l_‘._l
TILBURG 0‘5%?@ ¢ UNIVERSITY
lf:fl

Tilburg University

Impulse control maximum principle
Chahim, M.

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Chahim, M. (2013). Impulse control maximum principle: Theory and applications. CentER, Center for Economic
Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://research.tilburguniversity.edu/en/publications/9d7b88b8-5ac2-4191-8424-8e0c886771b6

MOHAMMED CHAHIM

Impulse Control Maximum Principle:
Theory and Applications



Aan mijn ouders
slaa Twaldayn



Impulse Control Maximum Principle:
Theory and Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan Tilburg
University op gezag van de rector magnificus,
prof. dr. Ph. Eijlander, in het openbaar te verdedigen
ten overstaan van een door het college voor promoties
aangewezen commissie in de aula van de Universiteit
op woensdag 27 februari 2013 om 14.15 uur door

MOHAMMED CHAHIM

geboren op 18 april 1985 te Fés, Marokko.



PROMOTORES: prof. dr. R. F. Hartl
prof. dr. ir. D. den Hertog
prof. dr. P. M. Kort

COMMISSIE: dr. J. C. Engwerda
prof. dr. J. M. Schumacher
prof. dr. A. J. J. Talman
prof. dr. G. Zaccour

Impulse Control Maximum Principle: Theory and Applications
ISBN 978 90 5668 344 3

Copyright (©) 2013 Mohammed Chahim

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written per-
mission from the author.



Preface

As the title reveals, the topic of this dissertation is the Impulse Control Maximum
Principle, which is part of optimal control theory. My first encounter with this topic
was in the course Dynamic Capital Investment taught by Peter Kort and Jacob Eng-
werda. This course made me very curious about how to cope with non-static behavior
in optimization models. This was one of the main reasons I decided to write a thesis
with the topic optimal control theory. Not surprisingly, under the supervision of Pe-
ter Kort, and with Jacob Engwerda as second reader. The first steps in my scientific
journey were made. This journey has almost come to an end. I would like to take
the opportunity to express my gratitude to the people who have accompanied me
and made it possible for me to reach this destination.

First, I would like to thank my promotores, Richard Hartl, Dick den Hertog and
Peter Kort, for all the help I received and their faith in me.

I met Richard at one of his many visits to Tilburg University. During my Research
Master I sent one of the first versions of my Research Master thesis to Richard. He
carefully made comments on it and later joined as a second reader. Richard was
always eager to discuss my research during our frequent encounters.

During the course orientation OR/MS I was amazed by a very enthusiastic professor,
whose (OR related) anecdotes I will never forget. I also enjoyed our conversations
about life (especially the purpose of life) and political discussions. Dick, thank you
for your guidance. Thank you, for being honest and teaching me to be very critical.

Besides this dissertation, Peter also supervised my Master and Research Master the-
sis. He was the first one to introduce me into the world of control theory. He was
always willing to share his wide spread network, and he made it possible for me to
visit the optimal control research group in Vienna (ORCOS) on several occasions.
He taught me that doing research requires good brain and good ideas, but also plain
hard work.



ii

Furthermore, I am grateful to Jacob Engwerda, Hans Schumacher, Dolf Talman and
George Zaccour for joining Richard, Dick, and Peter in my dissertation committee.
Thank you for taking the time to read my dissertation and for offering many sugges-
tions for improvement.

It was a pleasure to work with Ruud Brekelmans which resulted in a paper pre-
sented in Chapter 3. Special thanks goes to Dieter Grass, who I visited several times
in Vienna. These visits turned out to be very fruitful (as it resulted in two research
papers presented in Chapter 4 and 5). Thanks for inviting me at your home in
Purkersdorf Sanatorium and the pasta you made when we took a break from doing
research. It think my programming skills improved every time I talked with you,
whether this was in Vienna or via Skype. I would also like to thank the staff and
students of ORCOS at the Vienna University of Technology for their hospitality.

Under the guidance of Peter and Dick I wrote a research proposal that was awarded
a Mosaic grant from the Netherlands Organization for Scientific Research (NWO).
I would like to express my gratitude to the organization, since they made it possi-
ble to write this dissertation. This research was supported under project number:
017.005.047.

Besides doing research, I had the pleasure to cooperate with Carol, Elleke, Feico,
Gert, Hans B., Jacob, Jochem, Marieke, Marloes, Thijs, and Willem in various
courses at Tilburg University. Special mention go to Elleke, Marieke, and Jacob for
all the teaching related tips and feedback I received from them. This finally resulted
in receiving an “Excellent teaching award” in 2012 for the course “Statistics for HBO”.

I would like to thank CentER Graduate School and the department of Econometrics
and Operations Research for hosting a cheerful work environment. First, I would
like to thank Elleke, with whom I shared room K513. Thanks for tolerating all the
people that visited me during that time. For me it was very delightful to have you
as a roommate. Every time [ had a question, or got stuck you were there to listen. I
thank you and Vishwa for the many ETEX and MATLAB tips and for providing me
with your IXTEX dissertation framework.

Vishwa, thanks for the many discussions we had (about career, research and life), but
far most for being a good friend. Many thanks go to Salima for the many pleasant
conversations we had, for always making time when I entered your office and for lis-
tening to (and laughing at) my anecdotes. I also should mention John here, Salima’s
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roommate, as he many times took part in our discussions (although sometimes I felt
it was against his will).

Now, it would be the time to thank all (other) people at Tilburg University. Among
them are Anja, Barig, Bas, Bertrand, Christian, Edwin, Gerwald, Hans R., Henk,
Herbert, Jalal, Jarda, Kuno, Luc, Martin, Michele, Miguel, Mohammadi, Moazzam,
Ning, Ozer, Peter B., Ramon, Rene, Roy, Ruud, Takamasa, Tural. A special mention
goes to Thsan whose office I always visited whenever I needed a break. He made the
trip to Germany, to attend the STAM conference on optimization, very amusing. I am
also thankful to the departmental secretaries, Anja, Annemiek, Heidi, and Korine,
who were always there for me.

I thank my fellow board members from student association Menara for organizing
many discussions, workshops and study trips. I express my gratitude to Bauke, Bilal,
Tarik and Tom, with whom I organized most activities with, for being good friends.
Special thanks goes to Henri Geerts for all the activities we organized together, for
all the discussions about the Netherlands, our multicultural society and many other
subjects. Henry, thanks for becoming such a good friend.

I am indebted to the people of the PvdA (the Dutch Labour Party) in Helmond,
with whom I intensively worked with in the last seven years and always had interest
for my work in Tilburg. I want to thank all my friends and former classmates. Spe-
cial mention for Bram and Paul, with whom I spent a lot of time while working on
assignments and studying in the library. Thanks go to Mostapha and Mustafa for
being very close friends.

Finally, I would like to show my appreciation to the people closest to me. To my
brothers and sister, for creating such a competitive environment at home. This has
helped shape me as the person I am today. Thank you so much for all your encour-
agements. | am glad to find two of my brothers Morad and Anoir willing to be my
paranymphs and stand by my side during the defense of my dissertation. To my
parents, Omar and Yamna: I will eternally be grateful for everything you have done
for me. To you mama and baba I dedicate this book. Last, but certainly not least,
a final words of thanks and sincere gratitude to my wife Hoyem. She is always there
for me when I need her. Thank you for your unconditional love and endless support.

Mohammed Chahim
Helmond/Tilburg, December 2012
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CHAPTER 1

Introduction

1.1 Impulse Control

The Mathematical Optimization Society defines optimization or mathematical opti-
mization as follows: “In a mathematical optimization (or programming) problem, one
seeks to minimize or mazrimize a real function of real or integer variables, subject to
constraints on the variables. The term mathematical optimization refers to the study
of these problems: their mathematical properties, the development and implementa-
tion of algorithms to solve these problems, and the application of these algorithms
to real world problems”. Mathematical optimization has found wide applications in
many disciplines including economics, management, physics, and engineering. In this
thesis we focus on deterministic optimization problems, where contrary to stochastic
optimization the problem does not generate or use random variables.

For systems that evolve smoothly through time (i.e. dynamic systems), (continu-
ous) dynamic optimization is a frequently used tool. Optimal control theory is the
branch of mathematical optimization developed to find optimal control regimes for
(continuous) dynamical systems. Let z(¢) denote the state variable of the system at
time ¢ € [0, T], where T" > 0 stands for the time horizon of the problem or planning
period. Examples for z(¢) could be the amount of natural resource at time t, the
stock or inventory level at time ¢, or the capital stock at time ¢. In optimal con-
trol theory it is assumed that the system can be controlled using a so called control
variable. Let the (real) variable u(t) be a control variable of the system at time ¢.
For example, u(t) can be the amount of natural resource being used at time ¢, the
production rate at time ¢, or the (continuous) maintenance at time t. The dynamics
of the system is often represented by a state equation that specifies the rate of change
in the state variable as a function of the state variable itself, the control variable and

#(t) = fx(t), ut),t), x(0) = o, (1.1)
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where #(t) stands for the derivative of = with respect to t, i.e. dx(t)/dt, f is a given
function representing the change in the state variable, and xg is the initial value of the
state variable. When the initial value of the state and the optimal trajectory of the
control variable u(t) are known (control trajectory), we can determine the state tra-
jectory, i.e. the value of the state variable z(¢) during the planning period. We choose
the control variable such that the state and control trajectory maximize/minimize
the objective function

/0 " (). ult), )t + S((T).T). (1.2)

where F' is a function of z(t), u(t) and ¢, which stands for profits/costs and the
function S is the salvage value, which is a function of the final value of the state
at the end of the planing period, z(T"), and time 7. Most of the time the control
variable u(t) is constrained by a set 2, of possible outcomes of the control variable
u(t), i.e. u(t) € Q,. The optimal control problem is given by

max, [; F(z(t),u(t), t)dt + S(z(T),T),
subject to

i(t) = f(z(t),u(t),t), for tel0,T],
x(0) = xo, u(t) € Q.

(1.3)

Continuous dynamic optimization has its own limitation, however, namely that con-
tinuity is assumed, whereas in the real world shocks (i.e. abrupt changes) can occur
that fundamentally change the dynamic of the system at particular points in time.
For example, the entrance of a rival is a singular event that changes the ground
rules for a monopolist. It could also occur that decisions affect the system such that
the system does not change continuously but instantaneously. An example is a firm
that decides to invest in new (more efficient) machines. Since we try to build math-
ematical models such that they represent an actual or real life situation as much
as possible, theory is developed to analyze systems that allow these discontinuous
changes to occur in the system.

Impulse Control theory allows discontinuity in the states controlled by so called
impulse control variables v. At certain moments in time disruptive changes are al-
lowed and the value of the state variable changes. Let 7; (i = 1,..., N, where N is
a variable denoting the number of changes in the time interval [0,77]) represent the
times at which the state variable encounters this discontinuous change given by

2(7}") = a(r7) = g(z(7),v(n), 7), (1.4)
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where ¢ is a function of the state variable x at time 7;, the impulse control variable
v at time 7; and 7;, representing the (finite) change of the state variable at the jump
instances. For example, v(7) can represent the amount of natural resources that is
drilled out for use and N the number of times drilled, v(7) can denote the total
production that is added to the inventory and N the number of times production
is added to the inventory, or v(7) could stand for the replacement of (parts of) the
machine and N the number of times a (part of a) machine is replaced. Also, the
impulse control variable v(7) can be constrained by a set €2,. Usually, these impulse
changes are associated with costs/profits concerning the system at these jump time
instances. Let G(x(7;),v(7:), 7;) denote the costs/profits associated with each change
of the system caused by the impulse control variable at time 7;. Then the objective
(1.2) is changed into

/OTF( (0), dt+ZG 2(73),0(73),73) + S(2(T), T). (1.5)

Summing up, an Impulse Control problem can be presented as

[ max, ..y [ F(x(t),ult),t)dt+ SN Gla(n),v(n),n) + S(x(T),T),

subject to

S #(t) = f(z(t),u(t),t), z(0)=umzy, for t#m, i=1,...,N, (1.6)
() —x(7;) = glx(n, v(n), Z) for t=m7, i=1,...,N,

L u(t) €y, v(n) €, ie{l,...,N}

This thesis focuses on deterministic Impulse Control problems that are analyzed by
using the Impulse Control Maximum Principle. This implies that we do not consider
stochastic Impulse Control problems. This excludes the theory of real options (see
Dixit and Pindyck (1994)). Another alternative is the theory of (Hamilton-Jacobi-
Bellman) quasi-variational inequalities (see Bensoussan and Lions (1984)). Although
quasi-variational inequalities can also be applied to deterministic Impulse Control
problems, it is mainly related to a stochastic framework (quasi-variational inequali-
ties is quite comparable to the Hamilton-Jacobi-Bellman framework, i.e. as is stated
in Bensoussan et al. (2006), under the framework of impulse control, the Hamilton-
Jacobi-Bellman equation reduces to quasi-variational inequalities). In stochastic op-
timal control problems the state variables in the system are not known with certainty.
Moreover, in stochastic optimal control it might not even be possible to measure the
value of a state variable at a certain time. There is a lot of literature that deals with
these types of problems and the methodology differs a lot from the deterministic case.
Most of the literature that deals with stochastic optimal control problems use the



4 CHAPTER 1. INTRODUCTION

Hamilton-Jacobi-Bellman framework (see e.g. Sethi and Thompson (2006)) or (more
general) dynamic programming (see e.g. Bertsekas (2005)).

As Impulse Control, Multi-Stage optimal control (see e.g. Grass et al. (2008)) is
tailored to the sorts of situations that have fallen between the cracks with the tradi-
tional partition into static and dynamic optimization. In the last few years there has
been rapidly growing interest in Multi-Stage optimal control. As mentioned before,
like Impulse Control theory, this theory allows sudden discontinuous changes at dis-
crete points in time. These changes can affect the state variables, but also the values
of parameters, or even the equations describing the system itself. Unlike Impulse
Control, Multi-Stage optimal control does not allow jumps in the state variables. In
Impulse Control models found in the literature discontinuous changes in the states
are allowed. This is in contrast with Multi-Stage optimal control. There each regime
is defined by different dynamics and the main concern is to find the optimal switching
times between the regimes. Here, a regime is understood as the specification of a
system dynamics and an objective functional during a certain time interval. In this
thesis we focus on models that allow the state variables to jump at some time points.
Take, for example, dike maintenance, where the problem is to determine the optimal
dike heightening scheme for a certain time horizon. Here, the dike is the state vari-
able and its height is increased at certain time points. This model cannot be solved
using Multi-Stage optimal control, because we have jumps in the state variable.

1.2 Impulse Control Maximum Principle

In 1977 Blaquiére derives a Maximum Principle that provides necessary (and suffi-
cient) optimality conditions to solve deterministic Impulse Control problems, the so
called Impulse Control Maximum Principle see e.g. Blaquiére (1977a; 1977b; 1979;
1985). In 1981 Seierstad derives necessary optimality conditions that coincide with
those of Blaquiére, see Seierstad (1981) and Seierstad and Sydseeter (1987). Another
good source presenting the Impulse Control Maximum Principle is Sethi and Thomp-
son (2006, pp. 324-330).

In Blaquiére (1979) an example of an Impulse Control model is given that deals
with the optimal maintenance and life time of machines. Here the firm has to decide
when a certain machine has to be repaired (impulse control variable), and it has
to determine the rate of maintenance expenses (ordinary control variable), so that
the profit is maximized over the planning period. In Gaimon (1985; 1986) a firm
determines the optimal times of impulse acquisition of automation and the change
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for manual output. The objective is to minimize costs associated with the deviation
from a goal level of output. The purchase of automation is used to directly sub-
stitute for output resulting from manually operated equipment. Since automation
is acquired at discrete times, the author solves the model using the Impulse Con-
trol Maximum Principle. In Luhmer (1986) the theory is applied to an inventory
model and in Kort (1989) a dynamic model of the firm is designed in which capi-
tal stock jumps upward at discrete points in time that the firm invests. Rempala
(1990) describes three different kinds of Impulse Control problems where the num-
ber of jumps is not fixed, i.e. there are N impulse moments. He distinguishes between

(a) the impulse times are fixed and the size of the impulse is free,
(b) the size of the jump is fixed and the impulse moments are free,
(c) both the size of the jump and the impulse moments are free.

In Rempala (1990) it is shown that cases (b) and (c¢) can be reduced to case (a),
and finally gives a simple proof for the Impulse Control Maximum Principle in case

(a).

The theory of optimal control has its origin in physics and engineering where dis-
counting cash flows does not occur. For this reason, Blaquiére (1977a; 1977b; 1979;
1985) derived his Maximum Principle considering Impulse Control problems without
using current value Hamiltonians. Instead, he presents his Maximum Principle in the
present value Hamiltonian form. In Chapter 2 of this thesis we transform Blaquiére’s
present value analysis to a current value one and we include an overview of the lit-
erature that makes use of the Impulse Control Maximum Principle.

Besides approaches using the Impulse Control Maximum Principle, there exist many
other approaches in the literature to solve Impulse Control problems. We have seen
mixed integer nonlinear programming (see e.g. Brekelmans et al. (2012)), dynamic
programming (see e.g. Eijgenraam et al. (2011) and/or Erdlenbruch et al. (2011)),
value function approach (see e.g. Neuman and Costanza (1990)) and finally the gra-
dient method approach (see e.g. Hou and Wong (2011)) as an alternative for the
Impulse Control Maximum Principle. All approaches have advantages and disadvan-
tages. We will come back to this in Section 1.3.
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1.3 Approaches to Solve Impulse Control Problems

This thesis considers optimal control problems in which the state variable is allowed
to jump at some time instant. Both the size of the jump and the time instant are
taken as (additional) decision variables. Hence, we are dealing with problems as
described by case (3) in Rempala (1990). The Impulse Control Maximum Principle
provides necessary optimality conditions that can be used to find the optimal solution
to problems defined by (1.6). In ordinary optimal control also sufficiency conditions
are given that ensure that the candidate solution that is found using the necessary
optimality conditions is the optimal solution. Remarkably, for the Impulse Control
Maximum Principle we have not found any models in the literature that also fulfill
the sufficiency conditions derived by Blaquiére (more on this in Section 1.4).

As mentioned earlier, there are several ways to solve Impulse Control problems.
In this section we present eight different approaches and their main characteristics.
An overview of the approaches and their characteristics is presented in Table 1.1.

Forward algorithm (FA) Luhmer (1986) derives a forward algorithm that makes
use of the Impulse Control Maximum Principle. It starts at £ = 0 and uses the value
of the costates (i.e. dual variable, in economics this is known as the shadow price) to
initialize the algorithm. The forward algorithm has a drawback. Namely, the initial
value of the costates is the choice variable, i.e. we have to guess the initial values
for the costate variables. A wrong guess of the costate variables at the initial time
results in a solution that does not satisfy the transversality conditions for the costate
variables, which implies that the necessary optimality conditions are not satisfied.
The algorithm returns the solution for the given input, it does not need discretization
in time.

Backward algorithm (BA) Kort (1989) develops a backward algorithm that starts
at the end of the planning period, i.e. ¢t = T', and goes backwards in time. For the
backward algorithm we start with choosing values for the state variables at time T,
i.e. the state variable at time 7" is the choice variable. The resulting solution always
satisfies the necessary optimality conditions, but here the problem is that the algo-
rithm has to end up at the right value of the states at t = 0. In other words, with the
backward algorithm one can apply the right necessary conditions to the wrong prob-
lem. In Chapter 3 of this thesis we describe and apply the backward algorithm to a
real-life dike height optimization problem. As the forward algorithm, the backward
algorithm returns the solution for the given input, it does not need discretization in
time.
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(multipoint) Boundary value problem (BVP) In Chapter 5 of this thesis we de-
scribe the (multipoint) boundary value problem. For the (multipoint) boundary value
problem approach we do not need to specify inputs for the state or the costate (un-
like the forward and backward algorithm). The idea behind this approach is that the
canonical system (the set of differential equations) is solved such that all (boundary)
conditions on the state(s) and costate(s) (e.g. initial conditions and transversality
conditions) are satisfied. To find the solution of the problem we can apply a continu-
ation strategy with respect to the time horizon T, i.e. T" is our continuation variable.
To initialize the algorithm, the problem is solved for 7" = 0. Given a solution for
T =0, T is increased (continued) during the continuation process whereas the con-
ditions for possible jumps are monitored. If the conditions for a jump are satisfied,
the boundary value problem is adapted to this situation. With this new solution the
continuation is pursued. No discretization of time or state variables is needed.

Continuation algorithm (CA) The continuation algorithm is only applicable if
the canonical system of the Impulse Control problem can be solved explicitly in [0, 7.
The problem can be restated as a discrete dynamical system (without numerical dis-
cretization). As for the boundary value problem approach, to find the solution of
the problem we can apply a continuation strategy with respect to the time horizon
T, i.e. T is our continuation variable. To initialize the algorithm, the problem is
solved for T'= 0. Given a solution for "= 0, T is increased (continued) during the
continuation process whereas the conditions for possible jumps are monitored. No
discretization of time or state variables is needed.

Gradient algorithm (GA) If the dynamics (i.e. the canonical system) of an Im-
pulse Control problem can be solved explicitly, the problem can be restated (without
numerical discretization) as a finite dimensional problem/ discrete dynamical system.
In this method the necessary optimality conditions are derived, which, of course, re-
produce the necessary optimality conditions of the Impulse Control Maximum Prin-
ciple. First, the derivatives (gradients) of the equality constraints and the derivatives
of the objective are determined. This gives a set of equations and equal number of
variables. For this method the number of jumps needs to be fixed beforehand in
order to solve the problem.

Value function approach (VFA) In Neuman and Costanza (1990) the value func-
tion method is used to solve an Impulse Control problem. For the value function
approach the number of jumps is fixed beforehand in order to solve the problem. For
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a fixed number of jumps the value function is defined and the optimum of this value
function is derived. This problem is solved for different numbers of fixed jumps until
the optimal number of jumps is found. Since we do not know the optimal number
of jumps beforehand, this approach is only useful if the optimal number of jumps is
small.

Dynamic programming (DP) Eijgenraam et al. (2011) solves the same prob-
lem as in Chapter 3 of this thesis using dynamic programming. Unlike the backward
and forward algorithm, dynamic programming requires discretization in time and the
states for each stage.

Mixed integer nonlinear programming (MINLP) The mixed integer non-linear
programming approach seems very fruitful for high dimensional problems, see e.g.
Brekelmans et al. (2012), where the nonhomogeneous dike optimization problem is
analyzed. On the other hand, mixed integer nonlinear programming requires dis-
cretization of the planning period. For these discrete time points Brekelmans et al.
(2012) introduce a {0, 1}-variable, which takes the value 1 if a dike heightening oc-
curs and the value 0 otherwise. The size of the dike heightening is then given by a
continuous variable. Finally, this {0, 1}-variable is also used to add fixed cost.

In this thesis only in Chapter 4 a higher dimensional Impulse Control problem occurs,
i.e. an Impulse Control problem with more than one state variable. We there study
the investment behavior of a firm that has two state variables. The first state vari-
able is the capital stock, and the second state variable is the state of technology. We
solve the model using the boundary value problem approach. Because the canonical
system of the problem described in Chapter 4 is explicitly solvable, also the continu-
ation algorithm could be used. In the literature we find another higher dimensional
Impulse Control problem in Brekelmans et al. (2012) where a dike heightening prob-
lem for nonhomogenous dikes is studied. The problem is solved using a mixed integer
nonlinear programming approach. Comparing (i.e. with respect to computation time
etc.) the different approaches for higher dimensional Impulse Control problems re-
mains a topic for future research. However, some first ideas can be given. For both
the forward algorithm and the backward algorithm the solution is derived using a
choice variable. For a higher dimensional choice variable it is much harder to find
the optimal value. For dynamic programming it is known that it works really well
for problems with low dimensions, since the numerical discretization of the problem
increases exponentially when the problems increases in dimension. Finally, for both
the value function approach and the gradient algorithm the number of first order
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Approach®
GA | VFA | DP | MINLP

FA | BA | BVP

Discretize timeP

Discretize state

Discretize costate

Fixed number of jumps
Higher dimensional problems

4 OO KOO
4 OO0 KO
O®WOOOO0
Q
S NeNeNeNellS!
M5 X OO0
O®WXOOO
©C OO0 KM
O % OO MM

Explicit solution
canonical system

 Forward algorithm (FA), backward algorithm (BA), (multipoint) boundary value
problem (BVP), continuation algorithm (CA), gradient algorithm (GA), value
function approach (VFA), dynamic programming (DP), and mixed integer non-
linear programming (MINLP).

b We mark each approach by O, X, or R, meaning does not include this character-
istic, includes this characteristic or more research is needed, respectively.

¢ BA only needs discretization of the state at the end of the time horizon (final
stage), unlike dynamic programming where discretization is needed for time and
for the heights (states) for each stage. Similar to the FA, the BA only needs
discretization for the costate at the start of the time horizon (first stage).

Table 1.1 — Characteristics of different approaches

conditions increases. The problem for both still is how to determine the optimal
number of jumps, since this needs to be fixed beforehand in order to find a solution.

1.4 Contribution and Outline

The contribution of this thesis is threefold. First, it extends the existing theory on
Impulse Control by deriving the necessary optimality conditions in current value for-
mulation and providing a transformation such that the Impulse Control Maximum
Principle can be applied to problems having a fixed cost. Moreover, this thesis points
out that meaningful problems found in the literature do not satisfy the sufficiency
conditions. Second, in this thesis the Impulse Control Maximum Principle is applied
to dike height optimization and product innovation. Third, it describes several algo-
rithms that can be used to solve Impulse Control problems. In this subsection, we
describe these contributions in more detail.
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Theory

In this thesis we use Blaquiére’s Impulse Control Maximum Principle to present the
necessary optimality conditions in current value formulation. As mentioned before,
Blaquiére (1977a; 1977b; 1979; 1985) derived his Maximum Principle considering
Impulse Control problems without using the current value Hamiltonian. Instead, he
presents his Maximum Principle in the present value Hamiltonian form. The main
reason for this is that the theory of optimal control has its origin in physics and
engineering where discounting cash flows does not occur. Furthermore, by reviewing
the existing Impulse Control models in the literature, we point out that meaningful
problems do not satisfy the sufficiency conditions. In particular, such problems either
have a concave cost function, contain a fixed cost, or have a control-state interaction,
which have in common that they each violate the concavity hypothesis used in the
sufficiency theorem. The implication is that the corresponding problem may have
multiple solutions that satisfy the necessary optimality conditions. Moreover, we
show that problems with a fixed cost do not satisfy the conditions under which the
necessary optimality conditions can be applied. However, we propose a transforma-
tion, which ensures that the application of the Impulse Control Maximum Principle
still provides the optimal solution. Finally, we show that for some existing models in
the literature no optimal solution exists.

Applications

In the literature there are not many applications of the Impulse Control Maximum
Principle. In this thesis we analyze two different applications. The first concerns
dike height optimization in the Netherlands. As far as we know it is one of the first
real life application of the Impulse Control Maximum Principle.! We compare our
analysis with the dynamic programming approach used in Eijgenraam et al. (2011)
and show that the Impulse Control approach has some benefits over the dynamic
programming approach. The second application deals with product innovations. We
consider a firm that wants to undertake a product innovation where the number of
innovations is endogenously determined by the model. We compare our results with a
Multi-Stage optimal control approach derived in Grass et al. (2012) where the number
of product innovations is predetermined before solving the model. One interesting
fact is that we find that the firm does not invest when marginal profit (with respect
to capital) becomes zero, but invests when marginal profit is negative. Finally, we
solve the forest management problem described in Neuman and Costanza (1990).
Since we do not need to fix the number of jumps and do not need to discretize time,

!The data is provided by Rijkswaterstaat, part of the Dutch ministry of Infrastructure and
Environment.
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we find a solution with a better objective value than Neuman and Costanza (1990) do.

Algorithms

In Chapter 3 of this thesis we describe and apply the backward algorithm to a real-life
dike height optimization problem. We compare the results found with the backward
algorithm to the dynamic programming approach used in Eijgenraam et al. (2011).

In Chapter 5 of this thesis we describe three different algorithms, from which two
(as far as we know) are new in the literature. The first (new) algorithm considers
an Impulse Control problem as a (multipoint) Boundary Value Problem and uses a
continuation technique to solve it. The second (new) approach is the continuation
algorithm that requires the canonical system to be solved explicitly. This reduces
the infinite dimensional problem to a finite dimensional system of, in general, non-
linear equations, without discretizing the problem. Finally, we present a gradient
algorithm, where we reformulate the problem as a finite dimensional problem, which
can be solved using some standard optimization techniques. This method has been
developed in Hou and Wong (2011).

Outline of thesis
This thesis is based on four self contained independent chapters in the field of Im-
pulse Control. There are some differences in notation between chapters.

In Chapter 2 (consists of Chahim et al. (2012c)) we consider a class of optimal
control problems that allows jumps in the state variable. We present the necessary
optimality conditions of the Impulse Control Maximum Principle based on the cur-
rent value formulation. Moreover, we present a transformation such that the Impulse
Control Maximum Principle can be applied to problems having a fixed cost. Finally,
we give an overview of several problems in the literature that apply the Impulse
Control Maximum Principle, show that these problems do not satisfy the sufficiency
conditions, and that some of these models have received incomplete treatment, in
particular, some of them do not have an optimal solution.

In Chapter 3 (consists of Chahim et al. (2012a)) we apply the Impulse Control
Maximum Principle to determine the optimal timing of dike heightenings as well
as the corresponding optimal dike heightenings to protect against floods. This chap-
ter presents one of the first real life applications of the Impulse Control Maximum
Principle developed by Blaquiére. We show that the proposed Impulse Control Max-
imum Principle approach performs better than dynamic programming with respect
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to computational time. This is caused by the fact that Impulse Control does not
need discretization in time.

Chapter 4 (consists of Chahim et al. (2012b)) considers a firm that has the op-
tion to undertake product innovations. For each product innovation the firm has to
install a new production plant. We find that investments are larger and occur in
a later stage when more of the old capital stock needs to be scrapped. Moreover,
we obtain that the firm’s investments increase when the technology produces more
profitable products. We see that the firm in the beginning of the planning period
adopts new technologies faster as time proceeds, but later on the opposite happens.
Furthermore, we find that the firm does not invest when marginal profit (with respect
to capital) becomes zero, but investes when marginal profit is negative. Moreover,
numerical experiments show that if the time it takes to double the efficiency of a
technology is larger than the time it takes for the capital stock to depreciate to half
of its original level, the firm undertakes an initial investment. Finally, we show that
when demand decreases over time and when fixed investment cost is higher, then the
firm invests less throughout the planning period, the time between two investments
increases, and the first investment is delayed.

In Chapter 5 (consists of Grass and Chahim (2012)) we present three different al-
gorithms that can be used to solve Impulse Control problems. The first algorithm
considers the problem as a (multipoint) BVP. The second and third algorithm can
be used if the canonical system of the problem can be solved explicitly. If that is the
case, we can rewrite our Impulse Control problem as a discrete dynamical system
(without numerical discretization) and solve it.
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CHAPTER 2

A Tutorial on the Deterministic Impulse Control
Maximum Principle: Necessary and Sufficient
Optimality Conditions

Abstract This chapter considers a class of optimal control problems
that allows jumps in the state variable. We present the necessary op-
timality conditions of the Impulse Control Maximum Principle based
on the current value formulation. By reviewing the existing impulse
control models in the literature, we point out that meaningful prob-
lems typically do not satisfy the sufficiency conditions. In particular,
such problems either have a concave cost function, contain a fixed cost,
or have a control-state interaction, which have in common that they
each violate the concavity hypotheses used in the sufficiency theorem.
The implication is that the corresponding problem in principle may
have multiple solutions that satisfy the necessary optimality condi-
tions. Moreover, we argue that problems with fixed cost do not satisfy
the conditions under which the necessary optimality conditions can be
applied. However, we design a transformation, which ensures that the
application of the Impulse Control Maximum Principle still provides
the optimal solution. Finally, we show that for some existing models
in the literature no optimal solution exists.

2.1 Introduction

For many problems in the area of economics and operations research it is realistic to
allow for jumps in the state variable. This chapter therefore considers optimal control
models in which the time moment of these jumps as well as the size of the jumps are
taken as (additional) decision variables. An example is Blaquiére (1979) that deals
with optimal maintenance and life time of machines. Here the firm has to decide
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when a certain machine has to be repaired (impulse control variable), and it has to
determine the rate of maintenance expenses (ordinary control variable), so that the
profit is maximized over the planning period. Blaquiére (1977a; 1977b; 1979; 1985)
extends the standard theory on optimal control by deriving a Maximum Principle,
the so called Impulse Control Maximum Principle, that gives necessary (and suffi-
cient) optimality conditions for solving such problems. Like Blaquiére (1977a; 1977b;
1979; 1985), we consider a framework where the number of jumps is not restricted.
This distinguishes our approach from, e.g., Liu et al. (1998), Augustin (2002, pp.
71-81) and Wu and Teo (2006), where the number of jumps is fixed (i.e. is taken as
given).

This contribution focuses on deterministic impulse control problems that are ana-
lyzed by using the Impulse Control Maximum Principle. This implies that we do
not consider stochastic impulse control problems. This excludes the theory of real
options (see Dixit and Pindyck (1994)). Another alternative is the theory of Quasi-
Variational Inequalities (QVI; see Bensoussan and Lions (1984)). Although QVI can
also be applied to deterministic impulse control problems, it is mainly related to
a stochastic framework. Other insightful QVI references include Bensoussan et al.
(2006) on an inventory model employing an (s, S) policy and @Oksendal and Sulem
(2007).

The contribution of this chapter is fourfold. First, we give a correct formulation
of the necessary optimality conditions of the Impulse Control Maximum Principle
based on the current value formulation. In this way we correct Feichtinger and Hartl
(1986, Appendix 6) and Kort (1989, pp. 62-70). Second, by reviewing the existing
impulse control models in the literature, we point out that meaningful problems do
not satisfy the sufficiency conditions. In particular, such problems either have a con-
cave cost function, contain a fixed cost, or have a control-state interaction that each
violate the concavity hypotheses used in the sufficiency theorem. The implication of
not satisfying the sufficiency conditions is that the corresponding problem in princi-
ple has multiple solutions that satisfy the necessary optimality conditions. In many
cases, these multiple solutions can be represented by a so called tree-structure (see,
e.g., Luhmer (1986), Kort (1989), Chahim et al. (2012)). Third, we show that sev-
eral existing problems (Blaquiére (1977a; 1977b; 1979), Kort (1989, pp. 62-70)) do
not have an optimal solution. In particular, the solution of these problems contain
an interval where a singular arc is approximated as much as possible by applying
impulse chattering. Fourth, we observe that problems with a fixed cost have the
property that the cost function is not a C! function i.e. it is not continuously dif-
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ferentiable. This implies that in principle, also the necessary optimality conditions
do not hold, although they were applied in Luhmer (1986), Gaimon (1985; 1986a;
1986b) and Chahim et al. (2012) leading to correct solutions. This chapter provides
a transformation, which ensures that the Impulse Control Maximum Principle can
still be applied to problems with a fixed cost.

This chapter is organized as follows. Section 2.2 gives the general formulation of
an impulse control model with discounting and presents the correct Impulse Con-
trol Maximum Principle in current value formulation (i.e. the necessary optimality
conditions). Further we give sufficient conditions for optimality and provide a trans-
formation which makes clear why the Impulse Control Maximum Principle can still
be applied to problems with a fixed cost. In Section 2.3 we classify existing economic
models involving impulse control, show why optimal solutions for some of them do
not exist, and discuss the problems that arise with the sufficiency conditions. Section
2.4 contains our conclusion and further remarks.

2.2 Impulse Control

The theory of optimal control has its origin in physics and engineering where dis-
counting cash flows does not occur. For this reason Blaquiére (1977a; 1977b; 1979;
1985) derived his Maximum Principle considering impulse control problems without
using current value Hamiltonians. Instead, he presents his Maximum Principle in
the present value Hamiltonian form.

Section 2.2.1 transforms Blaquiére present value analysis to a current value one,
whereas Section 2.2.2 presents sufficiency conditions. Section 2.2.3 considers a sub-
class of impulse control problems, where the cost function contains a fixed cost.

2.2.1 Necessary Optimality Conditions

In this section we derive necessary optimality conditions for impulse control in current
value Hamiltonian form. In doing so, we correct the necessary optimality conditions
for impulse control given in Feichtinger and Hartl (1986, Appendix 6). Their theorem
is based on the current value present value transformation. However, applying it here
turns out to be not as straightforward as usual.
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A general formulation of the impulse control problem with discounting is:

u,N,T,v

max /0 e—’“tF(m(t),u(t),t)dt+ze—’“”G(:c(T;),v",n)+e""TS<:v(T+)), (IC)

subject to

t) = f(xz(t),u(t), ), fort ¢ {m,...,7n},
=g(x(r;),v', 1), forie{l,...,N},
eR™, wu(t) €, v'eQ, ie{l,... N},
)=z, 0<Tm<m<...<7y<T.

Here, x is the state variable, u is an ordinary control variable and v is the impulse
control variable (and v’ = v(7;)), where @ and w are piecewise continuous functions
of time!. Future cash flows are discounted at a constant rate r leading to the discount

factor e~ ",

The number of jumps is denoted by N, 7; is the time moment of the
i-th jump, and x(7;") and x(7;") represent the left-hand and right-hand limit of x
at 7;, respectively (i.e. the state value just before a possible jump and immediately
after a possible jump at time 7;). The terminal time or horizon date of the system or
process is denoted by 7" > 0, and T stands for the time moment just after 7. The
profit of the system at time ¢ is given by F(x,u,t), G(x,v, ) is the profit function
associated with the i-th jump at 7;, and S(a(T")) is the salvage value, i.e. the total
costs or profit associated with the system after time 7' (where &(7") stands for the
state value immediately after a possible jump at time 7'). Finally, f(«, u,t) describes
the continuous change of the state variable over time between the jump points and
g(x,v,7) is a function that represents the instantaneous (finite) change of the state

variable when there is an impulse or jump at 7.

We assume that the domains €2, and €2, are bounded convex sets in R™. Further
we impose that F', f, g and G are continuously differentiable in  on R™ and v° on
Q,, S(x(TT)) is continuously differentiable in &(7") on R", and that g and G are
continuous in ¢. Finally, when there is no impulse or jump, i.e. v' = 0, we assume
that

g(:’c7 07 t) - 07

for all  and t. A typical solution for an Impulse Control problem is presented in
Figure 2.1.

!Note that the necessary conditions also hold for measurable controls. We restrict ourselves
to piecewise continuous functions since this is needed for sufficiency. Applications typically have
piecewise continuous functions.
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x(t) A

z(0)

Figure 2.1 — Solution of Impulse Control system.

Let us define the present value Hamiltonian
Ham(z,u, pu,t) = e ""F(xz,u,t) + pf(z, u,t),

and the present value Impulse Hamiltonian
THam(z,v, p,t) = e "Gz, v,t) + pg(z,v,t),

where p denotes the present value costate variable. The following theorem presents
necessary optimality conditions associated with the impulse control problem defined

in (1C).

Theorem 2.2.1 (Impulse Control Maximum Principle (present value)).

Let (z*(:),u*(:), N, 7f, ..., 75, 0%, ..., o™N*) be an optimal solution for the impulse
control problem defined in (IC). Then there exists a piecewise continuous costate
variable p(t) such that the following conditions hold:

u'(t) = arg max Ham(z" (1), u, u(1). 1), (2.1)
p,(t):—agim(m*(t),u*(t),p,(t),t), forall t#7, i=1,...,N. (22)

At the impulse or jump points, it holds that (i.e. att =71;,,i=1,...,N)

OTHam

50 (x*(777), o™, u(r ), 7)) (v —v™) <0, forall v €Q,, (2.3)

7



20 CHAPTER 2. IMPULSE CONTROL MAXIMUM PRINCIPLE

B OLHam

() = () = =S @ (7). 0 (), ) (2.4
Ham(w*(Tz‘*Jr)a u*(Ti*+>7 N(Ti*+)a 7)) — Ham(z" (77 ), w* (777 ), u(777), 7))
>0 if77=0
IR (o) 0 (), 70 =0 if 7 € (0.T) (2.5)
or .
<0 =T

For all points in time at which there is no jump, i.e. t # 7, (i = 1,...N), it holds
that

OLHam

50 (x*(t),0, u(t), t)v <0, forall v € Q. (2.6)
At the horizon date the transversality condition
oS
TH)=e ™ = (z*(T" 2.7
(T = T2 (@ (1), 2.7)

holds, with (T+) = a(T) if there is no jump at time T, and 177 < 75 < ... <78 <T.
Proof: See Blaquiére (1977a; 1985) or Rempala and Zabczyk (1988). [ |

In Blaquiére (1977a; 1985) it is assumed that the Impulse Hamiltonian is concave in
v. In this case (2.3) and (2.6) are replaced by

v = arg Ume%leam(:c*(Ti*_), o' u(r ), ), for i=1,...,N,
and

0 =arg vme%ffr'-[am(m*(t), v, u(t),t), forall v e Q,,
respectively.

Next we determine the current value formulation of Theorem 1. By doing this we
correct Feichtinger and Hartl (1986, Appendix 6), in which the current value version
of condition (2.5) is wrongly stated. First, we define the current value Hamiltonian

Ham(z,u, A\ t) = F(x,u,t) + Af(x, u,t),
and the current value Impulse Hamiltonian
IHam(x,v, A, t) = G(x,v,t) + Ag(zx, v, 1),

with A the current value costate variable. The following theorem presents necessary
optimality conditions to solve the impulse control problem defined in (IC'), based on
the current value approach.
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Theorem 2.2.2 (Impulse Control Maximum Principle (current value)).

Let (z*(:),u*(:), N, 7F, ..., 75, 0%, ..., o) be an optimal solution for the impulse
control problem defined in (IC). Then there exists a piecewise continuous costate
variable X(t) such that the following conditions hold:

u*(t) = arg max Ham(z*(t), u, A(t),1), (2.8)
. H
Alt) = rA() — aaam(w*(t),u(t),)\(t),t), forall t#7, i=1,... N. (2.9

x
At the impulse or jump points, it holds that (i.e. att =71, i=1,...,N)
1H ) . . .
0 ajm(w*(n*—), v X(T), ) (v —v™) <0, forall vt € Q,, (2.10)
1H. -
AT = X7) = 9 azjm(w*(ﬁ“),v”,A(Tj*),fi*), (2.11)

Ham(a™ (r"), w™(777), A7), 7)) — Ham(a™ (777), u™(777), A7), )

K3 K3 K3

G (), 1) — r Gl (1), 0, 7)
:
5 >0 ifrf=0
A (@), v, 7)) =0 ifre(0,T) (2.12)
or ,
<0 ifrr=T.

For all points in time at which there is no jump, i.e. t # 77 (i = 1,...N), it holds
that:

OIHam
ov

(@*(£),0,A(t),t)v <0, for all v € Q. (2.13)

At the horizon date the transversality condition

AT = g—i(az*(T+)), (2.14)

holds, with x(T*) = x(T) if there is no jump at time T, and 71 <75 < ... <78 <T.

Proof: The relation between present value and current value Hamiltonian, Impulse
Hamiltonian and costate variables is given by

Ham(z,uw, p,t) = e " Ham(z,u, p,t),

THam(x, v, u,t) = e ""IHam(xz, v, 1, 1),
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and

w(t) =e "A(t).

Under these transformations, conditions (2.8)-(2.11),(2.13) and (2.14) are equal to
conditions (2.1)-(2.4),(2.6) and (2.7). In this proof we show that (2.12) is the current
value equivalent of the analogous condition (2.5) derived by Blaquiére (1977a; 1977b;
1979; 1985). From the definitions of I[Ham and ZHam we obtain that
e " THam(x(t),v', A1), 1) = e "'G(x(t), v t) + e " A(t)g(x(t), v', 1)
= ¢ "G(x(t),v"t) + p(t)g(x(t), v* 1)
= IHam(x(t),v", u(t),1).
Combining this with (2.5) we get for 7;* € (0,7):
Ham (" (7;7), w™ (1,7), w(777), 7)) = Ham(* (777 ), w* (7;7), pu(777), 71°) =
.

e—rTi* (aG(m (Tza ),’U » Ti ) . ’I“G(Q?*(Ti*_),’l)i*,ﬂ*)> + “(Ti*+)
T

which implies that

Ham(a* (7)), w™(777), (7)), 7)) = Ham(2™ (7)), w™(77), (7)), 7))

2

(et (L)

= = 7))

. a * (K [£] *

+€r7—i “(7—7,*+) g(w (Tz )7 v, 7—7, )

or
aG * (K [£] * . a * (L H— [£] *

— (:‘C (T’LaT)? v 77—7, ) _ TG(w*(TZ'*_>, ,v’l,*7 7_) + A(Ti*-i-) g(w (TzaT)? v 7Tz )
This is condition (2.12) for 7 € (0,7"). The other two cases, 7 = 0 and 777 = T,
follow the same steps. [

2.2.2 Sufficiency Conditions
The following theorem can be found in Seierstad and Sydseter (1987, pp. 198-199).

Theorem 2.2.3 (Sufficient Conditions for Impulse Control). Let there be a feasi-
ble solution, (x*(-),u*(:), N,7f, ..., 75, 0¥, ..., o), for the impulse control problem
(IC) and a piecewise continuous costate trajectory, so that the necessary optimal-
ity conditions of Theorem 2.2.2 hold. When the mazimized Hamiltonian function
Ham®(x, A\, t) = max, Ham(z,u,\,t) is concave in x for all (\,t), the IHam, con-
cave in (x,v) for all t and S(x) concave in x, then that solution, (x*(-), w*(-), N,

1% N*)

T o TN, U v, is optimal.
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For the proof of this theorem we refer to Theorem 1 in Seierstad (1981), which is
equivalent to the theorem stated above. However, we will show in Section 2.3 that
this result is not very useful since most (relevant) problems given in the literature do
not fulfil these conditions.

2.2.3 Impulse Control: Including a Fixed Cost

When there is some fized cost involved in the impulse cost function, the function G
has a jump discontinuity at point v* = 0. The implication is that G is not continu-
ously differentiable. Consequently, strictly speaking the Impulse Control Maximum
Principle cannot be applied. However, the Impulse Control Maximum Principle has
been applied a few times while ignoring this continuity requirement (see, e.g., Luh-
mer (1986), Gaimon (1985; 1986a; 1986b) and Chahim et al. (2012)). In this section
we show that by applying some transformation, a general fixed cost problem can be
represented by a problem with continuous cost function so that still the necessary
optimality conditions can be applied.

Reconsider the above general impulse control problem. For the remaining of this
chapter we assume 2, = [0, 9] for some v > 0 and ¢(z,0,t) = 0 (see e.g., Blaquiére
(1977a; 1977b; 1979; 1985) and Seierstad and Sydsseter (1987)). Furthermore, the
impulse cost function needs to be continuously differentiable. As said before, this
is not the case in the specification where G is discontinuous because of a fixed cost
term (for simplicity we delete the superscript 4 in v?):

Glav,7) = 0 forv=20
T K(n) 4+ a(v,m)v for 0 < v < 0,

where K(7) > 0. Clearly G is lower semi-continuous.

The idea is to approximate the impulse cost function K + awv by a continuously
differentiable one that assumes the same value for v > ¢, where we let € go to zero.
A possible specification would be

K(r)

Ge(z,v,7) = { ez

v+ (D 4 a(v, 7)) for v € [0,

K(71) 4+ a(v, T)v fore <v <.

Letting ¢ tend to zero it follows that G. approaches G. Other specifications of
0

Ge(z,v, T) are also possible, but the common property is that lin% a—GE(x, 0,7) = oo.
e—0 Ov

The argument is that the optimal solution of a problem with cost G will never have

“very small” jumps because of the fixed costs. Then, for ¢ small enough, G. will al-
ways generate the same cost as G and the optimal solutions will be the same. Hence,
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the necessary optimality conditions still hold for G with fixed cost. The following
lemma and proposition formalize these statements.

Lemma 2.2.1. Let 0 < g1 < g¢ and let (zc,uc,v.) (for simplicity we omit T and N)
be an optimal solution of the problem with cost function G., while (x*,u*,v*) is an
optimal solution of problem (IC). Furthermore, we denote by J (v, u,v) the value of
the objective function of the original problem evaluated at (z,u,v), and by J. (z,u,v)
the value of the objective function of the approximated problem with cost function G,
evaluated at (x,u,v). Then

J(z,u,v) < J (x,u,v) < Joo(z,u,v), (2.15)
and
J(@",u", 07) < Jey (e Uey, Vey) < Jeg (e Ueg s Ve )- (2.16)

Proof: The first result (2.15) follows directly from G., < G., < G, whereas (2.16)
follows from (2.15) and

Jel (xsl ) u617 U61> S JEO (xel ) u617 Ué‘l) S Jao (xe?ou u€07 Ué‘o)‘
|

Proposition 2.2.1. Let (z*,u*,v*) (for simplicity we omit T and N) be an optimal
solution of problem (IC). Then the Impulse Control Mazimum Principle provides
necessary optimality conditions, even though the model function G is not continuous.
More precisely, if the optimal solution is unique, it satisfies these necessary optimality
conditions. Otherwise there is at least one optimal solution for which this holds.

Proof: Let ¢y be some small positive number and let (x.,,uc,, vs,) be an optimal
solution of the problem with cost function G.,, which thus satisfies the necessary
optimality conditions. Let further véo be the smallest jump parameter in this optimal
solution. If v{ > &¢, the proposition automatically holds. If v < &g, choose a lower
€0, and check again whether véo > go. If yes we are done, if not continue this
procedure. [ ]

2.3 Classification of Existing Operations Research
Models Involving Impulse Control

This section classifies existing operations research impulse control problems found in
the literature. When considering impulse control problems in an operations research
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context, a common feature is discounting. The resulting general impulse control
problem (where for reasons of exposition both the state and impulse control are one
dimensional) can be represented by

T
—rt T‘Tl —rT +
ma§/0 Fa(b), dt+z )0 7) + e TS((TH)), (2.17)
subject to
a(t) = fa(t),u(t), 1), fort ¢ {m,...,7v},
2(r") — (7 )29( ( J).vhm), forie{l,....N},
reR, ue, €Q,, (07 )=xy, 0<TH<T>...,<7Tn<T.

The objective is typically to maximize profit or minimize cost. We distinguish be-
tween

e linear impulse control problem, i.e. a problem where the impulse control variable
occurs linearly in the Impulse Hamiltonian, and no continuous control present

(Case A);
e linear impulse control problem and continuous control present (Case B);

e non-linear impulse control problem and no continuous control present (Case

0);
e non-linear impulse control problem and continuous control present (Case D).

In the linear impulse control case where no continuous control u is present (Case
A), a typical solution would be to reach some kind of singular arc by applying im-
pulse control, but, if the state equation contains some decay term (for instance § K (¢)
with ¢ the depreciation rate and K (t) the capital stock), then it might be formally
impossible to stay there. One has to use some kind of impulse chattering, i.e. an in-
finitely large number of impulses of infinitely small size. We elaborate on this when
discussing the model by Blaquiére (1977a; 1977b) in Section 2.3.1.

In the linear impulse control case where also a continuous control u is present (Case
B) and both the ordinary control and the impulse control go into the same direction
i.e. increase or decrease the state, the two controls (i.e. the ordinary and impulse
control) are in some sense substitutes to each other. Then one can distinguish the
following cases
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1. Continuous control u and impulse control v have the same monetary effect (e.g.

cost or profit). An example is the model by Seierstad and Sydsaeter (1987, pp.
199-202) where just the impulse control is used to sell the complete stock of
the resource at the best point in time. It is a non-autonomous model were the
two controls appear in the model in the same way and are substitutes. The
jump occurs at one time instant and in that sense this model is comparable to a
model that has the most rapid approach path (MRAP) property (see e.g. Hartl
and Feichtinger (1987)), where the singular arc is reached by applying impulse
control at one point of time (usually the initial time point), followed by a sin-
gular arc which is maintained using the continuous control. The same analysis
hold for the model by Seierstad and Sydsaeter (1987, pp. 202-206). Other ex-
isting optimal control models having this MRAP property are, e.g., Jorgenson
(1963; 1967), and Sethi (1973). These kinds of models are not considered in
this chapter any further.

. The impulse control has a higher cost. An example is the model by Blaquiére

(1979)(see Section 2.3.2), where, for suitable values of z(0), only the contin-
uous control is used to apply preventive maintenance for the machine but no
impulse control to repair or upgrade the machine. If z(0) is very low an im-
pulse jump occurs at the initial time (MRAP-property), after which preventive
maintenance is applied.

. The impulse control has a lower cost. An example would be the model by

Blaquiére (1979)(see Section 2.3.2), with modified parameters so that repair is
more attractive than preventive maintenance. Then one would not do preven-
tive maintenance but only repair during the planning period. This will lead to
an impulse chattering solution. We demonstrate in Section 2.3.1 that in such
cases no optimal solution exists.

In some sense, these results are trivial, i.e. there is no interesting combination of
the two types of control. Such interesting cases occur when there is some fized cost

involved in the impulse cost function. In the non-linear impulse control case where

no continuous control u is present (Case C) this fixed cost in the impulse cost func-

tion often occurs, examples are e.g. Luhmer (1986) and Chahim et al. (2012). In
Kort (1989) a model is given that analyzes the behavior of a firm under a concave

adjustment cost function where impulse control is applied. However, in Section 2.3.5

we demonstrate that an optimal impulse control solution does not exist!

In the literature no problems exist dealing with the non-linear impulse control case
where the continuous control u is present (Case D). This is different in the litera-
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ture on stochastic impulse control, where, e.g., Bensoussan and Lions (1984, Chapter
1, Section 4) discuss an inventory problem with continuous production and impulse
ordering of goods. However, as said before, this chapter restricts itself to a determin-
istic impulse control framework, and, since “Case D problems” do not occur in this
literature, we will not consider this case any further.

In the next sections we will discuss several (relevant) problems, check whether the
sufficiency conditions of Theorem 2.2.3 hold, and describe the nature of the solu-
tions. In particular we prove that in the roadside inn problem (Section 2.3.1), in one
scenario of the maintenance problem in Section 2.3.2, and in the investment problem
of Section 2.3.5 no optimal solution exists. These problems have in common that
“impulse chattering” occurs on a time interval with positive length. This impulse
chattering is called “micro-impulse policy” in Erdlenbruch et al. (2011). On the other
hand, for problems in Section 2.3.3 (Luhmer (1986)), Section 2.3.4 (Gaimon (1985;
1986a; 1986b)) and Section 2.3.6 (Chahim et al. (2012)) an algorithm is designed
that employs the necessary optimality conditions to find all candidate solutions for
optimality, as is shown in Luhmer (1986) (see also Kort (1989) and Chahim et al.
(2012). Out of these candidate solutions, we can simply select the one with the high-
est objective value. Provided that an optimal solution exists, this is then for sure the
optimal solution.

2.3.1 Maximizing the Profit of a Roadside Inn (Case A)

In Blaquiére (1977a; 1977b) an example is given that deals with maximizing the profit
of the owner of a roadside inn. The owner attracts more customers if he repaints the
inn. The following model is given:

T N
W(T) = IEEJLVXA i z(t)dt — C ZUZ, (2.18)

subject to
(t)
( ’L
x(t)

where N is the number of times the inn is (re)painted, C' > 0, the marginal cost

(t) = —kx(t), | fort ¢ {m,...,7n},
) —x(r7) =01 — (1)), forie{l,...,N},
€

[ ] Uié[o,l], 33(0_):3?0, O§7'1<7'2>...,<7'N§T,

of each (re)paint job, A a strictly positive constant, and v denotes the part of the
roadside inn that needs to be repainted, where v = 1 denotes a full repaint. The
appearance of the roadside inn is denoted by x. It is assumed that 0 < x < 1, and
each time the inn is repainted the index of appearances of the inn z undergoes an
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upward jump from its previous value z(7; ). Between (re)painting x decays as given
above, with the depreciation rate k being a positive constant. Furthermore, we as-
sume that after the planning period the inn will not be used (i.e. the salvage value
is set to zero). In Sethi and Thompson (2006, pp. 324-330) this problem has been
reinterpreted as “The Oil Driller’s Problem”.

The Hamiltonian and Impulse Hamiltonian in short hand notation are
Ham(z, p) = Ax + u(—kx),

IHam(z,v,p) = v(—=C) + pv(l —z) = v(—C + p(1 — x)).

Both the impulse control variable and state variable are linear in ZHam and Ham.
Due to the interaction term between the impulse control variable and the state vari-
able in the Impulse Hamiltonian, ZHam is not concave in (z,v") jointly, so that the
necessary optimality conditions are not sufficient.

To solve the above stated model we first consider the continuous version of this
problem (i.e. the problem where the impulse control v* is replaced by a continuous
control u):

max W(T) = /OT(Ax(t) — Cu(t))dt, (2.19)

u

subject to

(t) = —ka(t) + u(t)(1 — x(t)),
z(t) € R, wu(t) € [0,00) x(0)= x.

We can identify this model as the Vidale- Wolfe advertising model discussed in Sethi
(1973). The solution for this model is given in Figure 2.2. If the initial value of 2(0) is
lower than the singular arc value of z(¢) (i.e. &) at t* = 0, we set the control u = oo
so that the singular arc is reached immediately (MRAP property). If the initial value
of 2(0) is higher than Z4 the control v = 0 is applied until = has reached 5. At the
singular arc the control is set at v = Gy = kzs/(1 — &), so that x(¢) is kept constant
at the level Z,. At the final planning period the control is equal to zero, since the
remaining time period is too short to defray the cost uC. To solve the Blaquiére
impulse control model, we need to approximate the Vidale- Wolfe advertising model
as much as possible. This is straightforward for the solution part where v = 0 (then
simply put v* = 0) or where u = co. In the latter case apply an initial impulse
control jump, where v! = &, — 2/(0). On the singular arc we divide the interval
[tsa, T (with tg, the time the singular arc is reached) in [ parts of equal length and
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z(t) x(t)

u =1 U =1

(a) 2'(0) < &,. (b) 2”(0) > .

Figure 2.2 — Vidale-Wolfe model solution.

set within each interval first v* = v (where v is such that & +v — &, = &, — & with
& =ux(ry) =...=x(ry)) and then v* = 0. In this way we create a “saw-toothed”
shape around the singular arc. This control policy is shown in Figure 2.3 and is the
impulse control equivalent of chattering control (see e.g. Feichtinger and Hartl (1986,
pp. 78-81) or Kort (1989, pp. 62-70)). It is important to note that for each given
“saw-toothed” solution, a better solution is available by increasing [ and decreasing
v. We conclude that an optimal solution does not exist. This observation cannot be
found in Blaquiére (1977a; 1977b), or in Sethi and Thompson (2006, pp. 324-330).

10 impulses

impulse chattering impulse chattering

f
TOTLTg - T Ty T

(a) z'(0) < &,. (b) 2(0) > .

Figure 2.3 — Blaquiére (1977) model solution with impulse chattering.
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2.3.2 Optimal Maintenance of Machines (Case B)

The following problem is taken from Blaquiére (1979) and is also extensively analyzed
in Sethi and Thompson (2006, pp. 331-337). This example deals with the optimal
maintenance of machines:

W(T) = max /0 (Az(t) — u(t))dt — Zvi(C’ — Kx(7;,)), (2.20)

v,u, 7, N
i=1
subject to

), fort ¢ {m,...,7n},

x(t) = —kx(t) + mu(t
=v'(1—=x(r;)), forie{l,...,N},
1],

) — ()
xE[O,l] v e [o,

)

u(t>€[07ﬂ]7 JI(O_):J}O’ 0§7—1<7—2>~--,<TN§T,

where N is the number of times the machines is repaired, C'— Kz(7;), i = 1,..., N, the
marginal unit cost of each repair, and A a strictly positive constant. It is assumed
that 0 < 2 < 1, and each time the machine is repaired (where full repair, i.e.
v' = 1 stands for replacing the machine with a new one) the index of appearances of
the machine, z, undergoes an upward jump starting from its previous value x(7; ).
Between repairs x decays as given above, with £ and m positive constants. The rate
of maintenance expenses is denoted by u (i.e. the continuous control). Moreover it
is assumed that the cost of a repair is of the form v'(C' — Kx), where C' and K are
strictly positive constants. Furthermore, we assume that after the planning period
the machine will not be used (i.e. the salvage value is set to zero). The Hamiltonian
and Impulse Hamiltonian are

Ham(z,u, p) = Az — u + p(—kz + mu),

IHam(x,v,p) = v(Kx — C) 4+ pv(l — z) = v(Kz — C + p(l — x)).

Both the impulse control variable and state variable are linear in ZHam and Ham.
Due to the interaction term between the impulse control variable and the state vari-
able in the Impulse Hamiltonian the necessary optimality conditions are not sufficient,
since ZHam is not concave in (z,v"). Because the necessary optimality conditions are
not sufficient we know that multiple candidate solutions can occur for this problem.
Here we will distinguish between two cases:

e The impulse control (repair) has a higher cost than the continuous control
(preventive maintenance). When z(0) is sufficiently large, only the continuous
control is used to do preventive maintenance for the machine, so no impulse
control is applied to repair or upgrade the machine. In this case the coefficients
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satisfy mK < 1 < mC < mTA.

maintenance, an impulse jump occurs at the initial time and in that sense

When z(0) is very low, besides preventive

this model is comparable to a model that has the most rapid approach path
(MRAP) property. For the analysis of this case we refer to Blaquiére (1979).

e The impulse control (repair) has lower cost than the continuous control (preven-
tive maintenance). Then one would not do preventive maintenance but repair
during the planning period. This results in impulse chattering analogous to
the Blaquiére (1977a; 1977b) model in Section 2.3.1. Hence, for this case no
optimal solution exists.

2.3.3 Minimizing Inventory Cost (Case C)

Luhmer (1986) applies the Impulse Control Maximum Principle to solve an inventory
problem. The following model is presented:

C(T) = min /OT h(I(t),t)e " dt + Z ( vt vt C(TJ) T

v,7,N

subject to

I(t) = —d(t) — g(I(1),1), fort ¢ {m,..., 7},
I(7;") — ( 7)) =, forie{1,...,N},
It)eRY, vie(0,00), I(0)=1I, IT)=1I, 0<m<m>..,<7y<T,

where h denotes the holding or shortage cost and I(t) the inventory level at time t.
I(t) decreases over time by the demand rate d(t) and leakage losses g(I(t),t). At
any time instance 7; the inventory is increased by a quantity v* and the unit ordering
costs are given by p(v',7;). An order of size v' at time 7; results in a variable cost of
(p(v*, 7;)v" plus a fixed ordering cost C'(7;). At the end of the planning period a scrap
value for inventory I, is left over, which is denoted by S(I(7")). Finally, r stands for
the risk-free discount rate.

Due to the fixed cost, the model violates the requirement that the cost function
should be continuously differentiable in the control in order for the Impulse Con-
trol Maximum Principle to be applicable. However, performing our transformation
of Section 2.2.3 ensures that the Impulse Control Maximum Principle can still be
applied. Moreover, the discontinuity in the cost function causes that the sufficient
conditions do not hold, i.e. the Impulse Hamiltonian is not concave in (I,v") jointly.
This implies that we can have multiple solutions satisfying the necessary optimality
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conditions. To solve this problem, Luhmer (1986) describes an algorithm that finds
all these candidate solutions. Typically, this produces a tree structure in which the
jumps of all candidate solutions are presented (cf. Section 2.3.6). Given that an
optimal solution exists, it is that candidate solution with the highest objective value.

2.3.4 Optimal Dynamic Mix of Manual and Automatic Out-
put (Case B)

Gaimon(1985; 1986a) determines the optimal times of impulse acquisition of automa-
tion and the change for manual output. The objective is to minimize cost associated
with deviation from a goal level of output. The purchase of automation is used to
directly substitute for output resulting from manually operated equipment. Since
automation is acquired at discrete times in the planning period the author solves the
model using the impulse control maximum principle. The following model is given:

5y = min, [ (wlpte) + a0 = g(OF + a1

Tea(t)s(t) + i(p(t) + faD)a(t) ) e,

+ Z cs(m)v'e™ — B[p(T) + q(T)]e™ "™, (2.22)
subject to
p(t) = —d(t) + h(t) — s(t), fort ¢ {m,...,7n},
q(r") —q(r) = w, fori e {1,...,N},
h(t) € [0, H(t)], s(t) €1[0,S@)], p(0) = po,
q(07) = qo, v e{0,1}, 0<n<m>..,<7v<T,

where N is the number of times automation equipment is acquired. c3(7;)v%, i =
0,..., N, the cost of acquiring the ith automation at time 7;, where v* denotes the ith
technology purchase. The level of automation output and manual output are given by
q(t) and p(t) respectively. The cost of producing output manually at time ¢ is given
by fi(t) and the cost of producing output automatically at time ¢ is given by fo(t).
The cost of increasing and reducing the level of manual output per unit squared at
time ¢ is represented by c1(t)h?(t) and cy(t)s*(t), respectively, where h(t) denotes the
level of increase in manual output at time ¢, with H(¢) the available supply of labor
and s(t) denotes the level of reduction in manual output at time ¢, with S(¢) the
maximum permitted level of reduction at time ¢. The level of reduction in manual
output at time ¢ in units of output is represented by d(t), and g(t) represents the
goal level of output at time ¢ also in units of output. Finally, w stands for the weight



Classification of Existing Operations Research Models Involving Impulse
Control 33

or cost of the squared deviation between the actual and the goal levels of output, u
the units of increase in output due to purchased automation, r is the discount rate,
and S the value of the production per unit of output at the end of the planning period.

The difference with the other impulse control models is that the impulse control
variable v" can takes only two values: 0 or 1. It follows that the term c3(7;)v* works
as a fixed cost. Hence, analogous to the model in Section 2.3.3, sufficient conditions
do not hold, so that in principle multiple solutions can satisfy the necessary opti-
mality conditions. Furthermore some transformation as in Section 2.2.3 is needed to
apply the Impulse Control Maximum Principle. This is not mentioned in Gaimon
(1985; 1986a). A similar reasoning holds for Gaimon and Thompson (1984).

Gaimon (1986b) determines the optimal times and levels of impulse acquisition of
automation and the levels of change for manual output with a similar objective. The
main difference is that in Gaimon (1986b) the magnitude of automation output can
have different values. So Gaimon (1986b) not only determines the time of acquiring
automation but also the size of this acquisition. The model is:

sy =, i [ b+ a0 - g0 + %)
Fea(t)7(0) + FiOR(0) + [F0) + Fo(dale) e,
3wt me ™ = Blp(T) + gD, 223)
subject to

—d(t)_+ h(t) — s(t), forté¢ {m,...,7n},

q(r") —q(r;) =, forie{l,...,N},

f2(7i7) = fo(77)[1 — av'],

h(t) € 0, H(t)], s(t) €[0,5(8)], p(0)=po, p(t)=0,
q(07) = qo, v e [0,A(R)], 0<m<m>..,<7n<T,

where in addition to the notation also used in model (2.22), Fy(t) is the compo-
nent of the per unit cost of operating automatic equipment that is unaffected by the
acquisition of automation at time ¢, fo(¢) is the per unit cost of obtaining output
automatically at time ¢, whereas « stands for the effectiveness of a unit acquisition
of automation on reducing fo(7;) at time 7; (0 < a < 1/A(7;)).

All examples in Gaimon (1986b) have an impulse cost function of the form c3(v', 7;) =
Co + Clvi2. This again implies that the problem contains a fixed cost, and thus suf-
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ficiency conditions do not hold so that multiple solutions can satisfy the necessary
optimality conditions.

2.3.5 Firm Behavior under a Concave Adjustment Cost Func-
tion (Case C)

In Kort (1989) a model is given that analyzes the behavior of a firm under a concave
adjustment cost function. Kort (1989) applies impulse control because the concave
cost function results in a Hamiltonian that is convex in the control. The following
model is studied:

N
inTaifc/ S(K(t))e "dt — z_; <vi + A(vi))e_m + K(T)e ™,  (2.24)
subject to
K(t) = —aK(t), fort ¢ {m,...,7n},
K(r")— K(r7) =", forie{l,...,N},

)
K(t)eRy, v €(0,00) K(0)=Ky, 0<m<m>...,<7y<T,
where v? stands for the i-th investment impulse, and 7; is the time of the i-th impulse.

BA(U >

0 and & A TAL) < (), K(t) is the amount of capital goods at time ¢, and a is a constant
deprema’mon rate. Like Feichtinger and Hartl (1986), Kort (1989) applies the incorrect
current value Impulse Control Maximum Principle and designs an algorithm to find

The adjustment costs of the i-th investment impulse are given by A(v*) (with =5

all candidate solutions that starts at time 7" and works backward in time (this is
different from Luhmer (1986), whose algorithm starts at time zero). The Hamiltonian
and Impulse Hamiltonian are

Ham(K, ) = S(K) — MK,

IHam(v,\) = —(v+ A(v)) + .

Note that the Impulse Hamiltonian does not depend on K so here there is no state-
control interaction. However the sufficient conditions do not hold due to the concave
adjustment cost function which implies that the Impulse Hamiltonian is not concave
in v*. The continuous case of this problem is also described in Kort (1989, pp. 57—
62) and consists of a chattering control solution. Consequently, the impulse control
model has a “singular” arc with chattering too. Analogous to the Blaquiére (1977a;
1977b) model in section 2.3.1, also here we have to conclude that no optimal solution
exists. This was not noted in Kort (1989, pp. 62-70).
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2.3.6 Dike Height Optimization (Case C)

This section analyzes the problem of the optimal timing of heightening a dike. The
cost-benefit-economic decision problem contains two types of cost, namely investment
cost and cost due to damage (caused by failure of protection by the dikes). Clearly,
there is a trade off between investment cost and damage cost. The model in Chahim
et al. (2012) is as follows:

min {/T S(t)e "dt + Z I(W', H(m))e "™ + e_rT@} : (2.25)

v,7,N
i=1
subject to
H(t) =0, fort ¢ {m,...,7n},

H(r,")— H(r; ) =v', forie{l,...,N},

K3 K3

H(t)eR,, v €[0,0) HO)=0, 0<m<m>..,<7y<T,

where v* stands for the i-th dike heightening, H(¢) is the height in centimeter (cm)
of the dike at time ¢ relative to the initial situation, i.e. H(0) = 0, 7 stands for the
time of the dike update (years), and r is the risk-free discount rate. The objective
(2.25) consists of two parts. The first part is the total (discounted) expected damage
cost, which is given by

T Te T
/ s(yerar + 2T

0 r
where S(t) denotes the expected damage at time ¢, S(t) = P(¢)V(¢). The flood
probability P(t) (1/year) in year t is defined as

P(t) = Pyt o), (2.26)

where « (1/cm) stands for the parameter in the exponential distribution regarding
the flood probability, n (cm/year) is the parameter that indicates the increase of the
water level per year, and F; denotes the flood probability at ¢ = 0. The damage of
a flood V(t) (million €) is given by

V(t) = VoertetH®, (2.27)

in which 7 (per year) is the parameter for economic growth, and ¢ (1/cm) stands for
the damage increase per cm dike height. V4 (million €) denotes the loss by flooding
at time ¢t = 0. The second part of the objective is the total (discounted) investment
cost
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where N is the number of dike heightenings and H(77) the height of the dike (in cm)
just before the dike update at time 7 (left-limit of H(¢) at ¢ = 7). The investment
cost is given by

; ~ Ag(H(17) +v1)2 + bgv' + ¢ for v >0
(', H(r >>:{ o) 0) T 0

for suitably chosen constants Ag, by and ¢g. The current value Hamiltonian is
Ham(t, H(t)) = —SpePte 1)

while the Impulse Hamiltonian is given by

IHam(t, H(77),v", \(1)) = —I(v',H (7)) + A7)'
= —Ao(H(17) +v")? = bov" — o + \(T)v".

This problem is modeled as an impulse control problem due to the fixed cost, co,
involved with each dike heightening. As was the case for Luhmer (1986), due to this
fixed cost a discontinuity arises in the cost function. The first implication is that the
Impulse Control Maximum Principle cannot be straightforwardly applied (although
our transformation in Section 2.2.3 makes up for this), and, second, the sufficiency
conditions do not hold (i.e. the Impulse Hamiltonian is not concave in (H, v") jointly).
Chahim et al. (2012) implement the backward algorithm designed by Kort (1989, pp.
62-70). This algorithm solves the above stated problem (2.25) for different values of
H(T). We select that H(T"), which corresponds to the solution with the lowest value
of the objective function. In Figure 2.4 the tree for the Dutch dike ring area 10 is
presented. The tree shows all candidate solutions for (the optimal) H(T") = 282.57.
Due to the fixed costs, small jumps cannot be optimal which is why one can cut away
all the upper branches in Figure 2.4. Formally this can be proved by observing that a
solution that contains such a small jump, is dominated by a solution where the small
jump is deleted, while instead it is added to the previous jump. This implies that only
the optimal solution is left. In Table 3.5 this optimal solution (and corresponding
cost) are presented.
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v2*=61.35
T5=213.08

Figure 2.4 — Example Tree, Dike ring area 10, H(T') = 282.57.

No. 10
7; (years) | v'(cm)
Updates 275.93 97.15
213.08 61.35
153.43 27.30
97.98 53.99
45.24 52.78
H(T)(cm) 282.57
Investment cost (million €) 10.17
Damage cost (million €) 29.96
Total cost (million €) 40.13

Table 2.1 — Impulse control solutions for dike ring area 10 with quadratic
investment cost.

2.4 Conclusions and Recommendations

This chapter gives a correct formulation of a necessary optimality conditions of the
Impulse Control Maximum Principle based on the current value formulation. In this
way we correct Feichtinger and Hartl (1986, Appendix 6) and Kort (1989, pp. 62—
70). We review the existing impulse control models in the literature and show that
all meaningful problems found in the literature do not satisfy the sufficiency condi-
tions. We observe that these problems either have a concave cost function, contain a
fixed cost, or have a control-state interaction, which all lead to non-concavities vio-
lating sufficiency. The implication of not satisfying the sufficiency conditions is that
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multiple solutions can arise and a so called tree-structure of jumps can be identified.
We also show that for some problems no optimal solution exists since part of the
trajectory consists of staying on the singular arc by applying some kind of impulse
chattering. Finally, we provide a transformation, which makes clear why the Impulse
Control Maximum Principle can still be applied to problems with a fixed cost de-
spite the fact that this violates the continuous differentiability property of the model.

In this chapter, we classify existing operations research models involving impulse
control in four categories. In doing so we observe that non-linear deterministic im-
pulse control problems in which a continuous control is present (case D) are missing
in the literature. Some possibilities for future research arise here. A possibility is to
extend Chahim et al. (2012) with continuous dike maintenance.
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CHAPTER 3

An Impulse Control Approach to Dike Height
Optimization

Abstract This chapter determines the optimal timing of dike heighten-
ings as well as the corresponding optimal dike heightenings to protect
against floods. To derive the optimal policy we design an algorithm
based on the Impulse Control Maximum Principle. In this way this
chapter presents one of the first real life applications of the Impulse
Control Maximum Principle. We show that the proposed Impulse Con-
trol approach performs better than dynamic programming with respect
to computational time. This is caused by the fact that Impulse Control
does not need discretization in time.

3.1 Introduction

In February 1953 the south-western part of the Netherlands was struck by a flood
disaster. The flood occurred in the night and resulted into the death of 1,835 people.
Almost 200,000 hectares of land were flooded, 3,000 homes and 300 farms destroyed,
and 47,000 herd of cattle drowned. In total there were 67 dike breaks. It was the
biggest flood in the Netherlands for 300 years. Soon after this flood the Dutch
government installed the Delta Committee with the main objective to prevent the
occurrence of such events in the future, taking into account that 40% of the Nether-
lands is below sea level. The Delta Committee asked Van Dantzig (1956) to solve the
economic cost-benefit decision model concerning the dike height problem. Because
of sea-level rise and economic growth at some specific moments in time the height of
the dike must be raised.

In 1995 again a critical situation occurred, where the water level of the major rivers
Rhine and Meuse increased so much that 200,000 people where forced to evacuate.
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After all, there was no serious flood and people could safely return to their homes.
Protection against flooding is becoming an important issue all over the world. There
are many deltas that need protection against floods. In Adikari and Yoshitania (2009)
it is shown that the total number of natural disasters are continuously increasing in
most regions of the world. They state that: “Among all natural [...] disasters, water-
related disasters are undoubtedly the most recurrent and pose major impediments to
the achievement and sustainable socio-economic development.”

In Table 3.1 an overview of all recorded natural water-related disasters between 1900-
2006 is presented. Between 1900 en 2006 floods accounted for more than 29.8% of

1900-2006 Number of Number Total Real damage
disasters killed (x103) | affected (x10°) | US$ (x10°)
Flood 3,050 (42,34%) 6,899 (37,35%) 3,028 (50,18%) 343 (36,07%)
Windstorm 2,758 (38,28%) 10,009 (54,19%) 753 (12,48%) 536 (56,36%)
Drought 836 (11,60%) 1,209 (6,55%) 2,240 (37,12%) 61 (6,41%)
Slides 208 | (7,05%) 26 | (0,30%) 10 | (o17%) 3| (032%)
Wave/Surge 52 (0,72%) 296 (1,60%) 3 (0.05%) 8 (0,84%)
Total 7,204 (100%) 18,469 (100%) 6,034 (100%) 951 (100%)

Table 3.1 — Statistics of recorded natural water-related disasters globally be-
tween 1900 and 2006.!

the total number of natural disasters (including non-water related, like epidemics,
earthquakes etc; see Adikari and Yoshitania (2009)). Of all casualties caused by
natural disasters, 18,5% was due to flooding. Moreover more than 48% of the total
number of people affected by natural disasters was flood related. In Table 3.2 the
number of fatalities due to floods for different parts of the world between 1986 and
2006 are presented. These statistics show that not only the Netherlands, but many
regions in the world have to deal with water-related disasters, such as floods. In
2007 the Delta Committee 2 was installed in the Netherlands. The objective of this
committee was to advise the Dutch government concerning the consequences of the
water level rise for the Dutch coast and the large river deltas. The Delta Committee
2 warned that the sea level could increase more than what was expected in the past.
In particular, we should take into account a rise in sea water level between 0.65 meter
(m) and 1.30 m around 2100 and a rise between 2 m and 4 m around 2200. In 2009
the Dutch government commissioned a project to develop a cost-benefit analysis and
design a method to solve the resulting optimization model in order to set new safety

'EM-DAT, The International Disaster Database of the Centre for Research on the Epidemiology
of Disasters (CRED).
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1986-2006 | Number of
fatalities

Asia 117,325 | (64.4%)
Africa 14,573 | %)
America 47,782 (26.2%)
Europe 2,120 | (2%
Oceania 218 | 0%
Total 182,118 (100%)

Table 3.2 — The reported number of fatalities due to floods between 1986 and
2006 per continent.'

standards. Results of this project can be found in Hertog and Roos (2009) and Eij-
genraam et al. (2011).

This chapter presents an Impulse Control approach as an alternative method to the
dynamic programming approach used in Eijgenraam et al. (2011) to solve the dike
height problem. Brekelmans et al. (2012) develop a mixed integer nonlinear program
(MINLP), but for homogeneous? dikes the best approach turns out to be dynamic
programming. Therefore we choose to compare it with the Impulse Control approach.
To develop the optimal policy we design an algorithm based on the Impulse Control
Maximum Principle. We show that the proposed Impulse Control approach performs
better than dynamic programming in computation time. This is caused by the fact
that Impulse Control does not need discretization in time. Furthermore, this chap-
ter presents one of the first real life applications of the Impulse Control Maximum
Principle. In the literature there are not many problems solved using the Impulse
Control Maximum Principle. Luhmer (1986) and Kort (1989) design an algorithm
to apply the Impulse Control Maximum Principle to theoretically solve (economic)
problems. We consider a framework where the number of jumps is not restricted.
This distinguishes our approach from, e.g., Liu et al. (1998), Augustin (2002, pp.
71-81) and Wu and Teo (2006), where the number of jumps is fixed (i.e. is taken as
given).

The economic cost-benefit problem raised by the flood prevention is formulated by
Van Dantzig (1956) as:“Taking into account, the cost of dikebuilding, the material
losses when a dike-break occurs, and the frequency distribution of different sea lev-
els, determine the optimal height of the dikes”. He assumes that both the economic

2 A homogeneous dike or dike ring consists of one segment.
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value protected by the dikes and the probability of a dike breakthrough are con-
stant over time. In his analysis he determines how much to invest in the heightening
of a dike, but did not answer the question “when” to heighten this dike. Eijgen-
raam et al. (2011) adjusted Van Dantzig’s analysis with respect to economic growth.
Van Dantzig (1956) found that the height of a dike after every heightening should
be such that the resulting flood probabilities are the same. Economic growth implies
increasing potential damage, so it is optimal to have lower flood probabilities after
every dike height increase. This can be achieved by raising the dike height to higher
levels. In this chapter all model assumptions are similar to Eijgenraam et al. (2011).

Impulse Control theory is a variant of optimal control theory where discontinuities
(i.e. jumps) in the state variable are allowed. In Impulse Control the moments of
these jumps as well as the sizes of the jumps are taken as (new) decision variables.
In Blaquiére (1985) an example is given that deals with optimal maintenance and life
time of machines. Here one has to decide when to replace a machine by a new one
(impulse control variable), and has to determine the rate of maintenance expenses
(ordinary control variable), so that the profit is maximized over the planning period.
In Kort (1989) a dynamic model of the firm is designed in which capital stock jumps
upward at discrete points in time at which the firm invests. Blaquiére (1977a; 1977b;
1979; 1985) extends the standard theory on optimal control by deriving a Maximum
Principle, the so-called Impulse Control Maximum Principle, that gives necessary
and sufficient optimality conditions for solving such problems.

Blaquiére’s Impulse Control analysis is based on the present value Hamiltonian form.
In this chapter we apply the Impulse Control theorem in the current value Hamilto-
nian framework as derived in Chahim et al. (2012).

This chapter is organized as follows. In Section 3.2 we first build up the Impulse
Control model and derive the necessary optimality conditions. In Section 3.3 we de-
scribe the algorithm used to solve the model and obtain an upper bound for the final
dike height using the necessary optimality conditions. In Section 3.4 we compare the
Impulse Control model to the dynamic programming approach used in Eijgenraam
et al. (2011) and present numerical results. Finally, in Section 3.5 we conclude.

3.2 Impulse Control Model

A dike or dike ring is an uninterrupted ring of water defences. There are 53 dike ring
areas in the Netherlands with a higher safety standard (i.e. lower flood probability)
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than 1/1,000 per year. Each dike ring protects a certain area against flooding, see
Figure 3.1. The model described in this section can be used for each dike ring
separately. In the first section we build up the mathematical model and show that

The Netherlands L
Safety standard e
per dike ring area

Legenda e

12 number dike ring area
: 1/10,000 per year
I:I 1/4,000 per year
:l 1/2,000 per year
I:I 1/1,250 per year

high grounds (also
outside The Netherlands)

primary dikes outside
The Netherlands

North Sea

Germany

Belgium

Figure 3.1 — Dike ring areas and safety standards in the Netherlands.

this problem can be described as an Impulse Control problem. In the second section
we derive necessary optimality conditions.

3.2.1 The Model

The economic cost-benefit decision problem defined in Eijgenraam (2006) contains
two types of cost that we deal with in this problem, namely investment cost and
cost due to damage (caused by failure of protection by the dikes). Clearly, there is a
trade off between incurring cost due to investing or choosing not to invest and accept
the probability that a dike is less protective leading to higher expected damage cost.
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The model minimizes the sum of the total expected damage cost and total investment
cost. For a thorough discussion of the validity of the underlying model assumptions
and parameter values we refer to Eijgenraam et al. (2011).

Let 7 (with 0 < 74 < 7 < ... < 7x < T) stand for the time of the dike height-
ening (years) and H (¢) denotes the dike height at time ¢ (years) relative to the initial
situation, i.e. H(0) = 0 (cm). The investment cost will be denoted as I(u, H(77)),
with H(77) the height of the dike (in cm) just before the dike heightening at time 7
(i.e. H(7™) = limyy, H(t)) and u the amount of the dike heightening. Concerning the
investment cost functions, we consider two different specifications. The exponential
investment cost function is given by

(co + bou) e®0HE+0)  for 44 > 0

0 for u =0, (3.1)

ru Hr) = {
where ag, by and ¢y are positive constants. The quadratic investment cost functions
is given by

ar(H(7) +u)* +bju+c; foru>0

3.2
0 for u =0, (3:2)

I(u,H(t7)) = {
for suitably chosen constants a;, b; and ¢;. Observe that both the exponential and
the quadratic investment cost functions depend on the height of the dike at the
moment of heightening. This is contrary to Van Dantzig (1956), who uses a linear
cost function that does not depend on the current height of the dike. Our investment
cost specifications are in line with the engineering experience that making a dike
higher also requires making it wider, implying that an additional dike height increase
costs more if the current height is higher (see e.g. Sprong (2008)). Total (discounted)
investment cost is then given by

K

S I(u, H))e ™,

=1

where r is the discount rate, u; (cm) denotes the size of the i-th dike heightening,
and 7; is the time of the i-th dike heightening. Following Eijgenraam et al. (2011),
we define the flood probability P(t) (1/year) at time ¢ as

P(t) = Pyeme ot (3.3)

where o (1/cm) stands for the parameter in the exponential distribution regarding
the flood probability and 7 (cm/year) is the parameter that represents the increase
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of the water level per year. The flood probability at time ¢ = 0 (i.e. the current flood
probability) is denoted by P, (1/year), note that P(0~) = F,. We next describe the
value of the damage by a flood, V(¢) (million euros):

V(t) = VoertetH®, (3.4)

in which 7 (per year) is the parameter representing economic growth, and ¢ (1/cm)
stands for the damage increase per cm dike height. The loss by flooding at time
t = 0 is denoted by V4 (million euros). Note that V/(07) = Vo. If ¢ > 0 (1/cm),
the damage of a flood increases with the height of the dike. The intuition behind
this is that when there is a flood, it holds that the higher the dike the longer a high
water level will be maintained on the flooded land. This causes higher damage cost.
Multiplying the flood probability with the value of the damage by a flood leads to
the expected loss due to a flood. From (3.3) and (3.4) it follows that the expected
damage at time ¢ equals

S(t)=P(t)V(t) = Spelle 11 (3.5)

with So = PyVo, B =an+v,and § = a — (.

We consider a finite time horizon [0,7]. The total expected damage cost on the
time interval [0, 7] equals

T T
/ S(t)e "dt = / SpePte W=t gt
0 0
and the expected damage cost after T, the so-called salvage value, is given by
o S(T)e T
S@) [ e ST
T T
Hence, total (discounted) damage cost is given by
T —rT
SO/ e 01 et gt 4 7S(T)6 )
0 r
The aim is to minimize the sum of the investment and expected damage cost:

! S S (T)
min/ Sopelte MW et qt 4 Z 1 (ui, H (TZ-_)) e T4 e T2
0 i=1

r

where K is the endogenous number of dike heightening in [0, T7).
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The height of the dike, H(t), between two dike heightening does not change over
time3:

H(t)=0fort ¢ {m,...,7x}
Dike heightenings occur at times 7q,...,7x. Then we have that

H(r")—H(r7)=wforie{l,... K},

3 K3

where H(77) denotes the height of the dike (in cm) just after the dike heightening
at time 7. The dike heightening problem then becomes

o SyefT e 0H(T)

T K
min / SoePte PH B et qt 4 Z I(u, H(m)) e M + e , (3.6)
0 i=1

u, 7, K r

subject to

H

H(t) =0, for t¢{m,...,7x}
H(rt)—H(r;) =w, for ie{l,....,K},
H(t)eRy, w;€[0,00), 0<m<m<..,<7y<T.

This is an Impulse Control problem as described in Blaquiére (1977a; 1977b; 1979;
1985). Note that this dike heightening model only contains an impulse control vari-
able and not an ordinary control variable. In Blaquiére (1979) an example is given of
a linear model that contains both an ordinary and an impulse control variable. The
example of Blaquiére deals with machine maintenance, where the firm has to choose
between preventive maintenance (ordinary control) and repair (or upgrade) of the
machine (impulse control), see Section 2.3.2.

3.2.2 Necessary Optimality Conditions

In this section we state necessary optimality conditions to solve the Impulse Control
dike heightening model given by (3.6). Here we employ the current value Hamiltonian
form derived in Chahim et al. (2012). This is done, because the model described in
this chapter involves discounting. Other references stating the necessary optimality
conditions for impulse control problems are Blaquiére (1977a; 1977b; 1979; 1985),
Seierstad (1981) and Seierstad and Sydsaeter (1987).

To apply the Impulse Control Maximum Principle the functions S(¢) and I(u, H(77))

3The dike height can decrease slightly due to damage and wear, however these changes are so
small that we neglect them in our model.
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should be continuously differentiable in H and u; on R,. Moreover S(T")/r should
be continuously differentiable in H(7') on R, , and finally that [(u;, H(77)) is con-
tinuous in 7.

The current value Hamiltonian is
Ham(t, H) = —Spe’'e

and the current value Impulse Hamiltonian is given by
IHam(t, H,u,\) = —1(u, H) + \u,

in which X represents the costate variable.

Applying the necessary optimality conditions from Chahim et al. (2012) to our prob-
lem yields:

( A(t) = rA(t) — 0SpePle ™ 1Ot L r(i=1,...,K) (3.7)

0S. BT ,—0H(T)
AT) = % (3.8)
ArH) = X(77) =1y (uw, H(77)) fori=1,...,K (3.9)
I, (ui, H(77)) + X (1) =0 fori=1,....K (3.10)

Soe (e7?H ) — e_eH(Tf)) — 1l (u;, H(7;))

>0ifr, =0
—0ifr; € (0,7) fori=1,...,K (3.11)
OIHam(t, H(t),0, \(t

am( ’6u( JOMD <0 foru>0ttm(iml,... K) (3.12)

where A(t) denotes the time derivative of the costate variable A(t), Iy and I, denote
the partial derivatives of the investment cost function with respect to the state vari-
able H(t) and u, respectively. The state variable H(t) as well as the costate variable
A(t) are piecewise-continuous functions in R;. The domain of the impulse control u
is R,.

When there is no jump (i.e. t # 7 (i = 1,..., K)) equation (3.7) denotes the change
of the costate variable and (3.8) gives the transversality condition at the end. Both
(3.9) and (3.10) state that at a jump point the marginal cost is equal to the corre-
sponding marginal gains. In equation (3.9) the jump in the costate variable is equal
to Iy, which can be interpreted as the marginal investment cost of increasing the
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dike height just before a dike height jump of size u; occurs. Equation (3.10) states
that the costate variable \(¢), which can be interpreted as the reduction in expected
damage of an additional centimeter dike increase, equals the investment cost of an
additional centimeter of a dike increase, i.e. I,. When dividing equation (3.11) by the
discount rate r, the first term can be interpreted as the decrease of the discounted
value of expected future damage due to the increase of the dike at 7;, while the last
term is the investment cost of the dike heightening. So, at the jump point 7; it must
also hold that the total gain of increasing the dike should be equal to the cost of
increasing the dike. It follows that optimal behavior requires that the Net Present
Value (NPV) of the investment to increase the dike height equals zero. The NPV
equals the difference between discounted future gains and current investment cost.

Since I (u;, H(77)) is not continuously differentiable in u; (i.e. the derivative at u; = 0
does not exist, due to the fixed cost) one of the conditions for applying the Impulse
Control Maximum Principle is violated and we have a problem applying condition
(3.12). Chahim et al. (2012) deals with this problem and provides a transforma-
tion for the impulse cost function I(u;, H(77)), which ensures that the application
of the Impulse Control Maximum Principle still provides the optimal solution even
in the case of a fixed cost. This transformation is based on a continuously differen-
tiable approximation of the impulse cost function (see Section 2.3 of Chahim et al.
(2012)). Combining equation (3.12) with the correct approximation implies that
lim, o 289me (¢ H(t),0,M(t))u = —o00-u < 0 for every u € [0,00), where I[Ham, is the
continuously differentiable approximation of [Ham. Hence, (3.12) is satisfied, since
it holds for all t #7; (i =1,...,K).

3.3 Impulse Control Algorithm for a Dike Ring

In this section we present an algorithm that can be used to solve the problem de-
scribed in the previous section and explain how we apply the necessary optimality
conditions to find all dike heightenings that are candidates for occurrence in our op-
timal solution. In the algorithm H(T') (i.e. the height of the dike at t = T) is a search
variable. We show how to obtain an upper bound for the optimal H(T') using the
necessary optimality conditions. Finally, we explain how to find the optimal H(T).

3.3.1 Algorithm

In Chahim et al. (2012) it is shown that the Impulse Control sufficient conditions
do not hold in all relevant economic problems found in the literature. For our dike
height problem the sufficient conditions do not hold due to the fixed cost in the
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investment cost function, which breaks down the concavity of the Impulse Hamilto-
nian. Therefore, solutions satisfying the necessary optimality conditions presented
in the previous subsection are just candidate optimal solutions. Based on the neces-
sary optimality conditions, we design an algorithm that finds all candidate solutions
(i.e. a solution that satisfies the necessary optimality conditions). The candidate
that minimizes (3.6) is the optimal solution. This algorithm can lead to multiple
candidate solutions already described in Luhmer (1986). Contrary to Luhmer, who
designs a forward algorithm, we implement a backward algorithm, as described by
Kort (1989). This algorithm starts at the horizon date T" instead of starting at ¢ = 0.
We do this since the forward algorithm uses the costate variable A\(0) as a search
parameter to start the algorithm. In other words, the forward algorithm needs A(0)
as input to initialize the algorithm. Contrary to the forward algorithm, the back-
ward algorithm uses the dike height at the end of the planning period, H(T'), as the
search parameter. Since A(f) is only an auxiliary variable, A(0) is harder to guess
than H (7). Moreover, Section 3.3.3 shows that an upper bound for H(7T) can be
easily derived using the model characteristics. Figure 3.2 shows a flowchart of the
algorithm. The next paragraph explains the algorithm in broad terms. In Appendix
3A the algorithm is presented in more detail.

First, we define X' as a set of triples (7,u, A) that represents (part of) a solution
based on the necessary optimality conditions, S as the stack (set) of unfinished (par-
tial) solutions, and C the set of candidate solutions represented by a set of triples.
Let t; denote the time of the earliest update in X or T if X is empty. We refer
to the flowchart depicted in Figure 3.2 using roman capital numbers. To initialize
the algorithm (I) we choose a final dike height H(T') and calculate A\(T') via equa-
tion (3.8). Then we check whether a dike increase can occur at the horizon date
T, and whether it satisfies the necessary optimality conditions (I7). If it does not
satisfy these conditions, we go via (IV.7), where we set X = {(T,0, A\(T))}, to (V).
If the necessary optimality conditions are satisfied, we go via (IV.ii), where we set
X ={(T,w(T),\(T7))}, to (V). In (V) we check whether a dike increase can occur
at ¢ = 0. If a dike heightening at ¢ = 0 can occur and satisfies the necessary op-
timality conditions we save this candidate solution. More precise, in (VII) we add
this triple to X, i.e. X = X U {(0,u(0), A(0))} and save this sequence of triples as a
candidate solution in (IX), i.e. C = C U {X'}. Parallel to this we go to (V1) to find
all other candidate solutions (i.e. in (VI) we check whether other candidate solutions
can be found, neglecting the jump at ¢ = 0). If a dike heightening at ¢ = 0 can
not occur or does not satisfy the necessary optimality conditions, we go to (V7). In
(VI) we solve the necessary optimality conditions to find the set J of all triples,
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(1) initialization: choose H(T'), calcu-
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Figure 3.2 - Flowchart of Impulse Control Algorithm for a given H(T).
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with 7 € (0,ts) and dike heightenings w. If no such triple is found we go to (/X) and
save the current sequence X’ of triples as a candidate solution. If at least one triple
is found, then in (VIII) we add each triple (7,u, \) € J to the current sequence X,
and add the results to the set of unfinished sequences. From (VIII) and (IX) we go
to (IIT) where we pick a sequence X from the set of open solutions and continue the
procedure as shown in Figure 3.2. Finally, if the stack (set) of unfinished (partial)
solutions is empty, we stop.

We neglect solutions that are associated with a negative dike heightening, since these
are infeasible. Such solutions are discarded and not investigated any further. We
also neglect sequences of triples for which the sum of the investment cost for the dike
heightening u; and its predecessor u;_; is larger than the investment cost for increas-
ing the dike with u; 4+ u;_; at time 7;. If this is the case, this solution can never be
part of the optimal solution since updating with u; +u;_; at 7; has lower discounted
investment cost and induces more safety (note that 7; < 7;_1). This results in the
following observation.

Observation 1. If:

() u; <0,
or
(#9) e " (uy, H(;)) + e " (ujr, H(7;_1)) > e 1 (uj +uj1, H(7))),

J J
then the corresponding solution can never be optimal.
This approach yields a set of candidates and we select the candidate with the lowest
expected cost. Furthermore, we have to check whether H(0) = 0. If this is not
satisfied, then the initial H(7T") is not optimal and we restart the algorithm with a
new initial H(T'), more on this in Section 3.3.4.

3.3.2 Solving the Necessary Optimality Conditions

In Figure 3.2 it stated in box (VI) that the necessary optimality conditions are used
to find all candidate solutions, i.e. all candidate dike heightenings. Equation (3.10)
is of the following form

Y1t + et  yge™ — I, = 0, (3.13)
where y1, y2, y3, a1, as and «g are constants. Expression (3.11) is of the following
form:

>0fort=0
2Pt e [ 0 =0 for t € (0,7) (3.14)

<0Ofort=T,
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where z1, 2o, 81, B2 and P53 are constants. If (3.13) depends on w and ¢ this can be
rewritten into a function w(¢) which can be substituted into (3.14). The resulting
non-linear equation has only one unknown ¢. Solving this leads to all possible jumps
points 7, and u(7) gives us the corresponding jump size. It can also be the case that
(3.13) depends only on t. Then (3.13) can be solved to find all 7. Using (3.14) we
find all corresponding jump sizes u. Finally, equation (3.9) gives us the value of the
costate variable before the dike update. This results in a set of triples (7, u, A).

3.3.3 Finding an Upper Bound for the Optimal Ending Dike
Height

Let H*(T') denote the end dike height (i.e. the height at ¢ = T') of the optimal solution

to our problem (3.6). An upper bound can be obtained by using the necessary

optimality conditions. Investing in a dike is only “profitable” if the marginal cost of

the investment is at most equal to the marginal revenue. In the cases of exponential
and quadratic cost function the following results can be established.

Proposition 3.3.1.
For exponential cost (see (3.1)):

LetT > %ln %, and let H, be defined by the solution of the following equation:

0S,ePT e—0He

= boee 1 qgegetole, (3.15)
.

Furthermore, let

~ 1 QSOGBT
i, = ] .
0+ ag n( by )

Then, it holds that H*(T) < H, < H,.

For quadratic cost (see (3.2)):

Let T > %ln %, and let H, be defined by the solution of the following equation:

QSOeBTe_QHq

= 2a1]-_[q + bl'
r

Furthermore, let

~ 1 QSOOSBT
H,=-1 .
1 0 n( ’f’bl )
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Then, it holds that H*(T) < I:Iq < I:Iq.
Proof: An upper bound for H*(T') is the end height for which the following equation
(3.10) holds at time horizon 7"

XNTT) = I, (u;, HX(T)),

with
esoeﬁTe—eH* (T)

r

ATT) =X(T)

For exponential investment cost this (with no dike heightening at ¢ = T") boils down
to solving the following equation:

QLS’()(szTe_”_Ie

= b()@aoHE + Clo(C() + bou)eaoﬁe, (316)
r

where H, denotes the upper bound for H*(T). The left-hand side of (3.16) gives the
marginal gain of a dike heightening and is decreasing in H.. The right-hand side
of (3.16) gives the marginal cost of such a heightening and is increasing in H,. We
lower the right-hand side of (3.16) by omitting agboue®He; this shifts the graph to
the right and results in a lower marginal cost at ¢t = T'. Additionally, this gives us
equation (3.15). Since T' > %ln 7«(17()0+7Sc?(;())7 we have that the left-hand side of (3.15)
is larger than the right-hand side of (3.15) at H, = 0. Combining the latter with
the fact that left-hand side of (3.15) is decreasing in H.,, that the right-hand side of

(3.15) is increasing in H,, that

lim  bye®He 4 agege®te = oo,
He—00
and that
0S,ePT e=0He
lim —— =0,
He—00 T

results in a unique solution H, for equation (3.15). Furthermore, we lower the right-
hand side of (3.15) by now omitting ao(co + bou)e®™, this again shifts the graph of
the right-hand side to the right and results in a lower marginal cost at ¢ = 7. Hence,
an upper bound for H, results from

GSoefBTe_eﬁe

r

— boeaOHe’ (317)



56 CHAPTER 3. DIKE HEIGHT OPTIMIZATION

where H, denotes the upper bound for H, (i.e. H*(T) < H, < H.). Solving (3.17)
we get that H. is given by:

~ 1 QSOQ’BT
jig 1 .
¢ «9—|—aon< by )

The proof for the quadratic cost function is analogous. [ ]

Note that these upper bounds for H(7T') can also be used for the dynamic program-
ming approach in Eijgenraam et al. (2011) to decrease the number of states, see
Section 3.4.2. Moreover, we have that 05y > r(by 4+ agco) and Sy > rb; for all dikes
(in the Netherlands).? Hence, we have that the condition on T for both cost functions
is always satisfied.

3.3.4 Finding the Optimal Ending Dike Height

Recall that an ending dike height H(T') is required as an input to the algorithm in
Section 3.3. For an arbitrary H(T'), the algorithm is not guaranteed to produce a fea-
sible solution to problem (3.6), because the condition on the initial height H(0) =0
might be violated. In that case we always have H(0) > 0-since negative heightenings
are not allowed—and apparently there does not exist a feasible solution for the chosen
H(T) that satisfies all necessary optimality conditions. Thus, we need a procedure
to find an ending dike height for which the algorithm returns a feasible solution.

If we find all ending heights for which the algorithm returns feasible solutions, then
we know that the optimal solution must be among them, because all solutions, by
construction, satisfy all necessary optimality conditions—and there are no other so-
lutions with this property. The dependency on H(T) of any solution produced by
the algorithm is piecewise continuous, with discontinuities occurring when the total
number of heightenings in [0, 7] changes. This is illustrated by Figure 3.3, which
shows the residual height H(0) corresponding to the candidate solution that results
from the selected ending height H(T'). At each discontinuity point the total number
of heightenings changes as indicated in the figure. Hence, a bisection method on H(0)
could be used to search for an ending height that produces a feasible solution, i.e.,
H(0) = 0. For now, we propose the simpler approach of discretization of H(T") as is
also necessary for the dynamic programming approach to the problem (see Eijgen-
raam et al. (2011)) An upper bound for the discretization of H(T') is readily provided
by H (see Section 3.3.3) and a suitable lower bound is the current dike height plus the

“The data is provided by Rijkswaterstaat, part of the Dutch ministry of Infrastructure and
Environment.
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Figure 3.3 - Plot of the residual height (i.e. H(0)) vs. H(T') for dike 10.

(future) sea-level rise. The set of solutions produced by the algorithm applied to a
discretization of H(T') in this range is unlikely to contain exact feasible solutions. To
cope with the infeasibility of the solutions, we transform each solution to a feasible
solution by adding the residual height H(0) to the solution’s first heightening. In
that way, both the investment cost of the first heightening and the expected damage
from ¢ = 0 until the first heightening increase, which makes that there is some differ-
ence between the objective values of the original and the transformed solution. Note
that if the residual height H(0) is small-and for any reasonably fine grid, solutions
with H(0) close to zero should be found—then this difference will be small as well.
Of all transformed solutions obtained in this way, we pick the one with the smallest
objective value.

3.4 Comparing Impulse Control to Dynamic Pro-
gramming

This section consists of two parts. First, we compare the numerical results obtained
using the Impulse Control approach to the results found in Eijgenraam et al. (2011)
using dynamic programming. Second, we derive the computation time of both meth-
ods.

3.4.1 Numerical Results for Five Dike Rings

In this section we apply the algorithm described in Section 3.3. The data used in
this section are taken from Hertog and Roos (2009) and are presented in Table 3.3.
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The data are made available by Rijkswaterstaat/Deltares (i.e. a bureau concerned
with practical execution of the public works and water management part of the
Dutch Ministry of Infrastructure and the Environment) and were generated by water
experts. It is clear that the choice of T" will influence the solution. If we choose T
too small then this can affect the solution in the beginning of the planning period.
We choose T' such that the solution in the beginning of the planning period remains
stable when T increases. As in Eijgenraam et al. (2011) we set 7" = 300. Taking
T = 600 gives similar results for the beginning of the planning period compared to
T = 300. This is caused by the fact that the discount factor (e=%94*3% ~ (0.00000614)
is small for large values of t. Hence, the effect of the salvage value is very small
when 7' = 300. In Tables 3.4 and 3.5 the solutions obtained by using the algorithm
described in Section 3.3 for both exponential and quadratic investment cost can be

found.
[ Dike No. | 10 [ 11 | 15 | 16 [ 22 |
ao 0.0014 0 0.0098 0.01 0.0066
bo 0.6258 1.7068 1.1268 2.1304 0.9325
co 16.6939 | 42.62 125.6422 | 324.6287 | 154.4388
a1 0.0004 0 0.027 0.102 0.0154
by 0.7637 1.7168 3.779 3.1956 2.199
1 12.603 42.3003 | 67.699 319.25 141.01
Vo 1564.9 1700.1 11810.4 | 22656.5 | 9641.1
T 0.04 0.04 0.04 0.04 0.04
Py 1/2270 | 1/855 1/729 1/906 1/1802
Hy 0 0 0 0 0
o 0.033027 | 0.032 0.0502 0.0574 0.07
n 0.32 0.32 0.76 0.76 0.62
¥ 0.02 0.02 0.02 0.02 0.02
¢ 0.003774 | 0.003469 | 0.003764 | 0.002032 | 0.002893
Table 3.3 — Parameter values for dikes 10, 11, 15, 16 and 22.
Dike ring no. 10 11 15 16 22

Heightenings(7; : ug) | 272.8 : 52.18 | 275.9 : 54.56 | 259.2 : 57.33 | 271.6 : 47.89 | 261.6 : 50.97
217.0 : 56.43 | 218.9 : 61.71 | 206.2 : 54.16 | 219.2 : 51.69 | 199.9 : 53.37
160.1 : 56.90 | 160.2 : 62.35 | 154.3 : 53.47 | 165.3 : 52.41 | 137.6 : 53.65
103.0 : 56.95 | 101.3 : 62.42 | 103.7 : 53.32 | 111.5: 52.55 75.2 : 53.68
45.9 : 56.96 42.4 : 62.42 51.2 : 53.29 57.5 : 52.57 12.7 : 53.71
0: 55.82 3.5 : 52.58

H(T) 279.41 303.47 327.39 309.69 265.37
He 290.93 311.48 347.14 320.48 278.75
H, 292.12 311.48 360.28 334.65 288.77
Investment cost 10.16 30.18 414.59 797.75 198.42
Damage cost 29.87 80.05 130.55 291.84 110.82
Total cost 40.03 110.23 545.14 1089.59 309.24

Table 3.4 — Impulse Control solutions for dikes 10, 11, 15, 16 and 22, with
exponential cost function.
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Dike ring no. 10 11 15 16 22
Heightenings(7; : u;) | 275.9 : 57.15 | 274.6 : 55.09 | 282.0 : 62.62 | 245.3 : 76.90 | 262.1 : 56.36

213.0 : 61.35 | 217.8 : 61.39 | 214.1: 77.43 | 176.7 : 69.35 | 194.5 : 58.53
153.4 : 57.30 | 159.4 : 61.97 | 149.7 : 69.92 | 113.8 : 61.03 | 130.5 : 54.13
98.0 : 53.99 | 100.9 : 62.03 | 92.3:59.86 | 56.9: 52.51 | 70.7: 50.15
45.2 : 52.78 | 42.4:62.05 | 42.6: 49.39 3.2: 4825 | 12.7: 49.74
0: 46.44
H(T) 282.57 302.53 365.66 308.04 268.91
H, 290.22 311.28 370.28 331.79 283.82
H, 299.30 311.28 410.25 387.76 304.39
Tnvestment cost 10.17 30.16 421.30 822.41 201.35
Damage cost 29.96 80.06 160.91 334.72 115.74
Total cost 40.13 110.23 582.21 1157.13 317.09
Table 3.5 — Impulse Control solutions for dikes 10, 11, 15, 16, 22, with
quadratic cost function.
Dike ring no. 10 11 15 16 22
Heightenings(7; : w;) | 274 : 51.84 | 272 :42.24 | 262 : 54.72 | 274 : 45.60 | 254 : 52.08
219 : 55.68 | 218 :59.52 | 209 : 54.72 | 223 : 50.16 | 194 : 52.08
162 : 57.60 | 160 :61.44 | 156 : 54.72 | 171 : 50.16 | 133 : 52.08
104 : 57.60 | 101 :63.36 | 103 : 54.72 | 116 : 54.72 | 73 : 52.08
46 : 57.60 | 43:61.44 | 50:54.72 | 60: 54.72 | 12: 52.08
0: 54.72 4:54.72
H(T) 280.32 288.00 328.32 310.08 260.4
Tnvestment cost 10.16 29.33 413.39 796.31 202.09
Damage cost 29.87 80.90 131.95 294.13 107.33
Total cost 40.04 110.24 545.34 1090.44 309.41
Table 3.6 — Dynamic programming solutions for dikes 10, 11 15, 16, 22, with

exponential cost function.

Dike ring no. 10 11 15 16 22
Heightenings(7; : u;) | 277 : 55.68 | 272 : 42.24 | 280 : 63.84 | 274 : 45.60 | 265 : 55.80
214 : 61.44 | 218 : 59.52 | 212 : 77.52 | 223 : 50.16 | 197 : 59.52
155 : 57.60 | 160 : 61.44 | 149 : 68.40 | 171 : 50.16 | 131 : 55.80
99 : 53.76 | 101 : 63.36 92 : 59.28 | 116 : 54.72 69 : 52.08
46 : 53.76 43 : 61.44 42 : 50.16 60 : 54.72 12 : 48.36
0: 45.60 4: 54.72
H(T) 282.24 288.00 364.80 310.08 271.56
Investment cost 9.97 29.33 418.94 840.70 208.15
Damage cost 30.17 80.90 163.35 317.51 112.09
Total cost 40.14 110.24 582.28 1158.21 317.24

Table 3.7 — Dynamic programming solutions for dikes 10, 11, 15, 16, 22, with
quadratic cost function.

After comparing the results presented in Table 3.4 and 3.5 with the dynamic pro-
gramming results taken from Eijgenraam et al. (2011) presented in Table 5.5 and 3.7,
we can make the following observations:

e The (total) cost using the Impulse Control approach is always lower. The
reason for this (minor) difference is due to the discretization of the problem in
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time and dike height in the dynamic programming approach.

e Comparing the results between the exponential and quadratic investment cost
functions for the Impulse Control approach given in Table 3.4 and 3.5, re-
spectively, no significant difference can be found. The first dike heightening
for Impulse control using a quadratic cost function takes place slightly earlier
comparing it with the exponential cost function. However, the corresponding
amount of this first dike heightening is lower. This difference is also observed
for the dynamic programming approach.

e Dike 15 needs to be heightened immediately (i.e. at 74 = 0). This result is
found for both the exponential and the quadratic cost function, and for both
approaches.

e The Impulse Control approach results in a significantly higher H(7T") for dike
11 compared to the dynamic programming approach. This is observed for both
cost functions.

e For exponential investment cost the upper bound H, is very close to the optimal
H(T) found for all five dikes. Comparing the upper bound for quadratic cost,
H,, with H, we observe that H, is higher than H, for dikes 15, 16 and 20. The
values are comparable for dike rings 10 and 11.

e When the first dike heightening is far from time zero, H, and H. are closer
to each other (same holds for H, and H,). For dike ring 11 we have that

~

a; = ap = 0 and hence H, = f[e and f_[q =H,.

In Figures 3.4 and 3.5 the optimal dike height and the corresponding flood probability
of dike 10 are presented for the exponential and quadratic investment cost, respec-
tively. It is striking to see that the upper bound(s) are very close to the optimal dike
height at time 7'. Finally, in Figures 3.4 and 3.5 one can observe that at the time
moments where a dike heightening occurs the flood probability drops instantaneously.

We also observe that after each dike heightening at most three candidate dike height-
enings were found by the algorithm (stage V' I). In case of three candidates we always
found that two out of the three candidates could not be optimal, since one was al-
ways negative (Observation 1, (¢))) and for the other one it holds that combining
this heightening with its predecessor was an improvement (see Observation 1, (i7)).
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Figure 3.4 — Optimal dike height of dike 10 and the corresponding flood
probability using exponential investment cost.
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Figure 3.5 — Optimal dike height of dike 10 and the corresponding flood
probability using quadratic investment cost.

3.4.2 Computation Time

In Section 4 of Eijgenraam et al. (2011) a dynamic programming approach is de-
scribed that corresponds to the above described Impulse Control model. A drawback
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of this approach is that the finite time horizon [0, 7] as well as the height of the dike
H (t) are discretized. This directly has an effect on the accuracy of the method. This
can partly be resolved by taking a “finer” discretization. However, this will affect
the computation time of the problem. The discretization chosen in Eijgenraam et al.
(2011) seemed to be fine enough for the dike heightening problem.

Dynamic programming (DP)

The number of computations that have to be made in the DP approach depends on
the number of stages and states (for each stage the value of each state should be
calculated). The problem is discretized in both time and dike height. Let us call M
the number of states per stage and 7' the number of stages. Cost are related to the
transition from one state to another. The DP problem can be presented in a graph
where the vertices in the graph are the states, and the arcs of the graph represent
the transition. The aim of DP is to find the shortest path in the graph. In the DP
approach used to solve the dike heightening problem in Eijgenraam et al. (2011),
the stages defined as the years t = —1,0,1,2,... T, in which ¢ = —1 is the time just
before t = 0. The state at stage t is defined as H(¢). For the initial state at stage
t = —11it holds that H(—1) = 0. Also we know that a transition can only occur from
state H(t) in stage t to state H(t + 1) in stage ¢ + 1 such that H(t + 1) > H(¢). In
Eijgenraam et al. (2011) the discounted investment and damage cost in the period
[t,t +1], fort =0,1,...,T — 1 are given by

t+1
c(H(t),H(t+1)) = / S(tye "tdt + I(H(t + 1) — H(t), H(t))e "),
t
and for t = —1, by
c1(H(=1), H(0)) = I(H(0) — H(-1), H(0)) = 1(0,0).
The recursive relation for the DP approach is

f(H(T)) = min {frri(H{t+1)+c(H(t), H(t+1))}, t<T, H(T) € Hs,
H(t)<H(@t+1)EHi41

where H; denotes the set of all feasible dike heights at time ¢. Starting in state H(T'),

fi:(H(T)) denotes the minimal cost to cover the years t,t + 1,..., T,T +1,...,00.

The costs after t =T are given by
S(T)e T
" :

fT(H(T)) =

It is easy to see that this DP approach is of order O(appM?T), where app denotes
the basic operations needed to calculate the transitions cost from one state to another.
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Impulse Control (IC)

Let J be the number of dike heightenings found. To make an easy comparison with
DP we run the algorithm for the same candidate final dike heights, i.e. we take the
states used in the DP approach as input determining the optimal final dike height.
In the dynamic programming approach for each stage a certain number of discretized
states are defined. Clearly, for the impulse control approach this is not necessary.
Let us call the number of basic operations needed to solve the necessary optimality
conditions (see Section 3.3.2) to find all candidate dike heightenings ajc. Then it is
easy to see that this problem is of order O(acJM). In the previous section we have
seen that the number of dike heightenings (5 or 6) in the dike heightening problem
never exceeds the number of states (M = 300) used in the DP approach and app
and ajc are comparable. Hence, we can conclude that IC needs less computation
time than DP.

3.5 Conclusions and Recommendations

In this chapter we present the first real life application of the Impulse Control Maxi-
mum Principle. In doing so, we propose an alternative for the dynamic programming
approach used in Eijgenraam et al. (2011). We show that, compared to the dynamic
programming approach, the Impulse Control approach has lower computation time.
This can be explained since the Impulse Control approach does not need discretiza-
tion in time and only discretization for the dike height at the end of the time horizon
(final stage), unlike dynamic programming where discretization is needed for time
and for the heights (states) for each stage. Comparing the total cost for the dike
updating scheme for the five dikes presented in this chapter with the total cost using
the dynamic programming approach, we observe that the total cost for the Impulse
Control approach is always lower. However, the differences are very small. Further,
we identify upper bounds for the final dike height, by using the necessary optimal-
ity conditions at the end of the planning period. It is striking to see that both
proposed upper bounds are very close to the optimal dike height at the end of the
planning period. The way we derive these upper bounds can be used in general, so
that these upper bounds can also be implemented in the dynamic programming ap-
proach. We show that the Impulse Control approach works well for both exponential
and quadratic investment cost.

A possible extension of this chapter would be adding some preventive dike main-
tenance. It would be interesting to analyze the interaction between preventive dike
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maintenance and the impulse dike heightening. This extension will quadratically in-
crease the number of states for the dynamic programming approach and hence take
more time to compute. Another possible extension is applying Impulse Control to
nonhomogeneous dikes (i.e. dikes or dike rings that consist of multiple segments) for
which the dynamic programming approach is not useful since it suffers from the well-
known combinatorial explosion. Also other maintenance problems can be considered.

Appendix 3A: Backward Algorithm for Impulse Con-
trol

In this section the algorithm described in Section 3.3 is presented in more detail.
Before we start we define X' as a sequence of triples (7,u,\), S the stack (set) of

open solutions, and C the set of candidate solutions. We need one more variable ¢,
defined as

. T if X=09,
o min(ﬂu,)\)eXT if X 7§ @

Step I: Initialization:

Choose H(T).
Determine the value of the co-state variable:

0.5, BT o—0H(T)
MT) = Spe’te

r

Step II: Check whether a dike height increase can occur at time ¢ = 7" and whether
it is optimal. Derive H (7T~) and u (7T") from

H(T*) —H(T‘) =u(T),
and

—I, (uw(T),H (T™)) + A (T*) =0.
The dike height increase is optimal at time 7T if

—SpePTe () 4 SyePTe 0 (T7) —pp (u(T), H (T7)) < 0.
If so, go to step IV.ie. Otherwise, define

H(TY) = H@D).
AITY) = A@).
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and go to step I'V.i.

Step III: If S = () STOP. Else pick X € S, set S = S\ {X} and go to step
V.

Step IV.i: Set X = {(T,0,\(T))}.
Step IV.ii: Set X = {(T,u(T),\(T7))}.

Step V: Check whether a dike height increase can occur at time 0 and whether
it is optimal.
Solve (3.10) to find «(0). The dike height increase is optimal if

—SoeﬁTe_eH(m) + Soe’BTe_eH(O_) —rl (u (0),H (O_)) > 0.

If so, go to VI and to VII. If not, go to step VI.

Step VI: Find all 7 € (0,t5) such that
ts
AtT) = e EON(t) +/ e TS efse I H D) g, (3.18)
¢

At the point in time where a dike increase can occur, equations (3.9), (3.10) and
(3.11) hold.

Combining equation (3.10) and (3.18) gives a condition that holds at the jump point
ts
e "ETON(t,) + / e 098P H D ds — [ (u, H(t,)) = 0. (3.19)

t

Solving equation (3.19) results either in an explicit function u(¢) for the dike height-
ening or gives all 7 for which (3.19) holds. When u(t) can explicitly be identified, go
to step IV.i, else go to step VI.ii.

Step VI.i: Substituting u(¢) in equation (3.11) yields
—Spelte ) 4 Gpefle0UHE)=u®) T (y(t), H(t,)) = 0, (3.20)

which is an equation that only depends on ¢ and holds for each jump point 7 € (0, t,).

If equation (3.20) is solvable, it gives us all potential jump points 7. Using this,
we get all dike heightenings u using wu(t) (from equation (3.19)). This gives a set
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J of triples (7,u,\). For each triple (7,u,\) € J check Observation 1 conditions
(¢) and (iz). If a triple (7,u, A) satisfies condition (i) or (i7) of Observation 1 then
J =T \A{(r,u,\)}. It T #0, go to VIII, else go to step IX.

Step VLIii: For each 7 found in step V solve
— Sl Te ) 4 G BT 0UH ) uT) _ g T(y(7), H(t,)) = 0, (3.21)

to find the corresponding w. This gives a set J of triples (7,u, A). For each triple
(t,u,\) € J check Observation 1. If a triple (7,u, \) fulfills Observation 1 then
J =T \{(r,u,\)}. It T # 0, go to VIII, else go to step IX.

Step VII: Save X = X U {(0,u(0), A(0))} and go to step IX.

Step VIII: Add each triple (7,u,\) € J to the current sequence X and add the
result to the stack (set) of unfinished (partial) solutions, i.e.:

§ = 8U (Upunes (X U{(Tu. X))

and go to step I11.

SteplX: Save the set of sequences X as candidate solution, i.e.:
C=Ccu{x},

and go to step I11.
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CHAPTER 4

Product Innovation with Lumpy Investments

Abstract This chapter considers a firm that has the option to under-
take product innovations. For each product innovation the firm has to
install a new production plant. We find that investments are larger
and occur in a later stage when more of the old capital stock needs
to be scrapped. Moreover, we obtain that the firm’s investments in-
crease when the technology produces more profitable products. We
see that the firm in the beginning of the planning period adopts new
technologies faster as time proceeds, but later on the opposite happens.
Furthermore, we find that the firm does not invest when marginal profit
(with respect to capital) becomes zero, but invests when marginal profit
is negative. Moreover, we find that if the time it takes to double the
efficiency of technology is larger than the time it takes for the capital
stock to depreciate, the firm undertakes an initial investment. Finally,
we show that, when demand decreases over time and when fixed in-
vestment cost is higher, the firm invests less throughout the planning
period, the time between two investments increases and the first in-
vestment is delayed.

4.1 Introduction

In today’s knowledge economy innovation is of prime importance. Innovation has led
to extraordinary productivity gains in the 1990s. In current business practice it is
felt that the heat is on and that firms must innovate faster just to stand still (The
Economist, October 13th 2007, Innovation: Something new under the sun). There-
fore, technological progress is a crucial input for firms in taking their investment
decisions. Greenwood et al. (1997) argue that technological progress is the main
driver of economic growth. They discovered that in the post-war period in the US
about 60% of labor productivity growth was investment specific. Yorukoglu (1998)
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notes that information technology is a prime example where embodied technological
progress led to an improvement of computing technology on the order of 20 times
within less than a decade in the 1980s-90s.

This chapter combines technology adoption with capital accumulation, taking into
account technological progress. The aim of this chapter is to study the decision of
when to introduce a new product. To do so we employ the Impulse Control modeling
approach that is perfectly suitable to take into account the disruptive changes caused
by innovations. This also enables us to determine the length of the time interval that
the firm uses a particular technology, when it is time to launch a new product genera-
tion, and how these decisions interact with the firm’s capital accumulation behavior.
In Kort (1989) a dynamic model of the firm is designed in which capital stock jumps
upward at discrete points in time at which the firm invests. However, technological
progress in not taken into account.

An example where a firm has to decide about investments in new generations of
products is the LCD industry. With every new generation the size of the mother
glass or substrate increases. As the LCD panels are cut out of the substrate, the
substrate on the one hand determines which panel sizes can be produced and on the
other hand how efficient each possible panel size can be produced. We have a process
innovation, because a larger glass area provides a more efficient solution of the “cut-
ting problem”, and thus lower costs in the production process. A product innovation
arises, because the larger area of the substrate makes it possible to produce larger
screens. For a firm it is important to determine when it is optimal to introduce a
new product. However, since the new product will decrease the demand of the old
product, the moment of introduction is crucial.

Feichtinger et al. (2006) employs a vintage capital goods structure to study the effect
of embodied technological progress on the investment behavior of the firm. They
show that in the case that a firm has market power a negative anticipation effect
occurs, i.e. when technological progress goes faster in the future, it is optimal for the
firm to decrease investments in the current generation of capital goods. However, a
direct implication of the vintage capital approach is that the firm adopts an infinite
amount of different technologies. Of course, in practice a firm can adopt a new tech-
nology a limited number of times.

Grass et al. (2012) also combines technology adoption with capital accumulation,
while taking into account technological progress. They find that investment jumps
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upward right at the moment that a new technology is adopted, and that the larger
the firm the later the investment in a new technology takes place. Moreover, they
find that when a firm has market power, the firm cuts down on investment before
a new technology is adopted. Whereas Grass et al. (2012) limits itself to process
innovation, we concentrate on studying product innovation. Grass et al. (2012) use a
Multi-Stage optimal control approach where a firm adopts a new technology in each
stage. Unlike Feichtinger et al. (2006), the number of technology adoptions is limited.
However, the number of innovations is not determined by the model, but fixed exoge-
nously instead. Unlike Feichtinger et al. (2006) and Grass et al. (2012), in this paper
capital accumulation only occurs in lumps. Moreover, these lumps are determined
by the model, i.e. the lumpy investments are endogenous. In Saglam (2011) a multi-
stage optimal control model is studied where the number of technology adoptions are
endogenous. However, unlike our paper, the model does not incorporate any (fixed)
cost associated with the adoption and the considered firm has no market power.
In Boucekkine et al. (2004) a two-stage optimal control model is considered, where
only one adoption occurs, without adoption (fixed) cost. Both Boucekkine et al.
(2004) and Saglam (2011) incorporate learning, were the firm raises productivity of
a given technology over time due to learning and revenue is linear in the capital stock.

This chapter is comparable with Grass et al. (2012). However, unlike Grass et al.
(2012), we do not need to fix the number of technology adoptions beforehand and
we do incorporate a (fixed) cost associated with this adoption. When dealing with
product innovation, firms do not always have to scrap all capital goods. Sometimes
measures are taken to allow new or updated parts to be fitted to old or outdated
assemblies. As in Grass et al. (2012), we can model all situations in between the
extreme cases where after every new investment the old capital goods are scrapped
and the case where all the capital goods can be kept after adopting a new technology.

The method used to study firm behavior in this paper is Impulse Control. Impulse
Control theory is a variant of optimal control theory where discontinuities (i.e. jumps)
in the state variable are allowed. In Impulse Control the moments of these jumps
as well as the sizes of the jumps are decision variables. Blaquiére (1977a; 1977b;
1979; 1985) extends the standard theory on optimal control by deriving a Maximum
Principle, the so-called Impulse Control Maximum Principle, that gives necessary
and sufficient optimality conditions for solving such problems. Blaquiére’s Impulse
Control analysis is based on the present value Hamiltonian form. In this chapter we

apply the Impulse Control theorem in the current value Hamiltonian framework as
derived in Chahim et al. (2012).
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One of the striking results is that the firm does not invest when the marginal profit
(with respect to capital) becomes zero, but invests when marginal profit is nega-
tive. Furthermore, we obtain that the firm in the beginning of the planning period
adopts new technologies faster as time proceeds, but after some moment in time
later technologies are used for a longer time period. This behavior is different from
Grass et al. (2012), who finds that the firm adopts new technologies faster as time
proceeds for the whole planning period, but this also differs from the results found
in Saglam (2011), who finds that later technologies are used during a longer time
period. Our results are somehow a combination of both. Moreover, we find that if
the time it takes to double the efficiency of technology is larger than the time it takes
for the capital stock to depreciate, the firm undertakes an initial investment. Finally,
we show that when demand decreases over time the firm invest less throughout the
planning period and that the first investment is delayed.

This chapter is organized as follows. In Section 4.2 we give the general setting and
build up the Impulse Control model. Section 4.3 derives the necessary optimality
conditions, whereas Section 4.4 gives a brief description of the algorithms present in
the literature dealing with the Impulse Control Maximum Principle. In Section 4.5
we study the investment behavior of the firm, and in Section 4.6 we extend this analy-
sis by adding decreasing demand, i.e. demand decreases over time due to competitors
producing better products because of technological progress. Finally, in Section 4.7
we conclude and give some recommendations for future research.

4.2 The Model

Consider a firm that invests in lumps over time. Each time it invests it installs a
production plant suitable to produce the new product. Due to product innovation
the quality of the products, and thus also demand, increases over time. This implies
that the later an investment takes place, the better products can be made due to
these investments.

This is formalized as follows. A plant being installed at time 7 will make products
from which the price is given by the following inverse demand function:

p(t) = 0(7) —q(t), for t=>m,
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where ¢(t) is the output at time ¢ and 6(7) = 1 4 b7 is the state of technology that
the firm adopts at time 7!. We further assume that technology within the firm does
not change between two technology adoptions, i.e. «9(15) =0 for all t # 7. At the
moment the firm adopts a technology, the firm’s technology change is given by

O(r;") = 0(r;) =1+ br, — 0(7;).

Hence, as in Feichtinger et al. (2006) and Grass et al. (2012) we impose that techno-
logical progress increases linearly over time, where b is a positive constant. In Saglam
(2011) technology increases exponentially over time and in Boucekkine et al. (2004)
there are only two different technologies available. We assume a simple production
function in the sense that one capital good produces one unit of output. Denoting
the stock of capital goods by K (t), this gives

We impose that only the capital stock of the new plant is able to produce the new
products, i.e. each plant has its own capital stock that produces the products with a
quality associated with the timing of the investment in this plant. In this setting we
can also model a situation where just 100~%, where v € [0, 1], of the capital stock is
scrapped, while the remaining machines or tools can be reused for the new product.
Hence, full scrapping corresponds to the case where v = 1. This implies that old
products, and thus also old capital goods, become worthless after the new plant is
installed, implying that the old capital goods can be scrapped.

Denoting investment by I(¢), at the moment the firm invests (adopts a new tech-
nology) capital stock changes by

K(r7) = K(r7) =1(1) = yK(77).

At time zero the capital stock is equal to zero, i.e.
K(0) =0.

For each plant it holds that capital stock depreciates with rate 9, i.e.
K(t) = —0K(t).

Investing in a plant implies that the firm has to pay a fixed cost, i.e. part of the cost
is independent of the plant size, and a variable cost that more than proportionally

'We assume that technology is continuously changing with rate b. However, the technology
within the firm is the technology that the firm adopts at time 7.
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increases with the size of the plant. In particular, we assume that the investment
cost is given by

CH+al +BI% forl>0
] pu—
¢ { 0 for I = 0.

This type of investment cost function, without the fixed cost, is common in the
literature (e.g., among others, see Grass et al. (2012), Sethi and Thompson (2006)
and Seierstad and Sydseeter (1987)), where besides the fixed cost, the linear term
consists of acquisition cost, where the unit price is equal to « and the quadratic

Y

term represents the adjustment cost. In “ordinary” optimal control the investment
cost function does not include a fixed cost, because this violates the continuity of

the cost function with respect to its arguments, i.e. the control and the state variable.

Total discounted revenue in [0, 7] is given by

[ - K @) K
0
where revenue is determined by output price times output. Since we have a finite
time planning period, a salvage value has to be defined. This salvage value is equal
to the value of the firm at the time horizon 7. We assume that this value is given by
- [0(rw) — K(T)E(T)
r+9
where 7y denotes the time of the last investment. The salvage value (4.1) is a lower

Y

bound of the discounted revenue stream of the firm after the planning period.

Total discounted investment cost are given by the sum of the cost of adopting a
new technology, discounted at the time the adoption takes place, i.e. 7y,... 7y, with

0< 7 <T7y...< 7y <T. This results in
N
Z e (C+ ol () + BI (Ti)2) .
i=1
The above gives rise to the following impulse control model:

=Y (C ol (7) + BI (7))
_rlf(rn) — K(TF)]K(T)

_|._
¢ r+9

(4.1)
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subject to
K(t) = —06K (1), for t#7 (i=1,..,N), (4.2)
o) = 0, for t#7 (i=1,..,N), (4.3)
K(r")—K(r;)) = I() —vK(r;), for i=1,..,N, (4.4)
O(r;") — 0(;) 1+br; —0(r;), for i=1,...N, (4.5)
K(0) 0, (4.6)
00) = 1. (4.7)

This is an Impulse Control problem as described in Blaquiére (1977a; 1977b; 1979;
1985). Note that this innovation model only contains an impulse control variable and
no ordinary control variable. This approach differs from the multi-stage approach
used in Grass et al. (2012), because here investment takes place in lumps and every
investment goes along with a fixed cost. As in Grass et al. (2012) we can model
all situations between the extreme cases where after every new investment the old
capital goods are scrapped (7 = 1) and where all the capital can be kept (v = 0) to
produce the new product. Another benefit of the above model is that the number of
technology changes are endogenous.

4.3 Necessary Optimality Conditions

We apply the impulse control maximum principle in current value formulation derived
in Chahim et al. (2012). Other references deriving the necessary optimality conditions
for the Impulse Control problems are Blaquiére (1977a; 1977b; 1979; 1985), Seierstad
(1981) and Seierstad and Sydsseter (1987). We define the Hamiltonian Ham and the
Impulse Hamiltonian IHam

Ham(0, K, \i,t) = [0 — K]IK — \0K, (4.8)

IHam(K, I, A\, \p,t) = —C —al —BI* + M\ (I —yK)
+X (1 4+ 0t —0)),

and obtain the adjoint equations

M) = F+OME) -0 +2K (1), for t#£m, i=1,...,N, (4.10)

() = rat)—K(@{), for t#7, i=1,...,N. (4.11)

The jump conditions at t =7; (i =1,..., N) are
—a=28I(r)+ M\ (7) = 0, (4.12)
M(E) =M () = ya(nh), (4.13)

M (1) =X () = A (rh), (4.14)
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from which we conclude that
M) =0 =X (7)),
which equals zero for v = 1, and
X (17) =0.
The condition for determining the optimal switching time 7; is

[0(") = K (n")] K (7") = [0 (7)) = K (=) K (7))
X (1) 0K (77) + M (77) 6K (7;7) — rC — rad (1) — rB1 ()% — bAs (")
>0 form; =0
=0 forr e (0,7) (4.15)
<0 form="T.

The transversality conditions are

M (TY) = Q(TN)T_E? ) (4.16)

and

nry = & (f;). (4.17)

At the non-jump points ¢t # 77 (i = 1,,..., N) it holds that lim; g ‘”g]‘“” = oo due

to the fixed cost. Hence, the conditions for applying the Impulse Control Maximum
Principle are met, see Section 2.2.

4.4 Algorithm

In the literature three different algorithms are derived based on the Impulse Control
Maximum Principle (Blaquiére (1977a; 1977b; 1979; 1985) and Chahim et al. (2012)).
Luhmer (1986) derived a forward algorithm (starts at time 0) and Kort (1989, pp.
62-70) derived a backward algorithm (starts at final time horizon 7"). Luhmer (1986)
starts at ¢ = 0 and uses the costate variable, as input to initialize his algorithm. Kort
(1989) implements a backward algorithm that starts at the time horizon, i.e. t =T,
and initializes the algorithm using the values of the state variables. Finally, Grass
and Chahim (2012) design an algorithm that is a combination of continuation tech-
niques and a (multipoint) Boundary Value Problem (BVP) to solve Impulse Control
problems (see Chapter 5).
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The problem described by (4.1)—(4.7) has two state variables, the stock of capital
K(t) and technology 6(t). The question is which algorithm is most suitable for
this model. Applying the forward algorithm to problem (4.1)—(4.7) has a drawback.
Namely, we have to guess the initial values for the two costate variables, A;(0) and
A2(0). A wrong guess of the costate variables at the initial time results in a solution
that does not satisfy the transversality conditions (4.16) and (4.17), which implies
that the necessary optimality conditions are not satisfied. For the backward algo-
rithm we start with choosing values for the state variables at time 7. The resulting
solution always satisfies the necessary optimality conditions, but here the problem is
that the algorithm has to end up at the right K(0). In other words, with the back-
ward algorithm one can apply the right necessary conditions to the wrong problem.
An example where the backward algorithm is applied successfully can be found in
Chapter 3. Moreover, in Chapter 3 clear upper and lower bounds have been derived
for the state variable.

In addition, the backward algorithm has another drawback. When we apply it to
the problem described by (4.1)-(4.7), starting at the time horizon and going back
in time requires knowledge of the technology before the investment. In particu-
lar, we obtain from equation (4.15) that we need to know 6(7y) = 1+ bry and
O(ty) = 0(Tn-1) = 1 4+ bry—1. Hence, solving this equation for 7y requires that we
know 7n_1. And with the backward algorithm, this predecessor is not known. We
conclude that the backward algorithm is not suitable to solve our model as presented
in this chapter.

The third algorithm described in the literature is an algorithm that considers the
problem described by (4.1)—(4.7) as a (multipoint) Boundary Value Problem (BVP)
and uses a continuation technique to solve it. The main idea behind the algorithm is
as follows. To find the solution of the problem described by (4.1)—(4.7) we can apply
a continuation strategy with respect to the time horizon 7', i.e. T' is our continuation
variable. The algorithm for this approach is described in Box 4.1. To initialize the
algorithm, the problem is solved for 7' = 0. Assuming that a unique solution exists
for T' = 0, the initial conditions together with the transversality conditions combined
with the necessary conditions results in a set of n equation with n unknowns. Given
a solution for T = 0, T is increased (continued) during the continuation process
whereas the conditions for possible jumps are monitored. If the conditions for a
jump are satisfied, the BVP is adapted to this situation. With this new solution
the continuation is pursued. In Chapter 5 this algorithm more extensively. In Grass
(2012) also a BVP approach in combination with continuation is described, but that
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paper the focus is on ordinary optimal control problems.

Define T" as time horizon for the problem.
Define T to be a continuation variable.
Set T'=0 and 7, = 0.

Step 1: Find jump in [r, T for:

case 1: A jump occurs at the end, i.e. at t = T, save as
JumpSol.

case 2: No jump at the end, save as noJumpSol.

Step 2: Start the continuation for T € (7, T) with JumpSol until
interior jump condition is satisfied, i.e. let T increase until
(4.12)—(4.15) are satisfied for some ¢t = 7. Set 7, = 7, save
as JumpSol. Also continue the result of noJumpSol until
T = 7, save as noJumpSol. If T > T without satisfying
interior jump conditions, stop.

case 1: Objective of JumpSol higher than objective no-
JumpSol, add arc and go to step 1.

case 2: Objective of JumpSol is lower than objective no-
JumpSol, go to step 3.

Step 3: Continue the solution of noJumpSol until the interior
jump condition (4.12)—(4.15) is satisfied for t = 7 € (7, T).
Set 7, = 7, save as JumpSol, add arc, and go to step 1. If
T > T without satisfying interior jump conditions, stop.

Box 4.1 — (Multipoint) BVP and continuation algorithm

4.5 Endogenous Lumpy Investments

When a firm is dealing with market power, the output price decreases with the
quantity that is produced. Since it holds in this model that with one unit of capital
stock one unit of output is produced, we have that the output price decreases with
the amount of capital. So during the time period between two investments the output
price increases, since depreciation decreases capital stock. We consider no scrapping,
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partial scrapping and total scrapping, i.e. we consider v =0, vy = 0.5 and vy =1. We
provide a numerical analysis starting with the parameter values

1 1
b= —log2 = ilog2, a=0, =02 C=2 r=004 6=0.2,
n
which we consider as the benchmark throughout this chapter. As in Grass et al.
(2012), we base our value for b on Moore’s law?, where the value for b is such that
the efficiency of the technology doubles every n years where we put n = 2. The
results of the first ten investments, are presented in Table 4.1 for T" = 100. Table 4.6

of Appendix 4A presents all investments up until 7" = 100.

Ignoring the first and last investment, we see that the better the technology is,
the larger the investment becomes. It seems as if the firm delays the first investment
(compared to the others) to start production of a new good. In Figure 4.1a this is
clearly seen (also see Figure 4.4a and Figure 4.6a in Appendix 4A). To understand
what happens with the first investment we have to distinguish between 7 < 1 and
v = 1. When v < 1 capital growth is increased with each investment without fully
scrapping the old capital stock. Because there is only limited scrapping, at an early
stage the firm undertakes a relatively high investment to start production. A firm
only undertakes this relatively high investment if there is limited scrapping, because
the investments help to increase the capital stock in the future. This behavior is
clearly seen in Figure 4.1a. Connecting the points in Figure 4.1a ignoring the first
and last investment not only tells us that the first investment is relatively large, but
also that the last investment is small. This last investment being small occurs due to
the fact that the salvage value of the problem is (too) low, because it does not take
into account technological improvement after time 7.

Table 4.1 shows that the higher the scrapping percentage the larger the investments
become. This makes sense because a firm that wants similar production has to in-
vest extra to replace the scrapped parts. This scrapping increases the investment
cost and at the same time, due to the quadratic term in the investment cost func-
tion, investing such that the same level of capital is reached as in the case of no
scrapping, is too expensive. Hence, the optimal level of capital stock in the case of
scrapping is lower than under no scrapping, which explains the lower revenue. Table
4.6 of Appendix 4A presents all investments up until 77 = 100 (Table 4.7, 4.8 and
4.9 present full results for v = 0, % and 1, respectively). It shows that a higher
scrapping percentage decreases the number of investments during the planning pe-

2Moore’s law still holds, The Economist, July 14th 2012, Chipping in: A deal to keep Moore’s
law alive.
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v=0

v=20.5

=1

(1;: 1)

4.1651 :
7.3464 :
10.0022 :
12.3693 :
14.5474 :
16.5895 :
18.5276 :
20.3835 :
22.1724 :
23.9056 :

1.4877
1.3571
1.4032
1.4610
1.5188
1.5751
1.6299
1.6837
1.7365
1.7887

4.1462
7.4147
10.1649
12.6433
14.9499
17.1370

19.2361 :
21.2682 :
23.2479 :
25.1861 :

: 1.4682
: 1.7204
: 2.0101
1 2.2785
0 2.5312
0 2.7731
3.0070
3.2353
3.4594
3.6805

3.8509 :

7.1308 :

9.9511 :
12.5559 :
15.0389 :
17.4476 :
19.8100 :
22.1437 :
24.4606 :
26.7688 :

1.3689
1.9589
2.4614
2.9262
3.3716
3.8067
4.2365
4.6639
5.0910
2.5191

Rev
ICost
Profit

802.4809
35.3109
767.1700

790.1920
67.8103
722.3817

771.3955
97.6050
673.7904

Table 4.1 — First ten investments of Impulse Control solutions for different +,
where T'= 100, r = 0.04, § = 0.2, b= 1log2, =02, a=0. C =2, Kj =0
and #(0) = 1. Furthermore, Rev and ICost denote the discounted revenue and

the discounted investment cost, respectively.

riod. Another striking effect can be noticed when looking at Figure 4.1b. We see
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Undiscounted revenue

(a) Lumpy investments, I(7;).
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>
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(b) Undiscounted revenue for
the first ten investments.

Figure 4.1 — Lumpy investments and undiscounted revenue, where 7' = 100,
r=004,6=027=0b=1log2, =02 a=0,C=2 Ky=0 and

0(0) = 1.

that the firm invests in a new product such that marginal revenue (with respect to
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capital) is negative. In a “static” model (i.e. a model that does not depend on time)
we know that the firms optimize profit and hence invest at the moment that marginal
cost is equal to marginal revenue. Since we did not include any operation cost, we
know that marginal cost is equal to zero. Hence, when marginal revenue is equal
to zero, (i.e. K(7) = 6(7)/2) investment would be optimal according to this rule.
In our dynamic setting it is impossible to stay at the point where marginal revenue
is equal to zero, due to depreciation. In Table 4.2 we show the results for a case
where we have no depreciation. We see that indeed the investments are such that
the level of capital is set to K(7) = 6(7)/2. In the case that we have depreciation,
the firm overinvests, i.e., invests such that marginal revenue is negative. Then up
until the next investment, marginal revenue increases, becomes zero after some time,
and then turns positive. In Figure 4.2 we have plotted the length of the time interval

Ti (") | K(r") %
19.6234 | 7.8009 | 3.8574 | 2.0224
34.5329 | 12.9682 | 6.4650 | 2.0059
00.7184 | 18.5777 | 9.2706 | 2.0039
70.6244 | 25.4766 | 12.7165 | 2.0034

99.7453 | 35.5691 | 17.7443 | 2.0045

Table 4.2 — Technology level and capital, where T' = 100, v = 0, » = 0.04,
§=0,b=1%log2, =02 a=0,C =2, Ky=0and 6(0) =1.

between two investments. We see that in the beginning of the planning period the
firm adopts new technologies faster as time proceeds and after some moment it uses
later technologies for a longer time period. This behavior is different from Grass
et al. (2012), who finds that the firm adopt new technologies faster as time proceeds
for the whole planning period, but this also differs from the results found in Saglam
(2011), who finds that later technologies are used during a longer time period. Our
results are somehow a combination of both. An explanation for this could be that the
firm in the beginning of the planning period does not invest much since productivity
is low. After some time technological progress is such that each investment is more
profitable, which causes the corresponding capital goods are used for a longer time.
For this reason the time between investments increases. Also for higher 7" a similar
effect is found.
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Figure 4.2 — The length between two investments, where T = 100, r = 0.04,
§=02,v=0,b=3log2, =02,a=0,C=2, Ky=0and 0(0) = 1.

4.5.1 Sensitivity Analysis with Respect to the Rate of Tech-
nology Change

Here we study how the rate of technological progress affects the investment behavior
of a firm. Remember that we have assumed, using Moore’s law, that efficiency of
technology doubles every n years, setting n = 2 for our benchmark case. Table 4.3
shows the first ten investments for different values of the technology rate b. For all
investments up until 7' = 100 see Table 4.10 of Appendix 4A (or Table 4.11-4.15 for
each level of technology change separately). When n > 5 an investment takes place
at t = 0. The explanation behind this is that for n > 5 we have, under Moore’s law,
that it takes more than five years for the efficiency of a technology to double. Since
we have a depreciation rate of 20%, this means it takes more time to double the
efficiency of a technology than the capital stock to depreciate to half of its original
level. So the firm has no incentive to wait and invests at ¢ = 0.

4.5.2 Sensitivity Analysis with Respect to the Fixed Cost

One of the main differences between Grass et al. (2012), Boucekkine et al. (2004)
and Saglam (2011) is that they do not incorporate any (fixed) cost and this chapter
assumes that a fixed cost is included for each investment. Here we study how increas-
ing these fixed cost affects the investment behavior of a firm. Table 4.4 shows the
first ten investments for each size of fixed cost. For all investments up until 7" = 100
see Table 4.16 of Appendix 4A (or Table 4.17-4.20 for each for each size of fixed cost
separately). It is easily seen, that if we increase the fixed cost, the first investment
is delayed and at the same time the time period between two investments increases.
Hence, the number of investments decreases if the fixed cost increase. Comparing
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1
b= 3log2

b= ilog2

1
b= zlog2

1
b= glog2

T
b= {5log2

(Ti : I)

4.6759 : 1.3116
8.6561 : 1.5392
1.9662 : 1.7807
14.9229 : 1.9995
17.6530 : 2.2025
20.2231 : 2.3943
22.6732 : 2.5779
25.0300 : 2.7553
27.3121 : 2.9280
29.5335 : 3.0970

5.1658 : 1.2381
9.7814 : 1.4539
13.5911 : 1.6692
16.9755 : 1.8614
20.0857 : 2.0378
23.0005 : 2.2031
25.7678 : 2.3601
28.4191 : 2.5108
30.9766 : 2.6566
33.4569 : 2.7986

5.5832: 1.1914
10.7534 : 1.3980
14.9977 : 1.5949
18.7535 : 1.7685
22.1932 : 1.9266
25.4066 : 2.0736
28.4478 : 2.2125
31.3530 : 2.3450
34.1472 : 2.4725
36.8494 : 2.5960

0:0.7418
7.7656 : 1.2080
13.0448 : 1.4152
17.4932 : 1.5907
21.4683 : 1.7459
25.1251 : 1.8873
28.5485 : 2.0188
31.7914 : 2.1429
34.8894 : 2.2610
37.8681 : 2.3745

0:0.7752
9.7219 : 1.1432
16.3705 : 1.3132
21.9534 : 1.4524
26.9204 : 1.5730
31.4676 : 1.6810
35.7025 : 1.7797
39.6921 : 1.8712
43.4813 : 1.9569
47.1023 : 2.0376

Rev
ICost
Profit

371.5616
39.2258
332.3358

220.0775
27.6829
192.3946

148.0959
21.7123
126.3837

108.6965
19.5772
89.1193

47.4170
12.9673
34.4497

Table 4.3 — First ten investments of Impulse Control solutions for different b,
where 7' =100, y =05, r =0.04. 6 =02, =02, a=0. C =2, Ky=0
and 0(0) = 1. Furthermore, Rev and ICost denote the discounted revenue and

the discounted investment cost, respectively.

the results more carefully, we see that the size of the lumpy investments (i.e. jumps)

increases when the fixed cost increases.

C=4

C=38

C =16

C =32

(TZ' : I)

5.7915 :
9.6593 :
12.8816 :
15.7638 :
18.4283 :
20.9394 :
23.3358 :
25.6433 :
27.8799 :
30.0590 :

1.8832
2.2099
2.5607
2.8797
3.1763
3.4571
3.7265
3.9871
4.2412
4.4903

8.0844 :
12.7147 :
16.5386 :
19.9372 :
23.0621 :
25.9923 :
28.7755
31.4435
34.0186
36.5173

2.4856
2.9206
3.3546
3.7422
4.0984
4.4325
: 4.7502
: 5.0556
: 5.3513
: 9.6394

11.1517 :
16.6712 :
21.1933 :
25.1901 :
28.8471 :
32.2606 :

35.4889 :
38.5705 :
41.5327 :
44.3957 :

3.3199
3.8947
4.4297
4.8993
2.3256
2.7215
6.0947
6.4506
6.7926
7.1237

47.3050
50.7012
53.9701

15.2866 :
21.8148 :
27.1293 :
31.8052 :
36.0657 :
40.0266 :
43.7577 :

4.4754
5.2241
5.8789
6.4443
6.9513
7.4169
7.8515
: 8.2618
: 8.6525
1 9.0270

Rev
ICost
Profit

780.7835
79.5936
701.1899

769.1875
96.8939
672.2936

747.0746
120.5584
626.5162

712.6433
150.9987
561.6447

Table 4.4 — Impulse Control solutions for different C, where T' = 100, v = 0.5,
r =004, § =02, b= 1log2 8 =102 a =0 Ky =0 and 6(0) = 1.
Furthermore, Rev and ICost denote the discounted revenue and the discounted

investment cost, respectively.
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4.6 Lumpy Investments under Decreasing Demand

In this section we consider the case where the demand for an existing product de-
creases over time. A main reason could be that the competitors’ products become
better due to their product innovations. We incorporate decreasing demand by set-

Output price

T t

Figure 4.3 — Output price as a function of time for § > 7.

ting G(t) = —nt, where 7 is some positive constant. Since it is reasonable to assume
d > n > 0,3 the output price after investment is first increasing and then decreasing,
see Figure 4.3. Hence, if a firm invests, capital stock depreciates and the output price
increases, and after some time this output price is decreasing due to this decreasing

demand. Then the model becomes

_ Z e (C + ol (1) + BI (1))
e [0(T) - K(T+)]K(T+)7 (4.18)
r+0+mn

+e

3Since we are dealing with product innovation and assume a depreciation rate of 20% it is unlikely
that demand decreases by more than (or equal to) 20% and hence we do not consider n > § > 0.
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subject to
K(t) = —06K (1), for t#7 (i=1,..,N), (4.19)
0(t) = —no(t), for t#7 (i=1,..,N), (4.20)
K(r")—K(r;7) = I() —vK(r;), for i=1,...,N, (4.21)
o(r;") — 0(r;) l+br,—6(r;), for i=1,..,N, (4.22)
K(0) = o, (4.23)
0(0) = 1. (4.24)

Recall that in Section 4.5 the output price was decreasing in capital. Hence, due
to depreciation the output price is increasing in the time period between two in-
vestments. Since we are considering product innovation, it makes more sense that
demand of a given product during the time period decreases. This is because over
time new products are invented by other firms, which reduce demand of the current
product. This demand decrease has a negative effect on output price and hence the
firm has even a greater incentive to invest in a new technology.

Looking at the results of Table 4.5 and Table 4.21 (or Table 4.22-4.24 for each decay
rate of the demand separately) we can see that a change in the decrease of demand
directly affects the investment behavior. It is clear to see, that if we increase 7 the
first investment is delayed and at the same time the time period between two in-
vestments also increases. Hence, the number of investments decreases if the decay
rate of the demand increases. This makes sense, since less demand makes investing
less attractive. This results in a lower investment cost for higher . Moreover, the
larger 1 the lower the output price (compared to a lower 1) and hence the lower the
revenue.

4.7 Conclusions and Recommendations

This chapter employs an Impulse Control modeling approach that is suitable to take
into account the disruptive changes caused by innovations. We describe and im-
plement an algorithm based on current value necessary optimality conditions. The
necessary conditions are solved using a (multipoint) Boundary Value Problem (BVP)
combined with some continuation techniques.

From an economic point of view we have derived some guidelines for lumpy invest-
ments in new technology:

e A striking result is that the firm does not invest when marginal profit (with
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n =0.02

n = 0.03

(1;: 1)

n =0.01
5.2730 : 1.7250
8.9696 : 2.0366
12.0850 : 2.3821
14.9011 : 2.7029
17.5308 : 3.0067
20.0327 : 3.2991
22.4425 : 3.5837
24.7835 : 3.8631
27.0723 : 4.1393
29.3212 : 4.4136

6.3504 : 1.9594
10.4003 : 2.3175
13.8098 : 2.7062
16.8941 : 3.0676
19.7779 : 3.4110
22.5261 : 3.7427
25.1779 : 4.0670
27.7594 : 4.3869
30.2889 : 4.7047
32.7803 : 5.0219

7.5126 : 2.2042
11.902 : 2.6060
15.5932 : 3.0359
18.9345 : 3.4366
22.0629 : 3.8188
25.0493 : 4.1897
27.9368 : 4.5542
30.7539 : 4.9156
33.5212 : 5.2765
36.2541 : 5.6390

Rev
ICost
Profit

762.5966
61.1145
701.4821

733.2291
96.6083
676.6208

701.2148
52.6074
648.6074

Table 4.5 — First ten investments of Impulse Control solutions for different 7,
where T'= 100, v = 0.5, r =0.04, 6§ = 0.2, b = %logZ, 8=02,a=0,C =2,
Ky = 0 and 6(0) = 1. Furthermore, Rev and ICost denote the discounted
revenue and the discounted investment cost, respectively.

respect to capital) is zero, but invests when marginal profit is negative. In-
deed, due to depreciation capital stock decreases in between two investments,
implying that marginal profit goes up there due to the decreasing returns to
scale assumption. The implication is that during such an interval first marginal
profit is negative, but then after a while it turns positive and this stays that
way until it is time for the next investment.

We find that investments are larger and the time between investments is larger
when more of the old capital stock needs to be scrapped. If a change in tech-
nology permits the firm to keep, update and reuse part of its capital stock, the
investments are smaller.

We see that the
firm in the beginning of the planning period adopts new technologies faster

A nontrivial result is the optimal timing of investments.

as time proceeds, but later on the opposite happens. Moreover, we obtain that
the firm’s investments increase when the technology produces more profitable
products.

The experiments show that if the time it takes to double the efficiency of a
technology is larger than the time it takes for the capital stock to depreciate
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to half of its original level, the firm undertakes an initial investment.

e Further sensitivity results were provided for a scenario of decreasing demand.
We find that when demand decreases over time and when fixed investment cost
is higher, then the firm invests less throughout the planning period, the time
between two investments increases and the first investment is delayed.

Interesting directions for further work would be to consider running cost in the model
or to introduce a learning effect. Another possible extension would be to let the
scrapping percentage depend on time.
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Appendix 4A: Tables and Figures

v=0 v=10.5 vy=1
(r; : 1) | 4.1651 : 1.4877 | 4.1462 : 1.4682 3.8509 : 1.3689
7.3464 : 1.3571 | 7.4147 : 1.7204 7.1308 : 1.9589
10.0022 : 1.4032 | 10.1649 : 2.0101 9.9511 : 2.4614
12.3693 : 1.4610 | 12.6433 : 2.2785 | 12.5559 : 2.9262
14.5474 : 1.5188 | 14.9499 : 2.5312 | 15.0389 : 3.3716
16.5895 : 1.5751 | 17.1370 : 2.7731 | 17.4476 : 3.8067
18.5276 : 1.6299 | 19.2361 : 3.0070 | 19.8100 : 4.2365
20.3835 : 1.6837 | 21.2682 : 3.2353 | 22.1437 : 4.6639
22.1724 : 1.7365 | 23.2479 : 3.4594 | 24.4606 : 5.0910
23.9056 : 1.7887 | 25.1861 : 3.6805 | 26.7688 : 5.5191
25.5920 : 1.8407 | 27.0909 : 3.8994 | 29.0742 : 5.9490
27.2385 : 1.8924 | 28.9689 : 4.1168 | 31.3809 : 6.3813
28.8508 : 1.9443 | 30.8252 : 4.3333 | 33.6920 : 6.8164
30.4336 : 1.9964 | 32.6640 : 4.5493 | 36.0096 : 7.2545
31.9908 : 2.0488 | 34.4889 : 4.7652 | 38.3355 : 7.6957
33.5258 : 2.1018 | 36.3027 : 4.9814 | 40.6707 : 8.1403
35.0416 : 2.1554 | 38.1081 : 5.1982 | 43.0162 : 8.5881
36.5406 : 2.2098 | 39.9072 : 5.4157 | 45.3723 : 9.0393
38.0252 : 2.2651 | 41.7019 : 5.6343 | 47.7396 : 9.4937
39.4975 : 2.3214 | 43.4940 : 5.8541 | 50.1182 : 9.9514
40.9591 : 2.3788 | 45.2849 : 6.0753 | 52.5083 : 10.4123
42,4119 : 2.4374 | 47.0759 : 6.2982 | 54.9099 : 10.8763
43.8573 : 2.4973 | 48.8684 : 6.5229 | 57.3230 : 11.3435
45.2968 : 2.5586 | 50.6635 : 6.7495 | 59.7474 : 11.8136
46.7317 : 2.6214 | 52.4621 : 6.9783 | 62.1832 : 12.2867
48.1632 : 2.6859 | 54.2654 : 7.2094 | 64.6300 : 12.7627
49.5925 : 2.7520 | 56.0743 : 7.4431 | 67.0879 : 13.2415
51.0207 : 2.8200 | 57.8895 : 7.6793 | 69.5566 : 13.7231
52.4488 : 2.8900 | 59.7121 : 7.9184 | 72.0359 : 14.2075
53.8779 : 2.9620 | 61.5428 : 8.1606 | 74.5258 : 14.6945
55.3089 : 3.0362 | 63.3824 : 8.4059 | 77.0260 : 15.1843
56.7427 : 3.1127 | 65.2318 : 8.6546 | 79.5364 : 15.6766
58.1804 : 3.1917 | 67.0917 : 8.9070 | 82.0568 : 16.1716
59.6228 : 3.2732 | 68.9629 : 9.1631 | 84.5872 : 16.6692

continued on next page
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v=20 v=0.5 vy=1
(r; : I) | 61.0707 : 3.3574 | 70.8463 : 9.4233 | 87.1274 : 17.1693
62.5251 : 3.4445 | 72.7426 : 9.6878 | 89.6772 : 17.6720
63.9868 : 3.5347 | 74.6526 : 9.9569 | 92.2367 : 18.1774
65.4567 : 3.6279 | 76.5773 : 10.2307 | 94.8058 : 18.6853
66.9357 : 3.7246 | 78.5174 : 10.5097 | 97.3844 : 19.1959
68.4245 : 3.8248 | 80.4738 : 10.7940 | 99.9725 : 17.0969
69.9242 : 3.9287 | 82.4476 : 11.0841
71.4355 : 4.0366 | 84.4396 : 11.3803
72.9593 : 4.1486 | 86.4508 : 11.6829
74.4967 : 4.2650 | 88.4824 : 11.9925
76.0484 : 4.3860 | 90.5354 : 12.3093
77.6154 : 4.5120 | 92.6110 : 12.6340
79.1987 : 4.6431 | 94.7105 : 12.9668
80.7994 : 4.7798 | 96.8355 : 13.2846
82.4183 : 4.9222 | 99.0358 : 10.8535
84.0566 : 5.0708
85.7154 : 5.2260
87.3959 : 5.3881
89.0991 : 5.5576
90.8264 : 5.7349
92.5790 : 5.9206
94.3584 : 6.1152
96.1659 : 6.3181
98.0055 : 6.4796
99.9896 : 4.0490
Rev 802.4809 790.1920 771.3955

ICost 35.3109 67.8103 97.6050
Profit 767.1700 722.3817 673.7904

Table 4.6 — Impulse Control solutions for different -+, where T' = 100, r = 0.04,
§=02,b=1log2,B=02a=0,C=2, Ky=0and6(0) = 1. Furthermore,
Rev and ICost denote the discounted revenue and the discounted investment
cost, respectively.



90

CHAPTER 4. PRODUCT INNOVATION WITHF LUMPY

INVESTMENTS

Ti I(m) | K(7;) K(T;r) 9(71‘+)
4.1651 | 1.4877 0 1.4877 | 2.4435
7.3464 | 1.3571 | 0.7874 | 2.1445 | 3.5461
10.0022 | 1.4032 | 1.2608 | 2.6640 | 4.4665
12.3693 | 1.4610 | 1.6593 | 3.1204 | 5.2869
14.5474 | 1.5188 | 2.0184 | 3.5372 | 6.0418
16.5895 | 1.5751 | 2.3512 | 3.9263 | 6.7495
18.5276 | 1.6299 | 2.6646 | 4.2946 7.4212
20.3835 | 1.6837 | 2.9629 | 4.6466 | 8.0644
22.1724 | 1.7365 | 3.2490 | 4.9855 | 8.6844
23.9056 | 1.7887 | 3.5250 | 5.3138 | 9.2851
25.5920 | 1.8407 | 3.7925 | 5.6332 | 9.8695
27.2385 | 1.8924 | 4.0526 | 5.9451 | 10.4402
28.8508 | 1.9443 | 4.3064 | 6.2507 | 10.9989
30.4336 | 1.9964 | 4.5546 | 6.5510 | 11.5475
31.9908 | 2.0488 | 4.7979 | 6.8467 | 12.0872
33.5258 | 2.1018 | 5.0368 | 7.1386 | 12.6192
35.0416 | 2.1554 | 5.2718 | 7.4272 | 13.1445
36.5406 | 2.2098 | 5.5033 | 7.7131 | 13.6640
38.0252 | 2.2651 | 5.7316 | 7.9968 | 14.1785
39.4975 | 2.3214 | 5.9571 | 8.2786 | 14.6888
40.9591 | 2.3788 | 6.1801 | 8.5589 | 15.1954
42,4119 | 2.4374 | 6.4007 | 8.8381 | 15.6988
43.8573 | 2.4973 | 6.6193 | 9.1166 | 16.1998
45.2968 | 2.5586 | 6.8359 | 9.3945 | 16.6987
46.7317 | 2.6214 | 7.0509 | 9.6723 | 17.1960
48.1632 | 2.6859 | 7.2642 | 9.9501 | 17.6921
49.5925 | 2.7520 | 7.4762 | 10.2282 | 18.1875
51.0207 | 2.8200 | 7.6869 | 10.5069 | 18.6824
52.4488 | 2.8900 | 7.8964 | 10.7864 | 19.1774
53.8779 | 2.9620 | 8.1049 | 11.0670 | 19.6726
55.3089 | 3.0362 | 8.3125 | 11.3488 | 20.1686
56.7427 | 3.1127 | 8.5193 | 11.6320 | 20.6655
58.1804 | 3.1917 | 8.7253 | 11.9170 | 21.1638
59.6228 | 3.2732 | 8.9307 | 12.2039 | 21.6637
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Ti I(m) K(r) | K() | 0(r7)
61.0707 | 3.3574 9.1355 12.4929 | 22.1655
62.5251 | 3.4445 9.3398 12.7843 | 22.6696
63.9868 | 3.5347 9.5437 13.0783 | 23.1761
65.4567 | 3.6279 9.7472 13.3751 | 23.6856
66.9357 | 3.7246 9.9503 13.6749 | 24.1981
68.4245 | 3.8248 10.1532 13.9780 | 24.7141
69.9242 | 3.9287 10.3559 14.2846 | 25.2339
71.4355 | 4.0366 10.5584 14.5950 | 25.7577
72.9593 | 4.1486 10.7607 14.9093 | 26.2858
74.4967 | 4.2650 10.9630 15.2279 | 26.8186
76.0484 | 4.3860 11.1651 15.5511 | 27.3564
77.6154 | 4.5120 11.3671 15.8791 | 27.8994
79.1987 | 4.6431 11.5691 16.2122 | 28.4482
80.7994 | 4.7798 11.7710 16.5508 | 29.0029
82.4183 | 4.9222 11.9729 16.8951 | 29.5640
84.0566 | 5.0708 12.1747 17.2455 | 30.1318
85.7154 | 5.2260 12.3764 17.6023 | 30.7067
87.3959 | 5.3881 12.5780 17.9660 | 31.2891
89.0991 | 5.5576 12.7794 18.3370 | 31.8794
90.8264 | 5.7349 12.9807 18.7156 | 32.4780
92.5790 | 5.9206 13.1817 19.1023 | 33.0854
94.3584 | 6.1152 13.3824 19.4975 | 33.7021
96.1659 | 6.3181 13.5825 19.9006 | 34.3286
98.0055 | 6.4796 13.7746 20.2542 | 34.9661
99.9896 | 4.0490 13.6201 17.6691 | 35.6538

Revenue (discounted) 790.1920
Investment cost (discounted)) 67.8103
Total profit (discounted) 722.3817

Table 4.7 — Impulse Control solutions for v = 0, where T' = 100, r = 0.04,
§=02,b=3log2 =02 a=0,C=2, K,=0and 6(0) = 1.
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Ti I(m) | K(7;) K(T;r) 9(71‘+)
4.1462 | 1.4682 | 0.0000 | 1.4682 | 2.4370
7.4147 | 1.7204 | 0.7637 | 2.1022 | 3.5697
10.1649 | 2.0101 | 1.2128 | 2.6165 | 4.5229
12.6433 | 2.2785 | 1.5938 | 3.0754 | 5.3818
14.9499 | 2.5312 | 1.9389 | 3.5007 | 6.1812
17.1370 | 2.7731 | 2.2604 | 3.9033 | 6.9392
19.2361 | 3.0070 | 2.5651 | 4.2896 | 7.6667
21.2682 | 3.2353 | 2.8570 | 4.6638 | 8.3710
23.2479 | 3.4594 | 3.1390 | 5.0289 | 9.0571
25.1861 | 3.6805 | 3.4129 | 5.3869 | 9.7288
27.0909 | 3.8994 | 3.6803 | 5.7395 | 10.3890
28.9689 | 4.1168 | 3.9424 | 6.0880 | 11.0399
30.8252 | 4.3333 | 4.1999 | 6.4332 | 11.6832
32.6640 | 4.5493 | 4.4536 | 6.7761 | 12.3205
34.4889 | 4.7652 | 4.7041 | 7.1173 | 12.9529
36.3027 | 4.9814 | 4.9518 | 7.4574 | 13.5816
38.1081 | 5.1982 | 5.1972 | 7.7968 | 14.2073
39.9072 | 5.4157 | 5.4406 | 8.1360 | 14.8308
41.7019 | 5.6343 | 5.6823 | 8.4754 | 15.4528
43.4940 | 5.8541 | 5.9225 | 8.8153 | 16.0739
45.2849 | 6.0753 | 6.1615 | 9.1561 | 16.6945
47.0759 | 6.2982 | 6.3994 | 9.4979 | 17.3153
48.8684 | 6.5229 | 6.6364 | 9.8411 | 17.9365
50.6635 | 6.7495 | 6.8727 | 10.1859 | 18.5586
52.4621 | 6.9783 | 7.1083 | 10.5325 | 19.1820
54.2654 | 7.2094 | 7.3434 | 10.8812 | 19.8070
56.0743 | 7.4431 | 7.5781 | 11.2321 | 20.4339
57.8895 | 7.6793 | 7.8125 | 11.5856 | 21.0630
59.7121 | 7.9184 | 8.0466 | 11.9417 | 21.6946
61.5428 | 8.1606 | 8.2805 | 12.3008 | 22.3291
63.3824 | 8.4059 | 8.5142 | 12.6630 | 22.9667
65.2318 | 8.6546 | 8.7479 | 13.0286 | 23.6076
67.0917 | 8.9070 | 8.9815 | 13.3977 | 24.2522
68.9629 | 9.1631 | 9.2151 | 13.7707 | 24.9007
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Ti I(r) | K(r;) | K(r") | 0(;")
70.8463 | 9.4233 9.4486 14.1477 | 25.5535
72.7426 | 9.6878 9.6822 14.5290 | 26.2107
74.6526 | 9.9569 9.9159 14.9148 | 26.8726
76.5773 | 10.2307 | 10.1495 | 15.3055 | 27.5397
78.5174 | 10.5097 | 10.3832 | 15.7013 | 28.2120
80.4738 | 10.7940 | 10.6169 | 16.1025 | 28.8901
82.4476 | 11.0841 | 10.8506 | 16.5094 | 29.5741
84.4396 | 11.3803 | 11.0843 | 16.9224 | 30.2645
86.4508 | 11.6829 | 11.3179 | 17.3419 | 30.9616
88.4824 | 11.9925 | 11.5514 | 17.7682 | 31.6657
90.5354 | 12.3093 | 11.7848 | 18.2017 | 32.3772
92.6110 | 12.6340 | 12.0179 | 18.6429 | 33.0965
94.7105 | 12.9668 | 12.2506 | 19.0921 | 33.8241
96.8355 | 13.2846 | 12.4817 | 19.5255 | 34.5606
99.0358 | 10.8535 | 12.5743 | 17.1406 | 35.3232

Revenue (discounted) 802.4809
Investment cost (discounted) 35.3109
Total profit (discounted) 767.1700

Table 4.8 — Impulse Control solutions for v = 0.5, where T' = 100, r = 0.04,
§=02,b=73log2 =02 a=0,C=2, Ky=0and 6(0) = 1.
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INVESTMENTS
Ti I(7;) K(r;") K(Ti+) H(TZ'JF)

3.8509 | 1.3689 0 1.3689 | 2.3346

7.1308 | 1.9589 | 0.7104 | 1.9589 | 3.4713

9.9511 | 2.4614 | 1.1144 | 2.4614 | 4.4488

12.5559 | 2.9262 | 1.4619 | 2.9262 5.3516

15.0389 | 3.3716 | 1.7809 | 3.3716 | 6.2121

17.4476 | 3.8067 | 2.0827 | 3.8067 | 7.0469

19.8100 | 4.2365 | 2.3733 | 4.2365 | 7.8656

22.1437 | 4.6639 | 2.6564 | 4.6639 | 8.6744

24.4606 | 5.0910 | 2.9343 | 5.0910 | 9.4774

26.7688 | 5.5191 | 3.2086 | 5.5191 | 10.2774
29.0742 | 5.9490 | 3.4804 | 5.9490 | 11.0763
31.3809 | 6.3813 | 3.7505 | 6.3813 | 11.8758
33.6920 | 6.8164 | 4.0195 | 6.8164 | 12.6767
36.0096 | 7.2545 | 4.2879 | 7.2545 | 13.4800
38.3355 | 7.6957 | 4.5560 | 7.6957 | 14.2861
40.6707 | 8.1403 | 4.8241 | 8.1403 | 15.0954
43.0162 | 8.5881 | 5.0924 | 8.5881 | 15.9083
45.3723 | 9.0393 | 5.3610 | 9.0393 | 16.7248
47.7396 | 9.4937 | 5.6301 | 9.4937 | 17.5453
50.1182 | 9.9514 | 5.8997 | 9.9514 | 18.3697
52.5083 | 10.4123 | 6.1700 | 10.4123 | 19.1980
54.9099 | 10.8763 | 6.4409 | 10.8763 | 20.0303
57.3230 | 11.3435 | 6.7125 | 11.3435 | 20.8666
59.7474 | 11.8136 | 6.9849 | 11.8136 | 21.7069
62.1832 | 12.2867 | 7.2580 | 12.2867 | 22.5510
64.6300 | 12.7627 | 7.5319 | 12.7627 | 23.3991
67.0879 | 13.2415 | 7.8065 | 13.2415 | 24.2509
69.5566 | 13.7231 | 8.0818 | 13.7231 | 25.1065
72.0359 | 14.2075 | 8.3579 | 14.2075 | 25.9658
74.5258 | 14.6945 | 8.6348 | 14.6945 | 26.8287
77.0260 | 15.1843 | 8.9123 | 15.1843 | 27.6952
79.5364 | 15.6766 | 9.1906 | 15.6766 | 28.5652
82.0568 | 16.1716 | 9.4696 | 16.1716 | 29.4387
84.5872 | 16.6692 | 9.7492 | 16.6692 | 30.3157
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Ti I(n) | K(r7) | K(z) | 0(7}")
87.1274 | 17.1693 | 10.0294 | 17.1693 | 31.1960
89.6772 | 17.6720 | 10.3103 | 17.6720 | 32.0798
92.2367 | 18.1774 | 10.5918 | 18.1774 | 32.9668
94.8058 | 18.6853 | 10.8739 | 18.6853 | 33.8572
97.3844 | 19.1959 | 11.1565 | 19.1959 | 34.7509
99.9725 | 17.0969 | 11.4396 | 17.0969 | 35.6478
Revenue (discounted) 771.3955
Investment cost (discounted) 97.6050
Total profit (discounted) 673.7904

Table 4.9 — Impulse Control solutions for v = 1, where T' = 100, r = 0.04,
§=02,b=3log2 =02 a=0,C=2, Ky=0and 6(0) = 1.
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(b) Undiscounted revenue for

the first ten investments.

Figure 4.4 — Lumpy investments and undiscounted revenue, where 7" = 100,
r=0.04, 6 =0.05, y=0.5, b= %logZ, =02 a=0,C =2, Kg=0 and
6(0) = 1.
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Figure 4.7 — The length between two investments for 7' = 100 and parameter
values 7 = 0.04, § =02,y =1,b=3log2, =02, 0=0,C =2, Ky =0
and 0(0) = 1.

b= %logZ

b:

ilogZ

b= %logZ

b:

%logZ

T
b= 15log2

(r; : 1)

4.6759 : 1.3116
8.6561 : 1.5392
1.9662 : 1.7807
14.9229 : 1.9995
17.6530 : 2.2025
20.2231 : 2.3943
22.6732 : 2.5779
25.0300 : 2.7553
27.3121 : 2.9280
29.5335 : 3.0970
31.7048 : 3.2631
33.8341 : 3.4270
35.9284 : 3.5893
37.9929 : 3.7502
40.0324 : 3.9103
42.0508 : 4.0697
44.0513 : 4.2289
46.0368 : 4.3879
48.0100 : 4.5471
49.9730 : 4.7067
51.9280 : 4.8668
93.8767 : 5.0275
55.8207 : 5.1892
57.7618 : 5.3518
99.7012 : 5.5156
61.6403 : 5.6808

5.1658 :

9.7814 :
13.5911 :
16.9755 :
20.0857 :
23.0005 :
25.7678 :
28.4191 :
30.9766 :
33.4569 :
35.8726 :
38.2335 :
40.5479 :
42.8221 :
45.0617 :
47.2715 :
49.4554 :
51.6169 :
53.7592 :
55.8849 :
57.9966 :
60.0964 :
62.1864 :
64.2685 :
66.3445 :
68.4159 :

1.2381
1.4539
1.6692
1.8614
2.0378
2.2031
2.3601
2.5108
2.6566
2.7986
2.9373
3.0736
3.2079
3.3405
3.4720
3.6024
3.7322
3.8615
3.9905
4.1195
4.2485
4.3779
4.5077
4.6381
4.7692
4.9012

5.5832 : 1.1914
10.7534 : 1.3980
14.9977 : 1.5949
18.7535 : 1.7685
22.1932 : 1.9266
25.4066 : 2.0736
28.4478 : 2.2125
31.3530 : 2.3450
34.1472 : 2.4725
36.8494 : 2.5960
39.4737 : 2.7162
42.0316 : 2.8337
44.5320 : 2.9489
46.9826 : 3.0623
49.3895 : 3.1741
51.7580 : 3.2847
54.0927 : 3.3943
56.3977 : 3.5031
58.6762 : 3.6113
60.9316 : 3.7190
63.1664 : 3.8265
65.3833 : 3.9339
67.5845 : 4.0413
69.7722 : 4.1488
71.9481 : 4.2566
74.1143 : 4.3649

0:
7.7656 :
13.0448 :
17.4932 :
21.4683 :
25.1251 :
28.5485 :
31.7914 :
34.8894 :
37.8681 :
40.7466 :
43.5397 :
46.2589 :
48.9138 :
51.5122 :
54.0606 :
56.5646 :
59.0290 :
61.4580 :
63.8553 :
66.2241 :
68.5673 :
70.8876 :
73.1873 :
75.4687 :
77.7338 :

0.7418
1.2080
1.4152
1.5907
1.7459
1.8873
2.0188
2.1429
2.2610
2.3745
2.4841
2.5905
2.6942
2.7957
2.8952
2.9931
3.0897
3.1851
3.2795
3.3731
3.4661
3.5586
3.6507
3.7426
3.8343
3.9260

0:0.7752
9.7219 : 1.1432
16.3705 : 1.3132
21.9534 : 1.4524
26.9204 : 1.5730
31.4676 : 1.6810
35.7025 : 1.7797
39.6921 : 1.8712
43.4813 : 1.9569
47.1023 : 2.0376
50.5789 : 2.1141
53.9292 : 2.1869
57.1675 : 2.2563
60.3051 : 2.3226
63.3512 : 2.3861
66.3131 : 2.4470
69.1972 : 2.5052
72.0083 : 2.5610
74.7508 : 2.6143
77.4280 : 2.6652
80.0427 : 2.7137
82.5974 : 2.7599
85.0937 : 2.8035
87.5331 : 2.8447
89.9166 : 2.8834
92.2448 : 2.9194

continued on next page
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b= %1og2

b= %1og2

b= %1og2

b

= %1og2

T
b= 15 log2

(i : 1)

63.5803 : 5.8475
65.5226 : 6.0158
67.4682 : 6.1859
69.4182 : 6.3579
71.3738 : 6.5321
73.3360 : 6.7086
75.3058 : 6.8876
77.2844 : 7.0692
79.2727 : 7.2536
81.2718 : 7.4412
83.2828 : 7.6320
85.3067 : 7.8263
87.3447 : 8.0243
89.3980 : 8.2264
91.4676 : 8.4327
93.5549 : 8.6437
95.6610 : 8.8594
97.7878 : 9.0647
99.9841 : 7.4363

70.4843 : 5.0342
72.5512 : 5.1684
74.6181 : 5.3039
76.6862 : 5.4409
78.7570 : 5.5795
80.8317 : 5.7199
82.9116 : 5.8623
84.9980 : 6.0068
87.0922 : 6.1536
89.1954 : 6.3029
91.3090 : 6.4549
93.4344 : 6.6098
95.5727 : 6.7678
97.7260 : 6.9181
99.9410 : 5.7311

76.2723 : 4.4736
78.4238 : 4.5831
80.5704 : 4.6933
82.7134 : 4.8044
84.8544 : 4.9166
86.9948 : 5.0299
89.1359 : 5.1445
91.2791 : 5.2606
93.4257 : 5.3783
95.5770 : 5.4977
97.7349 : 5.6100
99.9462 : 4.6388

79.9845
82.2225
84.4495
86.6672
88.8770
91.0803
93.2787
95.4734
97.6662
99.9020

: 4.0178
: 4.1098
0 4.2021
1 4.2948
: 4.3879
: 4.4817
: 4.5762
: 4.6715
: 4.7607
: 3.9729

94.5183 : 2.9527
96.7374 : 2.9784
98.9488 : 2.4142

Rev
ICost
Profit

371.5616
39.2258
332.3358

220.0775
27.6829
192.3946

148.0959
21.7123
126.3837

108.6965
19.5772
89.1193

47.4170
12.9673
34.4497

Table 4.10 — Impulse Control solutions for different b, where T' = 100, v = 0.5,
r=0.04,5=02 =02 a=0,C =2, Kp =0and 6(0) = 1. Furthermore,
Rev and ICost denote the discounted revenue and the discounted investment

cost, respectively.

Ti I(ry) | K(r;) | K(r]") | 0(r")
4.6759 | 1.3116 | 0.0000 | 1.3116 | 2.0804
8.6561 | 1.5392 | 0.5917 | 1.8351 | 3.0000
11.9662 | 1.7807 | 0.9465 | 2.2540 | 3.7648
14.9229 | 1.9995 | 1.2478 | 2.6234 | 4.4479
17.6530 | 2.2025 | 1.5196 | 2.9623 | 5.0787
20.2231 | 2.3943 | 1.7717 | 3.2801 | 5.6725
22.6732 | 2.5779 | 2.0094 | 3.5826 | 6.2386
25.0300 | 2.7553 | 2.2361 | 3.8733 | 6.7832
27.3121 | 2.9280 | 2.4539 | 4.1549 | 7.3104
29.5335 | 3.0970 | 2.6645 | 4.4292 | 7.8237
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n [ 1) | K) | K | o)
31.7048 | 3.2631 2.8690 4.6976 | 8.3254
33.8341 | 3.4270 3.0685 49613 | 8.8173
35.9284 | 3.5893 3.2636 5.2210 | 9.3012
37.9929 | 3.7502 3.4549 54776 | 9.7782
40.0324 | 3.9103 3.6429 5.7317 | 10.2495
42.0508 | 4.0697 3.8280 5.9837 | 10.7158
44.0513 | 4.2289 4.0106 6.2342 | 11.1780
46.0368 | 4.3879 4.1910 6.4834 | 11.6368
48.0100 | 4.5471 4.3693 6.7318 | 12.0927
49.9730 | 4.7067 4.5459 6.9797 | 12.5462
51.9280 | 4.8668 4.7209 7.2272 | 12.9979
53.8767 | 5.0275 4.8945 7.4748 | 13.4482
55.8207 | 5.1892 5.0669 7.7226 | 13.8973
57.7618 | 5.3518 5.2380 7.9708 | 14.3458
59.7012 | 5.5156 5.4082 8.2197 | 14.7939
61.6403 | 5.6808 5.5774 8.4695 | 15.2419
63.5803 | 5.8475 5.7457 8.7203 | 15.6902
65.5226 | 6.0158 5.9133 8.9724 | 16.1389
67.4682 | 6.1859 6.0802 9.2260 | 16.5885
69.4182 | 6.3579 6.2465 9.4812 | 17.0390
71.3738 | 6.5321 6.4121 9.7382 | 17.4909
73.3360 | 6.7086 6.5773 9.9972 | 17.9442
75.3058 | 6.8876 6.7419 10.2585 | 18.3993
77.2844 | 7.0692 6.9061 10.5222 | 18.8565
79.2727 | 7.2536 7.0698 10.7885 | 19.3159
81.2718 | 7.4412 7.2331 11.0577 | 19.7778
83.2828 | 7.6320 7.3959 11.3299 | 20.2424
85.3067 | 7.8263 7.5584 11.6055 | 20.7100
87.3447 | 8.0243 7.7204 11.8845 | 21.1809
89.398 | 8.2264 7.8821 12.1674 | 21.6553
91.4676 | 8.4327 8.0433 12.4544 | 22.1335
93.5549 | 8.6437 8.204 12.7457 | 22.6158
95.661 | 8.8594 8.3642 13.0415 | 23.1024
97.7878 | 9.0647 8.5231 13.3263 | 23.5938
99.9841 | 7.4363 8.5889 11.7308 | 24.1012

Revenue (discounted) 371.5616
Investment cost (discounted) 39.2258
Total profit (discounted) 332.3358

Table 4.11 — Impulse Control solutions for b = %log 2, where T' = 100,
r=0.04,6=02v=05, =02 a=0,C=2, Kp=0and 0(0) = 1.
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7i I(ri) | K(r) | K(r") | 0(r;")
5.1658 | 1.2381 0 1.2381 | 1.8952
9.7814 | 1.4539 | 0.4919 | 1.6998 | 2.695

13.5911 | 1.6692 | 0.7934 | 2.0659 | 3.3552
16.9755 | 1.8614 | 1.0499 | 2.3864 | 3.9416
20.0857 | 2.0378 | 1.2811 | 2.6784 | 4.4806
23.0005 | 2.2031 | 1.4952 | 2.9507 | 4.9857
25.7678 | 2.3601 | 1.6965 | 3.2084 | 5.4652
28.4191 | 2.5108 | 1.888 | 3.4548 | 5.9246
30.9766 | 2.6566 | 2.0715 | 3.6924 | 6.3678
33.4569 | 2.7986 | 2.2484 | 3.9228 | 6.7976
35.8726 | 2.9373 | 2.4197 | 4.1472 | 7.2162
38.2335 | 3.0736 | 2.5863 | 4.3668 | 7.6254
40.5479 | 3.2079 | 2.7488 | 4.5823 | 8.0264
42.8221 | 3.3405 | 2.9077 | 4.7944 | 8.4205
45.0617 | 3.472 | 3.0634 | 5.0036 | 8.8086
47.2715 | 3.6024 | 3.2162 | 5.2105 | 9.1915
49.4554 | 3.7322 | 3.3666 | 5.4155 | 9.5700
51.6169 | 3.8615 | 3.5147 | 5.6188 | 9.9445
93.7592 | 3.9905 | 3.6607 | 5.8209 | 10.3158
55.8849 | 4.1195 | 3.805 | 6.0219 | 10.6841
07.9966 | 4.2485 | 3.9475 | 6.2223 | 11.0500
60.0964 | 4.3779 | 4.0885 | 6.4221 | 11.4139
62.1864 | 4.5077 | 4.2281 | 6.6217 | 11.7761
64.2685 | 4.6381 | 4.3664 | 6.8213 | 12.1369
66.3445 | 4.7692 | 4.5035 | 7.0210 | 12.4966
68.4159 | 4.9012 | 4.6395 | 7.2210 | 12.8556
70.4843 | 5.0342 | 4.7746 | 7.4215 | 13.214
72.5512 | 5.1684 | 4.9086 | 7.6227 | 13.5722
74.6181 | 5.3039 | 5.0418 | 7.8248 | 13.9303
76.6862 | 5.4409 | 5.1741 | 8.0280 | 14.2887
78.7570 | 5.5795 | 5.3057 | 8.2324 | 14.6475
80.8317 | 5.7199 | 5.4365 | 8.4382 | 15.0071
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Ti I(r) | K(r7) | K(#") | 0(r7)
82.9116 | 5.8623 5.5666 8.6456 | 15.3675
84.9980 | 6.0068 2.6961 8.8548 | 15.729
87.0922 | 6.1536 0.8248 9.0660 | 16.0919
89.1954 | 6.3029 5.9529 9.2794 | 16.4564
91.3090 | 6.4549 6.0804 9.4951 | 16.8227
93.4344 | 6.6098 6.2072 9.7134 | 17.1909
95.5727 | 6.7678 6.3334 9.9345 | 17.5615
97.7260 | 6.9181 6.4583 10.1472 | 17.9346
99.9410 | 5.7311 6.5156 8.9889 | 18.3185
Revenue (discounted) 220.0775
Investment cost (discounted) 27.6829
Total profit (discounted) 192.3946

Table 4.12 — Impulse Control solutions for b = %log 2, where T' = 100,
r=0.04,6=02v=05, =02, a=0,C=2, Ky =0and 0(0) = 1.

Ti

I(7;)

K(rh)

)

o(r;")

1

5.5832
10.7534 | 1.398
14.9977 | 1.5949
18.7535
22.1932
25.4066
28.4478
31.353
34.1472
36.8494 | 2.596
39.4737 | 2.7162
42.0316
44.532
46.9826
49.3895
51.758
54.0927 | 3.3943
56.3977 | 3.5031
58.6762 | 3.6113
60.9316 | 3.719

1.1914

1.7685
1.9266
2.0736
2.2125
2.345
2.4725

2.8337
2.9489
3.0623
3.1741
3.2847

0.4236
0.6888
0.915
1.1188
1.3073
1.4845
1.6527
1.8136
1.9685
2.1182
2.2635
2.4049
2.543
2.678
2.8103
2.9401
3.0678
3.1934
3.3172

1.1914
1.6098
1.9393
2.226
2.486
27273
2.9547
3.1714
3.3793
3.5802
3.7753
3.9654
4.1514
4.3338
4.5131
4.6899
4.8644
5.037
5.208
5.3777

1.774
2.4907
3.0791
3.5998
4.0766
4.5221
4.9437
5.3464
5.7338
6.1084
6.4722
6.8268
7.1734
7.0132
7.8468
8.1752
8.4988
8.8184
9.1343
9.4469
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n | 1m) | Kr) [K@)] 607
63.1664 | 3.8265 3.4393 5.5462 | 9.7567
65.3833 | 3.9339 3.5599 5.7138 | 10.0641
67.5845 | 4.0413 3.679 5.8808 | 10.3692
69.7722 | 4.1488 3.7968 6.0472 | 10.6725
71.9481 | 4.2566 3.9134 6.2133 | 10.9741
74.1143 | 4.3649 4.0288 6.3793 | 11.2744
76.2723 | 4.4736 4.1431 6.5452 | 11.5736
78.4238 | 4.5831 4.2564 6.7113 | 11.8718
80.5704 | 4.6933 4.3688 6.8776 | 12.1694
82.7134 | 4.8044 4.4802 7.0445 | 12.4665
84.8544 | 4.9166 4.5907 7.2119 | 12.7633
86.9948 | 5.0299 4.7005 7.3801 | 13.0600
89.1359 | 5.1445 4.8094 7.5492 | 13.3569
91.2791 | 5.2606 4.9176 7.7194 | 13.6540
93.4257 | 5.3783 5.0250 7.8908 | 13.9515
95.5770 | 5.4977 5.1317 8.0635 | 14.2498
97.7349 | 5.6100 5.2372 8.2286 | 14.5489
99.9462 | 4.6388 5.2876 7.2826 | 14.8555

Revenue (discounted) 148.0959
Investment cost (discounted) 21.7123
Total profit (discounted) 126.3837

Table 4.13 — Impulse Control solutions for b = %log 2, where T' = 100,
r=20.04,6=02,v=05 =02, a=0,C=2, Kg=0and 6(0) = 1.

n | 1) [ K(r) [K() ] 60))
0 0.7418 0 0.7418 1
7.7656 1.208 | 0.1570 | 1.2865 | 1.8971
13.0448 | 1.4152 | 0.4476 | 1.6390 | 2.5070
17.4932 | 1.5907 | 0.6733 | 1.9274 | 3.0209
21.4683 | 1.7459 | 0.8703 | 2.1811 | 3.4801
25.1251 | 1.8873 | 1.0496 | 2.4121 | 3.9026
28.5485 | 2.0188 | 1.2163 | 2.6270 | 4.2981
31.7914 | 2.1429 | 1.3734 | 2.8296 | 4.6727
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i I(m) K(7;) K(r,") | 0(r)
34.8894 | 2.2610 1.5227 3.0224 | 5.0306
37.8681 | 2.3745 1.6658 3.2074 | 5.3747
40.7466 | 2.4841 1.8036 3.3859 | 5.7072
43.5397 | 2.5905 1.9367 3.5589 | 6.0299
46.2589 | 2.6942 2.0660 3.7272 | 6.3440
48.9138 | 2.7957 2.1917 3.8915 | 6.6507
51.5122 | 2.8952 2.3143 4.0524 | 6.9509
54.0606 | 2.9931 2.4342 4.2102 | 7.2453
56.5646 | 3.0897 2.5516 4.3655 | 7.5346
59.0290 | 3.1851 2.6667 45184 | 7.8193
61.4580 | 3.2795 2.7798 4.6694 | 8.0999
63.8553 | 3.3731 2.8909 4.8186 | 8.3769
66.2241 | 3.4661 3.0003 4.9663 | 8.6505
68.5673 | 3.59586 3.1082 5.1127 | 8.9212
70.8876 | 3.6507 3.2145 5.2580 | 9.1893
73.1873 | 3.7426 3.3194 5.4023 | 9.4549
75.4687 | 3.8343 3.4231 5.5459 | 9.7185
77.7338 | 3.9260 3.5255 5.6888 | 9.9802
79.9845 | 4.0178 3.6268 5.8312 | 10.2402
82.2225 | 4.1098 3.7271 5.9733 | 10.4987
84.4495 | 4.2021 3.8263 6.1152 | 10.7560
86.6672 | 4.2948 3.9245 6.2570 | 11.0122
88.8770 | 4.3879 4.0219 6.3989 | 11.2675
91.0803 | 4.4817 4.1183 6.5409 | 11.5220
93.2787 | 4.5762 4.2140 6.6832 | 11.7760
95.4734 | 4.6715 4.3088 6.8259 | 12.0295
97.6662 | 4.7607 4.4024 6.9619 | 12.2828
99.9020 | 3.9729 4.4517 6.1988 | 12.5411
Revenue (discounted) 108.6965
Investment cost (discounted) 19.5772
Total profit (discounted) 59.1193

Table 4.14 — Impulse Control solutions for b = %log 2, where T' = 100,
r=0.04,6=02,v=05, =02, a=0,C=2, Kp =0 and (0) = 1.
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T I(m) K(r;) K(Tj) o(7;")
0 0.7752 0 0.7752 1
9.7219 | 1.1432 0.1109 1.1987 | 1.6739
16.3705 | 1.3132 0.3171 1.4717 | 2.1347
21.9534 | 1.4524 0.4818 1.6934 | 2.5217
26.9204 | 1.5730 0.6271 1.8866 | 2.8660
31.4676 | 1.6810 0.7598 2.0609 | 3.1812
35.7025 | 1.7797 0.8835 2.2215 | 3.4747
39.6921 | 1.8712 1.0003 2.3713 | 3.7512
43.4813 | 1.9569 1.1114 2.5125 | 4.0139
47.1023 | 2.0376 1.2179 2.6465 | 4.2649
50.5789 | 2.1141 1.3204 2.7743 | 4.5059
53.9292 | 2.1869 1.4195 2.8966 | 4.7381
57.1675 | 2.2563 1.5157 3.0142 | 4.9626
60.3051 | 2.3226 1.6093 3.1273 | 5.1800
63.3512 | 2.3861 1.7006 3.2364 | 5.3912
66.3131 | 2.4470 1.7897 3.3418 | 5.5965
69.1972 | 2.5052 1.8771 3.4437 | 5.7964
72.0083 | 2.5610 1.9627 3.5423 | 5.9912
74.7508 | 2.6143 2.0468 3.6377 | 6.1813
77.4280 | 2.6652 2.1295 3.7300 | 6.3669
80.0427 | 2.7137 2.2110 3.8192 | 6.5481
82.5974 | 2.7599 2.2913 3.9055 | 6.7252
85.0937 | 2.8035 2.3706 3.9888 | 6.8982
87.5331 | 2.8447 2.4489 4.0692 | 7.0673
89.9166 | 2.8834 2.5263 4.1465 | 7.2325
92.2448 | 2.9194 2.6029 4.2208 | 7.3939
94.5183 | 2.9527 2.6787 4.2920 | 7.5515
96.7374 | 2.9784 2.7537 4.3553 | 7.7053
08.9488 | 2.4142 2.7985 3.8134 | 7.8586

Revenue (discounted) 47.417
Investment cost (discounted) 12.9673
Total profit (discounted) 34.4497

Table 4.15 — Impulse Control solutions for b = % log 2, where T' = 100,
r=0.04,6=02,v=05, =02, a=0,C=2, Kg=0and 0(0) = 1.
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C=4 C=38 C =16 C =32
(r; : 1) 5.7915 : 1.8832 8.0844 : 2.4856 11.1517 : 3.3199 15.2866 : 4.4754
9.6593 : 2.2099 12.7147 : 2.9206 16.6712 : 3.8947 | 21.8148 : 5.2241
12.8816 : 2.5607 | 16.5386 : 3.3546 | 21.1933 : 4.4297 | 27.1293 : 5.8789
15.7638 : 2.8797 | 19.9372 : 3.7422 | 25.1901 : 4.8993 | 31.8052 : 6.4443
18.4283 : 3.1763 | 23.0621 : 4.0984 | 28.8471 : 5.3256 | 36.0657 : 6.9513
20.9394 : 3.4571 25.9923 : 4.4325 32.2606 : 5.7215 40.0266 : 7.4169
23.3358 : 3.7265 | 28.7755 : 4.7502 | 35.4889 : 6.0947 | 43.7577 : 7.8515
25.6433 : 3.9871 31.4435 : 5.0556 | 38.5705 : 6.4506 | 47.3050 : 8.2618
27.8799 : 4.2412 | 34.0186 : 5.3513 | 41.5327 : 6.7926 | 50.7012 : 8.6525
30.0590 : 4.4903 | 36.5173 : 5.6394 | 44.3957 : 7.1237 | 53.9701 : 9.0270
32.1907 : 4.7354 | 38.9523 : 5.9215 | 47.1748 : 7.4458 | 57.1301 : 9.3879
34.2832 : 4.9775 | 41.3336 : 6.1989 | 49.8823 : 7.7606 | 60.1956 : 9.7373
36.3429 : 5.2174 | 43.6692 : 6.4726 | 52.5280 : 8.0694 | 63.1782 : 10.0767
38.3751 : 5.4557 | 45.9658 : 6.7433 | 55.1200 : 8.3732 | 66.0873 : 10.4075
40.3842 : 5.6929 | 48.2290 : 7.0118 | 57.6651 : 8.6731 | 68.9309 : 10.7307
42.3740 : 5.9295 | 50.4635 : 7.2788 | 60.1692 : 8.9698 | 71.7156 : 11.0472
44.3476 : 6.1658 52.6734 . 7.5447 62.6371 : 9.2641 | 74.4470 : 11.3579
46.3080 : 6.4022 | 54.8622 : 7.8101 65.0733 : 9.5565 | 77.1303 : 11.6634
48.2575 : 6.6390 | 57.0331 : 8.0754 | 67.4816 : 9.8476 | 79.7695 : 11.9643
50.1983 : 6.8765 | 59.1889 : 8.3409 | 69.8655 : 10.1379 | 82.3685 : 12.2611
52.1324 : 7.1149 | 61.3321 : 8.6072 | 72.2281 : 10.4280 | 84.9306 : 12.5542
54.0615 : 7.3546 | 63.4651 : 8.8745 | 74.5721 : 10.7183 | 87.4588 : 12.8441
595.9872 : 7.5957 | 65.5899 : 9.1432 | 76.9002 : 11.0092 | 89.9557 : 13.1311
57.9112 : 7.8386 67.7086 : 9.4136 | 79.2148 : 11.3012 | 92.4238 : 13.4156
59.8346 : 8.0833 | 69.8230 : 9.6860 | 81.5182 : 11.5947 | 94.8653 : 13.6978
61.7589 : 8.3302 | 71.9347 : 9.9609 | 83.8124 : 11.8901 | 97.2825 : 13.9625
63.6852 : 8.5795 | 74.0455 : 10.2384 | 86.0995 : 12.1878 | 99.7136 : 12.0324
65.6147 : 8.8313 | 76.1570 : 10.5191 | 88.3813 : 12.4883
67.5486 : 9.0860 | 78.2706 : 10.8031 | 90.6599 : 12.7920
69.4879 : 9.3438 | 80.3880 : 11.0909 | 92.9369 : 13.0994
71.4338 : 9.6049 | 82.5104 : 11.3829 | 95.2143 : 13.4107
73.3871 : 9.8696 | 84.6394 : 11.6793 | 97.4939 : 13.7081
75.3490 : 10.1381 | 86.7765 : 11.9807 | 99.8182 : 11.6236
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C=1 C=8| C=16| C=32
(5 : I) | 77.3205 : 10.4107 | 88.9230 : 12.2875
79.3027 : 10.6877 | 91.0805 : 12.6000
81.2965 : 10.9694 | 93.2503 : 12.9188
83.3031 : 11.2562 | 95.4341 : 13.2441
85.3235 : 11.5483 | 97.6337 : 13.5562
87.3588 : 11.8462 | 99.8944 : 11.3351
89.4101 : 12.1503
91.4786 : 12.4609
93.5657 : 12.7786
95.6724 : 13.1036
97.8006 : 13.4128
Rev 780.7835 769.1875 | 747.0746 | 712.6433

ICost 79.5936 96.8939 | 120.5584 | 150.9987
Profit 701.1899 672.2936 | 626.5162 | 561.6447

Table 4.16 — Impulse Control solutions for different C', where 7' = 100,
=05 r=0.04,0=02 b= %logQ, B=02 a=0, Ky=0and 6(0) = 1.
Furthermore, Rev and ICost denote the discounted revenue and the discounted
investment cost, respectively.

Ti I(ri) | K(r) | K(r") | 0(r")
0.7915 | 1.8832 0 1.8832 | 3.0072
9.6593 | 2.2099 | 0.8688 | 2.6444 | 4.3477
12.8816 | 2.5607 | 1.3881 | 3.2548 | 5.4644
15.7638 | 2.8797 | 1.8289 | 3.7941 | 6.4633
18.4283 | 3.1763 | 2.2267 | 4.2897 | 7.3868
20.9394 | 3.4571 | 2.5960 | 4.7552 | 8.2570
23.3358 | 3.7265 | 2.9445 | 5.1987 | 9.0876
25.6433 | 3.9871 | 3.2770 | 5.6256 | 9.8873
27.8799 | 4.2412 | 3.5967 | 6.0396 | 10.6624
30.0590 | 4.4903 | 3.9060 | 6.4433 | 11.4176
32.1907 | 4.7354 | 4.2067 | 6.8387 | 12.1565
34.2832 | 4.9775 | 4.5001 | 7.2276 | 12.8817
36.3429 | 5.2174 | 4.7873 | 7.6111 | 13.5955
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Ti I(n) | K(rp) | K(77) | 0(r;)
38.3751 | 5.4557 5.0691 7.9903 | 14.2998
40.3842 | 5.6929 0.3463 8.3661 | 14.9961
42.3740 | 5.9295 0.6194 8.7392 | 15.6857
44.3476 | 6.1658 2.8890 9.1103 | 16.3697
46.3080 | 6.4022 6.1554 9.4799 | 17.0491
48.2575 | 6.6390 6.4191 9.8485 | 17.7248
50.1983 | 6.8765 6.6803 10.2166 | 18.3974
52.1324 | 7.1149 6.9393 10.5846 | 19.0677
54.0615 | 7.3546 7.1963 10.9528 | 19.7363
55.9872 | 7.5957 7.4517 | 11.3216 | 20.4037
57.9112 | 7.8386 7.7054 11.6913 | 21.0705
09.8346 | 8.0833 7.9578 | 12.0622 | 21.7371
61.7589 | 8.3302 8.2089 | 12.4347 | 22.4040
63.6852 | 8.5795 8.4589 | 12.8089 | 23.0716
65.6147 | 8.8313 8.7079 | 13.1853 | 23.7403
67.5486 | 9.0860 8.9560 | 13.5640 | 24.4106
69.4879 | 9.3438 9.2033 13.9455 | 25.0827
71.4338 | 9.6049 9.4498 14.3298 | 25.7571
73.3871 | 9.8696 9.6956 14.7174 | 26.4340
75.3490 | 10.1381 9.9408 15.1085 | 27.1140
77.3205 | 10.4107 | 10.1853 | 15.5034 | 27.7973
79.3027 | 10.6877 | 10.4294 | 15.9024 | 28.4842
81.2965 | 10.9694 | 10.6728 | 16.3058 | 29.1752
83.3031 | 11.2562 | 10.9158 | 16.7141 | 29.8707
85.3235 | 11.5483 | 11.1582 | 17.1275 | 30.5709
87.3588 | 11.8462 | 11.4001 | 17.5463 | 31.2762
89.4101 | 12.1503 | 11.6415 | 17.9711 | 31.9872
91.4786 | 12.4609 | 11.8823 | 18.4021 | 32.7041
93.5657 | 12.7786 | 12.1225 | 18.8398 | 33.4274
95.6724 | 13.1036 | 12.3620 | 19.2846 | 34.1575
97.8006 | 13.4128 | 12.5995 | 19.7126 | 34.8951
Revenue (discounted) 780.7835
Investment cost (discounted) 79.5936
Total profit (discounted) 701.1899

Table 4.17 — Impulse Control solutions for C' = 4, where T' = 100, r = 0.04,
§=02,b=3log2, v=05 =02 a=0,Ky=0and §(0) = 1.
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Ti I(7;) K(r;") K(T;r) 9(71‘+)
8.0844 | 2.4856 0.0000 2.4856 | 3.8018
12.7147 | 2.9206 0.9846 3.4129 | 5.4066
16.5386 | 3.3546 1.5885 4.1489 | 6.7318
19.9372 | 3.7422 2.1025 4.7935 | 7.9097
23.0621 | 4.0984 2.5658 5.3813 | 8.9927
25.9923 | 4.4325 2.9949 5.9299 | 10.0082
28.7755 | 4.7502 3.3986 6.4495 | 10.9728
31.4435 | 5.0556 3.7826 6.9468 | 11.8975
34.0186 | 5.3513 4.1507 7.4266 | 12.7899
36.5173 | 5.6394 4.5056 7.8922 | 13.6559
38.9523 | 5.9215 4.8495 8.3463 | 14.4998
41.3336 | 6.1989 5.1839 8.7909 | 15.3251
43.6692 | 6.4726 5.5101 9.2276 | 16.1346
45.9658 | 6.7433 5.8292 9.6579 | 16.9305
48.2290 | 7.0118 6.1419 10.0828 | 17.7149
50.4635 | 7.2788 6.4491 | 10.5033 | 18.4893
52.6734 | 7.5447 6.7512 10.9203 | 19.2552
54.8622 | 7.8101 7.0489 | 11.3345 | 20.0138
57.0331 | 8.0754 7.3425 | 11.7466 | 20.7662
59.1889 | 8.3409 7.6324 | 12.1572 | 21.5133
61.3321 | 8.6072 7.9190 | 12.5667 | 22.2561
63.4651 | 8.8745 8.2026 | 12.9758 | 22.9953
65.5899 | 9.1432 8.4834 | 13.3849 | 23.7317
67.7086 | 9.4136 8.7617 | 13.7944 | 24.4660
69.8230 | 9.6860 9.0376 | 14.2048 | 25.1988
71.9347 | 9.9609 9.3113 | 14.6165 | 25.9307
74.0455 | 10.2384 | 9.5830 | 15.0299 | 26.6622
76.1570 | 10.5191 | 9.8527 | 15.4454 | 27.3940
78.2706 | 10.8031 | 10.1207 | 15.8635 | 28.1265
80.3880 | 11.0909 | 10.3870 | 16.2844 | 28.8603
82.5104 | 11.3829 | 10.6517 | 16.7087 | 29.5959
84.6394 | 11.6793 | 10.9149 | 17.1368 | 30.3338
86.7765 | 11.9807 | 11.1765 | 17.5690 | 31.0744
88.9230 | 12.2875 | 11.4367 | 18.0058 | 31.8184
91.0805 | 12.6000 | 11.6955 | 18.4477 | 32.5661
93.2503 | 12.9188 | 11.9528 | 18.8952 | 33.3181
95.4341 | 13.2441 | 12.2087 | 19.3485 | 34.0749
97.6337 | 13.5562 | 12.4621 | 19.7872 | 34.8373
99.8944 | 11.3351 | 12.5899 | 17.6300 | 35.6208

Revenue (discounted) 769.1875
Investment cost (discounted) 96.8939
Total profit (discounted) 672.2936

Table 4.18 — Impulse Control solutions for C' = 8, where T' = 100, r = 0.04,
§=02,b=3log2 v=05 =02 a=0,Ky=0and §(0) = 1.
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Ti I(m) K(r7) | K(") | 0(r")
11.1517 | 3.3199 | 0.0000 | 3.3199 | 4.8649
16.6712 | 3.8947 | 1.1008 | 4.4451 | 6.7778
21.1933 | 4.4297 | 1.7993 | 5.3294 | 8.3450
25.1901 | 4.8993 2.3961 6.0974 | 9.7302
28.8471 | 5.3256 2.9343 6.7928 | 10.9976
32.2606 | 5.7215 3.4320 7.4375 | 12.1807
35.4889 | 6.0947 3.8996 8.0445 | 13.2995
38.5705 | 6.4506 4.3434 8.6223 | 14.3675
41.5327 | 6.7926 | 4.7679 | 9.1766 | 15.3941
44.3957 | 7.1237 | 5.1762 | 9.7118 | 16.3864
47.1748 | 7.4458 | 5.5707 | 10.2312 | 17.3495
49.8823 | 7.7606 | 5.9533 | 10.7372 | 18.2879
52.5280 | 8.0694 6.3254 | 11.2321 | 19.2048
55.1200 | 8.3732 6.6884 | 11.7174 | 20.1031
57.6651 | 8.6731 7.0431 12.1947 | 20.9852
60.1692 | 8.9698 7.3905 | 12.6651 | 21.8530
62.6371 | 9.2641 7.7312 13.1297 | 22.7084
65.0733 | 9.5565 8.0658 | 13.5894 | 23.5527
67.4816 | 9.8476 | 8.3949 | 14.0450 | 24.3874
69.8655 | 10.1379 | 8.7189 | 14.4974 | 25.2135
72.2281 | 10.4280 | 9.0382 | 14.9471 | 26.0323
74.5721 | 10.7183 | 9.3531 | 15.3949 | 26.8447
76.9002 | 11.0092 | 9.6640 | 15.8412 | 27.6516
79.2148 | 11.3012 | 9.9711 16.2868 | 28.4538
81.5182 | 11.5947 | 10.2747 | 16.7321 | 29.2520
83.8124 | 11.8901 | 10.5749 | 17.1776 | 30.0472
86.0995 | 12.1878 | 10.8720 | 17.6238 | 30.8398
88.3813 | 12.4883 | 11.1660 | 18.0714 | 31.6306
90.6599 | 12.7920 | 11.4572 | 18.5206 | 32.4203
92.9369 | 13.0994 | 11.7456 | 18.9722 | 33.2095
95.2143 | 13.4107 | 12.0313 | 19.4263 | 33.9987
97.4939 | 13.7081 | 12.3135 | 19.8649 | 34.7888
99.8182 | 11.6236 | 12.4796 | 17.8634 | 35.5944
Revenue (discounted) 747.0746
Investment cost (discounted) 120.5584
Total profit (discounted) 626.5162

Table 4.19 — Impulse Control solutions for C = 16, where T = 100, r = 0.04,
§=02,b=3log2, v=05 8=02 a=0,Ky=0and 6(0) = 1.
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Ti I(7;) K(r;") K(T;r) 9(71‘+)
15.2866 | 4.4754 0.0000 4.4754 | 6.2979
21.8148 | 5.2241 1.2128 5.8305 | 8.5604
27.1293 | 5.8789 2.0142 6.8860 | 10.4023
31.8052 | 6.4443 2.7029 7.7957 | 12.0228
36.0657 | 6.9513 3.3250 8.6138 | 13.4994
40.0266 | 7.4169 3.9008 9.3673 | 14.8722
43.7577 | 7.8515 4.4416 | 10.0723 | 16.1653
47.3050 | 8.2618 4.9546 | 10.7391 | 17.3947
50.7012 | 8.6525 5.4448 | 11.3748 | 18.5717
53.9701 | 9.0270 5.9158 | 11.9848 | 19.7046
57.1301 | 9.3879 6.3703 | 12.5730 | 20.7998
60.1956 | 9.7373 6.8104 | 13.1425 | 21.8622
63.1782 | 10.0767 | 7.2379 | 13.6956 | 22.8959
66.0873 | 10.4075 | 7.6542 | 14.2345 | 23.9041
68.9309 | 10.7307 | 8.0604 | 14.7609 | 24.8896
T1.7156 | 11.0472 | 8.4574 | 15.2759 | 25.8547
74.4470 | 11.3579 | 8.8461 | 15.7810 | 26.8014
77.1303 | 11.6634 | 9.2273 | 16.2771 | 27.7313
79.7695 | 11.9643 | 9.6014 | 16.7650 | 28.6460
82.3685 | 12.2611 | 9.9692 | 17.2457 | 29.5467
84.9306 | 12.5542 | 10.3309 | 17.7196 | 30.4347
87.4588 | 12.8441 | 10.6871 | 18.1876 | 31.3109
89.9557 | 13.1311 | 11.0381 | 18.6501 | 32.1763
92.4238 | 13.4156 | 11.3842 | 19.1077 | 33.0317
94.8653 | 13.6978 | 11.7258 | 19.5607 | 33.8778
97.2825 | 13.9625 | 12.0624 | 19.9937 | 34.7155
99.7136 | 12.0324 | 12.2950 | 18.1799 | 35.5581

Revenue (discounted) 712.6433
Investment cost (discounted) 150.9987
Total profit (discounted) 561.6447

Table 4.20 — Impulse Control solutions for C' = 32, where T'= 100, r = 0.04,
§=0.2,b=3log2, v=05 8=02 a=0,Ky=0and 6(0) = 1.
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n = 0.01 n = 0.02 n=0.03
(r;:1) | 52730 : 1.7250 | 6.3504 : 1.9594 | 7.5126 : 2.2042
8.9696 : 2.0366 | 10.4003 : 2.3175 |  11.902 : 2.6060
12.0850 : 2.3821 | 13.8098 : 2.7062 | 15.5932 : 3.0359
14.9011 : 2.7029 | 16.8941 : 3.0676 | 18.9345 : 3.4366
17.5308 : 3.0067 | 19.7779 : 3.4110 | 22.0629 : 3.8188
20.0327 : 3.2991 | 22.5261 : 3.7427 | 25.0493 : 4.1897
224425 : 3.5837 | 25.1779 : 4.0670 | 27.9368 : 4.5542
24.7835 : 3.8631 | 27.7594 : 4.3869 | 30.7539 : 4.9156
27.0723 : 4.1393 | 30.2889 : 4.7047 | 33.5212 : 5.2765
20.3212 : 4.4136 | 32.7803 : 5.0219 | 36.2541 : 5.6390
31.5397 : 4.6871 | 35.2443 : 5.3400 | 38.9647 : 6.0049
33.7353 : 4.9607 | 37.6894 : 5.6602 | 41.6632 : 6.3757
35.9140 : 5.2353 | 40.1229 : 5.9836 | 44.3578 : 6.7529
38.0810 : 5.5115 | 42.5509 : 6.3111 | 47.0561 : 7.1378
40.2406 : 5.7900 | 44.9786 : 6.6436 | 49.7647 : 7.5319
42.3967 : 6.0713 |  47.411 : 6.9821 | 52.4898 : 7.9365
445525 : 6.3560 | 49.8523 : 7.3274 | 55.2371 : 8.3532
46.7110 : 6.6445 | 52.3066 : 7.6804 | 58.0124 : 8.7834
48.8751 : 6.9374 | 54.7778 : 8.0421 | 60.8212 : 9.2288
51.0474 : 7.2352 | 57.2696 : 8.4135 | 63.6691 : 9.6913
53.2301 : 7.5385 | 59.7857 : 8.7955 | 66.562 : 10.1729
55.4257 : 7.8477 | 62.3297 : 9.1893 | 69.5058 : 10.6757
57.6364 : 8.1634 | 64.9055 : 9.5961 | 72.5068 : 11.2023
59.8643 : 8.4863 | 67.5167 : 10.0172 | 75.5718 : 11.7556
62.1118 : 8.8168 | 70.1673 : 10.4539 | 78.7082 : 12.3386
64.3809 : 9.1557 | 72.8614 : 10.9080 | 81.9241 : 12.9551
66.6739 : 9.5037 | 75.6034 : 11.3811 | 85.2281 : 13.6094
68.9931 : 9.8616 | 78.3978 : 11.8752 | 88.6304 : 14.3064
71.3408 : 10.2301 | 81.2498 : 12.3925 | 92.1421 : 15.0518
73.7194 : 10.6101 | 84.1647 : 12.9354 | 95.7764 : 15.8177
76.1314 : 11.0026 | 87.1483 : 13.5069 | 99.595 : 12.3688

continued on next page
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n =0.01 n=20.02| n=0.03
(r; : 1) | 78.5796 : 11.4087 | 90.2071 : 14.1101
81.0668 : 11.8296 | 93.3484 : 14.7483
83.5959 : 12.2664 | 96.5805 : 15.3926
86.1701 : 12.7208 | 99.9593 : 12.1273
88.793 : 13.1942
91.4683 : 13.6885
94.1999 : 14.2053
96.9928 : 14.7182
99.8973 : 11.8801
Rev 762.5966 733.2291 | 701.2148
ICost 61.1145 56.6083 | 52.6074
Profit 701.4821 676.6208 | 648.6074

Table 4.21 — Impulse Control solutions for different n, where 7" = 100, v = 0.5,
r=0.04,0=02,b= %logZ, =02 a=0,C=2 Ky=0and 0(0) = 1.
Furthermore, Rev and ICost denote the discounted revenue and the discounted

investment cost, respectively.

Ti

I(7i)

K(r,)

)

K(1;")

1

o(7;")

)

9.2730

8.9696
12.0850
14.9011
17.5308
20.0327
22.4425
24.7835
27.0723
29.3212
31.5397
33.7353
35.9140
38.0810
40.2406
42.3967
44.5525
46.7110

1.7250
2.0366
2.3821
2.7029
3.0067
3.2991
3.5837
3.8631
4.1393
4.4136
4.6871
4.9607
5.2353
5.0115
5.7900
6.0713
6.3560
6.6445

0.0000
0.8236
1.3130
1.7301
2.1087
2.4622
27977
3.1197
3.4311
3.7340
4.0300
4.3202
4.6056
4.8870
5.1649
5.4398
5.7121
5.9822

1.725
2.4483
3.0386

3.568
4.0611
4.5302
4.9825

5.423
5.8548
6.2806

6.702
7.1208
7.5381

7.955
8.3724
8.7912

9.212
9.6356

2.8275
4.1086
5.1884
6.1643
7.0757
7.9428
8.7780
9.5893
10.3825
11.1620
11.9308
12.6918
13.4469
14.1979
14.9463
15.6936
16.4407
17.1888

continued on next page
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continued from previous page

Ti I(n) | K(r7) | K(z) | 0(7}")
48.8751 | 6.9374 6.2504 | 10.0626 | 17.9388
51.0474 | 7.2352 6.5168 | 10.4936 | 18.6917
53.2301 | 7.5385 6.7816 | 10.9293 | 19.4481
05.4257 | 7.8477 7.0451 | 11.3702 | 20.2091
07.6364 | 8.1634 7.3072 11.817 | 20.9752
09.8643 | 8.4863 7.5681 | 12.2703 | 21.7474
62.1118 | 8.8168 7.8279 12.7308 | 22.5263
64.3809 | 9.1557 8.0865 13.199 | 23.3127
66.6739 | 9.5037 8.3439 13.6757 | 24.1074
68.9931 | 9.8616 8.6002 14.1617 | 24.9112
71.3408 | 10.2301 | 8.8552 14.6576 | 25.7248
73.7194 | 10.6101 | 9.1088 15.1645 | 26.5492
76.1314 | 11.0026 | 9.3609 | 15.6831 | 27.3851
78.5796 | 11.4087 | 9.6113 16.2144 | 28.2336
81.0668 | 11.8296 | 9.8598 | 16.7595 | 29.0956
83.5959 | 12.2664 | 10.1062 | 17.3195 | 29.9721
86.1701 | 12.7208 | 10.3499 | 17.8958 | 30.8643
88.793 | 13.1942 | 10.5908 | 18.4896 | 31.7733
91.4683 | 13.6885 | 10.8283 | 19.1026 | 32.7005
94.1999 | 14.2053 | 11.0618 | 19.7362 | 33.6472
96.9928 | 14.7182 | 11.2896 20.363 | 34.6151
99.8973 | 11.8801 | 11.3909 | 17.5756 | 35.6218
Revenue (discounted) 762.5966
Investment cost (discounted) 61.1145
Total profit (discounted) 701.4821

Table 4.22 — Impulse Control solutions for n = 0.01, where T' = 100, r = 0.04,
§=02,b=3log2,v=05 =02 a=0C=2 Ky=0and 6(0) = 1.
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7 I(ri) | K(r7) | K(#) | 0(7")
6.3504 | 1.9594 0 1.9594 | 3.2009

10.4003 | 2.3175 0.8717 2.7533 | 4.6045

13.8098 | 2.7062 1.3922 3.4023 | 5.7861

16.8941 | 3.0676 1.8360 3.9856 | 6.8550

19.7779 | 3.4110 2.2388 4.5304 | 7.8545

22.5261 | 3.7427 2.6147 5.0500 | 8.8070

25.1779 | 4.0670 2.9714 5.9527 | 9.7260

27.7594 | 4.3869 3.3135 6.0437 | 10.6207
30.2889 | 4.7047 3.6441 6.5267 | 11.4973
32.7803 | 5.0219 3.9655 7.0046 | 12.3608
35.2443 | 5.3400 4.2793 7.4796 | 13.2147
37.6894 | 5.6602 4.5867 7.9536 | 14.0622
40.1229 | 5.9836 4.8887 8.4279 | 14.9055
42.5509 | 6.3111 5.1860 8.9041 | 15.7470
44.9786 | 6.6436 5.4792 9.3832 | 16.5884
47411 | 6.9821 5.7687 9.8664 | 17.4314
49.8523 | 7.3274 6.0550 | 10.3549 | 18.2775
52.3066 | 7.6804 6.3382 | 10.8495 | 19.1281
04.7778 | 8.0421 6.6186 | 11.3514 | 19.9845
27.2696 | 8.4135 6.8963 | 11.8616 | 20.8481
29.7857 | 8.7955 7.1713 | 12.3812 | 21.7201
62.3297 | 9.1893 7.4437 | 12,9112 | 22.6018
64.9055 | 9.5961 7.7133 | 13.4527 | 23.4945
67.5167 | 10.0172 | 7.9800 | 14.0072 | 24.3995
70.1673 | 10.4539 | 8.2437 | 14.5758 | 25.3181
72.8614 | 10.9080 | 8.5040 | 15.1600 | 26.2518
75.6034 | 11.3811 | 8.7606 | 15.7614 | 27.2021
78.3978 | 11.8752 | 9.0130 | 16.3817 | 28.1706
81.2498 | 12.3925 | 9.2606 | 17.0228 | 29.159

84.1647 | 12.9354 | 9.5028 | 17.6868 | 30.1692
87.1483 | 13.5069 | 9.7386 | 18.3762 | 31.2033
90.2071 | 14.1101 | 9.9670 | 19.0936 | 32.2634
93.3484 | 14.7483 | 10.1868 | 19.8417 | 33.3521
96.5805 | 15.3926 | 10.3954 | 20.5903 | 34.4723
99.9593 | 12.1273 | 10.4758 | 17.3652 | 35.6432

Revenue (discounted) 733.2291
Investment cost (discounted) 56.6083
Total profit (discounted) 676.6208

Table 4.23 — Impulse Control solutions for n = 0.02, T'= 100 and parameter
values 7 = 0.04, § = 0.2, b= 1log2, v =05, =02, a=0,C=2, Ky=0
and 0(0) = 1.
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Table 4.24 — Impulse Control solutions for n = 0.03, T'= 100 and parameter
values r = 0.04, § = 0.2, b = 3log2, v =05, =02, 0 =0,C =2, Ko =0
and 0(0) = 1.

T I(m) K(r;)

K(r") | (")

3 K3

7.5126 | 2.2042 0

11.9020 | 2.6060 0.9162
15.5932 | 3.0359 1.4645
18.9345 | 3.4366 1.9315
22.0629 | 3.8188 2.3548
25.0493 | 4.1897 2.7494
27.9368 | 4.5542 3.1233
30.7539 | 4.9156 3.4815
33.5212 | 5.2765 3.8271
36.2541 | 5.6390 4.1625
38.9647 | 6.0049 4.4894
41.6632 | 6.3757 4.8090
44.3578 | 6.7529 0.1221
47.0561 | 7.1378 5.4295
49.7647 | 7.5319 5.7317
52.4898 | 7.9365 6.0290
55.2371 | 8.3532 6.3215
58.0124 | 8.7834 6.6095
60.8212 | 9.2288 6.8927
63.6691 | 9.6913 7.1711
66.5620 | 10.1729 | 7.4443
69.5058 | 10.6757 | 7.7120
72.5068 | 11.2023 | 7.9736
75.5718 | 11.7556 | 8.2282
78.7082 | 12.3386 | 8.4750
81.9241 | 12.9551 | 8.7129
85.2281 | 13.6094 | 8.9402
88.6304 | 14.3064 | 9.1552
92.1421 | 15.0518 | 9.3557
95.7764 | 15.8177 | 9.5378
99.5950 | 12.3688 | 9.5919

2.2042 | 3.6037
3.0641 | 5.1249
3.7681 | 6.4042
4.4024 | 7.5622
4.9962 | 8.6464
5.5644 | 9.6814
6.1158 | 10.6821
6.6563 | 11.6585
7.1901 | 12.6176
7.7203 | 13.5647
8.2496 | 14.5042
8.7802 | 15.4394
9.3139 | 16.3733
9.8526 | 17.3084
10.3977 | 18.2471
10.9510 | 19.1916
11.5139 | 20.1437
12.0881 | 21.1056
12.6752 | 22.0790
13.2769 | 23.0660
13.8951 | 24.0686
14.5317 | 25.0889
15.1891 | 26.1289
15.8697 | 27.1912
16.5761 | 28.2782
17.3115 | 29.3927
18.0795 | 30.5378
18.8840 | 31.7170
19.7296 | 32.9340
20.5867 | 34.1936
17.1648 | 35.5170

Revenue (discounted)
Investment cost (discounted)
Total profit (discounted)

701.2148
52.6074
648.6074
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CHAPTER 5

Numerical Algorithms for Deterministic Impulse
Control models with applications

Abstract In this chapter we describe three different algorithms, two of
which are new in the literature. We take both the size of the jump and
the jump times as decision variables. The first (new) algorithm con-
siders an Impulse Control problem as a (multipoint) Boundary Value
Problem and uses a continuation technique to solve it. The second
(new) approach is the continuation algorithm that requires the canoni-
cal system to be solved explicitly. This reduces the infinite dimensional
problem to a finite dimensional system of, in general, nonlinear equa-
tions, without discretizing the problem. Finally, we present a gradient
algorithm, where we reformulate the problem as a finite dimensional
problem, which can be solved using some standard optimization tech-
niques. As an application we solve a forest management problem and
a dike heightening problem. We numerically compare the efficiency
of our methods to other approaches, such as dynamic programming,
backward algorithm and value function approach.

5.1 Introduction

For many problems in the area of economics and operations research it is realistic to
allow for jumps in the state variable. Take, for example, a firm that increases the
capital stock by a lumpy investment, or the decrease of the volume of a natural re-
source after each drilling. This chapter therefore considers optimal control models in
which the time moment of these jumps and the size of the jumps are taken as (new)
decision variables. Blaquiére (1977a; 1977b; 1979; 1985) extends the standard theory
on optimal control by deriving a Maximum Principle, the so called Impulse Control
Maximum Principle, that gives necessary (and sufficient) optimality conditions for
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solving such problems. In Chapter 2 we present the necessary optimality conditions
of the Impulse Control Maximum Principle based on the current value formulation.
In Chapter 2 we also design a transformation, which ensures that the application
of the Impulse Control Maximum Principle can be applied to problems with a fixed
cost. For a review of the literature applying the impulse control maximum principle,
we refer to Chapter 2 of this thesis.

Like Blaquiére (1977a; 1977b; 1979; 1985) and Chahim et al. (2012b), we consider a
framework where the number of jumps is not known. This distinguishes our approach
from, e.g., Liu et al. (1998) and Wu and Teo (2006) where a gradient method is used
assuming the number of jumps is known, and Augustin (2002, pp. 71-81) where the
Impulse Control Maximum Principle is used for a fixed number of jumps (see e.g.
Rempala (1990)). Other approaches in the literature include the value function ap-
proach found in Neuman and Costanza (1990), where a value function is defined for
a fixed number of jumps and Erdlenbruch et al. (2011) or Eijgenraam et al. (2011)
where dynamic programming is the tool of choice.

In the literature two different algorithms based on the Impulse Control Maximum
Principle (Blaquiére (1977a; 1977b; 1979; 1985) and Chahim et al. (2012b)) are de-
rived. Luhmer (1986) derived a forward algorithm (starts at time 0) and Kort (1989,
pp. 62-70) derived a backward algorithm (starts at final time horizon 7'). Both algo-
rithms have some drawbacks. To initialize the forward algorithm the initial costate(s)
value(s) is the choice variable. A similar drawback holds for the backward algorithm.
Here information on the state variable(s) at the end of the planning period is needed,
i.e. this (these) value(s) is (are) the choice variables(s).

In this chapter we describe three different algorithms, from which two (as far as
we know) are new in the literature. We take both the size of the jump and the
jump times as decision variables. The first (new) algorithm considers an Impulse
Control problem as a (multipoint) Boundary Value Problem and uses a continuation
technique to solve it. The second (new) approach is the continuation algorithm that
requires the canonical system to be solved explicitly. This reduces the infinite di-
mensional problem to a finite dimensional system of, in general, nonlinear equations,
without discretizing the problem. Finally, we present a gradient algorithm, where
we reformulate the problem as a finite dimensional problem, which can be solved
using some standard optimization techniques. As an application we solve a forest
management problem and a dike heightening problem. We numerically compare the
efficiency of our methods to other approaches, such as dynamic programming, back-
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ward algorithm and value function approach.

This chapter is organized as follows. In Section 5.2.1 we introduce the type of op-
timal control problem we consider in this chapter. In Section 5.3 we describe the
three algorithm suitable for solving Impulse Control problems. In Section 5.3.1 we
introduce some notation and show that the necessary conditions can be restated as
a (multipoint) boundary value problem (BVP). Second, we describe the continua-
tion algorithm in Section 5.3.2. Third, we describe the gradient algorithm in Section
5.3.3, which is developed by Hou and Wong (2011). In Section 5.4 we introduce
two applications, one deals with forest management (Section 5.4.1), and one deals
with dike heightening (Section 5.4.2). The numerical results for both applications
are presented in Section 5.5. We compare our found results with the results found
in the literature. Finally, in Section 5.6 we conclude and give recommendations for
future research.

5.2 An Impulse Control Model

In this section we introduce a general Impulse Control model and provide necessary
optimality conditions.

5.2.1 The Model

Let us denote x as the state variable, v as an ordinary control variable and v’ as
the impulse control variable, where x and u are piecewise continuous functions of

"t at time

time!. We denote r as the discount rate leading to the discount factor e~
t. The terminal time or horizon date of the system or process is denoted by T > 0,
and z(T7) stands for the state value immediately after a possible jump at time 7.
The profit of the system between jumps is given by F(z,u,t), whereas G(x,v,t) is
the profit function associated with a jump, and S(z(77")) is the salvage value, i.e.
the total costs or profit associated with the system after time 7. Finally, f(x,u,t)
describes the continuous change of the state variable over time between the jump
points and ¢(z,v,t) is a function that represents the instantaneous (finite) change of

the state variable when there is an impulse or jump.

!Note that the necessary optimality conditions presented in Theorem 5.2.1 also hold for measur-
able controls. Applications typically have piecewise continuous functions.



CHAPTER 5. NUMERICAL ALGORITHMS FOR IMPULSE
122 CONTROL MODELS WITH APPLICATIONS

The above results in the following optimal control problem

max {/OTe_”F(x(t),u(t),t) dt} +

u(-),N,7;,v
N (5.1a)
e G(x(ry), v, ) e S(x(TH)),
i=1
st @(t) = fa(t),u(t),t), for te[0,T)\{m,...,7~}, (5.1b)
o(r") —x(r7) = g(x(r;),v", 1), for i€ {l,...,N}, (5.1c)
z(07)=z0, ult)eU, v' €V, ie{l,...,N}. (5.1d)
For N € N we assume the jump times to be sorted as
7, €[0,7] with 0<m <...<7y<T, (5.1e)

z(rh) = ltlﬁlx(t) and z(7; ) = ltlTrTnx(t), for i=1,..., N,

and
o € R".

We assume that the domains &/ C R™ and V C R are bounded convex sets. Further
we impose that F, f, ¢ and G are continuously differentiable in z on R™ and v* on
V, S(x) is continuously differentiable in x on R", and that g and G are continuous
in 7. Finally, when there is no jump, i.e. v = 0, we assume that

g(x7 O?t) = O?

for all z and t.

5.2.2 Necessary Optimality Conditions

We apply the Impulse Control Maximum Principle in current value formulation de-
rived in Chahim et al. (2012b) to (5.1).> The resulting necessary optimality condi-
tions are presented in Theorem 5.2.1.

Before we state Theorem 5.2.1, let us define the Hamiltonian H and the Impulse
Hamiltonian ZH as

H(z,u, N\ t) = F(z,u,t) + Af(x,u,t), (5.2a)
TH(x,v,\t) := G(z,v,t) + Ag(z,v,1), (5.2b)

20ther references deriving the necessary optimality conditions for the Impulse Control problems
are Blaquiére (1977a; 1977b; 1979; 1985), Seierstad (1981) and Seierstad and Sydsaeter (1987).
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and define the following abbreviations

Hls] = H(x(s), u(s), A(s), 5), (5.2c)
TH[s,v] :=TH(z(s™),v,A\(sT), ), (5.2d)
Gls,v] == G(x(s7),v,s), (5.2e)
gls,v] == g(z(s7), v, s). (5.2f)

Theorem 5.2.1 (Impulse control maximum principle).

Let for N € N with N >0 (z*(-),u*(-), N, 75, ..., 7%, v'*, ..., o™*) be an optimal so-
lution of (5.1). Then there exists a (piecewise absolutely continuous) adjoint variable
A(+) such that the following conditions hold:

u*(t) € argmax H(z"(t),u(t), A(t),t), te€][0,T], (5.3a)
: 0
)‘(t) :T)‘(t) - %H(‘(E*(t%u)k(t)?)‘(t)?t)a le [OaT] \ {7_1*%"77—;{[}' (53b)
For everyt =77, (i=1,...N), we have
((%IH(x*(Ti*_),vi*, M), 7)) (v —0v™) <0, ve, (5.3¢)
Nr) = A7) =~ TH ()0 A, 77), (5.30)
; >0 =0
H[r ] — H[r 7]+ Gl 0™ — EIH[T:’ V1 =0 1€ (0,T) (5.3e)
<0 =T
Fort e [0, T|\{7,..., 7%} it holds that
%ZH(x*(t), 0,A(t),t)hv <0, ve. (5.3f)
The transversality condition is
0
e * (Pt
MT™) = -5 (T7)). (5.3g)
Proof: See Blaquiére (1977a; 1985). [

To simplify the presentation and to concentrate on the main concepts of the nu-
merical algorithm, besides the earlier assumptions, we further make the following
assumptions.

Assumption 5.2.1. For every time horizon T" > 0 there exists a unique optimal solu-
tion of (5.1), with a finite number of jumps (which in general depends on T').

This assumption is needed for the boundary value problem approach and the contin-
uation algorithm. If this assumption does not hold, both algorithms will not generate
a solution since the number of jumps is not finite. This assumption is not required
for the gradient algorithm, since the number of jumps is fixed.
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Assumption 5.2.2. Let for T > 0 the jump times be (7)Y, with 0 <7 < ... <7y <
T,and Z(T) := (z(ry ), x(1] ), v1, ..., 2(7y), z(13), vn) be the vector of left and right
limits of the states together with the optimal impulse control values for the given
time horizon T'. Then in a neighborhood of T" the solution vector z(7') is continuous.

We need this assumption again for both the boundary value problem approach and
the continuation algorithm. For both algorithms 7" is a continuation variable. During
the continuation process 7' is increased and the conditions for possible jumps are
monitored.

Assumption 5.2.3. The model does not include a continuous control.

For simplicity we state this assumption. Then the boundary value problem approach
is still a suitable method to solve the problem. The gradient method and the con-
tinuation algorithm depend on whether the system is explicitly solvable or not.

Assumption 5.2.4. Condition (5.3c) together with Assumption 5.2.3 implies

) Y

),7) =0 (5.4)

%TH (™ (7)), v, A(7 ,
and with 2 TH (*(777), v™*, \(7;T), 77) < 0 this yields
Ui* = U(x*(Ti*_)u )‘(Ti*+)7 Ti*)‘ (55)

In general condition (5.3¢) does not imply that the optimal impulse control value
can be found as the arg max of the Impulse Hamiltonian. For simplicity we restrict
ourself to such function in this chapter.

5.3 Numerical Algorithms

In this section we describe three different algorithms to solve Impulse Control prob-
lems. We state a (multipoint) boundary value problem for Impulse Control problems
in Section 5.3.1 which is (as far as we know) new in the literature, describe the gra-
dient method approach developed by Hou and Wong (2011) in Section 5.3.3, and
finally we describe a second new approach that we call the continuation algorithm in
Section 5.3.2.

5.3.1 (Multipoint) Boundary Value Approach

In this section we describe a (multipoint) boundary value problem (BVP), that is
useful to solve Impulse Control problems. The idea behind the boundary value ap-
proach is that between two jumps the system of differential equations (canonical sys-
tem) combined with the boundary conditions (initial and final conditions) is solved.
After each found jump the (multipoint) BVP is updated to find the next jump.
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To formulate the (multipoint) BVP we introduce the following notation for the canon-
ical system dynamics:

z(t) = ha(z(t), \(2), 1), (5.6a)
At) = ha(x(t), A(2), 1). (5.6b)
For the conditions at a jumping time 7 we define:

F@(r), 2(77),N77), 1) = a(rT) —a(r7) — gl a(rT) — (7)), (5.6¢)
M), M)A, T) = M) = M) + %IH[T,I(T+) —z(77)],

(5.6d)
J@(m),2(r0), Mr7), A7), 7) v=H [T = Hr ]+

(5.6e)

rG[r,v] — %IH[T,I(T+) —xz(17))].

Now let (z*(),u*(:), N, 7, ..., 75, v, ..., v™V*) be the optimal solution of (5.1) with
0 <7 <...<78 <T. Then the necessary conditions yield the following (multi-
point) BVP:

xl(t) = hy(xi(t), \i(t), 1), t€[no1,m], i=1,...,N+1, (5.7a)

Ai(t) = ho(zi(t), \s(£), 1), t€[riq,7], i=1,...,N+1, (5.7b)
7 (i (1), (7)), Ni(77), ) =0, i=1,...,N, (5.7¢)
M (), (), N(77), ) =0, i=1,...,N, (5.7d)
G (i), (), N(7T), N ), ) =0, i=1,...,N, (5.7e)
S(@n 1 (T), Ana(T)) =0, (5.7f)
£1(0) — 20 = 0, (5.78)

where (5.7f) denotes the transversality condition (5.3g), 7o = 0 and 7y =T

After defining t(s) := 7, — (i — s)Am;, with A7, := 7, — 7,1, we rewrite (5.7) into

z;i(s) = Arihy(xi(s), Ni(s),t(s)), se€fi—1,4, i=1,...,N+1, (5.8a)
Ai(s) = Ariha(xi(s), Ni(s),t(s)), se€fi—1,i], i=1,...,N+1, (5.8b)
7 (2 (i), (i), (i), 1) =0, i=1,...,N, (5.8¢)
Mo (), (@), Ni(i7), 1) =0, i=1,...,N, (5.8d)
(7)), 2 (), (i), (i), ) =0, i=1,...,N, (5.8e)
Sy (N+1),Av1(N+1)) =0, (5.8f)
21(0) — 29 = 0. (5.8g)
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The jump times 7;, ¢ = 1..., N, appear as unknown variables.

To handle the case 7n = T we introduce the (unknown) variables

xT = an 1 (TT),
IT := >\N+1(T+),

together with the additional boundary conditions

JO(xT, xn (N +1),1T,T) = 0, (5.9a)

My (N 4 1),1T, Ay (N +1),T) =0, (5.9b)
and replace (5.8f) by

S(xT,1T) = 0. (5.9¢)

The case 71 = 0 can be treated in an analogous way. We therefore set

x0 = z;(0"),
10 := A\ (07),
together with the additional boundary conditions
7 (x0, z0,10,0) = 0, (5.10a)
(0,10, A1(0),0) = 0, (5.10D)
and replace (5.8g) by
x1(0) —x0 = 0. (5.10c)

During the continuation process it may be of interest to determine the exact value of
end time T where the solution jumps at the end time and additionally the condition
(5.8e) is satisfied. In general this characterizes the crossing from a jump at the
boundary to an interior jump. For that case the time horizon T is considered as a
free variable and the condition

PN (@ns (N +1),xT, Ay (N + 1),1T, T) = 0, (5.11)
is appended to (5.9).
Initializing the BVP
To find the solution of a specific problem of type (5.1) we can apply a continua-

tion strategy with respect to the time horizon 7. Therefore, as a first step we have
to determine an initial (optimal) solution.
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Due to Assumption 5.2.1, the initial condition together with the transversality condi-
tion yield the necessary equations for 7" = 0. This solution can be used as a starting
point for paths, which for a “small” time horizon do not exhibit a jumping point.

5.3.2 Continuation Algorithm

Let us consider the initial value problem (IVP) (5.8a) and (5.8b) on the time interval
i —1,4] with

y(s) = Arhi(y(s), u(s),t(s)), se€li—1,i, (5.12a)
fi(s) = Atiha(y(s), u(s), t(s)), s €[i—1,4. (5.12b)
With initial conditions

the solution can formally be written as
y(i) — y(i 1) = A / P (y(s), 1(s), 1(s)) ds,
1—1
()~ i = 1) = &7 [ haly(s). ). 1(s)) d.
1—1

or even more general as an implicit equation
F(y(Z - 1)7 :u(Z - 1)7 y(l)v :U’(Z)v Ti—1, Ti) =0.
To simplify notation, we introduce the following notation:

G = () oo

)

Then the system (5.8) can be stated as

Qo (yo, y1,70) = 0 € R™, (5.13a)
On1(Yan, Yon i1, Tvgr) = 0 € R, (5.13Db)
Qi = Y(y2i, Yoir1, 7)) =0 € R*™ =1, N, (5.13c)
Ly = F(Y2it1, Yo(it1)s Tor Ti1) = 0 € R*, i =0,1,..., N, (5.13d)

where (5.13a) denotes the initial condition, (5.13b) the transversality condition,
(5.13c) the connecting condition for interior jumping points, and (5.13d) the so-
lution of the IVP. Thus in total we have 8n+ N(4n+ 1) equations ((5.13a) generates
3n equations, (5.13b) also generates 3n equations, (5.13c) generates N(2n+ 1) equa-
tions, and finally (5.13d) generates (N + 1)2n equations) and the same number of
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unknowns (Yo, - - ., Ya(N41)+1: T1s - - - TN) (Yo, - - -, Yov+1)+1 are 2n(2(N + 1) + 2) vari-
ables and 7, ..., 7y are NV variables, gives a total of 814 N(4n + 1) variables). Then

Q=1[ Q...Qy) € R&HNCHD (5.14a)
=y T...Txy) € R, (5.14b)
If the IVP (5.12) can be solved explicitly, the formulation (5.14) has the advantage

of reducing the infinite dimensional problem to a finite dimensional system of, in
general, nonlinear equations, without discretizing the problem.

5.3.3 Gradient Algorithm

If the dynamics (5.1b) and the integral part of the objective function (5.1a) are simple
enough to solve them explicitly, then the problem can be restated (without numerical
discretization) as a finite dimensional problem. This can then be solved by some stan-
dard optimization algorithm, e.g. the numerical optimizer fmincon under MATLAB.

Problem (5.1) can be written as

N
]{/nTaif Z; D(2(7"), 2(134), tis tiga)+

N (5.15a)
> e Gla(ry), v ) e S(@(TY), i=0,...,N,
i=1
st (i) = (@), ti, titr), for i=0,...,N, (5.15b)
(") — (1) = g(z(r7),v", 1), for i=1,...,N, (5.15¢)
z(07) =z € R", (5.15d)
with
T = tg, kZE{O,l,...,N,N+1}, tno1 =T, (5156)
tit1
DGl ) alti) ttinn) = [ e Flatt) 0t (5.15f)
t;
tit1
O(x(tf), ti tipr) = x(tF) + f(z(t),t)dt. (5.15g)
t;
Setting
y=(z(ty),z(ty), ..., x(T7),a(TH), v, ..., oV, 7, ..., 7n), (5.16)

problem (5.15) becomes a finite dimensional maximization problem. To keep the
notation simple, in a first step we subsequently assume that the jumps only occur
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within the interior of the interval [ty, T|. Therefore 7, = t, k = 1,..., N, and
y € R*™N T (ie. y consists of N +2 left and N + 2 right limits, N jumps, and N jump
times). In that case the doubling (left and right limit) of the initial and end state is
superfluous but allows an immediate generalization in case that a jump also occurs
at the beginning or the end.

Next we derive the necessary optimality conditions, which, of course, reproduce the
necessary optimality conditions from the Impulse Control Maximum Principle. First
we start with the derivatives (gradients) of the equality constraints (5.15b)-(5.15d).
In the new coordinates y; these constraints become

1=y — =0,
Cotrk = Y2k+1 — Y2k — ‘I)(yziw Y2(N+2)+N+k> y2(N+2)+N+k+1) =0, k=0,...,N,
Cotr N4 14k = Y2(k+1) — Yory1 = 0, B =0, N + 1,

CorN+1+k = Y2(k+1) — Y2k+1 — 9(y2k+1, Y2(N+2)+k> yz(N+2)+N+k) =0, k=1,...,N.

Therefore the derivatives are calculated as

da_
oy
dcap,
OYar+1
Ocapy,

Oy
Ocoyr,

=1

Y

= —-1-0Wo,

ay2(N+2)+N+k
a02+k

OY2(N+2)+N-+k+1

0

M:l, kj:O’,N_‘_l?
Y2 (k+1)

Oczinitih _
OYor+1

oeNeish g _ gy f=1,...,N,
OYor+1

0

GOUNTIHE _ 5@y k=1, ..

OYa(N+2)+k
0

_CONHLER 9Bk =1,...,N,

OYa(N+2)+ N+
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where 0 denotes the partial derivative of a function with respect to its i-th argu-
ment. Rewriting the objective function (5.15a) in the coordinates y we find

V(y) = F(ylv Y2, Y2(N4+2)+N+1, y2(N+2)+N+2)

N
+ Z C(x(t), o(tg) iy tiva)
i=1

N
+Y e Gla(n), ' ) + e S((TH)),
i=1

and the derivatives are given as

oV (y)
891

=1

For a thorough discussion and motivation we refer to Hou and Wong (2011).

In order to find the optimal solution using the gradient algorithm we need some
information about the structure of the problem, i.e. have some knowledge about the
optimal number of jumps. Neuman and Costanza (1990) use the value function ap-
proach and assume that for each initial state, the value function V is well behaved,
in the sense that there is an index k such that Vj (where V}, denotes the value func-
tion having k£ jumps) is greater than other V;, i.e. V;s are nondecreasing for i < k
and monotonically decreasing for ¢« > k. The main reason for this assumption is that
this guarantees that only a finite number of steps is necessary to achieve the optimum.

To overcome this problem we use the solution provided by the continuation algo-
rithm to initialize the gradient method approach. From numerical experiments we
know that the continuation algorithm has provided the same (optimal) solution for
impulse control problems solved using the backward algorithm, dynamic program-
ming, or the value function approach. We have no proof that the algorithm converges
or finds the optimal solution for all Impulse Control problems.

5.4 Two Applications
5.4.1 A Forest Management Model

To exemplify the numerical techniques we use a model described in Neuman and
Costanza (1990) where the optimal solution for forest management is derived using
impulse control. It consists, at time ¢, of one state w(t) € R, denoting the size of
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the forest and one impulse control z € R, denoting the size of the cut (of the forest).
The dynamics of the forest is described by a logistic term ¢(y(t)). Forest growth is
then presented by

w(t) = g(w(t) = wt)(a - bw(t)), =0,

with a and b positive constants. At time zero the size of the forest is equal to some
initial value, i.e.

w(0) =x > 0.

When management is imposed on forest evolution, the forest is cut at times 7; € R,
(t=1,...N) with N the number of cuts such that the size of the forest changes by:

w(r") —w(r) =2, for i€{l,...,N}

The total benefit generated by the dynamic system is given by

q(z) + /0 f(w(s),s)e "dt + Z k(w(), 5, 29" + p(w(TT)e ",

where ¢(z) is the initial cost function, f(w,t) is the profit function of the system per
unit time, and k(w, 7;, 2") is the cost of the impulse 2’ applied to the state w(7;) at
time ;.

The impulse cost function is given by
k(w,7,2) = D+ K(w,z) = D — goz + g12°> for z > 0,

where D < 0 can be considered as a fixed cost for cutting the forest and K(w, z)
being the variable profit generated by cutting the forest, gy and g; are some positive
constants. If z = 0 we assume that k(w,7,0) = 0. The initial cost function is given
by

q(z) = —qo(x — x0),

where ¢ is a positive constant and xq is some bound imposed on the states, due to
either ecological or practical constraints. The profit of the system is given by

f(w7t> - f07

with fy some positive constant. Finally, the salvage value is defined as

p(w(T)) = go(w(T*) = x0) — g1 (w(T™) — wo)*.
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Summing up, the optimal control problem can be written as

T
max {—qo(x — ) + / e " fodt
0

N,1,z

(5.17a)

s.t. w(t) =w(t)(a—bw(t)), for tel0,T]\{n,...,7~}, (5.17b)
w(r) —w(r,) = 2, for ie{l,...,N}, (5.17¢)
w(07) =z >0, (5.17d)

w(t) Ry, 2'€(-00,0], 0<m<T<...<7y<T, (5.17e)

where r denotes the discount rate. For the analysis of this model the Impulse Control
Maximum Principle is used, where the details are presented in Appendix 5A.1.

5.4.2 Dike Heightening Problem

This section describes a problem taken from Chahim et al. (2012a) where the optimal
timing of the heightening of a dike is studied. The cost-benefit-economic decision
problem contains two types of cost, namely investment cost and cost due to damage
(caused by failure of protection by the dikes). It consists, at time ¢, of one state
H(t) € R, denoting the height of the dike relative to the initial situation, i.e. H(0) =
0 (¢cm) and one impulse control variable v’ denoting the i-th dike heightening of the
dike. It is assumed that between two heightenings the dike height does not change,
i.e. the dynamics of the dike are presented by

H(t) = 0.

The dike increases at times 7; € R, (i = 1,... N), with N the number of heightenings
such that the height of the dike is increased by

H(r")—H(r7)=14", for i€{l,...,N}.

The objective consists of two parts. The first part is the total (discounted) expected
damage cost, which is given by

T —rT
/ s@yertde + S
0

r

where S(t) denotes the expected damage at time ¢, i.e. S(t) = P(t)V(t), where P(t)
stands for the flood probability and V() the damage of a flood (million €) at time
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t. The flood probability P(t) (1/year) in year t is defined as
P(t) = Pyeme ot (5.18)

where « (1/cm) stands for the parameter in the exponential distribution regarding
the flood probability, n (cm/year) is the parameter that indicates the increase of the
water level per year, and F) denotes the flood probability at ¢ = 0. The damage of
a flood V(t) (million €) is given by

V(t) = VpetetH®), (5.19)

in which 7 (per year) is the parameter for economic growth, and ¢ (1/cm) stands for
the damage increase per cm dike height. V4 (million €) denotes the loss by flooding
at time ¢t = 0. The second part of the objective is the total (discounted) investment
cost

N

S H e,

i=1
where H(77) denotes the height of the dike (in ¢m) just before the dike update at
time 7 (left-limit of H(¢) at t = 7). The investment cost is given by

ag(H(177) +v")% + bpv' +¢o  for v* >0

I, H(r7) = { 0 for v' =0,

for suitably chosen constants ag, by and ¢y. Summing up, the Impulse Control model
can be written as

11}21}1\1[ {/T S(t)e "dt + Z I(v', H(m))e "™ + e_’"T@} ) (5.20a)

- T
=1

st. H(t) =0, for te0,T)\{m,....,7n} (5.20b)
H(t")— H(r])=9", for i€{l,...,N}, (5.20¢)
H(0)=0 (5.20d)
Ht)eR,, v €0,00), 0<7<T,...<7y<T. (5.20e)

For the analysis of this model the impulse control maximum principle is used, where
the details are carried out in Appendix 5A.2. For an extensive description of the
model we refer to Chahim et al. (2012a).

5.5 Numerical Results

In this section we present results for two different applications using the continuation
algorithm and make a comparison with results derived using other approaches.
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5.5.1 The Forest Model

In this section we present the results for the optimal forest management problem
described in the previous section. The parameter value presented in Table 5.1 are
taken from Neuman and Costanza (1990).

r | a | b | D]fo]|l g |a|lwlw| w|T
0.05 | 0.2059 | 0.00344 | -190 | -15 [ 24.5] 0 [ 40| 5 | 34.4 8

Table 5.1 — Parameter values for the optimal forest management model.

T 2 w(T™) | w(rh)
0 0 34.4 34.4
1 -24.2 37.35 | 13.08
8 0 32.43 | 32.43
Discounted revenue -441.1751
Table 5.2 — Result of value function approach found in Neuman and Costanza
(1990).
T 2 w(r™) | w(rh)
0 0 34.400 | 34.400
0.8216 | -23.5757 | 36.8383 | 13.2626
8 0 33.290 | 33.290
Discounted revenue -438.2973

Table 5.3 — Result of the continuation algorithm.

The results we derive using the continuation algorithm are presented in Table 5.3.
The results of Table 5.3 are similar to the results found in Neuman and Costanza
(1990) presented in Table 5.2. The continuation algorithm (same holds for BVP
algorithm) has two advantages over the value function approach described in Neuman
and Costanza (1990). First, we do not have to discretize the time horizon. This
results in a better objective value and hence a better solution to the original problem.
In Figure 5.1 we plot the size of the forest as a function of time. Initially, the size of
the forest increases, then at a some time instance the forest is cut. Hence, the size of
the forest jumps downward and then grows again. Second, we did not have to solve
the problems for different number of cuts to find the optimal solution to our forest
management problem.
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Figure 5.1 — Dynamics of the forest over time.

5.5.2 The Dike Heightening Model

In this section we present the optimal solution for a dike. The parameter values
presented in Table 5.4 are taken from Eijgenraam et al. (2011).

In Table 5.5 the solution for three different approaches are presented. In the

ag bo ‘ Co ‘ Vo ‘ r I
0.0014 | 0.6258 | 16.6939 | 1564.9 | 0.04 | 1/2270
H| o | n | v | ¢ T
0 | 0.33027 | 0.32 | 0.02 | 0.003774 | 300

Table 5.4 — Parameter values for dike 10.

second column the results for the continuation algorithm are given, the third column
presents the results found by the backward algorithm used in Section 3.3, and in
the fourth column the results for dynamic programming (DP) are given taken from
Eijgenraam et al. (2011).

Unlike dynamic programming, both the continuation algorithm and the backward
algorithm do not need to discretize time. However, for the initialization of the back-
ward algorithm, we need the discretization of the state at the end of the time horizon
(final stage), H(T'), and dynamic programming requires the discretization of time
and of the heights (states) for each stage. The continuation algorithm does not need
any input on the state variable H(7'). Even though the solutions for the backward
algorithm and the continuation algorithm are similar, the continuation algorithm
(same holds for the BVP approach) finds the optimal solution without running the
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algorithm for different end heights H (7). In Chahim et al. (2012a) the authors dis-
cretize the state variable as is required for the dynamic programming approach in
Eijgenraam et al. (2011) and take that H(7") that minimizes (5.20a).

Approach® BA DP CA
(73 @ w;) 272.8 1 52.18 | 274 : 51.84 | 272.7 :52.21
217.0 : 56.43 | 219 : 55.68 | 217.0 :56.45
160.1 : 56.90 | 162 : 57.60 | 160.0:56.90
103.0 : 56.95 | 104 : 57.60 | 103.0 :56.96
45.9 : 56.96 | 46 : 57.60 | 45.8 :56.96
H(T) 279.41 280.32 279.48
Total cost 40.03 40.04 40.03

@ Backward algorithm (BA), dynamic programming
(DP), and continuation algorithm (CA)

Table 5.5 — Results for dike 10.

5.6 Conclusions and Recommendations

We describe three different numerical methods to solve Impulse Control problems.
The first (new) algorithm considers an Impulse Control problem as a (multipoint)
Boundary Value Problem and uses a continuation technique to solve it. The second
(new) approach is the continuation algorithm that requires the canonical system to
be solved explicitly. This reduces the infinite dimensional problem to a finite dimen-
sional system of, in general, nonlinear equations, without discretizing the problem.
The third algorithm is a gradient algorithm, where the problem is reformulated as
a finite dimensional problem, which can be solved using some standard optimization
techniques. We use the continuation algorithm to solve the optimal forest manage-
ment problem (same results found for the boundary value problem approach) and
the dike heightening problem. Although numerical results found by the continuation
algorithm (same holds for the boundary value problem approach) are at least as good
as the results found in the literature, a formal proof that the boundary value problem
approach and the continuation algorithm provide the optimal solution is subject for
future research.
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Appendix 5A Necessary Optimality Conditions for

the Applications
5A.1 The Forest Management Model

Let us define the current value Hamiltonian
H(w, A\, t) == fo + Aw(a — bw),
and the current value Impulse Hamiltonian
TH(z,\t) =D — goz + g12° + Az
We obtain the adjoint equation
At) = (r — a4+ 2bw(t))A\(), for t#7,i=1,...,N,
with the transversality condition
ANT) = go — 2q1w(T7).
The jump conditions are
—go+gq12' +A(r") =0, fori=1,...,N,
and

ANt = Xr7)=0, fori=1,...,N,

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

from which we can conclude that the costate A(¢) is continuous at every jump point.

The condition for determining the optimal switching time 7; is

A () (a = bw(r")) = M7 )w(r;)(a = bw(r;))

3 K3 3

>0 ifr,=0
+7rD —rgys + 7“glz"2 =0 ifre(0,7)
<0 ifr="T.

5A.2 The Dike Heightening Model

Let us define the current value Hamiltonian

H(t, H) = —Spe’te

(5.27)

(5.28)
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and the current value Impulse Hamiltonian

TH(H,v,\t) = —1(v, H) + v = —Ag(H + v)?

—bov — ¢y + v, (5.29)
and obtain the adjoint equation
A(t) = rA(t) — 080 e O for t£7,i=1,...,N, (5.30)
with the transversality condition
0BT e—0H(T)
ANT) = 220 € (5.31)
r
The jump conditions are
I, (ui, H (7)) + A (7;7) =0, fori=1,...,N, (5.32)
A7) = N7 ) == Iy (u;, H(7;)), fori=1,...,N (5.33)

The condition for determining the optimal switching time 7; is

>0 ifr=0
Syl (e—eH(T;) _ e—eH(rf)) —rl (Ui> H(Ti_)) =0 ifr,e€(0,7) (5.34)
<0 ifr,="T.

Appendix 5B Implementation in MATLAB

For the subsequent sections we assume that a solution of (5.1) and time horizon T'
has already been detected given by (z*(-),v,7), i=1,.... Nwith0 <7 <7 <

. < 7v < T. In the first section we consider the case where a solution of the
canonical system between two adjacent jumps can be found analytically. Therefore
the problem can be reduced to a finite number of nonlinear equations, see Section
5.3.2 and 5.3.3.

5B.1 Continuation Algorithm

For the actual implementation in MATLAB a vector x is introduced

w=(y(r ), y(r ), y(n) y(Tn ) s ) (5.35a)
with

y(t) == (z*(), A(2)). (5.35b)
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This vector consists of the left and right side limits of the states and costates at the
jumping times and the (interior) jumping times appended at the end. To continue the
solution along a parameter value, the initial states or time horizon MATCONT is used.
Therefore the main MATCONT file, where the system is defined, has to be provided.

function out = iocmodelDiscretedmatcont

%
% Standard ode file for MATCONT

out{l} = Q@init;
out{2} = @fun_eval;

out{10}= @interiorjumpfunc;
out{l11}= @reachtimehorizon ;

out{12}= @jumpingtimesvstimehorizon
out{13}= @negativetime;

%

%
function out = fun_ eval(t,geny,x0,par,T)
global GIV
aid=GIV. aid ;
arcnum=GIV . arcnum ;
jid=GIV.jid
y=geny (GIV.gDVC);
tp=|[GIV.IT geny (GIV.JTC).’ T]|;
initres =|[|;
transres =||;
connecres =||;
dynres =|[];
interiorjumpres =|[|;
for ii=1:arcnum+1
yLR=y (:,(2xii —1):2%1ii );
if i1i==
initres=GIV.IC(tp(ii),yLR,[par,T],aid(1),x0);
elseif ii—arcnum-+1
transres=GIV.TC(tp (ii),yLR,|par,T],aid (end));
end
connecres=|[connecres;

GIV.JC(tp(ii),yLR,|[par ,T],jid (ii))];
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if arcnum>1 && ii >=2 && ii<=arcnum
interiorjumpres=|[interiorjumpres;
GIV.LJC (tp(ii),yLR,|par,T|,aid (ii —1),jid (ii))];
end
if ii<=arcnum
yl=y (:,2%1i:(2% 11 +1));
dynres=[dynres;
GIV.CS(tp(ii:ii+1),yl,|par,T|,aid(ii))];
end
end
out=[initres;transres;connecres;dynres;interiorjumpres |;

%
function out=interiorjumpfunc(t,geny,x0,par,T)
global GIV
aid=GIV. aid ;
arcnum=GIV . arcnum ;
jid=GIV. jid;
y=geny (GIV.gDVC);
yLR=y (:,(2*(arcnum+1) —1):2%(arcnum+1));
if jid(end)
out=GIV.I1JC (T,yLR, [ par,T|,aid (end),jid (end));
else
out=1;
end

%

function out=reachtimehorizon(t,geny,x0,par,T)
global GIV

out=GIV.TH-T};

%
function out=jumpingtimesvstimehorizon (t,geny,x0,par,T)
global GIV

tp—|[geny (GIV.JTC) |;

if isempty (tp)
out=1;
else
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out=min (T—tp );
end

function out=negativetime (t,geny ,x0,par,T)
global GIV

%

out=min (| geny (GIV.JTC);T]);
Abbreviations

GIV=GloballmpulseVariable
genDynVarCoordinates=gDVC
InitialTime=IT
JumpTimeCoordinates=JTC
TimeHorizon=TH
InteriorJumpCondition=IJC
CanonicalSystem=CS
TransversalityCondition=IC

The function fun_eval file defines the ascribing equations. These equations are stated

in model specific functions and the function names are defined in the global variable
GIV. The fields of the global variable GIV are

arcnum the number of arcs y(t), ¢t € [1;,741], ¢ = 0,..., N between two adjacent
jumping times.

jumparg (jid) an integer vector storing an identifier for each jump. The first and
last entry denotes if a jump at the initial or end time occurs. If no jump occurs
it is set to zero, otherwise to some integer larger than zero.

InitialTime (IT) stores the initial time .

TimeHorizon (TH) stores the time horizon of the problem 7.
CanonicalSystem (CS) function where the canonical system is described.
InteriorJumpCondition (IJC) function for the interior jumping condition (5.7e).
TransversalityCondition (TC) function for the transversality condition (5.7f).

genDynVarCoordinates (gDVC) the matrix of coordinates for the left and right
side limits of the states and costates of vector .
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JumpTimeCoordinates (JTC) the coordinates of vector = storing the jumping
times.

Further variables used in the listing are

geny variable denoting z of (5.35a).

y matrix, where the column consist of y(7:°), i = 1,..., N, as defined in (5.35b).
yLR the left and right side limits y(7%) at a specific jumping time 7.

yI the two column matrix consisting of the right side limit y(7;") and the left side
limit of the next jumping time y(7;%,).

tp a vector consisting of the initial time, jumping times and time horizon.
x0 is a vector of the initial states z(0).
par is a vector of the parameter values of the model.

T is the actual time horizon, which need not be equal to the time horizon of the
problem stored in GIV.TH.

initres residual of the initial condition.

transres residual of the transversality condition.

connecres residual of the connection between two adjacent arcs.
dynres residual derived from the equations of the canonical system.
interiorjumpres residual derived from the interior jumping conditions.
The user functions used within the MATCONT syntax are

interiorjumpfunc returns the value of the interior jumping condition at jumping
times. This value is monitored during the continuation process. If it changes
sign the necessary jumping condition for an interior jump is satisfied and an
interior jump may occur.

reachtimehorizon if the continuation is done with respect to the time horizon this
value is monitored to check if the final time horizon is reached.
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5B.2. Gradient Algorithm

To solve problem (5.15) numerically the MATLAB function fmincon can be used.
For that purpose a file describing the objective function and its derivative has to
be provided together with a file describing the constraints and the corresponding
derivatives. The syntax (as we need it) of the function is

x = fmincon (fun ,x0,A, b []|,[],lb,ub,nonlcon ,opt),

where fun and nonlcon denote the files for the objective function and (nonlinear)
constraints, respectively. To apply the gradient algorithm lower and upper bounds of
the vector y have to be provided ub and vb. These bounds should be chosen in a way
that the interesting state and control space is covered. If during the calculations the
bounds are hit one can increase the bounds to stay in the interior. Furthermore we
can assure that the jumping times are ordered and do not exceed the time horizon.
These are linear inequalities

-7 <0,...,7v-1 —7n <0,

which can be presented by a matrix inequality of the form Ay < 0. The vector x0 is
some approximate solution of the problem. For the gradient algorithm the options
have at least to consist of

opt=optimset (’GradObj’, on’,’ GradConstr’,’on’);

The m-file for the constraints has to return a vector for (nonlinear) equality and
inequality constraints and the corresponding derivatives. If the problem does not
consist of inequality constraints empty vectors have to be returned.
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