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Fall bak equilibrium for 2× n bimatrix gamesJohn Kleppe1,2 Peter Borm1 Ruud Hendrikx3May 29, 2012AbstratIn this paper we provide a haraterisation of the set of fall bak equilibria for 2× nbimatrix games. Furthermore, for this type of games we disuss the relation betweenthe set of fall bak equilibria and the sets of perfet, proper and stritly perfet equi-libria. In order to do this we reformulate the existing haraterisations for these threeequilibrium onepts by the use of re�nement-spei� subgames.Keywords: game theory, fall bak equilibrium, 2× n bimatrix game, equilibrium re�ne-mentJEL Classi�ation Number: C721 IntrodutionIn this paper we provide a haraterisation of the set of fall bak equilibria (Kleppe et al.(2012)) for 2×n bimatrix games. Furthermore, for this type of games we disuss the rela-tion between the set of fall bak equilibria and the sets of perfet (Selten (1975)), proper(Myerson (1978)) and stritly perfet equilibria (Okada (1984)). In order to do this wereformulate the haraterisations, as provided by Borm (1992), for these three equilibriumonepts.In general it is hard to �nd all Nash equilibria of a non-ooperative strategi game (Pa-padimitriou (2001)). For matrix games linear programming solutions (Tuker (1960)) exist.Furthermore, for general two- and n-player strategi games several methods exist to �nda Nash equilibrium, e.g., the Lemke-Howson algorithm (Lemke and Howson (1964)) andthe method by Porter, Nudelman and Shoham (Porter et al. (2004)).For 2 × n bimatrix games Borm et al. (1988) provide a geometri labelling methodto �nd all Nash equilibria. In a subsequent paper (Borm (1992)) this method is used1CentER and Department of Eonometris and Operations Researh, Tilburg University.2Corresponding author: PO Box 90153, 5000 LE Tilburg, The Netherlands. E-mail: J.Kleppe�uvt.nl.3CentER and Department of Organization and Strategy, Tilburg University.1



to haraterise the sets of perfet, proper and stritly perfet equilibria for suh games.Eah of these haraterisations onsists of a list of neessary and su�ient onditions fora strategy pair to be an equilibrium of a ertain type.We start this paper by revisiting the papers by Borm et al. (1988) and Borm (1992)with the main objetive to reformulate the haraterisations of the three Nash equilibriumre�nements in a more manageable way. The basis of these new formulations is formedby expliitly onsidering re�nement-spei� subgames obtained by eliminating pure strate-gies. We illustrate that determining the sets of equilibria by these new formulations isstraightforward, espeially when one uses the orresponding graphial representation of a
2× n bimatrix game.In the main part of this paper we use the geometri labelling method in ombinationwith the set-up with subgames to also haraterise the set of fall bak equilibria for 2× nbimatrix games.The onept of fall bak equilibrium is introdued by Kleppe et al. (2012). In thethought experiment underlying this Nash equilibrium re�nement eah player strategiallyhooses a bak-up ation, whih he plays in ase the strategy of his �rst hoie is bloked,whih happens with a small (but positive) probability. This probability is assumed tobe independent of the hosen ation(s), but may vary between players. Hene, in thethought experiment players at by hoosing both a primary and a bak-up strategy. Thesestrategies in the original game together de�ne a strategy in the fall bak game. The payo�sin the fall bak game are the expeted payo�s in the original game given the blokingprobabilities. Furthermore, in the fall bak game players are also allowed to use mixedstrategies. The limit point of a sequene of Nash equilibria of fall bak games when thebloking probabilities onverge to zero then gives rise to a fall bak equilibrium in theoriginal game.The onept of fall bak equilibrium shares the idea of �errors� onverging to zero withthe onepts of perfet, proper and stritly perfet equilibrium. The fundamental di�er-ene between the thought experiments regarding these �errors� is that in the fall bak gameplayers hoose their bak-ups strategially, while in the other thought experiments these�bak-ups� are exogenously given. However, by the use of the new formulations we easilyderive two relations between the ensuing sets of equilibria for 2× n bimatrix games. Firstof all, we obtain that eah proper equilibrium is a fall bak equilibrium. The seond resultis that whenever none of the two pure strategies of player 1 is dominant, eah fall bakequilibrium is a perfet equilibrium.The outline of this paper is as follows. In Setion 2 we provide the preliminaries with2



respet to the geometri labelling method introdued by Borm et al. (1988) and reallthe haraterisation of the set of Nash equilibria for 2 × n bimatrix games. In Setion 3we provide the reformulated haraterisations of the sets of perfet, proper and stritlyperfet equilibria. In Setion 4 we haraterise the set of fall bak equilibria, and disussthe relation to the other Nash equilibrium re�nements.2 Nash equilibrium in 2× n bimatrix gamesA 2 × n bimatrix game is the mixed extension of a �nite two-player strategi game. It isdenoted by a pair (A,B) of real-valued matries of size 2×n. The players are named player 1and player 2, where player 1 hooses a row and player 2 a olumn. The orresponding indexsets (or rows and olumns) are denoted by M = {1, 2} and N = {1, . . . , n}, respetively.The spaes of mixed strategies for rows and olumns are denoted by ∆M and ∆N , andtogether they de�ne the spae of strategy pairs ∆ = ∆M ×∆N .A pure strategy of player 1, whih orresponds to a unit vetor in ∆M , is denoted by
ei, with i ∈ M . Similarly, a pure strategy of player 2 orresponds to a unit vetor in ∆Nand is denoted by fj , j ∈ N . Moreover, a typial element of ∆M is given by p, a typialelement of ∆N by q. By ∆̇M we denote ∆M\{e1, e2}.Both players have a pure best reply orrespondene, PB1(q) = {ei | eiAq ≥

ekAq for all k ∈ M} and PB2(p) = {fj | pBfj ≥ pBfℓ for all ℓ ∈ N}. Furthermore,the arrier of player 1's strategy p is given by C(p) = {ei | pi > 0}. Analogously,
C(q) = {fj | qj > 0}. A Nash equilibrium (Nash (1951)) is a pair of mixed strategies
(p, q) ∈ ∆ suh that C(p) ⊆ PB1(q) and C(q) ⊆ PB2(p). The non-empty set of all Nashequilibria of a bimatrix game (A,B) is denoted by NE(A,B).Let (A,B) be a 2 × n bimatrix game. A pure strategy fj of player 2 is provided withlabel [1] if PB1(fj) = {e1}, with label [2] if PB1(fj) = {e2}, and with label [12] if
PB1(fj) = {e1, e2}. Let J([1]) = {fj |PB1(fj) = {e1}} represent the set of player 2'spure strategies with label [1]. The sets J([2]) and J([12]) are de�ned analogously.Sine player 1 has only two pure strategies, his strategy spae ∆M orresponds tothe interval [0, 1], indiating the probability with whih he plays the �rst row e1. For
j ∈ {1, . . . , n}, the line p 7→ pBfj represents all possible payo�s to player 2 orrespondingto the pure strategy fj . In order to determine the set of Nash equilibria, the interestingpart of these n lines is the pieewise linear maximum funtion, or rather all line segmentsonstituting this upper envelope, as it fully desribes the best reply orrespondene ofplayer 2.Note that the pieewise linear maximum funtion has t line segments for some t ∈

{1, . . . , n} orresponding to a subdivision of [0, 1] into t intervals. Denote by c0, c1, . . . , ct3



the extreme points of these intervals, with 0 = c0 < c1 < . . . < ct−1, ct = 1, suh thatfor eah k ∈ {0, 1, . . . , t}, pk = cke1 + (1− ck)e2 is the orresponding strategy of player 1.Further, for eah k ∈ {1, . . . , t}, de�ne Ik = {αe1 + (1 − α)e2 | ck−1 < α < ck} as theinterval of strategies orresponding to the kth line segment of the maximum funtion.For p ∈ ∆M let PB2(p, [1]), PB2(p, [2]) and PB2(p, [12]) denote the sets of pure bestreplies to p with the orresponding label. Sine PB2(p′) = PB2(p′′) for all p′, p′′ ∈ Ik,
k ∈ {1, . . . , t}, we unambiguously de�ne PB2(Ik), as well as PB2(Ik, [1]), PB2(Ik, [2]) and
PB2(Ik, [12]).For p ∈ ∆M , let S(p) be the set of solutions to p, i.e., the set of all strategies q ∈ ∆N ofplayer 2 suh that (p, q) ∈ NE(A,B). Sine

S(p) = {q ∈ ∆N | (p, q) ∈ NE(A,B)}

= ∆N ∩
n
⋂

j=1

{q ∈ R
N | pBq ≥ pBfj} ∩

2
⋂

i=1

{q ∈ R
N | pAq ≥ eiAq},the set S(p) is bounded and determined by a �nite system of linear inequalities. Hene,for eah p, S(p) is a (possibly empty) polytope.The extreme points of S(p) are provided by the set of pure solutions PS(p), given by

PS(p) = {q ∈ S(p) | |C(q)| = 1}, and the set of oordination solutions CS(p), given by
CS(p) = {q ∈ S(p) | |C(q)| = 2}, suh that

S(p) = onv(PS(p) ∪ CS(p)),where onv(A) denotes the onvex hull of the set A. The set of pure solutions is given by
PS(p) =







PB2(p, [12]) if p ∈ ∆̇M ,
PB2(p, [12]) ∪ PB2(p, [2]) if p = e2,
PB2(p, [12]) ∪ PB2(p, [1]) if p = e1.Further, with respet to the oordination solutions it holds that CS(p) onsists of allstrategies q(j, ℓ) ∈ ∆N with fj ∈ PB2(p, [1]) and fℓ ∈ PB2(p, [2]) suh that C(q(j, ℓ)) =

{fj, fℓ} and e1Aq(j, ℓ) = e2Aq(j, ℓ). Note that for any suh j, ℓ ∈ N , q(j, ℓ) is unique.Note that PS(p′) = PS(p′′) and CS(p′) = CS(p′′) for all p′, p′′ ∈ Ik, with k ∈ {1, . . . , t}.This implies that we an unambiguously de�ne PS(Ik), CS(Ik) and S(Ik) = onv(PS(Ik)∪

CS(Ik)). We illustrate the onepts and notation in the following example.Example 2.1 Consider the following 2× 4 bimatrix game (A,B).
f1 f2 f3 f4

e1 1, 5 1,−1 1, 5 0,−16
e2 0, 0 0, 7 1, 5 1, 8 4
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Figure 2.1: The graphial representation of the game (A,B)The introdued notation allows us to represent this game graphially, see Figure 2.1. Onthe horizontal axis the strategy spae of player 1 is displayed, on the vertial axis the payo�to player 2. Then the line with index 4 represents all possible payo�s to player 2 if he plays
f4: 8 if player 1 plays e2 (p = 0) and −16 if e1 (p = 1) is played. The label [2] indiatesthat e2 is player 1's best reply against f4.Furthermore, the pieewise linear maximum funtion onsists of three intervals, with
p0 = e2, p1 = 1

16e1+
15
16e2, p2 = 1

4e1+
3
4e2 and p3 = e1. We �rst onsider the extreme pointsof the intervals, starting with p0 = e2. Sine |PB2(e2)| = 1, it holds that CS(e2) = ∅.Also PB2(e2, [12]) = ∅, but PB2(e2, [2]) = {f4}, whih implies that PS(e2) = {f4} and

S(e2) = {f4}. Seondly, we onsider p1 = 1
16e1 +

15
16e2. PB2(p1, [12]) = ∅ and therefore

PS(p1) = ∅, but as PB2(p, [1]) = {f2} and PB2(p, [2]) = {f4} we obtain CS(p1) =

{q(2, 4)}. Considering the seond and fourth olumn of A, q(2, 4) solves e1Aq(2, 4) =

e2Aq(2, 4), whih gives q2 = q4 and hene, CS(p1) = {1
2f2 +

1
2f4}. The analysis of theother two extreme points an be done in a similar way.We also onsider player 1's strategy intervals. First of all, I1 = {αe1 + (1 − α)e2 | 0 <

α < 1
16}. Sine |PB2(I1)| = 1 and PB2(I1, [12]) = ∅, both PS(I1) = ∅ and CS(I1) = ∅. Asimilar result holds for I2. Finally, we onsider I3 = {αe1 + (1− α)e2 |

1
4 < α < 1}, where

CS(I3) = ∅, but PB2(I3, [12]) = {f3} and hene, PS(I3) = {f3}. ⊳The set NE(A,B) of Nash equilibria an be determined in 2t+ 1 steps by the use of thefollowing theorem. 5



Theorem 2.2 (Borm et al. (1988)) The set of Nash equilibria is given by
NE(A,B) =

⋃t
k=0{pk} × S(pk) ∪

⋃t
k=1 Ik × S(Ik).Note that for all k ∈ {1, . . . , t}, S(Ik) ⊆ S(pk−1) and S(Ik) ⊆ S(pk). Consequently, as ageneral rule one an �rst determine all possible equilibria with respet to the intervals Ik,

k ∈ {1, . . . , t}, and inlude the orresponding extreme points in the desription of the setof equilibria. Then one only has to onsider an extreme point pk, k ∈ {0, . . . , t}, separatelyif at suh an extreme point an additional pure or oordination solution arises with respetto the interval(s) with equilibria the extreme point belongs to.It follows that NE(A,B) is the union of maximally 2t + 1 polytopes. We illustrate inthe next example how to �nd the set of Nash equilibria for a 2× n bimatrix game.Example 2.3 Consider the 2 × 4 bimatrix game (A,B) of Example 2.1. With respetto the intervals we only have to onsider I3, as PB2(I3, [12]) 6= ∅. As a onsequene,onv({1
4e1 + 3

4e2, e1}) × {f3} ⊆ NE(A,B). Further, there are three extreme points atwhih additional equilibria arise. First of all, p0 = e2. Sine PB2(e2, [2]) = {f4}, itholds that (e2, f4) ∈ NE(A,B). Seondly, p1 = 1
16e1 + 15

16e2. Sine CS(p1) = {1
2f2 +

1
2f4} we obtain that ( 1

16e1 + 15
16e2,

1
2f2 + 1

2f4) ∈ NE(A,B). Finally, p3 = e1. Sine
PS(e1) = {f1, f3}, it holds that {e1}×onv({f1, f3}) ⊆ NE(A,B). Altogether this resultsin NE(A,B) = T1 ∪ T2 ∪ T3 ∪ T4, with T1 = {(e2, f4)}, T2 = {( 1

16e1 +
15
16e2,

1
2f2 +

1
2f4)},

T3 = onv({1
4e1 +

3
4e2, e1})× {f3} and T4 = {e1} × onv({f1, f3}). ⊳3 Perfet, proper and stritly perfet equilibriumIn Borm (1992) the sets of perfet (Selten (1975)), proper (Myerson (1978)) and stritlyperfet equilibria (Okada (1984)) are haraterised for 2×n bimatrix games. Eah of thoseharaterisations onsists of a list of neessary and su�ient onditions for a strategy pairto be an element of the set of equilibria under onsideration. In this setion we revisitthose results and reformulate them in a more manageable and insightful way by the use ofre�nement-spei� subgames, whih are obtained by the elimination of pure strategies ofplayer 2.Let (A,B)UND be de�ned as the subgame of (A,B) in whih all of player 2's purestrategies fj are deleted for whih fj /∈

⋃

p∈∆̇M
PB2(p). Hene, to get from (A,B) to

(A,B)UND we leave out all player 2's pure dominated strategies1.1A strategy q ∈ ∆N is dominated if there exists a strategy q̄ ∈ ∆N suh that pBq̄ ≥ pBq for all p ∈ ∆Mand pBq̄ > pBq for some p ∈ ∆M . 6



Let (A,B) be a 2 × n bimatrix game. The sets of perfet, proper and stritly perfetequilibria are denoted by PE(A,B), PR(A,B) and SPE(A,B), respetively. All resultsin this setion are a diret onsequene of the haraterisations in Borm (1992).Theorem 3.1 Let (A,B) be a 2 × n bimatrix game with J([1]) = ∅ or J([2]) = ∅. Then
PE(A,B) = PR(A,B) = SPE(A,B), and

PE(A,B) =







NE((A,B)UND) if both J([1]) = ∅ and J([2]) = ∅,
NE((A,B)UND) ∩ {e1} ×∆N if J([1]) 6= ∅ and J([2]) = ∅,
NE((A,B)UND) ∩ {e2} ×∆N if J([2]) 6= ∅ and J([1]) = ∅.If J([1]) 6= ∅ and J([2]) 6= ∅ the sets of perfet, proper and stritly perfet equilibria donot oinide in general.Theorem 3.2 Let (A,B) be a 2×n bimatrix game with J([1]) 6= ∅ and J([2]) 6= ∅. Then

PE(A,B) = NE((A,B)UND).We de�ne the game (A,B)−[12] as the subgame of (A,B) in whih all of player 2's purestrategies fj ∈ J([12]) are deleted. Then we de�ne the game (A,B)PR as ((A,B)−[12])
UND.Hene, to obtain the game (A,B)PR we �rst delete from (A,B) all of player 2's strategieswith a label [12] and from that game we delete player 2's pure dominated strategies,whih may di�er from his dominated strategies in the original game. Let ∆PR

N be thestrategy spae of player 2 in the subgame (A,B)PR. The strategies in this subgame an beinterpreted as strategies in the original game (A,B), with zero probability for the deletedpure strategies. By slight abuse of notation we therefore use ∆N instead of ∆PR
N forexpositional purposes.Theorem 3.3 Let (A,B) be a 2×n bimatrix game with J([1]) 6= ∅ and J([2]) 6= ∅. Then

PR(A,B) = {(p, q) ∈ PE(A,B) | ∃ q̄ ∈ ∆N : (p, q̄) ∈ NE((A,B)PR)}.We de�ne the game (A,B)SPE as ((A,B)UND)−[12]. Hene, opposed to the game (A,B)PRwe now �rst delete all the pure dominated strategies of player 2 and then the strategies witha label [12]. Hene, the game (A,B)SPE is a subgame of (A,B)PR. Note that (A,B)SPEmay be a vauous game, in whih ase SPE(A,B) = ∅.Let ∆SPE
N be the strategy spae of player 2 in the subgame (A,B)SPE , then similarlyas for proper equilibria we use ∆N instead of ∆SPE

N .Theorem 3.4 Let (A,B) be a 2×n bimatrix game with J([1]) 6= ∅ and J([2]) 6= ∅. Then
SPE(A,B) = {(p, q) ∈ PE(A,B) | ∃ q̃ ∈ ∆N : (p, q̃) ∈ NE(A,B) ∩NE((A,B)SPE)}.7
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[12]5Figure 3.2: The game (A,B)UNDBy the above two haraterisations it easily follows that for 2 × n bimatrix games eahstritly perfet equilibrium is a proper equilibrium.Corollary 3.5 Let (A,B) be a 2× n bimatrix game. Then SPE(A,B) ⊆ PR(A,B).Note that the inlusion SPE(A,B) ⊆ PR(A,B) does not hold for bimatrix games in gen-eral, as is shown by Vermeulen and Jansen (1996).In the following example we illustrate the way to ompute the sets of perfet, proper andstritly perfet equilibrium by the use of the above theorems and the geometri labellingmethod.Example 3.6 Consider the following 2× 7 bimatrix game (A,B) and its graphial repre-sentation in Figure 3.1.
f1 f2 f3 f4 f5 f6 f7

e1 1, 5 1,−1 1, 5 0,−16 1,−81
2 1, 3 0, 4

e2 0, 0 0, 7 1, 5 1, 8 1, 71
2 1, 6 1, 4The set of Nash equilibria is given by NE(A,B) = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ T6, with

• T1 = {(e2, f4)},
• T2 = { 1

16e1 +
15
16e2} × onv({f5, 12f2 + 1

2f4}),
• T3 = onv({1

5e1 +
4
5e2,

1
3e1 +

2
3e2})× {f6},8
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• T4 = {1
3e1 +

2
3e2} × onv({f3, f6}),

• T5 = onv({1
3e1 +

2
3e2, e1})× {f3},

• T6 = {e1} × onv({f1, f3}).To obtain the game (A,B)UND we delete the pure dominated strategies f1 and f7, seeFigure 3.2. Then PE(A,B) = NE((A,B)UND) = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5.To obtain the game (A,B)−[12] we �rst delete the strategies in the set J([12]): f3, f5and f6. Sine player 2 has no pure dominated strategies in (A,B)−[12] it holds that
(A,B)PR = (A,B)−[12]. See Figure 3.3. Then, NE((A,B)PR) = {(e2, f4)} ∪ {( 1

16e1 +
15
16e2,

1
2f2 + 1

2f4)} ∪ {(38e1 + 5
8e2,

1
2f2 + 1

2f7)} ∪ {(45e1 + 1
5e2,

1
2f1 + 1

2f7)} ∪ {(e1, f1)}.Consequently, PR(A,B) = T1 ∪ T2 ∪ T ′
5 ∪ T ′′

5 ∪ T ′′′
5 , with T ′

5 = {(38e1 + 5
8e2, f3)},

T ′′
5 = {(45e1 +

1
5e2, f3)} and T ′′′

5 = {(e1, f3)}.To obtain the game (A,B)SPE we �rst delete player 2's pure dominated strategies f1and f7 (see Figure 3.2), and then the strategies out of J([12]), whih are f3, f5 and f6.See Figure 3.4. NE((A,B)SPE) = {(e2, f4)}∪{( 1
16e1+

15
16e2,

1
2f2+

1
2f4)}∪{(e1, f2)}. Thisimplies that SPE(A,B) = T1 ∪ T2. ⊳4 Fall bak equilibrium in 2× n bimatrix gamesIn this setion we show how to determine the set of fall bak equilibria for 2× n bimatrixgames. In the underlying thought experiment players play a fall bak game in whih eah9



player strategially hooses a bak-up ation for the possible event that his primary ationis bloked. The ation set for player 1 in the fall bak game is given by M̃ = {(i, k) ∈

M × M | i 6= k}. Similarly, Ñ = {(j, ℓ) ∈ N × N | j 6= ℓ} is the ation set of player 2.Hene, the total number of ations in the fall bak game for player 1 is m̃ = m(m−1) = 2,and ñ = n(n − 1) for player 2. An ation (j, ℓ) ∈ Ñ onsists of a primary ation j anda bak-up ation ℓ. Let ε = (ε1, ε2) be a pair of (small) non-negative probabilities. Theinterpretation of player 2's ation (j, ℓ) in the fall bak game is that in the original gamehe plays with probability 1 − ε2 primary ation j and with probability ε2 bak-up ation
ℓ. The fall bak game (Ã(ε), B̃(ε)) is given by

Ãik,jℓ(ε) = (1− ε1)(1 − ε2)Ai,j + ε1(1− ε2)Ak,j + (1− ε1)ε2Ai,ℓ + ε1ε2Ak,ℓ,

B̃ik,jℓ(ε) = (1− ε1)(1 − ε2)Bi,j + ε1(1− ε2)Bk,j + (1− ε1)ε2Bi,ℓ + ε1ε2Bk,ℓ,for all i, k ∈ M , j, ℓ ∈ N , with i 6= k and j 6= ℓ. The pure strategy (i, k) ∈ M̃ isalternatively denoted by eik, the pure strategy (j, ℓ) ∈ Ñ by fjℓ. A typial element of ∆M̃is denoted by ρ, a typial element of ∆Ñ by σ. As a onsequene, the payo� in mixedstrategies of player 1 an be given by ρÃ(ε)σ, and for player 2 by ρB̃(ε)σ.De�nition Let (A,B) be a bimatrix game. A strategy pair (p, q) ∈ ∆ is a fall bakequilibrium of (A,B) if there exists a sequene {εt}t∈N of pairs of positive real numbersonverging to zero, and a sequene {(ρt, σt)}t∈N suh that (ρt, σt) ∈ NE(Ã(εt), B̃(εt))for all t ∈ N, onverging to (ρ, σ) ∈ ∆̃, with pi =
∑

k∈M\{i} ρik for all i ∈ M and
qj =

∑

ℓ∈N\{j} σjℓ for all j ∈ N . The set of fall bak equilibria of (A,B) is denoted by
FBE(A,B).As a starting point for the analysis of fall bak equilibrium in bimatrix games we use theharaterisation by Kleppe et al. (2012), whih is based on bloking probabilities. We �rstreall the set of seondary replies. Let (A,B) be a bimatrix game and let (p, q) ∈ ∆. Then,we de�ne the players' pure seondary reply orrespondenes2 by

PSR1(q) =
{

ei

∣

∣

∣
∃ k ∈ M\{i} : ekAq ≥ eiAq,

eiAq ≥ erAq for all r ∈ M\{k}
}

,

PSR2(p) =
{

fj

∣

∣

∣
∃ ℓ ∈ N\{j} : pBfℓ ≥ pBfj,

pBfj ≥ pBfs for all s ∈ N\{ℓ}
}

.2In Kleppe et al. (2012) the notation PS is used for the set of pure seondary replies. However, tolearly distinguish between the set of pure solutions and the set of pure seondary replies, we use thenotation PSR for the latter in this paper. 10



Note that if |PB1(q)| > 1, then PSR1(q) = PB1(q). Similarly, if |PB2(p)| = 1, then
PSR2(p) = PB2(p).Theorem 4.1 (Kleppe et al. (2012)) Let (A,B) be a bimatrix game. Then a strategypair (p, q) ∈ ∆ is a fall bak equilibrium if and only if one of the following four statementsis satis�ed.1. |C(p)| > 1, |C(q)| > 1 and (p, q) ∈ NE(A,B).2. |C(p)| > 1, |C(q)| = 1 and there exists a strategy q̄ ∈ ∆N suh that C(q̄)∩C(q) = ∅and a bloking probability δ̄2 > 0, suh that for all δ2 ∈ (0, δ̄2] the strategy pair

(p, q̂), with q̂ = (1− δ2)q + δ2q̄, satis�es
C(p) ⊆ PB1(q̂),

C(q) ⊆ PB2(p),

C(q̄) ⊆ PSR2(p).3. |C(p)| = 1, |C(q)| > 1 and there exists a strategy p̄ ∈ ∆M suh that C(p̄)∩C(p) = ∅and a bloking probability δ̄1 > 0, suh that for all δ1 ∈ (0, δ̄1] the strategy pair
(p̂, q), with p̂ = (1− δ1)p + δ1p̄, satis�es

C(p) ⊆ PB1(q),

C(q) ⊆ PB2(p̂),

C(p̄) ⊆ PSR1(q).4. |C(p)| = |C(q)| = 1 and there exist strategies p̄ ∈ ∆M and q̄ ∈ ∆N suh that
C(p̄) ∩ C(p) = ∅ and C(q̄) ∩ C(q) = ∅ and there also exist bloking probabilities
δ̄1 > 0 and δ̄2 > 0, suh that for all δ1 ∈ (0, δ̄1] and for all δ2 ∈ (0, δ̄2], the strategypair (p̂, q̂), with p̂ = (1− δ1)p+ δ1p̄ and q̂ = (1− δ2)q + δ2q̄, satis�es

C(p) ⊆ PB1(q̂),

C(q) ⊆ PB2(p̂),

C(p̄) ⊆ PSR1(q̂),

C(q̄) ⊆ PSR2(p̂).Reall that in the thought experiment underlying fall bak equilibrium eah player andeide on a bak-up ation, whih is played when the ation of his �rst hoie turns out tobe unavailable. De�ne for all j ∈ N the game (A,B)−j as the subgame of (A,B) in whih11



player 2's pure strategy fj is deleted. Then FBS(A,B)−j = {p ∈ ∆M | ∃q̃ ∈ ∆N : (p, q̃) ∈

NE(((A,B)−j)
UND)} is the projetion of the set of Nash equilibria of ((A,B)−j)

UND) ontothe strategy spae ∆M of player 1. Moreover, FBS(A,B) =
⋂

fj∈J([12])
FBS(A,B)−j isthe intersetion of these projetions for all pure strategies fj ∈ J([12]) of player 2. Hene,if p ∈ FBS(A,B) and fj ∈ J([12]), then (p, q) ∈ NE(((A,B)−j)

UND) for some q ∈ ∆N .This leads us to the entral theorem of our paper: a haraterisation of the set of fallbak equilibria for 2× n bimatrix games.Theorem 4.2 Let (A,B) be a 2 × n bimatrix game. Then FBE(A,B) = {(p, q) ∈

NE((A,B)UND) | p ∈ FBS(A,B)}.Proof: This proof onsists of two parts. We �rst assume that (p, q) ∈ NE((A,B)UND)and p ∈ FBS(A,B), and we show that either one of the four statements of Theorem 4.1is satis�ed. Note that (p, q) ∈ NE((A,B)UND) implies that (p, q) ∈ NE(A,B).1. We assume |C(p)| > 1 and |C(q)| > 1. Then we immediately obtain (p, q) ∈ NE(A,B).2. We assume |C(p)| > 1 and |C(q)| = 1. Sine (p, q) ∈ NE(A,B) we obtain that
q = fj ∈ J([12]) for some j ∈ N , and C(q) ⊆ PB2(p).Sine p ∈ FBS(A,B) it holds that p ∈ FBS(A,B)−j . Therefore, there exists a q̄,
C(q̄) ∩ C(q) = ∅ suh that (p, q̄) ∈ NE(((A,B)−j)

UND), whih also implies (p, q̄) ∈

NE((A,B)−j). Hene, C(q̄) ⊆ PSR2(p).Furthermore, PB1(fj) = {e1, e2}. Sine (p, q̄) ∈ NE((A,B)−j) we obtain PB1(q̂) =

{e1, e2}, with q̂ = (1− δ2)fj + δ2q̄, with δ2 > 0 su�iently small. Hene, C(p) ⊆ PB1(q̂).3. We assume |C(p)| = 1 and |C(q)| > 1. Without loss of generality we assume p = e2.Sine (p, q) ∈ NE((A,B)UND) it holds that qj = 0 for all fj that are dominated. Therefore,
C(q) ⊆ PB2(p̂), with p̂ = (1− δ1)e2 + δ1e1, δ1 > 0 su�iently small.Sine (p, q) ∈ NE(A,B), C(p) ⊆ PB1(q).It is immediate that C(p̄) = {e1} ⊆ PSR1(q).4. We assume |C(p)| = 1 and |C(q)| = 1. Without loss of generality we assume p = e2.Sine (p, q) ∈ NE((A,B)UND) it holds that q = fj ∈ J([12]) ∪ J([2]), j ∈ N . As
(p, q) ∈ NE((A,B)UND) we obtain C(q) = {fj} ⊆ PB2(p̂), with p̂ = (1 − δ1)e2 + δ1e1,with δ1 > 0 su�iently small.If fj ∈ J([2]), then let q̄ be suh that C(q̄) ⊆ PSR2(p̂).12



In that ase C(p̄) = {e1} ⊆ PSR1(q̂), with q̂ = (1 − δ2)q + δ2q̄, with δ2 > 0 su�ientlysmall, is an immediate result.And also C(p) = {e2} ⊆ PB1(q̂).If fj /∈ J([2]), then fj ∈ J([12]), in whih ase C(p) = {e2} ⊆ PB1(q̂).And C(p̄) = {e1} ⊆ PSR1(q̂) is an immediate result.Finally, as p ∈ FBS(A,B)−j there exists a q̄ suh that (p, q̄) ∈ NE((A,B)−j)
UND), whihimplies C(q̄) ⊆ PSR2(p) and therefore, C(q̄) ⊆ PSR2(p̂).In the seond part of the proof we assume that (p, q) ∈ FBE(A,B) and we show that

(p, q) ∈ NE((A,B)UND) and p ∈ FBS(A,B), by distinguishing the same four ases as inTheorem 4.1. Note that it easily follows from eah of the four ases that (p, q) ∈ NE(A,B).1. Sine |C(p)| > 1, p ∈ ∆̇M . Combining this with (p, q) ∈ NE(A,B) results in (p, q) ∈

NE((A,B)UND). Further, if qj = 0 for all fj ∈ J([12]), then (p, q) ∈ NE(((A,B)−j)
UND)for all j ∈ J([12]) and hene, p ∈ FBS(A,B).If qj > 0 for some fj ∈ J([12]), then by the fat that |C(p)| > 1 and C(p) ⊆ PB1(q)either one of the following two things must hold: (i) qℓ > 0, ℓ 6= j, for some fℓ ∈ J([12]) inwhih ase it easily follows that p ∈ FBS(A,B), or (ii) qℓ > 0, ℓ 6= j, for some fℓ ∈ J([1])and qm > 0, m 6= j, for some fm ∈ J([2]), whih also implies p ∈ FBS(A,B).2. Let q = fj , j ∈ N . Sine (p, q) ∈ NE(A,B) and |C(p)| > 1 it holds that fj ∈ J([12]).Hene, p ∈ FBS(A,B)−ℓ for all ℓ ∈ N\{j}. Sine C(q̄) ⊆ PSR2(p) it holds that q̄ is a bestreply of player 2 against p in the game ((A,B)−j)

UND. Sine {e1, e2} = C(p) ⊆ PB1(q̂)and fj ∈ J([12]) it holds that PB1(q̄) = {e1, e2}. Therefore, p is a best reply of player 1against q̄ in the game ((A,B)−j)
UND. Hene, (p, q̄) ∈ NE(((A,B)−j)

UND), whih impliesthat p ∈ FBS(A,B). And as p ∈ ∆̇M , (p, q) ∈ NE((A,B)UND).3. Without loss of generality we assume p = e2. Sine C(q) ⊆ PB2(p̂) it holds that
qj = 0 for all fj /∈

⋃

p∈∆̇M
PB2(p). Hene, (p, q) ∈ NE((A,B)UND). If qj = 0 for all

fj ∈ J([12]), then obviously, p ∈ FBS(A,B).Otherwise, let qj > 0 for some fj ∈ J([12]). Sine (p, q) ∈ NE((A,B)UND) it holdsthat there exists an fℓ ∈ J([12]) ∪ J([2]) with fℓ ∈ PB2(p̂) suh that qℓ > 0, ℓ 6= j. Hene,
p ∈ FBS(A,B). 13



4. Without loss of generality we assume p = e2 and q = fj , j ∈ N . As (p, q) ∈ NE(A,B),
fj ∈ J([12]) ∪ J([2]). Sine C(q) ∈ PB2(p̂) it holds that (p, q) ∈ NE((A,B)UND). If
fj ∈ J([2]), then p ∈ FBS(A,B).Otherwise, fj ∈ J([12]). In that ase C(q̄) ⊆ PSR2(p̂) implies that q̄ is undomi-nated in (A,B)−j . Moreover, in the game ((A,B)−j)

UND, strategy q̄ is a best replyfor player 2, beause C(q̄) ⊆ PSR2(p̂), and strategy p is a best reply for player 1 beause
{e2} = C(p) ⊆ PB1(q̂) = PB1(q̄), where the last equality sign follows from the fat that
fj ∈ J([12]). Hene, p ∈ FBS(A,B). �Note that from Theorem 4.2 it easily follows that the set of fall bak equilibria is the union of�nitely many polytopes, a result generalised for all bimatrix games in Kleppe et al. (2012).For the sake of ompleteness we also provide a haraterisation of the set of fall bakequilibria whih is more in line with the terminology of the haraterisations in Borm(1992). Let PB2(p, [1, 12]) denote the set of pure best replies against p with a label [1] or
[12]; the sets PB2(p, [2, 12]), PSR2(p, [1, 12]) and PSR2(p, [2, 12]) are de�ned analogously.Theorem 4.3 Let (A,B) be a 2 × n bimatrix game. Then (p, q) ∈ FBE(A,B) if one ofthe following three statements holds.1. p ∈ ∆̇M , q ∈ S(p) and there either exist strategies fj ∈ PB2(p, [12]) and fℓ ∈

PSR2(p, [12]) or strategies fj ∈ PSR2(p, [1]) and fℓ ∈ PSR2(p, [2]).2. p = e2 and
{

q ∈ onv{CS(I1) ∪ PB2(I1, [2, 12])} if there exists an fℓ ∈ PSR2(e2, [2, 12]),
q ∈ onv{CS(I1) ∪ PB2(I1, [2])} otherwise.3. p = e1 and

{

q ∈ onv{CS(It) ∪ PB2(It, [1, 12])} if there exists an fℓ ∈ PSR2(e1, [1, 12]),
q ∈ onv{CS(It) ∪ PB2(It, [1])} otherwise.We illustrate the method to ompute the set of fall bak equilibria of a 2 × n bimatrixgame in the following example.Example 4.4 Reonsider the game of Example 3.6 and the orresponding graphial rep-resentation in Figure 3.1. By the use of Theorem 4.2 we determine the set of fall14
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UND, see Figure 4.1. Then FBS(A,B)−3 =

{e2} ∪ { 1
16e1 + 15

16e2} ∪ onv({1
5e1 + 4

5e2,
2
3e1 + 1

3e2}) ∪ {4
5e1 + 1

5e2} ∪ {e1}, whih is il-lustrated by the bold parts on the horizontal axis (∆M ) of Figure 4.1.Seondly, we delete f5. To obtain ((A,B)−5)
UND we also delete f1 and f7. Then

FBS(A,B)−5 = {e2} ∪ { 1
16e1 +

15
16e2} ∪ onv({1

5e1 +
4
5e1, e1}). See Figure 4.2.Finally, we delete f6. To obtain ((A,B)−6)

UND we also delete f1 and f7. Then
FBS(A,B)−6 = {e2} ∪ { 1

16e1 +
15
16e2} ∪ onv({1

4e1 +
3
4e2, e1}). See Figure 4.3.15



This implies that FBS(A,B) = {e2} ∪ { 1
16e1 +

15
16e2} ∪ onv({1

4e1 +
3
4e2,

2
3e1 +

1
3e2}) ∪

{4
5e1 + 1

5e2} ∪ {e1}, whih is illustrated in Figure 4.4. Consequently, FBE(A,B) =

T1 ∪ T2 ∪ T ′
3 ∪ T4 ∪ T ′′′′

5 ∪ T ′′
5 ∪ T ′′′

5 , with T ′
3 = onv({1

4e1 + 3
4e2,

1
3e1 + 2

3e2}) × {f6},
T ′′′′
5 = onv({1

3e1 +
2
3e2,

2
3e1 +

1
3e2})×{f3}, T ′′

5 = {(45e1+
1
5e2, f3)} and T ′′′

5 = {(e1, f3)}. ⊳Note that by the haraterisations of Theorems 3.1, 3.3 and 4.2 it is readily heked thatthe set of proper equilibria is a subset of the set of fall bak equilibria for 2× n bimatrixgames. This result is generalised for all bimatrix games in Kleppe et al. (2012).Corollary 4.5 (Kleppe et al. (2012)) Let (A,B) be a 2 × n bimatrix game. Then
PR(A,B) ⊆ FBE(A,B).Further, sine properness implies both perfetness and fall bak for 2×n bimatrix games, itfollows immediately that the intersetion between the sets of fall bak and perfet equilibriais non-empty. Note, however, that this intersetion may inlude more than the set of properequilibria, as in the game of Examples 3.6 and 4.4 the strategy pair (12e1 + 1

2e2, f3) is nota proper equilibrium, but both a fall bak and a perfet equilibrium.Finally, by the haraterisations of Theorems 3.2 and Theorem 4.2 we obtain the fol-lowing orollary.Corollary 4.6 Let (A,B) be a 2× n bimatrix game with J([1]) 6= ∅ and J([2]) 6= ∅. Then
FBE(A,B) ⊆ PE(A,B).Hene, whenever none of the two pure strategies of player 1 is dominant, eah fall bakequilibrium is a perfet equilibrium. It is easily veri�ed that when J([1]) = ∅ or J([2]) = ∅the set of fall bak equilibria generally is not a subset of the set of perfet equilibria.ReferenesBorm, P. (1992). On perfetness onepts for bimatrix games. OR Spektrum, 14, 33�42.Borm, P., A. Geijsberts, and S. Tijs (1988). A geometri-ombinatorial approah to bima-trix games. Methods of Operations Researh, 59, 199�209.Kleppe, J., P. Borm, and R. Hendrikx (2012). Fall bak equilibrium. European Journal ofOperational Researh, 10.1016/j.ejor.2012.04.014.Lemke, C. and J. Howson (1964). Equilibrium points of bimatrix games. Journal of Soietyof Industrial and Applied Mathematis, 12, 413�423.16
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