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Abstract

This paper introduces cooperative games arising from multi-depot Chinese

postman problems and explores the properties of these games. A multi-depot

Chinese postman problem (MDCP) is represented by a connected (di)graph G,

a set of k depots that is a subset of the vertices of G, and a non-negative weight

function on the edges of G. A solution to the MDCP is a minimum weight tour

of the (di)graph that visits all edges (arcs) of the graph and that consists of a

collection of subtours such that the subtours originate from different depots, and

each subtour starts and ends at the same depot. A cooperative Chinese postman

(CP) game is induced by a MDCP by associating every edge of the graph with a

different player. This paper characterizes globally and locally k-CP balanced and

submodular (di)graphs. A (di)graph G is called globally (locally) k-CP balanced

(respectively submodular), if the induced CP game of the corresponding MDCP

problem on G is balanced (respectively submodular) for any (some) choice of the

locations of the k depots and every non-negative weight function.

Keywords: Chinese postman problem, cooperative game, submodularity, bal-

ancedness.
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1 Introduction

A Chinese postman problem (CPP) models the situation in which a postman must de-

liver mail to a given set of streets using the shortest possible route, under the constraint

that he must start and end at the post office, see e.g. Edmonds and Johnson (1973).

A multi-depot Chinese postman problem (MDCP) is represented by a graph in

which the edges of the graph correspond to the streets to be visited, a fixed set of k

vertices serve as depots, and a non-negative weight function is defined on the edges.

A solution to the problem is a minimum weight tour consisting of a collection of sub-

tours such that every edge of the graph is visited, the subtours originate at different

depots, and each subtour starts and ends at the same depot. The MDCP can be seen

as a special case of the multi-depot capacitated arc routing problem described in, e.g.,

Wøhlk (2008), and Kansou and Yassine (2010). Applications of the MDCP include for

example snow plowing and winter gritting, Wøhlk (2008). The CPP arises as a special

case if only one depot is available, i.e. k = 1.

Chinese postman games were introduced in Hamers et al. (1999). We introduce a

multi-depot version of these games. A multi-depot Chinese postman game is defined on

a weighted connected (di)graph in which a set of vertices is fixed and referred to as the

depots, and the players reside at the edges. More precisely, the choice of the location

of the depots and the non-negative weight (or cost) function determines a specific CP

game on this graph, since the value of a coalition in a multi-depot CP game is obtained

by a cheapest collection of sub-tours starting and ending at the depots such that each

subtour starts and ends at the same depot, and the subtours together visits all members

of the coalition. Hence, the value of a coalition reflects the cheapest costs at which the

coalition can be visited.

The aim of the paper is to explore the balancedness and submodularity of multi-

depot CP games. In a balanced game, the core is non-empty, and submodular games

have several desirable properties. For example, the Shapley value of a submodular

game is the barycenter of the core, Shapley (1971). Furthermore, some solution concepts

coincide for this class of games. The nucleolus is equal to the kernel, and the bargaining

set coincides with the core, Maschler et al. (1972).

A connected graph or a strongly connected digraph G is said to be globally k-

CP submodular (balanced) if for all Q ∈ V (G) with |Q| = k, the induced CP game

is submodular (balanced) for every non-negative weight function. G is locally k-CP

submodular (balanced) if for some Q ∈ V (G) with |Q| = k, the induced game is
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submodular (balanced) for all non-negative weight functions.

We characterize classes of globally and locally k-CP balanced and submodular

graphs and digraphs. First we show that an undirected graph G is globally k-CP

balanced if and only if it is locally k-CP balanced which in turn holds if and only if G is

weakly Eulerian. For an undirected graph G, we show that for k ∈ {1,m− 1,m} where

m is the number of vertices of G the graph is globally k-submodular if and only if it

is weakly cyclic. Furthermore, we find that no connected graph is globally k-CP sub-

modular, for 1 < k < |V (G)|− 1. On the other hand, G is locally k-CP submodular for

k ∈ {1, . . . , |V (G)|} if and only if G is weakly cyclic, and the depots can be located in a

specific pattern. A strongly connected directed graph is globally as well as locally k-CP

balanced. The characterization of globally k-CP submodular graphs depends again on

the number of depots. A sufficient condition is provided for local k-CP submodularity.

The above characterization of k-CP balanced and submodular graphs follows an

existing line of research in which game theoretical properties of the OR game are char-

acterized by properties of the underlying network (graph). Hamers et al. (1999) in-

troduced CP games and showed that weakly Eulerian graphs are CP-balanced, while

Hamers (1997) showed that weakly cyclic graphs are CP-submodular. Full characteri-

zations of the classes of CP-balanced and CP-submodular graphs were given in Granot

et al. (1999). In Granot et al. (2004), the distinction between global and local require-

ments was made, and the authors characterized the classes of locally CP-submodular

graphs and digraphs. Recently, Granot and Granot (2012) relaxed the local requirement

on graphs and characterized the related CP-balanced graphs. Similar characterizations

of classes of graphs exists for other types of OR-games. For example, Herer and Penn

(1995) showed that graphs obtained as 1-sums of K4 and outerplanar graphs char-

acterize submodular Steiner-traveling salesman games. Okamoto (2003) showed that

minimum vertex cover games are submodular if and only if the underlying graph is

(K3, P3)-free, i.e., no induced subgraph is isomorphic to K3 or P3, and that minimum

coloring games are submodular if and only if the underlying graph is complete multi-

partite. Deng (2000) showed that minimum coloring games are totally balanced if and

only if the underlying graph is perfect. Hamers et al. (2011) showed that minimum

coloring games have a Population Monotonic Allocation scheme if and only if the graph

is (P4, 2K2)-free.

The paper is organized as follows. In section 2, some terms and notions from game

theory and graph theory are introduced. In section 3, the model is presented, and in

section 4, we analyze k-CP games and characterize the classes of k-CP balanced and
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submodular graphs. Section 4.1 considers undirected graphs, while the case of directed

graphs is analyzed in 4.2.

2 Preliminaries

Before we present the model, we first recall some definitions and terms from cooperative

games and graph theory, respectively.

A cooperative (cost) game is a pair (N, c) (often referred to simply as c when no

confusion arises) in which N = {1, . . . , n} is a finite set of players, and c : 2N → R is a

function that assigns to every coalition S ⊆ N a cost c(S), with c(∅) = 0. An allocation

is x ∈ RN . The core of a game c is defined by

Core(c) = {x ∈ RN |
n∑

i=1

xi = c(N),
∑
i∈S

xi ≤ c(S) for all S ⊆ N}.

Thus, the core is the set of efficient allocations in which no coalition has an incentive

to split from the grand coalition. The core of a game may be empty. A game in which

the core is non-empty is said to be balanced. Let cS denote the restriction of c to the

subsets of players in S. Then, if the subgame (S, cS) is balanced for every S ⊆ N , the

game, (N, c), is said to be totally balanced. A game is submodular if it holds for all

j ∈ N and all S ⊂ T ⊆ N \ {j} that:

c(T ∪ {j})− c(T ) ≤ c(S ∪ {j})− c(S). (2.1)

A submodular game is totally balanced, Shapley (1971).

An undirected (directed) graph G is a pair (V (G), E(G)) where V (G) is a non-

empty, finite set of vertices, and E(G) is a set of (ordered) pairs of vertices called edges

(arcs). Throughout the paper, we let m = |V (G)| denote the cardinality of V (G). An

edge {a, b} joins the vertices a, b in an undirected graph. An arc (a, b) that joins the

vertices a and b in a directed graph is directed from a to b and can only be traversed

in this direction. An edge (arc) joining to vertices a to b is said to be incident to each

of these vertices, and a and b are said to be adjacent.

A (directed) walk is a sequence of vertices and edges (arcs) v0, e1, v1, . . . , vm−1, em, vm,

in which m ≥ 0, v0, . . . , vm ∈ V (G), and e1, . . . , em ∈ E(G) such that ej = {vj−1, vj}
for all j ∈ {1, . . .m}. If v0 = vm, the walk is said to be closed. A (directed) path is a
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(directed) walk in which no edge (arc) or vertex is visited more than once. A (directed)

circuit is a closed (directed) path. In a path v0, e1, v1, . . . , vm−1, em, vm, the vertices v0

and vm are called the endpoints of the path. If there exists an undirected (directed) path

between any two vertices in a graph, then the graph is said to be connected (strongly

connected). In a connected graph G, an edge b ∈ E(G) is called a bridge if it is a

minimum cut set of cardinality 1. Removing a bridge results in a graph that is not

connected. The set of all bridges in G is denoted B(G). A graph G is said to be

Eulerian, if the degree of every edge in E(G) is even. We say that a connected graph

G is weakly Eulerian, if removing all bridges in G results in a disconnected graph in

which every connected component is Eulerian. Furthermore, we say that a graph G is

weakly cyclic, if every edge in G belongs to a most one cycle. Note that a weakly cyclic

graph is weakly Eulerian.

3 Chinese postman games

Let G = (V (G), E(G)) be a connected undirected (or strongly connected directed)

graph in which V (G) denotes the set of vertices, and E(G) denotes the set of edges

(arcs). Furthermore, let Q ⊆ V (G) be a fixed subset of the vertices, which will be

referred to as depots. Let Q = {v10, . . . , vk0} with k ∈ {1, . . . ,m}, and let S ⊆ E(G).

Let i ∈ {1, ..., k} and let wvi0
= (vi0, e

i
1, v

i
1, ..., e

i
mi , vi0) denote a closed walk that starts

and ends at vi0 ∈ Q. An empty walk may exist, that is wvi0
= (vi0). Then an S-tour d(S)

in G with respect to Q is a collection of closed walks d(S) = {(wv10
, ..., wvk0

} such that

every player in S is visited. We denote the set of S-tours associated with S ⊆ E(G) by

D(S). Furthermore, let t : E(G) → [0 : ∞) be a non-negative weight function defined

on the edges (arcs) of G. The cost of a walk wvi0
is then equal to the sum of the weights

on the edges visited, i.e., cost(wvi0
) =

∑mi

j=1 t(e
i
j). Note that the costs of an empty

closed walk equals zero. Then for every S ⊆ N we can derive the cost of an S-tour

d(S) as:

CQ(d(S)) =
k∑

i=1

cost(wvi0
).

Let Γ = (E(G), (G,Q), t) be a multi-depot CP problem in which E(G) is the set

of players, Q is a set of depots, and t : E(G) → [0 : ∞) is the non-negative weight
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function. The induced CP game (N, cQ) is then defined by

cQ(S) = min
d(S)∈D(S)

CQ(d(S)).

That is, for any S ⊆ N , c(S) equals the cost of a minimum weight S-tour in G.

Note that for |Q| = 1, the multi depot CP situation and its induced game will coincide

with the class introduced in Hamers (1999).1

An example of a CP game is given below. It shows that not all graphs are globally

k-CP balanced.

Example 3.1. Consider Figure 1 below. Let Q = {v0, v2}, and let t(e) = 1 for all edges

v0

v1

v3

v2f
@
@
@

�
�
�

f

f
f@@

@

�
�
�

e1 e2
e3

e4 e5

Figure 1: A non globally 2-CP balanced graph

in the graph. Then we see that c(e1, e2, e3) = c(e3, e4, e5) = 3, and c(e1, e2, e4, e5) = 4.

However, since c(N) = 6, the worth of the grand coalition can not be allocated between

the players such that x(N) = c(N) without violating x(S) ≤ c(S) for some S ⊂ N .

The game is therefore not balanced, and the graph is not globally 2-CP balanced. 4

The above example showed that even when k > 1, some graphs are not globally k-

CP balanced. Granot et al. (1999) show that all weakly cyclic graphs are globally 1-CP

submodular, but for the case of k > 1, a weakly cyclic graph is not necessarily globally

k-CP submodular, as the following example shows. This example also illustrates how

different choices of Q with the same cardinality may lead to different games.

Example 3.2. Consider the undirected graph in Figure 2, and let t(e) = 1 for all edges

in the graph. Let Q = {v0, v1} and Q′ = {v0, v3}. The induced games are shown in

Table 1. The second row corresponds to the induced game when depots are located at

{v0, v1}, while the third row illustrates the costs of the coalitions in the induced game,

1In Hamers (1999), the games are called delivery games, while the term Chinese postman (CP)
games is used in subsequent publications on this topic.
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when depots are located at {v0, v3}. For example, in case the depots are at {v0, v3}, the

min. S-tour of S = {e1, e3} is equal to {(v0, e1, v1, e1, v0), (v3, e3, v3)} with an associated

cost of 4. For ease of exposition a coalition {ei, ej} is in the table written as ij.

v0 v1 v3

v2

e1

e2 e3

e4e e��
�
�
��

e
@
@
@
@
@@ e

Figure 2

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
c{v0,v1}(S) 2 2 3 2 4 5 4 3 3 3 5 5 5 3 5
c{v0,v3}(S) 2 3 2 2 4 4 4 3 3 3 5 5 5 3 5

Table 1: Two different CP games arising from the same graph

From Table 1, it is evident that different choices of depots lead to different games.

Furthermore, while the two games are both balanced, only the first is submodular. The

second CP game is not submodular since c{v0,v3}(e1, e2, e3) − c{v0,v3}(e2, e3) = 2 > 1 =

c{v0,v3}(e1, e2)− c{v0,v3}(e2). 4

While we have just shown that not all CP games are balanced or submodular, it is

straightforward to verify that every CP game (N, cQ) satisfies the following: cQ(S) ≤
cQ(T ) for all S ⊂ T ⊆ N (monotonicity), and cQ(S ∪ T ) ≤ cQ(S) + cQ(T ) for all

S, T with S ∩ T = ∅ (subadditivity). Furthermore, the worth of the grand coalition is

independent of Q. That is, if we let Q,Q′ ⊂ V (G), Q′ 6= Q and consider the games

(N, cQ) and (N, cQ′), then

cQ(N) = cQ′(N), for all Q,Q′ ⊂ V (G).

Indeed, since cQ(N) is the cost of a tour that visits every edge in G, also every vertex is

visited by this tour, including every depot in Q′. But then it is also possible to visit all
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edges using tours originating from the depots in Q′. Finally, it can readily be verified

that any graph with |V (G)| ≤ 3 is k-CP submodular, and in the following, we therefore

restrict attention to graphs G = (V (G), E(G)) with |V (G)| ≥ 4.

4 Balanced and submodular k-CP graphs

In this section, we characterize k-CP balanced and k-CP submodular (di)graphs, and

in addition, we consider both global and local requirements for each of the different

properties.

4.1 Undirected k-CP graphs

We analyze first the case of undirected graphs and characterize k-CP balanced graphs.

We find that the class of k-CP balanced graphs coincide with the class of CP-balanced

graphs characterized in Granot et al. (1999).

Theorem 4.1. Let G = (V (G), E(G)) be a connected graph, and let k ∈ {1, ...,m} .

Then the following statements are equivalent:

(i) G is weakly Eulerian,

(ii) G is globally k-CP balanced,

(iii) G is locally k-CP balanced.

Proof. (i) → (ii): Let Q ⊆ V (G) be of cardinality k. Let Γ = (E(G), (G,Q), t) be a

multi depot CP problem for which (N, c) is the induced CP game. We have to show

that (N, c) is balanced.

Define an allocation x ∈ RN as:

x(e) =

{
2t(e) if e ∈ B(G),

t(e) otherwise.

Since G is weakly Eulerian there exists a min N -tour that visits every bridge in the

graph twice and all other edges exactly once. Then, c(N) =
∑

e∈E(G) t(e)+
∑

e∈B(G) t(e),

and consequently, x is efficient.

Furthermore, c(S) ≥
∑

e∈S t(e) +
∑

e∈B(G)∩S t(e) = x(S), where the inequality holds

since every player in S must be visited at least once, and every player on a bridge must
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be visited twice, for any location of the depots. Hence, (N, c) is balanced, so we have

that G is globally k-CP balanced.

(ii)→ (iii). Follows by the definition of locally and globally k-CP balanced graphs.

(iii) → (i): Granot et al. (1999) show that any locally 1-CP balanced graph

is weakly Eulerian. We therefore consider |Q| > 1. Let Γ = (E(G), (G,Q), t) and

assume that G is not weakly Eulerian. Consider a v ∈ Q, the corresponding Γ1 =

(E(G), (G, v), t), and the induced CP-game (N, c{v}). Then since c{v}(N) = cQ(N) and

c{v}(S) ≥ cQ(S), we may infer that Core(cQ) ⊆ Core(c{v}). From Granot et al. (1999),

there exists a t such that Core(c{v}) = ∅, and therefore Core(cQ) = ∅. Thus, G is not

locally k-CP balanced.

We now turn to the submodularity of CP games and provide a lemma stating how

the presence of certain structures in a k-CP problem precludes submodularity of the

induced game. We start by introducing some notation.

Let Pl denote a path containing l, l ≥ 4, vertices, and let S4 denote a star graph with

4 vertices. Next, we introduce the forbidden structures. Let SF
4 denote a star graph

with 4 vertices in which two of the vertices of degree 1 are associated with depots, while

the other vertices are not. Furthermore, let P F
l denote a path containing l vertices in

which the two endpoints are associated with depots while no other vertices are. See the

illustration in Figure 3.

P F
l

v0 v1 v2 vl−1 vl
u e e e u........e1 el−1 el

SF
4

v0 v1 v3

v2

u e u
e

e1 e3

e2

Figure 3: Forbidden structures

Let G = (E(G), V (G)) be an undirected connected graph, and let Q ⊆ V (G). Then

we say that G is (P F
l , SF

4 )−free with respect to Q, if no structure P F
l or SF

4 exists in G

when depots are located at the vertices in Q. We state the following lemma.

Lemma 4.1. Let G = (E(G), V (G)) be a connected undirected graph. Let Γ =

(E(G), (G,Q), t), and let (N, c) be the induced k-CP game. If G is submodular for all

non-negative weight functions, then (N, c) is (P F
l , SF

4 )− free wrt. Q.
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Proof. Let Q ⊆ V (G) be such that G is not (P F
l , SF

4 )− free wrt. Q. Then there

exists a subgame (U, cU) such that this subgame is defined on a structure P F
l or SF

4 .

We show that (N, c) is then not submodular. Consider P F
l and let t(e) be such that

t(e) = 1 for edges e1, el−1 and el while t(e) = 0 for all other edges. Let S = {el−1} and

T = {el−1, el}. Then,

c(T ∪ {e1})− c(T ) = 2 > 0 = c(S ∪ {e1})− c(S),

and the game is not submodular. A similar argument holds for S4.

We proceed to consider k-CP submodular graphs. We first characterize globally

k-CP submodular graphs, for k ∈ {1,m − 1,m}, and then we show that for k ∈
{2, . . . ,m− 2}, no undirected connected graph is globally k-CP submodular.

Theorem 4.2. Let G = (V (G), E(G)) be a connected graph and let k ∈ {1,m− 1,m}.
Then G is globally k-CP submodular if and only if G is weakly cyclic.

Proof. Granot et al. (1999) showed that G is globally 1-CP submodular if and only if

G is weakly cyclic, so it is sufficient for us to consider the case of k ∈ {m− 1,m}. We

first prove the ‘if’ part. We have to show (2.1). Let G be weakly cyclic. Furthermore,

let Γ = (E(G), (G,Q), t), let (N, c) be the induced game, and let k ∈ {m−1,m}. Then

G consists of a set of edge-disjoint circuits and bridges. Let C(G) and B(G) denote the

set of circuits and bridges, respectively, and observe that since k ∈ {m − 1,m}, every

edge in E(G) is incident to at least one depot. Then, for any S ⊆ N , we have:

c(S) =
∑

C∈C(G):C∩S 6=∅

min{
∑
a∈C

t(a),
∑

a∈S∩C

2t(a)}+
∑

b∈B(G):b∈S

2t(b), (4.1)

Let e ∈ N , and let S ⊂ T ⊆ N \ {e}. We distinguish between two cases:

Case 1. e ∈ B(G). From (4.1) it follows that c(S∪{e})−c(S) = c(T∪{e})−c(T ) = 2t(e)

for all e ∈ N and all S ⊂ T ⊆ N \ {e}, so (2.1) is satisfied.

Case 2. e 6∈ B(G). Then there exists a circuit C ∈ C(G) such that e ∈ C. Let

A =
∑

a∈C t(a), B =
∑

a∈S∩C 2t(a), and D =
∑

a∈T∩C 2t(a). Then (4.1) implies that

c(S ∪ {e})− c(S) = min{A,B + 2t(e)} −min{A,B}, and

c(T ∪ {e})− c(T ) = min{A,D + 2t(e)} −min{A,D}.
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Observe that B ≤ D. Now,

if A ≤ B then c(S ∪ {e})− c(S) = c(T ∪ {e})− c(T ) = 0,

if A > D + 2t(e) then A > B, and then c(S ∪ {e})− c(S) = c(T ∪ {e})− c(T ) = 2t(e),

if A ≤ D + 2t(e) and A > B, then c(S ∪ {e})− c(S) = min{A−B, 2t(e)}

≥ max{0, A−D} = A−min{A,D} = c(T ∪ {e})− c(T ).

where the last inequality follows from B ≤ D and A ≤ D+2t(e). Thus, (2.1) is satisfied

for all e ∈ N and all S ⊂ T ⊆ N \ {e}.

Turning to the ‘only if’ part, assume that G is not weakly cyclic. We then have to

show that there exists a weightfunction such that (N, c) is not submodular. If G is not

weakly cyclic, there exists a subgraph G1 in G as displayed in Figure 4. Consider Figure

w1 w2f
@
@
@

�
�
�

f
f

f
f
f

f
f@@

@

�
�
�

E1

E2

E3

Figure 4

4 and let E1, E2 and E3 denote the set of edges in each of the three paths between w1

and w2, respectively. Let the weight function on the edges of G be such that t(e) = 1

for every e ∈ E1∪E2∪E3, while t(e) is arbitrarily large for all e ∈ E(G)\E(G1). Since

k ∈ {m− 1,m}, either w1 or w2 is in Q, and then since a (sub)tour in the graph must

start and end at the same depot, an allocation x ∈ RN in the core of the (sub)game

(E(G1), c
E(G1)) must fulfill the following:

x(E1 ∪ E2) ≤ c(E1 ∪ E2) = |E1|+ |E2|,

x(E1 ∪ E3) ≤ c(E1 ∪ E3) = |E1|+ |E3|,

x(E2 ∪ E3) ≤ c(E2 ∪ E3) = |E2|+ |E3|.

Adding the inequalities leads to

x(N) ≤ |E1|+ |E2|+ |E3| < c(N),
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and (E(G1), c
E(G1)) is not balanced. Consequently (N, c) is not totally balanced, and

hence, not submodular.

Theorem 4.3. Let G = (V (G), E(G)) be a connected graph. If k ∈ {2, . . . ,m − 2},
then G is not globally k-CP submodular.

Proof. Let Γ = (E(G), (G,Q), t), and let (N, c) be the induced k-CP game. Since

|V (G)| ≥ 4, there exists in G a connected subgraph with four vertices. The possible

non-isomorphic structures of this subgraph are displayed in Figure 5. Then there exists

e
e

e
e

�
��@
@@ e e

e e
�
�� e e
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�
�� e e

e e
e e
e e
�
�� e e

e e

Figure 5: Non-isomorphic connected graphs with 4 vertices

a 3-player subgame (U, cU) that is defined on P4 or S4. Since 2 ≤ k ≤ m − 2, we can

in either case assign the k depots to the vertices of G, such that G is not (P F
l , SF

4 )-free

wrt. Q. It, therefore, follows from Lemma 4.1 that (N, c) is not submodular. Hence,

G is not globally k-CP submodular.

The theorems above stated that only weakly cyclic graphs are globally k-CP sub-

modular, and that this is only the case if there is just one depot or every edge is incident

to a depot. In the following subsection, we relax the strict global requirement and con-

sider undirected locally k-CP submodular graphs. The following theorem follows readily

from Lemma 4.1

Theorem 4.4. Let G = (V (G), E(G)) be a connected graph. If G is locally k-CP

submodular, there exists a Q ⊆ V (G) with cardinality k such that G is (P F
l , SF

4 )-free

wrt. Q.

Being (P F
l , SF

4 )-free is, however, not sufficient for connected graphs in general to be

k-CP submodular, as the following example shows.

Example 4.1. Consider Figure 1 and assume that Q = V (G) implying that every

vertex in the graph is associated with a depot and that the graph is (P F
l , SF

4 )-free wrt.

Q. Let S = {e4, e5} and T = {e1, e2, e4, e5}. Then c(T ∪ {e3}) − c(T ) = 2 > 1 =

c(S ∪ {e3})− c(S), and the game is not submodular. 4

12



This leads us to the following result:

Theorem 4.5. Let G be a connected graph. If there exists a Q ⊆ V (G) with cardinality

k such that G is (P F
l , SF

4 )−free wrt. Q, then G is locally k-CP submodular if and only

if G is weakly cyclic.

Proof. For the ‘if ’ part, let G be a weakly cyclic graph, let Γ = (E(G), (G,Q), t), and

let (N, c) be the induced k-CP game. We have to show that (2.1) holds.

First, let G1 be the weakly cyclic subgraph induced by the vertices of Q and every

path between any two vertices of Q. Then since G is (P F
l )-free wrt. Q, so is G1, and

since any edge e ∈ E(G1) lies on a path between depots, it must be that e is incident

to at least one vertex of Q. Let (E(G1), c
E(G1)) be the CP game induced by the CP

problem Γ1 = {E(G1), (G1, Q), tG1} on G1, where tG1 denotes the restriction of t to G1.

Let C(G1) denote the set of circuits in G1. Then we can express cE(G1) as

cE(G1)(S) =
∑

C∈C(G1):C∩S 6=∅

min{t(E(C)), 2t(S ∩ E(C))}+ 2t(S ∩B(G)),

and it follows from the proof of Theorem 4.2 that (E(G1), c
E(G1)) is submodular.

Furthermore, since G is (SF
4 )−free, the edges in E(G)\E(G1) can be partitioned into

r sets {A1, . . . , Ar} such that for each Ai with i ∈ {1, . . . , r}, there exists an ai ∈ Q such

that G \ {ai} is disconnected, and a path from ai to any edge e ∈ Ai contains no other

depot than ai. Let G(Ai) denote the subgraph induced by the edges in Ai. Now, let

Γai = {Ai, (G(Ai), ai), tAi
} denote the CP problem on G(Ai), and let (Ai, c{ai}) be the

induced CP game. From Granot et al. (1999) it follows that (Ai, c{ai}) is submodular.

Next, observe that the cost c(S) of coalition S in the game (N, c) can be written as a

sum

c(S) = cE(G1)(S ∩ E(G1)) +
r∑

i=1

c{ai}(S ∩ Ai).

Now, since (E(G1), c
E(G1)) is submodular, and (Ai, c{ai}) is submodular for all i ∈

{1, ..., r}, it follows that (N, c) is submodular.

For the ‘only if’ part, note that if G is not weakly cyclic, there exists a subgraph G∗

with a structure on the form of Figure 1. We will show that for every k, there exists a

t and a location of the k depots in G for which (N, c) is not totally balanced and hence

not submodular. For k = 1, the result follows from Granot and Hamers (2004). We

consider k ≥ 2.

13



Since G is connected, there exists a vertex v0 ∈ Q and a vertex v ∈ V (G∗) such that

the path from v0 to v contains no other vertices in V (G∗). Note that if v0 ∈ V (G∗), then

v = v0, and the path is empty. Assume wolog. that v lies on the path between w1 and

w2 that consists of the edges in E1. Let P2 denote the (possibly empty) path from v to

w1 that visits only edges of E1. Let E(P2) denote the set of edges in the path P2, and let

t(E1 \E(P2)) denote the sum of the weights of the edges in E1 \E(P2). We now choose

a weight function t such that t(e) = 0 for all e ∈ E(P1) ∪ E(P2), t(E1 \ E(P2)) = 1,

t(E2) = t(E3) = 1, and t(e) = 100 for all other edges in G. Then, the cost of a min

weight tour that visits every edge in G∗ is equal to 4, while the cost of any min weight

tour visiting all edges of Ei ∪ Ej, i 6= j, i, j ∈ {1, 2, 3} is equal to 2. Now, this implies

that the subgame (E(G∗), cE(G∗)) is not balanced. To see this note that an allocation

x ∈ RN in the core must fulfill the following:

x(E1 ∪ E2) ≤ c(E1 ∪ E2) = 2,

x(E1 ∪ E3) ≤ c(E1 ∪ E3) = 2,

x(E2 ∪ E3) ≤ c(E2 ∪ E3) = 2,

x(E(G∗)) = c(E(G∗) = 4. (4.2)

If we add the inequalities, we get 2x(E(G∗)) = 6 which implies that x(E(G∗)) =

3 < 4 = c(E(G∗), and this contradicts the assumption that x(E(G∗)) = c(E(G∗).

Since the subgame is not balanced, (N, c) is not totally balanced and therefore not

submodular.

Theorem 4.5 shows that the class of locally k-CP submodular graphs does not

coincide with the class of globally k-CP submodular graphs. This differs from the

result in Granot et al. (1999) that the classes of globally and locally CP submodular

graphs coincide. We now turn to the case of directed graphs.

4.2 Directed k-CP graphs

In this section, we consider strongly connected directed graphs, and as in the previous

section, we characterize k-CP balanced and k-CP submodular graphs.

First, we extend to the case of multiple depots in the underlying graph the result

from Granot et al. (1999) that every strongly connected digraph is CP-balanced. Fur-

thermore, we show that the classes of globally k-CP balanced and locally k-CP balanced

14



graphs coincide.

Theorem 4.6. Let G = (V (G), E(G)) be a strongly connected, directed graph, and let

k ∈ {1, ...,m}. Then G is globally k-CP balanced.

Proof. Let Γ = (E(G), (G,Q), t) where Q ⊂ V (G) is of cardinality k, and let (E(G), c)

be the induced game. Consider the game (E(G), c∗) for which the linear programming

problem in (4.3) represents a linear production game formulation of (E(G), c∗). Let xij

denote the flow in arc (vi, vj) and tij the cost of the arc and consider the LP-problem

below.

c∗(S) = min
∑

i,j∈E(G)

tijxij

subject to (4.3)∑
j∈E(G)

xji −
∑

j∈E(G)

xij = 0 for all i ∈ E(G)

xij ≥ 1 for all arcs (vi, vj) ∈ S

xij ≥ 0 for all arcs (vi, vj) 6∈ S

If S = E(G), the solution to the problem is a minimum cost circulation in which the

flow in every arc is at least 1. According to Orloff (1974), this is equivalent to an optimal

Chinese postman tour of E(G) with cost function t. Thus, c(E(G)) = c∗(E(G)). For

S ⊂ E(G), the solution to the linear programming problem will be a minimum cost

circulation that may consist of several disconnected min cost subtours. In the k-CP

problem, each subtour must visit a depot, and consequently, c(S) ≥ c∗(S). Owen (1975)

has shown that (E(G), c∗) is a totally balanced game, and since c(E(G)) = c∗(E(G)),

and c(S) ≥ c∗(S) for each S ⊂ E(G), this implies that (E(G), c) is balanced. Hence,

G is globally k-CP balanced.

From Theorem 4.6 and the definition of globally and locally k-CP balanced graphs,

we get the following corollary.

Corollary 4.1. Let G = (V (G), E(G)) be a strongly connected, directed graph, and

let k ∈ {1, ...,m}. Then G is locally k-CP balanced.

Next, we turn to the submodularity of games arising from directed graphs, and give

a characterization of globally k-CP submodular digraphs. First, however, we state a

few definitions.
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A directed weakly cyclic graph is a 1-sum of directed circuits, where a 1-sum of

two graphs H and G is the graph that arises from coalescing one vertex in H with a

vertex in G. Furthermore, we say that a directed circuit C is internal if it shares at

least two vertices with other circuits, and we let |C| denote the number of edges in C.

Furthermore, let C(G) denote the set of internal circuits in G. We are now ready to

characterize globally k-CP submodular digraphs.

Theorem 4.7. Let G = (V (G), E(G)) be a strongly connected digraph, and let k >

m − min{|C||C ∈ C(G)} if C(G) 6= ∅, and let k ≥ 1 if C(G) = ∅. Then G is globally

k-CP submodular if and only if G is weakly cyclic.

Proof. For the ‘if’ part, let Γ = (E(G), (G,Q), t), and let (N, c) be the induced game.

We have to prove that (2.1) holds. Recall that G is weakly cyclic. We consider first

the case of C(G) 6= ∅. By assumption on k, every internal circuit contains at least one

depot, while the non-internal circuits may contain no depots. Consider an e ∈ E(G),

and let C∗ denote the circuit containing e. Let t(C∗) denote the sum of the weights on

the edges in C∗. We distinguish between three cases:

Case 1. T ∩ E(C∗) 6= ∅: Then c(T ∪ {e})− c(T ) = 0, and (2.1) clearly holds.

Case 2. T∩E(C∗) = ∅ and Q∩V (C∗) 6= ∅: Then c(T∪{e})−c(T ) = c(S∪{e})−c(S) =

t(C∗), and (2.1) holds.

Case 3. T ∩ E(C∗) = ∅ and Q ∩ V (C∗) = ∅: Then C∗ is a non-internal circuit. Note

that since C∗ is non-internal it can at most share one vertex with other circuits (but

may share this vertex with more than one circuit). Let C∗ denote the set of circuits

connected to C∗. Then either: T ∩ E(C∗) 6= ∅, in which case c(T ∪ {e}) − c(T ) =

t(C∗) ≤ (S ∪ {e}) − c(S), or T ∩ E(C∗) = ∅ in which case c(T ∪ {e}) − c(T ) =

(S ∪ {e})− c(S) = t(C∗) + t(Cmin), where Cmin ∈ C∗ denotes a circuit connected to C

such that t(Cmin) ≤ t(C ′) for all C ′ ∈ C∗, and Cmin contains a depot. In both cases

(2.1) holds.

If C(G) = ∅, then for each directed circuit C in G, C either contains a depot, or C

is connected to a circuit containing a depot (since k ≥ 1). Thus, we can argue as in the

situation above.

For the ‘only if’ part: If G is not weakly cyclic, there exists a subgraph G1 in G as

in Figure 6. Consider Figure 6, and let the set of arcs contained in the three directed

paths between w1 and w2 be given by E1, E2 and E3 respectively. Let t(e) = 1 for all

e ∈ E1 ∪ E2 ∪ E3, and let t(e) be arbitrarily large for all e ∈ E(G) \ E(G1). If we
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Figure 6: Non-weakly cyclic directed graph

assume, for example, that w1 ∈ Q, then

c(E1 ∪ E2 ∪ E3) + c(E3) = (|E1|+ |E2|+ 2|E3|) + (|E3|+ min{|E1|, |E2|})

> (|E1|+ |E3|) + (|E2|+ |E3|)

= c(E1 ∪ E3) + c(E2 ∪ E3),

and therefore, c(E1 ∪ E2 ∪ E3)− c(E1 ∪ E3) > c(E2 ∪ E3)− c(E3),

which shows that the game is not submodular. Hence, G is not globally k-CP submod-

ular.

The theorem above showed that even if every vertex is associated with a depot,

only weakly cyclic digraphs are globally k-CP submodular. If, on the other hand, there

are too few depots in the multi-depot CP problem, a connected digraph is not globally

k-CP submodular.

Theorem 4.8. Let G be a strongly connected directed graph for which C(G) 6= ∅, and
let 1 < k ≤ m−min{|C||C ∈ C(G)}. Then G is not globally k-CP submodular.

Proof. From the proof of Theorem 4.7 only weakly cyclic digraphs can be globally k-

CP submodular. To prove the present theorem, we therefore only need to show that a

weakly cyclic digraph is not globally k-CP submodular for 1 < k ≤ m −min{|C||C ∈
C(G)}. Let Γ = (E(G), (G,Q), t), let (N, c) be the induced game, and let 1 < k ≤
m−min{|C||C ∈ C(G)}. Then we can choose a Q ⊂ V (G) such that at least one internal

circuit C0 does not contain a depot but is connected to two different circuits C1 and C2

both containing depots, for example as in Figure 7. To see that the induced game is not

submodular for every non-negative weight function, choose t such that t(C2) ≤ t(C1)

and consider S = {E(C0)} and T = {E(C0), E(C1)}. Then since t(C2) ≤ t(C1), we see

that c(S ∪ E(C2)) = c(S) whereas c(T ∪ E(C2)) − c(T ) = t(C2). Thus, the induced
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Figure 7: Internal circuit C0 containing no depots in a weakly cyclic digraph

game is not submodular for all non-negative weight functions, and G is not globally

k-CP submodular.

The final result of this section shows that all directed weakly cyclic graphs are locally

k-CP submodular.

Theorem 4.9. Let G be a strongly connected digraph. If G is weakly cyclic, then G is

locally k-CP submodular.

Proof. Let G be weakly cyclic, let Γ = (E(G), (G,Q), t), and let (N, c) be the induced

game. We need to show that (2.1) holds. For every k ∈ {1, . . . ,m}, let Q be chosen as

follows: If possible, place a depot in (at least) one vertex in each circuit. Otherwise,

assign depots such that the subgraph consisting only of circuits containing depots is a

strongly connected graph. Now, let G1 denote the subgraph consisting of all circuits in

G that contain depots according to Q. Then G1 is strongly connected. Let e ∈ E(G),

and let C∗ denote the circuit containing e. We consider two cases:

Case 1. e ∈ E(G1): If c(T ∪ {e}) − c(T ) = 0, then (2.1) holds, and otherwise, c(T ∪
{e})− c(T ) = c(S ∪ {e})− c(S) = t(C∗).

Case 2. If e ∈ E(G) \ E(G1), there exists a vertex v ∈ Q such that every S ∪ {e}-tour

must pass v in order to visit e. Thus, for any S ⊆ N \ {e} there is a min. weight

S ∪ {e}-tour in which e is serviced by v, along with all other edges in C∗. Then for

every e ∈ E(G) \ E(G1) there exists a submodular one-depot CP game (N, c{v}) such

that cQ(S ∪ {e})− cQ(S) = c{v}(S ∪ {e})− c{v}(S) for all S ⊂ T ⊆ N \ {e}, and (2.1)

is fulfilled.

From Theorem 4.7 and Theorem 4.9, it follows that the set of locally k-CP submod-

ular digraphs is a superset of the set of globally k-CP submodular digraphs.
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