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Abstract

The spatial survival models typically impose frailties, which characterize unobserved het-

erogeneity, to be spatially correlated. This specification relies highly on a pre-determinate

covariance structure of the errors. However, the spatial effect may not only exist in the

unobserved errors, but it can also be present in the baseline hazards and the depen-

dent variables. A new spatial survival model with these three possible spatial correlation

structures is explored and used to investigate the determinants of value-added tax im-

plementation in 92 countries over the period 1970–2008 using the proposed model. The

estimation results suggest the presence of a significant copycat effect among neighboring

countries for both contiguity and distance weight matrices.
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1 Introduction

The value-added tax (VAT), first introduced 50 years ago, remained confined to a few countries

until the late 1960s. However, after another 30 years, roughly 150 countries have implemented

a VAT, which on average raises about 25 percent of their tax revenue (Ebrill et al., 2001). The

VAT is a tax on value added, which can be defined as the value that a producer adds to his

raw materials or purchases before selling the improved product or service. Its invoice-credit

mechanism—which seeks to tax the value added at each stage of the production-distribution

chain—causes it to fundamentally differ from a retail sales tax or a turnover tax. Our aim

is to study the factors influencing the introduction of a VAT in a country, and in particular,

the dynamic effects of the neighboring countries’ (VAT-)decisions on the VAT enactment. For

this purpose, we propose a new spatial duration model, discuss its estimation, and apply it to

data on VAT adoption covering last 40 years.

Which factors determine the VAT enactment? This question is of pivotal importance

to policy makers, but it has received remarkably little attention in the academic literature,

especially on the empirical side.1 Ebrill et al. (2001) provide some informal guidance on

selecting potential determinants of VAT adoption.2 They informally argue that countries are

more likely to adopt the VAT if they have a higher GDP per capita, are less open, have a higher

literacy rate, and feature a larger population. Recently, Keen and Lockwood (2010) are the

first ones to formally explore the causes and consequences of VAT adoption by using a dynamic

probit model for a sample of 143 countries during the 1975–2000 period. Their analysis makes

a first step in capturing possible neighborhood effects of VAT adoption: countries are more

inclined to implement a VAT when other countries in the same region have done so, the so-

called copycat effect. However, Keen and Lockwood (2010) neither employ a formal spatial

econometric framework nor make use of survival analysis to measure the copycat effect.3

1Various studies focus on the economic effects of VAT enactment. Nellor (1987) considers empirically the
revenue effect of VAT adoption by analyzing a sample of 11 European countries in the 1960s and 1970s and
provides evidence that VAT introduction raises the tax revenue-to-GDP ratio. Desai and Hines (2005) examine
the effect of VAT implementation on international trade and find that reliance on VAT is associated with less
exports and imports. Furthermore, this negative effect on exports is stronger among low-income countries
than it is among high-income countries.

2We focus on the date of VAT implementation. However, we will refer to adoption, enactment, and imple-
mentation interchangeably.

3Brockmeyer (2010) uses the Cox proportional hazard model to estimate the impact of lending by the
International Monetary Fund (IMF) on VAT adoption in a panel of 125 countries during the period 1975–
2000, but she does not focus on the spatial dimension.
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To examine this copycat effect, it is not sufficient to incorporate a variable that indi-

cates the proportion of countries with a VAT in the same region. The reason is that these

neighborhood effects do not only exist between the observations, they might also occur in the

unobserved factors and thus in error term. With regard to the spatial dependence among the

observations and in the unobserved component, the traditional (non-spatial) estimation pro-

cedures may not be consistent to draw appropriate inferences as their assumptions have been

violated. Hence, appropriate inference is not feasible. On the other hand, standard spatial

survival model always assume that the spatial correlation structure only exists in the unob-

served errors, which is not realistic and does not facilitate examining the spatial correlation

explicitly (e.g., see Li and Ryan, 2002; Bastos and Gammerman, 2006).

The purpose of this paper is to develop a new spatial survival model that captures the

spatial effects explicitly via an observed spatial lag (i.e., in terms of including a spatially

lagged dependent variable) and to apply it to investigation of the neighborhood effects of

VAT implementation. To this end, we propose a new spatial survival model, discuss its

estimation, and apply it to a unique dataset on VAT adoption spanning the period 1970–

2008 (the sample consists of 92 countries, of which 71 countries have adopted a VAT). To

capture spatial dependence, our model contains three location-dependent components: (1)

spatial dependence exists in the baseline hazard by allowing a region-specific baseline hazard

function; (2) spatial dependence is present across the observations via a spatial lag; and (3)

spatial dependence occurs in the error terms, which have a distance-based variance-covariance

structure. Whereas the first two spatial effects are new in the context of duration models, the

last one has been used in various studies as discussed in the following paragraph.

There is a large literature on survival analysis, which studies the time until a specific event

takes place. The pioneering work on the proportional hazard model is Cox (1972), which is

based on the assumption of proportionality of hazard rates. As this assumption might be too

restrictive in practice, models accounting for time-varying covariates (e.g., Gamerman, 1991)

and for unobserved heterogeneity were developed. The unobserved heterogeneity is typically

captured by means of random effects called frailties; this term and frailty models have been

been first introduced by Vaupel et al. (1979). To handle the dependence of unobserved effects

in georeferenced data, spatial frailty models were proposed, where the frailties corresponding

to certain strata or clusters are spatially arranged (e.g., as clinical sites or geographical re-
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gions). Spatial frailty models can be either geostatistical, where the exact geographic locations

of the strata are used, or lattice, where only the positions of the strata relative to each other

are used (cf. Banerjee et al., 2003). In the geostatistical approach, the frailties are typically

modeled as zero-mean Gaussian random variables with a non-diagonal location-based covari-

ance matrix, where the distance correlation matrix has various forms such as exponential,

powered exponential, spherical, Matern, and so on (cf. Li and Ryan, 2002). In the lattice

approach, the conditionally autoregressive model—which is introduced by Besag (1974) and

studied further by Carlin and Banerjee (2002), for instance—is widely used. This type of

model studies the discretely indexed regions where the spatial information is based on the

adjacency of regions rather than the distance metric.

The proposed model incorporates a spatially weighted dependent variable, which depends

on time and is highly correlated with the duration, as well as spatial frailties, which are

correlated across cross-sectional units. For the estimation of this model, the Bayesian analysis

in the form typically applied to geostatistical duration models and duration models with time-

varying covariates is used. The parameters of interest are thus estimated using the Markov

chain Monte Carlo (MCMC) technique employed for dynamic survival models by Hemming

and Shaw (2002), for instance. In particular, we follow the the MCMC estimation approach

of Bastos and Gamerman (2006), who designed it for dynamic survival models with spatial

effects. The main difference lies in that Bastos and Gamerman’s model allows for time-varying

coefficients in the hazard function, whereas our model assumes constant coefficients, but adds

the spatial lag of the dependent variable and location-dependent baseline hazard.

Finally, this proposed model and estimation technique is applied to our VAT data. The

results provide strong evidence of a copycat effect irrespective of the imposed spatial structure

(i.e., based on a contiguity or distance weight matrices). The copycat-effect estimates are

found to be quite robust to model specifications with and without frailties.

The remainder of the paper is organized as follows. In Section 2, a detailed description of

the proposed spatial duration model and its estimation is provided. In Section 3, we present

the dataset, describe the MCMC simulation setup, and discuss empirical results. Finally, the

conclusion follows in Section 4.
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2 The Model

In this section, the proposed spatial duration model is introduced, the estimation procedure

is described, including the choices of prior distributions of parameters, and the posterior

inference and computation are discussed.

2.1 The Spatial Duration Model

Consider a sample of i = 1, ..., N units (e.g., countries) observed for t = 1, ..., T years. Let

Xi,t−a be a k-dimensional vector of duration-dependent covariates measured at time t− a for

unit i, where k is the number of variables in Xi,t−a and a ≥ 0 is a suitable lag. The group of

duration-independent covariates with l variables is denoted by Zi. Further, let yi,t−b be the

event (survival) dummy, which equals unity if the analyzed event (e.g., the VAT introduction)

occured in unit i at time t− b or earlier and is zero otherwise; b ≥ 0 denotes again a suitable

lag. It is straightforward to see that yi,t−b is duration dependent as it could also be defined as

an indicator function I(ti ≤ t− b). The choices of lags a and b are application specific. In our

case, because there is a time lag between the time of negotiation, adoption by parliament, and

the actual implementation of a VAT, the integer parameters a and b will be used to capture

the time lags specific to the VAT enactment (see Section 3.1), but they can also equal 0 in

other applications.

The proportional hazard function of the proposed spatial duration model is given by

λi (t) = λ0 (t, si) exp
[

X⊤
i,t−aβ + Z⊤

i γ + ρWiy.,t−b + Ui(si)
]

, (1)

where λ0 (t, si) is the baseline hazard rate dependent on the duration t and the spatial location

si of unit i. As in the standard proportional hazard models (Cox, 1972), the hazard rate de-

pends on the parameters β and γ of the covariates. The spatial extension of the model consists

of three elements. First, the baseline hazard λ0 (t, si) is allowed to be a function of location

si. Next, the spatial interaction term ρWiy·,t−b consist of the parameter ρ and the spatially

lagged values of the event dummy Wiy·,t−b, where Wi refers to the ith row of the spatial

weight matrix WN (defined and discussed below) and y·,t−b = (y1,t−b, . . . , yN,t−b)
⊤. Finally,

the spatial frailty Ui(si) is a second-order stationary zero-mean process, that is, E [Ui(si)] = 0,

Var [Ui(si)] = σ2, and Cov [Ui(si), Uj(sj)] = σ2ϕ(si, sj ;φ) for all i 6= j, where ϕ(si, sj ;φ) is
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a valid two-dimensional correlation function (see Section 2.3), φ is a parameter controlling

this function, and σ2 denotes the variance of frailties. This setting represents a traditional

approach in geostatistical modeling to capture spatial association among observations at a

fixed set of spatial locations si.

Our model contains many common models as special cases: (i) the Cox (1972) model is

obtained if λ0(t, si) = λ0(t) and γ = ρ = Ui = 0; (ii) the frailty model (Clayton, 1978) is

derived if λ0(t, si) = λ0(t) and γ = ρ = φ = 0; (iii) the frailty model with group-varying

baseline hazards (Carlin and Hodges, 1999) is obtained if γ = ρ = φ = 0; (iv) spatial frailty

models (Carlin and Banerjee, 2002) are obtained if λ0(t, si) = λ0(t) and γ = ρ = 0. (Note

that φ = 0 is assume to correspond to ϕ(si, sj;φ) = 0 irrespective of si and sj.)

The spatial weight matrix WN has to be specified to estimate the model as it describes

which neighbors of unit i influence its hazard rate. Typically, WN is assumed to be row-

normalized so that Wi in (1) contains weights summing up to 1. In the VAT application, we

use two different spatial weight matrices. The first one is the contiguity matrix, which only

indicates whether two countries share a common border. The elements of this weight matrix

are wC
ij = bij/

∑N
i=1 bij for i 6= j and wC

ij = 0 for i = j, where bij is the border dummy that

equals to one if countries i and j share a common border and zero otherwise. The second

kind of the spatial weight matrix employs the inverse of the squared distance between the

largest cities of two countries to reflect the gravity type of approach.4 In contrast to the

previous measure, the distance scheme enables copycat effects to exist among all countries.

The elements of this distance matrix can be characterized by:

wD
ij =







d−2
ij /

∑N
j=1 d

−2
ij > 0 for i 6= j

0 for i = j
, (2)

where dij reflects the geographical distance between the largest cities of countries i and j

computed as the great circle distance given latitude and longitude.

Finally, the specification of the baseline hazard function λ0(t, si) is discussed since it is

specified only as a general function of time and location. While this general specification

requires just some additional regularity assumptions to be identifiable and estimable, the

focus of this paper is on a piecewise-constant baseline hazard function defined on a one- or

4Other alternatives to measure the distance between two countries can be based on the amount of trade
between two countries, for instance.
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two-dimensional grid because of the scarcity of data and ease of estimation. Additionally in

large data sets, this piecewise-constant approach can be used as a nonparametric estimator of

the baseline hazard function if the grid size is let to converge to 0 with an increasing sample

size. Assuming first that the baseline hazard function depends only on time, λ0(t, si) = λ0(t),

the time span can be partitioned into the following disjoint intervals following the specification

of Gamerman (1991):

Ij =



























[0, α1] j = 1

(αj−1, αj ] j = 2, ..., J − 1

(αJ−1,+∞) j = J

with α0 = 0 < α1 < ... < αJ < +∞. The baseline hazard rate is then given by

λ0(t) = λj if t ∈ Ij , (3)

where λj > 0 for j = 1, ..., J . An extension of model (3) allows the baseline hazard rates

to differ across regions, but to be constant within each region (a region is assumed to be a

set of neighboring locations; for example, a continent can represent a region when units are

countries). More specifically, the baseline hazard rate in region r = 1, ..., R is given by λj,r if

duration t belongs to Ij, where λj,r > 0 for all r and j. If Rir denotes the regional dummies,

where Rir = 1 if unit (country) i is in region r and zero otherwise, the baseline hazard can be

defined as

λ0(t, si) =
J
∑

j=1

R
∑

r=1

λj,rI(t ∈ Ij)I(Rir = 1) =
J
∑

j=1

R
∑

r=1

λj,rI(t ∈ Ij)Rir. (4)

2.2 Maximum Likelihood Estimation

Consider now the survival sample of size N , D = {ti, δi, si,Xi1, . . . ,Xi,ti , Zi, yi,1, . . . , yi,ti}
N
i=1,

where ti denotes the duration (e.g., time to the VAT introduction) and δi is the right-censoring

indicator: δi = I(‘no censoring’). This sample should be used to estimate the parameters of

model (1): the parameter vector θ =
[

lnλ⊤0 , β
⊤, γ⊤, ρ

]⊤
, where the baseline hazard function

is uniquely defined by JR parameter values λ0 = {λj,r : j = 1, . . . , J ; r = 1, . . . , R}, see (4).

As the estimation of model (1) relies on the maximum likelihood estimation, the likelihood
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function has to be constructed first.

Let T denote the (random) duration without censoring and F (t|Ii,t, θ) and f (t|Ii,t, θ)

describe the conditional distribution and density functions of T , respectively, where the in-

formation set Ii,t = [si,Xi,1, . . . ,Xi,t−a, Zi, y.,t−b, Ui(si)] represents all information observed

prior to time t. For the right-censored observations, we only know that the durations exceed

t, so the complement of the cumulative distribution function is

S (t|Ii,t, θ) = P (T > t|Ii,t, θ) =

∞̂

t

f (v|Ii,t, θ) dv = 1− F (t|Ii,t, θ) , (5)

where S(.) denotes the survival function. Consequently, the likelihood contribution of the ith

observation can be written as

f (ti|Ii,t, θ)
δi S (ti|Ii,t, θ)

1−δi ,

where δi is the right-censoring indicator. Hence, the conditional likelihood function equals

L (θ) =

N
∏

i=1

f (ti|Ii,t, θ)
δi S (ti|Ii,t, θ)

1−δi . (6)

We first derive the likelihood for the case that the baseline hazard depends on the duration,

but not on the location: λ0(t, si) = λ0(t). For simplicity, the duration-dependent (time-

varying) components will be now denoted by Vi,t(θ) = X⊤
i,t−aβ + ρWiy.,t−b and the duration-

independent (time-constant) components by Ci(θ) = Z⊤
i γ+Ui(si). Since generally the hazard

function Λ = − lnS, the hazard rate λ = Λ′, and the density function f = −S′, it follows that

ln f = ln[λS] = lnλ+ lnS and the conditional likelihood function can be written as

L(θ) = exp

{

N
∑

i=1

[δi lnλ(ti|Ii,t, θ) + lnS(ti|Ii,t, θ)]

}

(7)

= exp







N
∑

i=1



δi (lnλ0(ti) + Ci(θ) + Vi,ti(θ))− exp[Ci(θ)]

ti
ˆ

0

λ0(vi) exp[Vi,vi(θ)]dvi











.

As in Gupta (1991), we assume that all covariates stay constant for finite subperiods of

time, that is, Vi,t(θ) stays constant in the duration interval t to t+ 1 and jumps to Vi,t+1(θ)
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at period t+ 1. Therefore, the integral in equation (7) can be expressed as

ti
ˆ

0

λ0(vi) exp [Vi,vi(θ)] dvi =

ti
∑

vi=0

λ0(vi) exp [Vi,vi(θ)] . (8)

For the proposed piecewise-constant baseline hazard (3), the conditional likelihood function

can be finally rewritten as

L(θ) = exp







N
∑

i=1



δi





J
∑

j=1

[I(ti ∈ Ij) lnλj ] + Ci(θ) + Vi,ti(θ)



 (9)

− exp [Ci(θ)]
J
∑

j=1

[I(ti ∈ Ij)D
T
j (ti, θ)]











,

where

DT
j (ti, θ) =



























ti
∑

vi=α0

[λ1 exp(Vi,vi(θ))] ti ∈ I1,

j
∑

k=1

αk
∑

vi=αk−1

[λk exp(Vi,vi(θ))] +

ti
∑

vi=αj−1

[λj exp(Vi,vi(θ))] ti ∈ Ij, j = 2, ..., J.

In the more general case (4), when the baseline hazard rates are allowed to differ across

regions, an analog to equation (9) results in the conditional likelihood function

L(θ) = exp







N
∑

i=1



δi





R
∑

r=1

J
∑

j=1

[I(ti ∈ Ij)Rir lnλj,r)] + Ci(θ) + Vi,ti(θ)



 (10)

− exp [Ci(θ)]
R
∑

r=1

J
∑

j=1

[I(ti ∈ Ij)RirD
TR
j,r (ti, θ)]











,

where

DTR
j,r (ti, θ) =



























ti
∑

vi=α0

[λ1,r exp(Vi,vi(θ))] ti ∈ I1,

j−1
∑

k=1

αk
∑

vi=αk−1

[λk,r exp(Vi,vi(θ))] +

ti
∑

vi=αj−1

[λj,r exp(Vi,vi(θ))] ti ∈ Ij, j = 2, ..., J.

As the likelihood functions described in this section do not yield a closed-form solution,

owing to the unobserved frailties, the standard likelihood maximization cannot be applied.
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Therefore, in the context of spatial survival analysis, the Bayesian estimation in combination

with the MCMC method is used to obtain an approximation of the posterior distribution of the

parameters through posterior samples (cf. Hemming and Shaw, 2002; Bastos and Gamerman,

2006). For such analysis, the prior distributions of all parameters have to be specified in

Section 2.3. The posterior distributions of the parameters and their approximation by means

of the MCMC method are described in Section 2.4.

2.3 Prior Distribution

The spatial duration model (1) contains parameters of two groups: regression coefficients

θ and spatial frailties U . Let us now specify the prior distribution of these two parameter

groups, which are assumed to be conditionally independent. The parameters of these two

prior distributions, the so-called hyper-parameters, are denoted by Ψθ and ΨU , respectively.

The complete set of hyper-parameters is referred to by Ψ = (Ψθ,ΨU ) and is assumed to be

independent of the prior distributions of regression coefficients and spatial frailties. Therefore,

the full prior satisfies

p(θ, U,Ψ) = p(θ|Ψθ)p(U |ΨU )p(Ψ).

The prior density that we assign to θ is the normal prior density. Hence, the means bθ

and variances Tθ for these parameters will have to be specified. As Ψθ = (bθ, Tθ), the prior

specification can be expressed as follows:

θ ∼ N(bθ, Tθ) ⇐⇒ p(θ|Ψθ) ∝ exp
{

−(1/2)(θ − bθ)
⊤T−1

θ (θ − bθ)
}

. (11)

Concerning the spatial frailties, there is a number of possibilities to model the geographical

correlation when introducing the spatial dependence between observations (see Li and Ryan,

2002) that are shown to be valid in the sense that the resulting variance-covariance matri-

ces are positive definite on some open parameter sets (Ripley, 1981). Bastos and Gamerman

(2006) argue that the Gaussian process approach is flexible and accommodates many different

forms of spatial dependence, which are easily and directly implemented through the corre-

lation function. Furthermore, this approach could be easily applied to data based both on

continuously distributed locations and discrete disjoint regions.
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In our spatial duration context, we apply the Gaussian correlation function with k = 1,

which is also called the exponential correlation function as the correlation function introducted

in Section 2.1 equals ϕ(si, sj;φ) = exp(−||si − sj||/φ) (||si − sj|| denotes here the Euclidean

distance between the locations of units i and j). Therefore, the joint density of the spatial

frailties is given by

P (U |ΨU ) = p(U |σ2, φ) ∝ (σ2)−n/2|H(φ)|−1/2 exp[−
1

2σ2
U⊤H−1(φ)U ],

where H(φ)ij = ϕ(si, sj;φ) = exp(−||si − sj||/φ) for i, j = 1, . . . , N . Following Bastos and

Gamerman (2006), the prior of hyper-parameter σ2 is assumed to be Inverse Gamma (IG)

distributed, IG(aσ2 ,
bσ
2 ), and the prior of the hyper-parameter φ is assumed to be Gamma

distributed, G(aφ, bφ).

2.4 Posterior Inference and Computation

The posterior distribution is obtained by combining the likelihood function with the prior

distribution according to the Bayesian theorem. For example, the posterior density for model

(9) in Section 2.1 is, conditional on observed data, given by

p(θ, U,Ψ|D) ∝ exp







N
∑

i=1



δi





J
∑

j=1

[I(ti ∈ Ij) lnλj ] + Ci(θ) + Vi,ti(θ)





− exp [Ci(θ)]

J
∑

j=1

[I(ti ∈ Ij)D
T
j (ti, θ)]











,

× exp{−
1

2
(θ − bθ)

⊤T−1
θ (θ − bθ)}

× (σ2)−n/2|H(φ)|−1/2 exp{−
1

2σ2
U⊤H−1(φ)U}

× (σ2)−
aσ
2
−1 exp(−

bσ
2σ2

)φaφ−1 exp(−bφφ)

(cf. Bastos and Gammerman, 2006, eq. (23)); the expression for model (10) looks analogously.

This posterior distribution does not possess a closed-form analytic solution. Therefore,

MCMC methods will be used to approximate it through posterior sampling. As the condi-

tional distributions can be expressed mathematically, but do not have an explicit form, Gibbs

sampling (Geman and Geman, 1984) is difficult. Similarly to Bastos and Gamerman (2006),
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Table 1: Sampling Algorithm

Step 1: Specify an initial value ψ(0) = (θ(0), σ(0), U (0), φ(0)) and set j = 1.

Step 2: Repeat for j = 1, 2, ...,M.

(1) θ(j) ∼ p(θ|U (j−1), (σ2)(j−1), φ(j−1),D)

(2) U (j) ∼ p(U |θ(j), (σ2)(j−1), φ(j−1),D)

(3) (σ2)(j) ∼ p(σ2|θ(j), U (j), φ(j−1),D)

(4) φ(j) ∼ p(φ|θ(j), U (j), (σ2)(j),D)

Step 3: Return the values {ψ(1), ψ(2), ..., ψ(M)}.

we therefore use the random walk Metropolis-Hastings algorithm, which generates a sequence

of draws from the joint posterior distribution of parameters (Metropolis et al., 1953; Hastings,

1970). This procedure is capable of constructing an optimal proposal distribution and can be

used to generate samples from an arbitrary density. Additional statistical inference can be

carried out when the samples are obtained. The sampling algorithm is described in Table 1.

A key factor in achieving high efficiency of the Metropolis-Hastings algorithm is finding a

good proposal distribution for the parameters, where the proposal distribution should resemble

the true posterior distribution of parameters. As large sample theory states that the poste-

rior distribution of the parameters approaches a multivariate normal distribution, a normal

proposal distribution often works well in applications (Gelman et al., 2004).

The sampling efficiency of the Metropolis-Hastings chain is closely related to the acceptance

rate. Roberts et al. (1997) show for the random walk Metropolis-Hastings algorithm that the

optimal acceptance probability should be around 0.45 for a single parameter and approach

0.23 in higher dimensions. If the acceptance rate is high and thus most new samples occur

right around the current data points, the Markov chain is moving rather slowly, the parameter

space cannot be fully explored, and the autocorrelation of the chain is also high. On the other

hand, if the acceptance rate is low and thus the proposed samples are often rejected, the chain

is not moving much and the variability of the chain will be underestimated. Although it is

almost impossible to have the exact desired acceptance rate for a Metropolis chain, Roberts

and Rosenthal (2001) empirically demonstrate that acceptance rates between 0.15 and 0.5

achieve at least 80 percent efficiency. Therefore, the acceptance probability could be within a
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small tolerable range of the optimal values.

3 Empirical Application

In this section, our dataset is described, the setup of the MCMC algorithm is discussed, and

the estimation results are provided.

3.1 VAT Data

We apply the methodology introduced in Section 2 to the analysis of VAT adoption. The

potential sample is an unbalanced panel of 131 countries that have adopted a VAT over

the period 1970–2008. The date of VAT implementation is obtained from data files of the

IMF’s Fiscal Affairs Department, the Tax News Service of the International Bureau of Fiscal

Documentation, and various other sources. The effective sample size in the benchmark case

is only 92 countries, reflecting missing data (see below). The list of countries, descriptive

statistics, and data definitions with data sources are reported in Tables A.1–A.3, respectively.

Countries of the former Soviet Union and Eastern Europe were dropped from the full sam-

ple because they faced several wider structural reforms—including downsizing of the public

sector—at the time of VAT introduction. As a result, a negative correlation between public

revenue and VAT adoption may be introduced. Furthermore, no reliable data—except artifi-

cially constructed data—were available for the pre-1992 period as these countries did not exist

yet. The resulting subsample contains 108 countries.

Table A.4 reports missing data in the subsample. (All variables are described in Section

3.2 and Table A.3.) The missing data concentrate themselves in the series of the government

revenue-to-GDP ratio, which is denoted by Rq for q = {A,B}. A new series REV is con-

structed using RA and RB, which are two revenue-to-GDP ratios obtained from an official

and internal IMF data source, respectively. The new series has less missing values.5 In order

to obtain a balanced panel without gaps—which is required by our MCMC algorithm—the

5Although RA and RB are derived from different sources—which employ slightly different definitions of
public revenue and have different missing years—they are observed to be proportional to each other. Suppose

there is a constant ratio Q such that E(RA) = Q ∗E(RB), we define REV = RA+RB

2
as the new series. In this

case, E(REV ) = E(R
A
+RB

2
) = Q+1

2
E(RB) = 1

2
(1 + 1

Q
)E(RA). Thus, when both RA and RB are not missing,

REV is the average of these two; if RA is missing but RB is not missing, REV = Q+1

2
RB; if RA is not missing

but RB is missing, REV = Q+1

2
RA.
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Table 2: VAT Adoption by Region Across Various Time Periods

Year MECA EU WH AP AF Total

Total 7 10 12 17 25 71

2001–2008 2 0 0 0 8 10
1996–2000 1 0 1 8 7 17
1991–1995 1 2 4 4 7 18
1986–1990 3 3 0 3 2 11
1981–1985 0 2 2 1 0 5
1976–1980 0 0 2 1 1 4
1970–1975 0 3 3 0 0 6

Notes: Figures show the number of countries adopting a VAT during
the particular time frame. MECA, EU, WH, AP, and AF denote
Middle East and Central Asia, Europe, Western Hemisphere, Asia
and Pacific, and Africa, respectively.

missing data are interpolated using several deterministic rules. First, a missing data point is

replaced by the value obtained from its nearest neighborhood. An average of two data points

is applied if there are two neighboring values. Otherwise, linear interpolation between the

nearest preceeding and following observations in time is used. Second, the values after VAT

adoption are never used for interpolating missing values before VAT adoption. Third, the

maximum allowed number of consecutive missing values imputed by linear interpolation is set

to three. If we stick to the first three rules and then drop the countries with missing data,

52 countries remain, which yields our small sample. However, if we allow linear interpolation

when the missing data gap is more than three, 92 countries are left. As there are no qualitative

differences between the estimates for the two samples, the latter one containing 92 countries

is our main sample.

The mean duration before VAT introduction is 25.3 years. More detailed information is

reported in Table 2, which shows VAT adoption by region and time period. Once a VAT

is introduced, it stays in place, suggesting that there is a lot of sluggishness in the VAT

legislation. Only two countries (i.e., Belize and Malta) repealed the VAT and thus exited the

sample. Further, Figure 1 shows the Kaplan-Meier survival estimates of duration times in five

different regions. Survival rates are the highest in the Middle Eastern region (see the right-

hand side of figure). It can also be seen that the VAT adoption speed is varying in different

time intervals. Therefore in our final model, we distinguish the following four intervals in
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Figure 1: Kaplan-Meier Survival Estimates
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definitions (3) and (4): 1970–1990, 1991–2000, 2001–2008, and 2008–(censored). The survival

rates in these intervals seem to be different as indicated in Figure 1. Note that finer grids

with more time intervals were considered as well, but the effects of explanatory variables on

the hazard rate did not change.

Concerning the employed explanatory variables, there is typically a lag between the time

a country starts contemplating adopting a VAT and its actual adoption. Ebrill et al. (2001)

describe it takes roughly 18 months from the initial preparations until the passage by parlia-

ment of the VAT law. We therefore apply a two-year time lag to the covariates and set the

parameters a and b introduced in Section 2.1 equal to 2.

The treatment of the initial observations is an important theoretical and practical problem

in dynamic nonlinear panel data models. Much attention has been devoted to dynamic panel

data models with unobserved individual fixed effects. Although our model also theoretically

faces such an initial observation problem, it is not a real concern since the unobserved het-

erogeneity captured by frailties is, conditionally on observables, only a function of locations

rather than of the lagged dependent dummy variables. Moreover, our panel data cover years

from 1970 to 2008. If no countries had adopted a VAT before 1970, then the initial condition

problem would be easily solved by simply assuming y0 = 0 for all countries. However, only

eight countries in our dataset—i.e., Ivory Coast (1960), Brazil (1967), Denmark (1967), France
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(1968), Uruguay (1968), Germany (1968), the Netherlands (1969), and Sweden (1969)—have

adopted a VAT before 1970.6 Because we do not have control variables for the pre-1970 period,

we do not use the VAT dummy for that time period either.

3.2 Covariates

We include several sets of covariates on the right-hand side of the equation (1). All variables

are treated as time dependent unless said otherwise. The first set consists of macroeconomic

variables. Variable YPC is the logarithm of a country’s GDP per capita at Purchasing Power

Parity (PPP). In view of the early adoption of the VAT in Western Europe, we would expect

that wealthy countries are more likely to adopt a VAT, reflecting their more sophisticated

tax administrations. Openness (OPEN ), which is measured as the sum of the GDP shares of

goods imports and exports, is likely to have a positive effect on VAT adoption. Intuitively,

on average 55 percent of gross VAT revenue is collected at the border (cf. Ebrill et al. 2001),

giving open countries an easy tax handle. The share of agriculture in GDP (AGR) captures

the notion that VAT introduction is less likely in countries that have a large informal sector.

Further, we capture country size by population density (POPD), which is expected to have

a positive effect on VAT adoption. Finally, revenue (REV ), which is measured as the total

revenue-to-GDP ratio, is likely to have a negative effect on VAT adoption. To raise public

revenue, countries with low revenue ratios would be inclined to adopt a VAT: as Keen and

Lockwood (2006) show, the VAT is a ‘money machine’ because it is a more effective instrument

to raise revenue than other consumption taxes. All data on the macroeconomic variables are

taken from the World Bank’s World Development Indicators.

The second set consists of institutional variables. We include a dummy for federal countries

(FED) to capture the specific challenges posed by federal systems. The data are taken from

Treisman (2008). Keen and Lockwood (2010) argue that taking up a VAT may be less likely

in federal systems as they reserve extensive powers over sales taxation to lower levels, making

it hard to coordinate tax collection across jurisdictions. We expect this variable to have a

negative effect on VAT adoption. Ebrill et al. (2001) argue that the IMF has been an active

participant in the spread of the VAT. This participation has taken two main forms: (i) the

6According to Shoup (1973), the first consumption-type VAT was introduced in Brazil in January 1967.
France introduced a manufacturing-type VAT in 1948, which was extended to cover the retail stage in 1954.
This thesis only cover consumption-type VATs.

16



provision of technical assistance to countries; and (ii) the exercise of influence via lending

program conditionality. We capture the influence of the IMF through a dummy variable

(IMF ), which measures whether the country has received financial support from the IMF via

the stand-by arrangement or extended fund facility. We expect the IMF to have a positive

effect on VAT adoption. Finally, we consider the dummy variable WAR, which indicates

whether a country has experienced an armed conflict or not in a given year. As tax reform

incentives of countries in a war are likely to be less than non-war countries, we expect a

negative sign for this variable.

To capture regional effects, we include five regional dummies, that is, Western Hemisphere

(WH ), Middle East and Central Asia (MECA), Europe (EU ), Asia and Pacific (AP), and

Africa (AF ). Although there is no constant in our model, including all time dummies and

regional dummies would result in a multicollinearity problem with the baseline hazard. In

order to avoid this problem, the regional dummy AF for the African region is taken as the

base case in our analysis. Note that, by including the regional dummies, the baseline hazard

is allowed to differ by a constant among various regions (irrespective of time). A more general

setting, where the baseline hazard function depends both on time and region in a fully general

way as in (4), was analyzed, but the estimates of the baseline hazard were not significantly

different from the simpler specification, which is used in the rest of the paper.

Next, because FED and the regional dummies hardly change over time, they should be

considered as duration independent covariates. Therefore, the set of duration dependent

covariates consists of YPC, OPEN, AGR, POPD, WAR, IMF, and REV and our duration

independent covariates are FED, MECA, EU, WH, and AP.

We include the spatially lagged dependent variable—which measures strategic interaction

among governments—with a two-years lag similar to the other explanatory variables, whereas

Keen and Lockwood (2010) estimate the probability of a country adopting a VAT in response

to the contemporaneous proportion of neighbors in the region having implemented such a

tax. The copycat effect is founded in ‘yardstick competition’ (Besley and Case, 1995), that is,

voters use information on tax systems of neighboring jurisdictions to judge the performance

of the politicians of their home jurisdiction.7 As Keen and Lockwood (2006) demonstrate,

7More generally, strategic interaction is observed in countries’ decisions whether or not to adopt tax laws.
Alm et al. (1993) find evidence of a copycat effect in state lottery enactment in the United States using data
for the 1964–1992 period. In addition, Davies and Naughton (2007) and Egger and Larch (2008) provide
evidence of increased coalition formation among proximate countries for the case of environmental treaties and
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the money machine nature of the VAT leads to an increase in voter welfare. Consequently,

rational politicians will mimic the tax setting of neighboring jurisdictions. Hence, we expect

the number of VATs of neighboring countries to have a positive effect on the likelihood of a

country implementing a VAT.

3.3 MCMC Setup

The analysis is performed based on model described in Section 2. The algorithm was coded

in Matlab. We ran two separate MCMC chains with 12,000 iterations with different starting

values for each chain. The overlapping trace plots of the parameters show convergence after

around 8,000 iterations. In addition, the Gelman-Rubin diagnostics (Gelman and Rubin

1992) also confirm convergence. Therefore, we discarded the first 8,000 iterations as a pre-

convergence burn-in period. The last 4,000 samples were used for the posterior analysis in

this section. The hyper-parameters used for the prior distributions of the coefficients were

set as follows: bθ = 0 and Tθ = I (identity matrix). In fact, in the Metropolis-Hastings

sampling, we update each parameter in θ separately. Moreover, for the proposed variance of

each parameter, a tuning parameter is applied for controlling the acceptance rate to be in the

suitable range. Here, we adopt a vague IG(σa, σb) prior for σ2, where σa and σb are uniform

draws from the interval (1, 2). The hyper-parameters of the Gamma distribution for φ were

set as (φ∗, 1), where φ∗ is such that ϕ(dmax/2;φ
∗) = 0.05, which implies the distances (d)

larger than half the maximum observed distance (dmax) have low correlation and that the

prior for φ is centered around the prior guess φ∗; see Bastos and Gamerman (2006).

3.4 Results

The summary of estimation results is provided in Table 3. Before discussing and interpreting

them, let us first mention some important characteristics of the MCMC estimation procedure

related to the data.

Figure A.1 shows the sampling traceplot for all parameters and hyper-parameters in the

sample with 92 countries and the contiguity weight matrix. The sampling traceplots of other

model specifications are not displayed as they are similar. Short convergence patterns for the

parameters are observed along with high autocorrelations in their chains, potentially reflecting

preferential trade agreements, respectively.
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Table 3: Results for Sample of 92 Countries with Contiguity Weight Matrix

No Frailty Non Spatial Spatial
No Copycat Copycat No Copycat Copycat No Copycat Copycat

YPC -0.1589 -0.1379 -0.1745 -0.1590 -0.1196 -0.1840
(0.0116)** (0.0183)** (0.0178)** (0.0191)** (0.0167)** (0.0138)**

OPEN -1.5923 -1.6815 -1.5883 -1.8807 -1.7309 -1.7356
(0.0367)** (0.0327)** (0.0685)** (0.0861)** (0.0470)** (0.0549)**

AGR -1.6523 -1.6275 -1.3966 -1.5817 -0.9609 -1.2069
(0.0434)** (0.0516)** (0.0501)** (0.0703)** (0.0918)** (0.1371)**

POPD -0.0038 0.0143 -0.0052 0.0051 0.0748 0.1033
(0.0047) (0.0044)** (0.0074) (0.0071) (0.0131)** (0.0095)**

WAR -0.1978 -0.2305 -0.2215 -0.2996 -0.1118 -0.1189
(0.0158)** (0.0153)** (0.0190)** (0.0210)** (0.0278)** (0.0218)**

IMF 0.7807 0.7662 0.7497 0.7834 0.8165 0.7756
(0.0163)** (0.0155)** (0.0170)** (0.0153)** (0.0170)** (0.0152)**

REV -0.5196 -0.4406 -0.2494 -0.3310 -0.1479 -0.1105
(0.0536)** (0.0730)** (0.0558)** (0.0751)** (0.0718)* (0.0797)

ρ 0.3478 0.5984 0.3603
(0.0207)** (0.0290)** (0.0262)**

FED -0.6444 -0.7800 -0.5686 -0.7169 -0.5559 -0.5334
(0.0191)** (0.0201)** (0.0427)** (0.0498)** (0.0717)** (0.0959)**

MECA -0.6608 -0.6492 -0.7027 -0.6052 -0.3131 -0.2432
(0.0207)** (0.0249)** (0.0455)** (0.0503)** (0.1053)** (0.1019)*

EU 1.4187 1.3928 1.6162 1.6442 1.0563 1.0773
(0.0338)** (0.0359)** (0.0547)** (0.0538)** (0.1648)** (0.0786)**

WH 0.1726 0.1541 0.2791 0.3150 -0.1293 0.1170
(0.0241)** (0.0288)** (0.0409)** (0.0464)** (0.1464) (0.1727)

AP 0.0214 0.0324 -0.0076 0.0409 -0.4143 0.1820
(0.0180) (0.0179) (0.0613) (0.0510) (0.1700)* (0.2153)

ln(λ1) -1.7469 -1.9048 -1.8846 -1.8574 -1.9106 -1.6593
(0.0658)** (0.0988)** (0.1019)** (0.0791)** (0.0722)** (0.0889)**

ln(λ2) 0.2764 0.0494 0.3406 0.3183 0.5252 0.5636
(0.0653)** (0.0967) (0.0961)** (0.0680)** (0.0730)** (0.0884)**

ln(λ3) 0.6638 0.3760 0.9085 0.8317 1.3091 1.1099
(0.0619)** (0.0928)** (0.0778)** (0.0620)** (0.0698)** (0.0864)**

ln(λ4) -0.4631 -0.5964 -0.4131 -0.3974 -0.3069 -0.3481
(0.0344)** (0.0371)** (0.0355)** (0.0335)** (0.0373)** (0.0342)**

σ2 0.3504 0.4736 1.2319 0.7992
φ 3252.0 3269.2

Notes: **Significant at 99 percent level; *Significant at 95 percent level.
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a low effective sample size (ESS) as reported in Tables A.5 and A.6. Although there is no

evidence that the chains of hyper-parameters are converging, this does not cause a concern as

the inference on hyper-parameters is not the focus of our analysis.

Tables A.5 and A.6 provide 2.5 percent, 50 percent, 97.5 percent posterior percentiles and

posterior means of the parameters of our spatial duration model as discussed in Section 2.1. We

also report the ESS and estimated standard errors of the parameters V̂ESS. As the the average

sample variance would very likely be underestimated due to the positive autocorrelation in the

MCMC samples, Kass et al. (1998) use the ESS over the sample variance to be the variance

estimator, which is denoted by V̂ESS = s2/ESS, where s2 is the sample variance and ESS is

defined as ESS = N/κ using the sample size N , κ = 1+2
∑∞

k=1 ρk, and the autocorrelation ρk

at lag k for each parameter of interest. Empirically, the autocorrelation lag κ can be estimated

by using sample autocorrelations estimated from the MCMC chain, cutting off the summation

when it drops below 0.1 in magnitude (cf. Roberts, 1996). The last column of these two tables

reports the change of relative hazard ratio of VAT adoption of a unit change in a continuous

variable or of a change from zero to unity in a dummy.

The estimation results for the complete model are summarized in the last two columns of

Table 3, which contains the results using the contiguity spatial weight matrix and 92 countries;

the estimated results for both samples with both contiguity and distance weight matrix can

be found in Tables A.5 and A.6, respectively. For the sample with 92 countries, all estimated

parameters are significant, except for the revenue-to-GDP ratio and two regional dummies

(WH and AP ). The negative sign of the YPC coefficient shows that less wealthy countries

primarily adopt a VAT, which is not in line with expectations. This counterintuitive sign

can be explained by the pattern of VAT spread. Recent VAT adopters are less prosperous

economies than the early adopters, which were primarily industrialized countries. Indeed, most

of the VAT spread over the last twenty years occurred in Africa (see Table 2). In addition, once

countries become rich, the composition of the tax mix shifts toward income taxation, making

them less dependent on consumption taxation. Another striking result is that openness enters

with a significantly negative effect, which coincides with the findings of Desai and Hines (2005)

and Keen and Lockwood (2010). For the other variables in the estimation, all results are in

line with our expectations. VAT adoption is more likely in countries with a small share of

agriculture as the agricultural sector is hard to tax. Countries with a larger population density

20



are also more likely to implement a VAT. Further, if a country experienced an armed conflict,

then the relative hazard rates will decrease by around 11 percent (see Table A.5) while keeping

the other variables unchanged.

For the institutional effects, there seems to be a significant challenge for federal countries

to implement a VAT. The relative hazard rates of VAT adoption for federal systems are about

41 percent less than for non-federal countries (see Tables A.5 and A.6). However, countries

with an IMF program have a higher probability than non-program countries, which confirms

the significant role of the IMF in the spread of the VAT.

Our findings provide evidence that the VAT has tended to spread in regional bursts. As

compared to countries in Africa, countries in Europe are more inclined to implement a VAT

while countries in the Middle East and Central Asia have a smaller probability of adopting a

VAT. Besides the regional effects, the copycat effect is another locational impact that drives

the spread of VAT adoption. This effect is positive and quite robust in our estimation when

using the contiguity weight matrix. However, when the distance weight matrix is employed

for estimation, the copycat effect in the larger sample is no longer significant as indicated in

Table A.6. It is evident that direct international spillovers of the VAT adoption seem to exist

only among neighboring countries, which is also found by Keen and Lockwood (2010), who

do not use a formal spatial analysis.

Finally, results in Table 3 are also used to check the robustness of the copycat effect for

different model specifications. In addition to models with spatial frailties, there are models

without frailties and models with non-spatial frailties. Each kind of model is estimated with

and without the copycat effect. As reported in the table, the copycat-effect presence is quite

robust to model specification.

For the model with spatial frailties, including the spatially weighted lagged dependent vari-

ables generally increases the absolute size of the effect of YPC and POPD. Further, comparing

models with and without spatial frailties yields the following observations. The first one is

that the coefficient of POPD changes from insignificantly negative to significantly positive.

The second one is that the effect of the revenue-to-GDP ratio is no longer significant. Finally,

although the significance of the baseline hazard rates remains unchanged, their magnitude

increases for the second and the third time intervals. Therefore, incorporating country-level

unobserved heterogeneity and allowing it to be spatially correlated does have a significant
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effect on the other estimates. However, inference based on the estimated frailties will not be

performed here as it is not the main focus of this paper and left for future research.

4 Conclusions

We have described several approaches to model spatial correlation structures in spatial survival

analysis and illustrated the methods with a unique dataset on value added tax (VAT) adoption.

More specifically, we examined potential copycat behavior by governments in adopting a VAT.

By including the spatially correlated dummy dependent variables in the hazard function of a

duration model, we explicitly modeled and estimated this copycat effect rather than imposing

that the spatial effects only exist in the frailties. We also allow for region-specific baseline

hazards. The adoption of Bayesian methods, implemented via Markov chain Monte Carlo

algorithms, enables full posterior inference not only on the effects of the main covariates, but

also on the country-level frailties.

We find strong evidence of a copycat effect irrespective whether a contiguity or distance

weight matrix is used. The copycat effect is quite robust to model specifications with and

without frailties. As compared to countries in Africa, countries in Europe are more inclined

to implement a VAT, while countries in the Middle East and Central Asia have a smaller

probability of adopting a VAT. The VAT spread occurs in regional bursts. Countries contem-

plating adopting a VAT may therefore usefully benefit from regionally coordinated technical

assistance provided by donor countries.

We have not performed an analysis and inference based on the estimated frailties, which

we leave for future work. Finally, further research could usefully consider a continuous baseline

hazard function or nonparametric alternatives to our piecewise baseline hazard function.
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APPENDIX

Table A.1: Countries in the Sample

Afghanistan Grenada Pakistan
Australia Guatemala Papua New Guinea
Austria Guinea Paraguay
Bahamas Honduras Peru
Bahrain Iceland Philippines
Bangladesh India Rwanda
Barbados Indonesia Senegal
Belize Iran Seychelles
Benin Ireland South Africa
Bhutan Italy Spain
Botswana Japan Sri Lanka
Burkina Faso Jordan St. Kitts and Nevis
Cambodia Kenya St. Vincent and the Grenadines
Cameroon Korea Sudan
Canada Kuwait Swaziland
Cape Verde Lao People’s Democratic Republic Switzerland
Central African Republic Lebanon Syrian Arab Republic
Chile Lesotho Turkey
China Morocco Tunisia
Congo (Democratic Republic) Madagascar Uganda
Congo (Republic of) Malaysia United Arab Emirates
Dominican Republic Maldives United Kingdom
Egypt Mali United States
El Salvador Mauritius Vanuatu
Estonia Mexico Venezuela
Ethiopia Mongolia Vietnam
Fiji Namibia Zambia
Finland Nepal Zimbabwe
Gambia New Zealand
Ghana Niger
Greece Oman

Notes: Based on a sample of 92 countries. Countries from the Former Soviet Union (i.e., Armenia, Azerbaijan,
Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, and Ukraine)
and Eastern Europe and the Balkans (i.e., Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic,
Hungary, Poland, Romania, Slovak Republic, Slovenia) are excluded from the sample.
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Table A.2: Descriptive Statistics

Variable Observations Mean St.Dev. Min Max

DUR 92 25.326 10.182 2.000 38.000
YPC 3,680 8.202 1.319 4.767 10.939
OPEN 3,362 0.712 0.406 0.053 3.754
AGR 3,162 0.197 0.406 0.002 0.743
POPD 3,543 1.082 1.536 0.008 9.884
WAR 3,680 0.198 0.400 0 1.000
IMF 3,680 0.083 0.277 0 1.000
REV 2,089 0.222 0.119 0.002 0.823
FED 3,680 0.160 0.367 0 1.000
MECA 3,680 0.152 0.360 0 1.000
EU 3,680 0.109 0.311 0 1.000
WH 3,680 0.196 0.397 0 1.000
AP 3,680 0.240 0.427 0 1.000
AF 3,680 0.304 0.460 0 1.000
yt 3,680 0.817 0.388 0 1.000

Notes: The variables are described in Table A.3.
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Table A.3: Data Description and Sources
Variable Definition Sources

DUR(t) Time spell before VAT adoption (starting from 1970) Ebrill et al. (2001), internal database of the IMF’s
Fiscal Affairs Department (Tax Policy Division), and
IBFD’s Tax News Service

YPC The logarithm of GDP per capita at PPP (in thousands of 2005 US dollars) World Bank (2011), World Development Indicators (WDI)

OPEN The sum of goods imports and exports as share of GDP World Bank (2011), WDI

AGR Share of agriculture in GDP World Bank (2011), WDI

POPD Population density (in hundreds of people per square kilometers of land area) World Bank (2011), WDI

WAR Dummy variable that takes on a value of unity if country is in armed
conflict at time t and zero otherwise

Comprehensive Study of Civil War (CSCW), Annual

Report 2009, available at:
http://www.prio.no/CSCW

IMF Dummy variable that takes the value of one if the country has concluded a
Stand-By Arrangement (SBA), Extended Fund Facility (EFF), or Poverty
Reduction and Growth Facility (PRGF) with the IMF

Dreher (2006)

REV General government revenue (including grants) as share of GDP, 1975–2007.
REV is based on series RA and RB . The procedure to derive REV from
RA and RB is described in Section 3.2

. IMF, The series RA is derived from Government

Finance Statistics, IMF Staff Reports, IMF Selected

Issues Papers. The series RB is obtained from an
Internal database of the IMF’s Fiscal Affairs
Department (Tax Policy Division)

FED Dummy variable that takes on a value of unity if country has a federal
structure and zero otherwise

Treisman (2008)

MECA, EU, Regional dummies for Middle East and Central Asia, Europe,
WH, AP, AF Western Hemisphere, Asia and Pacific, and Africa, respectively

δ Dummy variable that takes on a value of unity in the absence of censoring
and zero for right censoring

Authors’ calculations

yt Dummy variable that takes on a value of unity if the country has a VAT in
year t and zero otherwise

Authors’ calculations. See duration source

wC
ij wC

ij = bij/
∑N

i=1
bij for i 6= j and wC

ij = 0 for i = j, where bij is a border
dummy which equals one if countries i and j share a common border and
zero otherwise.

Authors’ calculations

wD
ij wD

ij =

{

1

d2
ij

/
∑N

j=1
1

d2
ij

> 0 for i 6= j

0 for i = j
, where dij reflects the

geographical distance between the largest cities of countries i and j, which is
computed as the great circle distance given latitude and longitude.

Authors’ calculations based on distance data from
CEPII, see http://www.cepii.fr/

Notes: Missing data in YPC, OPEN, AGR, POPD, and REV are interpolated. See Section 3.2.

29



Table A.4: Missing Data in the Subsample

Variable Observations Missing Freq. Missing

YPC 4,320 80 1.85
OPEN 4,320 495 11.46
AGR 4,320 801 18.54
POPD 4,320 265 6.13
WAR 4,320 0 0
IMF 4,360 0 0
REV 4,320 1,224 28.33
RA 4,320 2,132 49.35
RB 4,320 2,340 54.17
FED 4,320 0 0
MECA 4,320 0 0
EU 4,320 0 0
WH 4,320 0 0
AP 4,320 0 0

Notes: The variables are described in Table A.3.
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Figure A.1: MCMC Sampling for the Parameters
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Figure A.1: MCMC Sampling for the Parameters (Continued)
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Table A.5: Results with Contiguity Weight Matrix

Covariates Mean 2.5% 50% 97.5% ESS
√

V̂ESS exp(β)-1

Sample with 52 countries
YPC -0.1261 -0.3136 -0.1222 0.0778 23.4263 (0.0210)** -0.1185
OPEN -1.1475 -2.0123 -1.1891 -0.1037 52.9381 (0.0660)** -0.6826
AGR -0.7721 -2.5176 -0.7952 1.0342 31.7765 (0.1608)** -0.5380
POPD 0.0601 -0.2719 0.0669 0.3750 81.3898 (0.0181)** 0.0619
WAR -0.4915 -1.4276 -0.4657 0.2965 323.0010 (0.0237)** -0.3883
IMF 0.7786 -0.0052 0.7797 1.5351 301.9281 (0.0224)** 1.1783
REV 0.0593 -1.8549 0.0696 1.8102 96.2077 (0.0956) 0.0611
ρ 0.3073 -0.5338 0.2924 1.1747 81.4413 (0.0484)** 0.3597

FED -0.3431 -1.2184 -0.3520 0.6413 87.9173 (0.0519)** -0.2904
MECA -0.3529 -1.8573 -0.3441 1.0378 47.8989 (0.1079)** -0.2973
EU 1.0827 -0.2901 1.0462 2.4984 41.1633 (0.1134)** 1.9527
WH -0.1605 -1.5313 -0.1760 1.2318 29.1298 (0.1309) -0.1483
AP -0.4170 -1.6984 -0.4309 0.8843 21.8029 (0.1496)** -0.3410

ln(λ1) -2.0986 -3.1779 -2.1141 -0.9706 49.1720 (0.0837)**
ln(λ2) 0.4555 -0.6477 0.4489 1.6423 41.7052 (0.0907)**
ln(λ3) 0.9892 -0.2393 0.9817 2.3842 63.9082 (0.0842)**
ln(λ4) -0.1903 -2.0563 -0.1811 1.5987 504.3555 (0.0416)**

σ2 1.8281 0.7846 1.6627 3.6896
φ 3251.5 3246.0 3251.5 3256.1

Sample with 92 countries
YPC -0.1840 -0.3395 -0.1798 -0.0580 26.6026 (0.0138)** -0.1681
OPEN -1.7356 -2.6137 -1.7263 -0.8759 59.1524 (0.0549)** -0.8237
AGR -1.2069 -2.6144 -1.2138 0.3078 30.0958 (0.1371)** -0.7009
POPD 0.1033 -0.0891 0.1081 0.2861 95.5184 (0.0095)** 0.1088
WAR -0.1189 -0.7537 -0.1169 0.4668 213.7671 (0.0218)** -0.1121
IMF 0.7756 0.1040 0.7659 1.4011 465.3071 (0.0152)** 1.1720
REV -0.1105 -1.9247 -0.0840 1.5591 116.1541 (0.0797) -0.1047
ρ 0.3603 -0.3329 0.3634 1.0723 182.7501 (0.0262)** 0.4338

FED -0.5334 -1.4179 -0.5419 0.3795 22.2999 (0.0959)** -0.4134
MECA -0.2432 -1.3578 -0.2451 0.7971 28.0986 (0.1019)* -0.2159
EU 1.0773 -0.0480 1.0464 2.1991 51.9621 (0.0786)** 1.9367
WH 0.1170 -1.0733 0.1043 1.4404 15.6244 (0.1727) 0.1241
AP 0.1820 -1.3263 0.1862 1.4928 10.2884 (0.2153) 0.1996

ln(λ1) -1.6593 -2.7843 -1.6526 -0.6604 38.7612 (0.0889)**
ln(λ2) 0.5636 -0.5319 0.5767 1.6023 37.9608 (0.0884)**
ln(λ3) 1.1099 0.0364 1.1020 2.3653 46.8258 (0.0864)**
ln(λ4) -0.3481 -2.0139 -0.3037 1.2839 603.1201 (0.0342)**

σ2 0.7992 0.3607 0.7628 1.4357
φ 3269.2 3264.9 3268.7 3274.2

Notes: **Significant at 99 percent; *Significant at 95 percent.



Table A.6: Results with Distance Weight Matrix

Covariates Mean 2.5% 50% 97.5% ESS
√

V̂ESS exp(β)-1

Sample with 52 countries
YPC -0.1206 -0.3023 -0.1183 0.0757 38.6403 (0.0154)** -0.1136
OPEN -1.0906 -2.1804 -1.0574 -0.0959 43.5671 (0.0829)** -0.6640
AGR -0.7038 -2.2988 -0.7174 0.9308 119.0034 (0.0764)** -0.5053
POPD -0.0600 -0.5195 -0.0539 0.3220 31.8803 (0.0364) -0.0582
WAR -0.5163 -1.4617 -0.5064 0.3081 86.7805 (0.0480)** -0.4033
IMF 0.8113 -0.0472 0.8170 1.5696 301.1268 (0.0235)** 1.2508
REV 0.0475 -2.0278 0.0715 1.8073 203.7966 (0.0651) 0.0486
ρ 0.5372 -0.6530 0.5535 1.7016 116.5859 (0.0559)** 0.7111

FED -0.3185 -1.3454 -0.3090 0.7075 45.7260 (0.0773)** -0.2728
MECA -0.6494 -2.0412 -0.6298 0.5492 104.4693 (0.0631)** -0.4777
EU 0.9729 -0.4717 1.0053 2.2948 32.5642 (0.1203)** 1.6457
WH 0.3611 -0.7952 0.3097 1.7041 27.6513 (0.1249)** 0.4350
AP -0.5340 -2.0175 -0.5153 0.7503 26.7544 (0.1404)** -0.4138

ln(λ1) -2.0621 -3.3407 -2.0802 -0.7457 41.7612 (0.1042)**
ln(λ2) 0.6361 -0.4436 0.6325 1.7397 35.5095 (0.0937)**
ln(λ3) 0.9755 -0.3530 0.9785 2.2926 52.5243 (0.0903)**
ln(λ4) -0.2258 -2.0292 -0.2246 1.6007 606.1145 (0.0374)**

σ2 2.3996 0.5082 2.2280 5.6445
φ 3250.8 3248.0 3250.7 3253.2

Sample with 92 countries
YPC -0.1406 -0.3187 -0.1422 0.0404 7.6199 (0.0362)** -0.1312
OPEN -1.7065 -2.5780 -1.7351 -0.7733 18.9087 (0.1038)** -0.8185
AGR -0.8980 -2.2897 -0.8871 0.5362 82.1179 (0.0828)** -0.5926
POPD 0.1013 -0.0940 0.1064 0.2729 97.1077 (0.0097)** 0.1067
WAR -0.1340 -0.8107 -0.1295 0.5159 106.5908 (0.0327)** -0.1254
IMF 0.7706 0.0307 0.7859 1.4169 421.9398 (0.0170)** 1.1611
REV -0.0327 -1.8664 -0.0419 1.8057 149.8653 (0.0706) -0.0322
ρ 0.0143 -0.9938 0.0260 0.9145 114.2905 (0.0458) 0.0144

FED -0.5283 -1.3286 -0.5184 0.2676 109.7729 (0.0387)** -0.4104
MECA -0.3799 -1.5374 -0.3885 0.8938 22.9936 (0.1317)** -0.3161
EU 1.1043 -0.1351 1.0802 2.4957 25.7005 (0.1337)** 2.0172
WH 0.0618 -1.3060 0.0716 1.3313 23.1900 (0.1355) 0.0637
AP 0.1177 -1.0483 0.1540 1.1715 19.3569 (0.1397) 0.1249

ln(λ1) -1.9062 -3.0687 -1.9276 -0.7408 30.7631 (0.1061)**
ln(λ2) 0.5220 -0.5098 0.5245 1.6349 38.4572 (0.0868)**
ln(λ3) 1.2690 0.1345 1.2663 2.4676 58.4051 (0.0745)**
ln(λ4) -0.2974 -2.0050 -0.2958 1.3639 638.2705 (0.0342)**

σ2 1.2828 0.6392 1.2111 2.2577
φ 3251.7 3249.69 3251.9 3253.3

Notes: **Significant at 99 percent; *Significant at 95 percent.
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