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Graphs inducing totally balanced and submodular

Chinese postman games

M. Josune Albizuri a,c Herbert Hamers b

Abstract

A Chinese postman (CP) game is induced by a a weighted undirected, connected graph in
which the edges are identified as players and a vertex is chosen as post-office location.

Granot and Granot (2012) characterized graphs that give rise to CP games that are balanced.
This note completes this line of research by characterizing graphs that give rise to CP games
that are submodular (totally balanced, respectively).
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1 Introduction

Chinese postman (CP) games, introduced in Hamers et al. (1999), are defined on a weighted
undirected connected graph in which a vertex is fixed, referred to as post-office, and the players
reside in the edges. More precisely, the choice of the location of the post-office and the non-
negative weighted (or cost) function determines a specific CP game on this graph, since the value
of a coalition in a Chinese postman (CP) game is obtained by a cheapest tour that starts and ends
at the post-office and visits all members of this coalition. Hence, the value of a coalition reflects
the cheapest costs a coalition can be visited. Observe that the costs of the cheapest tour that visits
all edges in a graph at least once is equal to the value of the grand coalition, i.e. the set that
consists of all players, of the CP game that is induced by that graph. Hence, the value of the grand
coalition is the result of solving the related Chinese postman (CPP) problem (cf. Mei-Ko Kwan
(1962), Edmonds and Johnson (1973)).

For a cooperative game (N, c), whereN is the set of players and c : 2N → IR is the characteristic
function, the core of a cooperative game (cf. Gillies (1953)) consists of all vectors which distributes
the cost of the grand coalition among the players in such a way that no subset of the grand coalition
has an incentive to deviate from the grand coalition, i.e.

Core(N, c) = {x ∈ IRN |
∑

i∈S

xi ≤ c(S) for all S ⊂ N,
∑

i∈N

xi = c(N)}.

Hamers (1997) showed that CP games may not be balanced, i.e. the core is empty. However,
they showed that a CP game is balanced if the corresponding graph is weakly Eulerian. Further,
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they showed that a CP game is submodular if the corresponding graph is weakly cyclic, that is,
every edge in this graph is contained in at most one circuit. A game (N, c) is called submodular if
its characteristic function is submodular, i.e. for all S, T ⊂ N holds

c(S ∪ T ) + c(S ∩ T ) ≤ c(S) + c(T ).

A game (N, c) is called totally balanced if each subgame (T, cT ) is balanced, where cT (S) = c(S)
for all S ⊆ T . Observe that submodular games are totally balanced (cf. Shapley (1953)), and
totally balanced games are balanced.

Granot et al. (1999) called a graph global CP balanced (totally balanced, submodular, respec-
tively), if for all locations of the post-office and for all non-negative weight functions the corre-
sponding CP game is balanced (totally balanced, submodular, respectively). They showed that a
graph is CP balanced if and only if the graph is weakly Eulerian, and a graph is CP submodular
if and only if it is CP totally balanced if and only if it is weakly cyclic.

Granot and Hamers (2004) called a graph locally CP balanced (totally balanced, submodular,
respectively), if there exists at least one location of the post-office and for all non-negative weight
functions the corresponding CP game is balanced (totally balanced, submodular, respectively)
They showed that the locally CP balanced (totally balanced, submodular) graphs coincide with
the globally balanced (totally balanced, submodular) graphs, respectively.

Granot and Granot (2012) recently characterized super locally CP balanced graphs. A graph
is called super locally CP balanced if for at least one location of the post-office and at least one
positive weight function the corresponding CP game is balanced. They showed that a graph is
super locally CP balanced if and only if for every odd-cardinality minimal cutset A of order larger
or equal to three, there exists a one-or-two edge cutset which is closer than A to the post-office in
the graph.

In this paper we characterize super locally CP totally balanced and submodular graphs, which
are defined similar to super locally CP balanced graphs. A graph is super locally CP totally
balanced if and only if for every minimal cutset A of order larger equal to three, there exists a
one-or-two edge cutset which is closer than A to the post-office in the graph. Observe that the
condition odd-cardinality on the cutset A is not required in the class of super locally CP totally
balancedness graphs, in contrary to super locally CP balanced graphs, which shows that the class
of super locally CP totally balanced graphs is a proper subset of the class of super locally CP
balanced graphs. A graph is super locally CP submodular graph if and only if it is weakly cyclic,
which is equivalent to the class of local and global CP submodular graphs.

Totally balancedness is an interesting property since for each subgame a core element can be pro-
vided and from the perspective of Population Monotonic Allocation Schemes (PMAS), introduced
by Sprumont (1990), since it is a necessary condition for the existence of a PMAS. The significance
of submodularity is even more important since for these games some solution concepts have nice
properties. For instance, the Shapley value is the barycentre of the core (Shapley (1971)), the
Aumann-Davis-Masschler bargaining set coincides with the core and the nucleolus coincides with
the kernel (Maschler et al. (1972)) and the compromise value (Tijs (1981)) can be calculated in
polynomial time.

CP games are contained in the class of OR games arising from network problems. There exists a
line of research in which game theoretical properties of the OR game are characterized by properties
of the underlying network (graph). For example, Herer and Penn (1995) showed that graphs which
are obtained as a 1-sum of K4 and outerplanar graphs characterize submodular Steiner-traveling
salesman games. Okamoto (2003) showed that minimum vertex cover games are submodular if
and only if the underlying graph is (K3, P3)-free, i.e., no induced subgraph is isomorphic to K3 or
P3 and minimum coloring games are submodular if and only if the underlying graph is complete
multipartite. Deng et al. (2000) showed that minimum coloring games are totally balanced if and
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only if the underlying graph is perfect. Hamers et al. (2011) showed that minimum coloring games
have a Population Monotonic Allocation scheme if and only if the graph is (P4, 2K2)-free.

This note introduces in section 2 besides some notions from graph theory, the Chinese postman
game. The characterization of super locally CP submodular and super locally CP totally balanced
graphs is presented in section 3, respectively.

2 Chinese postman games

Let G = (V (G) , E (G)) be an undirected graph where V (G) and E (G) denote the set of ver-
tices and edges of G respectively. Let v0 ∈ V (G) denote the post-office in G. A walk in G =
(V (G) , E (G)) is a finite sequence of vertices and edges of the form v1, e1, v2, e2, ..., vk, ek, vk+1

with k ≥ 0, v1, v2, ..., vk+1 ∈ V (G) and e1, e2, ..., ek ∈ E (G) such that ej = (vj , vj+1) for all
j ∈ {1, ..., k}. If v1 = vk+1 then the walk is referred to as a closed walk and if v1 = vk+1 = v0 as a
tour. If all edges of a walk are different then the walk is a path. The graph G = (V (G) , E (G)) is
connected if for any two vertices in G there is a path in G between the two vertices.

Let l : E (G) → R++ be a positive edge-cost function. We assume that each edge belongs to a
different player. Therefore, the set of players N(G) can be identified with the edge set E(G), i.e.
N(G) = E(G).

Let T = v0, e1, ...ek, v0 be a tour in G. Then T is feasible for a coalition S ⊆ E(G) if every edge
of S is visited by T , i.e. S ⊆ {e1, ..., ek}. The total cost of T is k(T ) =

∑k
j=1 l(ej). Given and edge

set E1 ⊂ E(G) we denote by k(E1) the costs of the edges in E1, i.e. k(E1) =
∑

e∈E1
l(e), and the

costs of a path P equals k(P ) =
∑

j∈E(P ) l(e) where E(P ) are the edges of path P .

Definition 2.1 The Chinese Postman (CP) game, (N (G) , c), induced by a connected graph G =
(V (G) , E (G)) , in which v0 ∈ V (G) is the post-office and l the positive edge-cost function is defined
by

clG (S) = min {k (T ) : T is a feasible tour for S}

for every S ⊆ N (G).

From now on, for short, we will say that (G, v0, l) induces the CP game (N(G), clG).

3 Submodularity and totally balancedness

Granot and Granot (2012) completely characterize super locally CP balanced graphs. In this
section we provide a complete characterization of super locally CP submodular and super locally
CP totally balanced graphs. We first provide the formal definition of these graphs.

Definition 3.1 A connected graph G = (V (G) , E (G)) is a super locally CP submodular (resp.
totally balanced) graph if there exists a location of the post-office v0 ∈ V (G) and a positive edge-cost
function lG such that the CP game (N (G) , clG) induced by (G, v0, lG) is submodular (resp. totally
balanced).

It turns out that the super locally CP submodular graphs are the weakly cyclic ones, that is,
the same graphs obtained by employing the stronger definitions of submodularity considered by
Granot et al. (1999) and by Granot and Hamers (2004).

Theorem 3.1 A connected graph is a super locally CP submodular graph if and only if it is weakly
cyclic.
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Proof: Since the class of globally CP submodular graphs is contained in the class of super
locally CP submodular graphs, the if-part follows from Hamers (1997).

Assume for the only if-part that G = (V (G) , E (G)) is a connected graph that is not weakly
cyclic. We show that G is not super locally CP submodular. We have to show that for every choice
of the location of the post-office v0 ∈ V (G) and every positive edge-cost function lG : E(G) → R++,
the CP game (N (G) , clG) induced by (G, v0, lG) is not submodular.

If G is not weakly cyclic then G contains a connected subgraph G∗ = (V (G∗) , E (G∗)) such
that E(G∗) = E1 ∪ E2 ∪ E3 in which E1, E2 and E3 are the edges as depicted in Figure 1 and
let V (G1), V (G2) and V (G3) be the vertices corresponding to E1, E2 and E3, respectively. Let
w1, w2 ∈ V (G∗) be the two vertices of degree 3 in G∗ as indicated in Figure 1.

w1 w2

E1

E2

E3

Figure 1 The subgraph G∗.

Take v0 ∈ V (G) as the post-office and lG as positive edge-cost function. We denote by P v0,v the
set of paths from the post-office v0 to some vertex v ∈ V (G∗) that contains no vertex of the set
V (G∗) \ {v}. Since G is connected, the set P v0,v is non-empty. Let P1 be a cheapest path that
connects the post-office v0 to V (G∗), i.e. for all v ∈ V (G∗) and for all P ∈ P v0,v holds k(P1) ≤ k(P ).
Note, if v0 ∈ V (G∗) we reduce P1 to the vertex v0, and the cost associated with P1 is zero. Let us
suppose without loss of generality that the vertex v that connects P1 to G∗ is located at V (G1).
We distinguish between two cases.
Case 1: k(P1) < k(P ) for all P ∈ P v0,w1 .
The assumption implies that v 6= w1. Let us consider A = E1 ∪ E3 and B = E1 ∪ E2. Let
(N (G) , clG) be the CP game induced by (G, v0, lG). Then by definition of P1 we have

clG (A) = k (E1) + k (E3) + 2k (P1) ,

clG (B) = k (E1) + k (E2) + 2k (P1) .

Now, we prove

clG (A ∩B) > k (E1) + 2k (P1) . (1)

Since lG is a positive edge-cost function, we have that clG(E1) > k(E1). So, if v = v0 we have
k(P1) = 0 which immediately proves (1).

Hence, we may assume that v 6= v0. Consider a feasible tour T = v0, e1, v1, e2, ..., vi−1, ei, ..., vj−1

, ej , ..., vk−1, ek, v0 of A ∩ B = E1. Without loss of generality we can assume that there exists i, j
such that ei ∈ E1, {e1, ..., ei−1} ∩ E1 = ∅, ej ∈ E1 and {ej+1, ..., ek} ∩ E1 = ∅. Observe that
E1 ⊆ {ei, ..., ej}. Since k (P1) is the cheapest connection between v0 and V (G1), it follows that

i−1
∑

h=1

lG (eh) +

k
∑

h=j+1

lG (eh) ≥ 2k (P1) . (2)

If this inequality is strict for each feasible tour of A ∩ B, then the definition of clG (E1) implies
(1). If the inequality is an equality for some feasible tour of A∩B, then by the assumption in this
case we can conclude that w1 6∈ {vi−1, vj}. Taking into account that E1 ⊆ {ei, ..., ej}, the walk
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vi−1, ei, ..., vj−1, ej , vj has more edges than E1: those in E1, and some outside E1 or some edges
repeated from E1 . Hence,

j
∑

h=i

lG (eh) > k (E1) . (3)

From (2), (3) and the definition of clG (E1) follows (1) .
We can prove in a similar way that

clG (A ∪B) > k (E1) + k (E2) + k (E3) + 2k (P1) .

Hence, we can conclude

clG (A ∪B) + clG (A ∩B) > clG (A) + clG (B) ,

and therefore, (N, clG) is not submodular. Hence G is not submodular.

Case 2: There exists a P ∈ P v0,w1 such that k(P1) = k(P ).
Obviously, if k(P1) < k(P ) for all P ∈ P v0,w2 , we can apply the same argument as in case 1. Hence,
we can assume that there exists a P ∈ P v0,w2 such that k(P1) = k(P ). Let Pw1

(Pw2
) be a cheapest

path from v0 to w1 (from v0 to w2, respectively). Since k(Pw1
) = k(Pw2

) > 0 and w1 6= w2 we have
that v0 6∈ V (G∗). There exists uk ∈ V (G)\V (G∗) such that Pw1

= v0, e1, ...ek−1, uk, e
1
k+1, ..., e

1
t1
, w1

and Pw2
= v0, e1, ...ek−1, uk, e

2
k+1, ..., e

2
t2
, w2, i.e., both path have a common path v0, e1, ...ek−1, uk,

which possibly only consists of v0. Let E1 = {e1k+1, ..., e
1
t1
, e2k+1, ..., e

2
t2
} be the edge set formed by

the two disjoint parts of the paths Pw1
and Pw2

. Notice that the edges in E1 join w1 and w2, and
that E1, E2 and E3 are pairwise disjoint. Further, observe that v0, e1, ...ek−1, uk is the cheapest
connection to E1. Now, we can follow the arguments of case 1 by replacing E1 by E1, which
completes the proof. ✷

We address in the second part the characterization for super locally CP totally balanced graphs.
Now we prove that the class of globally CP totally balanced graphs is a proper subset of the class
of super locally CP totally balanced graphs. That is, the class of super locally CP totally balanced
graphs is bigger than the class of totally balanced CP graphs according to the stronger definitions of
totally balancedness by Granot et al. (1999) and by Granot and Hamers (2004). We also prove that
it is smaller than the class of core-nonempty CP graphs obtained by Granot and Granot (2012).
Before we provide the second main result we need some definitions. An egde cut set in a connected
graph G = (V (G), E(G)) is a set of edges A,A ⊆ E(G), whose removal disconnects G. An edge
cut in G is called minimal if no proper subset thereof is also an edge cutset of G.

Theorem 3.2 A connected graph G = (V (G), E(G)) is super locally CP totally balanced if and
only if there exists a v0 ∈ V (G) such that for every minimal edge cutset A, |A| ≥ 3, there exists a
one-or-two-edge cutset which is closer than A to v0 in G.

Proof: Let G = (V (G) , E (G)) be a super locally CP totally balanced graph, and assume in
contrary, that for any location of the post-office v0 there does not exist a one-or-two-edge cutset
which is closer than A to v0 in G. Take a v0 ∈ V (G) and a positive edge-cost funcion lG : E (G) →
R++. Then G contains a connected subgraph G∗ = (V (G∗) , E (G∗)) as depicted in Figure 1
with w1 = v0. Let (N(G), clG) be the CP game induced by (G, v0, lG). Assume that the core of
(

E (G∗) , (clG)E(G∗)

)

is non-empty. Indeed, if x ∈ RE(G∗) is in the core of
(

E (G∗) , (clG)E(G∗)

)

then

x (E (G∗)) = clG (E (G∗)) ,
x (E1 ∪ E2) ≤ clG(E1 ∪ E2) = k (E1) + k (E2) ,
x (E1 ∪ E3) ≤ clG(E1 ∪ E3) = k (E1) + k (E3) ,
x (E2 ∪ E3) ≤ clG(E2 ∪ E3) = k (E2) + k (E3) .
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Summing the inequalities, we get x (E (G∗)) ≤ k (E1) + k (E2) + k (E3), which contradicts the first
equality since k (E1) + k (E2) + k (E3) < clG (E (G∗)), which contradicts the non-emptyness of the
core.

Now consider the if-part. The condition on the graph G implies that each edge that is connected
to the post-office v0 is either a minimal one-edge cutset or contained in a minimal two-edge cutset.
Let v0 be connected to k1 minimal one-edge custsets and to k2 minimal two-edge cutsets. Then v0
induces k1 + k2 subgraphs, say G1 = (V (G1), E(G1)), ..., Gk1+k2 = (V (Gk1+k2), E(Gk1+k2)), that
only coincides in v0. For any edge-cost function lG it holds that the CP game (N(G), clG ) induced

by (G, v0, lG) satisfies clG(S) =
∑k1+k2

j=1 clG(S ∩ E(Gi)). Therefore, (N(G), clG) is totally balanced
if each subgame (E(Gi), clG|E(Gi)), i ∈ {1, 2, ..., k1 + k2} is totally balanced. Hence, it is sufficient
to consider two subgraphs.

First, consider a subgraph H = (V (H) , E (H)) that is formed by a single connected subgraph
H1 = (V (H1) , E (H1)) and an appended path P between the post-office v0 and vk ∈ V (H1) such
that vk 6= v0 and V (H1) ∩ V (P ) = {vk}. Let lH be an edge-cost function on E (H) such that the
sum of the cost of the edges in P is M . Let G∗ = (V (G∗) , E (G∗)) be a subgraph of H. We have
that E (G∗) = P ∗ ∪ (E (G∗) ∩E (H1)), where P ∗ is formed by the edges of the path P which are
in E (G∗).
We distinguish between two cases:
Case 1: E (G∗) ∩ E (H1) 6= ∅.
Let m = |E (G∗) ∩ E (H1)| and let Q be the cost of the cheapest tour in E (H1) which contains
E (G∗) ∩ E (H1) taking vk as the post-office. Consider x ∈ RE(G∗) such that xj = 2M+Q

m
if

j ∈ E (G∗) ∩ E (H1) and xj = 0 otherwise. Then x (E (G∗)) = x (E (G∗) ∩ E (H1)) = 2M + Q.
Since xj = 0 for all j ∈ P ∗, it is sufficient to show that for each S ⊆ E (G∗) such that S∩E (H1) 6= ∅

and E (G∗)∩E (H1) * S holds x(S) ≤ (clH )E(G∗) (S). Take M ≥ (m−1)Q
2 , then x (S) ≤ |S|(2M+Q)

m
≤

(m−1)(2M+Q)
m

≤ 2M ≤ (clH )E(G∗) (S). Hence x ∈ Core(E(G∗), (clH )E(G∗)).

Case 2: E (G∗) ∩ E (H1) = ∅.
Let P be v0, e1, v1, e2, ..., vk−1, ek, vk. Let P

∗ be containing the edges ep1 , ..., ept , with 1 ≤ p1 < ... <
pt ≤ k. Define x ∈ RE(G∗) by xp1 = lH(e1) + .. + lH(ep1) and xpj = lH(epj−1+1) + ... + lH(epj ) for
all j ∈ {2, ..., t}. It readily follows that x ∈ Core(E(G∗), (clH )E(G∗)).

Hence, (H, v0, lH) induces a totally balanced CP game.
Second consider the subgraph H = (V (H) , E (H)) formed by a single connected subgraph

H1 = (V (H1) , E (H1)) and two appended edge-disjoint paths P1 and P2 between the post-office v0
and v1, v2 ∈ V (H1) such that v0 /∈ {v1, v2}, V (H1) ∩ V (P1) = {v1} and V (H1) ∩ V (P2) = {v2}.
If we consider an edge-cost function lH such that the sum of the cost of the edges in P1 and in P2

coincide, we can prove in a similar way as the case of the first subgraph that (H, v0, lH) induces
the totally balanced CP game (E(H), clH ). ✷

In the following example we provide of a super locally CP totally balanced graph that is not
super locally CP submodular, and a super locally CP balanced graph that is not super locally CP
totally balanced.

Example 3.1 Consider the graph G = (V (G) , E (G)) as depicted in Figure 1 with the post-office
v0 /∈ {w1, w2}. It is super locally CP totally balanced but not super locally CP submodular.

Consider the graph G = (V (G) , E (G)) formed by P1, P2, P3, P4 that join the post-office
v0 ∈ V (G) and a vertex v1 ∈ V (G) \ {v0} , and such that any two of the four paths join only in v0
and v1. Then this graph is super locally CP balanced but not super locally CP totally balanced.
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