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Abstract

For a graph Γ with adjacency matrix A, we consider a switching operation that
takes Γ into a graph Γ′ with adjacency matrix A′, defined by A′ = Q

>
AQ, where

Q is a regular orthogonal matrix of level 2 (that is, Q
>
Q = I, Q1 = 1, 2Q is

integral, and Q is not a permutation matrix). If such an operation exists, and Γ
is nonisomorphic with Γ′, then we say that Γ′ is semi-isomorphic with Γ. Semi-
isomorphic graphs are R-cospectral, which means that they are cospectral and so
are their complements. Wang and Xu [‘On the asymptotic behavior of graphs
determined by their generalized spectra’, Discrete Math. 310 (2010)] expect that
almost all pairs of R-cospectral graphs are semi-isomorphic.

Regular orthogonal matrices of level 2 have been classified. By use of this clas-
sification we work out the requirements for this switching operation to work in case
Q has one nontrivial indecomposable block of size 4, 6, 7 or 8. Size 4 corresponds to
Godsil-McKay switching. The other cases provide new methods for constructions of
R-cospectral graphs. For graphs with eight vertices all these constructions are car-
ried out. As a result we find that, out of the 1166 graphs on eight vertices which are
R-cospectral to another graph, only 44 are not semi-isomorphic to another graph.
Keywords: cospectral graphs, orthogonal matrices, switching.
Mathematics Subject Classifications: 05B20. JEL-code: C0.

1 Introduction

An orthogonal matrix Q is regular if it has constant row sum, that is, Q1 = r1 (where 1 is
the all-one vector). From Q

>
Q = QQ

>
= I, it follows that also Q

>
1 = r1, and that r = ±1.

Without loss of generality we will assume r = 1. A regular orthogonal matrix has level `

∗supported by the Netherlands Organisation for Scientific Research (NWO)

1



if ` is the smallest positive integer such that `Q is an integral matrix. We define ` = ∞
if Q has irrational entries. Clearly ` = 1 if and only if Q is a permutation matrix.

Consider two graphs Γ and Γ′ with adjacency matrices A and A′, respectively. The
graphs are called cospectral if A and A′ have the same spectrum. If A + yJ and A′ + yJ
(where J is the all-one matrix) have the same spectrum for every y ∈ R, then Γ and Γ′ are
called R-cospectral. Since A and A′ are symmetric, Γ and Γ′ are cospectral precisely when
A and A′ are similar, that is, there exist an orthogonal matrix Q such that Q

>
AQ = A′.

If Q is a permutation matrix (i.e. Q is regular of level 1) then Γ and Γ′ are isomorphic.
If Γ and Γ′ are nonisomorphic, and there exist a regular orthogonal matrix Q of level 2
such that Q

>
AQ = A′, we call Γ and Γ′ semi-isomorphic. It easily follows that Γ and

Γ′ are R-cospectral if Q is regular. (Indeed, Q
>
1 = 1 implies Q

>
(A + yJ)Q = A′ + yJ).

In particular, semi-isomorphic graphs are R-cospectral. By taking y = −1 we see that
R-cospectral graphs have cospectral complements. The following result, due to Johnson
and Newman [3] (see also [1, 4]) states that the converse of some of these observations is
also true.

Theorem 1. If Γ and Γ′ are graphs with adjacency matrices A and A′, respectively, then
the following are equivalent.
i. The graphs Γ and Γ′ are cospectral, and so are their complements.
ii. The graphs Γ and Γ′ are R-cospectral.
iii. There exists a regular orthogonal matrix Q, such that Q

>
AQ = A′.

Any matrix of the form xA + yJ + zI with x, y, z ∈ R, x 6= 0 is called a generalized
adjacency matrix of Γ. Clearly Γ and Γ′ are R-cospectral if and only if for every x, y, z
the corresponding generalized adjacency matrices have the same spectrum.

A graph Γ is said to be determined by its spectrum if every graph cospectral with Γ
is isomorphic with Γ. A graph Γ is determined by its generalized spectrum if every graph
which is R-cospectral with Γ is isomorphic with Γ. It has been conjectured by the second
author that almost every graph is determined by its spectrum. A weaker version states
that almost every graph is determined by its generalized spectrum. Both conjectures are
still open, but Wang and Xu [8] have a number of results supporting these conjectures.
They prove that for almost no graph there exists a graph semi-isomorphic with it, and
in addition they provide experimental evidence showing that a positive fraction of all
pairs of nonisomorphic R-cospectral graphs, are in fact semi-isomorphic. This makes it
interesting to investigate semi-isomorphism.

In this paper we show how semi-isomorphic graphs can be made by a switching proce-
dure, that generalizes the switching method due to Godsil and McKay [5] (see also [1, 6]),
called GM-switching. We start with the classification of indecomposable regular orthog-
onal matrices of level 2, and then consider the generalized switching for the case that Q
has one nontrivial indecomposable block of order 4, 6, 7 or 8. In terms of the graph Γ
it means that Γ must have a subgraph ∆ of one of the mentioned orders that satisfies a
number of properties. The four vertex case corresponds to GM-switching and the required
properties are easily described; see Section 2. If ∆ has six or seven vertices the required
properties are worked out in detail. For eight vertices we restrict to the case ∆ = Γ.
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As an application we determine all new switchings for graphs with eight vertices. We
find 68 graphs for which GM-switching does not work, but the new switching does. It
turns out that there exist only 22 pairs of R-cospectral graphs on eight vertices which are
not semi-isomorphic with each other or with another graph.

2 Switching

The following lemma describes the switching method of Godsil and McKay [5].

Lemma 2. Let Γ be a graph and let {V1, . . . , Vm, W} be a partition of the vertex set of
Γ. Suppose that for every vertex x ∈ W and every i ∈ {1, . . . ,m}, x has either 0, 1

2
|Vi|

or |Vi| neighbors in Vi. Moreover, suppose that for every i, j ∈ {1, . . . ,m} the number of
neighbors in Vj of a vertex x ∈ Vi only depends on i and j (in other words, {V1, . . . , Vm}
is an equitable partition of Γ \W ). Make a new graph Γ′ as follows. For each x ∈ W and
i ∈ {1, . . . ,m} such that x has 1

2
|Vi| neighbours in Vi delete the corresponding 1

2
|Vi| edges

and join x instead to the 1
2
|Vi| other vertices in Vi. Then Γ and Γ′ are R-cospectral.

Proof. Let A and A′ be the adjacency matrices of Γ and Γ′, respectively (the vertex
ordering is assumed to be in accordance with the partition). Let n be the number of
vertices of Γ and Γ′. For i = 1, . . . ,m define the |Vi| × |Vi| matrix Ri = 2

|Vi|J − I,

and the n × n block diagonal matrix Q = diag(R1, . . . , Rm, I). Then Q is orthogonal
and regular, and it follows straightforwardly that Q

>
AQ = A′, and more generally, that

Q
>
(A + yJ)Q = A′ + yJ for every y ∈ R.

Note that the orthogonal matrix Q used in the above proof is regular of level
lcm(|V1|, . . . , |Vm|)/2. If |Vi| = 2 for some i ∈ {1, . . . ,m}, then GM-switching just in-
terchanges the two vertices of Vi, and therefore the two vertices may be considered part
of W . Thus we can assume that |Vi| ≥ 4. If |Vi| = 4 for all i ∈ {1, . . . ,m}, then Q has
level 2, and the graphs Γ and Γ′ are semi-isomorphic, provided they are not isomorphic.
The conditions for GM-switching are most easy to fulfill if m = 1 and |V1| = 4. In this
case the orthogonal matrix Q is regular of level 2 and has just one nontrivial indecom-
posable block R1 = 1

2
J − I. For this switching to work, V1 must induce a regular graph

on four vertices, and each vertex outside V1 should be adjacent to 0, 2, or 4 vertices of
V1. For example, the adjacency matrix A given below satisfies these conditions, and A′ is
obtained by GM-switching: A′ = Q

>
AQ. Therefore the two graphs are R-cospectral. The

graphs are not isomorphic (because of different degree sequences), and therefore they are
semi-isomorphic.

A =



0 0 0 0 1 1 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0


, A′ =



0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0
0 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0


.
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This is the situation we will generalize. If R is an indecomposable regular orthogonal
r× r matrix of level 2, and Γ is a graph with n ≥ r vertices and adjacency matrix A. We
define the n× n matrix

Q =

[
R O
O I

]
and investigate the required structure for A needed to ensure that A′ = Q

>
AQ is again

the adjacency matrix of a graph. Note that it is sufficient to require that A′ is a (0, 1)
matrix, because A′ is symmetric and trace A′ = trace A = 0.

3 Regular orthogonal matrices of level 2

Let Q be a regular orthogonal matrix of level 2. Then after suitable reordering of rows
and columns, Q takes the block diagonal form diag(R1, . . . , Rm), or diag(R1, . . . , Rm, I),
where Ri is an indecomposable regular orthogonal matrix of level 2 for i = 1, . . . ,m. It
follows easily that if R is an indecomposable regular orthogonal matrix of level 2, then all
entries of 2R are equal to 0, 1 or −1, and each row and column of R has exactly three 1’s
and one −1. Using these observations and the orthogonality of R, Wang and Xu [8, 7]
determined all indecomposable regular orthogonal matrices of level 2.

Theorem 3. Let R be an indecomposable regular orthogonal matrix with level 2 and row
sum 1. Then after suitable reordering of rows and columns R is one of the following:

(i) 1
2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (ii) 1
2



J O · · · · · · O Y
Y J O · · · · · · O
O Y J O · · · O

. . . . . . . . . . . .

O · · · O Y J O
O · · · · · · O Y J


,

(iii) 1
2



−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1
1 0 1 0 0 −1 1
1 1 0 1 0 0 −1


, (iv) 1

2


−I I I I

I −Z I Z
I Z −Z I
I I Z −Z

 ,

where I, J , O, Y = 2I − J and Z = J − I, are square matrices of order 2.

We observed that W = 2R is a matrix with entries 0, 1 and −1, satisfying WW
>
= 4I,

and W1 = W
>
1 = 2 ·1. Such a matrix W is known as a regular weighing matrix of

weight 4. Two weighing matrices are called equivalent if one can be obtained by the other
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by row and column permutations and/or multiplication of a number of rows and columns
by −1. The inequivalent weighing matrices of weight 4 have been classified in 1986 by
Chan, Rodger and Seberry [2], and from their result the classification of the regular ones
is straightforward. Therefore, Theorem 3 should be attributed to the authors of [2].

Case (ii) of the above theorem gives an infinite family of matrices of even order starting
with order 6. So for the order 8 there exist two different indecomposable regular orthogonal
matrices of level 2. If

Q =

[
R O
O I

]
and R is as in case (i), then the transformation A′ = Q

>
AQ corresponds to GM-switching.

In the next sections we will investigate the required structure for A for the other three
cases.

The product of two regular orthogonal matrices of level 2 is again a regular orthogonal
matrix, but the level need not be 2, but can also be 1 or 4. Therefore we may not conclude
that the relation: ‘being isomorphic or semi-isomorphic’ is an equivalence relation. In fact,
this is false. This is illustrated by the following example.

Example 4. Consider the three nonisomorphic graphs Γ, Γ1, Γ2 with adjacency matrices

A =



0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
0 1 1 0 0 0 0 1
0 0 1 1 1 1 1 0


, A1 =



0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0
0 0 1 1 0 0 0 1
0 1 0 1 0 0 0 1
1 0 0 1 0 0 0 1
1 1 0 0 1 1 1 0


, A2 =



0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 1 1 0 0 1
1 1 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 0 1 1 1 1 1 0


.

The graphs Γ1 and Γ2 can both be obtained from Γ by GM-switching. Therefore Γ1 and
Γ2 are both semi-isomorphic with Γ. The regular orthogonal matrices that represent the
switching are (with R as in Case (i) of Theorem 3):

Q1 = Q
>

1 =

[
R O
O I4

]
, and Q2 = Q

>

2 =

 I3 O 0
O R 0

0
>

0
>

1

 .

Clearly, Q = Q1Q2 is orthogonal and regular and satisfies Q
>
A1Q = A2 . But Q has level 4.

Moreover, it has been checked (by computer) that there exists no other orthogonal regular
Q of smaller level for which Q

>
A1Q = A2. Therefore, Γ1 and Γ2 are not semi-isomorphic.

In some cases the product of two regular orthogonal matrices Q1 and Q2 of level 2
has level 2 again. This is obviously the case, if the rows of the nontrivial indecomposable
blocks of Q1 are all different from the rows of the nontrivial indecomposable blocks of Q2.
A nontrivial example is given by:

Q1 = Q
>

1 =

[
R2 O
O I2

]
, and Q2 = Q

>

2 =

[
I O
O R1

]
,
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with R1 as in Case (i), and R2 as in Case (i) or (ii) of Theorem 3. Then Q1Q2 has again
level 2 and belongs to Case (ii) of Theorem 3. In case both R1 and R2 belong to Case (i),
then Q1Q2 correspond to a six vertex switching of Case (ii). This shows that the six
vertex switching, can sometimes be obtained by applying GM-switching twice.

4 Six vertex switching

Here we consider switching with a regular orthogonal matrix Q of order n, having just
one nontrivial indecomposable block of order 6. Thus with a suitable ordering of rows
and columns we have:

Q =

[
R O
O I

]
, where R = 1

2

 J O Y
Y J O
O Y J

, and Y =

[
1 −1

−1 1

]
.

Let Γ be a graph with n vertices and adjacency matrix

A =

[
B V

V
>

C

]
,

where B is the adjacency matrix of a graph ∆ of order 6. For the six vertex switching
with respect to ∆ to work we need that the switched matrix

A′ = Q
>
AQ =

[
R
>
BR R

>
V

V
>
R C

]
is a (0, 1) matrix again. First we determine the possible columns of V . This means that
we have to find the vectors v ∈ {0, 1}6 for which R

>
v is again a (0, 1) vector.

Lemma 5. Let v ∈ {0, 1}6. With R as above, R
>
v ∈ {0, 1}6 if and only if the number

of ones in each class of the partition is even, or the number of ones in each class of the
partition is odd. In the first case R

>
v = v. In the second case, multiplication by R

>
gives

a permutation of the eight involved (0, 1) vectors represented by the following two cycles
([101010]

>
and [010101]

>
are fixed):(

[101001]
>
, [100110]

>
, [011010]

>
) (

[100101]
>
, [010110]

>
, [011001]

>
)

.

Proof. With v = [ v1 . . . v6 ]
>
we have

0 = 2R
>
v =


v1 + v2 + v3 − v4

v1 + v2 − v3 + v4

v3 + v4 + v5 − v6

v3 + v4 − v5 + v6

v1 − v2 + v5 + v6

−v1 + v2 + v5 + v6

 =


v1,2 + v3,4

v1,2 + v3,4

v3,4 + v5,6

v3,4 + v5,6

v1,2 + v5,6

v1,2 + v5,6

 (mod 2) ,
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where vi,i+1 = vi + vi+1 for i = 1, 3, 5. It follows that R
>
v is a (0, 1) vector if and only

if v1,2 = v3,4 = v5,6 (mod 2). The second part of the lemma follows by straightforward
verification.

Next we determine the set B of adjacency matrices B of order 6, that have the property
that B′ = R

>
BR is a (0, 1) matrix again. To do so, the following observations are useful.

The matrix R is invariant under certain reorderings of row and columns, more precisely:
R = P

>
RP , when P is any permutation matrix generated by

P1 =

 O I O
O O I
I O O

 and P2 =

 Z O O
O Z O
O O Z

 , where Z =

[
0 1
1 0

]
.

Clearly, B′ = R
>
BR implies P

>
B′P = R

>
(P

>
BP )R, so B is invariant under the mentioned

permutations and (P
>
BP )′ = P

>
B′P . Moreover, B′ = R

>
BR implies J −B′ − I = R

>
(J −

B− I)R, so B is also invariant under taking complements and (J −B− I)′ = J −B′ − I.
But there is more. The permutation matrix P2 commutes with R, and therefore P2 +B′ =
R
>
(P2 + B)R, so if B ∈ B, and the three diagonal blocks of B are O, then B + P2 ∈ B

and (P2 + B)′ = P2 + B′.

Lemma 6. Let B be an adjacency matrix of of order six. With R as above, the matrix
B′ = R

>
BR is again an adjacency matrix if and only if B can be obtained from one of the

following B0 . . . B7 by the above mentioned operations.

B0 = O, B1 =

 O J O
J O O
O O O

, B2 =

 O I I
I O I
I I O

, B3 =

 O I I
I O Z
I Z O

,

B4 =

 O N N
>

N
>

O N

N N
>

O

, B5 =

 O M N
>

M
>

O N

N N
>

O

, B6 =

 O O I
O O M

I M
>

O

, B7 =

 O O Z
O O N

Z N
>

O

,

where N =

[
0 0
1 1

]
, M = J −N and Z = J − I. The switched matrices B′

i = R
>
BiR are:

B′
0 = O, B′

1 = B1, B′
2 = B2, B′

3 =

 O I Z
I O I
Z I O

,

B′
4 =

 O N
>

N

N O N
>

N
>

N O

, B′
5 =

 O N
>

N

N O M
>

N
>

M O

, B′
6 =

 O O M
O O I

M
>

I O

, B′
7 =

 O O N
O O Z

N
>

Z O

.
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Proof. With the vertex ordering used for R, we write

B =

 B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

 , and B′ = R
>
BR =

 B′
1,1 B′

1,2 B′
1,3

B′
2,1 B′

2,2 B′
2,3

B′
3,1 B′

3,2 B′
3,3

 .

This leads to

4B′
i,i = JBi,iJ + JBi,i+1Y + Y Bi+1,iJ + Y Bi+1,i+1Y, (1)

for i = 1, 2, 3 (addition mod 3), where Bi,j = B
>
j,i. Without loss of generality we take

B1,1 = O. Taking traces in Equation 1 yields trace(Y B2,2Y ) = 0, and therefore B2,2 = O.

Thus Bi,i = O for i = 1, 2, 3. Equation 1 becomes 4B′
i,i = JBi,i+1Y + (JBi,i+1Y )

>
. For

every 2 × 2 matrix X, JXY = α(M − N) for some scalar α. Since B′
i,i has no negative

entries it follows that α = 0 when X = Bi,i+1. Therefore JBi,i+1Y = O, which reflects that

Bi,i+1 has constant column sums for i = 1, 2, 3. Equivalently, Bi,i+2 = B
>
i+2,i = B

>
i+2,i+3

has constant row sums for i = 1, 2, 3. Now it is straightforward to find all admissible
matrices B and the corresponding B′.

For example the following matrix A has the desired form (indeed, B = B4 + P2 and
V has columns [001100]

>
and [101001]

>
). With the above Lemmas we conclude that the

switched matrix A′ is cospectral with A.

A =



0 1 0 0 0 1 0 1
1 0 1 1 0 1 0 0
0 1 0 1 0 0 1 1
0 1 1 0 1 1 1 0
0 0 0 1 0 1 0 0
1 1 0 1 1 0 0 1
0 0 1 1 0 0 0 0
1 0 1 0 0 1 0 0


, A′ =



0 1 0 1 0 0 0 1
1 0 0 1 1 1 0 0
0 0 0 1 0 1 1 0
1 1 1 0 0 1 1 1
0 1 0 0 0 1 0 1
0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0


.

The two graphs are not isomorphic, because the degree sequences differ, but they are
semi-isomorphic. In addition, the graphs are not related by GM-switching.

Out of the eight adjacency matrices presented in Lemma 6, the graphs with matrices B4

and B5 are isomorphic, and the same is true for B6 and B7. In addition, the complement
of B4 (and B5) is isomorphic with B4 + P2, and the complement of B2 is isomorphic with
B3 +P2. Therefore, the total number of nonisomorphic graphs ∆ for which the six vertex
switching works is 18. The total number of matrices B for which R

>
BR is a (0, 1) matrix

equals 96.
We note that in Lemma 6 in all cases the graph ∆′ with matrix B′ is isomorphic to ∆

with matrix B. This implies that with a suitable reordering of the rows and columns of
R we can establish that B′ = B. However, this would require a reordering of the entries
of the vectors in Lemma 5 depending on the choice of B. So it would not have made the
presentation easier. Besides that, the phenomenon is not general, as we shall see in the
next section.
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5 Seven vertex switching

Here we consider switching with a regular orthogonal matrix Q of order n, having just
one nontrivial indecomposable block R of order 7. Theorem 3 gives

R = 1
2



−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1
1 0 1 0 0 −1 1
1 1 0 1 0 0 −1


.

Let Γ be a graph with n vertices and adjacency matrix

A =

[
B V

V
>

C

]
,

where now B is the adjacency matrix of a graph ∆ with seven vertices. For the seven
vertex switching with respect to ∆ to work we need that the switched matrix

A′ = Q
>
AQ =

[
R
>
BR R

>
V

V
>
R C

]
is a (0, 1) matrix again. Note that the matrix R is invariant under a cyclic shift, that is,
P1RP

>
1 = R for the cyclic permutation matrix P1 = cycle(0, 1, 0, 0, 0, 0, 0). Moreover, also

the following permutation leaves R invariant:

P2 =



1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0


.

Thus the permutation group G generated by P1 and P2 is an automorphism group of R.

Remark. The group G is known as the Frobenius group F7,3, which can be described as
the additive group of the field F7 extended with the multiplications by a nonzero square.
It is the automorphism group of R, but also an automorphism group of the Fano plane.
Indeed, 2R + I, and also J − 2R− 2I are incidence matrices of the Fano plane.

First we determine the possible columns of V . This means that we have to find the vectors
v ∈ {0, 1}7 for which R

>
v is again a (0, 1) vector.

Lemma 7. Let v ∈ {0, 1}7. With R and P1 as above, R
>
v ∈ {0, 1}7 if and only if the

vector v or the complement 1−v is equal to 0, or P i
1[1101000]

>
for some i ∈ {0, . . . , 6}. If

v = P i
1[1101000]

>
, or P i

1[0010111]
>
, then R

>
v = P i

1[0010110]
>
, or P i

1[1101001]
>
, respectively.
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Proof. This follows by straightforward verification. Using the above mentioned automor-
phisms of R, and the fact that R

>
(1 − v) = 1 − R

>
v, there are just a few cases to be

checked.

Next we determine the set B of adjacency matrices B of order 7, that have the property
that B′ = R

>
BR is a (0, 1) matrix again. In the determination and description of B we use

that B is invariant under the action of G, and under complementation. More precisely,
if B ∈ B, then so is J − B − I, and P

>
BP for P ∈ G. Moreover, (J − B − I)′ =

R
>
(J −B − I)R = J −B′ − I and (P

>
BP )′ = R

>
P
>
BPR = P

>
B′P .

Lemma 8. Let B be an adjacency matrix of order seven. With R, P1 and P2 as above,
the matrix B′ = R

>
BR is again an adjacency matrix if and only if B can be obtained

from one of the following B0 . . . B11 by complementation and/or a permutation of rows
and columns generated by P1 and P2.

B0 = O, B1 =


0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0

, B2 =


0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 1 0 1 1
0 0 1 0 1 0 1
0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 1 1 1 0 0 0

,

B3 =


0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 1 0 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 0
1 0 1 0 1 0 1
1 1 1 1 0 1 0

, B4 =


0 0 0 0 0 0 1
0 0 0 1 1 0 1
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 1
0 0 0 1 1 0 0
1 1 0 0 1 0 0

, B5 =


0 0 0 0 1 1 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 0 0 0 1
1 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 1 1 0 0 0

,

B6 =


0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 0 0
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 0 1 1 0 0
1 1 0 1 1 0 0

, B7 =


0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 1
0 1 1 0 0 0 0
0 1 0 0 1 0 0

, B8 =


0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 1 1 0 1
0 0 1 0 0 1 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0
1 0 1 0 0 0 0

,

B9 =


0 0 0 0 0 0 1
0 0 0 1 1 1 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 1 0 0 0 1 1
0 1 1 0 1 0 1
1 1 0 0 1 1 0

, B10 =


0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 0 1 1 1 1
0 1 1 0 0 1 0
0 0 1 0 0 0 1
1 0 1 1 0 0 0
0 1 1 0 1 0 0

, B11 =


0 0 0 1 0 0 1
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 1 0 0 0 1 0
0 1 1 0 0 0 0
0 1 1 1 0 0 1
1 0 1 0 0 1 0

.

The switched matrices B′
i = R

>
BiR satisfy B′

0 = B0, B′
1 = B1, B′

i = Z7BiZ7 for i =
2, . . . , 5, B′

6 = Z7B9Z7, B′
9 = Z7B6Z7, B′

10 = Z7B2Z7, and

B′
7 =


0 0 0 1 0 1 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
1 1 0 0 0 0 0
1 0 0 0 1 0 0

, B′
8 =


0 0 0 0 1 0 1
0 0 0 1 1 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
1 1 0 0 0 0 0
0 0 0 1 0 0 1
1 0 0 0 0 1 0

, B′
11 =


0 0 1 1 1 0 1
0 0 0 1 1 0 0
1 0 0 0 1 1 0
1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 0 1 0 0 0 1
1 0 0 1 0 1 0

 ,

where Z7 is the reverse identity matrix of order 7, that is, (Z7)i,j = 1 if i + j = 7, and 0
otherwise.
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Again the proof goes by straightforward verification. Observe that B0 to B11 are all
nonisomorphic, and together with the complements this gives 24 nonisomorphic graphs for
which the seven vertex switching works. Out of these graphs B0 and its complement are
the only ones invariant under the group G. Of the remaining cases B1 and its complement
are invariant under the cyclic permutation P1, and B5, . . . , B9 and their complements are
invariant under P2. So in total there are 288 adjacency matrices B of order 7 for which
B′ = R

>
BR is again an adjacency matrix. For the six vertex switching we observed that B′

i

is isomorphic with Bi in all cases. This is not true anymore for the seven vertex switching.
Indeed, B′

i is nonisomorphic (and hence semi-isomorphic) to Bi for i = 6, . . . , 10. It is
not difficult to see that these semi-isomorphic pairs can also be made by GM-switching
with respect to four vertices. However, the following example on eight vertices gives semi-
isomorphic graphs that can be made by the seven vertex switching described above, but
not by GM-switching.

A =



0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 1 0
0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 0 1 0 0
1 1 0 1 0 0 0 0


, A′ =



0 1 0 1 1 1 1 0
1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0
1 1 0 1 0 0 0 1
1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0


.

6 Eight vertex switching

In this section we consider the case that Q has one nontrivial indecomposable block R of
order 8. Theorem 3 gives two nonequivalent possibilities for R, being:

R1 = 1
2


J O O Y
Y J O O
O Y J O
O O Y J

, and R2 = 1
2


−I I I I

I −Z I Z
I Z −Z I
I I Z −Z

 ,

with I, J , O, Y = 2I − J , and Z = J − I of order 2. We had hoped to find a general
description of matrices B for which R

>
BR is a (0, 1) matrix again, when R has the form of

Case (ii) in Theorem 3, but failed. Already for the above matrix R1 of order 8, we found
3584 such matrices, and we were not able to discover a general structure. Also for R2 we
found a large number (1504) of such matrices B, so we decided not to give a complete
description of the switching conditions as we did in the previous sections for six and seven
vertex switching. However, in the next section we will investigate semi-isomorphism for
graphs on eight vertices. Therefore we also have to consider eight vertex switching with
no additional vertices, that is, Q = R. In this case we only have to consider adjacency
matrices B for which B′ = R

>
BR is nonisomorphic with B. With the help of a computer

we found the following:
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00110110
00111010
11000011
11000000
01000000
10000000
11100000
00100000

00111011
00111000
11000001
11000010
11000000
00000000
10010000
10100000

00011010
00101010
01001100
10001100
11110000
00110000
11000000
00000000

00101001
00101010
11001100
00001100
11110000
00110000
01000000
10000000

00111010
00001010
10001111
10001100
11110000
00110000
11100000
00100000

00101011
00101000
11001110
00001110
11110000
00110000
10110000
10000000

00110110
00111010
11001111
11001100
01110000
10110000
11100000
00100000

00111011
00111000
11001101
11001110
11110000
00110000
10010000
10100000

00110100
00111000
11001110
11000010
01100000
10100000
00110000
00000000

00111100
00110000
11001001
11001010
10110000
10000000
00010000
00100000

00111011
00001011
10001110
10000010
11100000
00100000
11110000
11000000

00101111
00100011
11001010
00001010
10110000
10000000
11110000
11000000

00110111
00111011
11001110
11000010
01100000
10100000
11110000
11000000

00111111
00110011
11001001
11001010
10110000
10000000
11010000
11100000

00110011
00000011
10000110
10001010
00010000
00100000
11110000
11000000

00010011
00100011
01001010
10001010
00110000
00000000
11110000
11000000

00111111
00001111
10000110
10001010
11010000
11100000
11110000
11000000

00011111
00101111
01001010
10001010
11110000
11000000
11110000
11000000

00011010
00101010
01001111
10001111
11110000
00110000
11110000
00110000

00101001
00101010
11001111
00001111
11110000
00110000
01110000
10110000

Table 1: Nonisomorphic pairs Bi, B
′
i = R

>
1BiR1 (i = 1, . . . , 10) mentioned in Lemma 9.

Lemma 9. There exist exactly 20 nonisomorphic graphs Γ1, . . . , Γ20, which have an adja-
cency matrix Bi for which B′

i = R
>
1BiR1 is the adjacency matrix of a graph nonisomorphic

with Γi for i = 1, . . . , 20. The matrices B1, . . . , B10 of Γ1 . . . Γ10 are displayed in Table 1,
and Γ11, . . . , Γ20 are the complements of Γ1, . . . , Γ10.
There exist exactly 36 nonisomorphic graphs Γ21, . . . , Γ56, which have an adjacency ma-
trix Bi for which B′

i = R
>
2BiR2 is the adjacency matrix of a graph nonisomorphic with Γi

for i = 21, . . . , 56. The matrices B21, . . . , B38 of Γ21 . . . Γ38 are displayed in Table 2, and
Γ39, . . . , Γ56 are the complements of Γ21, . . . , Γ36.

7 Semi-isomorphic graphs with eight vertices

With the results of the previous sections, we were able to generated by computer all
graphs on eight vertices for which the six vertex switching (with two extra vertices), the
seven vertex switching (with one extra vertex), or one of the eight vertex switching (with
no extra vertex) applies and gives a nonisomorphic (and therefore semi-isomorphic) mate.
In total we found 427 nonisomorphic graphs; 227 by six vertex switching, 144 by seven
vertex switching, and 56 (see Lemma 9) by eight vertex switching.
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00001010
00100110
01011010
00101100
10110000
01010000
11100000
00000000

00111100
00010000
10011001
11100000
10100010
10000001
00001000
00100100

01100011
10100110
11011010
00101100
00110000
01010000
11100000
10000000

00111000
00010000
10011101
11100000
10100110
00101011
00001100
00100100

01001100
10101010
01001001
00001010
11110000
10000000
01010000
00100000

00011100
00000000
00010011
10101010
10010001
10000010
00110100
00101000

01110101
10001100
10010011
10100110
01000000
11010000
00110000
10100000

00001000
00101100
01011101
00100011
11100100
01101010
00010100
00110000

00011111
00000100
00010010
10101100
10010110
11011000
10101000
10000000

00101000
00111010
11011001
01100001
11100010
00000000
01001001
00110010

00111001
00010010
10010010
11101100
10010110
00011000
01101000
10000000

00101001
00110010
11011000
01101001
10110110
00001000
01001000
10010000

01011111
10010010
00010010
11101100
10010110
10011000
11101000
10000000

00101000
00110010
11011001
01101001
10110111
00001000
01001001
00111010

00001010
00101110
01010010
00101100
11010110
01011000
11101000
00000000

00111101
00010000
10011001
11100001
10100010
10000000
00001001
10110010

00111111
00000100
10001011
10001100
10110110
11011000
10101000
10100000

00101010
00111010
11011011
01100001
11100010
00000010
11101100
00110000

00001111
00100100
01011000
00101001
10110110
11001000
10001000
10010000

00111000
00011010
10010011
11100100
11000010
00010000
01101001
00100010

00101001
00110010
11011000
01101001
10110110
00001000
01001000
10010000

00111001
00010010
10010010
11101100
10010110
00011000
01101000
10000000

01000011
10111110
01010100
01100101
01000110
01111000
11001000
10010000

00110001
00010100
10010101
11100101
00000111
01111000
00001001
10111010

00011001
00001101
00010100
10100101
11000110
01111000
00001000
11010000

00100001
00111100
11010000
01100111
01000010
01010000
00011001
10010010

01011001
10011011
00010100
11100101
11000110
00111000
01001000
11010000

00100001
00110100
11010000
01101111
00010111
01011000
00011001
10011010

00110111
00000100
10000011
10001100
00010011
11010000
10101000
10101000

00001010
00111010
01001101
01000001
11100010
00100010
11001100
00110000

00011110
00010010
00000011
11001100
10010011
10010000
11101000
00101000

00001110
00110010
01001001
01001001
10110011
10000000
11001000
00111000

00111101
00000001
10001001
10001001
10110011
10000000
00001000
11111000

00001010
00111010
01000010
01001110
11010010
00010010
11111100
00000000

00101000
00101011
11001001
00001001
11110011
00000000
01001000
01111000

00011111
00010000
00000010
11001110
10010010
10010010
10111100
10000000

Table 2: Nonisomorphic pairs Bi, B
′
i = R

>
2BiR2 (i = 21, . . . , 38) mentioned in Lemma 9.
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For n ≤ 11, Table 1 of [6] gives exact numbers of nonisomorphic graphs on n vertices
for which there exist a R-cospectral mate (that is, the graph is not determined by the
generalized spectrum); the column carries the name A&A. The table also presents the
number of graphs for which a nonisomorphic cospectral mate can be obtained by GM-
switching (the name of the column is GM). If n ≤ 8, only GM-switching with respect to
four vertices can give nonisomorphic mates. Therefore, nonisomorphic pairs related by
GM-switching must be semi-isomorphic when n ≤ 8. For n ≤ 6, all graphs are determined
by their generalized spectrum. On seven vertices, there exist 1044 graphs. Out of these,
40 graphs are not determined by the generalized spectrum, but for each of these graphs
there exist a semi-isomorphic mate by GM-switching. Thus, every graph on seven vertices
which is not determined by its generalized spectrum, is semi-isomorphic to some other
graph. On eight vertices, there are 12346 nonisomorphic graphs. Out of these 1166 are
not determined by their generalized spectrum, and for 1054 of these, an R-cospectral mate
can be obtained by GM-switching. Ted Spence (private communication) generated the
remaining 112 graphs, and we compared these with the 427 graphs, for which six, seven
or eight vertex switching applies. Only 44 of the 112 graphs in Spence’s list did not occur
in our list of 427. These 44 graphs consist of 22 pairs of R-cospectral graphs, which are
not isomorphic or semi-isomorphic. Thus we have:

Proposition 10. On eight vertices, there exist 22 pairs of nonisomorphic R-cospectral
graphs for which no graph is semi-isomorphic with another graph. These are the twelve
pairs of graphs displayed in Table 3, together with their complements (the last two pairs
of the table are self-complementary).

According to Theorem 1, each of the 22 pairs of matrices from Proposition 10 are
similar by a regular orthogonal matrix Q. For example for the first pair in Table 3 we
find

Q = 1
3



1 1 1 2 −1 −1 0 0
1 1 1 −1 2 −1 0 0
1 1 1 −1 −1 2 0 0
2 −1 −1 1 1 1 0 0

−1 2 −1 1 1 1 0 0
−1 −1 2 1 1 1 0 0

0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3


,

which is a regular orthogonal matrix of level 3.

Warning. The 22 pairs of Proposition 10 are not the only R-cospectral pairs that are
not semi-isomorphic with each other. For example Γ1 and Γ2 from Example 4 have the
same property, but the two graphs nor the complements do occur in Table 3. The reason
is that both graphs have a nonisomorphic cospectral mate by GM-switching, therefore
they are both semi-isomorphic with another graph, but not with each other.

Acknowledgement. We thank Ted Spence for the 112 graphs on 8 vertices for which
an R-cospectral mate exists, but not by GM-switching.
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01110010
10000011
10000010
10001101
00010000
00010000
11100000
01010000

01110011
10000010
10000010
10001100
00010001
00010000
11100000
10001000

01111000
10110000
11000100
11000100
10000111
00111010
00001100
00001000

01111100
10110000
11001000
11000011
10100000
10000011
00010100
00010100

01111000
10110100
11001000
11000000
10100100
01001011
00000100
00000100

01111100
10111000
11000010
11000000
11000000
10000011
00100100
00000100

01111000
10110100
11001010
11000001
10100001
01000001
00100000
00011100

01111100
10110010
11001000
11000001
10100001
10000010
01000100
00011000

01111100
10110010
11000010
11000010
10000111
10001000
01111000
00001000

01111100
10111000
11010011
11100000
11000000
10000011
00100100
00100100

01111100
10110010
11001000
11000001
10100100
10001011
01000100
00010100

01111100
10110010
11001001
11000100
10100000
10010001
01000001
00100110

01111100
10110010
11001000
11000001
10100101
10001000
01000000
00011000

01111100
10110010
11001010
11000001
10100000
10000000
01100001
00010010

01111100
10110010
11001001
11000100
10100100
10011010
01000100
00100000

01111100
10110010
11001010
11001001
10110000
10000000
01100001
00010010

01111100
10110010
11001010
11000011
10100001
10000000
01110001
00011010

01111100
10111010
11000110
11000100
11000001
10110001
01100000
00001100

01111100
10110011
11001010
11000000
10100100
10001001
01100000
01000100

01111110
10110001
11001000
11000100
10100010
10010000
10001001
01000010

01111100
10110010
11001000
11000011
10100101
10001010
01010100
00011000

01111100
10110010
11001010
11000101
10100001
10010000
01100001
00011010

01111110
10111001
11010001
11100001
11000001
10000000
10000000
01111000

01111110
10111110
11011000
11100000
11100000
11000001
11000000
00000100

Table 3: Pairs of R-cospectral graphs mentioned in Proposition 10
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