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Introduction

The dissertation consists of three chapters that represent sepa-
rate papers in the area of market microstructure. The first two
chapters study competition between stock exchanges, and the
third focuses on the optimal strategy to trade a large quantity
of shares. Chapter 1 and 3 are joint work with Hans Degryse
and Frank de Jong.

The first chapter is motivated by two recent changes in cur-
rent equity markets. First, a large number of trading venues
coexist with publicly displayed limit order books, whereas in
the past only a single exchange existed. Second, a large fraction
of trading takes place on dark markets without publicly dis-
played limit order books, such as crossing networks, dark pools,
and over-the-counter. On dark markets the supply and demand
of shares are not publicly disclosed, meaning investors cannot
observe the trading interests of others. As a result, trading in
the same stock is dispersed across many trading venues, both
visible and dark, which causes a fragmented market.

We study the impact of dark trading and fragmentation in vis-
ible markets on liquidity. We find that fragmentation improves
liquidity aggregated over all visible trading venues, which sug-
gests that competition between liquidity suppliers has increased.
Dark trading has a negative impact on liquidity, which confirms
several recent theories but has not been shown empirically. In
addition, liquidity available on the traditional market is lowered
by fragmentation, meaning that the benefits of fragmentation
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are not enjoyed by market participants who resort only to the
traditional market.

In the second chapter, I study competition between trading
venues but focus on the interaction of liquidity demand and
supply across these venues. The theoretical model shows that
certain traders have an incentive to duplicate their liquidity sup-
ply across several venues. Then, after a trade on one venue (i.e.,
liquidity demand) they will quickly cancel their supply on oth-
ers. The consequence is that a single transaction leads to a
reduction of liquidity on all venues, such that the liquidity ag-
gregated across venues in fact overstates the liquidity available
in the market. The magnitude of the cancellations depends on
the fraction of investors that may access several venues simulta-
neously, i.e., who use Smart Order Routing Technology (SORT).
The reason is that market makers incur higher adverse selection
costs when the investor trades at a competing venue first, be-
cause then the trade is larger and more informed on average.
Consequently, a higher fraction of SORT investors reduces the
incentive to duplicate liquidity supply across venues.

The empirical results shows that trades are followed by can-
cellations of limit orders on competing venues of more than 53%
of the trade size. The magnitude of the cancellations varies ac-
cording to the fraction of SORT traders active in the market, as
predicted by the model.

The third chapter models the problem of a large trader who
must trade a given amount of shares before a fixed deadline,
and who wishes to minimize the total trading costs. The trad-
ing motive stems from liquidity or hedging needs rather than
informational reasons, which means that she is a liquidity trader
who does not have specific information about the fundamental
value of the stock. This problem is relevant to many different
traders, such as pension funds, insurance companies and certain
hedge funds.
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The model also considers an informed trader, who knows the
fundamental value of the stock and trades to maximize profits,
and noise traders, who trade random amounts each period. The
liquidity trader, the informed trader and the noise traders sub-
mit their trades to the dealer (a market maker), who observes
the aggregate trading volume and determines the price to clear
the market. The market maker is risk neutral but cannot distin-
guish between trades from informed and uninformed investors.
Therefore, the trades by the liquidity trader do affect the price,
although they are liquidity motivated.

Our model shows that the liquidity trader optimally splits up
the large trade over time to create predictability in the the order
flow. The predictable order flow stems from the liquidity trader
only, under the assumption that the informed traders have short-
lived private information. In turn, the market maker knows that
this predictable component stems from the liquidity trader and
does not revise prices, such that these trades enjoy lower price
impacts. In essence, we show that order splitting allows the
market to distinguish between informed and uninformed trades,
reducing the trading costs of the latter.
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Chapter 1

The impact of dark trading and
visible fragmentation on
market quality
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Abstract

Two important characteristics of current equity markets are the

large number of trading venues with publicly displayed order

books and the substantial fraction of dark trading, which takes

place outside such visible order books. This paper evaluates the

impact on liquidity of dark trading and fragmentation in visi-

ble order books. We find that fragmentation improves liquidity

aggregated over all visible trading venues, whereas dark trading

has a detrimental effect. In addition, liquidity available on the

traditional market is lowered by fragmentation, meaning that

the benefits of fragmentation are not enjoyed by market partic-

ipants who resort only to the traditional market.

JEL Codes: G10; G14; G15.

Keywords: Market microstructure, Fragmentation, Dark trad-

ing, Liquidity
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1.1 Introduction

Equity markets in the US, Europe, and Canada have seen a pro-
liferation of new trading venues. The traditional stock exchanges
are being challenged by a variety of trading systems, such as
electronic communication networks (ECNs), broker-dealer cross-
ing networks, dark pools, and over-the-counter markets (OTC).
Consequently, trading has become dispersed over many trading
venues—visible and dark—creating a fragmented marketplace.
These changes in market structure follow recent changes in fi-
nancial regulation, in particular the Regulation National Market
System (Reg NMS) in the US and the Market in Financial In-
struments Directive (MiFID) in Europe.

An important question is how market quality is affected by
the many different competing venues. In this paper, we study
the impact of market fragmentation on liquidity, which is an
important aspect of market quality. We investigate the im-
pact of different types of fragmentation by classifying trading
venues, according to their pre-trade transparency, into visible
and dark venues, i.e., with and without publicly displayed limit
order books. According to this definition, US stocks have a dark
market share of approximately 30% and European blue chips of
40%.1 Recently, the SEC has been conducting a broad review of
current equity markets, and it is particularly interested in the
effect of dark trading on execution quality.2

The impact on equity markets of fragmentation in visible or-
der books and of dark trading have long interested researchers,
regulators, investors, and trading institutions. In a recent study,
O’Hara and Ye (2011) find that fragmentation lowers transac-
tion costs and increases execution speed for NYSE and Nasdaq

1Speech of SEC chairman Mary Schapiro, “Strengthening Our Equity Market Struc-
ture,”US SEC New York, Sept 7, 2010, and Gomber and Pierron (2010) for Europe.

2See the speech of Schapiro, and the SEC concept release on equity market structure,
February 2010, File No. S7-02-10.
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stocks. They do not distinguish, however, between the differ-
ential impact on liquidity of fragmentation stemming from vis-
ible and dark trading venues. The main contribution of our
paper is that we disentangle the liquidity effects of fragmenta-
tion in visible order books (“visible fragmentation”) and dark
trading. In addition, we address the regulatory issues of fair
markets and retail investor protection. To this end, we dis-
tinguish between liquidity aggregated over all trading venues
(global liquidity) and liquidity of the traditional market only
(local liquidity). Global liquidity is available to investors using
smart order routing technology (SORT), and local liquidity is
accessible to investors who tap the traditional market only. We
furthermore improve on previous research by employing a new
data set that covers the relevant universe of trading platforms,
provides a stronger identification of fragmentation, and allows
for improved liquidity metrics.

Our main finding is that the effect of visible fragmentation
on global liquidity is generally positive, while the effect of dark
trading is negative. An increase in dark trading of one stan-
dard deviation lowers the global liquidity by 9%, which is con-
sistent with most of the theoretical research but has not been
documented empirically (see Section 1.2 for a literature review).
The effect of visible fragmentation has an inverted U-shape, i.e.,
the marginal effect decreases as fragmentation increases. With
our most conservative estimates, the optimal degree of visible
fragmentation improves global liquidity by approximately 32%
compared with a completely concentrated market. In addition,
we find that the gains of visible fragmentation are strongest for
liquidity close to the midpoint, i.e., at relatively good price lev-
els, and are weaker for liquidity deeper in the order book, which
improves by only 12%. This result suggests that newly enter-
ing trading venues with visible order books primarily improve
liquidity close to the midpoint. Furthermore, trading in large
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stocks is more fragmented, and its liquidity benefits twice as
much from fragmentation.

While global liquidity benefits from fragmentation, we find
that the market quality at the traditional stock exchange is
worse off: local liquidity close to the midpoint reduces by ap-
proximately 10%. Thus, investors without access to SORT are
worse off in a fragmented market, especially for relatively small
orders.

We address the impact of fragmentation on market liquidity
by creating, for every firm, daily proxies of visible fragmentation,
dark activity, and liquidity. Specifically, we use high-frequency
data from all relevant trading venues from January 2006 (before
fragmentation set in) to the end of 2009, when markets were
quite fragmented. Similarly to Foucault and Menkveld (2008),
we select all Dutch mid- and large-cap stocks, which are rela-
tively large with an average market capitalization approximately
twice that of the NYSE and Nasdaq stocks analyzed in O’Hara
and Ye (2011). We measure the degree of visible fragmenta-
tion using the Herfindahl-Hirschman index (HHI, the sum of
the squared market shares) based on the trading volumes of all
visible venues. Dark trading is defined as the market share of
trading volume on dark venues, which reflects OTC and inter-
nalization by broker dealers. Then, for each stock we construct
a consolidated limit order book (i.e., the limit order books of
all visible trading venues combined) to get a complete picture
of the global liquidity available in the market. Based on the
consolidated order book we analyze global liquidity at the best
price levels and also deeper in the order book. The depth be-
yond the best price levels matters to investors because it reflects
the quantity immediately available for trading and therefore the
price of immediacy. In addition to global liquidity, we analyze
local liquidity, which is available at the traditional exchange
only.
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Our panel dataset helps to identify the exogenous relationship
between liquidity and fragmentation by means of firm-quarter
fixed effects. The inclusion of firm-quarter dummies implies that
the impact of fragmentation on liquidity stems from variation
within a firm-quarter, making the analysis robust to various
industry-specific shocks and time-varying firm-specific shocks.
Furthermore, to address concerns about the endogeneity of vis-
ible fragmentation and dark trading, we use instrumental vari-
ables. Similarly to O’Hara and Ye (2011), we use as instruments
for visible fragmentation the average order size of the visible
competitors, and the number of limit orders to market orders
on the visible competitors. Dark trading is instrumented by the
size of the average dark order.

Our findings on liquidity are related to those of several recent
studies. The positive effect of visible fragmentation is consistent
with competition between liquidity suppliers, since the compen-
sation for liquidity suppliers, the realized spread, reduces with
fragmentation (e.g., Biais, Bisière, and Spatt (2010)). A similar
argument is made by Foucault and Menkveld (2008), who use
2004 data to show that liquidity improves with competition be-
tween two traditional stock exchanges (the LSE and Euronext).
The negative impact of dark trading is consistent with a “cream-
skimming” effect, as the informativeness of trades, the price
impact, increases strongly with dark activity (Zhu, 2011). In-
formed traders typically trade at the same side of the order book,
such that they face low execution probabilities in dark pools and
crossing networks. Consequently, dark markets attract relatively
more uninformed traders, leaving the informed trades to visible
markets. According to Hendershott and Mendelson (2000), the
visible market might be used as a market of last resort which
attracts mostly informed order flow.

In line with our results, Weaver (2011) shows that off-exchange
reported trades, which mostly represent dark trades in his sam-
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ple, negatively impact the market quality for US stocks. In
contrast to our results, Buti, Rindi, and Werner (2010a) find
that dark-pool activity is positively related to liquidity in the
cross-section, but economically insignificant in the time series.
They study pure dark pools however, whereas our measure of
dark trading mostly reflects OTC and internalization.

In summary, our findings imply a deeper understanding of the
more general conclusion of O’Hara and Ye (2011) that fragmen-
tation does not harm market quality. We show that the com-
position of the fragmentation—visible versus dark—determines
the total impact of fragmentation on market quality. Moreover,
our conclusions relate to the issues raised by the SEC on the
benefits and drawbacks of stock market fragmentation, showing
that the benefits are not equally enjoyed by all stock market
participants. This latter finding is particularly relevant to reg-
ulators who strive for fair markets and the protection of retail
investors.

The remainder of this paper is structured as follows. Section
1.2 discusses the literature on competition between exchanges.
The dataset and liquidity measures are described in Sections 1.3
and 1.4. Section 1.5 explains the methodology and main results,
while Section 1.6 reports a series of robustness checks. Finally,
Section 1.7 provides concluding remarks.

1.2 Literature on fragmentation and market

quality

There is a trade-off between order flow fragmentation and com-
petition. A single exchange has costs lower than those of a frag-
mented market structure. The latter costs are the fixed costs
to set up a new trading venue; the fixed costs for clearing and
settlement; the costs of monitoring several trading venues simul-
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taneously; and the cost of advanced technological infrastructure
to aggregate dispersed information in the market and to connect
to several trading venues. Also, a single market that is already
liquid will attract even more liquidity because of positive net-
work externalities (e.g., Pagano (1989a), Pagano (1989b), and
Admati and Pfleiderer (1991)). Each additional trader reduces
the stock’s execution risk for other potential traders, attract-
ing more traders. This positive feedback should cause all trades
to be executed at a single market, giving the highest degree of
liquidity.

However, while network externalities are still relevant, nowa-
days they may be realized even when several trading venues co-
exist. This happens to the extent that the technological infras-
tructure seamlessly links the individual trading venues, creating
effectively one market. From a broker’s point of view, the market
is then not fragmented, which alleviates the drawbacks of frag-
mentation (Stoll, 2006).3 In addition, fragmentation might also
enhance market quality, because increased competition among
liquidity suppliers forces them to improve their prices, narrowing
the bid-ask spreads (e.g., Biais, Martimort, and Rochet (2000)
and Battalio (1997)). Confirming a competition effect, Con-
rad, Johnson, and Wahal (2003) find that alternative trading
systems in general have lower execution costs compared with
brokers on traditional exchanges. Furthermore, Biais, Bisière,
and Spatt (2010) investigate the competition induced by ECN
activity on Nasdaq stocks. They find that ECNs with smaller
tick sizes tend to undercut the Nasdaq quotes and reduce the
overall quoted spreads.

Differences between trading venues may arise to cater to the
different needs of clientele. For example, investors differ in their

3Confirming a high level of market integration, Storkenmaier and Wagener (2011) find
that at least two venues quote the best bid and offer 85% of the time for FTSE100 stocks
in April/May 2010.
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preferences for trading speed, order sizes, anonymity, and like-
lihood of execution (Harris (1993) and Petrella (2009)). In the
US, Boehmer (2005) stresses the trade-off between speed of exe-
cution and execution costs on Nasdaq and NYSE, where Nasdaq
is more expensive but also faster. To attract more investors, new
trading venues may apply aggressive pricing schedules, such as
make and take fees (Foucault, Kadan, and Kandel, 2009). The
fact that some investors prefer a particular trading venue can
also lead to varying degrees of informed trading at each ex-
change. For instance, the NYSE has been found to attract more
informed order flow than the regional dealers (Easley, Kiefer,
and O’Hara, 1996) and Nasdaq market makers (Bessembinder
and Kaufman (1997) and Affleck-Graves, Hedge, and Miller
(1994)). Furthermore, Barclay, Hendershott, and McCormick
(2003) find that ECNs attract more informed order flow than
Nasdaq market makers, because ECN trades have a larger price
impact.

Stoll (2003) argues that competition fosters innovation and
efficiency, but priority rules may not be maintained. Specifi-
cally, time priority is often violated in fragmented markets, and
sometimes also price priority.4 Foucault and Menkveld (2008)
study the competition between an LSE order book (EuroSETS)
and Euronext Amsterdam for Dutch firms in 2004, and find
a trade-through rate of 73%. They call for a prohibition of
trade-throughs since these events discourage liquidity provision.
Possible explanations of trade-throughs are the high costs of
monitoring multiple markets or the high variable and fixed trad-
ing fees and clearing and settlement costs. Gresse (2006) finds
that trading activity on a crossing network improves the quoted

4Time priority is violated when two limit orders with the same price are placed on
two venues and the later order is executed first. Price priority is violated, i.e., a trade-
through, when an order gets executed against a price worse than the best quoted price in
the market. In a partial trade-through only part of the order could have been executed
against a better price.
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spreads in the dealer market, especially when the dealers also
trade on the crossing network.

In addition to competition between trading venues with visible
liquidity, this paper is related to the literature on competition
effects in dark markets, i.e., venues without publicly displayed
order books. A few papers theoretically investigate the impact of
dark trading on traditional markets. Hendershott and Mendel-
son (2000) model a crossing network that competes with a dealer
market, and they find ambiguous effects on the dealer’s spread.
On the one hand, a crossing network may attract new liquidity
traders and therefore lead to lower dealer spreads. On the other
hand, when the dealer market is used as a market of last resort,
the dealer’s spread may increase. Also modeling the interaction
between a crossing network and dealer market, Degryse, Van
Achter, and Wuyts (2009) show that the order flow dynamics
and welfare implications depend on the degree of transparency,
but they do not endogenize the spread. Buti, Rindi, and Werner
(2010b) model the competition between a dark pool and visible
limit order book, and show that the initial level of liquidity
determines the effect of the dark pool on the quoted spreads.
That is, for liquid stocks both limit and market orders migrate
to the dark pool, leaving the spread tight. For illiquid stocks
the competition induced by the dark pool reduces the execution
probability of limit orders, causing the spread to increase. In
contrast, Zhu (2011) argues that dark pools “cream-skim” unin-
formed trades, leaving informed trades to the visible exchange.
The intuition is that informed traders face a relatively low exe-
cution probability on the dark pool because they typically trade
on the same side of the order book. Empirical evidence suggests
that transparent markets allow for faster and cheaper access to
information and are therefore more efficient (Hendershott and
Jones, 2005, Boehmer, Saar, and Yu, 2005)

Finally, our paper is related to the literature on algorithmic
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trading, i.e., the use of computer programs to manage and exe-
cute trades in electronic limit order books. Algorithmic trading
has strongly increased over time, and it has drastically affected
the trading environment. In particular, it affects the level of
market fragmentation analyzed in our sample, since computer
programs and SORT allow investors to find the best liquid-
ity in the market by comparing the order books of individual
venues. Some algorithms are designed to split up trades over
time to reduce implicit transaction costs (e.g., Huberman and
Stanzl (2005)). Boehmer, Fong, and Wu (2012) find that an
increase in algorithmic trading intensity improves liquidity, but
also increases volatility. Programs are also used to identify de-
viations from the efficient stock price, by quickly trading on
new information or price changes of other securities (Brogaard,
Hendershott, and Riordan, 2012). Furthermore, programs may
provide liquidity when the quoted spreads are large, e.g., when
it is profitable to do so (Brogaard, Hendershott, and Riordan,
2012). Hasbrouck and Saar (2009) describe “fleeting orders,”a
relatively new phenomenon in the US and Europe, where limit
orders are placed and canceled within two seconds if they are not
executed. The authors argue that fleeting orders are part of an
active search for liquidity and a consequence of improved tech-
nology, more hidden liquidity, and fragmented markets. Has-
brouck and Saar (2011) find that liquidity is positively affected
by low-latency trading, i.e., extremely fast proprietary trading
desks.

In summary, the literature suggests that the fragmentation
of trading may improve liquidity, and it offers some empirical
evidence for that. However, the empirical studies to date do not
distinguish between fragmentation in visible and dark trading
venues. This is precisely our contribution.
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1.3 Market description, dataset and descrip-

tive statistics

1.3.1 Market description

Our dataset contains 52 Dutch stocks forming the constituents
of the so-called AEX Large and Mid cap indices. Over time, all
these stocks are traded on several trading platforms, to a degree
which is representative for the large European stocks analyzed
by Gomber and Pierron (2010). In terms of size, the average
market cap of our sample is approximately twice that of the
NYSE and Nasdaq sample analyzed in O’Hara and Ye (2011).
We can summarize the most important trading venues for these
stocks into three groups as follows (Appendix A contains a more
general description of current European financial markets).

First, there are regulated markets (RMs), such as NYSE Eu-
ronext, LSE and Deutsche Boerse. These markets have an open-
ing and closing auction, and in between there is continuous and
anonymous trading through the limit order book. Since Eu-
ronext merged with NYSE in April 2007, the order books in Am-
sterdam, Paris, Brussels and Lisbon act as a fully integrated and
single market. For our sample, the LSE and Deutsche Boerse
are not very important as they execute less than 1% of total
order flow.

Second, there are the new ECNs (in European terminology
Multilateral Trading Facilities) with visible liquidity, such as
Chi-X, Bats Europe, Nasdaq OMX and Turquoise. Chi-X started
trading AEX firms in April 2007, before the introduction of Mi-
FID; Turquoise in August 2008 and Nasdaq OMX and Bats
Europe in October 2008. Whether these MTFs will survive de-
pends on the current level of liquidity, but also on the quality of
the trading technology (e.g. the speed of execution), the number
of securities traded, make and take fees and clearing and settle-
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ment costs. Nasdaq OMX closed down in May 2010, outside
our sample period, as they did not meet their targeted market
share.5 A new trading venue in Europe typically starts with a
test phase in which only a few liquid firms are traded, but will
allow trading in all stocks of a certain index at once when it
goes live.

The third group contains MTFs with completely hidden liq-
uidity (e.g., dark pools), broker-dealer crossing networks, in-
ternalization and Over-The-Counter markets. This set of ex-
changes is waived from the pre-trade transparency rules set out
by the MiFID, due to the nature of their business model. Most
dark pools employ a limit order book with similar rules as those
at Euronext for example. Crossing networks typically execute
trades against the midpoint of the primary market, and do not
contribute to price discovery. Gomber and Pierron (2010) report
that the activity on dark pools, crossing networks and OTC has
been fairly constant for European equities in 2008 - 2009, and
they execute approximately 40% of total traded volume.

1.3.2 Dataset

Our dataset covers the AEX Large and Midcap constituents
from 2006 to 2009, which currently have 25 and 23 stocks re-
spectively. We remove stocks that are in the sample for less than
six months or do not have observations in 2008 and 2009. Due
to some leavers and joiners, our final sample has 52 stocks.

The data for the 52 stocks stem from the Thomson Reuters
Tick History Data base. This data source covers the seven most
relevant European trading venues for the sample stocks, which
have executed more than 99% of visible order flow: Euronext,
Chi-X, Deutsche Boerse, Turquoise, Bats Europe, Nasdaq OMX

5See “Nasdaq OMX to close pan-European equity MTF”, www.thetradenews.com.
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and SIX Swiss exchange (formerly known as Virt-X).6 We em-
ploy data from all these venues but collect them only during the
trading hours of the continuous auction of Euronext Amster-
dam, i.e. between 09.00 to 17.30, Amsterdam time. Therefore,
data of the opening and closing auctions at these venues are not
included.7

Each stock-venue combination is reported in a separate file
and represents a single order book. Every order book contains
the ten best quotes at both sides of the market, i.e. the ten
highest bid and lowest ask prices and their associated quantities,
summing to 40 variables per observation.8 All observations are
time stamped to the millisecond. A new “state” of a limit order
book is created when a limit order arrives, gets canceled or when
a trade takes place. A trade is immediately reported and we
observe its associated price and quantity, as well as an update of
the order book. Price and time priority rules apply within each
stock-venue order book, but not between venues. Furthermore,
visible orders have time priority over hidden orders. Hidden
orders are not directly observed in the dataset but are detected
upon execution. Therefore, we have the same information set
available to the market, i.e. the visible part of the order book on
a continuous basis. We treat executions of hidden and ‘iceberg’
orders as visible, since these trades take place on predominantly
visible trading venues.

6The visible order books of Dutch stocks on the LSE are discarded, as those stocks
have different symbols, are denoted in pennies instead of Euros, and are in essence different
assets. The remaining trading venues with visible liquidity attract extremely little order
flow for the firms in our sample (e.g., NYSE, Milan stock exchange, PLUS group and some
smaller exchanges).

7Unscheduled intra-day auctions are not identified in our dataset. These auctions,
triggered by transactions that would cause extreme price movements, act as a safety
measure and typically last for a few minutes. Given that we will work with daily averages
of quote-by-quote liquidity measures, these auctions should not affect our results.

8Part of the sample only has the best five price levels: Euronext before January 2008.
This affects only liquidity deep in the order book. As robustness, we execute the analysis
separately for 2008 and 2009 in section 1.6.4; the results are unaffected.
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Our dataset also provides information on “dark trades”, i.e.
trades at dark pools, broker-dealer crossing networks, internal-
ized and Over The Counter (including trades executed over tele-
phone). However, the fraction of trading volume in dark pools
is very small in our sample period (<1%, according the FESE).
These dark trades are reported in a separate file and are con-
structed by Markit Boat, a MiFID-compliant trade reporting
company.9 The file contains the price, quantity and time of
the execution (time stamped to the millisecond). The file pools
trades from all trading venues, but does not report the identity
of the executing venue and does not contain any quotes. We
complete the dark trades data by adding the OTC and inter-
nalized trades reported in separate files by Euronext, Xetra and
Chi-X. The largest part of dark trading is internalization, but
we do not know the exact decomposition.

1.3.3 Descriptive statistics

Figure 1.1 shows the evolution of the daily traded volume, aggre-
gated over all AEX Large and Mid cap constituents. The graph
shows a steady increase in total trading activity, which peaks
around the beginning of 2008. Moreover, the dominance of Eu-
ronext over its competitors is strong, but slowly decreasing over
time. This pattern is representative for all regulated markets
trading European blue chip stocks, as analyzed by Gomber and
Pierron (2010). Finally, while Chi-X started trading AEX firms
in April 2007, the new competitors together started to attract
significant order flow only as of August 2008 (4.5%). The slow
start up shows that these venues need time to generate trading
activity.

9There has been some discussion on issues with these dark data (e.g. double reporting).
See the Federation of European Securities Exchanges (FESE) response to the MiFID con-
sultation paper, February 2011. The market shares as reported in our data are consistent
with those reported by FESE.
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In Table A1 in the Appendix, the characteristics of the differ-
ent stocks and some descriptive statistics are presented. There is
considerable variation in firm size (market capitalization), price
and trading volume. In the sample, 38 stocks have a market
capitalization exceeding one billion Euro, while the 14 remain-
ing stocks have market capitalization above 100 million Euro.
The table also reports realized volatilities, computed by first di-
viding the trading day into 34 fifteen-minute periods and then
calculating stock returns of each period, based on the spread
midpoint at the beginning and end of that period. The stan-
dard deviation of these stock returns are daily estimates of real-
ized volatility.10 The table also shows the average market share
of Euronext and dark trades, calculated as of November 2007
onwards, the period for which Markit Boat data have become
available in the dataset.11 According to our data, in 2009 37%
of the total traded volume is dark; which can be split up into
38% for AEX large cap firms and 20% for mid cap firms.

1.4 Liquidity and fragmentation

1.4.1 The consolidated order book

The goal of this paper is to analyze the impact of equity market
fragmentation on liquidity. We follow the approach of Gresse
(2010) and distinguish between global traders and local traders.
Global traders employ smart order routing technology (SORT)
to access all trading venues simultaneously, while for local traders
SORT is too expensive because of fixed trading charges and costs
of adopting this trading technology. This distinction is empiri-
cally justified as SORT is not used by all investors (e.g. Foucault

10The use of realized volatility is well established, see e.g. Andersen, Bollerslev, Diebold,
and Ebens (2001).

11The lack of Markit Boat data in 2006 and 2007 does not affect our results, as we
execute the analysis separately for 2008 and 2009 only in section 1.6.4.
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and Menkveld (2008) and Ende, Gomber, and Lutat (2009)). In
our setting, Euronext Amsterdam is the local market and the
consolidated order book of the different visible trading venues
represents the global market.

To construct the consolidated order book, we follow the method-
ology of Foucault and Menkveld (2008) among others, based on
snapshots of the limit order book. A snapshot contains the
ten best bid and ask prices and associated quantities, for each
stock-venue combination. Every minute we take snapshots of all
venues and “sum” the liquidity to obtain a stock’s consolidated
order book. Therefore, each stock has 510 daily observations
(8.5 hours times 60 minutes), containing the order books of the
individual trading venues and the consolidated one.

1.4.2 Depth(X) liquidity measure

Our rich dataset allows to construct a liquidity measure that
incorporates the limit orders beyond the best price levels; which
we will refer to as the Depth(X). The measure aggregates the
Euro value of the number of shares offered within a fixed interval
around the midpoint. Specifically, the midpoint is the average
of the best bid and ask price of the consolidated order book
and the interval is an amount X = {10, 20, ..., 50} basis points
relative to the midpoint.12 The measure is expressed in Euros
and calculated every minute. Equation 1.1 shows the calculation
for the bid and ask side separately, which are summed to obtain
Depth(X). This measure is constructed for the global and local
order book (i.e., Euronext Amsterdam) separately. Define price
level j = {1, 2, ..., J} on the pricing grid and the midpoint of the

12Foucault and Menkveld (2008) aggregate liquidity from one up to four ticks away
from the best quotes. This approach is not appropriate in our setting, as tick sizes have
changed over the course of our sample period. Furthermore, the tick size as a percentage
of the share price is not constant.
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consolidated order book as M , then

Depth Ask(X) =
J∑
j=1

PAsk
j QAsk

j 1{PAsk
j < M(1 +X)}, (1.1a)

Depth Bid(X) =
J∑
j=1

PBid
j QBid

j 1{PBid
j > M(1−X)}, (1.1b)

Depth(X) = Depth Bid(X) +Depth Ask(X). (1.1c)

Figure 1.2 gives a graphical representation of the depth measure,
where liquidity between the horizontal dashed lines is aggregated
to obtain Depth(20) and Depth(40). The measure is averaged
over the trading day, where Depth(10) represents liquidity close
to the midpoint and Depth(50) also includes liquidity deeper
in the order book. Comparing different price levels X reveals
the shape of the order book. For example, if the depth measure
increases rapidly in X, the order book is deep while if it increases
only slowly, the order book is relatively thin.

TheDepth(X) measure is closely related to the Cost of Round-
trip, CRT (D) (e.g. Irvine, Benston, and Kandel (2000) and
Barclay, Christie, Harris, Kandel, and Schultz (1999)), which
also analyzes liquidity deeper in the order book.13 More specif-
ically, CRT (D) fixes the quantity D of a potential trade, i.e.
D equals e100.000, and analyzes the impact on price. In con-
trast, Depth(X) fixes the price, i.e. X equals ten basis points
around the midpoint, and analyzes the available quantity. Al-
though both measures estimate the depth and slope of the order
book, our approach solves two rather technical issues. First,
the impact on price cannot be calculated when a stock’s order
book has insufficient liquidity to trade e100.000, such that the
CRT (D) does not exist. In contrast, if no additional shares are

13The CRT (D) is also known as the Exchange Liquidity Measure, XLM(V ), (e.g.
Gomber, Schweickert, and Theissen (2004)).
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offered within the range of X and X + ε basis points from the
midpoint, then Depth(X) has a zero increment and Depth(X) =
Depth(X+ε). Second, CRT (D) may become negative when the
consolidated spread is negative, i.e. when the best ask price of a
venue is lower than the best bid price of another venue.14 While
negative transaction costs cannot be interpreted meaningfully,
the midpoint and Depth(X) are perfectly identified and reflect
the available liquidity in a meaningful fashion.

An advantage of Depth(X) over the traditional quoted depth
and spread is that it is not sensitive to small, price improving or-
ders. Such orders are often placed by algorithmic traders, whose
activity has increased substantially over time. In addition, the
quoted depth and spread are sensitive to changes in tick sizes.15

Figure 1.3 plots the 10, 50 and 90th percentile of the depth
measure against the number of basis points around the mid-
point. The vertical axis is plotted on a logarithmic scale, as we
work with the logarithm of the depth measures in the regression
analysis. Overall, the shape of the order book appears very lin-
ear. Also, there are large differences between firms, as the 90th

percentile of Depth(10) is e915.000, while the 10th percentile of
Depth(50) is e72.000. This is in line with high levels of skewness
and kurtosis (not reported).

Table 1.1 contains the medians of the Depth(X) measure for
the global and local order book on a yearly basis, along with
other liquidity measures discussed in the next section. As ex-
pected, the global and local depth measures vary substantially
over time. However, some shocks affect liquidity close to the
midpoint more than liquidity deep in the order book. That is,
the ratio of Depth(50) to Depth(10) is not constant over time.

14Technically, a negative consolidated spread (or crossed quotes) is an arbitrage oppor-
tunity, which might not be exploited because of explicit trading costs for example.

15The effect of the tick size on quoted depth and spread have been subject of analysis
in several papers, e.g. Goldstein and Kavajecz (2000), Huang and Stoll (2001).
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1.4.3 Other liquidity measures

This section compares our Depth(X) liquidity measure to the
more traditional liquidity measures. These are the price impact,
effective and realized spread, based on executed transactions,
and the quoted spread and quoted depth, based on quotes in the
local and global order books. The quoted depth sums the Euro
amount of shares offered at the best bid and ask price, whereas
the quoted spread looks at the associated prices. Appendix B
contains a formal description of the measures.

The medians of the liquidity measures are reported in the
upper panel of Table 1.1, based on daily observations and cal-
culated yearly, for the global and local order book. The table
shows several interesting results.

Depth close to the midpoint has reduced strongly over time,
but liquidity deeper in the order book to a lesser extent. That
is, the median of Depth(10) has decreased by 35% from 2006
to 2009, while Depth(50) by only 14%. In addition, the yearly
standard deviations of the depth measures have decreased by
approximately 50% over the years (not reported). While in 2006
and 2007 the local and global Depth(X) are highly similar, in
2009 local Depth(X) represents only about 50% of global depth.

Strikingly, between 2006 and 2009 the median quoted spread
has improved by 9%, while the quoted depth (at the best quoted
prices) has worsened by 68%. This is very likely due to the
strong increase in very small orders. The Depth(10) measure
decreases by 35% over the same time period. This shows the
shortcomings of the quoted depth and spread measures, because
based on the quoted depth and spread alone, one cannot state
whether an investor is better off in 2006 or 2009, as this depends
on the traded quantity.

Turning to the liquidity measures based on executed trades,
we observe that the median realized spread has reduced from
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2.5 basis points in 2006 to 0 basis points in 2009. In this period,
the price impact went up with 2.9 basis points while the effective
spread reduced with 0.9 basis points. Because we show medians,
the price impact and realized spread do not exactly add up to
the effective spread.

Despite the reduction in Depth(X), the local price impact,
realized and effective spreads are almost identical to those of
the global order book. This finding might be in line with “mar-
ket tipping”, where the local market switches between periods
of relatively high liquidity, in which it attracts all trading, and
periods of low liquidity, in which trading takes place at compet-
ing trading venues. As the price impact, effective and realized
spread are based on trades, relatively liquid periods receive a
larger weight in the calculation.

1.4.4 Equity market fragmentation

To proxy for the level of fragmentation in each stock, we con-
struct a daily Herfindahl-Hirschman Index (HHI) based on the
number of shares traded on each visible trading venue, similar
to e.g. Bennett and Wei (2006) and Weston (2002). Formally,
HHIit =

∑N
v=1MS2

v,it, or the squared market share of venue
v, summed over all N venues for firm i on day t. We then
use V isFrag = 1−HHI, short for visible fragmentation; such
that a single dominant market has zero fragmentation whereas
V isFrag goes to 1 − 1/n in case of complete visible fragmen-
tation. In addition, Dark is our proxy for dark trading, calcu-
lated as the percentage of volume executed at dark pools, cross-
ing networks, internalizers and OTC. We use the percentage of
dark volume since we do not have information on fragmentation
within the different dark venues. However, separating visible
competition and dark trading is important, as they may affect
liquidity in a different fashion. Our measure of fragmentation
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is more accurate than that of O’Hara and Ye (2011), where the
origin of trades are classified as either Nasdaq, NYSE or ex-
ternal. The benefits of competition in their paper arise from
the external venues, but the actual level of fragmentation, and
whether they are dark or lit, is unclear.

Table 1.2 shows the yearly mean, quartiles and standard de-
viation of V isFrag and Dark, based on the sample firms. In
2009, the sample average V isFrag is 0.28, which is in line with
other European stocks analyzed by Gomber and Pierron (2010).
The US is more fragmented, as Nasdaq and NYSE combined
have approximately 65% of market share in 2008 (O’Hara and
Ye, 2011). As expected, fragmentation increases over time, since
in 2006 and 2007 only few sample firms where traded on Virt-X
and Deutsche Boerse. Dark is fairly constant over time with
on average 25% in 2009, but has a very high daily standard
deviation of 17%.16

Figure 1.4 shows the 10, 50 and 90th percentile of V isFrag
over time, calculated on a monthly basis and covering all firms.
The sharp increase in fragmentation refers to the period where
Chi-X and Turquoise started to attract substantial order flow,
September 2008. In the next section, we estimate the effect
of fragmentation on various liquidity measures in a regression
framework.

1.5 The impact of visible fragmentation and

dark trading on global and local liquidity

This section first explains the methodology, and then presents
the regression results of the base model, for the global and local
order book.

16The dark share is calculated daily, and then averaged over all days and firms. When
weighted by trading volume, 37% of all trading is dark in 2009, meaning that dark trades
especially take place on high volume days.
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1.5.1 Methodology

We employ multivariate panel regression analysis to study the
impact of visible fragmentation and dark trading on liquidity.
We have a panel dataset with 52 firms and 1022 days, from
2006 to 2009, which contains the liquidity and fragmentation
measures discussed in section 1.4.

The panel approach allows for more flexibility compared to
other papers investigating the impact of fragmentation on liq-
uidity. For example, in contrast to the cross sectional regressions
employed by O’Hara and Ye (2011), we add firm fixed effects to
absorb unobservable firm characteristics, and also measure the
time series variation in liquidity and fragmentation. By using
a fragmentation measure based on the Herfindahl-Hirschman
Index we improve on papers such as Foucault and Menkveld
(2008), Chlistalla and Lutat (2011) and Hengelbrock and Theis-
sen (2010), who study the introduction of a new trading venue
(EuroSETS, Chi-X and Turquoise respectively). That is, these
articles use a dummy variable that equals one after the intro-
duction of the new venue, to estimate the effect of fragmentation
on liquidity. Given the research question we are after, our ap-
proach has three advantages compared with the aforementioned
papers. First, instead of a single trading venue we can ana-
lyze the effect of fragmentation on liquidity over many trading
venues simultaneously. Second, we allow for cross sectional vari-
ation in fragmentation as some firms are more heavily traded on
new venues than others. And third, we allow for variation in
the time series and analyze a long time window. This approach
takes into account that new trading venues might need time
to grow, and allows the market as a whole to adjust to a new
trading equilibrium.

In the regressions we include volatility, price, firm size and vol-
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ume as control variables, which is common in this literature.17

Descriptives of these control variables are presented in Table
1.1. In addition, we include a proxy for algorithmic activity, as
this has been found to improve liquidity (e.g. Brogaard, Hen-
dershott, and Riordan (2012)). We construct a measure similar
to Hendershott, Jones, and Menkveld (2011). On average, al-
gorithmic traders place and cancel many limit orders, so the
daily number of electronic messages proxies for their activity,
i.e. placement and cancelations of limit orders and market or-
ders. This variable is divided by trading volume, as increasing
volumes lead to more electronic messages even in the absence of
algorithmic trading. Accordingly, Algoit is defined as the num-
ber of electronic messages divided by trading volume for firm i

on day t.
The dependent variable in these regressions is one of the liq-

uidity measures, and the independent variables are the level of
fragmentation and dark trading, and several control variables.
As the effect of fragmentation on liquidity might not be linear,
we add a quadratic term. We employ V isFragit = 1 − HHIit
and V isFrag2

it to measure fragmentation, where V isFragit = 0
if trading in a firm is completely concentrated. We add firm
fixed effects to make sure the variation we pick up is due only
to variability in fragmentation and dark trading relative to the
firm’s own average. We also add time effects to control for com-
mon, market wide fluctuations in all variables. We use quarterly
time fixed effects, but the results are almost identical when us-
ing day or month dummies instead of quarter dummies. The
regression equation thus becomes

LiqMeasureit = αi + δq(t) + β1V isFragit + β2V isFrag
2
it + β3Darkit+

β4Ln(V olatility)it + β5Ln(Price)it + β6Ln(Size)it+

17Weston (2000), Fink, Fink, and Weston (2006) and O’Hara and Ye (2011), among
others, use similar controls.
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β7Ln(V olume)it + β8Algoit + εit, (1.2)

where αi are the firm fixed effects and δq(t) are 16 quarterly
dummies that take the value of one if day t is in quarter q, and
zero otherwise. For the inference we use heteroscedasticity and
autocorrelation robust standard errors (Newey-West for panel
datasets), based on five lags.

1.5.2 Results: global liquidity

The regression results for the liquidity measures employing the
global (consolidated) order book are reported in Table 1.3. The
results of models (1) to (5) show that liquidity first strongly
increases with visible fragmentation and then decreases, as the
linear term V isFrag has a positive coefficient and the quadratic
term V isFrag2 a negative one. The results are easier to inter-
pret from Figure 1.5, which displays the implied results of the
effect of visible fragmentation on liquidity for the five models.
The figure clearly reveals an optimal level of visible fragmenta-
tion, where maximum liquidity is obtained at V isFrag = 0.35.
This level of visible fragmentation is fairly close to the aver-
age level in 2009, which is 0.28. The pattern is similar for all
depth levels, although liquidity levels close to the midpoint ben-
efit somewhat more from visible fragmentation. The economic
magnitudes of the variables are large, where the maximum effect
on ln(Depth(10)) is 0.50, meaning that observations here have
65% more liquidity than observations in a completely concen-
trated market. For Depth(50), liquidity improves by 50% at the
maximum compared with V isFrag = 0. The standard devia-
tion of visible fragmentation is 0.15 in the entire sample (Table
1.2), so variation in visible fragmentation has a large impact on
liquidity throughout the entire order book.

We now investigate the impact of visible fragmentation on
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the other liquidity indicators, as reported in models (6) to (10)
in Table 1.3. At the optimal degree of visible fragmentation,
V isFrag = 0.35, the price impact and effective spread reduce
by 6.3 and 6.8 basis points compared with a completely concen-
trated market, respectively. This is large, considering that the
median effective spread in 2009 is 13.3 basis points (Table 1.7).
The economic impact of the optimal degree of visible fragmen-
tation on the effective spread in our analysis is larger than esti-
mated in O’Hara and Ye (2011) for total fragmentation, where
the benefit is approximately three basis points for NYSE and
Nasdaq firms.18 This difference can partly be explained by our
inclusion of a separate dark trading variable, which has a posi-
tive effect on the effective spread and price impact. The effect of
visible fragmentation on the realized spread is 0.5 at the optimal
level, which is relevant given a median realized spread of virtu-
ally zero in 2009. The realized spread represents the reward of
supplying liquidity, which reduces by the competition between
liquidity suppliers in a fragmented market. The quoted spread
in model (9) improves with eight basis point at V isFrag = 0.37,
while the sample median is twelve basis points. In stark contrast,
the results in model (10) show that quoted depth (at the best
bid and ask quotes) reduces by 27% at Frag = 0.37. The results
on the quoted depth point in the opposite direction of those of
all other liquidity measures. Moreover, considering the low cor-
relation between the quoted depth and Depth(X) in Table 1.1,
it appears that the quoted depth is not a suitable liquidity mea-
sure in the period we study. Possibly, this is a consequence of
algorithmic traders who place many small and price improving
orders.

We now turn to the effects of dark trading on liquidity. In

18O’Hara and Ye (2011) find a linear coefficient on “market share outside the primary
markets” of 9 basis points, while the average level is 0.35, resulting in a benefit of approx-
imately 3 basis points.
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Table 1.3, the coefficients on Dark are strongly negative, with a
coefficient of −0.91 for Ln Depth(10). As a result, a one stan-
dard deviation increase in the fraction of dark trading (0.18)
reduces Depth(10) by 16%. In addition, the coefficient on the
price impact of 4.1 suggests that dark trading leads to more
adverse selection and informed trading on the visible markets.
Both findings are consistent with the theoretical work of Hender-
shott and Mendelson (2000) and Zhu (2011), where dark markets
are more attractive to uninformed traders, leaving the informed
traders to the visible markets. The intuition is that informed
traders typically trade at the same side of the order book, and
therefore face relatively low execution probabilities in the dark
pool or crossing network. As a result, the dark market “cream-
skims” uninformed order flow, worsening liquidity and adverse
selection costs in the visible market. The reduction in depth at
the visible exchanges is also consistent with the model of Buti,
Rindi, and Werner (2010b), since limit orders migrate from the
limit order book to the dark pool. Empirically, our results are
consistent with Weaver (2011), who shows that off exchange re-
ported trades, which mostly qualify as dark trades in his sample,
negatively affect market quality for US stocks. Our results con-
trast Buti, Rindi, and Werner (2010a), who find that dark pool
activity improves the quoted spread in the cross section. In time
series regressions however, similar to ours, the authors find sta-
tistically marginally significant and economically insignificant
results. In addition, the authors do not control for the degree
of visible fragmentation, and for trades on crossing networks
and OTC. Trading activity across such venues is likely to be
correlated, implying an omitted variables bias. For example,
dark pool activity is generally higher for larger firms, which also
benefit more from higher levels of visible fragmentation in our
sample.

The decision to trade in the dark might be endogenous as low
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levels of visible liquidity may induce an investor to trade in the
dark, implying that they are substitutes. Alternatively, both
markets can be considered complements, since a liquid OTC
market forces limit order suppliers in the visible market to im-
prove prices as well, and vice versa (e.g., Duffie, Garleanu, and
Pedersen (2005)). We tackle such reverse causality issues with
an instrumental variables regression in section 1.6.2, but our
main results are robust.

Turning to the control variables of the regressions, we find
that the economic magnitude of Algo is fairly small and nega-
tive. For example, a one standard deviation increase (0.36), low-
ers the Depth(X) measures with 4%. However, as Algo might
be indirectly related to fragmentation, we want to be careful
in interpreting this result. The remaining control variables in
the regressions have the expected signs. Larger firms tend to
be more liquid, while the effect of price is marginally positive
and economically small. As expected, increased trading volumes
are related to better liquidity, but the causality might go either
way. Finally, volatility has a negative impact on liquidity; espe-
cially for liquidity close to the midpoint. Not surprisingly, the
price impact strongly increases in volatility, which proxies for
the amount of information in the market.

1.5.3 Results: Local liquidity

We now turn to the impact of fragmentation available at the reg-
ulated market, which we call local liquidity. The estimates are
reported in Table 1.4 and displayed in the lower panel of Figure
1.5. Depth(10) first slightly improves with visible fragmenta-
tion, where the maximum lies at +10% at V isFrag = 0.17, but
afterwards quickly reduces to −10% at V isFrag = 0.4. This
reduction is in line with the theory of Foucault and Menkveld
(2008), where the execution probability of the incumbent mar-
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ket diminishes as competing venues take away order flow. This
side effect of competition makes the incumbent less attractive to
liquidity providers, resulting in lower depth. The coefficients on
Dark are highly similar to those reported for the global order
book.

Consequently, small investors, who mainly care for Depth(10)
and are limited to trading on Euronext only, are worse off. This
result is in contrast to the empirical results of Weston (2002)
for instance, who finds that the liquidity on Nasdaq improves
when ECNs enter the market and compete for order flow. The
difference is probably due to the market structure in the US,
where Nasdaq market makers lost their oligopolistic rents after
the entry of ECNs.

We now turn to the regressions of the remaining liquidity mea-
sures in Table 1.4, columns (6) to (10). In contrast toDepth(10),
these are not adversely affected by visible fragmentation. This
is not surprising, as the Depth(10) is a quote based liquidity
measure, whereas the other measures are trade based. Some
investors may time their trades and wait for liquid periods,
and investors with access to all trading venues trade on Eu-
ronext mainly when that market is the most liquid. Therefore,
the trade based measures reflect particularly liquid times. The
quote based liquidity measures are time weighted, and reveal
that quoted liquidity disappears in fragmented periods.

Finally, the quoted spread on Euronext improves with vis-
ible fragmentation, while the quoted depth reduces with 30%
at V isFrag = 0.35. Possibly, in fragmented periods high-
frequency traders place many small and price improving limit
orders. Given the reduction in Depth(10) however, the gains
of improved prices are more than offset by the lower quantities
offered.
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1.6 Robustness checks

In this section we investigate the robustness of our main results.
First, we control for potential endogeneity issues by introducing
firm-quarter fixed effects. These control for the simultaneous
interactions between market structure, the degree of fragmenta-
tion, liquidity and competition in the market. In addition, this
approach controls for a specific reverse causality issue, where
fragmentation tends to be higher for high volume and more liq-
uid stocks (Cantillon and Yin, 2010). To tackle remaining endo-
geneity problems of the visible fragmentation and dark trading
variables we use an instrumental variables estimator. The in-
struments are (i) the number of limit to market orders on the
new competing venues, (ii) the logarithm of the average order
size of the new competing venues and (iii) the logarithm of dark
order size; and their respective squares. We conclude by analyz-
ing large and small firms separately, along with some additional
robustness checks.

1.6.1 Regression analysis: firm-time effects

In this section we add to (1.2) firm-quarter dummies. Instead
of a single dummy for a period of four years, we add 16 quar-
terly dummies per firm. This approach is similar to Chaboud,
Chiquoine, Hjalmarsson, and Vega (2009), who analyze the ef-
fect of algorithmic trading on volatility for currencies, and add
separate quarter dummies for each currency pair. The procedure
is aimed to solve the following issues.

First, the firm-quarter dummies make the analysis more ro-
bust to the impact of the financial crisis and industry specific
shocks. For example, if the financial crisis specifically affects
certain firms or industries (e.g., the financial sector), and af-
fects both liquidity and fragmentation, then the previous anal-
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ysis might suffer from an omitted variables problem, leading to
a bias in the coefficients on fragmentation. The firm-quarter
dummies capture industry shocks and time-varying firm specific
shocks.

Second, the firm-quarter dummies can control for potential
self-selection problems. For example, Cantillon and Yin (2010)
raise the issue that competition might be higher for high volume
and more liquid stocks; an effect that will be absorbed by the
firm-quarter dummies as long as most variation in volume is at
the quarterly level.

Third, the firm-quarter dummies can, at least partially, con-
trol for dynamic interactions between market structure, compe-
tition in the market, the degree of fragmentation and liquidity.
Specifically, such interactions are dynamic as, for example, a
change in the current market structure will affect the level of
competition in the future, which, in turn, will affect the market
structure and liquidity in the future. Our approach controls for
the long-term interactions of such forces by only allowing for
variation in liquidity and fragmentation within a firm-quarter.
Accordingly, the dummy variables absorb the variation between
quarters, which is likely to be more prone to endogeneity issues.

The results for global liquidity reveal a similar pattern as those
presented in the base regressions, as shown in panel A of Table
1.5 and displayed in the upper part of Figure 1.6. For the sake
of brevity, the table only reports the coefficients of V isFrag,
V isFrag2 and Dark for the Depth(X) measures, as these are
the main focus of the paper. Results of the control variables
and other liquidity measures are in line with those reported in
Tables 1.3 and 1.4, and available upon request.

In the first regression, we observe that Depth(10) monoton-
ically increases with visible fragmentation, as the maximum of
the curve lies beyond the highest observed value of visible frag-
mentation. There appears to be no harmful effect of visible
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fragmentation on liquidity close to the midpoint. This is not
the case for the other depth levels, as the maximum lies around
Frag = 0.40, implying a trade-off in the benefits and drawbacks
of fragmentation.

Two additional findings emerge from the figure. First, at
V isFrag = 0.40, the effect of visible fragmentation onDepth(10)
improves to 0.28 and Depth(50) to 0.10, compared with 0.50
and 0.40 in the base case regressions in Table 1.3. The effect
of visible fragmentation on liquidity is smaller but still highly
significant. This is easily explained as the firm-quarter dummies
absorb long-term trends in visible fragmentation, while only the
day-to-day fluctuations remain. From the regression results, it
appears that removing the long-term variation dampens the es-
timated daily effects. Second, liquidity deeper in the order book
benefits less from visible fragmentation than liquidity close to
the midpoint does. This finding was also observed in Figure
1.5, but becomes more pronounced. The fact that Depth(10)
still improves strongly with visible fragmentation suggests that
competition of new trading venues mainly takes place at liq-
uidity close to the midpoint. The coefficients on Dark show a
similar pattern as those reported in Table 1.3, but are about
15% lower in magnitude. That is, the detrimental effect of dark
activity on liquidity remains.

The impact of visible fragmentation on local liquidity, includ-
ing firm-quarter effects, is shown in panel B of Table 1.5 and
the lower part of Figure 1.6. The figure shows that the re-
sults for the local order book have become more negative, as all
depth measures reduce by 8% at V isFrag = 0.40. In the base
specification, this reduction of liquidity was only observed for
Depth(10).
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1.6.2 An instrumental variables approach

In the instrumental variables regressions we aim to solve for
more general reverse causality issues of fragmentation and dark
trading. For example, V isFrag might be high because a stock is
very liquid on a particular day; or Dark might be high when an
investor substitutes the visible market for dark trading because
the visible market is illiquid. In such cases V isFrag and Dark
depend on liquidity, causing us to make incorrect interpretations
of the regression coefficients.

We employ an instrumental variables specification to alleviate
these problems. We instrument V isFrag, V isFrag2 and Dark

with (i) the ratio of the number of limit orders to the number of
market orders on the visible competitors (Bats Europe, Chi-X,
Nasdaq OMX and Turquoise),19 (ii) the logarithm of the visible
competitors average order size and (iii) the logarithm of the av-
erage Dark order size, for each stock and day. We also add the
squares of these variables, summing to six instruments, because
we have a linear and quadratic term for fragmentation. These
instruments are specifically aimed to tackle the aforementioned
reverse causality issues. The first instrument, the ratio of limit
to market orders on the visible competitors, is negatively related
to fragmentation. After the startup of a new venue, typically the
number of transactions is very low, while the available liquidity
can already be substantial. As the venue reaches critical mass,
the number of transactions will increase sharply, lowering the ra-
tio and boosting fragmentation. We argue that the instrument is
exogenous, as higher levels of visible liquidity should not reduce
the ratio of limit to market orders on the visible competitors.
The second instrument, the logarithm of the visible competitors
order size, positively relates to fragmentation as larger orders

19The number of limit orders represent placed, modified and canceled limit orders.
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typically increase competitors market share.20 Since the regres-
sion controls for total traded volume, a shift of volume from
the primary market to the new competitors should not improve
liquidity except via fragmentation. The third instrument, the
logarithm of average dark order size, positively affects dark ac-
tivity. In a similar fashion to the previous instrument, larger
dark orders increase dark market share. The instrument seems
exogenous, as lower visible liquidity should not increase the av-
erage dark order size.

Unreported first stage estimations reveal that all instruments
are statistically and economically significant. As expected, es-
pecially the ratio of messages to transactions and the logarithm
of average visible competitors order size are particularly use-
ful instruments for V isFrag, with standardized coefficients of
-0.15 and 0.23, respectively. The logarithm of the average Dark
order size is a very strong instrument for Dark, with a standard-
ized coefficient of 0.4. The six instruments can strongly predict
fragmentation and dark activity as the Kleibergen-Paap and
Angrist-Pischke Wald tests for weak and under identification
are strongly rejected in all regressions, reported in the bottom
part of Table 1.5. Unreported tests also reject the redundancy
of all individual instruments, meaning each instrument improves
the estimators asymptotic efficiency.

The IV regressions include firm-quarter dummies, and we use
the two stage GMM estimator which is efficient in the presence
of heteroscedasticity (Stock and Yogo, 2002). The regression re-
sults are reported in panel C and D of Table 1.5 and displayed
in Figure 1.7. First, we observe that the magnitudes of the coef-
ficients on visible fragmentation have strongly increased and are
highly significant. At V isFrag = 0.35, global Depth(10) and
Depth(50) improve with 100% and 32% compared with a com-

20O’Hara and Ye (2011) also use the logarithm of average order size as an excluded
instrument in their Heckman correction model.
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pletely concentrated market. The standard errors have strongly
increased, as the IV procedure reduces the accuracy with which
the coefficients are estimated. Importantly, Figure 1.7 shows
that the optimal level of visible fragmentation is similar to previ-
ous specifications, and we confirm again that Depth(10) benefits
most from visible fragmentation. The coefficients on Dark have
slightly increased in magnitude compared with those reported
in panel A and B of Table 1.5 and are highly significant. As-
suming exogenous instruments, in economical terms the initial
estimates did not suffer from endogeneity issues.

Turning to the IV results for local liquidity, panel D of Ta-
ble 1.5 and the lower panel in Figure 1.7, we observe the fol-
lowing. First, due to increased standard errors, only the coef-
ficients of Depth(10) and Depth(50) are significantly different
from zero. The standard errors have increased because the in-
struments need to generate variation in V isFrag and V isFrag2,

which are very collinear. Accordingly, the plots do not reveal a
clear pattern and we cannot confirm previous results. In con-
trast, the coefficients on Dark are again highly significant and
negative, similar to previous findings.

Finally, we test the requirement that the set of instruments
are uncorrelated with the error term. The joint null hypothesis
of the overidentifying restrictions test is that the instruments
are valid, i.e., uncorrelated with the error term, and that the in-
struments are correctly excluded from the estimated equation.
The Hansen J test statistics and p-values are reported in the
bottom part of panel C and D of Table 1.5, and do not reject
the overidentifying restrictions in eight out of ten regressions.
Only for global Depth(40) and Depth(50) exogeneity of the in-
struments is questioned. A GMM distance test reveals that the
logarithm of the visible competitors order size causes this rejec-
tion. In unreported regressions, using subsets of the instruments
or treating Dark as exogenous does not affect the main results.
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However, we prefer the current setup, as it allows us to perform
overidentifying restrictions tests.

1.6.3 Small versus large stocks

The benefits and drawbacks of fragmentation on liquidity might
hinge on certain stock characteristics, such as firm size. We
pursue the point in question by executing the base specifica-
tion regressions for large stocks, with an average market cap
exceeding ten billion Euro, and small stocks, with an average
market cap below 100 million Euro. The results for the global
and local order books of 15 large and 14 small sample stocks
are reported in Table 1.6, panel A to D. The coefficients for the
global order book are plotted in Figure 1.8, and show two in-
teresting results. First, the benefits of visible fragmentation are
higher for large stocks than for small stocks. For large firms,
the Depth(10) is 64% higher at V isFrag = 0.35, while for small
firms the maximum, at V isFrag = 0.18, has 30% more liquidity
compared with a completely concentrated market. Second, the
figure shows that the benefit of visible fragmentation for large
stocks is monotonically positive, meaning there are no harm-
ful effects of fragmentation. By contrast, the liquidity of small
stocks is negatively affected for levels of visible fragmentation
exceeding 0.36. This suggests that the benefits of visible frag-
mentation strongly depend on firm size. The harmful effect of
Dark activity on liquidity is similar for small and large stocks.

Turning to the regressions in panel C and D of Table 1.6,
we find that the local liquidity of large stocks also increases
with visible fragmentation, while that of small stocks strongly
decreases. That is, at Frag = 0.35, Depth(10) of large stocks
improves by 12%, while that of small stocks reduces with 38%.
Again, this confirms that the drawbacks of a fragmented market
place mainly hold for relatively small stocks. The fact that large
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stocks benefit more from visible fragmentation is in line with
their actual levels of fragmentation, which is 0.41 in 2009, while
for small stocks only 0.21.

1.6.4 Additional robustness checks

To investigate the sensitivity of our results, we perform a num-
ber of robustness checks. First, we execute the regressions with
firm-quarter dummies, but only use observations from 2008 and
2009. The results do not change (not reported), likely because
fragmentation especially took place in 2008 and 2009. This pro-
vides an additional robustness to potential time effects (e.g. the
financial crisis), as the coefficients on fragmentation are esti-
mated within a smaller time window. In addition, this covers
for the fact that our dataset contains the ten best price levels
on Euronext Amsterdam as of January 2008, while before only
the best five price levels (as mentioned in footnote 8). Finally,
this solves the potential issue that the data by Markit Boat on
dark trades is available only as of November 2007.

Second, we execute the regressions in first differences, i.e. use
the daily changes instead of the daily levels. By analyzing the
day-to-day changes, we remove the long-term trends in the data.
The results are very similar to those using firm-quarter dummies
(not reported).

Third, instead of using V isFrag to measure visible fragmen-
tation, we use the market share of the traditional market (Eu-
ronext Amsterdam), and the qualitative results do not change.
Finally, we have plotted higher order polynomials of V isFrag,
and the inverted U-shapes remain, indicating that the finding of
an optimal level of visible fragmentation is robust.
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1.7 Conclusion

Nowadays, stocks are simultaneously traded on a variety of dif-
ferent trading systems, creating a fragmented equity market.
We show that the effect of fragmentation on liquidity crucially
depends on the type of trading venue – visible versus dark. Our
results reveal a key role for pre-trade transparency, which we
define as having a publicly displayed limit order book. Liquid-
ity seems to reap the gains of competition for order flow in case
of visible fragmentation, whereas dark trading appears to have
detrimental effects.

The positive effect of visible fragmentation stems from compe-
tition between liquidity suppliers, as evidenced by the reduction
in the reward of supplying liquidity. The negative effect of dark
trading is consistent with a “cream-skimming” effect, where the
dark markets mostly attract uninformed order flow which in turn
increases adverse selection costs on the visible markets. We
relate this finding to pre-trade transparency, which has been
shown to reduce adverse selection costs (e.g., Boehmer, Saar,
and Yu (2005)). As such, we provide a deeper understanding of
the current view that market fragmentation improves liquidity.
More general, our results imply that the type of trading venue
determines the overall costs and benefits of competition between
trading venues.

Next to separating visible from dark fragmentation, we explic-
itly differentiate between global and local liquidity. Global liq-
uidity takes all relevant trading venues into account while local
liquidity only the traditional stock market. Although global liq-
uidity improves with visible fragmentation, local liquidity does
not. That is, limit orders migrate from the local exchange to the
competing trading platforms, such that an investor with only ac-
cess to the traditional market is worse off. The reduction in liq-
uidity close to the midpoint, i.e. at relatively good prices, can be
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more than 10% compared to the case of no visible fragmentation.
In addition, we find that competition between trading venues is
fiercer for larger stocks, as these are more fragmented and have
a higher marginal benefit of visible fragmentation. Also, large
stocks do not face the drawbacks of visible fragmentation like
small stocks do. This suggests that the benefits and drawbacks
of fragmentation also depend on certain stock characteristics,
size in particular.

In sum, our results add to the policy discussion on competi-
tion in financial markets, which is amplified by recent financial
regulation (Reg NMS in the US and MiFID in Europe). A caveat
is that we cannot observe the liquidity in the dark markets, yet,
the result remains that investors without access to dark mar-
kets are worse off. This result should be seen in the light of fair
markets and investor protection.

Appendix A: Background on European finan-

cial market

This section gives a brief discussion on the contents of the Mar-
kets in Financial Instruments Directive (MiFID), effective Novem-
ber 1, 2007. By implementing a single legislation for the Eu-
ropean Economic Area, MiFID aims to create a level playing
field for trading venues and investors, which would ultimately
improve market quality. The regulation entails three major
changes to achieve this goal.

First, competition between trading venues is introduced by
abolishing the “concentration rule”21 and allowing three types
of trading systems to compete for order flow. These are reg-

21The “concentration rule”, adopted by some EU members, obliges transactions to
be executed at the primary market as opposed to internal settlement. This creates a
single and fair market on which all investors post their trades, according to a time and
price priority. The repeal of the rule however allows markets to become fragmented and
increases competition between trading venues (Ferrarini and Recine, 2006).
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ulated markets (RMs), Multilateral Trading Facilities (MTFs)
and Systematic Internalisers (SIs). RMs are the traditional ex-
changes, matching buyers and sellers through an order book or
through dealers. A firm chooses on which RM to list, and once
listed, MTFs may decide to organize trading in that firm as well.
MTFs, who closely resemble ECNs in the US, are similar to RMs
in matching third party investors, but have different regulatory
requirements and ‘rules of the game’. For example, MTFs and
RMs can decide upon the type of orders that can be placed,
and the structure of fees, i.e. fixed fees, variable fees as well
as make or take fees.22 In order to survive, MTFs need to ob-
tain a sufficient level of liquidity from order flow of their owners
and outside investors. The largest MTFs with visible liquidity
are Chi-X, Bats Europe, Nasdaq OMX and Turquoise. Lastly,
SIs are organized by investment banks where customers trade
against the inventory of the SI or with other clients, resembling
market dealers.

MiFIDs second keystone refers to transparency which guar-
antees the flow of information in the market. As the number of
trading venues increases, information about available prices and
quantities in the order books becomes dispersed. Consequently,
for investors to decide on the optimal venue and to evaluate
order execution, a sufficient degree of pre-trade and post-trade
transparency is necessary. Pre-trade transparency rules require
trading venues to make (part of) their order books public and
to continuously update this information. However, a number of
waivers exist regarding pre-trade transparency. In particular,
there is the “large-in-scale orders waiver”, the “reference price
waiver”, the “negotiated-trade waiver”, and the “order manage-
ment facility waiver”.23 These waivers are used by MTFs such

22Make and take fees are costs charged to investors supplying and removing liquidity,
respectively. Make fees can be negative, such that providers of liquidity receive a rebate
for offering liquidity.

23See also Directive 2004/39/EC, article 29.
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as dark pools and broker-dealer crossing networks who only have
to report executed trades. Whether transparency has improved
is a topic of current debate, which is complicated by increas-
ingly fragmented markets, technological innovations and short-
comings in the quality of post-trade information.24

The third and final pillar of MiFID is the introduction of
the best-execution rule, which obliges investment firms to ex-
ecute orders against the best available conditions with respect
to price, liquidity, transaction costs and likelihood and speed of
execution. However, such a broad definition of best-execution
policy allows investment firms to decide themselves where to
route their orders to. For example, an investment firm may
stipulate an execution policy of trading on one market only. In
absence of a clear benchmark, it becomes difficult for investors
to evaluate the quality of executed trades and the overall per-
formance of an investment firm (Gomber and Gsell, 2006). This
is the main difference between MiFID and its US counterpart,
Reg NMS, which solely focusses on the price dimension.25 For
an extensive summary of the implementation process of MiFID
we refer the interested reader to Ferrarini and Recine (2006).

Appendix B: liquidity measures

The liquidity measures other than Depth(X) are explained in
this section. We calculate the price impact and the effective and
realized spreads based on trades and weighted over all trades per
day. In contrast, Depth(X), quoted spread and quoted depth
are liquidity measures based on quotes offered in the limit or-
der book and time weighted over the trading day. The effective
spread measures direct execution costs while the realized spread

24CESR proposes changes to MiFID, July 29, 2010, ref. 10-926.
25In the U.S., the price of every trade is reported to the consolidated tape, such that

the performance of a broker can clearly be evaluated.
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takes the order’s price impact into account. The realized spread
is often considered to be the compensation for the liquidity sup-
plier. Denote MQo as the quoted midpoint before an order takes
place and MQo+5 the quoted midpoint, but five minutes later
and D = {+1,−1} for a buy and a sell order respectively, then

Effective half spread =
Price−MQo

MQo
∗D ∗ 10.000, (1.3)

Realized half spread =
Price−MQo+5

MQo
∗D ∗ 10.000, (1.4)

Price impact =
MQo+5 −MQo

MQo
∗D ∗ 10.000. (1.5)

The price impact, realized and effective spread are first calcu-
lated per trade, based on the midpoint of that trading venue.
Then, all calculations are averaged over the trading day, weighted
by traded volume. Next, we average over trading venues, again
weighted by trading venue. This approach gives the average
spread in the whole market. Limited computer power is the
reason we use the midpoint of the trading venue where the
trade took place instead of the consolidated midpoint. That
is, creating a consolidated midpoint quote-by-qoute, as is re-
quired for the effective and realized spreads, is computationally
much more burdensome than creating a consolidated order book
using one-minute snapshots.26 The price impact and realized
spread are calculated between 09.00 - 16.25, while the effective
spread on 9.00 - 16.30. Therefore, Effective spread ≈ Realized
spread + Price impact. The global quoted spread is based on
the best price in the consolidated order book (based on the one-
minute snapshot data, see Section 1.4.1) and expressed in basis

26Our dataset also has a consolidated tape constructed by Thomson Reuters, containing
best prices, quantities and all visible trades in the market. However, extensive checking
shows that the time stamp of these trades may differ up to three seconds from the time
stamp of the same trades in the original file.
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points, while the local quoted spread is based on the order book
of Euronext. In a similar fashion, the quoted depth aggregates
the number of shares times their prices, expressed in Euros, or

Quoted spread =
PASK − PBID

MQo
∗ 10.000, (1.6)

Quoted depth = PASK ∗QASK + PBID ∗ PBID. (1.7)

Note that the quoted depth on Euronext can be larger than that
of the consolidated order book, for example when Chi-X offers
a better price but with a lower quantity. The quoted spread of
the consolidated order book is always equal or better than that
of Euronext. Finally, the quoted depth is identical to Depth(10)
when the quoted spread equals 20 basis points.
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Table (1.1) Descriptive statistics: time series.
The table shows the medians of the liquidity measures on a yearly basis
for the global and local order book (Panel A), and additional descriptive
statistics of the sample stocks (Panel B). The medians are based on 52 firms
and 250 trading days per year (11.250 observations). Depth(X) is expressed
in e1000s and represents the offered liquidity within X basis points around
the midpoint. The effective spread, realized spread, price impact and quoted
spread are measured in basis points. The price impact and realized spread
are based on a 5 minute time window. The quoted depth is the amount of
shares, in e1000s, offered at the best bid and ask price of the global and
local order book. The descriptives show the natural logarithm of firm size,
traded volume, realized return volatility (Ln SD) and algorithmic trading.
Return volatility is defined as the daily standard deviation of 15 minute
returns on the midpoint. Typically, this standard deviation is lower than
one, so the natural logarithm becomes negative. Algo represents the number
of electronic messages in the market divided by total traded volume (per
e10.000). An electronic message occurs when a limit order in the order book
is executed, changed or canceled.

Panel A: Liquidity measures

Global Local
2006 2007 2008 2009 2006 2007 2008 2009

Depth(10) 102 134 50 66 101 127 39 36
Depth(20) 263 299 125 187 261 279 94 93
Depth(30) 367 404 183 291 359 366 141 155
Depth(40) 441 463 228 367 422 406 178 206
Depth(50) 488 505 258 420 463 426 205 244
Effective Spread 14.1 11.2 15.1 13.2 13.8 11.1 14.5 13.1
Realized Spread 2.5 1.1 -0.1 0.0 2.4 1.1 -0.2 0.1
Price Impact 10.4 9.4 14.3 13.3 10.4 9.5 14.2 13.5
Quoted Spread 13.3 10.9 14.5 12.0 13.5 11.5 16.8 14.7
Quoted Depth 101 82 41 32 102 85 40 30

Panel B: Descriptive statistics

2006 2007 2008 2009

Ln Size 14.7 15.0 14.7 14.4
Ln Volume 16.7 17.1 17.0 16.5
Algo 1.9 2.6 6.6 28.4
Ln SD -6.2 -6.1 -5.5 -5.6
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Table (1.2) Descriptive statistics of visible fragmentation and
dark trading.
The yearly standard deviation, mean and quartiles of visible fragmentation
and dark trading are reported. Visible fragmentation (VisFrag) is defined
as 1 − HHI, where HHI is based on the market shares of visible trading
venues. Dark is the percentage of traded volume executed at dark pools,
crossing networks and Over The Counter, available only as of November
2007. The statistics are based on daily observations per firm. As such, each
observation is equally weighted; when weighing according to traded volume
the average dark fraction is approximately 37%.

Year Stdev Mean 25th 50th 75th

VisFrag
2006 0.081 0.027 0.000 0.000 0.010
2007 0.066 0.026 0.000 0.000 0.017
2008 0.119 0.097 0.000 0.044 0.168
2009 0.153 0.275 0.143 0.291 0.403
Total 0.150 0.106 0.000 0.015 0.182

Dark
2008 0.173 0.255 0.134 0.225 0.331
2009 0.169 0.250 0.131 0.221 0.327
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Table (1.3) The effect of fragmentation on global liquidity.

The dependent variable in models (1) - (5) is the logarithm of the Depth(X) measure based on the consolidated order book.

The Depth(X) is expressed in Euros and represents the offered liquidity within (X) basis points around the midpoint. The

effective spread, realized spread, price impact and quoted spread, (6) - (9), are measured in basis points. Ln quoted depth is

the logarithm of the quoted depth in Euros (10). VisFrag is the degree of visible market fragmentation, defined as 1−HHI.

Dark is the percentage of order flow executed OTC, on crossing networks, dark pools and internalized. Algo represents the

number of electronic messages divided by traded volume in the market (per e100); the other variables are explained in the

descriptive statistics and Table 1.2. The regressions are based on 1022 trading days for 52 stocks, and have firm fixed effects

and quarter dummies. T-stats are shown below the coefficients, calculated using Newey-West (HAC) standard errors (based

on 5 day lags). ***, ** and * denote significance at the 1, 5 and 10 percent levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ln
Depth(10)

Ln
Depth(20)

Ln
Depth(30)

Ln
Depth(40)

Ln
Depth(50)

Effective
Spread

Realized
Spread

Price Im-
pact

Quoted
Spread

Ln Quoted
Depth

VisFrag 2.844*** 2.080*** 2.188*** 2.334*** 2.420*** -31.32*** 1.047 -32.40*** -41.94*** -0.888***
(15.9) (21.0) (26.4) (28.5) (29.7) (-16.0) (0.5) (-17.2) (-24.8) (-11.6)

VisFrag2 -4.069*** -2.875*** -3.081*** -3.381*** -3.616*** 33.94*** -6.615** 40.61*** 55.72*** 0.305**
(-13.4) (-15.7) (-19.2) (-21.1) (-22.7) (9.8) (-2.0) (12.8) (19.0) (2.0)

Dark -0.914*** -0.685*** -0.587*** -0.540*** -0.503*** 2.960*** -1.147 4.101*** 4.476*** -0.544***
(-20.2) (-23.7) (-24.0) (-22.9) (-21.8) (3.7) (-1.4) (7.8) (9.8) (-26.8)

Ln Size 1.008*** 0.623*** 0.491*** 0.427*** 0.387*** -6.996*** -3.220*** -3.779*** -4.906*** 0.279***
(24.2) (24.8) (24.6) (22.5) (20.9) (-15.8) (-7.6) (-8.6) (-9.4) (17.7)

Ln Price -0.012 0.062*** 0.069*** 0.069*** 0.067*** -0.137 -0.207 0.0728 1.759*** -0.056***
(-0.5) (3.8) (4.7) (4.8) (4.5) (-0.4) (-0.7) (0.3) (4.3) (-4.2)

Ln Vol 0.576*** 0.429*** 0.385*** 0.353*** 0.327*** -2.304*** 0.380** -2.682*** -3.724*** 0.233***
(40.9) (45.7) (47.0) (47.4) (46.9) (-11.3) (2.0) (-17.0) (-29.4) (43.2)

Ln SD -0.619*** -0.537*** -0.466*** -0.420*** -0.384*** 7.312*** -4.963*** 12.28*** 5.733*** -0.223***
(-40.0) (-52.2) (-54.0) (-52.5) (-50.7) (31.9) (-23.6) (53.0) (33.5) (-33.7)

Algo -0.116*** -0.106*** -0.094*** -0.097*** -0.097*** 4.565*** 0.034 4.527*** 4.514*** -0.007
(-5.4) (-7.1) (-7.6) (-8.4) (-8.8) (14.6) (0.1) (13.7) (15.5) (-0.8)

Obs 46879 46879 46879 46879 46879 46879 46879 46879 46879 46879
R2 0.461 0.663 0.681 0.659 0.641 0.236 0.042 0.331 0.352 0.673
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Table (1.4) The effect of fragmentation on local liquidity.

The dependent variable in models (1) - (5) is the logarithm of the Depth(X) measure based on the order book of Euronext

Amsterdam. The Depth(X) is expressed in Euros and represents the offered liquidity within (X) basis points around the

midpoint. The effective spread, realized spread, price impact and quoted spread, (6) - (9), are measured in basis points. Ln

quoted depth is the logarithm of the quoted depth in Euros (10). VisFrag is the degree of visible market fragmentation,

defined as 1−HHI. Dark is the percentage of order flow executed OTC, on crossing networks, dark pools and internalized.

Algo represents the number of electronic messages divided by traded volume in the market (per e100); the other variables

are explained in the descriptive statistics and Table 1.2. The regressions are based on 1022 trading days for 52 stocks, and

have firm fixed effects and quarter dummies. T-stats are shown below the coefficients, calculated using robust Newey-West

(HAC) standard errors (based on 5 day lags). ***, ** and * denote significance at the 1, 5 and 10 percent levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ln
Depth(10)

Ln
Depth(20)

Ln
Depth(30)

Ln
Depth(40)

Ln
Depth(50)

Effective
Spread

Realized
Spread

Price Im-
pact

Quoted
Spread

Ln Quoted
Depth

VisFrag 1.025*** 0.006 0.162* 0.411*** 0.589*** -31.07*** 0.679 -31.79*** -35.21*** -0.416***
(5.7) (0.1) (1.8) (4.5) (6.4) (-14.7) (0.3) (-17.7) (-18.3) (-5.8)

VisFrag2 -2.942*** -0.427** -0.294 -0.624*** -0.960*** 36.40*** -6.349* 42.82*** 48.65*** -1.248***
(-9.6) (-2.2) (-1.6) (-3.3) (-5.0) (9.9) (-1.7) (14.2) (17.0) (-9.1)

Dark -0.947*** -0.722*** -0.647*** -0.621*** -0.596*** 2.348*** -1.784** 4.127*** 4.043*** -0.541***
(-20.8) (-23.5) (-23.3) (-22.3) (-21.6) (2.9) (-2.1) (8.0) (8.3) (-27.5)

Ln Size 0.958*** 0.542*** 0.407*** 0.344*** 0.307*** -7.414*** -3.364*** -4.054*** -4.471** 0.224***
(22.5) (20.6) (18.9) (16.1) (14.5) (-16.5) (-7.7) (-9.3) (-2.6) (14.0)

Ln Price -0.052** 0.044** 0.060*** 0.060*** 0.053*** 0.069 -0.163 0.236 1.894*** -0.049***
(-2.1) (2.6) (3.7) (3.6) (3.2) (0.2) (-0.5) (0.8) (4.7) (-3.5)

Ln Vol 0.578*** 0.426*** 0.382*** 0.351*** 0.326*** -2.081*** 0.598*** -2.676*** -4.066*** 0.244***
(40.1) (43.1) (43.1) (42.6) (41.7) (-9.4) (2.9) (-17.4) (-6.6) (45.4)

Ln SD -0.609*** -0.534*** -0.469*** -0.425*** -0.391*** 7.312*** -5.057*** 12.37*** 8.337*** -0.223***
(-38.4) (-48.0) (-47.7) (-45.3) (-43.2) (30.8) (-22.9) (53.6) (6.5) (-34.4)

Algo -0.128*** -0.187*** -0.206*** -0.216*** -0.214*** 3.869*** 0.108 3.756*** 6.01*** 0.056***
(-5.9) (-13.0) (-16.2) (-17.4) (-17.5) (12.4) (0.4) (11.9) (18.4) (6.7)

Obs 46879 46879 46879 46879 46879 46879 46879 46879 46858 46858
R2 0.498 0.677 0.671 0.636 0.607 0.208 0.039 0.335 0.121 0.717
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Table (1.5) The effect of fragmentation on liquidity: firm-quarter fixed effects and IV.

Panel A and B show the regression results for global and local depth respectively, where firm-quarter dummies are added.

Panel C and D show the IV results, where VisFrag, VisFrag2 and Dark are instrumented by (i) the number of electronic

messages to transactions on the visible competitors, (ii) the logarithm of the visible competitors average order size, (iii)

the logarithm of the average Dark order size; and their respective squares. The IV regressions also include firm-quarter

dummies. The Hansen J statistic test the overidentifying restrictions (p-value reported below). The dependent variable is

the logarithm of the Depth(X) measure based on the global and local order book. VisFrag is visible fragmentation and Dark

is the percentage of order flow executed in dark markets. The control variables (not reported) are Ln size, Ln price, Ln

volume, Ln volatility and Algo, as explained in Table 1.2. The regressions are based on 1022 trading days for 52 stocks.

T-stats are shown below the coefficients, calculated using Newey-West (HAC) standard errors (based on 5 day lags). ***, **

and * denote significance at the 1, 5 and 10 percent levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ln
Depth(10)

Ln
Depth(20)

Ln
Depth(30)

Ln
Depth(40)

Ln
Depth(50)

Ln
Depth(10)

Ln
Depth(20)

Ln
Depth(30)

Ln
Depth(40)

Ln
Depth(50)

Panel A: Global, Firm-Quarter dummies Panel B: Local, Firm-Quarter dummies

VisFrag 0.984*** 0.756*** 0.700*** 0.659*** 0.593*** 0.259* -0.0250 -0.0542 -0.0538 -0.0617
(6.4) (9.7) (10.6) (10.7) (10.2) (1.8) (-0.4) (-0.9) (-0.9) (-1.1)

VisFrag2 -0.749*** -0.697*** -0.872*** -0.927*** -0.877*** -1.049*** -0.419*** -0.413*** -0.428*** -0.409***
(-2.8) (-4.7) (-7.0) (-7.9) (-7.8) (-4.1) (-3.1) (-3.4) (-3.7) (-3.6)

Dark -0.750*** -0.532*** -0.480*** -0.443*** -0.417*** -0.723*** -0.535*** -0.491*** -0.458*** -0.430***
(-20.2) (-21.4) (-26.5) (-27.1) (-26.8) (-19.6) (-21.5) (-26.3) (-26.7) (-26.2)

Panel C: Global, IV Panel D: Local, IV

VisFrag 8.146*** 5.300*** 3.933*** 3.287*** 2.773*** 2.877** 0.653 -0.125 -0.255 -0.492
(6.1) (8.4) (9.0) (8.3) (7.6) (2.2) (1.1) (-0.3) (-0.7) (-1.4)

VisFrag2 -17.63*** -11.27*** -8.164*** -6.844*** -5.668*** -7.307** -1.659 0.545 0.850 1.491
(-5.1) (-6.7) (-7.2) (-6.7) (-6.1) (-2.1) (-1.0) (0.5) (0.8) (1.6)

Dark -0.836*** -0.600*** -0.531*** -0.496*** -0.463*** -0.798*** -0.600*** -0.538*** -0.502*** -0.470***
(-12.5) (-14.2) (-15.2) (-15.4) (-15.1) (-12.6) (-14.7) (-15.0) (-14.8) (-14.2)

Hansen J 2.451 4.094 8.173 17.16 25.66 7.506 7.218 3.019 0.907 2.217
Hansen p 0.484 0.252 0.0426 0.001 0.000 0.057 0.065 0.389 0.824 0.529

First stage results:
Kleibergen-Paap weak ID F stat: 108. Angrist-Pischke weak ID F stat: 48 (Frag), 36 (VisFrag2), 855 (Dark).
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Table (1.6) The effect of fragmentation on liquidity: large and small firms.

The base specification regressions are executed separately for the 15 smallest stocks (average market cap ¡ 100 million) and

the 14 largest stocks (average market cap ¿ 10 billion); for the global and local order books. The dependent variable is the

logarithm of the Depth(X) measure. The Depth(X) is expressed in Euros and represents the offered liquidity within (X)

basis points around the midpoint. VisFrag is the degree of visible fragmentation, defined as 1−HHI. Dark is the percentage

of order flow executed OTC, on crossing networks, dark pools and internalized. For the sake of brevity, the coefficients on

the control variables are not reported, as they are very similar to those of Tables 1.3 and 1.4. The control variables are Ln

size, Ln price, Ln volume, Ln volatility and Algo, as explained in Table 1.2. The regressions contain firm fixed effects and

quarter dummies. T-stats are shown below the coefficients and calculated using Newey-West (HAC) standard errors (based

on 5 day lags). ***, ** and * denote significance at the 1, 5 and 10 percent levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ln
Depth(10)

Ln
Depth(20)

Ln
Depth(30)

Ln
Depth(40)

Ln
Depth(50)

Ln
Depth(10)

Ln
Depth(20)

Ln
Depth(30)

Ln
Depth(40)

Ln
Depth(50)

Panel A: Global, large firms Panel B: Local, large firms

VisFrag 1.458*** 1.150*** 1.072*** 1.052*** 1.058*** 0.640*** 0.478*** 0.355** 0.352** 0.393**
(10.1) (9.1) (8.1) (7.4) (7.1) (5.1) (3.9) (2.6) (2.3) (2.4)

VisFrag2 -0.555* -0.463* -0.334 -0.374 -0.438 -0.869*** -0.484* 0.0768 0.194 0.141
(-2.0) (-1.8) (-1.2) (-1.3) (-1.4) (-3.5) (-1.9) (0.3) (0.6) (0.4)

Dark -0.833*** -0.598*** -0.497*** -0.461*** -0.443*** -0.813*** -0.671*** -0.579*** -0.540*** -0.520***
(-23.0) (-17.3) (-13.8) (-12.0) (-11.3) (-21.3) (-16.6) (-13.1) (-11.4) (-10.7)

Panel C: Global, small firms Panel B: Local, small firms

VisFrag 2.992*** 2.086*** 1.805*** 1.649*** 1.443*** 1.330** 0.380 0.173 0.139 0.0487
-4.9 -6.8 -7.4 -7.5 -6.9 (2.1) (1.2) (0.6) (0.5) (0.2)

VisFrag2 -8.300*** -5.373*** -4.706*** -4.290*** -3.825*** -6.230*** -3.045*** -2.406*** -2.144*** -1.844***
(-6.9) (-8.4) (-8.9) (-9.1) (-8.7) (-5.0) (-4.5) (-4.0) (-3.7) (-3.2)

Dark -1.180*** -0.714*** -0.687*** -0.639*** -0.613*** -1.205*** -0.765*** -0.757*** -0.729*** -0.711***
(-8.3) (-9.6) (-12.4) (-13.1) (-13.4) (-8.3) (-9.2) (-10.9) (-11.2) (-11.3)
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Figure (1.1) Traded Volume in millions of Euros.

The figure displays monthly averages of the daily traded volume in millions, ag-

gregated over the 52 AEX Large and Mid cap constituents. Euronext consists of

Amsterdam, Brussels, Paris and Lisbon. Germany combines all the German cities

while Other represents Bats Europe, Nasdaq OMX Europe, Virt-x and Turquoise

combined. Finally, Dark represents the orderflow executed Over The Counter, at

crossing networks, dark pools and internalized; however, these numbers are not

available prior to November 2007.
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Figure (1.2) Snapshot of a hypothetical limit order book.
Depth(20) aggregates liquidity offered within the interval of (M - 20bps, M
+ 20bps), which are 2500 shares on the ask side and 800 on the bid side.
Depth(40) contains 4100 and 2800 shares on the ask and bid side respectively.
The number of shares offered are converted to a Euro amount.
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Figure (1.3) Depth in the consolidated order book.
The figure shows the 10, 50 and 90th percentiles of the Depth(X) measure,
expressed on a logarithmic scale in e1000s. The measure aggregates the
Euro value of shares offered within a fixed amount of basis points X around
the midpoint, shown on the horizontal axes. The consolidated order book
represents liquidity to a global investor, where the order books of Euronext
Amsterdam, Deutsche Boerse, Chi-X, Virt-X, Turquoise, Nasdaq OMX Eu-
rope and Bats Europe are aggregated. The percentiles are based on the 52
AEX large and mid cap constituents between 2006 - 2009.
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Figure (1.4) Visible fragmentation of AEX large and Mid cap
firms.
The monthly 10, 50 and 90th percentiles of VisFrag are shown, for the 52
AEX large and mid cap stocks between 2006 - 2009. VisFrag equals 1 - HHI,
based on the number of shares traded at the following trading venues: Eu-
ronext (Amsterdam, Brussels, Paris and Lisbon together), Deutsche Boerse,
Chi-X, Virt-X, Turquoise, Nasdaq OMX Europe and Bats Europe. Trades
executed OTC, on crossing networks, on dark pools or internalized are not
taken into account, as we analyze the degree of market fragmentation of
visible liquidity.
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Figure (1.5) The effect of visible fragmentation on global and local
liquidity.
The regression coefficients of visible fragmentation on liquidity are plotted,
for the global order book (upper panel, model (1) - (5) of Table 1.3) and
local order book (lower panel, model (1) - (5) of Table 1.4). The vertical axis
displays the logarithm of the Depth(X), while the horizontal axis shows the
level of visible fragmentation (Frag), defined as (1 - HHI).
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Figure (1.6) Visible fragmentation and liquidity: firm-quarter
dummies.
The regression coefficients of visible fragmentation on liquidity of Table 1.5
are plotted, where the regressions have firm-quarter dummies. The upper
panel shows the global order book and the lower panel the local order book.
The vertical axis displays the logarithm of the Depth(X), while the horizontal
axis shows the level of visible fragmentation, defined as (1 - HHI).
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Figure (1.7) Visible fragmentation and liquidity: IV regressions.
The IV regression coefficients of visible fragmentation on liquidity of Table
1.5 are plotted. The instruments are (i) the number of electronic messages
to transactions on the visible competitors, (ii) the logarithm of the visible
competitors average order size, (iii) the logarithm of the average Dark order
size; and their respective squares. The regressions include firm-quarter dum-
mies. The vertical axis displays the logarithm of the Depth(X), while the
horizontal axis shows the level of visible fragmentation, defined as (1 - HHI).
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Figure (1.8) Visible fragmentation and global liquidity: small ver-
sus large stocks.
The regression coefficients of visible fragmentation on liquidity are plotted,
for large and small stocks (regressions (1) - (5) in panel A and B, Table 1.6).
Large stocks consist of the 14 stocks with an average market cap exceeding
ten billion Euro, while the 15 small stocks have a market cap smaller than
100 million Euro. The regressions include firm-quarter dummies. The ver-
tical axis displays the logarithm of the Depth(X), while the horizontal axis
shows the level of visible fragmentation, defined as (1 - HHI).
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Table (1.7) Appendix Table A1
Descriptive statistics of sample firms: cross section

The dataset covers daily observations for 52 AEX large and mid cap constituents, from

2006 to 2009. All variables in the table are averages. Firm size and traded volume are

expressed in millions of Euros. Return volatility reflects the daily standard deviation of 15

minute returns on the midpoint and is multiplied by 100. Euronext represents the market

share of executed trades on Euronext Amsterdam. Dark is the market share of Over The

Counter trades, Systematic Internalisers and dark pools; this number is available as of

November 2007.

Firm Size Price Volume Return Vol Dark Euronext

Aalberts 1.3 29.03 7.4 0.39 7.94 89.99
Adv. Metal. Group 0.6 21.24 8.6 0.78 17.95 78.88
Aegon 16.6 10.26 161.0 0.46 15.19 76.95
Ahold 11.4 8.52 120.0 0.28 18.59 74.96
Air France 5.6 19.95 63.9 0.40 15.03 78.07
Akzo nobel 12.3 44.93 147.0 0.30 19.55 73.47
Arcadis 0.9 31.40 3.3 0.41 10.78 87.52
Arcelor Mittal 44.1 35.69 388.0 0.50 24.15 70.16
Asm Int. 0.8 14.47 7.0 0.44 10.21 86.34
ASML 8.1 17.78 144.0 0.39 16.74 75.54
Bamn Group 1.7 18.84 14.8 0.41 11.81 83.47
Binckbank 0.6 10.60 4.2 0.36 10.50 88.54
Boskalis 2.2 39.50 13.5 0.42 12.73 83.66
Corio 3.5 51.12 26.9 0.36 14.96 79.07
Crucell 1.0 15.49 9.2 0.36 8.48 89.82
CSMN 1.5 20.93 8.0 0.29 11.99 86.04
Draka Hold. 0.5 13.01 3.6 0.55 16.21 77.53
DSM 6.1 32.02 73.0 0.29 16.86 76.89
Eurocomm. Prop 1.2 32.47 5.8 0.37 11.13 87.00
Fortis 34.5 22.83 437.0 0.38 13.37 83.51
Fugro 2.8 38.99 25 0.34 10.30 84.84
Hagemeyer 2.0 3.76 43.4 0.31 0.00 99.28
Heijmans 0.6 25.08 3.8 0.40 8.31 90.56
Heineken 16.7 34.06 100.0 0.28 18.85 74.16
Imtech 1.2 15.03 9.2 0.40 17.97 77.51
ING 50.1 22.76 904.0 0.44 14.22 81.26
Nutreco 1.5 42.41 15.1 0.28 12.34 85.30
Oce 0.9 9.95 8.5 0.40 10.52 86.85
Ordina 0.4 10.96 2.8 0.41 7.29 90.00
Philips 26.7 23.52 287.0 0.32 21.04 71.27
R. Dutch Shell 88.5 24.23 528.0 0.27 21.51 69.59
R. KPN 20.4 10.92 220.0 0.26 23.23 69.82
R. ten cate 0.5 26.69 2.3 0.40 10.09 87.67
R. Wessanen 0.6 8.49 4.3 0.32 9.07 87.53
Randstad 4.5 35.18 38.3 0.39 14.20 79.13
Reed Elsevier 8.1 11.31 74.1 0.27 20.47 72.01
SBM Offshore 2.8 26.39 35.6 0.36 13.17 80.13
Smit Int. 10.7 48.06 4.6 0.38 15.21 80.10
Sns Reaal 2.9 11.66 11.5 0.42 12.94 85.51
Tele Atlas 1.8 20.06 37.0 0.33 8.24 68.20
Tnt 10.7 24.96 99.3 0.33 19.63 73.61
Tomtom 3.0 25.33 47.7 0.54 10.43 83.15
Unibail Rodamco 11.9 143.62 172.0 0.36 34.65 57.61
Unilever 32.2 23.62 327.0 0.26 17.59 73.87
Usg People 0.6 9.27 8.5 0.71 19.01 68.01
Vastned 1.0 55.99 5.0 0.32 10.46 87.45
Vdr Moolen 0.2 4.74 2.2 0.35 2.12 97.45
Vedior 2.9 16.70 67.7 0.27 2.99 96.48
Vopak Int. 2.3 36.51 8.9 0.30 12.24 84.77
Wavin 0.7 7.94 5.8 0.49 11.80 86.92
Wereldhave 1.6 78.78 16.0 0.28 13.55 81.88
Wolters Kluwers 5.5 18.10 42.1 0.30 13.13 78.13
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Chapter 2

Liquidity: What you see is
what you get?
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Abstract

In a model of competition between two limit order books I show

that the aggregate liquidity may overstate the actual liquidity

available to certain investors. The excess is caused by high-

frequency traders operating as market makers, who have an in-

centive to duplicate their liquidity supply across markets. Then,

after a trade on one venue they will quickly cancel outstanding

limit orders on others. The magnitude depends on the fraction

of traders that may access several venues simultaneously, i.e.,

those who use Smart Order Routing Technology (SORT). The

empirical results strongly support the predictions of the model.

JEL Codes: G10; G14; G15;

Keywords: Market microstructure, Fragmentation, High Fre-

quency Trading, Smart Order Routing
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2.1 Introduction

Two important trends have drastically changed equity markets
in recent years (SEC, 2010). First, technological innovations
have led to high-frequency trading, a trading strategy where
a computer algorithm analyzes market data and trades at ex-
tremely high speed. Second, competition between trading venues
has caused a dispersion of trading volume and liquidity across
venues, i.e., the market has become fragmented. These two
changes in the structure of equity markets might strongly affect
the optimal behavior of investors. Indeed, as high-frequency
traders operate on several trading venues simultaneously, the
order flow and liquidity of these venues become strongly in-
terrelated.1 This paper argues that the interrelation causes a
substantial overestimation of liquidity when aggregated across
trading venues.

I underpin this conjecture in a model of competition between
two centralized limit order books. The model predicts that liq-
uidity suppliers have an incentive to duplicate their limit order
schedules on both venues, but cancel this additional liquidity af-
ter a trade on the competing venue. Due to the cancellations, a
single trade reduces liquidity on all venues simultaneously such
that the depth aggregated over both venues overstates true liq-
uidity. The empirical results strongly support this hypothesis:
within a second after a trade limit orders are cancelled on com-
peting venues with a value of 58% of the trade size.

My first contribution to the literature is a theoretical model.
The model is based on the framework of a pure limit order mar-
ket with adverse selection of Glosten (1994), and extends the
specification of Sand̊as (2001) to a two-venue setting. High-

1The high level of interaction between markets became apparent during the flash crash,
i.e., between the E-mini S&P 500 futures and the individual stocks (SEC-CFTC “Findings
regarding the market events of May 6, 2010”, 2010).
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frequency market makers supply liquidity with limit orders, whereas
potentially informed traders demand liquidity with market or-
ders. In this setting, only a fraction of the traders has the
technological infrastructure to submit market orders to both
venues simultaneously, i.e., use smart order routing technol-
ogy (SORT). The model effectively creates market segmenta-
tion, because non-SORT traders cannot access the liquidity of
both venues. In equilibrium, a limit order faces higher adverse
selection costs when executed against a SORT trader. The rea-
son is that conditional upon execution, the trader might have
traded on the competing venue already and therefore the com-
bined trades are larger and more informed on average. Conse-
quently, a lower fraction of SORT traders reduces the adverse
selection risk faced by the market makers, who in turn increase
their equilibrium liquidity supply on both venues. However, the
additional liquidity follows from market segmentation only, and
will be cancelled after a trade on the competing venue; hence
the term duplicate liquidity.

A general prediction of the model is that the information con-
tent revealed by a trade leads to cancellations of limit orders on
the same side of the order books of competing venues. Cancel-
lations would not occur in a single venue setting, which implies
that I must test whether the observed cancellations are greater
than zero.

In addition, the model offers three more specific predictions.
First, a larger fraction of SORT traders reduces the amount
of duplicate limit orders and therefore decreases consolidated
liquidity. This result contrasts with Foucault and Menkveld
(2008), who find that a larger fraction of SORT traders in-
creases consolidated liquidity because of enhanced competition
between market makers. While this channel is also present
in my model, it gets dominated by the channel that a larger
fraction of SORT traders reduces duplicate liquidity. However,
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when all investors use SORT competition between market mak-
ers strictly improves liquidity, as in Glosten (1998) and Foucault
and Menkveld (2008). Second, a larger fraction of SORT traders
reduces consolidated liquidity, and therefore also the consoli-
dated liquidity impact of a trade, i.e., the change in consolidated
liquidity due to a one unit trade. Third, a larger fraction of
SORT traders active on the competing venue reduces the cross-
venue liquidity impact of a trade on the current venue.

My second contribution to the literature is an empirical anal-
ysis. The dataset contains the entire limit order books of all
relevant trading venues with publicly displayed data, for a sam-
ple of FTSE 100 stocks in November 2009.2 These stocks are
traded in a fairly fragmented environment, as the traditional
market (the London Stock Exchange) executes 66% of lit trad-
ing volume, leaving 34% to four competing venues (Chi-X, Bats
Europe, Turquoise and Nasdaq OMX Europe). I test the mod-
els’ main predictions by investigating the short-term correla-
tions between the supply and demand of liquidity across trading
venues. Specifically, I regress the change in the liquidity supply
at the bid or ask side of one venue on the buy and sell trading
volumes of the five individual venues. The regressions include
lagged trading volumes of up to ten seconds away to measure
the impact of trades over time. I sample once every 100 millisec-
onds to analyze high-frequency trading strategies. To the best
of my knowledge, this paper is the first to analyze the impact of
high-frequency trading strategies on the liquidity supply across
trading venues.

The empirical results strongly support the models’ main pre-
diction that trades are followed by limit order cancellations on
competing venues. That is, within 100 milliseconds, transactions
on the three most active trading venues are followed by cancel-

2The results are the same when I do the analysis for 10 stocks taken from the largest
French index (the CAC40) in October 2009.
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lations of limit orders on the same side of competing venues
with a value of 38% to 85% of the transaction size. Further,
these cancellations increase to 53% to 149% of the transaction
size after one second (depending on the trading venue). As a
result, the liquidity aggregated over all venues overstates liquid-
ity available to non-SORT traders, since e.g. a 100 share trade
reduces liquidity by more than 138 shares. This finding is par-
ticularly relevant to algorithms designed to split up large trades
over time, both SORT and non-SORT, as the liquidity impact of
each individual small trade is quite large. The fact that liquidity
shocks immediately spill over to other venues is not captured by
static liquidity measures, such as the quoted depth.

To test the remaining predictions of the model I construct a
proxy for the fraction of SORT traders. In the model, the SORT
traders submit two market orders to both venues simultaneously,
such that the market makers are unable to revise or cancel their
limit orders in between the two trades. Empirically, I state that
two trades on different venues occur “simultaneously” when (i)
the state of the limit order book of the venue executing the cur-
rent trade has not changed since the previous trade, (ii) both
trades occur within 100 milliseconds of each other and (iii) both
trades are either purchases or sales. The first restriction directly
follows from the model, and states that the current trade exe-
cutes against limit orders which have not yet incorporated the
information content of the previous trade. I group the strings of
market orders send simultaneously to several venues into trade
sequences, which overall represent 37% of LSE trading volume
(45% of entrant volume). The percentage of trading volume part
of trade sequences is a proxy for the fraction of SORT traders
in the market. The details of this measure and some caveats are
discussed in Section (2.3.3).

Per hour for each stock, I estimate the consolidated and cross-
venue liquidity impact for trades on the traditional market and
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the combined new entrant venues. The average consolidated
liquidity impact of LSE trades is -1.4 (-1.75 for the entrants),
which implies that a 100 share trade is followed by cancellations
of 40 shares, such that consolidated liquidity reduces by 140
shares. The cross-venue coefficients range between -0.58 and
-0.75. Next, using one observation per hour of each stock, I
regress the fraction of SORT traders on the consolidated and
cross-venue liquidity impacts and on the level of consolidated
liquidity.

I find strong empirical support for the specific predictions of
the model. A one standard deviation increase in the fraction of
SORT traders (0.09) reduces the level of consolidated liquidity
by 7%. Furthermore, it increases the consolidated liquidity im-
pact (i.e., reduces the magnitude) by 0.075 for LSE trades and
0.12 for entrant trades. Given the average of -1.4 and -1.75, these
coefficients are economically large. The coefficients of the frac-
tion of SORT traders on the cross-venue liquidity impacts range
between 0.05 and 0.16 per standard deviation. The regression
results are robust to controlling for trading volume, volatility,
the average order size and a proxy for algorithmic trading.

The main policy implication of the model is that fair markets
require investors to be able to split up trades simultaneously
across several venues. When a trader leaves a millisecond delay
between the split, high-frequency traders may observe the first
part of the trade and will quickly cancel their limit orders on
competing venues before the second part arrives.3 This issue also
applies to Intermarket Sweep Orders, which are specifically de-
signed to demand liquidity across several venues. If all investors
use SORT then trades would not be followed by excessive can-
cellations.

The model is a simple and stylized representation of an elec-

3For this reason, the Royal Bank of Canada introduced an order routing technology
(THOR) that uses routing latency to synchronize the arrival time of trades at each venue.
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tronic limit order book, and the purpose is to show (i) how seg-
mentation arises when only a fraction of the traders uses SORT
and (ii) how segmentation causes overestimation of consolidated
liquidity. The model ignores potentially important features of
real markets, such as the decision of traders to place limit or
market orders, differences in speed between traders and between
trading venues, and the inventory concerns of market makers,
among others.

Most related to this work is the literature on competition be-
tween electronic limit order books. Pagano (1989b) predicts that
all trading activity should divert to the trading system with the
lowest transaction costs, and only unstable equilibria may ex-
ist when two venues have identical cost structures. In contrast,
Glosten (1998) shows that two electronic limit order markets
can coexist when tick sizes are discrete and time priority rules
apply. Since time priority is absent across venues, competition
between liquidity suppliers increases, which in turn raises aggre-
gate liquidity. This point is further developed in Foucault and
Menkveld (2008), who coin this channel the “queue-jumping”
effect. Competition between exchanges also arises through dif-
ferences in the tick size, where the venue with the smallest tick
size becomes most liquid (Biais, Bisière, and Spatt (2010) and
Buti, Rindi, Wen, and Werner (2011)). My model is consistent
with the above findings, and adds the presence of duplicate limit
orders when some investors cannot access all trading venues.
Maglaras, Moallemi, and Zheng (2012) study competition be-
tween N venues, and show that the optimal order routing strate-
gies cause an equilibrium in the trading rate and queue length of
each venue, such that the N -dimensional problem collapses to a
single dimensional problem. Their results hold mainly on lower
frequencies because of the assumption that trading is smoothly
and continuously, whereas my results hold mainly on high fre-
quencies.

69



Empirical research on competition between exchanges typi-
cally focusses on its impact on aggregate liquidity and welfare.
O’Hara and Ye (2011) find that competition between exchanges
reduces the effective cost of trading. Degryse, de Jong, and van
Kervel (2011) show that aggregate liquidity increases by compe-
tition between venues with publicly displayed limit order books,
but worsens by competition of opaque markets. Instead, the
current paper studies the effect of competing exchanges on the
liquidity supply at each of the individual exchanges.

Market segmentation may also arise when investors have dif-
ferent trading speeds. Biais, Foucault, and Moinas (2011) show
that high-frequency trading facilitates the search for trading op-
portunities, but increases adverse selection costs for slow traders.
As a result, the equilibrium level of investment in high-frequency
technology exceeds the welfare maximizing level. Pagnotta and
Philippon (2012) obtain the same result in a model where com-
peting exchanges invest in trading speed, rather than the in-
vestors, which reduces direct competition. Hoffmann (2012)
shows that high-frequency traders face lower adverse selection
costs on average, which in turn causes slow traders to post less
aggressive limit orders. The result is an ambiguous effect on wel-
fare, which depends on the stocks fundamental volatility. Cartea
and Penalva (2011) show that high-frequency traders can ex-
tract rents from liquidity motivated traders when they operate
as intermediaries. McInish and Upson (2011) provide empirical
evidence that high-frequency traders pick off slower traders in
the US, due to the regulation that effectively causes slow in-
vestors to trade against badly priced stale quotes. Hasbrouck
and Saar (2011) argue that trading speeds affect the competi-
tion between liquidity suppliers in a single trading venue. This
paper shows that market segmentation causes duplicate limit
orders in fragmented markets.

The paper also relates to recent research on high-frequency
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traders who act as market makers (e.g., Jovanovic and Menkveld
(2011), Menkveld (2011) and Guilbaud and Pham (2011)). Such
market makers gain the bid-ask spread by offering liquidity at
both sides of the limit order book, while simultaneously manag-
ing adverse selection costs (e.g., Glosten and Milgrom (1985))
and inventory risk (e.g., Ho and Stoll (1981)). This paper an-
alyzes market making when trading is fragmented across elec-
tronic limit order books.

2.2 The model

In this section I first describe the duplicate limit order hypothe-
sis. Then, I quantify this duplicate limit order effect by placing
the problem into an adverse selection framework. In essence,
the model introduces market segmentation into a combination
of Glosten (1998), Sand̊as (2001) and Foucault and Menkveld
(2008). I contribute to Foucault and Menkveld (2008) by al-
lowing for adverse selection. Rather than analyzing the single
exchange setting in Sand̊as (2001), I focus on two competing
centralized limit order books. Compared to Glosten (1998), I
introduce market segmentation by constraining some traders to
have access to one trading venue only, which causes market mak-
ers to duplicate limit orders across markets. The model nests
Glosten (1998) and Sand̊as (2001).

2.2.1 Duplicate limit order hypothesis

In a fragmented trading environment time priority is not en-
forced between trading venues, whereas price priority is enforced
only when the trader has access to both venues.4 Price priority
implies that limit orders with a better price are executed before

4In the US, price priority across markets is enforced by law, Reg NMS. Time priority
however, crucial for this hypothesis, is not enforced.
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those with a worse price, while time priority entails that limit
orders placed first are executed first.

Following from the absence of time priority across venues, I
hypothesize that liquidity suppliers have an incentive to dupli-
cate their limit order schedules across several venues. After a
trade on one venue, they will cancel limit orders on other venues
because the trade is informative about the fundamental value.
By duplicating limit orders across venues the liquidity suppliers
increase their execution probability and expected profits.5 A
tradeoff arises however, as there is a probability that limit or-
ders on several venues will be executed simultaneously. In this
case a liquidity supplier trades too much, which in the model
is costly because of adverse selection risk. Therefore, liquidity
suppliers have an incentive to become very fast to minimize the
risk of simultaneous execution.

Who might pursue this duplicate limit order strategy? Ar-
guably, high-frequency traders who operate as market makers
can strongly benefit from the increased execution probability.
At the same time, using state of the art technology they can
monitor several venues simultaneously and may quickly cancel
limit orders to reduce the risk of simultaneous execution. 6 In
contrast, this strategy is likely not very attractive to “regular
traders.”For some traders, the technology to monitor continu-
ously might be too expensive. Other traders might use algo-
rithms to optimally split up large quantities over time, in which
case they will not cancel limit orders since each child order is
part of a large parent order.

5Note that this strategy does not work in a single exchange setting due to time priority.
6In this context, trades on two venues occur simultaneously when the liquidity supplier

is not fast enough to adjust his outstanding limit orders after the first trade. Effectively,
his quotes are stale when the second trade comes in.
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2.2.2 Model setup

The goal is to study the equilibrium liquidity supply at two
competing venues A and B in an adverse selection framework. I
first provide a short description of the trading game, and leave
the details about the strategies of the investors for the next
subsections.

Consider two types of investors: market makers and traders.
The market makers are risk neutral and supply liquidity by plac-
ing limit orders on one or both venues. They are profit maxi-
mizing, competitive and use high-frequency trading technology
to quickly access all venues. The traders demand liquidity by
placing market orders. Traders may have private information
about the fundamental value or liquidity motives to trade, and
therefore want to trade quickly using market orders.7 The mar-
ket orders are informed on average and therefore impose adverse
selection risk to the market makers.

The timeline of the trading game is presented in Figure (2.1),
which proceeds as follows. Trading occurs sequentially over pe-
riods indexed by t, and each period consists of three stages.
First, the market makers arrive consecutively and place limit
orders on one or both venues. They will do so until no market
maker finds it optimal to place additional limit orders, i.e., until
a competitive equilibrium is reached. Next a trader arrives who
places market orders with total size x, and depending on her
type executes limit orders on venue A, B or both. Finally, the
executed trade reveals information about the fundamental value
of the asset to all market makers, who update their expectation
of the true value. Now, the game starts over and is repeated for
every trade.

7Traders have both information and liquidity motives, and therefore the model does
not need noise traders.
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Stage 1

Market makers place

limit orders on A and B

Stage 2

Trader submits market

orders to A and / or B

Stage 3

Market makers update

expectation of true value

Figure (2.1) Timeline of the trading game
In stage 1 the competitive market makers place limit orders on both venues. In stage 2 a

potentially informed trader submits market orders, with exogenous size x. The trader is

one of three types: those with access to venue A only (fraction α), to B only (β), or to A and

B (γ = 1−α−β), in which case the trader uses smart order routing technology. In stage 3,

all market makers observe the executed market orders and update their expectation of the

fundamental value and limit order schedules accordingly. The trading game is repeated

for every trade.

2.2.3 The trader

The trader is randomly drawn from a population of traders,
which consists of three types. The first type only has access to
venue A (fraction α), the second type only to venue B (frac-
tion β), and the third type uses smart order routing technol-
ogy (SORT) to access both venues simultaneously (fraction γ =
1 − α − β). Simultaneously is defined here as sending market
orders to both venues very quickly, such that the market makers
are unable to update their limit order schedules between the ar-
rival of the trades. When both venues offer the same best price,
SORT traders are indifferent as to where to send their trades to.
In this case, they simply use a tie-breaking rule, which posits
that with probability π they first buy shares on venue A, and
with the complementary probability they first buy shares on
venue B. The parameters α, β and π are exogenous, as I focus
on a high-frequency trading environment.

Four reasons motivate why some investors are not able to
trade on both venues simultaneously. First, human traders with
access to both venues might trade too slowly, creating a delay
of several milliseconds when they split up a trade across two
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venues. In this case, high-frequency market makers have suf-
ficient time to update their limit order schedules in between
trades. This high-frequency trading strategy is known as la-
tency arbitrage, and segments the market according to trading
speed. As a result, human traders effectively have access to
one exchange only.8 For this reason, the Royal Bank of Canada
introduced an order routing technology (named THOR) that
takes each venues’ routing latency into account to synchronize
the arrival time of trades to all venues. In the US, inter-market
sweep orders serve a similar purpose. Empirically, McInish and
Upson (2011) show that slow traders are adversely selected be-
cause they often trade against stale quotes. A second source
of millisecond delays stems from active searches for hidden liq-
uidity. In this case a trader sends a (marketable) limit order
to one venue, and must wait for the venues’ response to con-
firm whether hidden liquidity is executed before choosing the
quantity to trade at another venue. The delay possibly gives
high-frequency traders sufficient time to update their limit or-
ders in between the trades. Third, smart order routing tech-
nology might be too expensive for some traders, as it requires
fixed costs for technological infrastructure, software, program-
mers and access and analysis of data feeds etc.9 Fourth, fixed
costs of splitting a trade across two venues could make it more
economical to trade through one price but save on the transac-
tion costs (such that fixed clearing and settlement costs are paid
only once).

The trader is a buyer or seller with equal probability, and has

8In fact, when market makers can update in between the two trades, the slow trader
will never prefer to split up his trade across two venues. The reason is that the market
makers update their limit order schedules symmetrically across two venues. Therefore, if
a trader finds it optimal to send the first part of the trade to venue A, then he will also
send the second part there.

9A small investor could hire a SORT trader to execute his position for a small fee.
However, this may lead to information leakage and dual trading (see e.g., Röell (1990)).
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a reservation price pm > p1 at which she is not willing to buy.10

The average order size is the same for all types, with mean φ
and exponential density function

f(x) =
1

φ
exp(−x

φ
) if x > 0 (market buy). (2.1)

The cumulative distribution function is F (·). Assuming an
exogenous order size simplifies the analysis, although in reality
the size depends on several factors, such as the current state of
the limit order book, the trader’s expectation of the fundamental
value and her current holdings. However, the interest of the
model lies in the behavior of the market makers, described next.

2.2.4 The market makers

Market makers place limit orders on venue A and B, and know
that trades are informative about the assets’ fundamental value
Vt. Market makers therefore face adverse selection risk, which
will determine the equilibrium liquidity supply. Market makers
monitor trades on both markets, and update their expectation
of the fundamental value using a price impact function

E(Vt+1|xt) = E(Vt) + λxt. (2.2)

Following Sand̊as (2001), I assume a linear price impact func-
tion with coefficient λ > 0, since buy trades typically contain
positive information with respect to the fundamental value (and
similarly, sells contain negative information). Thus, larger or-
ders cause more adverse selection costs and a greater price im-
pact. In the remaining analysis I will omit the time subscript
t.

Market makers place limit orders on a discrete pricing grid,

10This small assumption prevents the trade from walking up the limit order book too
much in case of a thin order book, but does not affect the outcome of the model.

76



{p1, p2, ...pk} for the ask side. I focus on the ask side only, prices
larger than p0, as the bid side is analogous. Denote the total
number of shares offered on venue j ∈ {A,B} at each price level
by {Qj1, Qj2, . . . , Qjk}.

Given the price impact function, we can calculate the expected
profit of a limit order placed on any location q in the queue of
limit orders on each venue. The expected profit depends on
the expected value of the asset conditional upon execution of
the limit order (the “upper-tail expectation” in Glosten (1994)).
For a limit order on venue A, this value is E(V |x > q) when the
trader immediately goes to A (denoted Eq(V ) for brevity), and
E(V |x > q +QB1) when the trader first buys all shares QB1 on
venue B and then goes to A. Denote the probability that the
incoming order x is larger than q as F q = 1 − F (q), then the
expected profit of a limit order on price level 1 of venue A is

ΠA,q = (α+γπ)F q(p1−Eq(V ))+γ(1−π)F q+QB1
(p1−Eq+QB1

(V )).
(2.3)

In the first term, the limit order executes against traders go-
ing to venue A only (α) and against SORT traders who choose
to trade on venue A first (γπ). Then, the expected profit is sim-
ply the price minus the expected value of the asset conditional
on x > q. The second term represents SORT traders who first
buy all the shares offered at price p1 on venue B, and then buy
shares on venue A (γ(1 − π)). As market makers only realize
profits when their limit order is executed, the second term of
the expected profit is lower since the incoming trade is larger
and more informed, i.e., Eq+QB1

(V ) > Eq(V ).
Not surprisingly, we observe that the expected profit of a limit

order on venue A depends on the number of shares offered on
venue B. Therefore, to obtain the equilibrium liquidity supply
we need to solve for the profit equation of limit orders on both
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venues simultaneously. The profitability of a limit order on price
level 1 of venue B at location q is

ΠB,q = (β+γ(1−π))F q(p1−Eq(V ))+γπFQA1+q(p1−EQA1+q(V )).
(2.4)

2.2.5 Equilibrium

The model is in equilibrium when no market maker can prof-
itably place an additional limit order on any price level (as in
Glosten (1994), proposition 2). Therefore, the expected profit
of the marginal limit order, i.e., the single share offered at the
end of the queue of limit orders, must equal zero for all price
levels on each venue. Following Sand̊as (2001), I substitute q by
QA1 (the marginal limit order) and integrate the profit equation
over the distribution of the incoming order x, using equations
(2.1) and (2.2)

ΠA,QA1
=

∞∫
QA1

(α + γπ)(p1 − V − λx)
1

φ
exp(−x

φ
)dx+

∞∫
QA1+QB1

γ(1− π)(p1 − V − λx)
1

φ
exp(−x

φ
)dx = 0.

The first integral goes to infinity, because the marginal limit or-
der is executed for any trade larger or equal to QA1. For demon-
strational purposes the previous equations contain γ, which I
next substitute with (1−α−β) to calculate the solutions. Solv-
ing the integral equation yields

ΠA,QA1
= (α+π(1−α−β))(p1−V −λ(φ+QA1)) exp(−QA1

φ
)+
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(1−π)(1−α−β)(p1−V−λ(φ+QA1+QB1)) exp(−QA1 +QB1

φ
) = 0.

The zero expected profit condition implies that the first line of
the last equation is positive and the second line negative. In
equilibrium, the market makers expect to lose to SORT traders
that go to venue B first, and profit from traders that go to venue
A first. Similarly, solving the integral for venue B yields

ΠB,QB1
= π(β+(1−π)(1−α−β))(p1−V−λ(φ+QB1)) exp(−QB1

φ
)+

π(1−α−β)(p1−V −λ(φ+QA1+QB1)) exp(−QA1 +QB1

φ
) = 0.

The two equations with two unknowns can be solved implicitly

QA1 =
p1 − E(V )− λφ

λ
− γ(1− π)QB1

γ(1− π) + (α + γπ) exp(QB1

φ )
,

(2.5)

QB1 =
p1 − E(V )− λφ

λ
− γπQA1

γπ + (1− (α + γπ)) exp(QA1

φ )
.

(2.6)

The first terms in the above equations are identical, and equal
the optimal quantity offered in a single venue setting (the solu-
tion obtained by Sand̊as (2001)).11 However, we subtract a non-
negative second term, implying that the offered quantities on
the individual venues are weakly lower in a fragmented market.
The second term reflects the adverse selection costs incurred by
the market makers when a SORT trader buys at the competing
venue first.

The zero expected profit condition holds for prices deeper in
the order book too. Now, the expected profit equation consists

11Sand̊as also adds a fixed limit order execution cost, which is easily added but does
not yield new insights in this model.
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of three terms, as a limit order on price level 2 on venue A might
get executed by traders of type α (who first buy QA1 and then
QA2), by type γπ (who first buy QA1, QB1 and then QA2), or by
type γ(1 − π) (who first buy QB1, QA1, QB2 and then QA2). I
solve the system for prices deeper in the order book recursively,
which gives an implicit solution similar to equation (2.6).

2.2.6 Testable implications

In this section I discuss a static prediction of the model, which
holds at each point in time, and two dynamic predictions, which
compare equilibrium liquidity before and after a trade.

The static prediction follows from the solutions for QA1 and
QB1 in equation (2.6), and a simple proof is provided in the
Appendix.

Proposition 1 When the liquidity at both venues has reached
the equilibrium, an increasing fraction of SORT traders γ strictly
reduces consolidated depth. In addition, the consolidated depth
in a fragmented market is strictly higher than the liquidity offered
in a single exchange setting.

A larger fraction of SORT traders implies that more traders
have access to the liquidity of both venues simultaneously, such
that the market is less segmented. Effectively, market makers
face higher adverse selection costs when trading with a SORT
trader, because there is a probability that she traded on the
competing venue already. Therefore, a higher fraction of SORT
traders increases expected adverse selection costs and reduces
equilibrium liquidity supply.12 This prediction is opposite to
the result of Foucault and Menkveld (2008) that a larger frac-
tion of SORT traders increases equilibrium liquidity supply. In

12The consolidated liquidity reduces by γ, because the derivatives of QA1 and QB1 with
respect to γ are both negative.
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their model, market makers may jump the queue of limit orders
on one venue by placing limit orders on the other. Such “queue
jumping” is more profitable when the fraction of SORT traders
increases, which enhances competition between market makers
and equilibrium liquidity supply. This channel is also present
in the current model, but gets dominated by the channel that a
larger fraction of SORT traders the increases adverse selection
costs of market makers. Indeed, the queue jumping effect ex-
plains the second part of the proposition that the consolidated
liquidity in a fragmented market is higher than that in a single
exchange setting, even when all traders use SORT (which is also
documented by Glosten (1998)).

The following two propositions relate to the impact of a trade
on the equilibrium liquidity supply, i.e., the change in liquidity
before and after a trade. These are the main contributions of
the model.

Proposition 2 Define the “consolidated liquidity impact” of a
trade as the impact of a one unit trade on the equilibrium con-
solidated liquidity supply.

1. In the single exchange setting, the consolidated liquidity im-
pact equals -1.

2. The consolidated liquidity impact decreases by γ. For γ < 1,
the consolidated liquidity impact is strictly smaller than -1,
such that the impact of a trade on consolidated liquidity is
larger than the trade size.

In part 1, a one unit trade reduces consolidated liquidity with
one unit because the price impact of the trade equals the slope
of the limit order book.13 In part 2, a decrease in γ reduces the

13For a trade of size x (see equation (2.2)), the marginal impact on QA1 is ∂QA1

∂x =
∂QA1

∂V
∂V
∂x = − 1

λλ = −1.
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market makers expected adverse selection costs, who in turn in-
crease their liquidity supply (proposition 1). But given that the
information content of a trade λ is held fixed, it must be that
the increased liquidity is cancelled after the trade. Effectively,
the private information of a trade is incorporated on the com-
peting venue via cancellations of limit orders (and potentially,
resubmissions of limit orders at higher prices). Duplicate liquid-
ity arises in addition to the effect that for γ > 0, consolidated
liquidity increases because of enhanced competition between liq-
uidity suppliers.

In what follows, I define duplicate liquidity as the liquidity
impact plus one, i.e., the impact of a trade on consolidated liq-
uidity due to cancellations of limit orders.

The next proposition relates to the impact of a trade on the
liquidity supply at the competing venue.

Proposition 3 Define the “cross-venue liquidity impact” as the
impact of a trade on the equilibrium liquidity supply of the com-
peting exchange. The cross-venue liquidity impact is strictly neg-
ative, and the magnitude reduces by the fraction of SORT traders
operating on the competing exchange.

A trade reveals information about the fundamental value,
which is incorporated on the competing venue via cancellations
of limit orders. When a larger fraction of SORT traders oper-
ates on the competing venue, it becomes less liquid such that
fewer limit orders have to be cancelled after a trade on the cur-
rent venue. In practice, the fraction of SORT traders should be
larger on an entrant venue than on the incumbent exchange, and
therefore entrant trades will have a larger cross-venue liquidity
impact.

82



2.2.7 Numerical example

In this section I substitute the parameters with realistic values
and analyze the equilibrium. The main interest lays in the im-
pact of the fraction of traders that might go to one venue only
(α and β) on the equilibrium liquidity supply of both markets.

I choose the following parameter values. The average trade
size is 1 unit (φ = 1), the best ask price is £10.00 and the tick
size is 0.5 cent, which is the relevant case for the sample stocks
with a price of £10.00. The price impact of a one unit trade
λ = 20 basis points, and the tie-breaking rule π = 0.5. The
models’ results come out clearest when I set the fundamental
value V just above £9.99, such that the depth in the order book
is constant at each price level for the case that all investors use
SORT (γ = 1).14

The numerical outcomes for the four best price levels are
shown in Table 2.1, where only α and β vary. The bottom
panel shows the market shares and per-trade expected profits
to the market makers of both venues.15 The first row shows the
single exchange setting, α = 1, which is the Sand̊as (2001) so-
lution. This is the benchmark case, and shows that 1.53 units
are offered on the best price level, and 2.5 units on all subse-
quent price levels. In this case, the quantities offered beyond
the best price are constant because of the tradeoff between im-
proved prices and higher adverse selection costs, which equals
the tick size divided by the price impact.

The second column shows the situation where all investors use

14Specifically, I set the fundamental value V = 9.994943. Small changes in V relative
to the fixed pricing grid cause changes in offered liquidity at the best price, which interact
with liquidity on the competing exchange and in turn with liquidity deeper in the order
book.

15I obtain the market makers’ expected profits as follows. For each type of trader I
calculate the expected profits of all shares offered on each price level by integrating the
marginal profit equation (e.g. equation (2.5)) over the number of shares offered at that
price level. Then, the total expected profit is the sum of the profits at each price level,
weighted by the fraction of traders of each type.
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smart order routing technology (γ = 1, α = β = 0). Compared
to the benchmark case, consolidated liquidity is 63% higher on
price p1 (2.5 versus 1.53), and identical on all subsequent levels.
This corresponds to the second part of proposition (1) that liq-
uidity in a fragmented market is strictly higher than in a single
venue setting. The bottom panel confirms that the increased
liquidity comes at the expense of the market makers, whose ex-
pected profits decline from from 2.24 to 1.50 basis points per
trade.

From columns three to six the fraction of SORT traders grad-
ually decreases, which increases consolidated liquidity (part 1
of proposition (1)). When we move towards the full duplicate
limit orders case (γ = 0, column (6)), consolidated liquidity is
twice that of the single exchange setting. In each case, the table
reports the market shares and the per trade expected profits to
markets makers of both venues.

The main prediction of the model is that a higher fraction
of SORT traders reduces the amount of duplicate limit orders
(proposition (2)). To illustrate this point, we analyze the impact
of a 2.5 share trade on the liquidity of both venues. The price
impact is 2.5λ = 1 tick, meaning that all quantities shift up
exactly one price level after market makers have revised their
limit orders. When all investors use SORT (column (2)), the
trade consumes the 1.25 units of QA1 and 1.25 of QB1, and then
the limit order books are immediately in equilibrium (market
makers will not need to revise their limit orders). In effect,
there are no duplicate limit orders and the consolidated liquidity
impact of a trade is exactly one (this is not generally the case).
In contrast, when no investors use SORT (column (6)), the trade
will consume 2.5, but then also 2.5 will be cancelled on the
competing venue because of the price impact of the trade. In
effect, after the revisions by the market makers, the 2.5 share
trade reduces liquidity on both venues by 5 shares, meaning that
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100% of the order size is cancelled.
Proposition (2) and (3) are confirmed in column (7), where

50% of the investors have access to venue A only and 50% use
SORT. When more SORT traders operate on venue B, the cross-
venue impact of a trade on A is lower. As above, afer executing
1.25 on venue A and B simultaneously all quantities shift up one
price level, such that 0.17 is cancelled on QA1 (from 1.42-1.25 to
0) and 0.95 on QA2 (from 2.37 to 1.42), whereas no cancellations
occur on QB1 and QB2. Indeed, column (7) shows the realistic
setting in Europe, where a large fraction of investors is able to
trade only on the traditional venue A (50%), and the remaining
investors use SORT to access both venues.

2.3 Empirical analysis

This section first presents a brief overview of the FTSE 100
stocks’ trading environment, followed by a data description.
Next I explain the DepthAsk(X) and DepthBid(X) liquidity
measures, and an empirical proxy for the fraction of SORT in-
vestors. Then I test the propositions of the model and discuss
the results.

2.3.1 Background and Data

Market structure FTSE100 stocks

The FTSE100 stocks are primarily listed on the London Stock
Exchange (LSE). In November 2009 the LSE executes 61% of
trading volume (excluding dark pool and Over-The-Counter vol-
ume).16 These stocks are traded on an electronic limit order
market which integrates liquidity provision by market makers.
Note that the market makers in the model are regular investors,

16As reported by Fidessa, see http://fragmentation.fidessa.com.
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who use high-frequency technology to operate like traditional
market makers. Continuous trading occurs between 08:00 and
16:30, local time.

Once stocks are listed on the LSE, alternative trading venues
may decide to organize trading in them as well.17 Four impor-
tant entrants have emerged which also employ publicly displayed
limit order books: Chi-X, Bats, Turquoise and Nasdaq OMX
Europe. These venues are regulated as Multi-lateral Trading
Facilities (MTFs), the European equivalent to ECNs. While
these entrants in effect have the same market model as the LSE,
they differ with respect to trading technology (speed in partic-
ular), fixed and variable trading fees, and some of the types of
orders that may be placed (e.g., pegging a limit order price to
the midpoint, such that it always equals the midpoint +n ticks).
Investors can demand (“take”) liquidity by issuing a market or-
der or supply (“make”) liquidity by issuing limit orders at any
moment in time. All markets allow for visible, partially hidden
(iceberg) and fully hidden limit orders.

Chi-X started trading in April 2007 and is the most successful
entrant in terms of market share with 24% of trading volume in
November 2009. Turquoise and Nasdaq OMX started trading
FTSE 100 firms as of September 2008, and Bats two months
later. Their market shares are substantially lower, with 5.5%,
1.8% and 7.6%, respectively. In May 2010 Nasdaq OMX closed
down, as they did not meet their targeted market shares.18 As
of July 2009, the five trading venues use identical tick sizes,
which depend on the stock price. Compared to the US, the tick
sizes in the UK are very small with for example £0.001 for a
stock price between £5.00 and £10.00, and £0.005 for a price
between £10.00 and £50.00. All the new competitors employ

17This feature makes the current study inherently different from literature on cross-
listings, where firms themselves may choose to list on several exchanges.

18See “Nasdaq OMX to close pan-European equity MTF”, www.thetradenews.com.
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a maker - taker pricing schedule, where executed limit orders
receive a rebate of 0.18 to 0.20 basis points, while market orders
are charged 0.28 to 0.30 basis points of traded value. These
make-take fees are very small compared to the tick size of around
5 basis points on average, and small compared to those of US
stocks.

The trading venues with publicly displayed limit order books
execute approximately 60% of total volume, while the remaining
40% is executed on dark pools, broker-dealer crossing networks,
internalized and OTC.

Data

The analysis is based on a subsample of ten FTSE100 stocks,
each randomly selected from one market cap decile of the 100
constituents (i.e., a size stratified sample).19 The sample pe-
riod consists of 10 trading days (November 2 - 13, 2009), and
high-frequency data are taken from the Thomson Reuters Tick
History database. For each stock, the data contain separate
limit order books for the five trading venues. As a robustness, I
also do the analysis for 10 stocks taken from the largest French
index (the CAC40) during October 5 - 16, 2009, and the results
are similar (available upon request).

For each transaction, I observe the price, traded quantity and
execution time to the millisecond,20 while for each limit order
placement, modification or cancellation, the data set reports the
timestamp and the ten best prevailing bid and offer prices and
their associated quantities.

While the time stamp is per millisecond, I take snapshots
of the limit order books at the end of every 100th millisecond,

19I choose ten stocks during ten trading days as computational limitations prevent me
from using the full sample of stocks or more trading days. Table (2.2) shows the list of
stocks.

20If a single market order is executed against several outstanding limit orders, separate
messages are generated for each limit order.
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resulting in approximately 30 million observations. Higher fre-
quencies are not useful when comparing multiple trading venues,
as it may lead to inaccuracies because of latency issues, i.e. mil-
lisecond reporting delays.21 Per snapshot, I observe the out-
standing liquidity and the trading volumes on the buy and sell
sides of every venue. The advantage of taking snapshots is that
the data become evenly spaced, such that lagged variables in
the regressions become easily interpretable.

I do not directly observe hidden and iceberg limit orders.
However, from trades I can construct the executed hidden quan-
tity, based on the state of the order book directly before and
after the trade and the traded quantity. As such, I do observe
hidden liquidity that gets ‘hit’ by a market order. These data
are identical to those offered by several information vendors,
meaning I use the information set available to the market.

The upper panel of Table 2.2 presents summary statistics for
the sample stocks. As I select stocks from each size decile, there
is a large variation in market cap: the mean is £21 billion with
a £37 billion standard deviation. Accordingly, also trading vol-
ume (in shares and pounds) and realized volatility vary substan-
tially. In contrast, the market shares of the five trading venues
are fairly stable between firms, and highly representative for the
entire FTSE100 index.

The lower panel of Table 2.2 presents summary statistics on
the average number of limit order book modifications and trans-
actions per minute. While the LSE’s market share is largest by
far, the number of transactions lay much closer together (i.e.,
trade sizes are smaller on the entrant venues). In fact, the num-
ber of limit order modifications on Chi-X greatly exceeds that
of the LSEs, on average 218 versus 160 per minute.

The limit order books of entrant venues are highly active, de-

21The reporting delays are smaller than five milliseconds according to industry profes-
sionals.
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spite the relatively small market shares. The ratio of limit order
modifications to trades is 31:1 for the LSE, 51:1 for Chi-X and
increases as a venues market share goes down to 123:1 for Nas-
daq. This is mostly due to high-frequency traders placing and
cancelling many limit orders. Chi-X and Bats are the most suc-
cessful new competing venues in terms of market share, number
of transactions and limit order book activity.

2.3.2 The DepthAsk(X) and DepthBid(X) liquidity mea-
sures

This subsection explains the DepthAsk(X) and DepthBid(X)
measures, also used in Degryse, de Jong, and van Kervel (2011).

The DepthAsk(X) aggregates all shares offered at prices be-
tween the midpoint and the midpoint plus X basis points. Sim-
ilarly, the DepthBid(X) sums the shares offered within the mid-
point and the midpoint minus X basis points. The midpoint is
the average of the best bid and ask price available in the market
(the NBBO), and I choose X = 10 basis points relative to the
midpoint. The price constraint X guarantees that only liquid-
ity at prices close to the midpoint is aggregated, i.e. at good
price levels. This is important, as liquidity offered deeper in
the order book is less likely to be executed, and therefore less
relevant to investors. The number of shares in the interval are
then converted to the value in GBPs.

Formally, define price level j = 1, 2, ..., J on the pricing grid
and the midpoint M , then for venue v,

DepthAsk(X)v =
J∑
j=1

PAsk
j,v QAsk

j,v 1
(
PAsk
j,v < M(1 +X)

)
, (2.7a)

DepthBid(X)v =
J∑
j=1

PBid
j,v Q

Bid
j,v 1

(
PBid
j,v > M(1−X)

)
. (2.7b)
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The measures are calculated at the end of every 100 millisec-
ond interval and represent liquidity offered at the bid and ask
side, per trading venue. When taking larger values for X, liq-
uidity deeper in the order book is also incorporated. Then,
comparing for different price levels X reveals the shape of the
order book. For example, if the depth measure increases rapidly
in X then the order book is relatively deep. The order book is
asymmetric when the absolute difference between DepthAsk(X)
and DepthBid(X) is large.

The depth measure has several features which make it highly
suitable for the empirical approach. First, the measure is cal-
culated per venue, for the bid and ask sides, which allows us
to analyze the correlations between the demand and supply of
liquidity across venues, sides and over time. Second, the depth
measure is easily related to trading volume as both are measured
in currency (GBPs). Third, the measure incorporates limit or-
ders beyond the best price levels, making it robust to small,
price improving limit orders. Such orders are often placed by
high-frequency traders, who mostly drive the dynamics in the
model. Fourth, by choosing a fixed interval the measure is in-
dependent of the tick size, which varies across stocks. For a de-
tailed discussion of this measure and a comparison with related
liquidity measures such as the Cost of Roundtrip (CRT (D)) and
Exchange Liquidity Measure (XLM(V )), I refer the interested
reader to Degryse, de Jong, and van Kervel (2011).

Table 2.3 contains summary statistics on the Depth(10) and
Depth(50) measures for the bid and ask side, reported in GBPs
and calculated per exchange. The statistics are based on single
observations per tenth of a second per stock, equal weighted over
all stocks. Depending on the tick sizes, the Depth(10) aggregates
liquidity of two to five price levels on the bid and ask side. The
Depth(50) often represents the entire limit order book. First
and most strikingly, we observe that the Depth(10) offered on
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Chi-X is 86% of the LSE, while they execute only a third of the
LSE volume. The liquidity at Bats is roughly 40% of the LSE
Depth(10), while Turquoise and Bats have approximately 20%
each. On average, the ask and bid sides are symmetrical.

The regression analysis works with changes in DepthAsk(10)
and DepthBid(10), i.e., the value of the current minus the previ-
ous observation. As equation (2.7) shows, these changes depend
on the activity in the limit order book and on the level of the
midpoint. The model predicts changes in the depth measures
due to limit order book activity, i.e., the placement, cancella-
tion, modification and execution of limit orders. Therefore, I
define Chg DepthAsk(X)t as the difference in DepthAsk be-
tween each period, holding the midpoint constant (similarly for
the Chg DepthBid(X)t)

Chg DepthAsk(X)t = DepthAsk(Xt,Mt−1)−DepthAsk(Xt−1,Mt−1).
(2.8)

The measure simply shows how much liquidity in GBPs is added
or removed from the limit order book in a period.

2.3.3 Trade sequences by SORT traders

In the model, the SORT traders submit two market orders si-
multaneously to both venues, but in reality this is not perfectly
possible. However, the crucial element is that market makers
are unable to revise their limit order schedules in between the
two trades. Essentially, each market order executes against limit
orders which have not yet incorporated the information content
of the other market order. Empirically, I use this feature to
identify market orders that are sent “simultaneously” to several
venues, which I call trade sequences.

I use the definition that two trades occur simultaneously when
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(i) the state of the limit order book of the venue executing the
current trade has not changed since the previous trade, (ii) both
trades occur within 100 milliseconds after each other,22 and (iii)
both trades are either purchases or sales. The first restriction
immediately follows from the model and states that the trade
executes against stale limit orders.

In more detail, I use the following approach. Per stock I
aggregate the trades of the five venues in a single file,23 chrono-
logically sorted and timestamped to the millisecond. I add the
state of the limit order books of the five venues just before each
trade takes place. Then, I specify that the current and pre-
vious trade occur simultaneously if (i), (ii) and (iii) above are
satisfied. Next, I group the simultaneous trades into a trade
sequence, i.e., a string of market orders that are send to several
venues simultaneously. The number of venues that are accessed
simultaneously is the length of a sequence, which ranges from
one to five. A sequence with a length of one is an individual
trade on one venue, whereas a sequence with a length larger
than one is assumed to stem from a SORT trader. The fraction
of trading volume of sequences with a length larger than one is
the empirical proxy for the fraction of SORT traders.

The top panel of Table 2.4 shows the percentage of trades that
are part of a sequence of a certain length, for each trading venue.
The first row shows that the LSE executes about 250.000 trades,
of which 69.8% has a sequence length of one, 17.2% a length of
two, and the remaining 13% is part of a sequence with a length
between three and five. According to my definition, 30.2% of the
LSE trades stem from SORT traders. On Chi-X and Bats 39%

22Admittedly, 100 milliseconds is arbitrarily chosen, but it is consistent with the re-
mainder of the analysis. The mean and standard deviation of the time between two trades
classified as simultaneously is 23 and 22 milliseconds respectively.

23In the data, a single market order may execute against several limit orders, gener-
ating multiple observations. These partial executions have the same time stamp (at the
millisecond level), which I pool to obtain a single trade.
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and 51% of the trades have a sequence length larger than one,
which means that a higher fraction of the traders on these venues
use SORT. Similarly, the fraction of SORT traders on Turquoise
and Nasdaq OMX is 46.4% and 52.6%. There are 652,000 trades
in the sample, of which 252,000 (38.7%) are part of the same
sequence, i.e., occur simultaneously. An unreported calculation
shows that the first restriction is binding frequently, as without
it the number of simultaneous trades would increase to 335,000
(51%). While trades often occur on several venues in the same
100 millisecond interval, in many cases the market makers have
already revised their limit order schedules in between the trades.

The middle panel of Table 2.4 shows the average size of trades
part of a sequence of a certain length, per trading venue. The
average trade size ranges between £15,000 and £19,000 for the
LSE, and between £4,000 and £9,000 for the new entrants. The
average order sizes are fairly constant across trades part of dif-
ferent sequence lengths. Therefore, the total sequence volume
increases almost linearly in the number of venues accessed. This
finding is perhaps not surprising as order splitting is more at-
tractive when trading larger amounts.

In the analysis, I use the fraction of trading volume executed
by sequences with a length exceeding one to proxy for SORT
trading activity. The bottom panel of Table 2.4 shows that
38.6% of the overall trading volume stems from SORT traders.
On the LSE, 34.5% of trading volume stems from SORT traders.
This is approach differs from Foucault and Menkveld (2008),
who estimate the fraction of SORT traders by looking at trade-
throughs (violations of price priority). However, their approach
is not suitable when five trading venues coexist, as traders may
have access to one or any combination of several venues. The
current approach correctly reflects the adverse selection risk
faced by market makers to trade against traders who accessed
another venue already, which in the model is a function of the
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fraction of SORT traders and their order routing preferences.
The trade sequences do have some caveats. First, it is possi-

ble that a SORT trader may execute his entire trade on a single
venue, in which case I would classify that trade as stemming
from a non-SORT trader. Second, it is possible that an arbi-
trageur (or intermediary) trades first with a limit order on one
venue and then quickly closes the position with a market order
on a competing venue to benefit from make-take fees or crossed
quotes for example. In this case, both trades would be incor-
rectly classified as stemming from a SORT trader. Note that
absent trader identities, I am not certain whether the market
orders in a trade sequence indeed stem from the same SORT
trader. However, this is not an issue because the adverse selec-
tion risk in the model is driven by the size of the sequence, and
not by the identity of the trader. That is, the market makers
face the same picking off risk when two simultaneous market
orders stem from the same or different traders.

2.3.4 The cross-venue liquidity impact

The regression analysis consists of two parts. In this subsection,
I establish the general prediction of the model that a trade on
one venue is followed by cancellations of limit orders at compet-
ing venues. This analysis shows the cross-venue liquidity impact
of trades on each individual trading venue. In the next subsec-
tion I test the three propositions of the model that relate the
fraction of SORT traders to the level of consolidated liquidity,
the consolidated liquidity impact and the cross-venue liquidity
impacts.

Methodology

Cancellations of limit orders occur when the Chg DepthAsk(10)V

is negative for venue V , after controlling for trading volume on
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that venue. To estimate cross-venue cancellations, I regress the
Chg DepthAsk(10)V on contemporaneous and lagged buy and
sell volumes of the individual venues. I add lags up to ten sec-
onds (100 periods) to allow all markets to incorporate the infor-
mation content of trades, which should be sufficiently long in a
high-frequency trading environment. Instead of estimating 100
individual lagged coefficients, I add five variables that average
trading volume of 1, 2-4, 5-10, 11-20 and 21-100 periods away,
per venue for buy and sell volumes. Section 2.5.2 in the appendix
explains in more detail how I obtain the cumulative impact of a
transaction over time, and the corresponding standard errors.

A trade is classified as a Buy or Sell, and define the trading
venue v = 1, ..., 5, and the current and five lagged groups l =
0, ..., 5 for stock i and time t. Then, for each venue V , I regress

Chg DepthAsk(10)Vit = ci+
5∑
v=1

5∑
l=0

(
βBuyl,v ×Buy

v
it−l + βSelll,v × Sellvit−l

)
+

5∑
v=1

(
βBuyv ×BuyHidvit + βSellv × SellHidvit

)
+ εit. (2.9)

The term after the firm fixed effects represents the buy and
sell volumes (in GBPs) for the five venues covering the con-
temporaneous and five lagged groups. The term on the second
line controls for contemporaneous hidden buy and sell liquid-
ity (observed when executed), which is added for the following
reason. The effect of a buy trade on Chg DepthAsk(10)V of
venue V should mechanically be −1 : a one pound trade reduces
the depth with exactly one pound. However, a trade executed
against a hidden limit order does not reduce visible liquidity,
and therefore I control for executed hidden liquidity.

This regression is executed ten times: for the bid and ask
sides of the five trading venues. The result shows how many

95



pounds close to the midpoint are submitted or cancelled after a
one pound buy or sell trade on any venue. Note that the effects
are permanent and do not die out over time, as for example
a buy trade might contain positive price information such that
some limit orders will permanently be cancelled on the ask side.

Results

The regression results are reported in Table 2.5, with the change
in DepthAsk and DepthBid of all venues as dependent variables.
Each column represents one regression, showing separate coeffi-
cients for buy and sell volumes, per trading venue. Within each
venue, the displayed coefficients represent the cumulative effect
over time (the running sum). I only show the contemporaneous
effect (within the 100 millisecond interval), after 1 second and
after 10 seconds. Intermediate lagged values are estimated to
improve the model fit, but for brevity not reported. Standard
errors are omitted in the Table (available on request), but a sin-
gle asterisk indicates significance at the 1% level. Next I will
discuss the findings for the DepthAsk only, as the results for the
DepthBid are symmetric.

The first column shows that the immediate effect of a one
pound LSE purchase on LSE DepthAsk is -0.83 pounds. This
implies that while the trade removed 1 pound, either 17 cents
is immediately replenished, or, first a new limit order is placed
which immediately provokes the trade. The first explanation is
consistent with iceberg orders that reveal an additional hidden
component after execution, and the latter with the findings of
Hasbrouck and Saar (2009).

Consistent with the main prediction of the model, a one pound
buy trade at Chi-X is immediately followed by cancellations on
the LSE of -0.21 pounds (-21%). After ten seconds, the effect
is -0.61, meaning that more than half of the Chi-X trade size
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is cancelled on the LSE. The coefficients for Bats are similar,
-0.27 immediately and -0.54 after ten seconds (all significant at
the 1% level). This effect is economically very large, and implies
that trades on entrant venues are immediately followed by can-
cellations on the traditional market. Note that this effect cannot
be explained by investors who simultaneously trade on several
venues, since the regression controls for trades on all venues.
The effect of Nasdaq and Turquoise trades on LSE liquidity are
negative, but fairly small.

The LSE responds more strongly to Chi-X and Bats trades
than vice versa, which is consistent with proposition (3) since
more SORT traders are active on the entrant venues. In column
(2) and (3), LSE trades reduce liquidity on Chi-X and Bats with
-0.18 and -0.05 after ten seconds (which is significantly differ-
ent from the -0.61 and -0.54 above). The one-second impact of
an LSE trade on the change in liquidity at competitors is 0.53
(the row sum). An alternative explanation why the new entrant
venues respond less to trades on the LSE might be that these
new entrants are inactive at times. When they do not offer
liquidity at the best price, cancellations should not occur.

A Chi-X buy trade reduces Chi-X DepthAsk with -1.31 (col-
umn (2)), implying that beyond the reduction of 1 pound, an
additional and significant 31 cents is cancelled. A likely explana-
tion is that Chi-X allows for “pegged to midpoint” limit orders,
which are automatically repriced when the midpoint changes. If
a trade moves the midpoint, these limit orders are essentially
cancelled and resubmitted at a higher price. Displayed pegged
to midpoint orders are allowed on Bats too (which has a coeffi-
cient of -1.26), but not on the LSE in our sample period.

Cancellations and trades are strongly interlinked between Bats
and Chi-X, which have cross-coefficients of -0.58 and -0.18 (col-
umn (2-3)). These are the most successful entrants in terms of
market share. In contrast, Turquoise and Nasdaq seem more
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independent, as their liquidity does not respond much to trades
on the LSE, Chi-X and Bats and vice versa.

The immediate effect of any venues’ sales on the LSE DepthAsk(10)
is economically large and positive, with coefficient ranging from
0.10 to 0.30 (column (1), bottom panel). This result is consis-
tent with an information effect: the sell trade conveys negative
information about the stock, such that market makers improve
prices and quantities on the ask side.

The results for sell trades on the change in liquidity on the
bid side, the right part of the table, are highly symmetrical. As
a robustness check, I execute the analysis for 10 stocks taken
from the largest French index (the CAC40) during October 5 -
16, 2009. Using a different sample and time period (one month
earlier), the estimated coefficients are similar (available upon
request). This is not surprising however, given that the four new
trading venues who compete in FTSE100 stocks also trade the
French CAC40 stocks (along with most of the other European
indices).

2.3.5 Testing the propositions: The effect of SORT
traders

In this section I test the three propositions of the model. I
relate the fraction of SORT traders to the level of consolidated
liquidity, the consolidated liquidity impact and the aggregate
cross-venue liquidity impact. These variables are estimated at
the hourly frequency, and I use the time series variation within
a stock to identify the relation.

Methodology

The first proposition states that market makers place fewer du-
plicate limit orders when the fraction of SORT traders increases.
Therefore, the level of consolidated liquidity Ln(Depth(10))Cons
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should decrease in %SORT , defined as the fraction of trading
volume part of sequences with a length exceeding one. I run the
following regression, with and without a set of control variables
Xih that are known to affect the consolidated depth.

Ln(Depth(10))Consit = ci+δ(h)+β1%SORT+β2Xih+εih. (2.10)

The ci and δ(h) are firm and daily dummy variables. The vec-
tor Xih consists of the logarithm of turnover, realized volatility
(calculated hourly as the sum of the 12 squared 5-minute re-
turns), the logarithm of the average order size and a proxy for
algorithmic trading. These variables are important in the model:
turnover combined with volatility may proxy for asymmetric in-
formation,24 and the average order size is directly used in the
model. The proxy for algorithmic trading, Algo trad, may cap-
ture the cross-market activity of market makers, and is defined
as the negative of trading volume in hundreds of pounds divided
by the number of electronic messages (the placement, execution
and cancellation of limit orders), following Hendershott, Jones,
and Menkveld (2011).

Proposition two and three relate the fraction of SORT traders
to the consolidated and cross-venue liquidity impact, which I
estimate as follows. I run regression 2.9 for hour t of stock i

(360,000 observations), but use as dependent variable the change
in consolidated Depth(10) on the ask or bid side. These re-
gressions represent the impact of a trade at venue v on market
wide depth. In a new dataset I store the estimated coefficients
Cons coefv,it accumulated over one second after the trade, for
the effect of buy trades on the ask side liquidity and sell trades
on the bid side liquidity.

In addition, I run regression 2.9 for each venue v of hour t

24For example, holding volatility constant, more turnover should imply less informative
trades and lower price impacts.
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and stock i using as dependent variable the change in liquidity
of the current venue, Chg DepthAsk(10)vit. Again, I save the es-
timated coefficients accumulated over one second Own coefv,it,
which represents the impact of a trade at venue v on the change
in liquidity of that venue. Then, I define the cross-venue liq-
uidity impact as the difference between the impact of a trade
on consolidated liquidity and its own liquidity, Cross coefv,it =
Cons coefv,it − Own coefv,it. I calculate these separately for
the effect of purchases on the DepthAsk(10) and sales on the
DepthBid(10).

The sample size is extended from 10 to all 21 trading days
in November 2009 for the same 10 stocks used in the previous
analysis, which results in 1890 observations. The estimated co-
efficients have substantial noise when only a few trades occur in
a particular stock-hour, which is frequently the case for some of
the lesser active entrants. Therefore, per observation I average
the estimates across the four new entrant venues, weighted by
trading volume. Important structural differences exist between
the new entrants and the traditional exchange. For example,
the entrant venues all have very fast trading systems, similar
order types, small transaction sizes, low transaction costs and a
similar make/take fee breakdown (see section (2.3.1)). An ad-
vantage is that studying the LSE and the combined entrants
corresponds better to the two-exchanges model.

To reduce the impact of noisily estimated coefficients, I apply
weighted least squares below using the number of trades on the
LSE or the new entrants in the particular stock-hour as weight
variable. In addition, I winsorize the cross-venue and consoli-
dated liquidity impacts at the 1% and 99% level to reduce the
impact of outliers.

Based on the new data set, I test proposition two and three
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with the following regressions, for V ={LSE, New Entrants}

Cons coefV,ih = ci + δ(h) + β1%SORT + β2Xih + εih. (2.11)

Cross coefV,ih = ci + δ(h) + β1%SORT
Entrants + β2%SORT

LSE +

β3Xih + εih (2.12)

I add the following independent variables. As before, %SORT is
the fraction of total trading volume submitted by SORT traders,
and %SORTEntrants is the fraction of trading volume submit-
ted by SORT traders on the entrant venues (similarly defined
for %SORTLSE). The breakdown follows from proposition 3,
which states that the fraction of SORT traders on the compet-
ing venue determines the cross-venue impact of a trade on the
current venue. The vector Xih is defined above. Note that using
estimated coefficients as dependent variables in a second step
regression does not bias the coefficients of the second step.25

Summary statistics of the regression variables are presented
in Table 2.6. The average trading volume by SORT traders is
40% (with a standard deviation of 0.09). The SORT volume on
entrants is slightly higher than on the LSE (45% versus 37%).
The average level of Ln(Depth(10))Consit is 12.4 (£250,000), and
has a standard deviation of 1. The proxy for algorithmic trading
shows that on average, £193 of trading volume is executed per
electronic message, with a standard deviation of £162.26

The middle and bottom panels show the consolidated and
cross venue liquidity impacts for the LSE and the new entrants.
The average consolidated impact of buys on the ask side is -
1.39 for the LSE and -1.76 for the entrants, which have large
standard deviations (0.77 and 0.98 respectively). The standard
errors may reflect measurement error or variation in the cross-

25The measurement error from the first step only increases the standard errors of the
coefficients in the second step.

26Hendershott, Jones, and Menkveld (2011) find $1,100 per message in 2005 for the
large cap quintile of NYSE stocks.
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market activity of market makers and SORT and non-SORT
traders. The cross-venue impact ranges between -0.58 to -0.75
(-0.58 is mentioned in the introduction).

Results

Table 2.7 confirms proposition 1 that a larger fraction of trading
volume by SORT traders reduces consolidated depth. Column 1
shows that a one-standard deviation increase in %SORT (0.09)
reduces consolidated liquidity by %7, which is significant at the
99% level. Algorithmic trading appears to have no effect. The
coefficients remain similar when adding control variables (col-
umn 2). As expected, turnover and the average order size are
positively related to consolidated depth, although the causality
may go both ways. Volatility has a strong negative sign, which
is common in this literature.

The upper panel of Table 2.8 tests proposition (2) and the
lower panel proposition (3), for the ask side (Table 2.9 shows the
results for the bid side). Consistent with the theory, %SORT
has a positive coefficient in all specifications, meaning that the
consolidated liquidity impact becomes less negative (i.e., smaller
in magnitude) when %SORT increases. For the LSE, when in-
cluding the control variables (column 3), a one standard devia-
tion change in %SORT increases the consolidated liquidity im-
pact by 0.075, which is large given a mean of -1.39. The impact
for the entrants is larger with 0.12 per standard deviation.

The control variables have the following signs. Algorithmic
trading increases the magnitude of the cancellation impact in
all specifications, i.e., increases duplicate liquidity. The proxy
for algorithmic trading depends on the number of electronic mes-
sages, which may represent the cross-market activity of the mar-
ket makers in the model. Volatility diminishes the cancellation
impact, perhaps because the risk of simultaneous executions be-
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comes larger in volatile times.
The bottom panel of the Table 2.8 shows the results for the

cross-venue liquidity impact. Consistent with the model, a larger
fraction of SORT traders on the competing venues reduces the
magnitude of the cross-venue liquidity impact. The coefficient
of %SORTEntrants on the LSE cross-venue impact is 1.61, such
that a one standard deviation change (0.1) increases the aver-
age LSE cross-venue impact from -0.58 to -0.42 (i.e., reduces
the magnitude). The coefficient of %SORTLSE on the cross-
venue impact of the entrants is 0.45, and statistically significant
at the 1% level when adding the control variables. The con-
trol variables have the same sign as in the regressions with the
consolidated liquidity impact as dependent variable.

Table 2.9 shows the regression results for the impact of sales
on the consolidated and cross venue liquidity on the bid side.
The signs and magnitudes of the coefficients are similar as be-
fore, which suggests the results are robust.

2.4 Conclusion

In a fragmented equity market, I show that liquidity suppliers
have an incentive to duplicate their limit order schedules across
venues. They will cancel the duplicate orders after a trade on
the competing venue, such that liquidity shocks between venues
become strongly correlated. An important determinant of the
amount of duplicate liquidity is the fraction of traders using
smart order routing technology.

The model focusses on two trading venues only, but can al-
ready predict a substantial fraction of duplicate limit orders.
Therefore, the relevance of the model is only strengthened by
the fact that most European stocks trade on more than four
trading venues (with publicly displayed limit order books) and
some US stocks on so much as twelve trading venues. A larger
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number of trading venues encourages market makers to dupli-
cate their limit order schedules.

The main policy implication of the model is that fair markets
require traders to split up trades simultaneously across venues.
When a trader leaves a millisecond delay between the split, high-
frequency traders can observe the first part of the trade and
quickly cancel duplicate limit orders on other venues before the
second part of the trade arrives. When all traders would use
SORT, duplicate liquidity disappears and trades are not followed
by excessive cancellations of limit orders.

2.5 Appendix

2.5.1 Theory

This section offers the proof of Proposition (1): The consolidated
liquidity in a fragmented market is strictly larger than liquidity
in a single exchange setting.
Proof. Denote the liquidity in a single exchange setting as Q1,

which is the solution from Sand̊as (2001). I repeat equation
(2.6), and rewrite as

QA1 =
p1 − Vt − λφ

λ
− γ(1− π)QB1

γ(1− π) + (α + γπ) exp(QB1

φ )
≡ Q1 − cB1QB1

A1(a)

QB1 =
p1 − Vt − λφ

λ
− γπQA1

γπ + (1− (α + γπ)) exp(QA1

φ )
≡ Q1 − cA1QA1.

A1(b)

I need to show that QA1 + QB1 > Q1, which is equivalent to
cB1QB1 + cA1QA1 < Q1.

cB1QB1 + cA1QA1 = cB1QB1 + cA1Q1 − cA1cB1QB1

104



= cA1Q1 + (1− cA1)cB1QB1

< cA1Q1 + (1− cA1)Q1 = Q1.

In the first equality I simply replace QA1 with the first line of
equation (A1(a)); which I then rewrite in the second line. The
inequality holds because cB1QB1 < Q1, since cB1 < 1 and QB1 ≤
Q1.

2.5.2 Empirical

This section shows that the regression methodology in section
2.3.4 measures cumulative effects over time. That is, in regres-
sion (2.9) I add contemporaneous terms and lagged values of 100
periods ago (i.e., ten seconds). Instead of estimating 100 coef-
ficients, I create six variables representing the averaged lagged
volumes of the current, 1, 2-4, 5-10, 11-20 and 21-100 periods
away, per venue for buy and sell volumes. Define t as the cur-
rent period, i as the start and j as the end of the intervals (e.g.,
i = 2 and j = 4). Then

V oli,j =
1

j − i+ 1

j∑
n=i

V olt−n.

The periods of lagged values are chosen to maximize the model
fit. An example of the data is shown in the table below, where
a £1.00 trade occurs on some venue at time t = 1. The first
four columns show the values of the contemporaneous and three
lagged groups. The fifth column shows the cumulative effect of
the regression coefficients over time, calculated as a running sum
of the individually estimated coefficients. By constructing the
variables as averages, the long-term effect of a trade is simply
the sum of the estimated coefficients. The standard errors are
also calculated based on this sum.
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Data example of a trade at time t = 1.
Each βt represents the estimated coefficient of lagged average volumes t pe-
riods away, as described in regression (2.9).

Time Vol0 Vol1 Vol2,4 Vol5,10 Cumulative effect

0 0 0 0 0 0
1 1.00 0 0 0 β0
2 0 1.00 0 0 β0 + β1
3 0 0 0.33 0 β0 + β1 + 0.33β2,4
4 0 0 0.33 0 β0 + β1 + 0.66β2,4
5 0 0 0.33 0 β0 + β1 + β2,4
6 0 0 0 0.20 β0 + β1 + β2,4 + 0.2β5,10
7 0 0 0 0.20 β0 + β1 + β2,4 + 0.4β5,10
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Table (2.1) Numerical Example.
The model is solved for the equilibrium quantities offered on the four best
ask price levels of venue A and B. Each column shows a different combination
of the fraction of investors with access to venue A only (α) and venue B only
(β), such that the fraction of investors with smart order routing technology
(γ = 1−α−β) varies accordingly. The lower panels show the market shares
and the per trade expected profits to market makers of both venues. The
expected profits are expressed in basis points relative to the midpoint. The
remaining model parameters are held fixed. The average trade size is 1, with
a per unit price impact of 20 basis points. The best ask price is £10.00,
the tick size is 0.5 cents, and I specifically set the fundamental value to
£9.994943, such that offered liquidity is constant at each price level when
all investors use SORT (column 2). When both venues offer the best price,
SORT traders are equally likely to go to venue A or B first (π = 0.5).

(1) (2) (3) (4) (5) (6) (7)

α 1 0 0.1 0.1 0.4 0.5 0.5
β 0 0 0 0.1 0.4 0.5 0
γ 0 1 0.9 0.8 0.2 0 0.5

Venue A

QA1 1.53 1.25 1.29 1.30 1.46 1.53 1.42
QA2 2.50 1.25 1.78 1.87 2.47 2.50 2.37
QA3 2.50 1.25 2.49 2.86 2.58 2.50 2.55
QA4 2.50 1.25 2.64 2.94 2.52 2.50 2.50

Venue B

QB1 0 1.25 1.25 1.30 1.46 1.53 1.25
QB2 0 1.25 1.23 1.87 2.47 2.50 1.15
QB3 0 1.25 0.78 2.86 2.58 2.50 0.15
QB4 0 1.25 0.03 2.94 2.52 2.50 0.00

Market shares

A 1.00 0.50 0.58 0.50 0.50 0.50 0.78
B 0.00 0.50 0.42 0.50 0.50 0.50 0.22

Market maker profits in basis points

A 2.24 0.75 0.93 0.84 1.06 1.12 1.55
B 0.00 0.75 0.66 0.84 1.06 1.12 0.35
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Table (2.2) Summary statistics of sample firms.

The table presents summary statistics for the 10 FTSE100 sample stocks using

data of November 2009. The upper panel shows market cap (in millions), price,

average daily traded volume (in millions of shares), turnover (in millions of GBP),

realized volatility and the market shares of the five trading venues. The trading

venues are the London Stock Exchange (LSE), Chi-X, Bats Trading, Turquoise and

Nasdaq OMX Europe. The lower panel shows order book data, where statistics

are equally weighted based on one observation per 100 milliseconds, per stock.

For each venue, statistics on the average number of transactions and limit order

book modifications per minute are shown, per venue. The stocks in our sample are

Aviva, Hsbc Holdings Plc, Itv Plc, Kingfisher, Lonmin, National Grid, Pearson,

Sage group, Vedanta Resources and Xstrata.

Mean Stdev Max
Stock characteristics

Market Cap 21,062 37,827 125,930
Price 8.06 7.13 23.3
Volume (shares) 527 554 1,883
Turnover (GBP) 3,104 4,188 13,650
Realized Volatility 3.92 1.38 6.10
Share LSE 66.2 5.24 73.8
Share Chi-X 20.5 3.52 25.8
Share Bats 6.44 1.68 9.49
Share Turquoise 5.17 1.07 6.29
Share Nasdaq 1.77 0.65 2.73

Order book data

Trades LSE 5.16 9.70 347
Trades Chi-X 4.32 7.46 283
Trades Bats 1.80 3.59 84
Trades Turquoise 1.19 2.41 51
Trades Nasdaq 0.61 1.54 56
Limits LSE 159.84 216.31 6,999
Limits Chi-X 218.46 373.08 11,934
Limits Bats 123.92 231.60 7,308
Limits Turquoise 98.25 146.95 3,296
Limits Nasdaq 75.63 154.66 7,081
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Table (2.3) Summary statistics Depth(X) measure.

The table presents summary statistics of the Depth(X) measure for the sample

stocks, based on limit order book data with a sample frequency of once per 100

milliseconds. The statistics are equally weighted over all observations. The mean,

standard deviation and maximum of Depth(10) and Depth(50) on the ask and

bid side are shown. The Depth(10) on the ask side reflects the available liquidity,

in GBP, offered with prices in the interval of Midpoint and Midpoint + 10bps.

Similarly, the Depth(10) on the bid side reflects the liquidity offered with prices

between Midpoint - 10bps and Midpoint. Depth(50) sums liquidity within 50 basis

points from the midpoint.

Ask side Mean Stdev Max

Depth(10) LSE 66,620 117,961 8,940,000
Depth(10) Chi-X 57,693 78,948 1,100,000
Depth(10) Bats 26,311 39,358 527,947
Depth(10) Turquoise 14,915 18,817 411,974
Depth(10) Nasdaq 12,824 21,345 213,733
Depth(50) LSE 446,687 371,316 9,040,000
Depth(50) Chi-X 268,467 210,066 1,650,000
Depth(50) Bats 88,363 94,112 800,103
Depth(50) Turquoise 71,495 47,170 570,524
Depth(50) Nasdaq 58,096 44,992 332,529

Bid side

Depth(10) LSE 63,244 90,327 4,420,000
Depth(10) Chi-X 55,907 77,345 1,020,000
Depth(10) Bats 25,404 38,187 553,743
Depth(10) Turquoise 14,273 19,277 525,517
Depth(10) Nasdaq 13,241 22,891 538,609
Depth(50) LSE 431,658 339,853 5,100,000
Depth(50) Chi-X 270,657 213,624 1,790,000
Depth(50) Bats 85,748 92,792 1,170,000
Depth(50) Turquoise 74,360 51,850 638,623
Depth(50) Nasdaq 61,156 51,443 664,181

109



Table (2.4) The length and volume of trade sequences.
For each trading venue the table shows the percentage of trades that are
part of a sequence of a certain length. Sequences are strings of market orders
submitted to several venues simultaneously. The current and previous trade
are part of the same sequence when (i) the state of the limit order book of
the venue executing the current trade has not changed since the previous
trade, (ii) the current and previous trade occur within 100 milliseconds after
each other, and (iii) both trades are either purchases or sales. Each sequence
has a length ranging from one to five, which represents the number of venues
accessed simultaneously. The column Total represents the total number of
trades at each venue in the top panel. The middle panel shows the average
size of a trades that are part of a sequence of a given length. The bottom
panel shows the total trading volume by non-SORT and SORT investors (in
millions of GBP), where SORT volume is defined as trading volume part of
sequences with a length exceeding one.

Sequence Length
1 2 3 4 5

% of trades Total

LSE 69.8 17.3 8.1 3.4 1.5 251,381
Chi-X 61.0 23.1 10.1 4.1 1.6 215,876
Bats 48.9 26.4 14.7 7.0 3.0 90,200
Turquoise 53.6 24.2 12.6 6.7 2.9 64,224
Nasdaq OMX 47.4 25.5 14.5 7.9 4.7 30,103
Average trade size Avg

LSE 14,884 18,095 18,196 17,261 19,076 17,503
Chi-X 7,973 8,012 8,586 8,628 9,009 8,442
Bats 6,301 6,434 5,852 5,815 5,904 6,061
Turquoise 6,219 7,577 7,017 6,265 6,968 6,809
Nasdaq OMX 4,236 5,103 5,278 5,737 5,963 5,263

Volume Non-SORT SORT %SORT

LSE 2610 1374.2 34.5
Chi-X 1050 696 39.9
Bats 278 283.4 50.5
Turquoise 214 214.6 50.1
Nasdaq OMX 60.5 84.2 58.2
Overall 4212.5 2652.4 38.6
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Table (2.5) The cumulative impact of turnover on Depth(10).

Each column represents one regression, showing the cumulative effect over time of buy and

sell turnover on changes in DepthAsk(10) and DepthBid(10) of one venue. The cumulative

effect over time (i.e., the running sum) of contemporaneous trades, and trades one and

ten seconds ago are displayed. Changes in the DepthAsk(10) reflect changes in liquidity

offered with prices in the interval of Midpoint and Midpoint + 10bps. These changes stem

from limit order book activity (placement, cancellations and execution of limit orders).

The data consist of one observation per 100 milliseconds, for all stocks. The independent

variables are contemporaneous and lagged buy and sell trading volumes of the five venues,

denominated in GBP. Accordingly, each panel shows the immediate and short term effects

of one venues’ transactions on another venues’ liquidity. The regressions also contain

executed hidden volume as control variables (not reported for brevity). Standard errors

are clustered per firm - halfhour, a single asterisk indicates significance at the 1% level.

Ask Side Bid Side

£ Buys Sec LSE Chi-X Bats Turq. Nasdaq LSE Chi-X Bats Turq. Nasdaq

LSE 0 -0.83* -0.25* -0.09* -0.02* -0.02* 0.28* 0.24* 0.09* 0.02* 0.01*
LSE 1 -0.80* -0.30* -0.14* -0.04* -0.05* 0.35* 0.31* 0.15* 0.05* 0.05*
LSE 10 -0.67* -0.18* -0.05* -0.03* -0.04* 0.33* 0.23* 0.09* 0.04* 0.04*
Chi-X 0 -0.21* -1.31* -0.18* -0.02* -0.03* 0.26* 0.68* 0.18* 0.03* 0.03*
Chi-X 1 -0.52* -1.47* -0.46* -0.09* -0.13* 0.50* 1.00* 0.45* 0.13* 0.12*
Chi-X 10 -0.61* -1.29* -0.37* -0.09* -0.13* 0.67* 1.11* 0.46* 0.15* 0.14*
Bats 0 -0.27* -0.58* -1.26* -0.04* -0.10* 0.37* 0.60* 0.51* 0.05* 0.08*
Bats 1 -0.46* -0.79* -1.21* -0.07* -0.17* 0.52* 0.88* 0.69* 0.09* 0.16*
Bats 10 -0.54* -0.83* -1.01* -0.08* -0.15* 0.87* 1.16* 0.81* 0.14* 0.16*
Turq 0 -0.04 -0.04* -0.05* -0.70* -0.03* 0.13* 0.11* 0.08* 0.14* 0.04*
Turq 1 -0.11* -0.08* -0.02 -0.69* -0.04* 0.22* 0.15* 0.06* 0.19* 0.08*
Turq 10 -0.13 -0.06 0.04 -0.68* -0.02 0.17 0.13 0.01 0.18* 0.07*
Nasdaq 0 -0.03 0.03 -0.01 0.01 -0.75* -0.05 -0.08 0.04 0.07* 0.14*
Nasdaq 1 -0.08 0.08 0.04 0.04 -0.63* 0.00 -0.18 -0.08 0.02 0.12*
Nasdaq 10 -0.24 0.02 0.07 0.06 -0.62* 0.43 -0.19 -0.11 0.06 0.19*

£ Sells
LSE 0 0.30* 0.27* 0.10* 0.02* 0.02* -0.78* -0.29* -0.10* -0.02* -0.02*
LSE 1 0.38* 0.35* 0.17* 0.06* 0.06* -0.75* -0.35* -0.16* -0.05* -0.06*
LSE 10 0.39* 0.29* 0.12* 0.05* 0.05* -0.65* -0.23* -0.06* -0.04* -0.04*
Chi-X 0 0.27* 0.70* 0.19* 0.02* 0.02* -0.24* -1.28* -0.20* -0.02* -0.03*
Chi-X 1 0.46* 0.99* 0.43* 0.12* 0.11* -0.51* -1.40* -0.43* -0.08* -0.13*
Chi-X 10 0.57* 1.08* 0.44* 0.13* 0.12* -0.53* -1.15* -0.31* -0.08* -0.13*
Bats 0 0.29* 0.56* 0.43* 0.04* 0.08* -0.21* -0.58* -1.15* -0.05* -0.10*
Bats 1 0.37* 0.81* 0.62* 0.07* 0.15* -0.38* -0.77* -1.11* -0.09* -0.16*
Bats 10 0.53* 1.00* 0.70* 0.09* 0.16* -0.41* -0.69* -0.88* -0.08* -0.15*
Turq 0 0.10* 0.08* 0.08* 0.13* 0.04* -0.06* -0.03 -0.07* -0.63* -0.05*
Turq 1 0.17* 0.12* 0.06* 0.18* 0.08* -0.08 -0.03 -0.06* -0.63* -0.03*
Turq 10 0.33* 0.11 -0.02 0.20* 0.09* -0.17 -0.02 0.00 -0.59* -0.04
Nasdaq 0 0.21* 0.04 0.12* 0.11* 0.16* -0.24* -0.04 -0.05 -0.03 -0.82*
Nasdaq 1 0.22 -0.01 0.07 0.11* 0.20* -0.43* -0.04 0.00 -0.03 -0.76*
Nasdaq 10 0.35 -0.14 -0.05 0.09* 0.23* -0.84* -0.18 -0.00 -0.03 -0.68*

R-squared .123 .115 .069 .025 .026 .104 .113 .071 .022 .027
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Table (2.6) Consolidated liquidity impact: Descriptive statistics.

The table shows the descriptive statistics of the dependent and independent variables of

regression equation 2.10, 2.11 and 2.12. The variables are constructed per hour, of 10

stocks for 21 days (9 × 10 × 21 = 1890 observations). The top panel shows the fraction

of trading volume by SORT traders, which is defined as the volume from trade sequences

with length exceeding one (see Table 2.4). %SORT LSE and %SORT Entrants represent

the fraction of SORT volume on the LSE and the new entrant venues. Ln(Depth(10) Cons)

represents the logarithm of consolidated liquidity, i.e., the sum of the DepthAsk(10) and

the DepthBid(10) of the five venues. Algo trad is a proxy for algorithmic trading, defined

as the negative of trading volume (in hundreds of pounds) divided by the number of elec-

tronic messages. Ln(realized volatility) is defined as the sum of squared 5 minute returns

measured hour-by-hour, which is often negative because of the logarithm. Ln(Turnover)

is the logarithm of turnover summed over all venues, and Ln(Order size) represents the

logarithm of the average transaction size. The middle and bottom panel shows the im-

pact, accumulated over one second, of a buy (sell) trade on the change in consolidated

and cross-venue ask (bid) liquidity, for the LSE and the new entrant venues. This impact

is the estimated by regression 2.9 per hour of each stock. The estimated variables are

winsorized at the 1% and 99% level.

Mean Stdev Max

%SORT 0.40 0.09 0.68
%SORT LSE 0.37 0.12 1.00
%SORT Entrants 0.45 0.10 1.00
Ln(Depth(10) Cons) 12.43 1.01 16.09
Algo Trad -1.93 1.63 -0.03
Ln(Realized volatility) -10.23 2.01 0.66
Ln(Turnover) 14.99 1.38 19.04
Ln(Order size LSE) 9.10 1.33 12.13
Ln(Order size Entrants) 8.54 0.54 9.81

Consolidated liquidity impact Mean Stdev Min

Buy-Ask LSE -1.39 0.77 -3.94
Sell-Bid LSE -1.42 0.81 -4.05
Buy-Ask Entrants -1.76 0.98 -8.41
Sell-Bid Entrants -1.74 0.92 -8.05

Cross venue liquidity impact Mean Stdev Min

Buy-Ask LSE -0.58 0.53 -2.50
Sell-Bid LSE -0.60 0.54 -2.44
Buy-Ask Entrants -0.75 0.73 -5.96
Sell-Bid Entrants -0.74 0.68 -6.07

Observations 1890
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Table (2.7) The impact of SORT traders on consolidated liquidity.

The regression shows the impact of the fraction of SORT traders on the consolidated depth,

defined as the sum of the DepthAsk(10) and the DepthBid(10) of the five venues. The

independent variables are described in Table (2.6), and consist of the fraction of volume

executed by SORT-traders, a proxy for algorithmic trading, the logarithm of market wide

turnover, the logarithm of realized volatility based on 5 minute squared returns and the

logarithm of the average transaction size. The variables are observed once per hour of

each stock. I add firm and day fixed effects. For inference I apply robust Newey-West

standard errors (HAC) with 9 lags; the standard errors are shown below the coefficients.

Consolidated Depth(10)
(1) (2)

% Sort -0.860*** -0.768***
0.267 0.262

Algo Trading -0.006 0.024
0.017 0.022

Ln Turnover 0.249***
0.030

Ln Volatility -0.129***
0.018

Ln Order Size 0.172**
0.085

Observations 1,859 1,859
R-squared 0.017 0.249
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Table (2.8) Determinants of the consolidated and cross venue liquidity im-

pact on the ask side.

I show how market characteristics affect the consolidated liquidity impact and the cross

venue impact, which are estimated using Equation 2.9, per hour of each stock. The consol-

idated liquidity impact is the impact accumulated over one second of a venues buy-trades

on the consolidated Depth(10) of the ask side (top panel), and the cross venue impact

is that on the Ask Depth(10) of the competing venues (bottom panel). The impacts are

estimated for trades on each of the five venues, but I average the impacts over the four

new entrant venues (volume weighted). These impacts are estimated and used as the de-

pendent variables in the weighted linear regressions below. As weight variable, I use the

number of transactions per stock-hour for the LSE and the new entrants. The indepen-

dent variables are described in Table (2.6), and consist of the fraction of volume executed

by SORT-traders, a proxy for algorithmic trading, log market wide turnover, log realized

volatility based on 5 minute squared returns and the log average order size. Table 2.9

shows the results for sales on the bid liquidity. I add firm and day fixed effects. For infer-

ence I apply robust Newey-West standard errors (HAC) with 9 lags; the standard errors

are shown below the coefficients.

Buy trades on Consolidated Ask liquidity
LSE Entrants LSE Entrants

%Sort 0.459 1.280*** 0.749** 1.177***
0.337 0.344 0.351 0.339

Algo Trading -0.104*** -0.214*** -0.052** -0.207***
0.0239 0.0403 0.026 0.042

Ln Turnover -0.081 -0.332***
0.056 0.061

Ln Volatility 0.072*** 0.101***
0.013 0.018

Ln Order Size LSE 0.444***
0.142

Ln Order Size Entrants 0.865***
0.154

Observations 1,857 1,857 1,857 1,857
R-squared 0.057 0.140 0.100 0.195
Weight variable LSE trades Entrant trades LSE trades Entrant trades

Buy trades on Cross-venue Ask liquidity
LSE Entrants LSE Entrants

%Sort Entrants 1.609*** 1.223***
0.212 0.191

%Sort LSE 0.216 0.447***
0.203 0.170

Algo Trading -0.039** -0.133***
0.016 0.028

Ln Turnover -0.065* -0.242***
0.037 0.042

Ln Volatility 0.049*** 0.06***
0.007 0.012

Ln Order Size LSE 0.266***
0.091

Ln Order Size Entrants 0.578***
0.104

Observations 1,857 1,857 1,857 1,857
R-squared 0.064 0.001 0.154 0.155
Weight variable LSE trades Entrants trades LSE trades Entrants trades
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Table (2.9) Determinants of the consolidated liquidity impact on the bid

side.

This Table continues from 2.8, but shows the results for the consolidated and cross-venue

liquidity impact of sales on the bid side.

Buy trades on consolidated Bid liquidity
LSE Entrants LSE Entrants

%Sort 0.038 1.889*** 0.430 1.802***
0.347 0.488 0.368 0.455

Algo Trading -0.165*** -0.158*** -0.093*** -0.146***
0.021 0.035 0.02 0.036

Ln Turnover -0.076* -0.287***
0.042 0.056

Ln Volatility 0.082*** 0.097***
0.011 0.015

Ln Order Size LSE 0.602***
0.095

Ln Order Size Entrants 0.834***
0.154

Observations 1,857 1,857 1,857 1,857
R-squared 0.132 0.097 0.193 0.151
Weight variable LSE trades Entrant trades LSE trades Entrant trades

Buy trades on cross-venues Bid liquidity
LSE Entrants LSE Entrants

%Sort Entrants 1.655*** 1.135***
0.188 0.173

%Sort LSE 0.488** 0.625***
0.206 0.214

Algo Trading -0.055*** -0.088***
0.015 0.027

Ln Turnover -0.068** -0.208***
0.03 0.038

Ln Volatility 0.046*** 0.055***
0.007 0.011

Ln Order Size LSE 0.414***
0.063

Ln Order Size Entrants 0.512***
0.105

Observations 1,857 1,857 1,857 1,857
R-squared 0.062 0.005 0.217 0.103
Weight variable LSE trades Entrants trades LSE trades Entrants trades
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Chapter 3

Does order splitting signal
uninformed order flow?
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Abstract

We study the problem of a large liquidity trader who must trade

a fixed amount before a deadline and wishes to minimize the ex-

pected cost of trading. We add this trader to the Kyle (1985)

framework to endogenize the price impact of trading. Under

the assumption that the informed traders have short-lived pri-

vate information, we show that the autocorrelation in the order

flow stems only from the trades of the liquidity trader. In turn,

the market maker perceives this autocorrelated component as

uninformed and does not revise prices, such that the liquidity

trader enjoys lower price impacts. We thus show that order

splitting is a noisy form of preannouncing trades, i.e., sunshine

trading (Admati and Pfleiderer, 1991). The model also offers

a novel explanation for resiliency, i.e., why liquidity replenishes

after a trade. If the market beliefs a certain trade belongs to a

series of liquidity motivated trades, then the trade should not

affect prices and liquidity will be replenished very quickly.

JEL Codes: G10; G11; G14;

Keywords: Market microstructure, Kyle model, Order split-

ting, Algorithmic trading, Optimal execution problem
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3.1 Introduction

In the last decade equity turnover has increased sevenfold, while
average order sizes have declined tenfold (Chordia, Roll, and
Subrahmanyam, 2011).1 Among other reasons, this is a conse-
quence of algorithmic trading and the practice of order splitting,
where a large trade is split up into many small packages which
are traded over time. Order splitting, or “working the order”,
is a standard practice in the investment management industry.

This paper studies the optimal execution problem of an in-
stitutional investor who must trade a given quantity before a
deadline, and wishes to minimize the expected execution costs.
The investor optimally chooses the quantity to trade in each pe-
riod and trades for liquidity motives. We endogenize the price
impact parameter by placing this problem in the Kyle (1985)
framework, and show that the price impact (Kyle’s lambda) is
strongly affected by the strategy of the liquidity trader. More-
over, we find that order splitting is a noisy form of preannounc-
ing trades, i.e., sunshine trading (Admati and Pfleiderer (1991)).
In the model, the autocorrelated component in the order flow
stems from the liquidity trader only, which is a noisy signal of
her uninformed trading interest. This mechanism is an addi-
tional explanation of the increasing popularity of order splitting
algorithms.

The model builds on the multiperiod discrete-time model of
Kyle (1985), where we add a discretionary liquidity trader who
optimally splits up trades over time. The liquidity trader, the
informed trader and the noise traders submit market orders to
the market maker, who observes the aggregate order flow and
determines the price to clear the market. The market maker

1Average trade sizes have decreased from $80,000 to $7,000, and monthly turnover
increased from 6% to 40% of market cap for CRSP stocks in the period 1993 - 2008
(Chordia, Roll, and Subrahmanyam, 2011).
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is risk neutral but cannot distinguish between trades from in-
formed and uninformed investors. Therefore, the trades by the
discretionary liquidity trader do affect the price, and because
the market is anonymous she cannot simply preannounce her
trading interest.2

The model’s key assumption is short-lived private informa-
tion, meaning that in each trading round a new informed trader
arrives who may only trade in that round. Also, in each period
a new innovation in the fundamental value of the asset occurs,
such that the degree of informed trading becomes constant over
time. While the assumptions seem strong, we motivate them
by the following example of the different types players. The in-
formed traders use high-frequency trading strategies with short
trading horizons, such as arbitrage, structural or directional
strategies (as defined by the SEC (2010)).3 The discretionary
liquidity trader is an institutional trader with a long trading
horizon of one (or several) days, which is typical according to
Campbell, Ramadorai, and Schwartz (2009). The market maker
in the model is represented by a group of high-frequency traders
with a passive market making strategy, who predominantly use
limit orders to earn the bid-ask spread and liquidity rebates.
Brogaard, Hendershott, and Riordan (2012) confirms that high-
frequency traders who demand liquidity are informed traders,
i.e., their trades push the price towards the fundamental value.
In addition, the high-frequency traders who supply liquidity are
market makers, i.e., their trades go in opposite direction to per-
manent price changes and are adversely selected. The informed
traders in the theory of Foucault, Hombert, and Rosu (2012)

2While an investor could say that he will buy shares in some future trading round,
there is no mechanism that forces him to actually to do so, i.e., preannouncement is a
non-credible commitment.

3The SEC defines four broad high-frequency trading strategies: passive market making,
arbitrage, structural (e.g., trading on latency and the use of flash orders) and directional
(trading on fundamentals, momentum and order anticipation). See the SEC concept
release on equity market structure, February 2010, File No. S7-02-10.
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also have short-lived private information, and are motivated as
high-frequency traders who observe news an instance before the
rest of the market.

Our main contribution is that in this setting, order splitting by
the discretionary liquidity trader is a noisy form of trade prean-
nouncement, i.e., sunshine trading. This follows from a general
result of the Kyle model that to the market maker, the trades
of the informed trader have zero autocorrelation. Then, only
the trades of the discretionary liquidity trader cause autocorre-
lation in the order flow, and these trades are unrelated to the
fundamental value of the asset. Therefore, the market maker
attaches a zero price impact to the predictable component of
the order flow. Here, the assumption of short-lived private in-
formation creates the separating equilibrium, in the sense that
the informed traders cannot mimic the strategy of the liquid-
ity trader.4 Effectively, the discretionary liquidity trader sends
a credible signal of his uninformed trading interest, and is re-
warded by lower price impacts.

The second contribution is that we endogenize the price im-
pact parameter in the optimal execution problem of a large liq-
uidity trader. The liquidity trader must trade a fixed amount
before a deadline, and has a U-shaped optimal execution strat-
egy: the first and last trades are large, and intermediate trades
are small. The optimal trade size in each period depends on the
following tradeoff. On the one hand, a larger trade increases the
expected order flow in all future rounds, which then receive a
zero price impact. On the other hand, a larger trade increases
the price of the current and all future rounds, because prices
only slowly revert to the fundamental value via informed trad-
ing. For the initial trade the first effect is large whereas for
the last trade the second effect is small, which generates the

4If the informed traders would also split up trades across periods, then the autocorre-
lation in the order flow is not strictly uninformed and the equilibrium breaks down.
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U-shape. The price impact parameter (illiquidity) comoves neg-
atively with the quantity traded by the liquidity trader, simply
because uninformed trading reduces the price impact parameter
(as in Kyle (1985)).

The third contribution of the model is that the predictable
component of the order flow offers a novel explanation for why
resiliency exists in electronic limit order markets, i.e., why liq-
uidity replenishes after a trade. If the market perceives that a
certain trade belongs to a series of liquidity motivated trades,
then the liquidity consumed by the trade should be replenished
quickly. This mechanism is an alternative explanation as to
why the slope in the limit order book is very high (i.e., illiq-
uid) compared to the actual price impact of trades over time (as
discovered by Sand̊as (2001), see also Hasbrouck (2007), Chap-
ter 13). This empirical fact implies that a substantial part of
the liquidity available in the market is not offered in the limit
order book. According to our model, the realized price impact
is lower than the instantaneous price impact because the an-
ticipated component of the order flow stems from uninformed
investors. Similarly, the presence of the predictable component
in the order flow may also explain why liquidity on the bid and
ask side is asymmetrical at times.5

The predictable component of the order flow does not affect
prices, but is empirically unobservable. However, a direct con-
sequence is that the immediate price impact (based on the liq-
uidity in the limit order book) is larger than the price impact
of trading volume in the short run (e.g., within minutes), which
in turn is larger than the price impact of trades in the long run
(e.g., over hours or days). The intuition is that at lower frequen-
cies, a larger fraction of the cumulative order flow is expected

5Relatedly, Van Achter (2008) shows that asymmetric liquidity may result from het-
erogenous trading horizons of investors, which affects the decision to place limit or market
orders.
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which reduces the price impact. The economic force behind this
prediction is that liquidity traders have a longer trading horizon
than the informed traders.

We solve the problem numerically, as a closed form solution
is not available. The problem has many state variables because
the market maker must learn not only about the fundamental
value, but also about the trading interest of the liquidity trader.
In addition, the optimization problem of the liquidity trader
is constraint, as she must trade exactly the exogenously given
quantity.

The model explains several empirical findings. Griffin, Harris,
and Topaloglu (2003) estimate a VAR model with five-minute re-
turns, institutional order imbalance and retail order imbalance,
and find that the positive autocorrelation of the institutional
order imbalance over the preceding 30 minutes does not affect
current returns (i.e., is uninformed). In addition, current returns
positively predict future institutional order imbalance; which co-
incides with our theory as mainly the unexpected component of
the order flow affects current returns and signals future liquid-
ity trading interest and order imbalance. The predictions of our
model also confirm several empirical results of Chordia, Roll,
and Subrahmanyam (2002, 2004). In particular, they find that
the daily order imbalance is strongly autocorrelated whereas re-
turns have virtually zero autocorrelation, which suggests that
predictable order flow is uninformative at the daily level. Alm-
gren and Lorenz (2006) state that the deadline of institutional
traders is typically the end of the trading day, and in this case
our model matches the empirically observed U-shaped patterns
of liquidity and trading volume. Heston, Korajczyk, and Sadka
(2010) argue that predictable patterns in volume, returns and
order imbalance are caused by systematic trading patterns of
institutional investors.

Our model supports the theoretical results of Obizhaeva and
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Wang (2005) and Alfonsi, Fruth, and Schied (2010). They also
find an optimal U-shaped trading pattern, as a large initial trade
creates a price pressure that attracts many new limit orders to
the limit order book. Essentially, this mechanism is also present
in our model as the informed trades reduce the price pressure
caused by the strategic liquidity trader. Novel in our paper is the
channel that expected uninformed order flow has zero impact on
prices, and that the resiliency is explicitly modeled in an adverse
selection framework. Chordia, Roll, and Subrahmanyam (2004)
study a two-period model with a discretionary liquidity trader.
They obtain a closed-form solution, but the discretionary trader
is limited to trade either in one period only, or to split up his
trades equally across both periods. Because trading is restricted
to two rounds, they do not obtain the U-shape trading pattern
and the liquidity trader cannot update his strategy over time.
While their model focusses on the relation between order imbal-
ance and stock returns across days, our model focusses on the
optimal intraday trading strategy.

This paper contributes to the following three strands of lit-
erature, which are discussed in detail in the literature section.
Above all, the paper relates to studies on the optimal execution
problem of a large liquidity trader, who must trade a given quan-
tity before a deadline and aims to minimize execution costs. In
addition, we relate to the extensions of Kyle (1985) that focus on
the problem of strategic liquidity traders. In general, the paper
relates to dynamic models that study optimal investor behavior
over time.

3.2 Literature review

This paper is particularly related to three strands of literature:
the optimal execution problem of a liquidity trader, extensions
to Kyle (1985) that focus on strategic liquidity traders, and dy-
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namic models that study strategic investor behavior over time.
Our model contributes to the literature on the optimal exe-

cution problem, which is the problem of a large liquidity trader
who must trade a given quantity before a deadline who aims
to minimize execution costs (Bertsimas and Lo, 1998).6 Alm-
gren and Chriss (1999, 2000), Engle, Ferstenberg, and Russell
(2012) find the optimal execution strategy in a mean-variance
framework. Obizhaeva and Wang (2005) and Alfonsi, Fruth, and
Schied (2010) study this problem in a limit order book market,
and show that the optimal strategy strongly depends on the re-
siliency of the book, i.e., the speed with which the limit order
book recovers after a trade. Huberman and Stanzl (2005) add
transaction costs, which is important as in the continuous time
limit the execution cost of the problem of Bertsimas and Lo be-
comes in fact independent of the actual strategy.7 They also
allow for a time-varying price impact function, which can be
obtained in our framework easily as well by changing the vari-
ance of the noise trades and the fundamental innovations over
time. Easley, Lopez de Prado, and O’Hara (2012) show that
the order imbalance affects the endogenously determined trad-
ing horizon and the price impact function. These papers are
partial equilibrium models in the sense that the price dynamics
are exogenously determined. We endogenize the price impact
function and show how it is affected by order splitting.

Extensions to Kyle (1985) with strategic liquidity traders, i.e.,
discretionary traders, are most closely related to the current
paper. Admati and Pfleiderer (1988) model a group of discre-
tionary traders who may decide in which period to submit there
entire trade, and find that in equilibrium the informed and dis-
cretionary traders will trade in the same period. In contrast, we

6See also Kissell, Glantz, and Malamut (2003), Chapter 15 in Hasbrouck (2007).
7In continuous time, there are infinitely many trading rounds before the fixed deadline,

which becomes meaningless.
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analyze the behavior of a single discretionary liquidity trader,
and find that she trades smoothly over time. The equilibrium
of Admati and Pfleiderer has a coordination problem however,
as in an anonymous market liquidity traders do not know when
other traders will trade. Subrahmanyam (1995) analyzes circuit
breakers, and extends the Admati and Pfleiderer model to a two-
period version, where the discretionary trader is limited to trade
either in one period only, or to split up his trades equally across
both periods.While in equilibrium the discretionary trader in-
deed splits up across periods, the informed traders are restricted
to trade in the first period only.8 In our model a new informed
trader arrives every period, which introduces an important dy-
namic aspect as the price pressure from uninformed trades in
the current period affects the informed order flow in the next.

Back and Pedersen (1998) extend the Admati and Pfleiderer
model by allowing for long-lived private information, and find
that market depth and volatility are constant over time. Spiegel
and Subrahmanyam (1992) extend the Kyle model by replacing
the noise traders with risk averse and price sensitive liquidity
traders who trade for hedging motives.9 Massoud and Bern-
hardt (1999) extend the previous model to a two-period version,
and find that some results of Kyle get reversed. For example,
the price impact becomes steeper over time, because the liquid-
ity traders wish to trade in earlier periods as to avoid the pricing
risk in later periods. In Spiegel and Subrahmanyam (1995) risk
averse discretionary liquidity traders also trade for hedging mo-
tives, and will trade either at the beginning of the day, or later
in the same direction as the market makers—effectively provid-
ing liquidity. Mendelson and Tunca (2004) find that the risk
aversion of liquidity traders generally reduces informational ef-

8Chordia, Roll, and Subrahmanyam (2004) also make the assumptions of equal order
splitting and a single period with informed trading.

9The liquidity traders have hedging motives in Vayanos (1999) too.

127



ficiency, and that insider trading may improve the welfare of
risk averse liquidity traders because they reduce the volatility of
prices.

This paper also relates to the preannouncement of trading
interest (Admati and Pfleiderer, 1991), as order splitting gen-
erates a predictable and uninformed component in the order
flow. Huddart, Hughes, and Williams (2010) analyze the case
where the insider must preannounce his trades, but also has
liquidity motives to trade (e.g., risk sharing). Suboptimal risk
sharing follows, because even though an insider might trade for
liquidity reasons, the market makers revise prices because the
trade may reflects private information. Huddart, Hughes, and
Levine (2001) analyze the Kyle model where informed traders
must announce their trades after submission, like employees of
a corporation need to. In this case, the insider adds some noise
to his strategy to jam the signal of the market maker.

Several dynamic models also study the strategic investor be-
havior over time. Foucault (1999) models the decision to place
limit or market orders, where limit orders face adverse selec-
tion costs and non-execution risk. Hoffmann (2012) extends
this model by allowing traders to invest in speed, and shows
that fast traders face lower adverse selection costs because they
can cancel limit orders quickly after news arrives. In turn, this
affects the tradeoffs between limit and market orders and the
overall gains from trade. Foucault, Kadan, and Kandel (2005)
do not model asymmetric information costs, and show that the
choice between limit and market orders depends on the tradeoff
between the cost of waiting (impatience) and better prices. Rosu
(2009) also studies waiting costs, and shows that the bid and ask
prices comove because investors revise limit orders after a liq-
uidity shock. Goettler, Parlour, and Rajan (2005) allow traders
to also choose the size of the order and to place limit orders
deeper in the book, and demonstrate a numerical procedure to
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find the equilibrium. Goettler, Parlour, and Rajan (2009) add
strategically informed traders into the dynamic limit order mar-
ket, who may purchase information on the assets fundamental
value. Rosu (2010) allows investors to revise limit orders con-
tinuously, and models the optimal behavior of informed traders
and the resulting price impacts. We contribute to these papers
by analyzing the problem of a liquidity trader who may trade
repeatedly within a certain horizon.

3.3 Model setup

Consider a Kyle (1985) framework, where trading occurs sequen-
tially in a number of auctions or trading rounds. Each auction is
organized as an anonymous batch market where investors sub-
mit market orders. Trading begins at time 0 and ends at time
1, and takes place during n = 1, ..., N periods, each of length
1/N . Time 0 represents the beginning of the trading day for
example, and time 1 the end. Three players exist in the Kyle
model. There is a risk neutral informed trader who observes the
fundamental value of the asset and trades to maximize profits.
In addition, a group of noise traders trade random amounts ev-
ery period. Then, a competitive market maker first observes the
total order flow in each period, and next chooses the price and
his quantity that clears the market.

We deviate from the standard multi-period Kyle model in two
important ways. First, we introduce a strategic liquidity trader
who must trade a given amount before the deadline at period N .
She chooses the optimal quantity to trade in each round, and
is a “discretionary” liquidity trader following the terminology
of Admati and Pfleiderer (1988).10 The total quantity is drawn

10The discretionary trader in our model submits an optimal fraction each period,
whereas the liquidity trader in Admati and Pfleiderer may only choose a single period
to submit the entire trade.
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from a normal distribution before trading starts, and does not
change afterwards.

Second, we assume that in every trading round a new in-
formed trader arrives, who observes the fundamental value and
may trade only once. Also, in every period an innovation in the
fundamental value of the asset occurs. In essence, we assume
that private information is short lived, which resembles Fou-
cault, Hombert, and Rosu (2012) where high-frequency traders
(HFTs) respond to news (i.e., short-term information) extremely
quickly. This setup generates a constant level of informed trad-
ing, which is realistic as it may follow from news revealed by
trades in correlated assets for example.

The traders are all risk neutral, and submit market orders.
Denote by S ∼ N(0, σ2

S) the total quantity that the strategic
liquidity trader must trade before the deadline, where a positive
value represents a purchase while a negative value a sell. This
quantity is exogenously determined and she cannot access other
trading venues. In each periods n she submits a fraction fnS,

where she chooses the vector f1, ..., fN , subject to
∑N

n=1fn = 1.
Denote by xn the strategically chosen order flow of the informed
investor, and un ∼ N(0, σ2

u) the randomly determined unin-
formed order flow of non-discretionary noise traders. Then, the
total order flow each period is

yn = xn + fnS + un. (3.1)

The process of the fundamental value is given by

vn = v0 +
∑n

j=1
εj, (3.2)

where εj ∼ N(0, σ2
ε) and IID.

An important element in the model is that a trade by the
liquidity trader affects the current price, which in turn affects
the strategy of informed traders in future periods. In fact, price
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pressures due to trades in the current period are beneficial to in-
formed traders in future periods, as the pricing error gets larger
in magnitude. This mechanism does not exist in the models
of Bertsimas and Lo (1998), Almgren and Chriss (2000) and
Huberman and Stanzl (2005) for example.

Like in Kyle’s model, we restrict attention to the recursive
linear equilibrium, such that the market maker’s pricing function
and the strategies of the traders are linear in their information
set. The market maker determines the price Pn after observing
the current and past order flow, which are summarized in a
vector In = {y1, ..., yn} that represents his information set. The
information set contains the sequence of past order flow, but not
past prices. Since prices depend linearly on the order flow, the
order flow contains all information. We conjecture (and verify
in equation (3.6)) that the pricing schedule is

Pn = Pn−1 + λn(yn − E(yn|In−1)), (3.3)

where E(yn|In−1) represents the expected order flow. Intuitively,
the price set by the market maker is unaffected by the expected
uninformed order flow. Given short lived private information,
E(yn|In−1) = fnE(S|In−1), i.e., the expected order flow depends
only on the market makers expectation of the quantity traded
by the strategic liquidity trader. The informed order flow is un-
predictable to the market maker, which is a result obtained by
Kyle. Intuitively, the autocorrelated component of the informed
order flow is concealed by the camouflage of noise trading. A
proof by contradiction is that if informed trades were autocor-
related, the market maker could immediately set a price that
reflects this information which eliminates the autocorrelation.
In the model, the market maker behaves competitively and in-
corporates all information available to him.
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3.3.1 Problem of the informed trader

The problem of the informed trader is identical to the one pe-
riod version of Kyle (1985). The informed trader observes vn (a
perfect signal) and In−1, and knows the pricing function (3.3).
He chooses xn to maximize his expected profits

max
xn

E[xn(vn − Pn)|vn, In−1]

= max
xn

(xn (vn − Pn−1 − λn(E(yn|vn, In−1)− E(yn|In−1)))) .

(3.4)

Given yn = xn+un+fnS we have E(yn|vn, In−1)−E(yn|In−1) =
xn. We set the first order condition to zero with respect to xn,

0 = E[(vn − Pn−1 − 2λnxn)]

xn = βn(vn − Pn−1), with βn =
1

2λn
, (3.5)

where βn represents the aggressiveness of the informed trader
in period n. Importantly, the market maker cannot predict in-
formed order flow, as E(xn|In−1) = 0 because to the market
maker E(vn|In−1) = E(vn−1|In−1) = Pn−1.

Note that xn does not depend on the number of trading rounds
like in the multi-period version of Kyle, because each insider
trades only once. Importantly, the insider only observes vn,
but not the history of v; which would otherwise enable him
to reconstruct the history of x and therefore predict S much
clearer than the market maker can. The equilibrium would then
break down, because the insider has an incentive to front-run the
strategic liquidity trader which in turn would affect the liquidity
traders’ strategy. However, a new informed trader arrives every
period and therefore they cannot observe the history of x.
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3.3.2 Problem of the market maker

The strategic liquidity trader submits a fraction of her total
quantity S each period, of which a part is expected and a part
unexpected, i.e., reveals new information about her trading in-
terest. In this setup, the market maker needs to learn about
the fundamental value of the asset vn and about the quantity S.
Learning about S improves the prediction of uninformed order
flow, such that the informed component of the order flow pro-
vides a clearer signal about the true value. The market maker
observes the order flow yn, and learns about S and vn by updat-
ing the conditional expectations and variances.

With respect to the fundamental value, market efficiency states
that the market maker chooses the price such that Pn = E(vn|In).
We repeat that E(yn|In−1) = fnE(S|In−1), because to the mar-
ket maker the informed trades have zero autocorrelation. This
is a result obtained in Kyle’s model, as noise trading provides
camouflage which conceals the autocorrelated component of the
informed order flow.

Using the linear projection theorem we can write the con-
ditional expectation of the fundamental value and quantity S

recursively (the derivation is in the Appendix):

Pn = Pn−1 + λn (yn − fnE(S|In−1)) ,

λn =
βnV ar(vn|In−1)

β2
nV ar(vn|In−1) + σ2

u + f 2
nV ar(S|In−1)

, (3.6)

and

E(S|In) = E(S|In−1) + ϕn(yn − fnE(S|In−1)),

ϕn =
fnV ar(S|In−1)

β2
nV ar(vn|In−1) + σ2

u + f 2
nV ar(S|In−1)

. (3.7)

The conditional variance of S is V ar(S|In−1), and of vn is V ar(vn−
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Pn−1|In−1) = V ar(vn|In−1). Comparing the solution of Pn to the
pricing rule (equation (3.3)) confirms that the informed trader
trades linearly on his signal, and provides the definition of λn.
The informativeness of the order flow about quantity S is rep-
resented by fnϕn (the signal strength). The ϕn and λn depend
on the variances of S and vn conditional on the information set
In−1. These are obtained recursively using the general rule for
conditional variances11 (see Appendix):

V ar(vn+1|yn, In−1) = V ar(vn|In−1) + σ2
ε− (3.8)

β2
nV ar(vn|In−1)

2

β2
nV ar(vn|In−1) + σ2

u + f 2
nV ar(S|In−1)

.

(3.9)

The recursion of the conditional variance of the quantity S de-
pends on past realizations of y but not on past prices. Using
the definition of ϕn above, the conditional variance of S is

V ar(S|In) = V ar(S|In−1)(1− ϕnfn). (3.10)

The recursions for V ar(S|In) and V ar(vn+1|In) are forward re-
cursions, and start with initial values σ2

S and σ2
ε . Now, we

have five equations for V ar(vn+1|In), λn, βn, ϕn and V ar(S|In−1),
which we can solve in terms of exogenous parameters, recursive
parameters and the yet unknown fn. The only assumption we
have made so far is the linear pricing rule in (3.3):

V ar(vn+1|In) = 1/2V ar(vn|In−1) + σ2
ε ,

λn =

√
V ar(vn|In−1)

2
√
σ2
u + f 2

nV ar(S|In−1)
,

11See for example Chapter 4 of Hamilton (1994) for the general rule of conditional
expectations and variances.
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βn =
1

2λn
,

ϕn =
fnV ar(S|In−1)

2 (σ2
u + f 2

nV ar(S|In−1))
,

E(S|In) = (1− fnϕn)E(S|In−1) + ϕnyn,

V ar(S|In) = (1− fnϕn)V ar(S|In−1). (3.11)

Important to note is that the parameters V ar(vn+1|In), λn, βn, ϕn
and V ar(S|In−1) do not depend on the realizations of the quan-
tity S, noise trades and innovations in the asset value. In fact,
for a given fn they are static and determined before the trading
day begins. Only the expectation of the size of the liquidity
trade E(S|In) and the price Pn depend on the order flow (which
in turn is a function of the realization of S, noise trades and the
innovations in the asset value).

3.3.3 Problem of the strategic liquidity trader

The goal of the strategic liquidity trader is to find an optimal
strategy f ∗1 , ..., f

∗
N that minimizes the expected total execution

costs. Furthermore, this strategy must be a rational expec-
tations equilibrium, in the sense that the market maker must
correctly anticipate the strategy to determine his response, and
given the response of the market maker the strategy must indeed
be optimal for the liquidity trader.

Crucial for the optimal strategy is the realization of the quan-
tity S, which in fact contains two important sources of infor-
mation. First, although the liquidity traders’ trades are un-
informed, they do affect prices and therefore create a pricing
error. Because this pricing error will be exploited by the in-
formed traders in future rounds, the liquidity trader can predict
future order flow and prices. This information depends on her
own trades, and is static in the sense that it is known before
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trading starts.
Second, after observing any period’s order flow the liquidity

trader can filter out her own trades, such that the remaining
component reveals a more precise signal about the fundamental
value (as compared to the market maker). Effectively, she may
construct an improved λn (equation (3.11)) because the condi-
tional variance of S is zero to her. This information is dynamic
and affects the optimal trading strategy depending on market
conditions, i.e., the realizations of noise trades and asset inno-
vations.

We proceed by analyzing the dynamic problem, where the
liquidity trader may learn from the order flow and each period
recalculate the optimal trading strategy of all the remaining pe-
riods. The static solution is simply the dynamic solution before
any trades have occurred, i.e., based on the liquidity traders
information set at time 0. We find numerical solutions for the
static and dynamic problems, but only the static solution is
also a rational expectations equilibrium. The dynamic strat-
egy is not a rational expectations equilibrium, because the mar-
ket maker cannot foresee the changes in the liquidity traders
strategy.12 However, Monte Carlo simulations presented in the
results section reveal that the deviations in the strategy are rel-
atively small, which suggest that the main results are robust.

Dynamic problem

In the dynamic problem the strategic liquidity trader updates
her strategy according to the realizations of the order flow. The
liquidity trader can form a better expectation (and variance) of
the fundamental value than the market maker. She constructs
these expectations in a similar fashion to the market maker, but
conditions on a bigger information set.

12Intuitively, the changes in the liquidity traders’ strategy are based on information
only available to her.
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The liquidity trader uses the expectation of the fundamental
value to predict the informed order flow and the market makers’
expectation of the quantity S in future periods. These elements
combined with the liquidity traders own strategy determine the
expected pricing schedule in each period. The expected prices
of each period are then a function of the strategy of the liquidity
trader, who minimizes the total expected execution costs.

The strategic liquidity trader extracts a signal about the fun-
damental value from the order flow. To denote the information
set of the liquidity trader, we add a superscript S, for example
ISn−1. After observing yn−1, the expectation of vn becomes (see
Appendix)

E(vn|yn−1, I
S
n−2) = E(vn−1|ISn−2) +

(
yn−1 − E(yn−1|ISn−2)

)
×

βn−1V ar(vn−1|ISn−2)

β2
n−1V ar(vn−1|ISn−2) + σ2

u

, (3.12)

where

E(yn−1|ISn−2) = E(βn−1(vn−1 − Pn−2) + fn−1S + un−1|ISn−2),

= βn−1

(
E(vn−1|ISn−2)− Pn−2

)
+ fn−1S,

and

V ar(vn−1|ISn−2) = σ2
ε+V ar(vn−2|ISn−3)−

β2
n−2V ar(vn−2|ISn−3)

2

β2
n−2V ar(vn−2|ISn−3) + σ2

u

.

(3.13)
In the next section we show that the liquidity trader will use
the current expectation of the fundamental value to predict the
entire future paths of all the recursive variables in the model.
Based on these predicted values she then minimizes the expected
total execution costs.
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3.4 Model Solution

To solve for the optimal strategy of the strategic liquidity trader,
we proceed by backward induction. At time 0, the problem of
the discretionary liquidity trader is

min
f1,...,fN

ES
0

[∑N

n=1
PnfnS

]
,

s.t.
∑N

n=1
fn = 1.

Define the value function Vn as the total expected expenditures
on trades in rounds n, ..., N , assuming that the liquidity trader
makes the best possible decision in each period. Because trading
finishes after period N , we have that VN+1 = 0. At any period
n < N , Vn will depend on the quantity left to trade and the
set of state variables Staten−1 = Pn−1, V ar(vn|In−1), E(S|In−1),
V ar(S|In−1), E(vn|ISn−1), V ar(vn|ISn−1). The recursive solutions
of these state variables are defined earlier, and are a sufficient
statistic for the history of order flow until period n. The state
variables allow the liquidity trader to make the optimal decision
in each period by submitting a fraction fn of the total quantity
S. Denote by Fn the fraction of the total order she still needs
to trade (before the start of period n), then

Fn = Fn−1 − fn−1, (3.14)

such that F1 = 1 and FN+1 = 0. In period N the trader has
no choice but to submit the remaining quantity fNS = FNS .
Then, using the pricing equation (3.3), the expected costs are

VN(FN , StateN−1) = ES
N−1[PNfNS]

= (PN−1 + λNfN(S − E(S|IN−1))) fNS.
(3.15)
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In period N−1, she trades fN−1S leaving the remaining (FN−1−
fN−1)S for period N . Thus, in period N − 1 she minimizes

VN−1(FN−1, StateN−2) = min
fN−1

ES
N−2[PN−1fN−1S+VN(FN , StateN−1)].

(3.16)
In this equation we must use the recursive solutions for the pa-
rameters (3.11), the rule for the fraction left to trade (3.14),
and the solutions for E(vn|ISn−1) and V ar(vn|ISn−1). The typical
procedure is to fill in the recursive solutions and take expecta-
tions, such that the value function depends only on variables
known to the liquidity trader at time N − 2, and then solve
the first order condition with respect to fN−1 (see e.g., Bertsi-
mas and Lo (1998)). However, we cannot obtain a closed form
solution of this problem due to the complexity introduced by
the many state variables, i.e., the value equation contains high-
degree polynomials. Therefore, we use numerical methods to
find the solution.

3.4.1 Numerical approach

We solve the model using the following numerical procedure.
We start by taking numerical values for the exogenous param-
eters of the model, N, σ2

u, σ
2
ε and σ2

S, which are the number of
trading rounds, and the variances of the noise trade, innova-
tions in the fundamental value and the quantity of the strategic
liquidity trader. Based on these parameters, we can solve for
λn, βn, V ar(vn|In−1), V ar(S|In−1) and V ar(vn|ISn−1) as a func-
tion of f1, ..., fN only. Next, we take the value function described
in Equation (3.16) and iterate it backwards to period 1, using
the recursive solutions of equations (3.11), (3.14) and (3.12).
Note that at each iteration n we add PnfnS, such that each step
represents the total expected costs to be paid in periods n, ..., N .
Then, the value function in period 1 is a single equation that
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contains the total expected costs, as a function of f1, ..., fN and
the realizations of u1, ..., uN which are set to zero in expectation
(the εn are incorporated via equation (3.12)).

We next iteratively find a rational expectations equilibrium,
where the market maker correctly anticipates f1, ..., fN and de-
termines his response (i.e., chooses λn and ϕn), and given the
response of the market maker the sequence f1, ..., fN minimizes
the expected trading costs of the liquidity trader. The itera-
tion starts by the assumption that the market maker believes
fn = 1/N for all n, and then we minimize the value function
yielding the liquidity traders optimal strategy f1, ..., fN . We sub-
stitute this solution into the market makers belief, and again we
calculate the liquidity traders optimal strategy. We iterate this
process until convergence, i.e., until the optimal strategy is arbi-
trarily close to the market makers expectation of the strategy.13

Now we have obtained the static solution, which generates fixed
values for λn, βn, ϕn, V ar(vn+1|In) and V ar(S|In).

Note that the optimal strategy is independent of the realiza-
tion of S, i.e., the fraction submitted by the liquidity trader
each period is independent of the total quantity she must trade.
This is a necessary requirement as the market maker cannot
observe S, and otherwise would not be able to form a rational
expectation of the sequence f1, ..., fN .

The dynamic solution continues from the static solution. In
round 1, the strategic liquidity trader submits f1 from the static
solution (which now becomes realized), and afterwards observes
y1. Next, we again start from the value function VN−1 from equa-
tion (3.16), but iterate backwards to period 2 (as period 1 has
realized). As before, at each step n we add PnfnS, such that
in period 2 we obtain a single equation that contains the total
expected costs of period 2, ..., N . We substitute the realization

13In the results section, we assume convergence is reached when
∑N
i=1 |f∗i − fi| <

0.00001, where f∗i is the optimized sequence and fi the market makers’ expectation.
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of y1 and set the expectation of the realizations of u2, ..., uN to
zero. We find the sequence f2, ..., fn that minimizes this equa-
tion given the static beliefs of the market maker. Typically,
this solution differs from the static solution. In round 2, the in-
sider submits f2 (which now becomes realized), and afterwards
observes y2. This process is iterated until we reach period N .
Essentially, this procedure repeats the static solution for every
time period. In each period we find the global solution of the
sequence fn conditional upon the information set, because we
minimize the entire problem in a single equation.

The dynamic solution typically differs from the static solu-
tion. The reason is that in the dynamic solution, the liquidity
trader learns from the previous order flow and updates her entire
(expected) future trading strategy. She may form a more pre-
cise estimate of the fundamental value than the market maker,
because she can filter out her own (uninformed) trades from
the aggregate order flow to obtain a clearer estimate of the in-
formed order flow. Using this additional information updates,
she decides to speed up or delay her trades.

3.5 Results

We first analyze the optimal strategy of the liquidity trader be-
fore trading begins, but after the realization of S,N, σ2

u, σ
2
ε and

σ2
S. The liquidity trader incorporates in her strategy the impact

of her trades on the predictable order flow and prices, which
in turn affects future periods informed order flow, predictable
order flow and prices.

3.5.1 Static solution

We solve the model numerically for the base case first, and then
change the value of one parameter at a time to analyze the
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impact of that parameter on the equilibrium outcome. For the
base case we use the following parameter values. The number
of trading periods N = 5, the strategic liquidity trader must
trade the quantity S = 3, which has an unconditional variance
of σS = 5. The volatility of noise trading σu = 1 and innovations
in the fundamental value σε = 1 per trading round.

Figure 3.1 plots the parameters of interest over time for the
base case. The upper panel shows the U-shaped trading strat-
egy of fn, which ranges between 16.2%− 26.4% and the closely
corresponding inverted U-shape for the price impact parameter
λn. The variables comove, since a larger amount of uninformed
trading in a certain period increases the liquidity of that period
(as in Kyle (1985)). The bottom panel shows the total order flow
yn, informed order flow xn and the market makers expectation
of the uninformed order flow E(S|In), which are expectations
formed d by the liquidity trader. After round 1, the informed
trades are in opposite direction to the trades by the strategic liq-
uidity trader, such that the aggregate order flow lies relatively
close to zero.

The results for the other parameters and the deviations to the
base case are presented in Table 3.1. The variance of the pricing
error is constant over time and equals 2σ2

ε , because in each pe-
riod the variance of the new innovation in the fundamental value
equals the information revealed by the informed trader. Most of
the learning on S (column 5) occurs in the first trading round
because f1 is large, and then V ar(S|I1) reduces from 5 to 4, 35.
The expected order flow y1 is 0.793, which is large and generates
a substantial price impact (the price increases from 10 to 10.48).
Therefore, in period 2 the informed trader sells 0.363 and pushes
the price partly back towards the fundamental value (in fact, he
halves the initial pricing error). In period 2 the liquidity trader
buys 0.519, such that the expected net order flow y2 is 0.156.
The first cell in the last column shows the expected execution
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cost of a benchmark model where the market maker does not
learn about the trading interest of the liquidity trader. Then
she trades an optimal fraction 1/N = 0.2 each period, and the
model is reduced to a repeated single period Kyle (1985) model.
In the benchmark case the expected execution costs are 31.874,
and with optimal order splitting 31.685. The gains of optimal
order splitting and learning are 0.19, on a total of 1.685 (note
that the fundamental value of the three shares remains 30.00).

The main result of the model is that the market maker learns
about the trading interest of the uninformed liquidity trader,
which he incorporates in setting the price. In particular, the ini-
tial large liquidity trade increases the market makers expectation
of S to E(S|I1) = 0.389, such that in period 2 the market maker
subtracts the impact of the expected order flow λ2f2E(S|I1) =
0.044 from the price. The price reduction lasts for all future
periods as well, such that the remaining 74% of the order size
receives a discount. After round 2, an additional λ3f3E(S|I2) =
0.045 is subtracted from P3 and the future prices, and similar
amounts in the remaining periods. Summed over all periods,
the predictable component of the order flow reduces P5 by 0.20,
which is large relative to the total price impact of trading of 0.66
(P5− v0). The predictable component in the order flow reduces
prices as it effectively signals the liquidity traders uninformed
trading interest, i.e., order splitting is a noisy form of sunshine
trading (Admati and Pfleiderer (1991)).

The market makers’ expectation of the uninformed order flow
E(S) does not exceed 0.44 in any period and therefore seems
small. In fact, signalling is quite costly to the liquidity trader
for two reasons. First, the market maker cannot distinguish
informed from uninformed order flow, which impairs learning
about the interest of the liquidity trader. In fact, equation (3.11)
shows that the impact of an additional unit of order flow on
E(S|In) is strictly smaller than 0.5, i.e., fnϕn < 0.5. Second,
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a larger purchase by the liquidity trader in the current period
causes a price pressure which will be followed by sells of informed
traders in future periods. These sells reduce the market maker’s
expectation of S.

The parameter values explain why the optimal trading strat-
egy is U-shaped, which follows from a tradeoff. On the one
hand a larger current trade provides a stronger signal about
future trades of the liquidity trader, which then enjoy a lower
price impact. On the other hand, a larger current trade increases
both the current and future prices, as trades by informed traders
only slowly push the price back towards the fundamental value.
The positive effect is particularly important in the first trading
period, as a large trade generates a clear signal to the market
maker about future uninformed trading interest, which is benefi-
cial for all remaining trading periods. In the last trading period,
the negative effect is small because the impact of the last trade
on future prices is irrelevant to the liquidity trader.

An immediate consequence of the predictable component in
the order flow is that the price impact is relatively large in each
individual period, but gets smaller when measured across several
periods. For example, the combined order flow in period 1 and
2 is 0.95 and the price change 0.54, which gives a price impact
of 0.56 (as compared to λ1 = 0.61 and λ2 = 0.66). The price
impact measured over all the five periods is 0.48.14 This is an
important testable prediction of the model.

The impact of expected uninformed order flow on prices of-
fers a novel explanation for resiliency in electronic limit order
markets, i.e., why liquidity replenishes after a trade. If the mar-
ket perceives that a certain trade belongs to a series of trades
and is likely to be uninformed, then the market attaches a low
price impact to that trade such that liquidity will be replenished

14The price impact over the five periods is P5 − P0 = 0.665 divided by the cumulative
order flow 1.377.
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quickly. In this paper we model a batch auction where the re-
siliency occurs instantaneously, i.e., that λ2f2E(S|I1) is simply
subtracted from P2, but in a limit order market traders needs
some time to respond. Note that the expected order flow affects
the price level, but not the slope of the limit order book λn.
Empirically, the expected order flow is unobservable however.

The mechanism of expected uninformed order flow may also
explain why liquidity on the bid and ask side of the order book
can be asymmetrical at times. If the market expects substan-
tial order flow from buyers, the ask side should be more liquid.
A trade executed on the bid side is more likely to stem from
informed traders, such that the bid side is less liquid.

The second panel of Table 3.1 shows the case where the strate-
gic liquidity trader trades only a small quantity, S = 1. A dif-
ferent realization of S affects the realized and expected order
flow, and in turn the price and future periods’ informed order
flow (but not the other parameters). The third panel shows
the case with relatively large innovations in the fundamental
value, which increases the illiquidity parameter λn and there-
fore expected prices and trading costs. In panel four N = 3,
so that the liquidity trader must trade large quantities each pe-
riod, which in turn strongly increases the expected price and
execution costs. This price increase gets partly mitigated by
the lower values of λn, which follows from the relatively large
amount of liquidity trading each period. In the bottom panel
the unconditional variance of S is low, σS = 1. In this case, the
market maker expects to learn very little about S, such that the
expected order flow remains small, i.e., the liquidity trader can-
not signal her trading interest very well. For this reason, there
is less curvature in the U-shape of the sequence of fn.
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3.5.2 Dynamic solution

In the dynamic version of the model, in each period the strate-
gic liquidity trader forms expectations of current and all future
parameter values, conditional upon her information set. After
a trading round she observes the order flow, and updates her
expectations and optimal strategy accordingly. Therefore, for
each trading round n she constructs N estimates, which gives
an N ×N matrix for every parameter.

The dynamic results of the model are shown in Table 3.2 and
3.3. Parameter values in bold font type have realized, whereas
the other values are expectations of the strategic liquidity trader.
Table 3.2 shows the parameters in an environment where the
fundamental value rises, as we set ε1 = ε2 = ε3 = 1, ε4 = ε5 = 0
and all noise trades to zero. Table 3.3 studies an environment
where only the noise traders purchase, and set u1 = u2 = u3 =
1, u4 = u5 = 0 and all innovations in the fundamental value to
zero.

In the first panels we observe that the realizations of the order
flow cause only small dynamic adjustments to the optimal strat-
egy of the strategic liquidity trader. The largest change in the
left panel is for example from E(f3|IS0 ) = 0.162 to E(f3|IS2 ) =
0.156, which in the right panel becomes E(f3|IS2 ) = 0.158. Due
to the buying pressure of the informed traders (Table 3.2) and
noise traders (Table 3.3), the strategic liquidity trader beliefs the
stock is overpriced and therefore postpones her own purchases a
little.15 By postponing her trades, she anticipates that informed
traders in future rounds will reduce the pricing error—making
it cheaper to buy then. The second panel shows the expected
and realized prices. The expected prices adjust slowly to the or-
der flow, because the liquidity trader is uncertain whether order

15The bottom panel of the left block shows that E(v3|IS2 ) = 11.303, and E(P3|IS2 ) =
11.706, i.e., the liquidity trader indeed believes the stock is overpriced by 0.40.
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flow stems from the informed or noise trader. The expected and
realized order flow in the next block shows more clearly that
the order flow is difficult to predict. If current purchases stem
from noise traders, then next periods’ informed trader will sell
(to correct the mispricing), whereas if current purchases stem
from the informed trader, then next periods’ informed trader
will also purchase (because informed traders reveal only half
their signal). As a result, predicting future order flow is difficult
for the liquidity trader.

The fifth block shows the liquidity traders expectation of the
market makers expectation of S. The market maker beliefs that
the buying pressure of the informed traders (Table 3.2) and noise
traders (Table 3.3) might stem from the liquidity trader, and
therefore the expectation of E(S|In) increases over time. The
last block shows the realizations of the remaining parameters.
While these also change over time, the liquidity trader’s expec-
tations of the future values equals that of the current value, and
therefore we report them in a single column.

3.5.3 Model shortcoming

In this version of the model, only the static version is a rational
expectations equilibrium. The dynamic model is not, as the
liquidity trader updates her strategy over time which cannot be
predicted by the market maker. The static model is appropriate
if the liquidity trader cannot modify her strategy over time, or
if she does not filter out her own trades from the order flow to
learn about the fundamental value.16 In practise however there
is no mechanism that prevents her from dynamically updating.
Absence of a rational expectations equilibrium also implies that
the market maker does not earn zero expected profits.

Therefore, we execute monte carlo simulations in the next sec-

16In the latter case she has no incentive to change her strategy.
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tion, and show that the dynamic changes are relatively small.
Thus, the main result of the model that the optimal trading
strategy is U-shaped should hold. Also, the loss to the market
maker because of dynamic updating appears small, and is not
statistically significantly different from zero for 10.000 simula-
tions. Still, this issue must be solved in a future version of the
paper.

3.5.4 Monte Carlo simulations

We do two simulations of 10.000 trading games. In the first we
draw random values for the realizations of S and all εn and un
(with variances 5, 1 and 1 respectively), whereas in the second
we set S = 3 as in the base case and draw all εn and un. The
overall profits to the traders are reported in Table 3.4.

The upper panel shows that for random S, the market maker
earns a loss on average (-0.085), which is small compared to
the standard deviation of 6.6 per game. This loss is not statisti-
cally significant with a t-statistic of 0.085/(6.6/

√
10000) = −1.2,

which implies that the test has either insufficient power (and we
must increase the number of simulations), or the market maker
is not worsely affected by the dynamic updates of the liquidity
trader. In fact, by dynamically updating her strategy, the liq-
uidity trader trades on fundamental information and effectively
competes with the informed traders. This might be beneficial
to the market maker.

The average informed traders’ profit is 4.25, and the loss to
the liquidity trader and noise traders is 0.88 and 3.28 respec-
tively. The fifth column shows the loss of the liquidity trader in
a model where the market maker does not learn about the trad-
ing interest of the liquidity trader. By signalling, the strategic
liquidity trader reduces expected losses from 0.98 to 0.88.

The middle panel of the table shows the profits for the base
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case where S = 3. Here, the market maker earns a positive profit
(0.21), because the realization of S = 3 is a relatively large draw
compared to V ar(S) = 5, and more uninformed trading is prof-
itable to the market maker. Although E(S) = 0, the trading
strategy and profits are symmetric for positive and negative val-
ues of S. Therefore, the expected magnitude of the liquidity
trader is the absolute value of S, which is E(|S|) = σ2

S

√
2/π =

1.784 for S ∼ N(0, 5). Then, for |S| > 1.784, the market maker
earns a positive expected profit. Compared to the upper panel,
the liquidity trader earns a greater loss when S = 3 (-1.59 com-
pared to -0.88), which is beneficial to the informed traders and
the market maker.

The bottom panel shows the static and average dynamic strat-
egy of the liquidity trader (the sequence of fn) for the simula-
tions of random S. The absolute differences are small (less than
0.006), and for 10.000 simulations only f2 is significantly smaller
in the dynamic strategy. This suggests that the main results are
robust; i.e., the U-shaped pattern of the optimal strategy. In
fact, it appears that the dynamic strategy has a slightly stronger
U-shape than the static solution.

3.5.5 Extant literature

In this section we relate our modeling assumptions and results
to the literature.

The assumption of short-lived private information is strong
and deserves further explanation. In the model, the assumption
creates a separating equilibrium between the informed traders
and the strategic liquidity trader, such that the predictable com-
ponent in the order flow is strictly uninformed. Without the as-
sumption the informed traders could mimic the strategy of the
liquidity trader, and the equilibrium would break down. Note
that short-lived private information is not necessary for the re-
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sult that to the market maker the order flow of the informed
trader is not autocorrelated.17

Our motivation of short-lived private information is the dif-
ference in the length of the trading horizons of informed traders
and the strategic liquidity trader. The strategic liquidity trader
might be an institutional trader with a trading horizon of one
(or several) days, which is common according to Campbell, Ra-
madorai, and Schwartz (2009). The informed traders in the
model might be considered high-frequency traders with a very
short trading horizon and a structural or directional trading
strategy (see the HFT strategies as defined by the SEC (2010)).
The market maker too might be a high-frequency trader with
a market making strategy, which is a common but very differ-
ent strategy from structural or directional trading. Brogaard,
Hendershott, and Riordan (2012) show empirically that HFT
trades that demand liquidity are indeed informed, i.e., push
prices towards the fundamental value, whereas HFT trades that
supply liquidity are adversely selected, like the market maker
in our model. The informed traders in the theory of Foucault,
Hombert, and Rosu (2012) are high-frequency traders who ob-
serve news an instance before the market, and respond very
quickly and aggressively. A similar result may also be obtained
when there are multiple informed traders who compete with each
other.18 Our model only requires that the trading horizon of the
liquidity trader is longer than that of the informed trader, such
that the predictable trading at the low frequency is uninformed.

The optimal trading strategy of our liquidity trader is U-
shaped, similar to the limit order book models of Obizhaeva and
Wang (2005) and Alfonsi, Fruth, and Schied (2010). In their pa-
pers, the initial transaction is large and pushes the price above

17Also in the multi-period model of Kyle (1985), to the market maker the informed
order flow has zero autocorrelation.

18With multiple informed traders who observe correlated signals, prices quickly become
fully revealing as in Holden and Subrahmanyam (1992).
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the fundamental value to attract new limit orders.19 Then, the
future trades are of equal size and exactly consume the new
limit orders that are placed. The last trade is larger again, and
pushes up the price after which the price dynamics are not im-
portant anymore. Our model has this feature too, because the
informed traders push back the price towards the fundamental
value each period, such that they essentially provide liquidity
to the market. In addition, our model has the mechanism that
the market maker learns about the trading interest of the unin-
formed liquidity trader which receives a zero price impact. This
second channel increases the curvature of the U-shape pattern.
In unreported results, when we set σ2

S = 0 the market maker
does not learn about S,20 and we obtain an optimal strategy
that is symmetrically U-shaped similar to Obizhaeva and Wang
(2005).

In models like Almgren and Chriss (2000), the optimal strat-
egy is a constant fraction each period (if the price of risk is zero),
because this strategy minimizes the quadratic trading costs. In
these models, liquidity and prices do not recover from the trad-
ing shocks and signalling of uninformed order flow is absent.
When the liquidity trader is risk averse, the optimal trade sizes
decline over time to reduce the exposure to future price swings
(which is also obtained by Huberman and Stanzl (2005)). Bert-
simas and Lo (1998) add an AR(1) news process, and find that
trading a constant fraction each period is no longer optimal.
Compared to Bertsimas and Lo (1998) and Almgren and Chriss
(2000), our model can easily accommodate time variation in the
price impact by allowing the variance of innovations and noise
trade to vary over time. This is important, as intraday data

19In Alfonsi, Fruth, and Schied (2010) the trade increases the quoted spread, which
attracts new limit orders.

20Technically, setting σ2
S = 0 implies that S = 0 because S ∼ (0, σ2

S). Then, by choosing
S > 0, we force that the market maker does not learn about S, which leads to a symmetric
optimal strategy.
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typically reveal U-shape patterns in trading volume and liquid-
ity over the trading day (see also Almgren and Lorenz (2006),
where investors learn about the trading interests of others).

3.6 Conclusion

We study trading of a stock in a market with asymmetric infor-
mation. It is shown that a liquidity motivated trader with a long
trading horizon can credibly signal her uninformed trading in-
terest by splitting up her order over time. Then, the predictable
component in the order flow stems only from her trades, such
that the market can distinguish this component from the total
order flow. Accordingly, the predictable component of the order
flow does not affect prices, such that the liquidity trader enjoys
a lower price impact.

This result is driven by the main assumption that informed
traders only have short-lived private information. While this
might not be realistic in practise, for our main result to hold it
should be sufficient that the liquidity trader has a longer trading
horizon than the informed traders. In this case, the predictabil-
ity in the order flow at frequencies lower than the horizon of the
informed traders represents the trading interest of the liquidity
trader. This assumption seems very reasonable, given that in-
stitutional investors have trading horizons of sometimes several
days, while high-frequency traders often have trading horizons
of less then a few minutes.

An interesting extension would be to analyze our problem
with multiple long-term liquidity traders, and for a portfolio of
stocks with correlated liquidity trading.
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3.7 Appendix

Conditional Expectation: Equation (3.6) uses the linear pro-
jection theorem to calculate the conditional expectation of the
fundamental value and the quantity S. In our setting, all vari-

ances and covariances are scalars. The derivation is

[
Pn

E(S|In)

]
=

= E

[
vn|In
S|In

]
= E

[
vn|In−1

S|In−1

]
+ [yn − E(yn|In−1)] [σyy|In−1]

−1

[
σvy|In−1

σSy|In−1

]′
=

[
Pn−1

E (S|In−1)

]
+ (yn − fnE(S|In−1))V ar(yn|In−1)

−1×[
Cov (vn, yn|In−1)
Cov (S, yn|In−1)

]′
(3.17)

=

[
Pn−1

E (S|In−1)

]
+ (yn − fnE(S|In−1))×(

β2
nV ar(vn|In−1) + σ2

u + f 2
nV ar(S|In−1)

)−1
[
βnV ar(vn|In−1)
fnV ar(S|In−1)

]′
.

(3.18)

Line four uses that yn = xn + un + fnS and xn = βn(vn−Pn−1),
and that V ar(yn|In−1) = β2

nV ar(vn|In−1) + σ2
u + f 2

nV ar(S|In−1)
and Cov (vn, yn|In−1) = Cov(vn, βn(vn − Pn−1) + un +
fnS|In−1) = βnV ar(vn|In−1). The last line consists of two equa-
tions that provide the recursive solutions for Pn and E(S|In).

The expectation of the fundamental value conditional upon
the information set of the strategic liquidity trader ISn−1 is

E(vn|yn−1, I
S
n−2) = E(vn|ISn−2) +

(
yn−1 − E(yn−1|ISn−2)

)
×

Cov(yn−1, vn|ISn−2)

V ar(yn−1|ISn−2)
,
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= E(vn−1|ISn−2) +
(
yn−1 − E(yn−1|ISn−2)

)
×

βn−1V ar(vn−1|ISn−2)

β2
n−1V ar(vn−1|ISn−2) + σ2

u

, (3.19)

where

E(yn−1|ISn−2) = E(βn−1(vn−1 − Pn−2) + fn−1S + un−1|ISn−2),

= βn−1

(
E(vn−1|ISn−2)− Pn−2

)
+ fn−1S.

Conditional Variance: The general rule for conditional
variances provides a recursive solution

V ar(Y |X1, X2) =V ar(Y |X2)− Cov(Y,X1|X2)×
V ar(X1|X2)

−1Cov(X1, Y |X2).

Note that information set In contains yn, In−1, then the condi-
tional variance of vn+1, equation (3.9), is

V ar(vn+1|In) = V ar(vn+1|yn, In−1)

= V ar(vn+1|In−1)−
Cov(vn+1, yn|In−1)

2

V ar(yn|In−1)
,

= V ar(vn|In−1) + V ar(εn+1)−
Cov(εn+1 + vn, βn(vn − Pn−1)|In−1)

2

V ar(βn(vn − Pn−1) + un + fnS|In−1)
,

= V ar(vn|In−1) + σ2
ε−

β2
nV ar(vn|In−1)

2

β2
nV ar(vn|In−1) + σ2

u + f 2
nV ar(S|In−1)

. (3.20)

The conditional variance of S, equation (3.10), is

V ar(S|In) = V ar(S|yn, In−1)

= V ar(S|In−1)−
Cov(S, yn|In−1)

2

V ar(yn|In−1)
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= V ar(S|In−1)−
f 2
nV ar(S|In−1)

2

β2
nV ar(vn|In−1) + σ2

u + f 2
nV ar(S|In−1)

= V ar(S|In−1)(1− ϕnfn). (3.21)

The variance of the fundamental value conditional upon the in-
formation set of the strategic liquidity trader, equation (3.13),
is

V ar(vn+1|ISn ) = V ar(vn+1|yn, ISn−1),

= V ar(vn+1|ISn−1)−
Cov(vn+1, yn|ISn−1)

2

V ar(yn|ISn−1)
,

= V ar(vn|ISn−1) + σ2
ε −

β2
nV ar(vn|ISn−1)

2

β2
nV ar(vn|ISn−1) + σ2

u

.

(3.22)
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Table (3.1) Numerical example of the static model.
We solve the model numerically, and show the expected parameter values
conditional upon the information set of the strategic liquidity trader. We
use the following parameter values for the base case (upper panel). The
number of trading periods N = 5, the strategic liquidity trader must trade
the quantity S = 3, which has variance σ2

S = 5. The volatility of noise
trading σu = 1 and innovations in the fundamental value σε = 1. The first
cell of column Σcost represents the total costs if the market maker would
not learn about the the trading interest of the liquidity trader, i.e., absent
signalling. The last cell shows the execution costs when the market maker
does learn about the trading interest of the liquidity trader. Each panel
shows the effect of a change in one of the parameters values. The solution
are calculated before any trade has taken place, i.e., before any realizations
of u and ε. Note that the submitted fractions fn, and the anticipated and
realized order flow E(S|In) and yn depend on the realizations of u and ε.
The dynamic solution of the model is shown in Table 3.2.

Base Case: N = 5, S = 3, σ2
S = 5, σε = 1, σu = 1.

N fn λn Vn(vn) Vn(S) En−1(S) yn xn Pn costn Σcost

1 0.264 0.609 2 4.352 0.000 0.793 0.000 10.483 8.318 31.874
2 0.173 0.665 2 4.102 0.389 0.155 -0.363 10.541 5.461
3 0.162 0.672 2 3.903 0.418 0.083 -0.403 10.552 5.123
4 0.174 0.669 2 3.697 0.422 0.109 -0.412 10.575 5.515
5 0.227 0.648 2 3.401 0.433 0.237 -0.444 10.665 7.267 31.685

Small quantity liquidity trader: S = 1
N fn λn Vn(vn) Vn(S) En−1(S) yn xn Pn costn Σcost

1 0.264 0.609 2 4.352 0.000 0.265 0.000 10.161 2.688 10.208
2 0.173 0.665 2 4.102 0.130 0.051 -0.121 10.180 1.756
3 0.162 0.672 2 3.903 0.139 0.028 -0.134 10.184 1.648
4 0.174 0.669 2 3.697 0.141 0.037 -0.137 10.192 1.773
5 0.227 0.648 2 3.401 0.144 0.079 -0.148 10.222 2.322 10.187

Volatile innovations: σε = 3
N fn λn Vn(vn) Vn(S) En−1(S) yn xn Pn costn Σcost

1 0.265 1.054 6 4.352 0.000 0.794 0.000 10.836 8.599 33.245
2 0.172 1.152 6 4.102 0.389 0.155 -0.363 10.938 5.666
3 0.162 1.164 6 3.903 0.418 0.083 -0.403 10.955 5.319
4 0.174 1.158 6 3.697 0.422 0.109 -0.412 10.997 5.735
5 0.227 1.122 6 3.401 0.433 0.237 -0.444 11.153 7.599 32.919

Close deadline: N = 3
N fn λn Vn(vn) Vn(S) En−1(S) yn xn Pn costn Σcost

1 0.357 0.553 2 4.026 0.000 1.072 0.000 10.592 11.350 32.410
2 0.291 0.610 2 3.513 0.584 0.389 -0.485 10.726 9.376
3 0.351 0.591 2 2.982 0.680 0.440 -0.614 10.844 11.433 32.159

Low volatility of quantity liquidity trader: σ2
S = 1

N fn λn Vn(vn) Vn(S) En−1(S) yn xn Pn costn Σcost

1 0.243 0.687 2 0.972 0.000 0.729 0.000 10.501 7.659 32.013
2 0.178 0.696 2 0.958 0.084 0.175 -0.360 10.612 5.670
3 0.168 0.698 2 0.945 0.097 0.064 -0.439 10.646 5.351
4 0.179 0.697 2 0.931 0.101 0.073 -0.463 10.684 5.732
5 0.232 0.690 2 0.909 0.105 0.202 -0.496 10.806 7.534 31.946
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Table (3.2) Numerical example dynamic model: Rise in value

We solve the model numerically, and show the expected parameter values conditional upon

the information set of the strategic liquidity trader. We use the parameter values of the

base case: N = 5, demand of strategic liquidity trader S = 3, with variance σ2
S = 5. The

volatility of noise trading σu = 1 and innovations in the fundamental value σε = 1. The

current Table shows the case “rise in value”, where the fundamental value increases by 1

unit in periods 1, 2 and 3, and there is zero noise trade. Table 3.3 shows the case “Buying

noise traders”, where noise traders buy 1 unit in period 1, 2 and 3, and the innovations in

the fundamental value are zero. Each panel shows how the liquidity traders expectations

of a particular variable get updated as trading periods passes. Each column shows the

information set of the liquidity trader, i.e., the order flow of the periods he has observed.

Values in bold are realizations of that variable, rather than expectations. Therefore, the

panels show how the strategic traders’ expectations are updated according to realizations

of the order flow, which depends on εn and un. The bottom panel shows the realizations

of the remaining model parameters. These are reported in columns, as the expectation in

future periods simply equals that of the current period.

Rise in value
ε1 = ε2 = ε3 = 1, ε4 = ε5 = 0

IS0 IS1 IS2 IS3 IS4
N fn

1 0.264 0.264 0.264 0.264 0.264
2 0.173 0.168 0.168 0.168 0.168
3 0.162 0.160 0.156 0.156 0.156
4 0.174 0.172 0.172 0.168 0.168
5 0.227 0.234 0.239 0.244 0.244

Pn

1 10.483 10.983 10.983 10.983 10.983
2 10.541 11.024 11.737 11.737 11.737
3 10.552 11.034 11.706 12.555 12.555
4 10.575 11.055 11.716 12.523 12.936
5 10.665 11.149 11.804 12.599 11.690

yn

1 0.793 1.615 1.615 1.615 1.615
2 0.155 0.198 1.270 1.270 1.270
3 0.083 0.146 0.144 1.407 1.407
4 0.109 0.174 0.215 0.220 0.837
5 0.237 0.332 0.399 0.461 -1.535

xn

1 0.000 0.822 0.822 0.822 0.822
2 -0.363 -0.307 0.764 0.764 0.764
3 -0.403 -0.334 -0.323 0.940 0.940
4 -0.412 -0.343 -0.301 -0.285 0.333
5 -0.444 -0.371 -0.319 -0.269 -2.266

En−1(S)

1 0.000 0.000 0.000 0.000 0.000
2 0.389 0.791 0.791 0.791 0.791
3 0.418 0.812 1.168 1.168 1.168
4 0.422 0.816 1.154 1.533 1.533
5 0.433 0.826 1.159 1.519 1.706

vn ES
n−1(vn) V S

n−1(vn) Vn(S) Vn−1(vn)

1 11 10.000 2.000 4.352 2
2 12 10.574 1.851 4.102 2
3 13 11.303 1.905 3.903 2
4 13 12.174 1.927 3.697 2
5 13 12.602 1.928 3.401 2
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Table (3.3) Numerical example dynamic model: Buying noise traders.

This Table continues from Table 3.2, but shows the case “Buying noise traders”, where

noise traders buy 1 unit in period 1, 2 and 3, and the innovations in the fundamental value

are zero. Table 3.2 shows the case “rise in value”, where the fundamental value increases

by 1 unit in periods 1, 2 and 3, and there is zero noise trade.

Buying noise traders
u1 = u2 = u3 = 1, u4 = u5 = 0

IS0 IS1 IS2 IS3 IS4
N fn

1 0.264 0.264 0.264 0.264 0.264
2 0.173 0.168 0.168 0.168 0.168
3 0.162 0.160 0.158 0.158 0.158
4 0.174 0.172 0.172 0.171 0.171
5 0.227 0.235 0.237 0.238 0.238

Pn

1 10.483 11.092 11.092 11.092 11.092
2 10.541 11.130 11.446 11.446 11.446
3 10.552 11.139 11.437 11.598 11.598
4 10.575 11.160 11.453 11.606 11.012
5 10.665 11.253 11.543 11.694 10.843

yn

1 0.793 1.793 1.793 1.793 1.793
2 0.155 0.209 0.684 0.684 0.684
3 0.083 0.159 0.158 0.398 0.398
4 0.109 0.188 0.206 0.207 -0.681
5 0.237 0.350 0.380 0.391 -0.067

xn

1 0.000 0.000 0.000 0.000 0.000
2 -0.363 -0.295 -0.820 -0.820 -0.820
3 -0.403 -0.320 -0.315 -1.076 -1.076
4 -0.412 -0.329 -0.310 -0.307 -1.195
5 -0.444 -0.356 -0.332 -0.323 -0.781

En−1(S)

1 0.000 0.000 0.000 0.000 0.000
2 0.389 0.879 0.879 0.879 0.879
3 0.418 0.898 1.056 1.056 1.056
4 0.422 0.902 1.052 1.124 1.124
5 0.433 0.911 1.059 1.127 0.858

vn ES
n−1(vn) V S

n−1(vn) Vn(S) Vn−1(vn)

1 10 10.000 2.000 4.352 2
2 10 10.699 1.851 4.102 2
3 10 11.022 1.905 3.903 2
4 10 11.187 1.927 3.697 2
5 10 10.572 1.928 3.401 2
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Table (3.4) Monte Carlo simulations

We simulate the model 10.000 times, for random realizations of the innovations in the

fundamental value and quantity trader by noise traders. The upper panel shows the

simulations for random values for the quantity trader by the strategic liquidity trader S,

and the middle panel for the base case where S = 3. We show the mean and standard

deviation of the profits to each of the trader types summed over the five periods (the

informed traders, the market maker (Mm), the noise traders and the liquidity trader

(LT)). We also show the liquidity traders profits in the case where the market makers

would not learn about the trading interest of the liquidity trader, i.e., absent signalling.

The last column shows the absolute quantity traded by the liquidity trader (in number of

shares). The bottom panel shows for random S the static and average dynamic strategy of

the strategic liquidity trader, i.e., the fractions she submits each period. Since we simulate

10.000 times, the standard deviation of the mean of the variables is simply the standard

deviation divided by 100. The parameter values are as described in Table 3.2: N = 5,

variance of S is σ2
S = 5, the volatility of noise trading σu = 1 and innovations in the

fundamental value σε = 1.

Overall profits to the players:
Informed Mm Noise LT Strategic LT Naive Diff Abs(S)

Random S

Mean 4.246 -0.085 -3.281 -0.880 -0.982 0.102 1.789
St dev. 7.507 6.605 4.256 3.603 4.707 -1.104 1.343

S = 3

Mean 4.632 0.211 -3.252 -1.591 -1.748 0.157 3
St dev. 7.842 6.859 4.271 4.530 6.082 -1.553 0

Strategy f-sequence

Period Static Dynamic Diff

f1 0.265 0.265 0.000
f2 0.173 0.168 -0.005
f3 0.162 0.160 -0.002
f4 0.174 0.180 0.006
f5 0.227 0.228 0.001
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Figure (3.1) The evolution of the parameters over time. The upper figure
shows the price impact parameter (λt, left axis) and the liquidity traders
optimal strategy over time (ft, right axis). The bottom figure shows the net
trading volume (yt), the volume by the informed trader (xt) and the market
makers expectation of the uninformed trading volume (Et(S)). These values
are expectations of the strategic liquidity trader before trading starts, based
on numerical results of the base case.
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