ausedby innovations. This also enables us to determine the length of the time interval thatthe �rm uses a partiular tehnology, when it is time to launh a new produt genera-tion, and how these deisions interat with the �rm's apital aumulation behavior.In Kort (1989) a dynami model of the �rm is designed in whih apital stok jumpsupward at disrete points in time at whih the �rm invests. However, tehnologialprogress in not taken into aount.An example where a �rm has to deide about investments in new generations ofproduts is the LCD industry. With every new generation the size of the motherglass or substrate inreases. As the LCD panels are ut out of the substrate, thesubstrate on the one hand determines whih panel sizes an be produed and on theother hand how e�ient eah possible panel size an be produed. We have a proessinnovation, beause a larger glass area provides a more e�ient solution of the �ut-ting problem�, and thus lower osts in the prodution proess. A produt innovationarises, beause the larger area of the substrate makes it possible to produe largersreens. For a �rm it is important to determine when it is optimal to introdue anew produt. However, sine the new produt will derease the demand of the oldprodut, the moment of introdution is ruial.Feihtinger et al. (2006) employs a vintage apital goods struture to study the e�etof embodied tehnologial progress on the investment behavior of the �rm. Theyshow that in the ase that a �rm has market power a negative antiipation e�etours, i.e. when tehnologial progress goes faster in the future, it is optimal for the�rm to derease investments in the urrent generation of apital goods. However, adiret impliation of the vintage apital approah is that the �rm adopts an in�niteamount of di�erent tehnologies. Of ourse, in pratie a �rm an adopt a new teh-nology a limited number of times.Grass et al. (2012) also ombines tehnology adoption with apital aumulation,while taking into aount tehnologial progress. They �nd that investment jumps



Introdution 71upward right at the moment that a new tehnology is adopted, and that the largerthe �rm the later the investment in a new tehnology takes plae. Moreover, they�nd that when a �rm has market power, the �rm uts down on investment beforea new tehnology is adopted. Whereas Grass et al. (2012) limits itself to proessinnovation, we onentrate on studying produt innovation. Grass et al. (2012) use aMulti-Stage optimal ontrol approah where a �rm adopts a new tehnology in eahstage. Unlike Feihtinger et al. (2006), the number of tehnology adoptions is limited.However, the number of innovations is not determined by the model, but �xed exoge-nously instead. Unlike Feihtinger et al. (2006) and Grass et al. (2012), in this paperapital aumulation only ours in lumps. Moreover, these lumps are determinedby the model, i.e. the lumpy investments are endogenous. In Saglam (2011) a multi-stage optimal ontrol model is studied where the number of tehnology adoptions areendogenous. However, unlike our paper, the model does not inorporate any (�xed)ost assoiated with the adoption and the onsidered �rm has no market power.In Bouekkine et al. (2004) a two-stage optimal ontrol model is onsidered, whereonly one adoption ours, without adoption (�xed) ost. Both Bouekkine et al.(2004) and Saglam (2011) inorporate learning, were the �rm raises produtivity ofa given tehnology over time due to learning and revenue is linear in the apital stok.This hapter is omparable with Grass et al. (2012). However, unlike Grass et al.(2012), we do not need to �x the number of tehnology adoptions beforehand andwe do inorporate a (�xed) ost assoiated with this adoption. When dealing withprodut innovation, �rms do not always have to srap all apital goods. Sometimesmeasures are taken to allow new or updated parts to be �tted to old or outdatedassemblies. As in Grass et al. (2012), we an model all situations in between theextreme ases where after every new investment the old apital goods are srappedand the ase where all the apital goods an be kept after adopting a new tehnology.The method used to study �rm behavior in this paper is Impulse Control. ImpulseControl theory is a variant of optimal ontrol theory where disontinuities (i.e. jumps)in the state variable are allowed. In Impulse Control the moments of these jumpsas well as the sizes of the jumps are deision variables. Blaquière (1977a; 1977b;1979; 1985) extends the standard theory on optimal ontrol by deriving a MaximumPriniple, the so-alled Impulse Control Maximum Priniple, that gives neessaryand su�ient optimality onditions for solving suh problems. Blaquière's ImpulseControl analysis is based on the present value Hamiltonian form. In this hapter weapply the Impulse Control theorem in the urrent value Hamiltonian framework asderived in Chahim et al. (2012).



72 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSOne of the striking results is that the �rm does not invest when the marginal pro�t(with respet to apital) beomes zero, but invests when marginal pro�t is nega-tive. Furthermore, we obtain that the �rm in the beginning of the planning periodadopts new tehnologies faster as time proeeds, but after some moment in timelater tehnologies are used for a longer time period. This behavior is di�erent fromGrass et al. (2012), who �nds that the �rm adopts new tehnologies faster as timeproeeds for the whole planning period, but this also di�ers from the results foundin Saglam (2011), who �nds that later tehnologies are used during a longer timeperiod. Our results are somehow a ombination of both. Moreover, we �nd that ifthe time it takes to double the e�ieny of tehnology is larger than the time it takesfor the apital stok to depreiate, the �rm undertakes an initial investment. Finally,we show that when demand dereases over time the �rm invest less throughout theplanning period and that the �rst investment is delayed.This hapter is organized as follows. In Setion 4.2 we give the general setting andbuild up the Impulse Control model. Setion 4.3 derives the neessary optimalityonditions, whereas Setion 4.4 gives a brief desription of the algorithms present inthe literature dealing with the Impulse Control Maximum Priniple. In Setion 4.5we study the investment behavior of the �rm, and in Setion 4.6 we extend this analy-sis by adding dereasing demand, i.e. demand dereases over time due to ompetitorsproduing better produts beause of tehnologial progress. Finally, in Setion 4.7we onlude and give some reommendations for future researh.
4.2 The ModelConsider a �rm that invests in lumps over time. Eah time it invests it installs aprodution plant suitable to produe the new produt. Due to produt innovationthe quality of the produts, and thus also demand, inreases over time. This impliesthat the later an investment takes plae, the better produts an be made due tothese investments.This is formalized as follows. A plant being installed at time τ will make produtsfrom whih the prie is given by the following inverse demand funtion:

p(t) = θ(τ)− q(t), for t ≥ τ,



The Model 73where q(t) is the output at time t and θ(τ) = 1 + bτ is the state of tehnology thatthe �rm adopts at time τ 1. We further assume that tehnology within the �rm doesnot hange between two tehnology adoptions, i.e. θ̇(t) = 0 for all t 6= τ . At themoment the �rm adopts a tehnology, the �rm's tehnology hange is given by
θ(τ+i )− θ(τ−i ) = 1 + bτi − θ(τ−i ).Hene, as in Feihtinger et al. (2006) and Grass et al. (2012) we impose that tehno-logial progress inreases linearly over time, where b is a positive onstant. In Saglam(2011) tehnology inreases exponentially over time and in Bouekkine et al. (2004)there are only two di�erent tehnologies available. We assume a simple produtionfuntion in the sense that one apital good produes one unit of output. Denotingthe stok of apital goods by K(t), this gives
K(t) = q(t).We impose that only the apital stok of the new plant is able to produe the newproduts, i.e. eah plant has its own apital stok that produes the produts with aquality assoiated with the timing of the investment in this plant. In this setting wean also model a situation where just 100γ%, where γ ∈ [0, 1], of the apital stok issrapped, while the remaining mahines or tools an be reused for the new produt.Hene, full srapping orresponds to the ase where γ = 1. This implies that oldproduts, and thus also old apital goods, beome worthless after the new plant isinstalled, implying that the old apital goods an be srapped.Denoting investment by I(t), at the moment the �rm invests (adopts a new teh-nology) apital stok hanges by
K(τ+)−K(τ−) = I(τ)− γK(τ−).At time zero the apital stok is equal to zero, i.e.
K(0) = 0.For eah plant it holds that apital stok depreiates with rate δ, i.e.
K̇(t) = −δK(t).Investing in a plant implies that the �rm has to pay a �xed ost, i.e. part of the ostis independent of the plant size, and a variable ost that more than proportionally1We assume that tehnology is ontinuously hanging with rate b. However, the tehnologywithin the �rm is the tehnology that the �rm adopts at time τ .



74 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSinreases with the size of the plant. In partiular, we assume that the investmentost is given by
C(I) =

{

C + αI + βI2 for I > 0

0 for I = 0.This type of investment ost funtion, without the �xed ost, is ommon in theliterature (e.g., among others, see Grass et al. (2012), Sethi and Thompson (2006)and Seierstad and Sydsæter (1987)), where besides the �xed ost, the linear termonsists of aquisition ost, where the unit prie is equal to α and the quadratiterm represents the adjustment ost. In �ordinary� optimal ontrol the investmentost funtion does not inlude a �xed ost, beause this violates the ontinuity ofthe ost funtion with respet to its arguments, i.e. the ontrol and the state variable.Total disounted revenue in [0, T ] is given by
T
∫

0

e−rt [θ (t)−K (t)]K(t)dt,where revenue is determined by output prie times output. Sine we have a �nitetime planning period, a salvage value has to be de�ned. This salvage value is equalto the value of the �rm at the time horizon T . We assume that this value is given by
e−rT [θ(τN )−K(T+)]K(T+)

r + δ
,where τN denotes the time of the last investment. The salvage value (4.1) is a lowerbound of the disounted revenue stream of the �rm after the planning period.Total disounted investment ost are given by the sum of the ost of adopting anew tehnology, disounted at the time the adoption takes plae, i.e. τ1, . . . τN , with

0 ≤ τ1 < τ2 . . . < τN ≤ T . This results in
N
∑

i=1

e−rτi
(

C + αI (τi) + βI (τi)
2) .The above gives rise to the following impulse ontrol model:

max
I,τi,N

T
∫

0

e−rt [θ (t)−K (t)]K(t)dt

−
N
∑

i=1

e−rτi
(

C + αI (τi) + βI (τi)
2)

+ e−rT [θ(τN)−K(T+)]K(T+)

r + δ
(4.1)



Neessary Optimality Conditions 75subjet to
K̇ (t) = −δK (t) , for t 6= τi (i = 1, ..., N), (4.2)
θ̇(t) = 0, for t 6= τi (i = 1, ..., N), (4.3)

K(τ+i )−K(τ−i ) = I(τi)− γK(τ−i ), for i = 1, ..., N, (4.4)
θ(τ+i )− θ(τ−i ) = 1 + bτi − θ(τ−i ), for i = 1, ..., N, (4.5)

K(0) = 0, (4.6)
θ (0) = 1. (4.7)This is an Impulse Control problem as desribed in Blaquière (1977a; 1977b; 1979;1985). Note that this innovation model only ontains an impulse ontrol variable andno ordinary ontrol variable. This approah di�ers from the multi-stage approahused in Grass et al. (2012), beause here investment takes plae in lumps and everyinvestment goes along with a �xed ost. As in Grass et al. (2012) we an modelall situations between the extreme ases where after every new investment the oldapital goods are srapped (γ = 1) and where all the apital an be kept (γ = 0) toprodue the new produt. Another bene�t of the above model is that the number oftehnology hanges are endogenous.4.3 Neessary Optimality ConditionsWe apply the impulse ontrol maximum priniple in urrent value formulation derivedin Chahim et al. (2012). Other referenes deriving the neessary optimality onditionsfor the Impulse Control problems are Blaquière (1977a; 1977b; 1979; 1985), Seierstad(1981) and Seierstad and Sydsæter (1987). We de�ne the Hamiltonian Ham and theImpulse Hamiltonian IHamHam(θ,K, λ1, t) = [θ −K]K − λ1δK, (4.8)IHam(K, I, λ1, λ2, t) = −C − αI − βI2 + λ1(I − γK) (4.9)

+λ2 (1 + bt− θ)) ,and obtain the adjoint equations
λ̇1 (t) = (r + δ)λ1 (t)− θ (t) + 2K (t) , for t 6= τi, i = 1, . . . , N, (4.10)
λ̇2 (t) = rλ2 (t)−K (t) , for t 6= τi, i = 1, . . . , N. (4.11)The jump onditions at t = τi (i = 1, . . . , N) are
− α− 2βI (τi) + λ1

(

τ+i
)

= 0, (4.12)
λ1

(

τ+i
)

− λ1

(

τ−i
)

= γλ1

(

τ+i
)

, (4.13)
λ2

(

τ+i
)

− λ2

(

τ−i
)

= λ2

(

τ+i
)

, (4.14)



76 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSfrom whih we onlude that
λ1

(

τ−i
)

= (1− γ)λ1

(

τ+i
)

,whih equals zero for γ = 1, and
λ2

(

τ−i
)

= 0.The ondition for determining the optimal swithing time τi is
[

θ
(

τ+i
)

−K
(

τ+i
)]

K
(

τ+i
)

−
[

θ
(

τ−i
)

−K
(

τ−i
)]

K
(

τ−i
)

−λ1

(

τ+i
)

δK
(

τ+i
)

+ λ1

(

τ−i
)

δK
(

τ−i
)

− rC − rαI (τi)− rβI (τi)
2 − bλ2

(

τ+i
)







> 0 for τi = 0

= 0 for τi ∈ (0, T )

< 0 for τi = T.

(4.15)The transversality onditions are
λ1

(

T+
)

=
θ(τN )− 2K (T+)

r + δ
, (4.16)and

λ2

(

T+
)

=
K(T+)

r + δ
. (4.17)At the non-jump points t 6= τI (i = 1, , ..., N) it holds that limI→0

∂IHam
∂I

= ∞ dueto the �xed ost. Hene, the onditions for applying the Impulse Control MaximumPriniple are met, see Setion 2.2.4.4 AlgorithmIn the literature three di�erent algorithms are derived based on the Impulse ControlMaximum Priniple (Blaquière (1977a; 1977b; 1979; 1985) and Chahim et al. (2012)).Luhmer (1986) derived a forward algorithm (starts at time 0) and Kort (1989, pp.62�70) derived a bakward algorithm (starts at �nal time horizon T ). Luhmer (1986)starts at t = 0 and uses the ostate variable, as input to initialize his algorithm. Kort(1989) implements a bakward algorithm that starts at the time horizon, i.e. t = T ,and initializes the algorithm using the values of the state variables. Finally, Grassand Chahim (2012) design an algorithm that is a ombination of ontinuation teh-niques and a (multipoint) Boundary Value Problem (BVP) to solve Impulse Controlproblems (see Chapter 5).



Algorithm 77The problem desribed by (4.1)�(4.7) has two state variables, the stok of apital
K(t) and tehnology θ(t). The question is whih algorithm is most suitable forthis model. Applying the forward algorithm to problem (4.1)�(4.7) has a drawbak.Namely, we have to guess the initial values for the two ostate variables, λ1(0) and
λ2(0). A wrong guess of the ostate variables at the initial time results in a solutionthat does not satisfy the transversality onditions (4.16) and (4.17), whih impliesthat the neessary optimality onditions are not satis�ed. For the bakward algo-rithm we start with hoosing values for the state variables at time T . The resultingsolution always satis�es the neessary optimality onditions, but here the problem isthat the algorithm has to end up at the right K(0). In other words, with the bak-ward algorithm one an apply the right neessary onditions to the wrong problem.An example where the bakward algorithm is applied suessfully an be found inChapter 3. Moreover, in Chapter 3 lear upper and lower bounds have been derivedfor the state variable.In addition, the bakward algorithm has another drawbak. When we apply it tothe problem desribed by (4.1)�(4.7), starting at the time horizon and going bakin time requires knowledge of the tehnology before the investment. In partiu-lar, we obtain from equation (4.15) that we need to know θ(τ+N ) = 1 + bτN and
θ(τ−N ) = θ(τN−1) = 1 + bτN−1. Hene, solving this equation for τN requires that weknow τN−1. And with the bakward algorithm, this predeessor is not known. Weonlude that the bakward algorithm is not suitable to solve our model as presentedin this hapter.The third algorithm desribed in the literature is an algorithm that onsiders theproblem desribed by (4.1)�(4.7) as a (multipoint) Boundary Value Problem (BVP)and uses a ontinuation tehnique to solve it. The main idea behind the algorithm isas follows. To �nd the solution of the problem desribed by (4.1)�(4.7) we an applya ontinuation strategy with respet to the time horizon T , i.e. T is our ontinuationvariable. The algorithm for this approah is desribed in Box 4.1. To initialize thealgorithm, the problem is solved for T = 0. Assuming that a unique solution existsfor T = 0, the initial onditions together with the transversality onditions ombinedwith the neessary onditions results in a set of n equation with n unknowns. Givena solution for T = 0, T is inreased (ontinued) during the ontinuation proesswhereas the onditions for possible jumps are monitored. If the onditions for ajump are satis�ed, the BVP is adapted to this situation. With this new solutionthe ontinuation is pursued. In Chapter 5 this algorithm more extensively. In Grass(2012) also a BVP approah in ombination with ontinuation is desribed, but that



78 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSpaper the fous is on ordinary optimal ontrol problems.De�ne T as time horizon for the problem.De�ne T̄ to be a ontinuation variable.Set T̄ = 0 and τl = 0.Step 1: Find jump in [τl, T̄ ] for:ase 1: A jump ours at the end, i.e. at t = T̄ , save asJumpSol.ase 2: No jump at the end, save as noJumpSol.Step 2: Start the ontinuation for T̄ ∈ (τl, T ) with JumpSol untilinterior jump ondition is satis�ed, i.e. let T̄ inrease until(4.12)�(4.15) are satis�ed for some t = τ . Set τl = τ , saveas JumpSol. Also ontinue the result of noJumpSol until
T̄ = τl, save as noJumpSol. If T̄ ≥ T without satisfyinginterior jump onditions, stop.ase 1: Objetive of JumpSol higher than objetive no-JumpSol, add ar and go to step 1.ase 2: Objetive of JumpSol is lower than objetive no-JumpSol, go to step 3.Step 3: Continue the solution of noJumpSol until the interiorjump ondition (4.12)�(4.15) is satis�ed for t = τ ∈ (τl, T ).Set τl = τ , save as JumpSol, add ar, and go to step 1. If
T̄ ≥ T without satisfying interior jump onditions, stop.Box 4.1 � (Multipoint) BVP and ontinuation algorithm

4.5 Endogenous Lumpy InvestmentsWhen a �rm is dealing with market power, the output prie dereases with thequantity that is produed. Sine it holds in this model that with one unit of apitalstok one unit of output is produed, we have that the output prie dereases withthe amount of apital. So during the time period between two investments the outputprie inreases, sine depreiation dereases apital stok. We onsider no srapping,



Endogenous Lumpy Investments 79partial srapping and total srapping, i.e. we onsider γ = 0, γ = 0.5 and γ = 1. Weprovide a numerial analysis starting with the parameter values
b =

1

n
log 2 =

1

2
log 2, α = 0, β = 0.2, C = 2 r = 0.04, δ = 0.2,whih we onsider as the benhmark throughout this hapter. As in Grass et al.(2012), we base our value for b on Moore's law2, where the value for b is suh thatthe e�ieny of the tehnology doubles every n years where we put n = 2. Theresults of the �rst ten investments, are presented in Table 4.1 for T = 100. Table 4.6of Appendix 4A presents all investments up until T = 100.Ignoring the �rst and last investment, we see that the better the tehnology is,the larger the investment beomes. It seems as if the �rm delays the �rst investment(ompared to the others) to start prodution of a new good. In Figure 4.1a this islearly seen (also see Figure 4.4a and Figure 4.6a in Appendix 4A). To understandwhat happens with the �rst investment we have to distinguish between γ < 1 and

γ = 1. When γ < 1 apital growth is inreased with eah investment without fullysrapping the old apital stok. Beause there is only limited srapping, at an earlystage the �rm undertakes a relatively high investment to start prodution. A �rmonly undertakes this relatively high investment if there is limited srapping, beausethe investments help to inrease the apital stok in the future. This behavior islearly seen in Figure 4.1a. Conneting the points in Figure 4.1a ignoring the �rstand last investment not only tells us that the �rst investment is relatively large, butalso that the last investment is small. This last investment being small ours due tothe fat that the salvage value of the problem is (too) low, beause it does not takeinto aount tehnologial improvement after time T .Table 4.1 shows that the higher the srapping perentage the larger the investmentsbeome. This makes sense beause a �rm that wants similar prodution has to in-vest extra to replae the srapped parts. This srapping inreases the investmentost and at the same time, due to the quadrati term in the investment ost fun-tion, investing suh that the same level of apital is reahed as in the ase of nosrapping, is too expensive. Hene, the optimal level of apital stok in the ase ofsrapping is lower than under no srapping, whih explains the lower revenue. Table4.6 of Appendix 4A presents all investments up until T = 100 (Table 4.7, 4.8 and4.9 present full results for γ = 0, 1
2
and 1, respetively). It shows that a highersrapping perentage dereases the number of investments during the planning pe-2Moore's law still holds, The Eonomist, July 14th 2012, Chipping in: A deal to keep Moore'slaw alive.
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γ = 0 γ = 0.5 γ = 1

(τi : I) 4.1651 : 1.4877 4.1462 : 1.4682 3.8509 : 1.36897.3464 : 1.3571 7.4147 : 1.7204 7.1308 : 1.958910.0022 : 1.4032 10.1649 : 2.0101 9.9511 : 2.461412.3693 : 1.4610 12.6433 : 2.2785 12.5559 : 2.926214.5474 : 1.5188 14.9499 : 2.5312 15.0389 : 3.371616.5895 : 1.5751 17.1370 : 2.7731 17.4476 : 3.806718.5276 : 1.6299 19.2361 : 3.0070 19.8100 : 4.236520.3835 : 1.6837 21.2682 : 3.2353 22.1437 : 4.663922.1724 : 1.7365 23.2479 : 3.4594 24.4606 : 5.091023.9056 : 1.7887 25.1861 : 3.6805 26.7688 : 5.5191Rev 802.4809 790.1920 771.3955ICost 35.3109 67.8103 97.6050Pro�t 767.1700 722.3817 673.7904Table 4.1 � First ten investments of Impulse Control solutions for di�erent γ,where T = 100, r = 0.04, δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0. C = 2, K0 = 0and θ(0) = 1. Furthermore, Rev and ICost denote the disounted revenue andthe disounted investment ost, respetively.riod. Another striking e�et an be notied when looking at Figure 4.1b. We see
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0 (b) Undisounted revenue forthe �rst ten investments.Figure 4.1 � Lumpy investments and undisounted revenue, where T = 100,
r = 0.04, δ = 0.2, γ = 0, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and
θ(0) = 1.that the �rm invests in a new produt suh that marginal revenue (with respet to



Endogenous Lumpy Investments 81apital) is negative. In a �stati� model (i.e. a model that does not depend on time)we know that the �rms optimize pro�t and hene invest at the moment that marginalost is equal to marginal revenue. Sine we did not inlude any operation ost, weknow that marginal ost is equal to zero. Hene, when marginal revenue is equalto zero, (i.e. K(τ) = θ(τ)/2) investment would be optimal aording to this rule.In our dynami setting it is impossible to stay at the point where marginal revenueis equal to zero, due to depreiation. In Table 4.2 we show the results for a asewhere we have no depreiation. We see that indeed the investments are suh thatthe level of apital is set to K(τ) = θ(τ)/2. In the ase that we have depreiation,the �rm overinvests, i.e., invests suh that marginal revenue is negative. Then upuntil the next investment, marginal revenue inreases, beomes zero after some time,and then turns positive. In Figure 4.2 we have plotted the length of the time interval
τi θ(τ+i ) K(τ+i ) θ

K19.6234 7.8009 3.8574 2.022434.5329 12.9682 6.4650 2.005950.7184 18.5777 9.2706 2.003970.6244 25.4766 12.7165 2.003499.7453 35.5691 17.7443 2.0045Table 4.2 � Tehnology level and apital, where T = 100, γ = 0, r = 0.04,
δ = 0, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
between two investments. We see that in the beginning of the planning period the�rm adopts new tehnologies faster as time proeeds and after some moment it useslater tehnologies for a longer time period. This behavior is di�erent from Grasset al. (2012), who �nds that the �rm adopt new tehnologies faster as time proeedsfor the whole planning period, but this also di�ers from the results found in Saglam(2011), who �nds that later tehnologies are used during a longer time period. Ourresults are somehow a ombination of both. An explanation for this ould be that the�rm in the beginning of the planning period does not invest muh sine produtivityis low. After some time tehnologial progress is suh that eah investment is morepro�table, whih auses the orresponding apital goods are used for a longer time.For this reason the time between investments inreases. Also for higher T a similare�et is found.
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Figure 4.2 � The length between two investments, where T = 100, r = 0.04,
δ = 0.2, γ = 0, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.4.5.1 Sensitivity Analysis with Respet to the Rate of Teh-nology ChangeHere we study how the rate of tehnologial progress a�ets the investment behaviorof a �rm. Remember that we have assumed, using Moore's law, that e�ieny oftehnology doubles every n years, setting n = 2 for our benhmark ase. Table 4.3shows the �rst ten investments for di�erent values of the tehnology rate b. For allinvestments up until T = 100 see Table 4.10 of Appendix 4A (or Table 4.11-4.15 foreah level of tehnology hange separately). When n > 5 an investment takes plaeat t = 0. The explanation behind this is that for n > 5 we have, under Moore's law,that it takes more than �ve years for the e�ieny of a tehnology to double. Sinewe have a depreiation rate of 20%, this means it takes more time to double thee�ieny of a tehnology than the apital stok to depreiate to half of its originallevel. So the �rm has no inentive to wait and invests at t = 0.4.5.2 Sensitivity Analysis with Respet to the Fixed CostOne of the main di�erenes between Grass et al. (2012), Bouekkine et al. (2004)and Saglam (2011) is that they do not inorporate any (�xed) ost and this hapterassumes that a �xed ost is inluded for eah investment. Here we study how inreas-ing these �xed ost a�ets the investment behavior of a �rm. Table 4.4 shows the�rst ten investments for eah size of �xed ost. For all investments up until T = 100see Table 4.16 of Appendix 4A (or Table 4.17-4.20 for eah for eah size of �xed ostseparately). It is easily seen, that if we inrease the �xed ost, the �rst investmentis delayed and at the same time the time period between two investments inreases.Hene, the number of investments dereases if the �xed ost inrease. Comparing
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b = 1

3
log 2 b = 1

4
log 2 b = 1

5
log 2 b = 1

6
log 2 b = 1

10
log 2

(τi : I) 4.6759 : 1.3116 5.1658 : 1.2381 5.5832 : 1.1914 0 : 0.7418 0 : 0.77528.6561 : 1.5392 9.7814 : 1.4539 10.7534 : 1.3980 7.7656 : 1.2080 9.7219 : 1.14321.9662 : 1.7807 13.5911 : 1.6692 14.9977 : 1.5949 13.0448 : 1.4152 16.3705 : 1.313214.9229 : 1.9995 16.9755 : 1.8614 18.7535 : 1.7685 17.4932 : 1.5907 21.9534 : 1.452417.6530 : 2.2025 20.0857 : 2.0378 22.1932 : 1.9266 21.4683 : 1.7459 26.9204 : 1.573020.2231 : 2.3943 23.0005 : 2.2031 25.4066 : 2.0736 25.1251 : 1.8873 31.4676 : 1.681022.6732 : 2.5779 25.7678 : 2.3601 28.4478 : 2.2125 28.5485 : 2.0188 35.7025 : 1.779725.0300 : 2.7553 28.4191 : 2.5108 31.3530 : 2.3450 31.7914 : 2.1429 39.6921 : 1.871227.3121 : 2.9280 30.9766 : 2.6566 34.1472 : 2.4725 34.8894 : 2.2610 43.4813 : 1.956929.5335 : 3.0970 33.4569 : 2.7986 36.8494 : 2.5960 37.8681 : 2.3745 47.1023 : 2.0376Rev 371.5616 220.0775 148.0959 108.6965 47.4170ICost 39.2258 27.6829 21.7123 19.5772 12.9673Pro�t 332.3358 192.3946 126.3837 89.1193 34.4497Table 4.3 � First ten investments of Impulse Control solutions for di�erent b,where T = 100, γ = 0.5, r = 0.04. δ = 0.2, β = 0.2, α = 0. C = 2, K0 = 0and θ(0) = 1. Furthermore, Rev and ICost denote the disounted revenue andthe disounted investment ost, respetively.the results more arefully, we see that the size of the lumpy investments (i.e. jumps)inreases when the �xed ost inreases.
C = 4 C = 8 C = 16 C = 32

(τi : I) 5.7915 : 1.8832 8.0844 : 2.4856 11.1517 : 3.3199 15.2866 : 4.47549.6593 : 2.2099 12.7147 : 2.9206 16.6712 : 3.8947 21.8148 : 5.224112.8816 : 2.5607 16.5386 : 3.3546 21.1933 : 4.4297 27.1293 : 5.878915.7638 : 2.8797 19.9372 : 3.7422 25.1901 : 4.8993 31.8052 : 6.444318.4283 : 3.1763 23.0621 : 4.0984 28.8471 : 5.3256 36.0657 : 6.951320.9394 : 3.4571 25.9923 : 4.4325 32.2606 : 5.7215 40.0266 : 7.416923.3358 : 3.7265 28.7755 : 4.7502 35.4889 : 6.0947 43.7577 : 7.851525.6433 : 3.9871 31.4435 : 5.0556 38.5705 : 6.4506 47.3050 : 8.261827.8799 : 4.2412 34.0186 : 5.3513 41.5327 : 6.7926 50.7012 : 8.652530.0590 : 4.4903 36.5173 : 5.6394 44.3957 : 7.1237 53.9701 : 9.0270Rev 780.7835 769.1875 747.0746 712.6433ICost 79.5936 96.8939 120.5584 150.9987Pro�t 701.1899 672.2936 626.5162 561.6447Table 4.4 � Impulse Control solutions for di�erent C, where T = 100, γ = 0.5,
r = 0.04, δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.Furthermore, Rev and ICost denote the disounted revenue and the disountedinvestment ost, respetively.



84 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS4.6 Lumpy Investments under Dereasing DemandIn this setion we onsider the ase where the demand for an existing produt de-reases over time. A main reason ould be that the ompetitors' produts beomebetter due to their produt innovations. We inorporate dereasing demand by set-
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iFigure 4.3 � Output prie as a funtion of time for δ > η.ting θ̇(t) = −ηt, where η is some positive onstant. Sine it is reasonable to assume

δ > η > 0,3 the output prie after investment is �rst inreasing and then dereasing,see Figure 4.3. Hene, if a �rm invests, apital stok depreiates and the output prieinreases, and after some time this output prie is dereasing due to this dereasingdemand. Then the model beomes
max
I,τ,N

T
∫

0

e−rt [θ (t)−K (t)]K(t)dt

−
N
∑

i=1

e−rτi
(

C + αI (τi) + βI (τi)
2)

+ e−rT [θ (T
+)−K(T+)]K(T+)

r + δ + η
, (4.18)3Sine we are dealing with produt innovation and assume a depreiation rate of 20% it is unlikelythat demand dereases by more than (or equal to) 20% and hene we do not onsider η ≥ δ > 0.
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K̇ (t) = −δK (t) , for t 6= τi (i = 1, ..., N), (4.19)
θ̇ (t) = −ηθ (t) , for t 6= τi (i = 1, ..., N), (4.20)

K(τ+i )−K(τ−i ) = I(τi)− γK(τ−i ), for i = 1, ..., N, (4.21)
θ(τ+i )− θ(τ−i ) = 1 + bτi − θ(τ−i ), for i = 1, ..., N, (4.22)

K(0) = 0, (4.23)
θ (0) = 1. (4.24)Reall that in Setion 4.5 the output prie was dereasing in apital. Hene, dueto depreiation the output prie is inreasing in the time period between two in-vestments. Sine we are onsidering produt innovation, it makes more sense thatdemand of a given produt during the time period dereases. This is beause overtime new produts are invented by other �rms, whih redue demand of the urrentprodut. This demand derease has a negative e�et on output prie and hene the�rm has even a greater inentive to invest in a new tehnology.Looking at the results of Table 4.5 and Table 4.21 (or Table 4.22-4.24 for eah deayrate of the demand separately) we an see that a hange in the derease of demanddiretly a�ets the investment behavior. It is lear to see, that if we inrease η the�rst investment is delayed and at the same time the time period between two in-vestments also inreases. Hene, the number of investments dereases if the deayrate of the demand inreases. This makes sense, sine less demand makes investingless attrative. This results in a lower investment ost for higher η. Moreover, thelarger η the lower the output prie (ompared to a lower η) and hene the lower therevenue.4.7 Conlusions and ReommendationsThis hapter employs an Impulse Control modeling approah that is suitable to takeinto aount the disruptive hanges aused by innovations. We desribe and im-plement an algorithm based on urrent value neessary optimality onditions. Theneessary onditions are solved using a (multipoint) Boundary Value Problem (BVP)ombined with some ontinuation tehniques.From an eonomi point of view we have derived some guidelines for lumpy invest-ments in new tehnology:

• A striking result is that the �rm does not invest when marginal pro�t (with
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η = 0.01 η = 0.02 η = 0.03

(τi : I) 5.2730 : 1.7250 6.3504 : 1.9594 7.5126 : 2.20428.9696 : 2.0366 10.4003 : 2.3175 11.902 : 2.606012.0850 : 2.3821 13.8098 : 2.7062 15.5932 : 3.035914.9011 : 2.7029 16.8941 : 3.0676 18.9345 : 3.436617.5308 : 3.0067 19.7779 : 3.4110 22.0629 : 3.818820.0327 : 3.2991 22.5261 : 3.7427 25.0493 : 4.189722.4425 : 3.5837 25.1779 : 4.0670 27.9368 : 4.554224.7835 : 3.8631 27.7594 : 4.3869 30.7539 : 4.915627.0723 : 4.1393 30.2889 : 4.7047 33.5212 : 5.276529.3212 : 4.4136 32.7803 : 5.0219 36.2541 : 5.6390Rev 762.5966 733.2291 701.2148ICost 61.1145 56.6083 52.6074Pro�t 701.4821 676.6208 648.6074Table 4.5 � First ten investments of Impulse Control solutions for di�erent η,where T = 100, γ = 0.5, r = 0.04, δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2,

K0 = 0 and θ(0) = 1. Furthermore, Rev and ICost denote the disountedrevenue and the disounted investment ost, respetively.respet to apital) is zero, but invests when marginal pro�t is negative. In-deed, due to depreiation apital stok dereases in between two investments,implying that marginal pro�t goes up there due to the dereasing returns tosale assumption. The impliation is that during suh an interval �rst marginalpro�t is negative, but then after a while it turns positive and this stays thatway until it is time for the next investment.
• We �nd that investments are larger and the time between investments is largerwhen more of the old apital stok needs to be srapped. If a hange in teh-nology permits the �rm to keep, update and reuse part of its apital stok, theinvestments are smaller.
• A nontrivial result is the optimal timing of investments. We see that the�rm in the beginning of the planning period adopts new tehnologies fasteras time proeeds, but later on the opposite happens. Moreover, we obtain thatthe �rm's investments inrease when the tehnology produes more pro�tableproduts.
• The experiments show that if the time it takes to double the e�ieny of atehnology is larger than the time it takes for the apital stok to depreiate



Conlusions and Reommendations 87to half of its original level, the �rm undertakes an initial investment.
• Further sensitivity results were provided for a senario of dereasing demand.We �nd that when demand dereases over time and when �xed investment ostis higher, then the �rm invests less throughout the planning period, the timebetween two investments inreases and the �rst investment is delayed.Interesting diretions for further work would be to onsider running ost in the modelor to introdue a learning e�et. Another possible extension would be to let thesrapping perentage depend on time.
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γ = 0 γ = 0.5 γ = 1

(τi : I) 4.1651 : 1.4877 4.1462 : 1.4682 3.8509 : 1.36897.3464 : 1.3571 7.4147 : 1.7204 7.1308 : 1.958910.0022 : 1.4032 10.1649 : 2.0101 9.9511 : 2.461412.3693 : 1.4610 12.6433 : 2.2785 12.5559 : 2.926214.5474 : 1.5188 14.9499 : 2.5312 15.0389 : 3.371616.5895 : 1.5751 17.1370 : 2.7731 17.4476 : 3.806718.5276 : 1.6299 19.2361 : 3.0070 19.8100 : 4.236520.3835 : 1.6837 21.2682 : 3.2353 22.1437 : 4.663922.1724 : 1.7365 23.2479 : 3.4594 24.4606 : 5.091023.9056 : 1.7887 25.1861 : 3.6805 26.7688 : 5.519125.5920 : 1.8407 27.0909 : 3.8994 29.0742 : 5.949027.2385 : 1.8924 28.9689 : 4.1168 31.3809 : 6.381328.8508 : 1.9443 30.8252 : 4.3333 33.6920 : 6.816430.4336 : 1.9964 32.6640 : 4.5493 36.0096 : 7.254531.9908 : 2.0488 34.4889 : 4.7652 38.3355 : 7.695733.5258 : 2.1018 36.3027 : 4.9814 40.6707 : 8.140335.0416 : 2.1554 38.1081 : 5.1982 43.0162 : 8.588136.5406 : 2.2098 39.9072 : 5.4157 45.3723 : 9.039338.0252 : 2.2651 41.7019 : 5.6343 47.7396 : 9.493739.4975 : 2.3214 43.4940 : 5.8541 50.1182 : 9.951440.9591 : 2.3788 45.2849 : 6.0753 52.5083 : 10.412342.4119 : 2.4374 47.0759 : 6.2982 54.9099 : 10.876343.8573 : 2.4973 48.8684 : 6.5229 57.3230 : 11.343545.2968 : 2.5586 50.6635 : 6.7495 59.7474 : 11.813646.7317 : 2.6214 52.4621 : 6.9783 62.1832 : 12.286748.1632 : 2.6859 54.2654 : 7.2094 64.6300 : 12.762749.5925 : 2.7520 56.0743 : 7.4431 67.0879 : 13.241551.0207 : 2.8200 57.8895 : 7.6793 69.5566 : 13.723152.4488 : 2.8900 59.7121 : 7.9184 72.0359 : 14.207553.8779 : 2.9620 61.5428 : 8.1606 74.5258 : 14.694555.3089 : 3.0362 63.3824 : 8.4059 77.0260 : 15.184356.7427 : 3.1127 65.2318 : 8.6546 79.5364 : 15.676658.1804 : 3.1917 67.0917 : 8.9070 82.0568 : 16.171659.6228 : 3.2732 68.9629 : 9.1631 84.5872 : 16.6692ontinued on next page
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γ = 0 γ = 0.5 γ = 1

(τi : I) 61.0707 : 3.3574 70.8463 : 9.4233 87.1274 : 17.169362.5251 : 3.4445 72.7426 : 9.6878 89.6772 : 17.672063.9868 : 3.5347 74.6526 : 9.9569 92.2367 : 18.177465.4567 : 3.6279 76.5773 : 10.2307 94.8058 : 18.685366.9357 : 3.7246 78.5174 : 10.5097 97.3844 : 19.195968.4245 : 3.8248 80.4738 : 10.7940 99.9725 : 17.096969.9242 : 3.9287 82.4476 : 11.084171.4355 : 4.0366 84.4396 : 11.380372.9593 : 4.1486 86.4508 : 11.682974.4967 : 4.2650 88.4824 : 11.992576.0484 : 4.3860 90.5354 : 12.309377.6154 : 4.5120 92.6110 : 12.634079.1987 : 4.6431 94.7105 : 12.966880.7994 : 4.7798 96.8355 : 13.284682.4183 : 4.9222 99.0358 : 10.853584.0566 : 5.070885.7154 : 5.226087.3959 : 5.388189.0991 : 5.557690.8264 : 5.734992.5790 : 5.920694.3584 : 6.115296.1659 : 6.318198.0055 : 6.479699.9896 : 4.0490Rev 802.4809 790.1920 771.3955ICost 35.3109 67.8103 97.6050Pro�t 767.1700 722.3817 673.7904Table 4.6 � Impulse Control solutions for di�erent γ, where T = 100, r = 0.04,
δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1. Furthermore,Rev and ICost denote the disounted revenue and the disounted investmentost, respetively.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )4.1651 1.4877 0 1.4877 2.44357.3464 1.3571 0.7874 2.1445 3.546110.0022 1.4032 1.2608 2.6640 4.466512.3693 1.4610 1.6593 3.1204 5.286914.5474 1.5188 2.0184 3.5372 6.041816.5895 1.5751 2.3512 3.9263 6.749518.5276 1.6299 2.6646 4.2946 7.421220.3835 1.6837 2.9629 4.6466 8.064422.1724 1.7365 3.2490 4.9855 8.684423.9056 1.7887 3.5250 5.3138 9.285125.5920 1.8407 3.7925 5.6332 9.869527.2385 1.8924 4.0526 5.9451 10.440228.8508 1.9443 4.3064 6.2507 10.998930.4336 1.9964 4.5546 6.5510 11.547531.9908 2.0488 4.7979 6.8467 12.087233.5258 2.1018 5.0368 7.1386 12.619235.0416 2.1554 5.2718 7.4272 13.144536.5406 2.2098 5.5033 7.7131 13.664038.0252 2.2651 5.7316 7.9968 14.178539.4975 2.3214 5.9571 8.2786 14.688840.9591 2.3788 6.1801 8.5589 15.195442.4119 2.4374 6.4007 8.8381 15.698843.8573 2.4973 6.6193 9.1166 16.199845.2968 2.5586 6.8359 9.3945 16.698746.7317 2.6214 7.0509 9.6723 17.196048.1632 2.6859 7.2642 9.9501 17.692149.5925 2.7520 7.4762 10.2282 18.187551.0207 2.8200 7.6869 10.5069 18.682452.4488 2.8900 7.8964 10.7864 19.177453.8779 2.9620 8.1049 11.0670 19.672655.3089 3.0362 8.3125 11.3488 20.168656.7427 3.1127 8.5193 11.6320 20.665558.1804 3.1917 8.7253 11.9170 21.163859.6228 3.2732 8.9307 12.2039 21.6637ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )61.0707 3.3574 9.1355 12.4929 22.165562.5251 3.4445 9.3398 12.7843 22.669663.9868 3.5347 9.5437 13.0783 23.176165.4567 3.6279 9.7472 13.3751 23.685666.9357 3.7246 9.9503 13.6749 24.198168.4245 3.8248 10.1532 13.9780 24.714169.9242 3.9287 10.3559 14.2846 25.233971.4355 4.0366 10.5584 14.5950 25.757772.9593 4.1486 10.7607 14.9093 26.285874.4967 4.2650 10.9630 15.2279 26.818676.0484 4.3860 11.1651 15.5511 27.356477.6154 4.5120 11.3671 15.8791 27.899479.1987 4.6431 11.5691 16.2122 28.448280.7994 4.7798 11.7710 16.5508 29.002982.4183 4.9222 11.9729 16.8951 29.564084.0566 5.0708 12.1747 17.2455 30.131885.7154 5.2260 12.3764 17.6023 30.706787.3959 5.3881 12.5780 17.9660 31.289189.0991 5.5576 12.7794 18.3370 31.879490.8264 5.7349 12.9807 18.7156 32.478092.5790 5.9206 13.1817 19.1023 33.085494.3584 6.1152 13.3824 19.4975 33.702196.1659 6.3181 13.5825 19.9006 34.328698.0055 6.4796 13.7746 20.2542 34.966199.9896 4.0490 13.6201 17.6691 35.6538Revenue (disounted) 790.1920Investment ost (disounted)) 67.8103Total pro�t (disounted) 722.3817Table 4.7 � Impulse Control solutions for γ = 0, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )4.1462 1.4682 0.0000 1.4682 2.43707.4147 1.7204 0.7637 2.1022 3.569710.1649 2.0101 1.2128 2.6165 4.522912.6433 2.2785 1.5938 3.0754 5.381814.9499 2.5312 1.9389 3.5007 6.181217.1370 2.7731 2.2604 3.9033 6.939219.2361 3.0070 2.5651 4.2896 7.666721.2682 3.2353 2.8570 4.6638 8.371023.2479 3.4594 3.1390 5.0289 9.057125.1861 3.6805 3.4129 5.3869 9.728827.0909 3.8994 3.6803 5.7395 10.389028.9689 4.1168 3.9424 6.0880 11.039930.8252 4.3333 4.1999 6.4332 11.683232.6640 4.5493 4.4536 6.7761 12.320534.4889 4.7652 4.7041 7.1173 12.952936.3027 4.9814 4.9518 7.4574 13.581638.1081 5.1982 5.1972 7.7968 14.207339.9072 5.4157 5.4406 8.1360 14.830841.7019 5.6343 5.6823 8.4754 15.452843.4940 5.8541 5.9225 8.8153 16.073945.2849 6.0753 6.1615 9.1561 16.694547.0759 6.2982 6.3994 9.4979 17.315348.8684 6.5229 6.6364 9.8411 17.936550.6635 6.7495 6.8727 10.1859 18.558652.4621 6.9783 7.1083 10.5325 19.182054.2654 7.2094 7.3434 10.8812 19.807056.0743 7.4431 7.5781 11.2321 20.433957.8895 7.6793 7.8125 11.5856 21.063059.7121 7.9184 8.0466 11.9417 21.694661.5428 8.1606 8.2805 12.3008 22.329163.3824 8.4059 8.5142 12.6630 22.966765.2318 8.6546 8.7479 13.0286 23.607667.0917 8.9070 8.9815 13.3977 24.252268.9629 9.1631 9.2151 13.7707 24.9007ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )70.8463 9.4233 9.4486 14.1477 25.553572.7426 9.6878 9.6822 14.5290 26.210774.6526 9.9569 9.9159 14.9148 26.872676.5773 10.2307 10.1495 15.3055 27.539778.5174 10.5097 10.3832 15.7013 28.212080.4738 10.7940 10.6169 16.1025 28.890182.4476 11.0841 10.8506 16.5094 29.574184.4396 11.3803 11.0843 16.9224 30.264586.4508 11.6829 11.3179 17.3419 30.961688.4824 11.9925 11.5514 17.7682 31.665790.5354 12.3093 11.7848 18.2017 32.377292.6110 12.6340 12.0179 18.6429 33.096594.7105 12.9668 12.2506 19.0921 33.824196.8355 13.2846 12.4817 19.5255 34.560699.0358 10.8535 12.5743 17.1406 35.3232Revenue (disounted) 802.4809Investment ost (disounted) 35.3109Total pro�t (disounted) 767.1700Table 4.8 � Impulse Control solutions for γ = 0.5, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )3.8509 1.3689 0 1.3689 2.33467.1308 1.9589 0.7104 1.9589 3.47139.9511 2.4614 1.1144 2.4614 4.448812.5559 2.9262 1.4619 2.9262 5.351615.0389 3.3716 1.7809 3.3716 6.212117.4476 3.8067 2.0827 3.8067 7.046919.8100 4.2365 2.3733 4.2365 7.865622.1437 4.6639 2.6564 4.6639 8.674424.4606 5.0910 2.9343 5.0910 9.477426.7688 5.5191 3.2086 5.5191 10.277429.0742 5.9490 3.4804 5.9490 11.076331.3809 6.3813 3.7505 6.3813 11.875833.6920 6.8164 4.0195 6.8164 12.676736.0096 7.2545 4.2879 7.2545 13.480038.3355 7.6957 4.5560 7.6957 14.286140.6707 8.1403 4.8241 8.1403 15.095443.0162 8.5881 5.0924 8.5881 15.908345.3723 9.0393 5.3610 9.0393 16.724847.7396 9.4937 5.6301 9.4937 17.545350.1182 9.9514 5.8997 9.9514 18.369752.5083 10.4123 6.1700 10.4123 19.198054.9099 10.8763 6.4409 10.8763 20.030357.3230 11.3435 6.7125 11.3435 20.866659.7474 11.8136 6.9849 11.8136 21.706962.1832 12.2867 7.2580 12.2867 22.551064.6300 12.7627 7.5319 12.7627 23.399167.0879 13.2415 7.8065 13.2415 24.250969.5566 13.7231 8.0818 13.7231 25.106572.0359 14.2075 8.3579 14.2075 25.965874.5258 14.6945 8.6348 14.6945 26.828777.0260 15.1843 8.9123 15.1843 27.695279.5364 15.6766 9.1906 15.6766 28.565282.0568 16.1716 9.4696 16.1716 29.438784.5872 16.6692 9.7492 16.6692 30.3157ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )87.1274 17.1693 10.0294 17.1693 31.196089.6772 17.6720 10.3103 17.6720 32.079892.2367 18.1774 10.5918 18.1774 32.966894.8058 18.6853 10.8739 18.6853 33.857297.3844 19.1959 11.1565 19.1959 34.750999.9725 17.0969 11.4396 17.0969 35.6478Revenue (disounted) 771.3955Investment ost (disounted) 97.6050Total pro�t (disounted) 673.7904Table 4.9 � Impulse Control solutions for γ = 1, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.

0

5

10

15

I(
τ
i)

0 100(a) Lumpy investments, I(τi). 0

5

10

15

20

25

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

τ
8

τ
9

τ
10

U
n

d
is

c
o

u
n

te
d

 r
e

v
e

n
u

e

0 (b) Undisounted revenue forthe �rst ten investments.Figure 4.4 � Lumpy investments and undisounted revenue, where T = 100,
r = 0.04, δ = 0.05, γ = 0.5, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and
θ(0) = 1.
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Figure 4.5 � The length between two investments for T = 100 and parametervalues r = 0.04, δ = 0.2, γ = 0.5, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.
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0 (b) Undisounted revenue forthe �rst ten investments.Figure 4.6 � Lumpy investments and undisounted revenue, where T = 100,
r = 0.04, δ = 0.05, γ = 1, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and
θ(0) = 1.



Appendix 4A 97

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
2.2

2.4

2.6

2.8

3

3.2

∆
 τ

i=
τ
i+

1
−
τ
i

Figure 4.7 � The length between two investments for T = 100 and parametervalues r = 0.04, δ = 0.2, γ = 1, b = 1
2 log 2, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.

b = 1

3
log 2 b = 1

4
log 2 b = 1

5
log 2 b = 1

6
log 2 b = 1

10
log 2

(τi : I) 4.6759 : 1.3116 5.1658 : 1.2381 5.5832 : 1.1914 0 : 0.7418 0 : 0.77528.6561 : 1.5392 9.7814 : 1.4539 10.7534 : 1.3980 7.7656 : 1.2080 9.7219 : 1.14321.9662 : 1.7807 13.5911 : 1.6692 14.9977 : 1.5949 13.0448 : 1.4152 16.3705 : 1.313214.9229 : 1.9995 16.9755 : 1.8614 18.7535 : 1.7685 17.4932 : 1.5907 21.9534 : 1.452417.6530 : 2.2025 20.0857 : 2.0378 22.1932 : 1.9266 21.4683 : 1.7459 26.9204 : 1.573020.2231 : 2.3943 23.0005 : 2.2031 25.4066 : 2.0736 25.1251 : 1.8873 31.4676 : 1.681022.6732 : 2.5779 25.7678 : 2.3601 28.4478 : 2.2125 28.5485 : 2.0188 35.7025 : 1.779725.0300 : 2.7553 28.4191 : 2.5108 31.3530 : 2.3450 31.7914 : 2.1429 39.6921 : 1.871227.3121 : 2.9280 30.9766 : 2.6566 34.1472 : 2.4725 34.8894 : 2.2610 43.4813 : 1.956929.5335 : 3.0970 33.4569 : 2.7986 36.8494 : 2.5960 37.8681 : 2.3745 47.1023 : 2.037631.7048 : 3.2631 35.8726 : 2.9373 39.4737 : 2.7162 40.7466 : 2.4841 50.5789 : 2.114133.8341 : 3.4270 38.2335 : 3.0736 42.0316 : 2.8337 43.5397 : 2.5905 53.9292 : 2.186935.9284 : 3.5893 40.5479 : 3.2079 44.5320 : 2.9489 46.2589 : 2.6942 57.1675 : 2.256337.9929 : 3.7502 42.8221 : 3.3405 46.9826 : 3.0623 48.9138 : 2.7957 60.3051 : 2.322640.0324 : 3.9103 45.0617 : 3.4720 49.3895 : 3.1741 51.5122 : 2.8952 63.3512 : 2.386142.0508 : 4.0697 47.2715 : 3.6024 51.7580 : 3.2847 54.0606 : 2.9931 66.3131 : 2.447044.0513 : 4.2289 49.4554 : 3.7322 54.0927 : 3.3943 56.5646 : 3.0897 69.1972 : 2.505246.0368 : 4.3879 51.6169 : 3.8615 56.3977 : 3.5031 59.0290 : 3.1851 72.0083 : 2.561048.0100 : 4.5471 53.7592 : 3.9905 58.6762 : 3.6113 61.4580 : 3.2795 74.7508 : 2.614349.9730 : 4.7067 55.8849 : 4.1195 60.9316 : 3.7190 63.8553 : 3.3731 77.4280 : 2.665251.9280 : 4.8668 57.9966 : 4.2485 63.1664 : 3.8265 66.2241 : 3.4661 80.0427 : 2.713753.8767 : 5.0275 60.0964 : 4.3779 65.3833 : 3.9339 68.5673 : 3.5586 82.5974 : 2.759955.8207 : 5.1892 62.1864 : 4.5077 67.5845 : 4.0413 70.8876 : 3.6507 85.0937 : 2.803557.7618 : 5.3518 64.2685 : 4.6381 69.7722 : 4.1488 73.1873 : 3.7426 87.5331 : 2.844759.7012 : 5.5156 66.3445 : 4.7692 71.9481 : 4.2566 75.4687 : 3.8343 89.9166 : 2.883461.6403 : 5.6808 68.4159 : 4.9012 74.1143 : 4.3649 77.7338 : 3.9260 92.2448 : 2.9194ontinued on next page
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b = 1

3
log 2 b = 1

4
log 2 b = 1

5
log 2 b = 1

6
log 2 b = 1

10
log 2

(τi : I) 63.5803 : 5.8475 70.4843 : 5.0342 76.2723 : 4.4736 79.9845 : 4.0178 94.5183 : 2.952765.5226 : 6.0158 72.5512 : 5.1684 78.4238 : 4.5831 82.2225 : 4.1098 96.7374 : 2.978467.4682 : 6.1859 74.6181 : 5.3039 80.5704 : 4.6933 84.4495 : 4.2021 98.9488 : 2.414269.4182 : 6.3579 76.6862 : 5.4409 82.7134 : 4.8044 86.6672 : 4.294871.3738 : 6.5321 78.7570 : 5.5795 84.8544 : 4.9166 88.8770 : 4.387973.3360 : 6.7086 80.8317 : 5.7199 86.9948 : 5.0299 91.0803 : 4.481775.3058 : 6.8876 82.9116 : 5.8623 89.1359 : 5.1445 93.2787 : 4.576277.2844 : 7.0692 84.9980 : 6.0068 91.2791 : 5.2606 95.4734 : 4.671579.2727 : 7.2536 87.0922 : 6.1536 93.4257 : 5.3783 97.6662 : 4.760781.2718 : 7.4412 89.1954 : 6.3029 95.5770 : 5.4977 99.9020 : 3.972983.2828 : 7.6320 91.3090 : 6.4549 97.7349 : 5.610085.3067 : 7.8263 93.4344 : 6.6098 99.9462 : 4.638887.3447 : 8.0243 95.5727 : 6.767889.3980 : 8.2264 97.7260 : 6.918191.4676 : 8.4327 99.9410 : 5.731193.5549 : 8.643795.6610 : 8.859497.7878 : 9.064799.9841 : 7.4363Rev 371.5616 220.0775 148.0959 108.6965 47.4170ICost 39.2258 27.6829 21.7123 19.5772 12.9673Pro�t 332.3358 192.3946 126.3837 89.1193 34.4497Table 4.10 � Impulse Control solutions for di�erent b, where T = 100, γ = 0.5,
r = 0.04, δ = 0.2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1. Furthermore,Rev and ICost denote the disounted revenue and the disounted investmentost, respetively.

τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )4.6759 1.3116 0.0000 1.3116 2.08048.6561 1.5392 0.5917 1.8351 3.000011.9662 1.7807 0.9465 2.2540 3.764814.9229 1.9995 1.2478 2.6234 4.447917.6530 2.2025 1.5196 2.9623 5.078720.2231 2.3943 1.7717 3.2801 5.672522.6732 2.5779 2.0094 3.5826 6.238625.0300 2.7553 2.2361 3.8733 6.783227.3121 2.9280 2.4539 4.1549 7.310429.5335 3.0970 2.6645 4.4292 7.8237ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )31.7048 3.2631 2.8690 4.6976 8.325433.8341 3.4270 3.0685 4.9613 8.817335.9284 3.5893 3.2636 5.2210 9.301237.9929 3.7502 3.4549 5.4776 9.778240.0324 3.9103 3.6429 5.7317 10.249542.0508 4.0697 3.8280 5.9837 10.715844.0513 4.2289 4.0106 6.2342 11.178046.0368 4.3879 4.1910 6.4834 11.636848.0100 4.5471 4.3693 6.7318 12.092749.9730 4.7067 4.5459 6.9797 12.546251.9280 4.8668 4.7209 7.2272 12.997953.8767 5.0275 4.8945 7.4748 13.448255.8207 5.1892 5.0669 7.7226 13.897357.7618 5.3518 5.2380 7.9708 14.345859.7012 5.5156 5.4082 8.2197 14.793961.6403 5.6808 5.5774 8.4695 15.241963.5803 5.8475 5.7457 8.7203 15.690265.5226 6.0158 5.9133 8.9724 16.138967.4682 6.1859 6.0802 9.2260 16.588569.4182 6.3579 6.2465 9.4812 17.039071.3738 6.5321 6.4121 9.7382 17.490973.3360 6.7086 6.5773 9.9972 17.944275.3058 6.8876 6.7419 10.2585 18.399377.2844 7.0692 6.9061 10.5222 18.856579.2727 7.2536 7.0698 10.7885 19.315981.2718 7.4412 7.2331 11.0577 19.777883.2828 7.6320 7.3959 11.3299 20.242485.3067 7.8263 7.5584 11.6055 20.710087.3447 8.0243 7.7204 11.8845 21.180989.398 8.2264 7.8821 12.1674 21.655391.4676 8.4327 8.0433 12.4544 22.133593.5549 8.6437 8.204 12.7457 22.615895.661 8.8594 8.3642 13.0415 23.102497.7878 9.0647 8.5231 13.3263 23.593899.9841 7.4363 8.5889 11.7308 24.1012Revenue (disounted) 371.5616Investment ost (disounted) 39.2258Total pro�t (disounted) 332.3358Table 4.11 � Impulse Control solutions for b = 1

3 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.1658 1.2381 0 1.2381 1.89529.7814 1.4539 0.4919 1.6998 2.69513.5911 1.6692 0.7934 2.0659 3.355216.9755 1.8614 1.0499 2.3864 3.941620.0857 2.0378 1.2811 2.6784 4.480623.0005 2.2031 1.4952 2.9507 4.985725.7678 2.3601 1.6965 3.2084 5.465228.4191 2.5108 1.888 3.4548 5.924630.9766 2.6566 2.0715 3.6924 6.367833.4569 2.7986 2.2484 3.9228 6.797635.8726 2.9373 2.4197 4.1472 7.216238.2335 3.0736 2.5863 4.3668 7.625440.5479 3.2079 2.7488 4.5823 8.026442.8221 3.3405 2.9077 4.7944 8.420545.0617 3.472 3.0634 5.0036 8.808647.2715 3.6024 3.2162 5.2105 9.191549.4554 3.7322 3.3666 5.4155 9.570051.6169 3.8615 3.5147 5.6188 9.944553.7592 3.9905 3.6607 5.8209 10.315855.8849 4.1195 3.805 6.0219 10.684157.9966 4.2485 3.9475 6.2223 11.050060.0964 4.3779 4.0885 6.4221 11.413962.1864 4.5077 4.2281 6.6217 11.776164.2685 4.6381 4.3664 6.8213 12.136966.3445 4.7692 4.5035 7.0210 12.496668.4159 4.9012 4.6395 7.2210 12.855670.4843 5.0342 4.7746 7.4215 13.21472.5512 5.1684 4.9086 7.6227 13.572274.6181 5.3039 5.0418 7.8248 13.930376.6862 5.4409 5.1741 8.0280 14.288778.7570 5.5795 5.3057 8.2324 14.647580.8317 5.7199 5.4365 8.4382 15.0071ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )82.9116 5.8623 5.5666 8.6456 15.367584.9980 6.0068 5.6961 8.8548 15.72987.0922 6.1536 5.8248 9.0660 16.091989.1954 6.3029 5.9529 9.2794 16.456491.3090 6.4549 6.0804 9.4951 16.822793.4344 6.6098 6.2072 9.7134 17.190995.5727 6.7678 6.3334 9.9345 17.561597.7260 6.9181 6.4583 10.1472 17.934699.9410 5.7311 6.5156 8.9889 18.3185Revenue (disounted) 220.0775Investment ost (disounted) 27.6829Total pro�t (disounted) 192.3946Table 4.12 � Impulse Control solutions for b = 1

4 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.

τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.5832 1.1914 0 1.1914 1.77410.7534 1.398 0.4236 1.6098 2.490714.9977 1.5949 0.6888 1.9393 3.079118.7535 1.7685 0.915 2.226 3.599822.1932 1.9266 1.1188 2.486 4.076625.4066 2.0736 1.3073 2.7273 4.522128.4478 2.2125 1.4845 2.9547 4.943731.353 2.345 1.6527 3.1714 5.346434.1472 2.4725 1.8136 3.3793 5.733836.8494 2.596 1.9685 3.5802 6.108439.4737 2.7162 2.1182 3.7753 6.472242.0316 2.8337 2.2635 3.9654 6.826844.532 2.9489 2.4049 4.1514 7.173446.9826 3.0623 2.543 4.3338 7.513249.3895 3.1741 2.678 4.5131 7.846851.758 3.2847 2.8103 4.6899 8.175254.0927 3.3943 2.9401 4.8644 8.498856.3977 3.5031 3.0678 5.037 8.818458.6762 3.6113 3.1934 5.208 9.134360.9316 3.719 3.3172 5.3777 9.4469ontinued on next page
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )63.1664 3.8265 3.4393 5.5462 9.756765.3833 3.9339 3.5599 5.7138 10.064167.5845 4.0413 3.679 5.8808 10.369269.7722 4.1488 3.7968 6.0472 10.672571.9481 4.2566 3.9134 6.2133 10.974174.1143 4.3649 4.0288 6.3793 11.274476.2723 4.4736 4.1431 6.5452 11.573678.4238 4.5831 4.2564 6.7113 11.871880.5704 4.6933 4.3688 6.8776 12.169482.7134 4.8044 4.4802 7.0445 12.466584.8544 4.9166 4.5907 7.2119 12.763386.9948 5.0299 4.7005 7.3801 13.060089.1359 5.1445 4.8094 7.5492 13.356991.2791 5.2606 4.9176 7.7194 13.654093.4257 5.3783 5.0250 7.8908 13.951595.5770 5.4977 5.1317 8.0635 14.249897.7349 5.6100 5.2372 8.2286 14.548999.9462 4.6388 5.2876 7.2826 14.8555Revenue (disounted) 148.0959Investment ost (disounted) 21.7123Total pro�t (disounted) 126.3837Table 4.13 � Impulse Control solutions for b = 1

5 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.

τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )0 0.7418 0 0.7418 17.7656 1.208 0.1570 1.2865 1.897113.0448 1.4152 0.4476 1.6390 2.507017.4932 1.5907 0.6733 1.9274 3.020921.4683 1.7459 0.8703 2.1811 3.480125.1251 1.8873 1.0496 2.4121 3.902628.5485 2.0188 1.2163 2.6270 4.298131.7914 2.1429 1.3734 2.8296 4.6727ontinued on next page



Appendix 4A 103ontinued from previous page
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )34.8894 2.2610 1.5227 3.0224 5.030637.8681 2.3745 1.6658 3.2074 5.374740.7466 2.4841 1.8036 3.3859 5.707243.5397 2.5905 1.9367 3.5589 6.029946.2589 2.6942 2.0660 3.7272 6.344048.9138 2.7957 2.1917 3.8915 6.650751.5122 2.8952 2.3143 4.0524 6.950954.0606 2.9931 2.4342 4.2102 7.245356.5646 3.0897 2.5516 4.3655 7.534659.0290 3.1851 2.6667 4.5184 7.819361.4580 3.2795 2.7798 4.6694 8.099963.8553 3.3731 2.8909 4.8186 8.376966.2241 3.4661 3.0003 4.9663 8.650568.5673 3.5586 3.1082 5.1127 8.921270.8876 3.6507 3.2145 5.2580 9.189373.1873 3.7426 3.3194 5.4023 9.454975.4687 3.8343 3.4231 5.5459 9.718577.7338 3.9260 3.5255 5.6888 9.980279.9845 4.0178 3.6268 5.8312 10.240282.2225 4.1098 3.7271 5.9733 10.498784.4495 4.2021 3.8263 6.1152 10.756086.6672 4.2948 3.9245 6.2570 11.012288.8770 4.3879 4.0219 6.3989 11.267591.0803 4.4817 4.1183 6.5409 11.522093.2787 4.5762 4.2140 6.6832 11.776095.4734 4.6715 4.3088 6.8259 12.029597.6662 4.7607 4.4024 6.9619 12.282899.9020 3.9729 4.4517 6.1988 12.5411Revenue (disounted) 108.6965Investment ost (disounted) 19.5772Total pro�t (disounted) 59.1193Table 4.14 � Impulse Control solutions for b = 1

6 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.



104 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )0 0.7752 0 0.7752 19.7219 1.1432 0.1109 1.1987 1.673916.3705 1.3132 0.3171 1.4717 2.134721.9534 1.4524 0.4818 1.6934 2.521726.9204 1.5730 0.6271 1.8866 2.866031.4676 1.6810 0.7598 2.0609 3.181235.7025 1.7797 0.8835 2.2215 3.474739.6921 1.8712 1.0003 2.3713 3.751243.4813 1.9569 1.1114 2.5125 4.013947.1023 2.0376 1.2179 2.6465 4.264950.5789 2.1141 1.3204 2.7743 4.505953.9292 2.1869 1.4195 2.8966 4.738157.1675 2.2563 1.5157 3.0142 4.962660.3051 2.3226 1.6093 3.1273 5.180063.3512 2.3861 1.7006 3.2364 5.391266.3131 2.4470 1.7897 3.3418 5.596569.1972 2.5052 1.8771 3.4437 5.796472.0083 2.5610 1.9627 3.5423 5.991274.7508 2.6143 2.0468 3.6377 6.181377.4280 2.6652 2.1295 3.7300 6.366980.0427 2.7137 2.2110 3.8192 6.548182.5974 2.7599 2.2913 3.9055 6.725285.0937 2.8035 2.3706 3.9888 6.898287.5331 2.8447 2.4489 4.0692 7.067389.9166 2.8834 2.5263 4.1465 7.232592.2448 2.9194 2.6029 4.2208 7.393994.5183 2.9527 2.6787 4.2920 7.551596.7374 2.9784 2.7537 4.3553 7.705398.9488 2.4142 2.7985 3.8134 7.8586Revenue (disounted) 47.417Investment ost (disounted) 12.9673Total pro�t (disounted) 34.4497Table 4.15 � Impulse Control solutions for b = 1

10 log 2, where T = 100,
r = 0.04, δ = 0.2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.



Appendix 4A 105
C = 4 C = 8 C = 16 C = 32

(τi : I) 5.7915 : 1.8832 8.0844 : 2.4856 11.1517 : 3.3199 15.2866 : 4.47549.6593 : 2.2099 12.7147 : 2.9206 16.6712 : 3.8947 21.8148 : 5.224112.8816 : 2.5607 16.5386 : 3.3546 21.1933 : 4.4297 27.1293 : 5.878915.7638 : 2.8797 19.9372 : 3.7422 25.1901 : 4.8993 31.8052 : 6.444318.4283 : 3.1763 23.0621 : 4.0984 28.8471 : 5.3256 36.0657 : 6.951320.9394 : 3.4571 25.9923 : 4.4325 32.2606 : 5.7215 40.0266 : 7.416923.3358 : 3.7265 28.7755 : 4.7502 35.4889 : 6.0947 43.7577 : 7.851525.6433 : 3.9871 31.4435 : 5.0556 38.5705 : 6.4506 47.3050 : 8.261827.8799 : 4.2412 34.0186 : 5.3513 41.5327 : 6.7926 50.7012 : 8.652530.0590 : 4.4903 36.5173 : 5.6394 44.3957 : 7.1237 53.9701 : 9.027032.1907 : 4.7354 38.9523 : 5.9215 47.1748 : 7.4458 57.1301 : 9.387934.2832 : 4.9775 41.3336 : 6.1989 49.8823 : 7.7606 60.1956 : 9.737336.3429 : 5.2174 43.6692 : 6.4726 52.5280 : 8.0694 63.1782 : 10.076738.3751 : 5.4557 45.9658 : 6.7433 55.1200 : 8.3732 66.0873 : 10.407540.3842 : 5.6929 48.2290 : 7.0118 57.6651 : 8.6731 68.9309 : 10.730742.3740 : 5.9295 50.4635 : 7.2788 60.1692 : 8.9698 71.7156 : 11.047244.3476 : 6.1658 52.6734 : 7.5447 62.6371 : 9.2641 74.4470 : 11.357946.3080 : 6.4022 54.8622 : 7.8101 65.0733 : 9.5565 77.1303 : 11.663448.2575 : 6.6390 57.0331 : 8.0754 67.4816 : 9.8476 79.7695 : 11.964350.1983 : 6.8765 59.1889 : 8.3409 69.8655 : 10.1379 82.3685 : 12.261152.1324 : 7.1149 61.3321 : 8.6072 72.2281 : 10.4280 84.9306 : 12.554254.0615 : 7.3546 63.4651 : 8.8745 74.5721 : 10.7183 87.4588 : 12.844155.9872 : 7.5957 65.5899 : 9.1432 76.9002 : 11.0092 89.9557 : 13.131157.9112 : 7.8386 67.7086 : 9.4136 79.2148 : 11.3012 92.4238 : 13.415659.8346 : 8.0833 69.8230 : 9.6860 81.5182 : 11.5947 94.8653 : 13.697861.7589 : 8.3302 71.9347 : 9.9609 83.8124 : 11.8901 97.2825 : 13.962563.6852 : 8.5795 74.0455 : 10.2384 86.0995 : 12.1878 99.7136 : 12.032465.6147 : 8.8313 76.1570 : 10.5191 88.3813 : 12.488367.5486 : 9.0860 78.2706 : 10.8031 90.6599 : 12.792069.4879 : 9.3438 80.3880 : 11.0909 92.9369 : 13.099471.4338 : 9.6049 82.5104 : 11.3829 95.2143 : 13.410773.3871 : 9.8696 84.6394 : 11.6793 97.4939 : 13.708175.3490 : 10.1381 86.7765 : 11.9807 99.8182 : 11.6236ontinued on next page



106 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSontinued from previous page
C = 4 C = 8 C = 16 C = 32

(τi : I) 77.3205 : 10.4107 88.9230 : 12.287579.3027 : 10.6877 91.0805 : 12.600081.2965 : 10.9694 93.2503 : 12.918883.3031 : 11.2562 95.4341 : 13.244185.3235 : 11.5483 97.6337 : 13.556287.3588 : 11.8462 99.8944 : 11.335189.4101 : 12.150391.4786 : 12.460993.5657 : 12.778695.6724 : 13.103697.8006 : 13.4128Rev 780.7835 769.1875 747.0746 712.6433ICost 79.5936 96.8939 120.5584 150.9987Pro�t 701.1899 672.2936 626.5162 561.6447Table 4.16 � Impulse Control solutions for di�erent C, where T = 100,
γ = 0.5, r = 0.04, δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.Furthermore, Rev and ICost denote the disounted revenue and the disountedinvestment ost, respetively.
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.7915 1.8832 0 1.8832 3.00729.6593 2.2099 0.8688 2.6444 4.347712.8816 2.5607 1.3881 3.2548 5.464415.7638 2.8797 1.8289 3.7941 6.463318.4283 3.1763 2.2267 4.2897 7.386820.9394 3.4571 2.5960 4.7552 8.257023.3358 3.7265 2.9445 5.1987 9.087625.6433 3.9871 3.2770 5.6256 9.887327.8799 4.2412 3.5967 6.0396 10.662430.0590 4.4903 3.9060 6.4433 11.417632.1907 4.7354 4.2067 6.8387 12.156534.2832 4.9775 4.5001 7.2276 12.881736.3429 5.2174 4.7873 7.6111 13.5955ontinued on next page



Appendix 4A 107ontinued from previous page
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )38.3751 5.4557 5.0691 7.9903 14.299840.3842 5.6929 5.3463 8.3661 14.996142.3740 5.9295 5.6194 8.7392 15.685744.3476 6.1658 5.8890 9.1103 16.369746.3080 6.4022 6.1554 9.4799 17.049148.2575 6.6390 6.4191 9.8485 17.724850.1983 6.8765 6.6803 10.2166 18.397452.1324 7.1149 6.9393 10.5846 19.067754.0615 7.3546 7.1963 10.9528 19.736355.9872 7.5957 7.4517 11.3216 20.403757.9112 7.8386 7.7054 11.6913 21.070559.8346 8.0833 7.9578 12.0622 21.737161.7589 8.3302 8.2089 12.4347 22.404063.6852 8.5795 8.4589 12.8089 23.071665.6147 8.8313 8.7079 13.1853 23.740367.5486 9.0860 8.9560 13.5640 24.410669.4879 9.3438 9.2033 13.9455 25.082771.4338 9.6049 9.4498 14.3298 25.757173.3871 9.8696 9.6956 14.7174 26.434075.3490 10.1381 9.9408 15.1085 27.114077.3205 10.4107 10.1853 15.5034 27.797379.3027 10.6877 10.4294 15.9024 28.484281.2965 10.9694 10.6728 16.3058 29.175283.3031 11.2562 10.9158 16.7141 29.870785.3235 11.5483 11.1582 17.1275 30.570987.3588 11.8462 11.4001 17.5463 31.276289.4101 12.1503 11.6415 17.9711 31.987291.4786 12.4609 11.8823 18.4021 32.704193.5657 12.7786 12.1225 18.8398 33.427495.6724 13.1036 12.3620 19.2846 34.157597.8006 13.4128 12.5995 19.7126 34.8951Revenue (disounted) 780.7835Investment ost (disounted) 79.5936Total pro�t (disounted) 701.1899Table 4.17 � Impulse Control solutions for C = 4, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.



108 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )8.0844 2.4856 0.0000 2.4856 3.801812.7147 2.9206 0.9846 3.4129 5.406616.5386 3.3546 1.5885 4.1489 6.731819.9372 3.7422 2.1025 4.7935 7.909723.0621 4.0984 2.5658 5.3813 8.992725.9923 4.4325 2.9949 5.9299 10.008228.7755 4.7502 3.3986 6.4495 10.972831.4435 5.0556 3.7826 6.9468 11.897534.0186 5.3513 4.1507 7.4266 12.789936.5173 5.6394 4.5056 7.8922 13.655938.9523 5.9215 4.8495 8.3463 14.499841.3336 6.1989 5.1839 8.7909 15.325143.6692 6.4726 5.5101 9.2276 16.134645.9658 6.7433 5.8292 9.6579 16.930548.2290 7.0118 6.1419 10.0828 17.714950.4635 7.2788 6.4491 10.5033 18.489352.6734 7.5447 6.7512 10.9203 19.255254.8622 7.8101 7.0489 11.3345 20.013857.0331 8.0754 7.3425 11.7466 20.766259.1889 8.3409 7.6324 12.1572 21.513361.3321 8.6072 7.9190 12.5667 22.256163.4651 8.8745 8.2026 12.9758 22.995365.5899 9.1432 8.4834 13.3849 23.731767.7086 9.4136 8.7617 13.7944 24.466069.8230 9.6860 9.0376 14.2048 25.198871.9347 9.9609 9.3113 14.6165 25.930774.0455 10.2384 9.5830 15.0299 26.662276.1570 10.5191 9.8527 15.4454 27.394078.2706 10.8031 10.1207 15.8635 28.126580.3880 11.0909 10.3870 16.2844 28.860382.5104 11.3829 10.6517 16.7087 29.595984.6394 11.6793 10.9149 17.1368 30.333886.7765 11.9807 11.1765 17.5690 31.074488.9230 12.2875 11.4367 18.0058 31.818491.0805 12.6000 11.6955 18.4477 32.566193.2503 12.9188 11.9528 18.8952 33.318195.4341 13.2441 12.2087 19.3485 34.074997.6337 13.5562 12.4621 19.7872 34.837399.8944 11.3351 12.5899 17.6300 35.6208Revenue (disounted) 769.1875Investment ost (disounted) 96.8939Total pro�t (disounted) 672.2936Table 4.18 � Impulse Control solutions for C = 8, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.



Appendix 4A 109
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )11.1517 3.3199 0.0000 3.3199 4.864916.6712 3.8947 1.1008 4.4451 6.777821.1933 4.4297 1.7993 5.3294 8.345025.1901 4.8993 2.3961 6.0974 9.730228.8471 5.3256 2.9343 6.7928 10.997632.2606 5.7215 3.4320 7.4375 12.180735.4889 6.0947 3.8996 8.0445 13.299538.5705 6.4506 4.3434 8.6223 14.367541.5327 6.7926 4.7679 9.1766 15.394144.3957 7.1237 5.1762 9.7118 16.386447.1748 7.4458 5.5707 10.2312 17.349549.8823 7.7606 5.9533 10.7372 18.287952.5280 8.0694 6.3254 11.2321 19.204855.1200 8.3732 6.6884 11.7174 20.103157.6651 8.6731 7.0431 12.1947 20.985260.1692 8.9698 7.3905 12.6651 21.853062.6371 9.2641 7.7312 13.1297 22.708465.0733 9.5565 8.0658 13.5894 23.552767.4816 9.8476 8.3949 14.0450 24.387469.8655 10.1379 8.7189 14.4974 25.213572.2281 10.4280 9.0382 14.9471 26.032374.5721 10.7183 9.3531 15.3949 26.844776.9002 11.0092 9.6640 15.8412 27.651679.2148 11.3012 9.9711 16.2868 28.453881.5182 11.5947 10.2747 16.7321 29.252083.8124 11.8901 10.5749 17.1776 30.047286.0995 12.1878 10.8720 17.6238 30.839888.3813 12.4883 11.1660 18.0714 31.630690.6599 12.7920 11.4572 18.5206 32.420392.9369 13.0994 11.7456 18.9722 33.209595.2143 13.4107 12.0313 19.4263 33.998797.4939 13.7081 12.3135 19.8649 34.788899.8182 11.6236 12.4796 17.8634 35.5944Revenue (disounted) 747.0746Investment ost (disounted) 120.5584Total pro�t (disounted) 626.5162Table 4.19 � Impulse Control solutions for C = 16, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.



110 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTS
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )15.2866 4.4754 0.0000 4.4754 6.297921.8148 5.2241 1.2128 5.8305 8.560427.1293 5.8789 2.0142 6.8860 10.402331.8052 6.4443 2.7029 7.7957 12.022836.0657 6.9513 3.3250 8.6138 13.499440.0266 7.4169 3.9008 9.3673 14.872243.7577 7.8515 4.4416 10.0723 16.165347.3050 8.2618 4.9546 10.7391 17.394750.7012 8.6525 5.4448 11.3748 18.571753.9701 9.0270 5.9158 11.9848 19.704657.1301 9.3879 6.3703 12.5730 20.799860.1956 9.7373 6.8104 13.1425 21.862263.1782 10.0767 7.2379 13.6956 22.895966.0873 10.4075 7.6542 14.2345 23.904168.9309 10.7307 8.0604 14.7609 24.889671.7156 11.0472 8.4574 15.2759 25.854774.4470 11.3579 8.8461 15.7810 26.801477.1303 11.6634 9.2273 16.2771 27.731379.7695 11.9643 9.6014 16.7650 28.646082.3685 12.2611 9.9692 17.2457 29.546784.9306 12.5542 10.3309 17.7196 30.434787.4588 12.8441 10.6871 18.1876 31.310989.9557 13.1311 11.0381 18.6501 32.176392.4238 13.4156 11.3842 19.1077 33.031794.8653 13.6978 11.7258 19.5607 33.877897.2825 13.9625 12.0624 19.9937 34.715599.7136 12.0324 12.2950 18.1799 35.5581Revenue (disounted) 712.6433Investment ost (disounted) 150.9987Total pro�t (disounted) 561.6447Table 4.20 � Impulse Control solutions for C = 32, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, K0 = 0 and θ(0) = 1.



Appendix 4A 111
η = 0.01 η = 0.02 η = 0.03

(τi : I) 5.2730 : 1.7250 6.3504 : 1.9594 7.5126 : 2.20428.9696 : 2.0366 10.4003 : 2.3175 11.902 : 2.606012.0850 : 2.3821 13.8098 : 2.7062 15.5932 : 3.035914.9011 : 2.7029 16.8941 : 3.0676 18.9345 : 3.436617.5308 : 3.0067 19.7779 : 3.4110 22.0629 : 3.818820.0327 : 3.2991 22.5261 : 3.7427 25.0493 : 4.189722.4425 : 3.5837 25.1779 : 4.0670 27.9368 : 4.554224.7835 : 3.8631 27.7594 : 4.3869 30.7539 : 4.915627.0723 : 4.1393 30.2889 : 4.7047 33.5212 : 5.276529.3212 : 4.4136 32.7803 : 5.0219 36.2541 : 5.639031.5397 : 4.6871 35.2443 : 5.3400 38.9647 : 6.004933.7353 : 4.9607 37.6894 : 5.6602 41.6632 : 6.375735.9140 : 5.2353 40.1229 : 5.9836 44.3578 : 6.752938.0810 : 5.5115 42.5509 : 6.3111 47.0561 : 7.137840.2406 : 5.7900 44.9786 : 6.6436 49.7647 : 7.531942.3967 : 6.0713 47.411 : 6.9821 52.4898 : 7.936544.5525 : 6.3560 49.8523 : 7.3274 55.2371 : 8.353246.7110 : 6.6445 52.3066 : 7.6804 58.0124 : 8.783448.8751 : 6.9374 54.7778 : 8.0421 60.8212 : 9.228851.0474 : 7.2352 57.2696 : 8.4135 63.6691 : 9.691353.2301 : 7.5385 59.7857 : 8.7955 66.562 : 10.172955.4257 : 7.8477 62.3297 : 9.1893 69.5058 : 10.675757.6364 : 8.1634 64.9055 : 9.5961 72.5068 : 11.202359.8643 : 8.4863 67.5167 : 10.0172 75.5718 : 11.755662.1118 : 8.8168 70.1673 : 10.4539 78.7082 : 12.338664.3809 : 9.1557 72.8614 : 10.9080 81.9241 : 12.955166.6739 : 9.5037 75.6034 : 11.3811 85.2281 : 13.609468.9931 : 9.8616 78.3978 : 11.8752 88.6304 : 14.306471.3408 : 10.2301 81.2498 : 12.3925 92.1421 : 15.051873.7194 : 10.6101 84.1647 : 12.9354 95.7764 : 15.817776.1314 : 11.0026 87.1483 : 13.5069 99.595 : 12.3688ontinued on next page



112 CHAPTER 4. PRODUCT INNOVATION WITHF LUMPYINVESTMENTSontinued from previous page
η = 0.01 η = 0.02 η = 0.03

(τi : I) 78.5796 : 11.4087 90.2071 : 14.110181.0668 : 11.8296 93.3484 : 14.748383.5959 : 12.2664 96.5805 : 15.392686.1701 : 12.7208 99.9593 : 12.127388.793 : 13.194291.4683 : 13.688594.1999 : 14.205396.9928 : 14.718299.8973 : 11.8801Rev 762.5966 733.2291 701.2148ICost 61.1145 56.6083 52.6074Pro�t 701.4821 676.6208 648.6074Table 4.21 � Impulse Control solutions for di�erent η, where T = 100, γ = 0.5,
r = 0.04, δ = 0.2, b = 1

2 log 2, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.Furthermore, Rev and ICost denote the disounted revenue and the disountedinvestment ost, respetively.
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )5.2730 1.7250 0.0000 1.725 2.82758.9696 2.0366 0.8236 2.4483 4.108612.0850 2.3821 1.3130 3.0386 5.188414.9011 2.7029 1.7301 3.568 6.164317.5308 3.0067 2.1087 4.0611 7.075720.0327 3.2991 2.4622 4.5302 7.942822.4425 3.5837 2.7977 4.9825 8.778024.7835 3.8631 3.1197 5.423 9.589327.0723 4.1393 3.4311 5.8548 10.382529.3212 4.4136 3.7340 6.2806 11.162031.5397 4.6871 4.0300 6.702 11.930833.7353 4.9607 4.3202 7.1208 12.691835.9140 5.2353 4.6056 7.5381 13.446938.0810 5.5115 4.8870 7.955 14.197940.2406 5.7900 5.1649 8.3724 14.946342.3967 6.0713 5.4398 8.7912 15.693644.5525 6.3560 5.7121 9.212 16.440746.7110 6.6445 5.9822 9.6356 17.1888ontinued on next page



Appendix 4A 113ontinued from previous page
τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )48.8751 6.9374 6.2504 10.0626 17.938851.0474 7.2352 6.5168 10.4936 18.691753.2301 7.5385 6.7816 10.9293 19.448155.4257 7.8477 7.0451 11.3702 20.209157.6364 8.1634 7.3072 11.817 20.975259.8643 8.4863 7.5681 12.2703 21.747462.1118 8.8168 7.8279 12.7308 22.526364.3809 9.1557 8.0865 13.199 23.312766.6739 9.5037 8.3439 13.6757 24.107468.9931 9.8616 8.6002 14.1617 24.911271.3408 10.2301 8.8552 14.6576 25.724873.7194 10.6101 9.1088 15.1645 26.549276.1314 11.0026 9.3609 15.6831 27.385178.5796 11.4087 9.6113 16.2144 28.233681.0668 11.8296 9.8598 16.7595 29.095683.5959 12.2664 10.1062 17.3195 29.972186.1701 12.7208 10.3499 17.8958 30.864388.793 13.1942 10.5908 18.4896 31.773391.4683 13.6885 10.8283 19.1026 32.700594.1999 14.2053 11.0618 19.7362 33.647296.9928 14.7182 11.2896 20.363 34.615199.8973 11.8801 11.3909 17.5756 35.6218Revenue (disounted) 762.5966Investment ost (disounted) 61.1145Total pro�t (disounted) 701.4821Table 4.22 � Impulse Control solutions for η = 0.01, where T = 100, r = 0.04,

δ = 0.2, b = 1
2 log 2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0 and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )6.3504 1.9594 0 1.9594 3.200910.4003 2.3175 0.8717 2.7533 4.604513.8098 2.7062 1.3922 3.4023 5.786116.8941 3.0676 1.8360 3.9856 6.855019.7779 3.4110 2.2388 4.5304 7.854522.5261 3.7427 2.6147 5.0500 8.807025.1779 4.0670 2.9714 5.5527 9.726027.7594 4.3869 3.3135 6.0437 10.620730.2889 4.7047 3.6441 6.5267 11.497332.7803 5.0219 3.9655 7.0046 12.360835.2443 5.3400 4.2793 7.4796 13.214737.6894 5.6602 4.5867 7.9536 14.062240.1229 5.9836 4.8887 8.4279 14.905542.5509 6.3111 5.1860 8.9041 15.747044.9786 6.6436 5.4792 9.3832 16.588447.411 6.9821 5.7687 9.8664 17.431449.8523 7.3274 6.0550 10.3549 18.277552.3066 7.6804 6.3382 10.8495 19.128154.7778 8.0421 6.6186 11.3514 19.984557.2696 8.4135 6.8963 11.8616 20.848159.7857 8.7955 7.1713 12.3812 21.720162.3297 9.1893 7.4437 12.9112 22.601864.9055 9.5961 7.7133 13.4527 23.494567.5167 10.0172 7.9800 14.0072 24.399570.1673 10.4539 8.2437 14.5758 25.318172.8614 10.9080 8.5040 15.1600 26.251875.6034 11.3811 8.7606 15.7614 27.202178.3978 11.8752 9.0130 16.3817 28.170681.2498 12.3925 9.2606 17.0228 29.15984.1647 12.9354 9.5028 17.6868 30.169287.1483 13.5069 9.7386 18.3762 31.203390.2071 14.1101 9.9670 19.0936 32.263493.3484 14.7483 10.1868 19.8417 33.352196.5805 15.3926 10.3954 20.5903 34.472399.9593 12.1273 10.4758 17.3652 35.6432Revenue (disounted) 733.2291Investment ost (disounted) 56.6083Total pro�t (disounted) 676.6208Table 4.23 � Impulse Control solutions for η = 0.02, T = 100 and parametervalues r = 0.04, δ = 0.2, b = 1

2 log 2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.
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τi I(τi) K(τ−i ) K(τ+i ) θ(τ+i )7.5126 2.2042 0 2.2042 3.603711.9020 2.6060 0.9162 3.0641 5.124915.5932 3.0359 1.4645 3.7681 6.404218.9345 3.4366 1.9315 4.4024 7.562222.0629 3.8188 2.3548 4.9962 8.646425.0493 4.1897 2.7494 5.5644 9.681427.9368 4.5542 3.1233 6.1158 10.682130.7539 4.9156 3.4815 6.6563 11.658533.5212 5.2765 3.8271 7.1901 12.617636.2541 5.6390 4.1625 7.7203 13.564738.9647 6.0049 4.4894 8.2496 14.504241.6632 6.3757 4.8090 8.7802 15.439444.3578 6.7529 5.1221 9.3139 16.373347.0561 7.1378 5.4295 9.8526 17.308449.7647 7.5319 5.7317 10.3977 18.247152.4898 7.9365 6.0290 10.9510 19.191655.2371 8.3532 6.3215 11.5139 20.143758.0124 8.7834 6.6095 12.0881 21.105660.8212 9.2288 6.8927 12.6752 22.079063.6691 9.6913 7.1711 13.2769 23.066066.5620 10.1729 7.4443 13.8951 24.068669.5058 10.6757 7.7120 14.5317 25.088972.5068 11.2023 7.9736 15.1891 26.128975.5718 11.7556 8.2282 15.8697 27.191278.7082 12.3386 8.4750 16.5761 28.278281.9241 12.9551 8.7129 17.3115 29.392785.2281 13.6094 8.9402 18.0795 30.537888.6304 14.3064 9.1552 18.8840 31.717092.1421 15.0518 9.3557 19.7296 32.934095.7764 15.8177 9.5378 20.5867 34.193699.5950 12.3688 9.5919 17.1648 35.5170Revenue (disounted) 701.2148Investment ost (disounted) 52.6074Total pro�t (disounted) 648.6074Table 4.24 � Impulse Control solutions for η = 0.03, T = 100 and parametervalues r = 0.04, δ = 0.2, b = 1

2 log 2, γ = 0.5, β = 0.2, α = 0, C = 2, K0 = 0and θ(0) = 1.
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CHAPTER 5Numerial Algorithms for Deterministi ImpulseControl models with appliationsAbstrat In this hapter we desribe three di�erent algorithms, two ofwhih are new in the literature. We take both the size of the jump andthe jump times as deision variables. The �rst (new) algorithm on-siders an Impulse Control problem as a (multipoint) Boundary ValueProblem and uses a ontinuation tehnique to solve it. The seond(new) approah is the ontinuation algorithm that requires the anoni-al system to be solved expliitly. This redues the in�nite dimensionalproblem to a �nite dimensional system of, in general, nonlinear equa-tions, without disretizing the problem. Finally, we present a gradientalgorithm, where we reformulate the problem as a �nite dimensionalproblem, whih an be solved using some standard optimization teh-niques. As an appliation we solve a forest management problem anda dike heightening problem. We numerially ompare the e�ienyof our methods to other approahes, suh as dynami programming,bakward algorithm and value funtion approah.
5.1 IntrodutionFor many problems in the area of eonomis and operations researh it is realisti toallow for jumps in the state variable. Take, for example, a �rm that inreases theapital stok by a lumpy investment, or the derease of the volume of a natural re-soure after eah drilling. This hapter therefore onsiders optimal ontrol models inwhih the time moment of these jumps and the size of the jumps are taken as (new)deision variables. Blaquière (1977a; 1977b; 1979; 1985) extends the standard theoryon optimal ontrol by deriving a Maximum Priniple, the so alled Impulse ControlMaximum Priniple, that gives neessary (and su�ient) optimality onditions for



120 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSsolving suh problems. In Chapter 2 we present the neessary optimality onditionsof the Impulse Control Maximum Priniple based on the urrent value formulation.In Chapter 2 we also design a transformation, whih ensures that the appliationof the Impulse Control Maximum Priniple an be applied to problems with a �xedost. For a review of the literature applying the impulse ontrol maximum priniple,we refer to Chapter 2 of this thesis.Like Blaquière (1977a; 1977b; 1979; 1985) and Chahim et al. (2012b), we onsider aframework where the number of jumps is not known. This distinguishes our approahfrom, e.g., Liu et al. (1998) and Wu and Teo (2006) where a gradient method is usedassuming the number of jumps is known, and Augustin (2002, pp. 71�81) where theImpulse Control Maximum Priniple is used for a �xed number of jumps (see e.g.Rempala (1990)). Other approahes in the literature inlude the value funtion ap-proah found in Neuman and Costanza (1990), where a value funtion is de�ned fora �xed number of jumps and Erdlenbruh et al. (2011) or Eijgenraam et al. (2011)where dynami programming is the tool of hoie.In the literature two di�erent algorithms based on the Impulse Control MaximumPriniple (Blaquière (1977a; 1977b; 1979; 1985) and Chahim et al. (2012b)) are de-rived. Luhmer (1986) derived a forward algorithm (starts at time 0) and Kort (1989,pp. 62�70) derived a bakward algorithm (starts at �nal time horizon T ). Both algo-rithms have some drawbaks. To initialize the forward algorithm the initial ostate(s)value(s) is the hoie variable. A similar drawbak holds for the bakward algorithm.Here information on the state variable(s) at the end of the planning period is needed,i.e. this (these) value(s) is (are) the hoie variables(s).In this hapter we desribe three di�erent algorithms, from whih two (as far aswe know) are new in the literature. We take both the size of the jump and thejump times as deision variables. The �rst (new) algorithm onsiders an ImpulseControl problem as a (multipoint) Boundary Value Problem and uses a ontinuationtehnique to solve it. The seond (new) approah is the ontinuation algorithm thatrequires the anonial system to be solved expliitly. This redues the in�nite di-mensional problem to a �nite dimensional system of, in general, nonlinear equations,without disretizing the problem. Finally, we present a gradient algorithm, wherewe reformulate the problem as a �nite dimensional problem, whih an be solvedusing some standard optimization tehniques. As an appliation we solve a forestmanagement problem and a dike heightening problem. We numerially ompare thee�ieny of our methods to other approahes, suh as dynami programming, bak-



An Impulse Control Model 121ward algorithm and value funtion approah.This hapter is organized as follows. In Setion 5.2.1 we introdue the type of op-timal ontrol problem we onsider in this hapter. In Setion 5.3 we desribe thethree algorithm suitable for solving Impulse Control problems. In Setion 5.3.1 weintrodue some notation and show that the neessary onditions an be restated asa (multipoint) boundary value problem (BVP). Seond, we desribe the ontinua-tion algorithm in Setion 5.3.2. Third, we desribe the gradient algorithm in Setion5.3.3, whih is developed by Hou and Wong (2011). In Setion 5.4 we introduetwo appliations, one deals with forest management (Setion 5.4.1), and one dealswith dike heightening (Setion 5.4.2). The numerial results for both appliationsare presented in Setion 5.5. We ompare our found results with the results foundin the literature. Finally, in Setion 5.6 we onlude and give reommendations forfuture researh.
5.2 An Impulse Control ModelIn this setion we introdue a general Impulse Control model and provide neessaryoptimality onditions.5.2.1 The ModelLet us denote x as the state variable, u as an ordinary ontrol variable and vi asthe impulse ontrol variable, where x and u are pieewise ontinuous funtions oftime1. We denote r as the disount rate leading to the disount fator e−rt at time
t. The terminal time or horizon date of the system or proess is denoted by T > 0,and x(T+) stands for the state value immediately after a possible jump at time T .The pro�t of the system between jumps is given by F (x, u, t), whereas G(x, v, t) isthe pro�t funtion assoiated with a jump, and S(x(T+)) is the salvage value, i.e.the total osts or pro�t assoiated with the system after time T . Finally, f(x, u, t)desribes the ontinuous hange of the state variable over time between the jumppoints and g(x, v, t) is a funtion that represents the instantaneous (�nite) hange ofthe state variable when there is an impulse or jump.1Note that the neessary optimality onditions presented in Theorem 5.2.1 also hold for measur-able ontrols. Appliations typially have pieewise ontinuous funtions.



122 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSThe above results in the following optimal ontrol problem
max

u(·),N,τi,vi

{
∫ T

0

e−rt F (x(t), u(t), t) dt

}

+

N
∑

i=1

e−rτi G(x(τ−i ), vi, τi) + e−rT S(x(T+)),

(5.1a)s.t. ẋ(t) = f(x(t), u(t), t), for t ∈ [0, T ] \ {τ1, . . . , τN}, (5.1b)
x(τ+i )− x(τ−i ) = g(x(τ−i ), v

i, τi), for i ∈ {1, . . . , N}, (5.1)
x(0−) = x0, u(t) ∈ U , vi ∈ V, i ∈ {1, . . . , N}. (5.1d)For N ∈ N we assume the jump times to be sorted as
τi ∈ [0, T ] with 0 ≤ τ1 < . . . < τN ≤ T, (5.1e)

x(τ+i ) = lim
t↓τi

x(t) and x(τ−i ) = lim
t↑τi

x(t), for i = 1, . . . , N,and
x0 ∈ R

n.We assume that the domains U ⊂ R
m and V ⊂ R

l are bounded onvex sets. Furtherwe impose that F , f , g and G are ontinuously di�erentiable in x on R
n and vi on

V, S(x) is ontinuously di�erentiable in x on R
n, and that g and G are ontinuousin τ . Finally, when there is no jump, i.e. v = 0, we assume that

g(x, 0, t) = 0,for all x and t.5.2.2 Neessary Optimality ConditionsWe apply the Impulse Control Maximum Priniple in urrent value formulation de-rived in Chahim et al. (2012b) to (5.1).2 The resulting neessary optimality ondi-tions are presented in Theorem 5.2.1.Before we state Theorem 5.2.1, let us de�ne the Hamiltonian H and the ImpulseHamiltonian IH as
H(x, u, λ, t) := F (x, u, t) + λf(x, u, t), (5.2a)
IH(x, v, λ, t) := G(x, v, t) + λg(x, v, t), (5.2b)2Other referenes deriving the neessary optimality onditions for the Impulse Control problemsare Blaquière (1977a; 1977b; 1979; 1985), Seierstad (1981) and Seierstad and Sydsæter (1987).



An Impulse Control Model 123and de�ne the following abbreviations
H[s] := H(x(s), u(s), λ(s), s), (5.2)
IH[s, v] := IH(x(s−), v, λ(s+), s), (5.2d)
G[s, v] := G(x(s−), v, s), (5.2e)
g[s, v] := g(x(s−), v, s). (5.2f)Theorem 5.2.1 (Impulse ontrol maximum priniple).Let for N ∈ N with N > 0 (x∗(·), u∗(·), N, τ ∗1 , . . . , τ

∗
N , v

1∗, . . . , vN∗) be an optimal so-lution of (5.1). Then there exists a (pieewise absolutely ontinuous) adjoint variable
λ(·) suh that the following onditions hold:

u∗(t) ∈ argmax
u

H(x∗(t), u(t), λ(t), t), t ∈ [0, T ], (5.3a)
λ̇(t) = rλ(t)−

∂

∂x
H(x∗(t), u∗(t), λ(t), t), t ∈ [0, T ] \ {τ ∗1 , . . . , τ

∗
N}. (5.3b)For every t = τ ∗i , (i = 1, . . . N), we have

∂

∂v
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i )(v − vi∗) ≤ 0, v ∈ V, (5.3)

λ(τ ∗+i )− λ(τ ∗−i ) = −
∂

∂x
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i ), (5.3d)

H[τ ∗+i ]−H[τ ∗−i ] + rG[τ ∗i , v
i∗]−

∂

∂τ
IH[τ ∗i , v

i∗]















> 0 τ ∗i = 0

= 0 τ ∗i ∈ (0, T )

< 0 τ ∗i = T.

(5.3e)For t ∈ [0, T ] \ {τ ∗1 , . . . , τ
∗
N} it holds that

∂

∂v
IH(x∗(t), 0, λ(t), t)v ≤ 0, v ∈ V. (5.3f)The transversality ondition is

λ(T+) =
∂

∂x
S(x∗(T+)). (5.3g)Proof: See Blaquière (1977a; 1985).To simplify the presentation and to onentrate on the main onepts of the nu-merial algorithm, besides the earlier assumptions, we further make the followingassumptions.Assumption 5.2.1. For every time horizon T ≥ 0 there exists a unique optimal solu-tion of (5.1), with a �nite number of jumps (whih in general depends on T ).This assumption is needed for the boundary value problem approah and the ontin-uation algorithm. If this assumption does not hold, both algorithms will not generatea solution sine the number of jumps is not �nite. This assumption is not requiredfor the gradient algorithm, sine the number of jumps is �xed.



124 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSAssumption 5.2.2. Let for T > 0 the jump times be (τi)Ni=1 with 0 < τ1 < . . . < τN <

T , and x̄(T ) := (x(τ−1 ), x(τ+1 ), v1, . . . , x(τ
−
N ), x(τ

+
N ), vN) be the vetor of left and rightlimits of the states together with the optimal impulse ontrol values for the giventime horizon T . Then in a neighborhood of T the solution vetor x̄(T ) is ontinuous.We need this assumption again for both the boundary value problem approah andthe ontinuation algorithm. For both algorithms T is a ontinuation variable. Duringthe ontinuation proess T is inreased and the onditions for possible jumps aremonitored.Assumption 5.2.3. The model does not inlude a ontinuous ontrol.For simpliity we state this assumption. Then the boundary value problem approahis still a suitable method to solve the problem. The gradient method and the on-tinuation algorithm depend on whether the system is expliitly solvable or not.Assumption 5.2.4. Condition (5.3) together with Assumption 5.2.3 implies

∂

∂v
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i ) = 0, (5.4)and with ∂2

∂v2
IH(x∗(τ ∗−i ), vi∗, λ(τ ∗+i ), τ ∗i ) < 0 this yields

vi∗ = v(x∗(τ ∗−i ), λ(τ ∗+i ), τ ∗i ). (5.5)In general ondition (5.3) does not imply that the optimal impulse ontrol valuean be found as the arg max of the Impulse Hamiltonian. For simpliity we restritourself to suh funtion in this hapter.5.3 Numerial AlgorithmsIn this setion we desribe three di�erent algorithms to solve Impulse Control prob-lems. We state a (multipoint) boundary value problem for Impulse Control problemsin Setion 5.3.1 whih is (as far as we know) new in the literature, desribe the gra-dient method approah developed by Hou and Wong (2011) in Setion 5.3.3, and�nally we desribe a seond new approah that we all the ontinuation algorithm inSetion 5.3.2.5.3.1 (Multipoint) Boundary Value ApproahIn this setion we desribe a (multipoint) boundary value problem (BVP), that isuseful to solve Impulse Control problems. The idea behind the boundary value ap-proah is that between two jumps the system of di�erential equations (anonial sys-tem) ombined with the boundary onditions (initial and �nal onditions) is solved.After eah found jump the (multipoint) BVP is updated to �nd the next jump.



Numerial Algorithms 125To formulate the (multipoint) BVP we introdue the following notation for the anon-ial system dynamis:
ẋ(t) = h1(x(t), λ(t), t), (5.6a)
λ̇(t) = h2(x(t), λ(t), t). (5.6b)For the onditions at a jumping time τ we de�ne:
jx(x(τ+), x(τ−), λ(τ+), τ) := x(τ+)− x(τ−)− g[τ, x(τ+)− x(τ−)], (5.6)
jλ(x(τ−), λ(τ+), λ(τ−), τ) := λ(τ+)− λ(τ−) +

∂

∂x
IH[τ, x(τ+)− x(τ−)], (5.6d)

jτ (x(τ−), x(τ+), λ(τ+), λ(τ−), τ) := H[τ+]−H[τ−]+

rG[τ, v]−
∂

∂τ
IH[τ, x(τ+)− x(τ−)].

(5.6e)Now let (x∗(·), u∗(·), N, τ ∗1 , . . . , τ
∗
N , v

1∗, . . . , vN∗) be the optimal solution of (5.1) with
0 < τ ∗1 < . . . < τ ∗N < T . Then the neessary onditions yield the following (multi-point) BVP:

ẋi(t) = h1(xi(t), λi(t), t), t ∈ [τi−1, τi], i = 1, . . . , N + 1, (5.7a)
λ̇i(t) = h2(xi(t), λi(t), t), t ∈ [τi−1, τi], i = 1, . . . , N + 1, (5.7b)
jx(xi(τ

+
i ), xi(τ

−
i ), λi(τ

+
i ), τi) = 0, i = 1, . . . , N, (5.7)

jλ(xi(τ
−
i ), λi(τ

+
i ), λi(τ

−
i ), τi) = 0, i = 1, . . . , N, (5.7d)

jτi(xi(τ
−
i ), xi(τ

+
i ), λi(τ

+
i ), λi(τ

−
i ), τi) = 0, i = 1, . . . , N, (5.7e)

S(xN+1(T ), λN+1(T )) = 0, (5.7f)
x1(0)− x0 = 0, (5.7g)where (5.7f) denotes the transversality ondition (5.3g), τ0 = 0 and τN+1 = T .After de�ning t(s) := τi − (i− s)∆τi, with ∆τi := τi − τi−1, we rewrite (5.7) into
ẋi(s) = ∆τih1(xi(s), λi(s), t(s)), s ∈ [i− 1, i], i = 1, . . . , N + 1, (5.8a)
λ̇i(s) = ∆τih2(xi(s), λi(s), t(s)), s ∈ [i− 1, i], i = 1, . . . , N + 1, (5.8b)
jx(xi(i

+), xi(i
−), λi(i

+), τi) = 0, i = 1, . . . , N, (5.8)
jλ(xi(i

−), λi(i
+), λi(i

−), τi) = 0, i = 1, . . . , N, (5.8d)
ji(xi(i

−), xi(i
+), λi(i

+), λi(i
−), τi) = 0, i = 1, . . . , N, (5.8e)

S(xN+1(N + 1), λN+1(N + 1)) = 0, (5.8f)
x1(0)− x0 = 0. (5.8g)



126 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSThe jump times τi, i = 1 . . . , N , appear as unknown variables.To handle the ase τN = T we introdue the (unknown) variables
xT := xN+1(T

+),

lT := λN+1(T
+),together with the additional boundary onditions

jx(xT, xN+1(N + 1), lT, T ) = 0, (5.9a)
jλ(xN+1(N + 1), lT, λN+1(N + 1), T ) = 0, (5.9b)and replae (5.8f) by
S(xT, lT) = 0. (5.9)The ase τ1 = 0 an be treated in an analogous way. We therefore set
x0 := x1(0

+),

l0 := λ1(0
+),together with the additional boundary onditions

jx(x0, x0, l0, 0) = 0, (5.10a)
jλ(x0, l0, λ1(0), 0) = 0, (5.10b)and replae (5.8g) by
x1(0)− x0 = 0. (5.10)During the ontinuation proess it may be of interest to determine the exat value ofend time T where the solution jumps at the end time and additionally the ondition(5.8e) is satis�ed. In general this haraterizes the rossing from a jump at theboundary to an interior jump. For that ase the time horizon T is onsidered as afree variable and the ondition
jN+1(xN+1(N + 1), xT, λN+1(N + 1), lT, T ) = 0, (5.11)is appended to (5.9).Initializing the BVPTo �nd the solution of a spei� problem of type (5.1) we an apply a ontinua-tion strategy with respet to the time horizon T . Therefore, as a �rst step we haveto determine an initial (optimal) solution.



Numerial Algorithms 127Due to Assumption 5.2.1, the initial ondition together with the transversality ondi-tion yield the neessary equations for T = 0. This solution an be used as a startingpoint for paths, whih for a �small� time horizon do not exhibit a jumping point.5.3.2 Continuation AlgorithmLet us onsider the initial value problem (IVP) (5.8a) and (5.8b) on the time interval
[i− 1, i] with

ẏ(s) = ∆τih1(y(s), µ(s), t(s)), s ∈ [i− 1, i], (5.12a)
µ̇(s) = ∆τih2(y(s), µ(s), t(s)), s ∈ [i− 1, i]. (5.12b)With initial onditions
y(i− 1) = x(τi), µ(i− 1) = λ(τi), (5.12)the solution an formally be written as
y(i)− y(i− 1) = ∆τi

∫ i

i−1

h1(y(s), µ(s), t(s)) ds,

µ(i)− µ(i− 1) = ∆τi

∫ i

i−1

h2(y(s), µ(s), t(s)) ds,or even more general as an impliit equation
F (y(i− 1), µ(i− 1), y(i), µ(i), τi−1, τi) = 0.To simplify notation, we introdue the following notation:
y2i :=

(

x(τ−i )

λ(τ−i )

)

y2i+1 :=

(

x(τ+i )

λ(τ+i )

)

, i = 0, 1, . . . , N.Then the system (5.8) an be stated as
Ω0(y0, y1, τ0) = 0 ∈ R

3n, (5.13a)
ΩN+1(y2N , y2N+1, τN+1) = 0 ∈ R

3n, (5.13b)
Ωi = Υ(y2i, y2i+1, τi) = 0 ∈ R

2n+1, i = 1, . . . , N, (5.13)
Γi = F (y2i+1, y2(i+1), τi, τi+1) = 0 ∈ R

2n, i = 0, 1, . . . , N, (5.13d)where (5.13a) denotes the initial ondition, (5.13b) the transversality ondition,(5.13) the onneting ondition for interior jumping points, and (5.13d) the so-lution of the IVP. Thus in total we have 8n+N(4n+1) equations ((5.13a) generates
3n equations, (5.13b) also generates 3n equations, (5.13) generates N(2n+1) equa-tions, and �nally (5.13d) generates (N + 1)2n equations) and the same number of



128 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSunknowns (y0, . . . , y2(N+1)+1, τ1, . . . , τN ) (y0, . . . , y2(N+1)+1 are 2n(2(N + 1) + 2) vari-ables and τ1, . . . , τN are N variables, gives a total of 8n+N(4n+1) variables). Then
Ω = [Ω0 Ω1 . . .ΩN ]

′ ∈ R
8n+N(2n+1), (5.14a)

Γ = [Γ0 Γ1 . . .ΓN+1]
′ ∈ R

2nN . (5.14b)If the IVP (5.12) an be solved expliitly, the formulation (5.14) has the advantageof reduing the in�nite dimensional problem to a �nite dimensional system of, ingeneral, nonlinear equations, without disretizing the problem.5.3.3 Gradient AlgorithmIf the dynamis (5.1b) and the integral part of the objetive funtion (5.1a) are simpleenough to solve them expliitly, then the problem an be restated (without numerialdisretization) as a �nite dimensional problem. This an then be solved by some stan-dard optimization algorithm, e.g. the numerial optimizer fminon under MATLAB.Problem (5.1) an be written as
max
N,τi,vi

N
∑

i=0

Γ(x(τ+i ), x(τ−i+1), ti, ti+1)+

N
∑

i=1

e−rτi G(x(τ−i ), vi, τi) + e−rT S(x(T+)), i = 0, . . . , N,

(5.15a)s.t. x(t−i+1) = Φ(x(t+i ), ti, ti+1), for i = 0, . . . , N, (5.15b)
x(τ+i )− x(τ−i ) = g(x(τ−i ), v

i, τi), for i = 1, . . . , N, (5.15)
x(0−) = x0 ∈ R

n, (5.15d)with
τk = tk, k ∈ {0, 1, . . . , N,N + 1}, tN+1 = T, (5.15e)
Γ(x(t+i ), x(t

−
i+1), ti, ti+1) =

∫ ti+1

ti

e−rt F (x(t), t) dt, (5.15f)
Φ(x(t+i ), ti, ti+1) = x(t+i ) +

∫ ti+1

ti

f(x(t), t) dt. (5.15g)Setting
y = (x(t−0 ), x(t

+
0 ), . . . , x(T

−), x(T+), v1, . . . , vN , τ1, . . . , τN)
′, (5.16)problem (5.15) beomes a �nite dimensional maximization problem. To keep thenotation simple, in a �rst step we subsequently assume that the jumps only our



Numerial Algorithms 129within the interior of the interval [t0, T ]. Therefore τk = tk, k = 1, . . . , N , and
y ∈ R

4N+4 (i.e. y onsists of N +2 left and N +2 right limits, N jumps, and N jumptimes). In that ase the doubling (left and right limit) of the initial and end state issuper�uous but allows an immediate generalization in ase that a jump also oursat the beginning or the end.Next we derive the neessary optimality onditions, whih, of ourse, reprodue theneessary optimality onditions from the Impulse Control Maximum Priniple. Firstwe start with the derivatives (gradients) of the equality onstraints (5.15b)-(5.15d).In the new oordinates yi these onstraints beome
c1 = y1 − x0 = 0,

c2+k = y2k+1 − y2k − Φ(y2k, y2(N+2)+N+k, y2(N+2)+N+k+1) = 0, k = 0, . . . , N,

c2+N+1+k = y2(k+1) − y2k+1 = 0, k = 0, N + 1,

c2+N+1+k = y2(k+1) − y2k+1 − g(y2k+1, y2(N+2)+k, y2(N+2)+N+k) = 0, k = 1, . . . , N.Therefore the derivatives are alulated as
∂c1
∂y1

= 1,

∂c2+k

∂y2k+1

= 1,

∂c2+k

∂y2k
= −1− ∂(1)Φ,

∂c2+k

∂y2(N+2)+N+k

= −∂(2)Φ,

∂c2+k

∂y2(N+2)+N+k+1

= −∂(3)Φ,

∂c2+N+1+k

∂y2(k+1)

= 1, k = 0, . . . , N + 1,

∂c2+N+1+k

∂y2k+1

= −1, k = 0, N + 1,

∂c2+N+1+k

∂y2k+1

= −1 − ∂(1)g, k = 1, . . . , N,

∂c2+N+1+k

∂y2(N+2)+k

= −∂(2)g, k = 1, . . . , N,

∂c2+N+1+k

∂y2(N+2)+N+k

= −∂(3)g, k = 1, . . . , N,



130 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSwhere ∂(i) denotes the partial derivative of a funtion with respet to its i-th argu-ment. Rewriting the objetive funtion (5.15a) in the oordinates y we �nd
V (y) = Γ(y1, y2, y2(N+2)+N+1, y2(N+2)+N+2)

+

N
∑

i=1

Γ(x(t+i ), x(t
−
i+1), ti, ti+1)

+
N
∑

i=1

e−rτi G(x(τ−i ), vi, τi) + e−rT S(x(T+)),and the derivatives are given as
∂V (y)

∂y1
= 1.For a thorough disussion and motivation we refer to Hou and Wong (2011).In order to �nd the optimal solution using the gradient algorithm we need someinformation about the struture of the problem, i.e. have some knowledge about theoptimal number of jumps. Neuman and Costanza (1990) use the value funtion ap-proah and assume that for eah initial state, the value funtion V is well behaved,in the sense that there is an index k suh that Vk (where Vk denotes the value fun-tion having k jumps) is greater than other Vi, i.e. Vis are nondereasing for i ≤ kand monotonially dereasing for i ≥ k. The main reason for this assumption is thatthis guarantees that only a �nite number of steps is neessary to ahieve the optimum.To overome this problem we use the solution provided by the ontinuation algo-rithm to initialize the gradient method approah. From numerial experiments weknow that the ontinuation algorithm has provided the same (optimal) solution forimpulse ontrol problems solved using the bakward algorithm, dynami program-ming, or the value funtion approah. We have no proof that the algorithm onvergesor �nds the optimal solution for all Impulse Control problems.5.4 Two Appliations5.4.1 A Forest Management ModelTo exemplify the numerial tehniques we use a model desribed in Neuman andCostanza (1990) where the optimal solution for forest management is derived usingimpulse ontrol. It onsists, at time t, of one state w(t) ∈ R+ denoting the size of



Two Appliations 131the forest and one impulse ontrol z ∈ R+ denoting the size of the ut (of the forest).The dynamis of the forest is desribed by a logisti term g(y(t)). Forest growth isthen presented by
ẇ(t) = g(w(t)) := w(t)(a− bw(t)), t ≥ 0,with a and b positive onstants. At time zero the size of the forest is equal to someinitial value, i.e.
w(0) = x ≥ 0.When management is imposed on forest evolution, the forest is ut at times τi ∈ R+

(i = 1, . . .N) with N the number of uts suh that the size of the forest hanges by:
w(τ+i )− w(τ−i ) = zi, for i ∈ {1, . . . , N}.The total bene�t generated by the dynami system is given by
q(x) +

∫ T

0

f(w(s), s)e−rtdt+
N
∑

i=1

k(w(τi), τi, z
i)e−rτi + p(w(T+)e−rT ,where q(x) is the initial ost funtion, f(w, t) is the pro�t funtion of the system perunit time, and k(w, τi, z

i) is the ost of the impulse zi applied to the state w(τi) attime τi.The impulse ost funtion is given by
k(w, τ, z) = D +K(w, z) = D − g0z + g1z

2 for z > 0,where D < 0 an be onsidered as a �xed ost for utting the forest and K(w, z)being the variable pro�t generated by utting the forest, g0 and g1 are some positiveonstants. If z = 0 we assume that k(w, τ, 0) = 0. The initial ost funtion is givenby
q(x) = −q0(x− x0),where q0 is a positive onstant and x0 is some bound imposed on the states, due toeither eologial or pratial onstraints. The pro�t of the system is given by
f(w, t) = f0,with f0 some positive onstant. Finally, the salvage value is de�ned as
p(w(T+)) = g0(w(T

+)− x0)− g1(w(T
+)− x0)

2.



132 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSSumming up, the optimal ontrol problem an be written as
max
N,τ,z

{

−q0(x− x0) +

∫ T

0

e−rt f0dt

+
N
∑

i=1

e−rτi(D − g0z
i) + e−rT (g0(w(T

+)− x0)− g1(w(T
+)− x0)

2)

}

,(5.17a)s.t. ẇ(t) = w(t)(a− bw(t)), for t ∈ [0, T ] \ {τ1, . . . , τN}, (5.17b)
w(τ+i )− w(τ−i ) = zi, for i ∈ {1, . . . , N}, (5.17)
w(0−) = x ≥ 0, (5.17d)
w(t) ∈ R+, zi ∈ (−∞, 0], 0 ≤ τ1 < τ2 < . . . < τN ≤ T, (5.17e)where r denotes the disount rate. For the analysis of this model the Impulse ControlMaximum Priniple is used, where the details are presented in Appendix 5A.1.5.4.2 Dike Heightening ProblemThis setion desribes a problem taken from Chahim et al. (2012a) where the optimaltiming of the heightening of a dike is studied. The ost-bene�t-eonomi deisionproblem ontains two types of ost, namely investment ost and ost due to damage(aused by failure of protetion by the dikes). It onsists, at time t, of one state

H(t) ∈ R+ denoting the height of the dike relative to the initial situation, i.e. H(0) =

0 (m) and one impulse ontrol variable vi denoting the i-th dike heightening of thedike. It is assumed that between two heightenings the dike height does not hange,i.e. the dynamis of the dike are presented by
Ḣ(t) = 0.The dike inreases at times τi ∈ R+ (i = 1, . . . N), with N the number of heighteningssuh that the height of the dike is inreased by
H(τ+i )−H(τ−i ) = vi, for i ∈ {1, . . . , N}.The objetive onsists of two parts. The �rst part is the total (disounted) expeteddamage ost, whih is given by
∫ T

0

S(t)e−rtdt+
S(T )e−rT

r
,where S(t) denotes the expeted damage at time t, i.e. S(t) = P (t)V (t), where P (t)stands for the �ood probability and V (t) the damage of a �ood (million e) at time
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t. The �ood probability P (t) (1/year) in year t is de�ned as

P (t) = P0e
αηte−αH(t), (5.18)where α (1/m) stands for the parameter in the exponential distribution regardingthe �ood probability, η (m/year) is the parameter that indiates the inrease of thewater level per year, and P0 denotes the �ood probability at t = 0. The damage ofa �ood V (t) (million e) is given by

V (t) = V0e
γteζH(t), (5.19)in whih γ (per year) is the parameter for eonomi growth, and ζ (1/m) stands forthe damage inrease per m dike height. V0 (million e) denotes the loss by �oodingat time t = 0. The seond part of the objetive is the total (disounted) investmentost

N
∑

i=1

I(vi, H(τ−i ))e
−rτi ,where H(τ−) denotes the height of the dike (in m) just before the dike update attime τ (left-limit of H(t) at t = τ). The investment ost is given by

I(vi, H(τ−)) =

{

a0(H(τ−) + vi)2 + b0v
i + c0 for vi > 0

0 for vi = 0,for suitably hosen onstants a0, b0 and c0. Summing up, the Impulse Control modelan be written as
min
v,τ,N

{

∫ T

0

S(t)e−rtdt+
N
∑

i=1

I(vi, H(τ−i ))e
−rτi + e−rT S(T )

r

}

, (5.20a)s.t. Ḣ(t) = 0, for t ∈ [0, T ] \ {τ1, . . . , τN}, (5.20b)
H(τ+i )−H(τ−i ) = vi, for i ∈ {1, . . . , N}, (5.20)
H(0−) = 0, (5.20d)
H(t) ∈ R+, vi ∈ [0,∞), 0 ≤ τ1 < τ2, . . . < τN ≤ T. (5.20e)For the analysis of this model the impulse ontrol maximum priniple is used, wherethe details are arried out in Appendix 5A.2. For an extensive desription of themodel we refer to Chahim et al. (2012a).5.5 Numerial ResultsIn this setion we present results for two di�erent appliations using the ontinuationalgorithm and make a omparison with results derived using other approahes.



134 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONS5.5.1 The Forest ModelIn this setion we present the results for the optimal forest management problemdesribed in the previous setion. The parameter value presented in Table 5.1 aretaken from Neuman and Costanza (1990).
r a b D f0 g0 g1 q0 x0 y0 T0.05 0.2059 0.00344 -190 -15 24.5 0 40 5 34.4 8Table 5.1 � Parameter values for the optimal forest management model.

τ zi w(τ−) w(τ+)0 0 34.4 34.41 -24.2 37.35 13.088 0 32.43 32.43Disounted revenue -441.1751Table 5.2 � Result of value funtion approah found in Neuman and Costanza(1990).
τ zi w(τ−) w(τ+)0 0 34.400 34.4000.8216 -23.5757 36.8383 13.26268 0 33.290 33.290Disounted revenue -438.2973Table 5.3 � Result of the ontinuation algorithm.The results we derive using the ontinuation algorithm are presented in Table 5.3.The results of Table 5.3 are similar to the results found in Neuman and Costanza(1990) presented in Table 5.2. The ontinuation algorithm (same holds for BVPalgorithm) has two advantages over the value funtion approah desribed in Neumanand Costanza (1990). First, we do not have to disretize the time horizon. Thisresults in a better objetive value and hene a better solution to the original problem.In Figure 5.1 we plot the size of the forest as a funtion of time. Initially, the size ofthe forest inreases, then at a some time instane the forest is ut. Hene, the size ofthe forest jumps downward and then grows again. Seond, we did not have to solvethe problems for di�erent number of uts to �nd the optimal solution to our forestmanagement problem.
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Figure 5.1 � Dynamis of the forest over time.5.5.2 The Dike Heightening ModelIn this setion we present the optimal solution for a dike. The parameter valuespresented in Table 5.4 are taken from Eijgenraam et al. (2011).In Table 5.5 the solution for three di�erent approahes are presented. In the
a0 b0 c0 V0 r P00.0014 0.6258 16.6939 1564.9 0.04 1/2270
H0 α η γ ζ T0 0.33027 0.32 0.02 0.003774 300Table 5.4 � Parameter values for dike 10.seond olumn the results for the ontinuation algorithm are given, the third olumnpresents the results found by the bakward algorithm used in Setion 3.3, and inthe fourth olumn the results for dynami programming (DP) are given taken fromEijgenraam et al. (2011).Unlike dynami programming, both the ontinuation algorithm and the bakwardalgorithm do not need to disretize time. However, for the initialization of the bak-ward algorithm, we need the disretization of the state at the end of the time horizon(�nal stage), H(T ), and dynami programming requires the disretization of timeand of the heights (states) for eah stage. The ontinuation algorithm does not needany input on the state variable H(T ). Even though the solutions for the bakwardalgorithm and the ontinuation algorithm are similar, the ontinuation algorithm(same holds for the BVP approah) �nds the optimal solution without running the



136 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSalgorithm for di�erent end heights H(T ). In Chahim et al. (2012a) the authors dis-retize the state variable as is required for the dynami programming approah inEijgenraam et al. (2011) and take that H(T ) that minimizes (5.20a).Approaha BA DP CA(τi : ui) 272.8 : 52.18 274 : 51.84 272.7 :52.21217.0 : 56.43 219 : 55.68 217.0 :56.45160.1 : 56.90 162 : 57.60 160.0:56.90103.0 : 56.95 104 : 57.60 103.0 :56.9645.9 : 56.96 46 : 57.60 45.8 :56.96
H(T ) 279.41 280.32 279.48Total ost 40.03 40.04 40.03a Bakward algorithm (BA), dynami programming(DP), and ontinuation algorithm (CA)Table 5.5 � Results for dike 10.

5.6 Conlusions and ReommendationsWe desribe three di�erent numerial methods to solve Impulse Control problems.The �rst (new) algorithm onsiders an Impulse Control problem as a (multipoint)Boundary Value Problem and uses a ontinuation tehnique to solve it. The seond(new) approah is the ontinuation algorithm that requires the anonial system tobe solved expliitly. This redues the in�nite dimensional problem to a �nite dimen-sional system of, in general, nonlinear equations, without disretizing the problem.The third algorithm is a gradient algorithm, where the problem is reformulated asa �nite dimensional problem, whih an be solved using some standard optimizationtehniques. We use the ontinuation algorithm to solve the optimal forest manage-ment problem (same results found for the boundary value problem approah) andthe dike heightening problem. Although numerial results found by the ontinuationalgorithm (same holds for the boundary value problem approah) are at least as goodas the results found in the literature, a formal proof that the boundary value problemapproah and the ontinuation algorithm provide the optimal solution is subjet forfuture researh.



Appendix 5A 137Appendix 5A Neessary Optimality Conditions forthe Appliations5A.1 The Forest Management ModelLet us de�ne the urrent value Hamiltonian
H(w, λ, t) := f0 + λw(a− bw), (5.21)and the urrent value Impulse Hamiltonian
IH(z, λ, t) := D − g0z + g1z

2 + λz. (5.22)We obtain the adjoint equation
λ̇(t) = (r − a+ 2bw(t))λ(t), for t 6= τi, i = 1, . . . , N, (5.23)with the transversality ondition
λ(T ) = g0 − 2g1w(T

−). (5.24)The jump onditions are
−g0 + g1z

i + λ(τ+i ) = 0, for i = 1, . . . , N, (5.25)and
λ(τ+i )− λ(τ−i ) = 0, for i = 1, . . . , N, (5.26)from whih we an onlude that the ostate λ(t) is ontinuous at every jump point.The ondition for determining the optimal swithing time τi is
λ(τ+i )w(τ

+
i )(a− bw(τ+i ))− λ(τ−i )w(τ

−
i )(a− bw(τ−i ))

+ rD − rg0z
i + rg1z

i2







> 0 if τi = 0

= 0 if τi ∈ (0, T )

< 0 if τi = T.

(5.27)
5A.2 The Dike Heightening ModelLet us de�ne the urrent value Hamiltonian

H(t, H) = −S0e
βte−θH , (5.28)



138 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSand the urrent value Impulse Hamiltonian
IH(H, v, λ, t) = −I(v,H) + λv = −A0(H + v)2

−b0v − c0 + λv, (5.29)and obtain the adjoint equation
λ̇(t) = rλ(t)− θS0e

βte−θH(t), for t 6= τi, i = 1, . . . , N, (5.30)with the transversality ondition
λ(T ) =

θS0e
βT e−θH(T )

r
. (5.31)The jump onditions are

−Iu
(

ui, H
(

τ−i
))

+ λ
(

τ+i
)

= 0, for i = 1, . . . , N, (5.32)
λ(τ+i )− λ(τ−i ) == IH

(

ui, H(τ−i )
)

, for i = 1, . . . , N (5.33)The ondition for determining the optimal swithing time τi is
S0e

βτi
(

e−θH(τ−i ) − e−θH(τ+i )
)

− rI
(

ui, H(τ−i )
)







> 0 if τi = 0

= 0 if τi ∈ (0, T )

< 0 if τi = T.

(5.34)Appendix 5B Implementation in MATLABFor the subsequent setions we assume that a solution of (5.1) and time horizon Thas already been deteted given by (x∗(·), v∗i , τi), i = 1, . . . , N with 0 < τ1 < τ2 <

. . . < τN < T . In the �rst setion we onsider the ase where a solution of theanonial system between two adjaent jumps an be found analytially. Thereforethe problem an be redued to a �nite number of nonlinear equations, see Setion5.3.2 and 5.3.3.5B.1 Continuation AlgorithmFor the atual implementation in MATLAB a vetor x is introdued
x = (y(τ−1 ), y(τ

+
1 ), . . . , y(τ

−
N ), y(τ

+
N ), τ1, . . . , τN )

′ (5.35a)with
y(t) := (x∗(t), λ(t)). (5.35b)



Appendix 5B 139This vetor onsists of the left and right side limits of the states and ostates at thejumping times and the (interior) jumping times appended at the end. To ontinue thesolution along a parameter value, the initial states or time horizon MATCONT is used.Therefore the main MATCONT �le, where the system is de�ned, has to be provided.fun t i on out = iomodelDisrete4matont%% Standard ode f i l e f o r MATCONTout {1} = �in i t ;out {2} = �fun_eval ;out{10}= �inter ior jumpfun ;out{11}= �reahtimehorizon ;out{12}= �jumpingtimesvstimehorizon ;out{13}= �negativetime ;%% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un t i on out = fun_eval ( t , geny , x0 , par ,T)g l oba l GIVaid=GIV. aid ;arnum=GIV. arnum ;j i d=GIV. j i d ;y=geny (GIV.gDVC) ;tp=[GIV. IT geny (GIV.JTC) . ' T ℄ ;i n i t r e s = [ ℄ ;t r a n s r e s = [ ℄ ;onneres = [ ℄ ;dynres = [ ℄ ;i n t e r i o r j umpr e s = [ ℄ ;f o r i i =1:arnum+1yLR=y ( : , ( 2 ∗ i i −1):2∗ i i ) ;i f i i==1i n i t r e s=GIV. IC ( tp ( i i ) ,yLR , [ par ,T℄ , a id ( 1 ) , x0 ) ;e l s e i f i i==arnum+1t r an s r e s=GIV.TC( tp ( i i ) ,yLR , [ par ,T℄ , a id ( end ) ) ;endonneres =[ onneres ; . . .GIV . JC( tp ( i i ) ,yLR , [ par ,T℄ , j i d ( i i ) ) ℄ ;



140 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSi f arnum>1 && i i >=2 && i i<=arnumin t e r i o r j umpr e s=[ i n t e r i o r j umpr e s ; . . .GIV . IJC ( tp ( i i ) ,yLR , [ par ,T℄ , a id ( i i −1) , j i d ( i i ) ) ℄ ;endi f i i <=arnumyI=y ( : , 2 ∗ i i : ( 2∗ i i +1)) ;dynres=[ dynres ; . . .GIV .CS( tp ( i i : i i +1) , yI , [ par ,T℄ , a id ( i i ) ) ℄ ;endendout=[ i n i t r e s ; t r a n s r e s ; onneres ; dynres ; i n t e r i o r j umpr e s ℄ ;%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un t i on out=int e r i o r jumpfun ( t , geny , x0 , par ,T)g l oba l GIVaid=GIV. aid ;arnum=GIV. arnum ;j i d=GIV. j i d ;y=geny (GIV.gDVC) ;yLR=y ( : , ( 2 ∗ ( arnum+1)−1):2∗(arnum+1)) ;i f j i d ( end )out=GIV. IJC (T,yLR , [ par ,T℄ , a id ( end ) , j i d ( end ) ) ;e l s e out=1;end%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un t i on out=reaht imehor i zon ( t , geny , x0 , par ,T)g l oba l GIVout=GIV.TH−T;%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f un t i on out=jumpingt imesvst imehor izon ( t , geny , x0 , par ,T)g l oba l GIVtp=[geny (GIV.JTC ) ℄ ;i f isempty ( tp )out=1;e l s e



Appendix 5B 141out=min(T−tp ) ;endfun t i on out=negat ivet ime ( t , geny , x0 , par ,T)g l oba l GIV%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−out=min ( [ geny (GIV.JTC) ;T ℄ ) ;AbbreviationsGIV=GlobalImpulseVariablegenDynVarCoordinates=gDVCIn i t i a lT ime=ITJumpTimeCoordinates=JTCTimeHorizon=THInter iorJumpCondit ion=IJCCanonialSystem=CSTransve r sa l i t yCond i t i on=TCThe funtion fun_eval �le de�nes the asribing equations. These equations are statedin model spei� funtions and the funtion names are de�ned in the global variableGIV. The �elds of the global variable GIV arearnum the number of ars y(t), t ∈ [τi, τi+1], i = 0, . . . , N between two adjaentjumping times.jumparg (jid) an integer vetor storing an identi�er for eah jump. The �rst andlast entry denotes if a jump at the initial or end time ours. If no jump oursit is set to zero, otherwise to some integer larger than zero.InitialTime (IT) stores the initial time t0.TimeHorizon (TH) stores the time horizon of the problem T .CanonialSystem (CS) funtion where the anonial system is desribed.InteriorJumpCondition (IJC) funtion for the interior jumping ondition (5.7e).TransversalityCondition (TC) funtion for the transversality ondition (5.7f).genDynVarCoordinates (gDVC) the matrix of oordinates for the left and rightside limits of the states and ostates of vetor x.



142 CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSECONTROL MODELS WITH APPLICATIONSJumpTimeCoordinates (JTC) the oordinates of vetor x storing the jumpingtimes.Further variables used in the listing aregeny variable denoting x of (5.35a).y matrix, where the olumn onsist of y(τ±i ), i = 1, . . . , N , as de�ned in (5.35b).yLR the left and right side limits y(τ±) at a spei� jumping time τ .yI the two olumn matrix onsisting of the right side limit y(τ+i ) and the left sidelimit of the next jumping time y(τ+i+1).tp a vetor onsisting of the initial time, jumping times and time horizon.x0 is a vetor of the initial states x(0).par is a vetor of the parameter values of the model.T is the atual time horizon, whih need not be equal to the time horizon of theproblem stored in GIV.TH.initres residual of the initial ondition.transres residual of the transversality ondition.onneres residual of the onnetion between two adjaent ars.dynres residual derived from the equations of the anonial system.interiorjumpres residual derived from the interior jumping onditions.The user funtions used within the MATCONT syntax areinteriorjumpfun returns the value of the interior jumping ondition at jumpingtimes. This value is monitored during the ontinuation proess. If it hangessign the neessary jumping ondition for an interior jump is satis�ed and aninterior jump may our.reahtimehorizon if the ontinuation is done with respet to the time horizon thisvalue is monitored to hek if the �nal time horizon is reahed.
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