
  

 

 

Tilburg University

Kriging in Multi-response Simulation, including a Monte Carlo Laboratory (Replaced by
2014-012)
Kleijnen, Jack P.C.; Mehdad, E.

Publication date:
2012

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C., & Mehdad, E. (2012). Kriging in Multi-response Simulation, including a Monte Carlo Laboratory
(Replaced by 2014-012). (CentER Discussion Paper; Vol. 2012-039). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/cf311469-5f8c-4c1e-ad4f-6902b04e11eb


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2012-039 

 
 
 

KRIGING IN MULTI-RESPONSE SIMULATION, 
INCLUDING A MONTE CARLO LABORATORY 

 
By  

 
 

Jack Kleijnen, Ehsan Mehdad 
 
 
 
 
 
 

May 16, 2012 
 
 

 
 
 
 
 
 

 
 
 

ISSN 0924-7815 



Kriging in Multi-response Simulation, including
a Monte Carlo Laboratory

Jack P.C. Kleijnen, Ehsan Mehdad
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{kleijnen@tilburguvt.nl, E.Mehdad@uvt.nl}

To analyze the input/output behavior of simulation models with multiple responses, we may

apply either univariate or multivariate Kriging (Gaussian Process) models. Univariate Krig-

ing may use a popular MATLAB Kriging toolbox called “DACE”. Multivariate Kriging faces

a major problem: its covariance matrix should remain positive-definite; this problem may be

solved through nonseparable dependence model. To evaluate the performance of these two

Kriging models, we develop a Monte Carlo “laboratory” that simulates Gaussian Processes.

To verify that this laboratory works correctly, we derive statistics that test whether the

Kriging parameters have the correct values. Our Monte Carlo results demonstrate that in

general DACE gives smaller Mean Squared Error (MSE); we also explain these results.

Key words: positive-definite covariance-matrix, nonseparable dependence model, Gaussian

process, verification
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1. Introduction

In practice, simulation is applied in many scientific disciplines—ranging from sociology to

astronomy, as described in the excellent survey by Karplus (1983). Simulation may be

either deterministic or random (stochastic). Applications of deterministic simulation abound

in engineering (e.g., in Computer Aided Engineering), but there are also applications in

Operations Research / Management Science (OR/MS). An application is the management

of fisheries at the French Research Institute for Exploitation of the Sea (IFREMER); see

Mahevas and Pelletier (2004). Another application is the case study on the CO2 greenhouse

effect by Kleijnen et al. (1992). Applications of random simulation are plentiful in OR/MS

(e.g., in queueing and inventory management); see the many references in Kleijnen (2008,

pp. 3-6).

Kriging may be used to analyze the Input/Output (I/O) behavior of a given simulation

model (this analysis may serve validation, sensitivity analysis, and optimization; see Kleijnen
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et al. (2010). This Kriging gives a metamodel, which approximates the I/O function defined

by the underlying simulation model (metamodels are also called response surfaces, surrogates,

emulators, etc. in different disciplines). There are different types of metamodels; the most

popular type is a polynomial of first or second order; see Kleijnen (2008, pp. 15-100). We,

however, focus on Kriging, which has already become popular in engineering (see again

Kleijnen (2008)) and is gaining popularity in OR/MS (see the references in Chen et al.

(2010)).

In practice, a given simulation model has multiple outputs (responses, performance cri-

teria). For example, one case study concerned the production planning of steel tubes of

different types, using a simulation model with 28 outputs which—after a discussion with

management—were reduced to two outputs; for details see Kleijnen (1993). Multiple per-

formance metrics in supply chain management are discussed by Kleijnen and Smits (2003).

The literature on metamodels, however, often reduces these multiple outputs to a single

output—either ignoring all the other outputs or combining all outputs through a weighting

function. We will examine two examples; namely, the sum and the product of two outputs.

Other publications present a metamodel for each individual output ignoring the correlations

between outputs; e.g., Kleijnen et al. (2010) fit univariate Kriging models for each of the

two outputs (cost and service) of a call-center simulation. We will examine examples of such

univariate Kriging.

To empirically investigate univariate and multivariate Kriging, we use Monte Carlo ex-

periments that control the validity (adequacy) of the Kriging model. The literature usually

experiments with realistic simulation models, but these experiments mix-up the approxima-

tion errors of the Kriging metamodels and the errors of the metamodel variants. We limit

this investigation to Kriging in deterministic simulation, which is also the basis for Kriging

in stochastic simulation. Our Monte Carlo examples require relatively little computer time;

in practice, however, simulation may be computationally expensive so Kriging is attractive.

There are rather few publications that explicitly discuss multiple outputs. Cressie (1991,

pp. 138-142) speaks of cokriging in his book on spatial data analysis. Wackernagle (2003,

pp. 143-209) also discusses geostatistics, so he restricts the input data to one, two, or three

dimensions (whereas simulation implies an arbitrary number of dimensions). He allows more

complicated correlation functions than we and other simulation researchers do; e.g., Wacker-

nagle (2003, pp. 62-65) allows so-called “anisotropic” correlation functions. Gneiting et al.

(2010) also discuss cokriging in geostatistics assuming so-called Matérn correlation functions.
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Santner et al. (2003, pp. 101-116) do discuss simulation or computer experiments, but they

do not use the same assumptions as we do; e.g., they discuss a simulation model that gives

a single output plus its first-order derivative. Higdon et al. (2008) discuss the combination

of real-life “field data” and simulation data, where both types of data concern the same

real-life system; they allow for very many types of output. Forrester (2010) also discusses

the combination of (i) scarce and expensive real-life data with abundant and inexpensive

simulation data, or (ii) scarce and expensive data from a detailed simulation model with

abundant and inexpensive data from a quick-and-dirty simulation model. Williams et al.

(2010) discuss multivariate Kriging in constrained optimization in simulation with multiple

outputs—but they follow Santner et al. (2003). Altogether we recommend Santner et al.

(2003) and Wackernagle (2003) for an introduction to multivariate Kriging. Note that Li

et al. (2006) also recognize that in practice simulation models have multiple outputs and

that Kriging is an important type of metamodel, but those authors use a completely dif-

ferent approach (they do not use cokriging with estimated cross-correlations). Chan et al.

(2009) discuss multi-fidelity modeling, which is also discussed in multivariate Kriging.

In this article, we summarize a multivariate Kriging model with nonseparable covariance

structure proposed by Fricker et al. (2010). Furthermore, we try to interpret this novel

Kriging model. We also present empirical comparisons of the performance of this multivari-

ate model and univariate Kriging per output. These results demonstrate that multivariate

Kriging does not outperform univariate Kriging.

The remainder of this article is organized as follows. Section 2 summarizes the basics of

univariate Kriging. Section 3 extends this Kriging to multivariate Kriging with nonseparable

dependence structure. Section 4 describes our Monte Carlo laboratory with Gaussian Process

(GP) models so the Kriging assumptions are controlled; we propose several statistical tests to

verify the correctness of this lab, and use this laboratory to numerically compare univariate

and multivariate Kriging. Section 5 presents conclusions and topics for future research. The

many references at the end of this article enable the reader to study more aspects of this

challenging topic.

2. Basic univariate Kriging

Table 5 in Appendix A lists our major symbols; our notation remains close to the notation

in DACE—the free univariate MATLAB Kriging toolbox developed and well-documented by
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Lophaven et al. (2002b), where they assume deterministic simulation. Note that alternative

free software is mentioned by Frazier (2010) and Kleijnen (2008, p. 146); commercial software

called JMP is offered by SAS. Several authors present a Bayesian interpretation of the Kriging

model, but we follow a frequentist approach.

Suppose the given simulation model is run for m combinations of the k simulation inputs

x = (x1, . . . , xk)
T . (We may call these combinations “locations” or “scenarios”; Lophaven

et al. (2002b) call them “sites”, which stems from the origin of Kriging; namely, geostatistics;

Danie Krige was a mining engineer in South Africa). Simulating these m input combinations

gives the outputs y = (y1, . . . , ym)T . (Lophaven et al. (2002b, p. 1) define a multi-variate

output, but their software is limited to univariate output.)

Like most Kriging publications in simulation, we assume Ordinary Kriging (whereas

DACE allows Universal Kriging, which uses a linear regression model instead of our constant

µ; Universal Kriging would use the symbol β0 instead of µ):

y = µ+ z (1)

where µ denotes the mean output, and z a stationary Gaussian process with zero mean.

Because this process is stationary, it has a constant (but unknown) variance σ2
z , and the

covariances ci;i′ (i, i′ = 1, . . . ,m) between the outputs of the input combinations xi and xi′

are determined by the distance between these xi and xi′ in the k-dimensional input space

(we use the symbol ci;i′ instead of σi;i′ because in multivariate Kriging σg;g′ refers to the

covariances between the outputs of type g and g′). Kriging of simulation models with their

possibly high-dimensional input space assumes that these covariances are the products of the

k individual correlation functions; e.g., a so-called Gaussian correlation function implies

ci;i′ = σ2
zΠ

k
j=1 exp[−θj(xj;i − xj;i′)2] (2)

where θj ≥ 0 measures the importance of input j and |xj;i − xj;i′ | measures the distance

between the i and i
′

input combination of input j. Note that if θj = 0, then changes in

input j have no effect at all on the covariance ci;i′ . If θj = ∞, then the covariance ci;i′

reduces to zero, so the outputs at the locations i and i′ are independent. The covariances

ci;i′ are gathered in the symmetric and positive-definite m×m covariance matrix Σ, and the

corresponding correlations in R so Σ = σ2
zR. The two extreme values for the correlation

coefficient (θj = 0 or θj = ∞) give a singular covariance matrix, because this matrix has
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identical columns. Note that Simpson et al. (2001) state that Ordinary Kriging with a

Gaussian correlation function is the most common Kriging model in engineering.

The classic Kriging predictor assumes known (hyper)parameters µ and Σ.(den Hertog

et al. (2006) use bootstrapping to account for the estimation of these parameters). Requiring

the predictor to be unbiased and assuming the Mean Squared Prediction Error (MSPE)

criterion, Lophaven et al. (2002b, pp. 3-4) prove that the optimal Kriging predictor for the

output y0 of x0 (the “new” input combination at point 0; an alternative notation replaces

the subscript 0 by m+ 1) is

ŷ0 = µ+ c0
TΣ−1(y−µ1) (3)

where 1 denotes the m-dimensional vector with ones; c0 = (c0;1, . . . , c0;m)T the vector with

the covariances between the outputs at the new and the m old input combinations (so Σ

= (c1, . . . , cm) with vectors ci); (y−µ1) the vector with residuals. (If the new point x0 is

actually one of the old points xi with i = 1, ...,m, then the predictor ŷi equals the observed

output yi so Kriging gives an exact interpolator.)

The mean squared prediction error (MSPE) or the estimated variance of the Kriging

predictor ( 3) is

σ2
z +

(
1TΣ−1c0

)T (
1TΣ−11

)−1 (
1TΣ−1c0

)
−c0

TΣ−1c0 (4)

In practice, however, these parameters are unknown, so a major problem is the estimation

of µ and Σ (which includes the variance σ2
z on the main diagonal and the k parameters θj if

we assume the Gaussian correlation function ( 2)). Like nearly all authors, Lophaven et al.

(2002b) use Maximum Likelihood Estimation (MLE). Because z in ( 1) follows a Gaussian

process, the distribution function (say) f of y (the m-dimensional vector with outputs) is

f(y) =
1

(2π)m/2(|Σ|)1/2
exp

[
−1

2
(y−µ1)TΣ−1(y−µ1)

]
(5)

where |Σ| denotes the determinant of Σ; a similar formula is given by Santner et al. (2003,

p. 210). This function ( 5) may be denoted by Nm(µ,Σ) with µ = µ1.

Ignoring terms that do not depend on the parameters to be estimated (µ and Σ), ( 5)

obviously implies that the log-likelihood function to be minimized is

l(Σ,µ|y) = ln |Σ|+ (y−µ1)TΣ−1(y−µ1). (6)

Minimizing this l(Σ,µ|y) gives the MLE estimators (say) Σ̂ and µ̂. This minimization is a

difficult mathematical problem. The classic solution in Kriging is to “divide and conquer”

through the application of mathematical statistics, as follows.
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We have already noticed the relationship Σ = σ2
zR. So in ( 6) we replace |Σ| by |R| (σ2

z)
m

(an elementary property of determinants) and Σ−1 by R−1/σ2
z :

l(R,µ|y) =
[
m lnσ2

z + ln |R|
]

+
(y−µ1)TR−1(y−µ1)

σ2
z

. (7)

Following Lophaven et al. (2002b) and also Gano et al. (2006), we minimize this function in

the following steps:

1. Initialize; i.e., select preliminary values for θ̂ = (θ̂1, . . . , θ̂k)
T which together define R̂.

2. Compute the Generalized Least Squares (GLS) estimator of the mean:

µ̂ = (1T R̂−11)−11T R̂−1y. (8)

3. Substitute µ̂ resulting from Step 2 and R̂ resulting from Step 1 into the estimate of

the variance

σ̂2
z =

(y−µ̂1)T R̂−1(y−µ̂1)

m
. (9)

Note that this MLE estimator uses the denominator m, whereas the classic unbiased esti-

mator assuming R = I would use m − 1. Furthermore, Antognini and Zagoraiou (2010, p.

14) state: “under the Ordinary Kriging model in the one-dimensional case the covariance

parameters θ and σ2 cannot be identified simultaneously”.

4. Solve the remaining problem in ( 7):

Min
θ̂

[
m ln σ̂2

z + ln
∣∣∣R̂∣∣∣] . (10)

To solve this nonlinear minimization problem, Lophaven et al. (2002a, p. 29) apply the

classic Hooke-Jeeves heuristic. Gano et al. (2006) point out that this minimization problem

is difficult because of “the multimodal and long near-optimal ridge properties of the likelihood

function”.

5. Use the θ̂ that solves ( 10) to update R̂, and substitute the resulting R̂ into ( 8) and

( 9).

Computational aspects are further discussed by Lophaven et al. (2002b) and Lophaven

et al. (2002a), including the classic Cholesky and QR factorization, regularization of an

ill-conditioned R̂, and normalization of the I/O such that all data have zero means and

unit variances (we shall return to these aspects). Numerical problems in Kriging are also

discussed by Jones et al. (1998, p. 486) and Marrel et al. (2010, p. 5). The problem of a flat

likelihood function leading to highly variable MLE is tackled by Li and Sudjianto (2005),

adding a penalty function to the likelihood function.
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3. Multivariate Kriging

In this section we consider n ≥ 1 outputs for each of the m input combinations; i.e., the

simulation outputs become yi;g (i = 1, . . . ,m) (g = 1, . . . , n) (also see Tables 5 and 6 in

Appendixes A and B). In multivariate Kriging, we can still use the multinormal distribution

defined for the univariate case in ( 5 )—provided we define the stacked vector (say) Y

with mn elements such that we first gather the n outputs at the first input combination

y1 = (y1;1, . . . , y1;n)T (the first row of Table 6), then the n outputs at the second input

combination y2 = (y2;1, . . . , y2;n)T , ..., finally the n outputs at the mth input combination ym

= (ym;1, . . . , ym;n)T (the last row of Table 6). Note that yg (output of type g with g = 1, . . . , n)

has the constant mean µg (see Table 5). The resulting vector Y has the multivariate normal

distribution function Nmn(µ,ΣY) where µ denotes the mean vector with mn elements and

ΣY denotes the mn×mn covariance matrix of Y:

f(Y) =
1

(2π)mn/2(|ΣY|)1/2
exp

[
−1

2
(Y − µ)TΣ−1Y (Y − µ)

]
. (11)

For ΣY we offer the following comments.

In Appendix A we detail the simplest multivariate Kriging example; namely, a single

input (k = 1) and two outputs (n = 2). In this section we discuss the general case with k

inputs and n outputs. A stationary Gaussian process for each type of output implies that the

output yg has the constant variance σ2
g and (auto)covariances that decrease with the distance

between its input combinations; again see ( 2). Moreover, in multivariate Kriging different

output types yg(xi) and yg′(xi′) with g; g′ = 1, . . . , n and g 6= g′ have (cross)covariances,

when simulated for the same or for different input combinations; i.e., xi may be the same as

xi′ or may be different. For example, if n = 2 (bivariate output), then

Cov(Y(xi),Y(xi′)) =

[
cov(y1(xi), y1(xi′)), cov(y1(xi), y2(xi′))
cov(y1(xi), y2(xi′)), cov(y2(xi), y2(xi′))

]
.

If in this example (with n = 2) we have xi = xi′ , then the 2 × 2 matrix (say) Σ0 does not

vary with the input combination x and becomes

Σ0 =

[
σ2
1 σ1;2

σ1;2 σ2
2

]
(12)

with σ1;2 = cov(y1, y2). In the general case with n outputs, the (symmetric) covariance
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matrix at input combination i (i = 1, . . . ,m) is

Σ0 =


σ2
1 σ1;2 . . . σ1;n

σ2
2 . . . σ2;n

. . .
...
σ2
n

 . (13)

So in the general case Y has the mn×mn covariance matrix

ΣY =


Σ0 Cov(Y(x1),Y(x2)) . . . Cov(Y(x1),Y(xm))

Cov(Y(x1),Y(x2)) Σ0 . . . Cov(Y(x2),Y(xm))
...

... . . .
...

Cov(Y(x1),Y(xm)) Cov(Y(x2),Y(xm)) . . . Σ0

 . (14)

To predict the n outputs at an input combination (say) x0, we define (analogously to c0

defined below ( 3)) the n×mn matrix

Σ0;m;n = (Cov(Y(x0),Y(x1), . . . , Cov(Y(x0),Y(xm))

and obtain the Kriging predictor (analogously to ( 3))

ŷ(x0) = µ̂+ Σ0;m;nΣ
−1
Y (Y − Fµ̂), (15)

where the vector µ̂ denotes the GLS estimator defined analogously to ( 8):

µ̂ = (FTΣ−1Y F)−1FTΣ−1Y Y (16)

with F = 1m⊗ In where 1m denotes an m-dimensional vector with ones, ⊗ is the Kronecker

operator, and In denotes the n× n unity matrix; also see Svenson and Santner (2010).

The MSPE of the multivariate Kriging predictor ( 15) is

Σ0 −Σ0;m;nΣ
−1
Y ΣT

0;m;n + U×
(
FTΣ−1Y F

)−1 ×UT (17)

where U = In−Σ0;m;nΣ
−1
Y F. Note: Wackernagle (2003, pp. 145-150)—also see Gneiting

et al. (2010)—warns against wrong specifications of covariance matrices; i.e., ΣY should

be a Positive Definite (PD) matrix (so x′ΣYx > 0 for all non-zero vectors x; there ex-

ists a unique lower triangular matrix L with strictly positive diagonal elements such that

ΣY = LLT—so-called Cholesky decomposition; a PD matrix has a corresponding inverse

matrix). Wackernagle (2003, pp. 151-152) (also see Gneiting et al. (2010) for a similar dis-

cussion assuming Matérn correlation functions) points out that it is difficult to characterize
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a correlation function matrix directly, but Cramér (1940)’s generalization of Bochner’s theo-

rem enables generalization in the spectral domain. Using Cramér’s theorem, Yaglom (1987,

pp. 315-317) gives the example of a bivariate exponential correlation function that has a

PD matrix of spectral densities. We tried this approach, but did not succeed in deriving

practical results; e.g., for the case of two outputs (n = 2), and one input (k = 1), we derive

the constraint θ(1;2) = θ(1) = θ(2) (so both outputs behave the same). Yaglom (1987, pp.

315-317) derives a different constraint for exponential cross-correlation functions. Iacoa et al.

(2011) give an advanced discussion of PD covariance matrixes in geostatistics. Boyle and

Frean (2004) give another way to find a PD covariance matrix using so-called “convolution

kernels”. In the next subsection we consider a way to obtain a ΣY that is indeed PD.

3.1 Nonseparable dependence model

Our discussion of nonseparable dependence model follows Svenson and Santner (2010), who

in turn follow Fricker et al. (2010); the latter authors discuss both nonseparable and separable

models. Remember that an n-variate Normal variable without auto-correlation—denoted by

Nn(µ,Σ)—may be generated from a vector Z with n Normally Independently Identically

Distributed (NIID) “standard” variables (so their means are zero and their variances are one)

through µ+AZ with Σ = AAT where A is a symmetric matrix. Svenson and Santner

(2010) extend this idea, and consider

Y = µ+AZ (18)

where Y denotes the n-variate output at any input combination, µ is an n-dimensional vector

with means µg, A = (ag;g′) is a symmetric and PD matrix, and Z is a vector of mutually

independent stationary Gaussian processes with zero mean and unit variance. More precisely,

Z has the Gaussian correlation function defined in ( 2). It is simple to derive that ( 18)—

together with R defined below ( 2)—implies

Cov(Y(xi),Y(xi′)) = Adiag[R(xi − xi′ ;θ
(1)), . . . ,R(xi − xi′ ;θ

(n))]AT . (19)

When xi = xi′ (so ( 2) gives exp[−θj(xj;i − xj;i′)
2] = 1), ( 19) implies that Σ0 defined in

( 13) becomes

Cov(Y(xi),Y(xi)) = Σ0 = AAT . (20)

9



Hence, σg;g′ (the covariance between yg and yg′) and σg;g = σ2
g (the variance of yg) are

σg;g′ =
n∑
l=1

ag;lag′;l (g, g′ = 1, . . . , n). (21)

For example, for n = 2 we get (because A is symmetric, we have ag;g′ = ag′;g)

Σ0 =

[
a21;1 + a21;2 a1;1a2;1 + a1;2a2;2

a2;1a1;1 + a2;1a2;2 a22;1 + a22;2

]
. (22)

Note that each element ag;g′(= ag′;g) affects the two variances and the covariance (we shall

detail this characteristic in the next section). Assuming a Gaussian correlation function ( 2)

and a single input x, ( 19) becomes R((xi− xi′ ; θ(g)) = exp[−θ(g)(xi− xi′)2] = exp[−θ(g)d2i;i′ ]
with di;i′ = |xi − xi′ | so

Cov[Y(xi),Y(xi′)] = A

[
R(di;i′ ; θ

(1)) 0
0 R(di;i′ ; θ

(2))

]
AT

so Cov[Y(xi),Y(xi′)] is

[
a21;1R(di;i′ ; θ

(1)) + a21;2R(di;i′ ; θ
(2)) a1;1R(di;i′ ; θ

(1))a2;1 + a1;2R(di;i′ ; θ
(2))a2;2

a1;1R(di;i′ ; θ
(1))a2;1 + a1;2R(di;i′ ; θ

(2))a2;2 a22;1R(di;i′ ; θ
(1)) + a22;2R(di;i′ ; θ

(2))

]
.

(23)

Following Fricker et al. (2010) and Svenson and Santner (2010), we select A as the

unique square root of Σ0 while guaranteeing that A is PD. We therefore use the Cholesky

transformation, A = LLT . We should ensure that all the elements on the main diagonal of

L are non-negative; i.e., we should impose the constraint li;i ≥ 0 (i = 1, ..., n) in the MLE

optimization.

Actually, Svenson and Santner (2010) apply Restricted MLE (RMLE) instead of MLE

(for details on RMLE see Santner et al. (2003, pp. 66-67)). The RMLE Â (which must

be PD) and Θ̂ (which is the multivariate analogue of the correlation coefficients θ̂ defined

below ( 7) in Step 1) minimize the analogue of ( 7); namely,

l(ΣY, µ|Y) = ln |ΣY|+ ln
∣∣FTΣ−1Y F

∣∣+ (Y − Fµ̂)TΣ−1Y (Y − Fµ̂). (24)

We call the method defined in this subsection (on NonSeparable dependence model)

“NSDep”. In our Monte Carlo experiments (in the next section) we use RMLE for both

DACE and NSDep to better compare the two methods. RMLE for DACE requires replacing

m by m− 1 in ( 7), ( 9), and ( 10).
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4. Monte Carlo laboratory using Nmn(µ,ΣY)

Why do we need a laboratory instead of real applications? Kriging is based on specific

assumptions; e.g., we assume a GP. To analyze the performance of the resulting Kriging

procedure, we should start with situations that satisfy these assumptions; a “laboratory”

can fully satisfy the assumptions (Wikipedia states: “A laboratory (lab) is a facility that

provides controlled conditions in which scientific research, experiments, and measurement

may be performed.”) Real applications enable us to study the “robustness” of the Kriging

method; i.e., how well does the method perform if not all its assumptions are completely

satisfied? We claim that before we perform such robustness studies, we should examine

the performance if all assumptions hold. Moreover, real applications may be extremely

expensive; i.e., a single simulation run may take hours or days; in the lab a “simulation”

run (an observation) takes only (micro)seconds (depending on the computer hardware and

software).

Note that the Kriging literature derives formulas for the estimated variance of the pre-

dictor in univariate and multivariate Kriging respectively. These formulas are popular, but

we do not use them to compare univariate and multivariate Kriging because we estimate the

MSE from the known I/O function for the simple systems that we simulate in our lab. More-

over, these formulas are biased because they ignore the variability caused by the estimation

of the parameters of the GP; see den Hertog et al. (2006) and Kleijnen et al. (2011).

To compare the performance of multivariate Kriging with univariate Kriging, we use the

MSE criterion—after all, this criterion gave the “optimal” Kriging predictor defined in ( 3).

(Other criteria are the closely related Root MSE and the Average Absolute Relative Error;

see Kleijnen and Sargent (2000, p. 20)) Furthermore, we briefly consider a second criterion;

namely, the coverage of the 90% confidence interval for the predictor in univariate versus

multivariate Kriging. (Fricker et al. (2010, pp. 13-14) also use criteria closely related to our

two criteria.)

We wish to guarantee that the Kriging metamodel itself is a valid metamodel (or “ad-

equate” approximation) of the I/O function implied by the underlying simulation model.

Therefore we generate the “simulation” observations Y from Nmn(µ,ΣY) (defined in equa-

tion 11) to obtain the I/O data (of Table 6 in Appendix B ). To these I/O data we apply

univariate and multivariate Kriging respectively, and compare their MSEs and coverages.

Note that a similar Monte Carlo lab is used by Chen et al. (2010) for the “empirical evalu-

11



ation” of their stochastic Kriging.

To specify our lab, we must select the parameter values in Nmn(µ,ΣY).To illustrate

our lab, we choose the simplest example; namely, a bivariate output so n = 2 and a single

input so k = 1 (see again Appendix A ). We decide to obtain old “simulation” outputs

at m = 10 input combinations (input values, because there is only k = 1 input variable

so there are no “combinations”); this choice agrees with the value 10k often recommended

in the literature; also see the “practical guidelines” in Loeppky et al. (2009). Because

space-filing designs are most popular in Kriging, we select these m values equi-spaced in

the standardized experimental domain 0 ≤ xi ≤ 1 (software like DACE standardizes the k

inputs such that each input ranges between 0 and 1; see equations 27 and 28 below), so xT

= (0, 1/9, 2/9, . . . , 8/9, 1)T . We decide to predict the simulation output for each new input

value halfway its two immediate neighbors, so we define the nine-dimensional vector xT0 =

(1/18, 3/18, . . . , 17/18)T . When we sample from the multivariate normal, we should also

sample the “true” simulation output at these new input values xT0 ; i.e., in our illustration

we sample (10 + 9 =) 19 bivariate outputs:

Y (38×1) =

 (y1;1, y1;2)
T

...
(y19;1, y19;2)

T

 ∼ N(38×1)
[
µ(38×1) ,Σ(38×38)

]
. (25)

In all our illustrative experiments, we select all (n = 2) means equal to zero so in ( 25)

µ(38×1) = (0, . . . 0)T . Furthermore, we wish to experiment with “high” and “low” values

for the variances σ2
1 and σ2

2, but the problem is that variances—and cross-covariances and

auto-covariances—depend on A in ( 19) in case of nonseparable dependence model. In our

experiments with two outputs, the values we select for the variances and the cross-covariance

together with ( 22) implies

Σ0 =

[
a21;1 + a21;2 a1;1a2;1 + a1;2a2;2

a2;1a1;1 + a2;1a2;2 a22;1 + a22;2

]
=

[
σ2
1 σ1;2

σ1;2 σ2
2

]
, (26)

so we have three equations for the three variables a1;1, a1;2 (= a2;1), and a2;2. We select

σ2
1 =1, σ2

2 = 25 (so σ2 = 5, which quantifies variability better than its square, σ2
2), and

σ1;2 = ρ1;2σ1σ2 = 1 (so ρ1;2 = 0.2) and σ1;2 = 4 (so ρ1;2 = 0.8); i.e., in all our experiments

we keep σ2
1 and σ2

2 fixed, while we experiment with a low and a high cross-correlation (the

cross-correlation remains constant across input combinations). For the auto-covariances we

assumed a Gaussian (auto)correlation function and a single input, and derived ( 23). In ( 23)

12



Table 1: Design for Monte Carlo experiment

Experiments
Correlation 1 2 3 4

cross: ρ(1;2) 0.8 0.8 0.2 0.2
auto: ρ(g)(dmin) 0.8 0.2 0.8 0.2

we have already selected all elements of A (namely, a1;1, a1;2 = a2;1, and a2;2) when selecting

the variances and the cross-correlation. To simplify our further selection, we select equal

Kriging parameters θ(1) = θ(2) = θ for the two outputs; this changes Cov[Y(xi),Y(xi′)] in

( 23) into [
(a21;1 + a21;2)R(di;i′ ; θ) (a1;1a2;1 + a1;2a2;2)R(di;i′ ; θ)

(a1;1a2;1 + a1;2a2;2)R(di;i′ ; θ) (a22;1 + a22;2)R(di;i′ ; θ)

]
.

We wish to experiment with low and high auto-correlations. The Gaussian auto-correlation

function ( 2) implies that cor(yi;1, yi′;1) = exp[−θ(xi − xi′)2]. Obviously, these correlations

decrease with the distance di;i′ = |xi − xi′|. These distances di;i′ vary with m (number of

old equidistant input values in the experimental range) and the m − 1 new input values

to be predicted (which we selected halfway the old values). Given the standardization of

the input range such that 0 ≤ x ≤ 1, these distances range between 1/[(m − 1)/2] = 1/18

(closest neighbors) and 1 (neighbors farthest away). We decide to focus on the strongest

auto-correlation between old input values ρ1(dmin) = exp[−θ/92]. For example, ρ1(dmin) =

0.2 implies—after rounding—θ = 131 and ρ1(dmin) = 0.8 implies θ = 18 (these values are far

away from the two extreme values 0 and∞, discussed below equation 2). Altogether, Table 1

shows our four experiments combining “low” and “high” values for the cross-correlation ρ(1;2)

and the maximum auto-correlation for output g denoted by ρ(g)(dmin) (g =1, 2).

We decide to repeat this sampling 100 times using non-overlapping (pseudo) random

number streams; i.e., we obtain M = 100 macro-replicates. To verify our computer code,

we use these macro-replicates to statistically test various intermediate results; namely, the

means, variances, and correlations of the simulated bivariate GP output ( 25).

In general, our Monte Carlo experiments give n outputs yt;g for m old input combinations

and m− 1 new combinations so t = 1, . . . , 2m− 1 and g = 1, . . . , n. We use DACE for the

univariate Kriging. DACE and NSDep standardize the old outputs yi through the linear

13
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Figure 1: yt;g for macro-replicates 1 and 2 in experiment 1

transformation (yi − y)/s where y and s are shorthand notations for

yg(m) =

∑m
i=1 yi;g
m

with g = 1, . . . , n (27)

and

sg(m) =

√∑m
i=1[yi;g − yg(m)]2

m
. (28)

Notice that the correlation coefficients are not affected by the linear transformations implied

by standardization; however, the Kriging parameters (such as θ(g)) are affected, so we shall

present empirical results for non-standardized outputs for both DACE and NSDep.

The Monte Carlo experiments in Table 1 give Figure 1 , which displays yt;g with t =

1, . . . , 19 and g = 1, 2 for macro-replicates 1 and 2 of experiment 1. These plots suggest

that the non-standardized outputs have indeed zero means, and that output 2 has higher

variability. The three plots also suggest that the outputs are auto-correlated (plots for higher

auto-correlation are not displayed). We augment this visual analysis with statistical tests,

as follows.
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Figure 2: s21(19) and s22(19) in 100 macro-replicates of experiment 1

4.1 Verification of the Monte Carlo laboratory

We derive four tests to verify that our Monte Carlo laboratory has no errors.

(i) We test whether the averages yg(m) (see equation 27) are indeed close to the true

value µg = 0 (see equation 25). Unfortunately, s2g(m) defined in ( 28) is not an unbiased esti-

mator of the variance σ2
g , because the outputs at different input combinations are positively

correlated; i.e., s2g(m) underestimates, as is illustrated by Figure 2 which is a histogram of

all M estimates.

Therefore we test our computer code using the macro-replicates, which by definition

are Independently Identically Distributed (IID); i.e., defining yt;g;r as output g at input

combination t in macro-replicate r gives

yt;g(M) =

∑M
r=1 yt;g;r
M

(t = 1, . . . , 2m− 1; g = 1, . . . , n) (29)

and the unbiased variance estimators for output g of input combination t

s2t;g(M) =

∑M
r=1[yt;g;r − yt;g(M)]2

M − 1
. (30)

To test the null-hypothesis that the mean output g is zero, we use the (Student) t statistic
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with M − 1 Degrees of Freedom (DF):

t
(t;g)
M−1 =

yt;g(M)− 0

st;g(M)/
√
M

. (31)

Because M is high (namely, 100 in our example), we may use the standard Gaussian distri-

bution N(0, 1) for the t
(t;g)
M−1 distribution. In experiment 1 (Table 1) we find that (e.g.) for

input value 1 and output 1, ( 31) gives t
(1;1)
100−1 = 0.123085/0.1162399 = 1.06. Altogether we

have (2×19 =) 38 observations on ( 31), so we use Bonferroni’s inequality; i.e., we replace

α/2 (two-sided test) by α/(2 × 38) and we select α = 0.20 (this “experimentwise” error

rate is higher than the classic 10% or 5%). We find that none of the observed t statistics is

significant at any reasonable type-I error probability.

(ii) We test whether the variance of output g is indeed σ2
g . The GP assumption implies

that the variances remain constant at all 2m−1 input combinations t (we should not “pool”

the 2m − 1 variance estimators, because they are not independent, as yt;g;r and yt′;g;r are

correlated). We use use χ2
M−1, which denotes the chi-square statistic with (M − 1) DF.

Again using Bonferroni’s inequality, we replace α/2 by α/(2×19) in the example, and select

α = 0.20; so α/38 = 0.005. In the example, only one of the 19 points in experiment 4 is

significant; we decide not to reject our Monte Carlo experiments.

(iii) Analogously to the variance estimator ( 30) we define the covariance estimator

s
(g;g′)
t;t′ (M) =

∑M
r=1[yt;g;r − yt;g(M)][yt′;g′;r − yt′;g′(M)]

M − 1
, (32)

which defines estimators for auto-covariances (g = g′) and cross-covariances (g 6= g′); obvi-

ously ( 30) is a special case of ( 32) (to improve the layout, we use (g; g′) as a superscript

instead of a subscript). Using ( 32), we obtain the estimated linear correlation coefficient ρ̂:

ρ̂
(g;g′)
t;t′ (M) =

s
(g;g′)
t;t′ (M)

st;g(M)st′;g′(M)
. (33)

So the cross-correlation coefficient between outputs g and g′ at combination t—estimated

from the M macro-replicates—is

ρ̂
(g;g′)
t (M) =

s
(g;g′)
t (M)

st;g(M)st;g′(M)
. (34)

We wish to test whether this coefficient deviates significantly from its expected true value ρ

(in the example, this ρ is determined by σ2
1, σ2

2, and σ1;2). For this test we use Press et al.

(1992, pp. 637-638) to define

z − ω
σz

with z =
1

2
ln

1 + ρ̂

1− ρ̂
, ω =

1

2
[ln{1 + ρ

1− ρ
}+

ρ

M − 1
], σz =

1√
M − 3

. (35)
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This (z−ω)/σz has a N(0, 1) distribution asymptotically. We again use Bonferroni’s inequal-

ity. In our example, we find that none of the estimated cross-correlations differs significantly

from the known values ρ(1;2) in Table 1.

Because ( 34) is a ratio estimator, we know that this estimator is biased. We also know

that jackknifing reduces the bias of such an estimator; see the overview including references

in Kleijnen (2008, pp. 81-84). Jackknifing is a simple statistical technique, which in this

case works as follows. First we compute the so-called pseudovalue, which is a weighted

combination of the original estimator ρ̂
(g;g′)
t (M)—abbreviated to ρ̂

(g;g′)
t —and the estimator

deleting replication r denoted by ρ̂
(g;g′)
t;−r (M − 1) or briefly ρ̂

(g;g′)
t;−r :

Jr = Mρ̂
(g;g′)
t − (M − 1)ρ̂

(g;g′)
t;−r (r = 1, . . . ,M). (36)

Next we compute the average pseudovalue J =
∑
Jr/M , which is expected to have less bias.

We use s2(J) = s2(J)/M where s2(J) is the estimated variance of this average pseudovalue:

s2(J) =

∑M
r=1(Jr − J)2

(M − 1)M
.

Finally, we compute a 1− α confidence interval for ρ
(g;g′)
t :

[J − tM−1;1−α/2s(J), J + tM−1;1−α/2s(J)]. (37)

We obtain (mutually correlated) estimates ρ̂
(1;2)
t at the various input values t in each of

our experiments, so when we use ( 35) or ( 37) we again apply Bonferroni’s inequality—

analogously to (i) and (ii). In all four experiments of our example we may accept the results.

(iv) Finally, we examine ρ
(g)
t;t′(M), which denotes the auto-correlation between outputs g

at locations t and t′ estimated from M macro-replicates; see ( 33). Actually, we have m old

input values and m−1 new values so altogether we have 2m−1 outputs yt (t = 1, . . . , 2m−1).

Consequently, we have 2m− 2 observations (y
(g)
t , y

(g)
t+1) with the minimum distance (say) h1

= |xt − xt+1| = 1/(2m − 1); as the distance h between the input values of the outputs

increases, the number of observations decreases. This enables the following estimators of the

covariances with distance h for output g:

ĉ
(g)
h =

∑2m−h−1
t=1 [yt;g − yt;g][yt+h;g − yt+h;g]

2m− 1
(h = 0, 1, . . . , 2m− 2) (38)

where—because of the GP assumption—we use yt;g = yt+h;g = yg; we use the denominator

(2m − 1) because MATLAB follows Box et al. (1994), who claim that this denominator
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Figure 3: Estimated auto-correlations versus lags in 100 macro-replicates

minimizes the MSE (not the bias). So the auto-correlations are

ρ̂
(g)
h =

ĉ
(g)
h

ĉ
(g)
0

. (39)

This equation gives Figure 3, which displays ρ̂
(g)
h;r where r refers to macro-replicate r. This

figure demonstrates that the low θ of experiments 1and 3 does give a high estimated auto-

correlation ρ̂
(g)
h for small distances h (h = 0, 1, 2); for bigger distances, however, some

auto-correlations become even negative. Note that high correlation implies that the sample

gives relatively little information. Next we fit a curve to these ρ̂
(g)
h;r per macro-replicate.

We apply nonlinear regression analysis using MATLAB, which follows Seber and Wild

(2003). MATLAB fits a curve α1 + α2e
−θRh2 , which generalizes the Gaussian correlation

function (defined in equation 2) through α1 and α2 (so we expect α̂1 = 0 and α̂2 = 1),

resulting in the nonlinear regression estimate θ̂
(g)
r;R (which should be distinguished from the

RMLE θ̂
(g)
r ). Our example gives the histogram with M = 100 values in Figure 4. The null-

hypothesis H0 : θ̂
(g)
r;R = θ(g) is rejected by both the t test and the sign test, but the difference

θ̂
(g)
r;R − θ(g) is not really important. Similar conclusions hold for α1 and α2. The θ̂

(g)
r;R does

change much when the true value θ(g) changes from 18 to 131.
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Figure 4: θ̂
(g)
r;R for all the four experiments; g =1 and 2

We conclude that (i) the estimated auto-correlations (for different distances) are biased

because they are ratio estimators and they use a denominator that minimizes MSE (not

bias), (ii) these estimators are poor in case of high correlation. An alternative—for the tests

detailed under (i) through (iv)—uses the RMLE that are standard in Kriging; see the next

subsection.

4.2 Monte Carlo results

In practice, the simulation analysts have only “a single macro-replicate” to compute the

RMLEs µ̂ and Σ̂. These RMLEs are based on the likelihood function ( 24); this function

may have many local maxima so the search for these RMLEs may get stuck on a local hill.

To get initial estimates of Â and Θ̂, Svenson (2011, pp. 314-315) uses a global optimizer;

namely, the Genetic Algorithm (GA) in Forrester (2010); to get final estimates, he uses

MATLAB’s “fmincon”. When we use DACE, we use the initial values of NSDep’s GA

including his bounds.

Given these RMLEs (computed from the I/O data for the “old” points), we can predict

the output for one of the new points (say) xt′ with t′ = 1, . . . ,m− 1; i.e., in ( 3) we replace

the unknown parameters by their RMLEs, which gives (say) ̂̂yt′ . We compare this predicted
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value with the “observed” value yt′ conditional on the m old observed values yi; see ( 15)

(because we generate this new observation using the true parameters, not their RMLEs).

This gives the Squared Error (SE) at the new input value t′ for output g in macro-replicate

r:

SE
(g)
t′;r = (

̂̂
y
(g)
t′;r − y

(g)
t′;r)

2 with (g = 1, . . . , n) (t′ = 1, . . . ,m− 1) (r = 1, . . . ,M). (40)

Our example has n = 2, m = 10, M = 100. Because we predict the output for m − 1

new input combinations, we use ( 40) to compute the estimated Integrated MSE (IMSE) for

output g: ̂
IMSE

(g)
r =

∑m−1
t′=1 SE

(g)
t′;r

m− 1
.

Next we use this
̂

IMSE
(g)
r to compute the performance averaged over theM macro-replicates:

̂IMSE(g) =

∑M
r=1

̂
IMSE

(g)
r

M
(41)

Table 2 gives ( 41) for DACE and NSDep, in our four experiments (these experiments were

detailed in Table 1). DACE gives a smaller ̂IMSE(g) in six of the eight comparisons with

NSDep.

Table 2: ̂IMSE(g) in DACE and NSDep, estimated from 100 macro-replicates

Output 1 Output 2

Experiment DACE NSDep DACE NSDep

1 0.000181 0.000238 0.004801 0.004784
2 0.239103 0.239563 5.762738 5.813574
3 0.000179 0.000198 0.004187 0.004012
4 0.239072 0.240658 5.712830 5.732354

To explain these ̂IMSE(g), we compute t-statistics from the M = 100 RMLEs for the var-

ious Kriging parameters (µg, σ
2
g , θ

(g), σg;g′) where σg;g′ = 0 in DACE. Table 3 shows whether

a t-test rejects the null-hypothesis H0 that states that the expected value of a RMLE equals

the true value of the corresponding Kriging parameter; the superscript ∗ denotes that the

t-statistic is significant at the 5% significance level. This table suggests that for DACE we

should reject H0 for θ(g); for NSDep we should reject H0 for θ(g), σ2
g , and σg;g′ .

Svenson and Santner (2010) mention that RMLE in multivariate Kriging requires a search

in higher dimensions than univariate Kriging does (which assumes zero cross-correlations),
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Table 3: t-tests for RMLE in DACE and NSDep

DACE

Experiment µ1 µ2 θ1 θ2 σ2
1 σ2

2 σ12
1 1.1510 1.1529 2.0268∗ 2.4019∗ 0.5672 -0.8968 -
2 1.4495 1.4557 -6.3886∗ -4.9355∗ -0.3692 -0.1543 -
3 1.1501 0.4909 1.9842 2.9331∗ 0.5652 -2.5660∗ -
4 1.4502 0.7710 -6.3868∗ -4.1674∗ -0.3822 -1.5303 -

NSDep

Experiment µ1 µ2 θ1 θ2 σ2
1 σ2

2 σ12
1 1.2284 1.2597 1.9355 -0.2059 2.4377∗ 2.2318∗ 2.1643∗

2 1.4572 1.4027 -8.3775∗ -8.6159∗ 3.1470∗ 2.8997∗ 2.9758∗

3 0.8132 0.4204 0.3007 1.1068 1.2741 0.6756 1.5367
4 1.5185 0.8312 -9.1144∗ -6.6839∗ 3.4481∗ 1.5533 1.9560

so the former search might actually result in poor estimates of the Kriging parameters.

Svenson and Santner (2010) and Fricker et al. (2010) give numerical results for several

examples suggesting that multivariate Kriging may not improve the accuracy dramatically

relative to multiple application of univariate Kriging. To investigate these numerical results,

we run DACE and NSDep with the true Kriging parameters. The “old” and “new” outputs

vary over the M macro-replicates, because they are sampled from ( 25). Consequently, ( 41)

gives ̂IMSE(g)(µg, σ
2
g , θ

(g), σ1;2); see Table 4 Comparing this table with Table 2 shows that̂IMSE(g) is smaller when using the true Kriging parameters instead of their RMLEs, as we

expected.

Table 4: ̂IMSE(g) in DACE and NSDep with true MLE parameters

Output 1 Output 2

Experiment DACE NSDep DACE NSDep

1 0.000123 0.000123 0.003318 0.003318
2 0.235071 0.235071 5.756298 5.756298
3 0.000123 0.000123 0.00299 0.00299
4 0.235071 0.235071 5.708968 5.708968

Moreover, Table 4 shows that DACE and NSDep give the same ̂IMSE(g) when using the

true Kriging parameters. To explain this phenomenon, we study the only difference between

DACE and NSDep; namely, Σ0;m;nΣ
−1
Y in ( 15). DACE assumes zero cross-covariances.
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We find that the corresponding elements in NSDep—using the true Kriging parameters—

are virtually zero! For example, when predicting the output for the first element of xT0 =

(1/18, 3/18, . . . , 17/18)T in macro-replicate 1 of experiment 1, NSDep gives values between

10−16 and 10−13. We also compute these values for a cross-correlation 0.95 (instead of 0.8)

and again find virtually zero values; see Table 7 in Appendix D.

Our conclusion is that DACE’s univariate code is simpler than NSDep’s multivariate code

for the nonseparable dependence model, and that DACE gives the same IMSE estimated from

100 macro-replicates (other publications use only one macro-replicate; i.e., they apply RMLE

to the given I/O data set).

Fricker et al. (2010) also study the coverage of the confidence interval of the Kriging

predictor. A 90% confidence intervals for
̂̂
y
(g)
t′;r is

(
̂̂
y
(g)
t′;r − 1.64

√
MSPE

(g)
t′;r,
̂̂
y
(g)
t′;r + 1.64

√
MSPE

(g)
t′;r),

where 1.64 is the 0.95 quantile of the standard Gaussian distribution and MSPE
(g)
t′;r follows

from ( 4) and ( 17). Obviously, for given t
′

and g values, macro-replicate r gives an interval

that does or does not cover the true value y
(g)

t′ ;r
; from the M macro-replicates we compute

the estimated coverage. The coverage of this 90% confidence interval turns out to be too

low, for any t and g (box plots are available from the authors). This low coverage may be

explained through the classic variance of the Kriging predictor, which ignores the fact that

the Kriging parameters are not known but are estimated (through RMLE); see again den

Hertog et al. (2006).

Finally, Fricker et al. (2010, p. 15) suggest that the relative performance of multivariate

Kriging may improve when “the” output is a function of the individual (cross-correlated)

outputs. We therefore add experiments with the sum and the product, y(3) = y(1) + y(2) and

y(4) = y(1)y(2). Appendix E shows that DACE gives smaller ̂IMSE(g) for all n = 4 outputs

and all four experiments except for y(4) in experiment 1. DACE’s coverage is better than

NSDep’s, but still below the nominal value. Note that we do know the true values of the

Kriging parameters for y(1) and y(2), but not for y(3) and y(4). Furthermore, there are more

Kriging parameters to be estimated; namely, σg,g′ .(g, g
′ = 1, . . . , n) and θ(g).
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5. Conclusions and future research

In this paper we formalize multivariate Kriging or GP metamodels applied to random sim-

ulation models with multiple outputs. A major problem of multivariate GP is to ensure

that its covariance matrix is positive-definite; to solve this problem, we use nonseparable de-

pendence model. We compare this multivariate Kriging with univariate Kriging applied per

type of simulation output, which ignores the (cross)correlations between simulation outputs

for a given input combination. To evaluate the performance of these two Kriging types, we

construct a Monte Carlo laboratory that guarantees that all the assumptions of multivariate

Kriging are satisfied. To verify that this laboratory works as intended, we derive statistics

that enable us to test whether the Kriging parameters have the correct (“true”) values. We

use this (verified) laboratory to quantify the performance of multivariate and univariate

Kriging in the “simplest” case; namely; a single input and two outputs that have a GP

with Gaussian auto-correlation functions and specific cross-correlation values. To measure

this performance, we use the IMSE; we also consider the coverage of the classic confidence

interval for the Kriging predictor. For this case we estimate that univariate Kriging has

a smaller IMSE and higher coverage; one explanation is that multivariate Kriging requires

RMLEs for several more Kriging parameters; namely, the cross-correlations. To examine

this explanation, we run Monte Carlo experiments replacing these RMLEs by the true val-

ues of the Kriging parameters. We find that multivariate and univariate Kriging then give

virtually the same predictors, and hence the same IMSE. We briefly examine the coverage,

and conclude that both multivariate and univariate Kriging give coverages lower than the

nominal (90%) value; multivariate Kriging does not improve this coverage.

Future research may address the following problems.

• We showed numerically that multivariate Kriging does not outperform univariate Krig-

ing. In future research we might be able to prove analytically that both types of Krig-

ing become the same if the multiple outputs are generated by the same input matrix,

analogously to Rao (1967)’s proof for linear regression.

• Multivariate Kriging may serve as a metamodel not only for simulation models with

multiple outputs but also for situations in which “quick and dirty” simulation models

are run for many input combinations, whereas slow but accurate simulations are run
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for fewer combinations; see Santner et al. (2003) and Forrester et al. (2008) and also

“partially heterotropic” situations in Wackernagle (2003, p. 158).

• Universal Kriging (instead of Ordinary Kriging) may improve the validity of the GP

metamodel; see Fricker et al. (2010).

• The Gaussian correlation function may be replaced by some other correlation function;

see Lophaven et al. (2002b, p. 6).

• RMLE requires nonlinear optimization, and is a challenging mathematical problem.

For example, we may follow Xia et al. (2008, p. 936) and replace the parameters σ̂2
z

and θ̂j by the monotonic transformations exp(σ̂2
z) and exp(θ̂j) because these parameters

must be positive—which makes it a constrained optimization problem; however, after

these transformations the problem becomes an unconstrained optimization problem,

which is easier to solve. For the resulting unconstrained optimization, Xia et al. (2008)

use the MATLAB function “fminunc”. Couckuyt et al. (2010) and Gano et al. (2006)

also discuss heuristics for RMLE computation.

• Because multivariate Kriging does not outperform univariate Kriging in deterministic

simulation, it does not seem interesting to extend multivariate Kriging from determin-

istic to random simulation.
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A. List of major symbols

A list of major symbols is given in Table 5, in alphabetical order with Latin symbols before

Greek symbols; bold letters denote matrixes and vectors.

B. I/O data for multivariate Kriging

Table 6 shows the I/O data for multivariate Kriging.

C. Simplest example: two outputs and one input

The simplest example of a simulation model with multiple types of outputs is a model with

two types only; say, y1 and y2. Furthermore, the simplest model has a single input (say)

x. Figure 5 illustrates this simplest model, which is simulated for m = 3 input values. Two

input values are relatively close together; namely, x1 and x2 (x3 is relatively far away from x1

and x2). If we consider the bivariate output (y1, y2) at a given input value such as x1, then

we see that these two outputs y1(x1) and y2(x1) are “cross-correlated”; Figure 5 shows this

correlation through the vertical dotted curves. Moreover, the Kriging metamodel implies
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Table 5: List of major symbols

Symbol Meaning

c0,i covariance between outputs of old input combination i and new combination 0
i index with range 1, . . . ,m
g index with range 1, . . . , n
k number of simulation inputs
m number of “old” simulated input combinations
n number of output types per input combination
R correlation matrix
t index with range 1, . . . , 2m− 1
t′ index with range 1, . . . ,m− 1
x input combination
x0 new input combination
y univariate output of a simulated input combination
Y multivariate output of a simulated input combination
yi;g output of type g for input combination i
ŷ0 univariate Kriging predictor of output of new input combination x0
z stationary Gaussian process with zero mean

θ
(g)
j importance of input j for the auto-correlation in outputs g
µ mean univariate output
µg mean of output type g

ρ
(g;g′)
i,i′ correlation between outputs g and g′ at input combinations i and i′

σ
(g;g′)
i,i′ covariance between outputs g and g′ at input combinations i and i′

σ2
z variance of univariate z

Σ covariance matrix of univariate output
Σ0 covariance of Y

Σ0;m;n n× nm covariance between Y(x0) and Y
ΣY covariance matrix of multivariate output Y

Table 6: I/O data for multivariate Kriging

Combination Input Output

1 x1;1, . . . , x1;k y1;1, . . . , y1;n
2 x2;1, . . . , x2;k y2;1, . . . , y2;n
...

...
...

i xi;1, . . . , xi;k yi;1, . . . , yi;n
...

...
...

m xm;1, . . . , xm;k ym;1, . . . , ym;n
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that a given type of output such as y1 is correlated with itself when observed at different

input combinations; e.g., y1(x1) and y1(x2) are correlated. This correlation we call “auto-

correlation”. The figure shows this auto-correlation through the (tilted horizontal) dotted

lines. The other type of output y2 is also auto-correlated, but we do not show this correlation

in the figure, to keep the figure simple. Obviously, outputs such as y1(x3) and y2(x1) are also

correlated: in Figure 5 we can follow the line from y1(x3) and y1(x1), and then the vertical

curve to y2(x1).

Mathematically, for our simplest example the Kriging metamodel with the Gaussian

correlation function ( 2) for output of type 1 becomes

corr[y1(xi),y1(xj)] = exp[−θ(1)(xi − xj)2] with θ(1) ≥ 0 (42)

where we suppress the subscript j = 1 of x and θ(1) in ( 2) because there is only one input.

In the example the input x has values such that the outputs of type 1 y1(x1) and y1(x2) have

higher positive (auto)correlation than y1(x1) and y1(x3) have. Notice that if the input has

the same value xi = xj = x in ( 42), then

corr[y1(x),y1(x)] = exp[−θ(1)(x− x)2] = exp(−θ(1) × 0) = exp(−0) = 1/1 = 1, (43)

whatever the value of θ(1) is. So, these outputs have the highest positive (auto)correlation—

which makes perfect sense in deterministic simulation. For output of type 2 we replace θ(1)

by θ(2) in ( 42).

Note: Stationarity of the process implies that only the distance in the input space matters,

not the direction; e.g., y1;1 and y2;2 are as strongly correlated as y2;1 and y1;2 are

D. Σ0;m;nΣ−1
Y in DACE and NSDep

Table 7 gives Σ0;m;nΣ
−1
Y when predicting the output for x0 = 1/18 in macro-replicate 1

of experiment 1, for cross-correlations 0.80 and 0.95; to improve the layout we present the

transpose of this matrix.

E. Kriging for functions of outputs

Table 8 shows ̂IMSE for y(1), y(2), y(3) = y(1) + y(2), and y(4) = y(1)y(2). Table 9 gives the t

statistics to test whether the RMLEs of the Kriging parameters significantly differ from the

true values for y(1)and y(2); for the other two outputs (y(3)and y(4)) we do not know the true

parameters, so we cannot apply these tests.
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x3 x1 x2

Output type 1:

Output type 2:

Auto-correlation:

Cross-correlation:

Figure 5: Simplest example: bivariate output and single input
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Table 7: Σ0;m;nΣ−1
Y in NSDep and DACE

NSDep DACE
ρ = 0.8 ρ = 0.95 ρ = 0.8

0.348906 -2.6E-14 0.348906 -2.7E-13 0.348906 0
-3.3E-16 0.348906 -9.4E-15 0.348906 0 0.348906
0.954562 1.6E-13 0.954562 0 0.954562 0
-4.9E-15 0.954562 -1.6E-14 0.954562 0 0.954562
-0.51635 -1.3E-13 -0.51635 4.55E-13 -0.51635 0
7.11E-15 -0.51635 7.13E-14 -0.51635 0 -0.51635
0.389122 -1.1E-13 0.389122 -2.3E-13 0.389122 0
-1E-14 0.389122 -1E-13 0.389122 0 0.389122

-0.29666 2.22E-13 -0.29666 -1.6E-12 -0.29666 0
1.06E-14 -0.29666 2.85E-14 -0.29666 0 -0.29666
0.216743 1.99E-13 0.216743 -6.8E-13 0.216743 0
-1.2E-14 0.216743 1.24E-14 0.216743 0 0.216743
-0.14675 1.11E-13 -0.14675 -4.8E-13 -0.14675 0
7.77E-15 -0.14675 -1.1E-14 -0.14675 0 -0.14675
0.087582 6E-14 0.087582 -2.1E-13 0.087582 0
-1.9E-15 0.087582 1.07E-14 0.087582 0 0.087582
-0.04163 -6.9E-15 -0.04163 1.14E-13 -0.04163 0
-1.3E-15 -0.04163 3.52E-15 -0.04163 0 -0.04163
0.012026 -1.1E-16 0.012026 -1.4E-14 0.012026 0
-1.2E-16 0.012026 2.21E-15 0.012026 0 0.012026

Table 8: ̂IMSE in DACE and NSDep

Output 1 Output 2
Experiment DACE NSDep DACE NSDep

1 0.000181 0.000915 0.0048008 0.011003
2 0.239103 0.245076 5.7627378 5.862312
3 0.000179 0.000748 0.0041866 0.011534
4 0.239072 0.246433 5.7128304 5.894214

Output 3 Output 4
Experiment DACE NSDep DACE NSDep

1 0.006536 0.016618 0.290038 0.241913
2 7.880984 8.020599 26.83617 28.45734
3 0.004553 0.01359 0.14392 0.152387
4 6.403224 6.576276 16.85455 18.1546
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Table 9: t-tests for RMLE in DACE and NSDep; four outputs

DACE

Experiment µ1 µ2 θ1 θ2 σ2
1 σ2

2 σ12
1 1.1510 1.1529 2.0268∗ 2.4019∗ 0.5672 -0.8968 -
2 1.4495 1.4557 -6.3886∗ -4.9355∗ -0.3692 -0.1543 -
3 1.1501 0.4909 1.9842 2.9331∗ 0.5652 -2.5660∗ -
4 1.4502 0.7710 -6.3868∗ -4.1674∗ -0.3822 -1.5303 -

NSDep

Experiment µ1 µ2 θ1 θ2 σ2
1 σ2

2 σ12
1 0.8560 1.0006 9.0147∗ 3.7084∗ 1.3071 3.5246∗ 1.5648
2 1.4535 1.1069 -16.8047∗ -15.6625∗ 3.3923∗ 6.2856∗ 2.3446∗

3 0.8557 0.7707 5.8053∗ 4.0578∗ 3.4747∗ 3.4712∗ 2.2469∗

4 1.7358 0.4621 -19.1027∗ -17.0154∗ 5.9945∗ 5.1180∗ 0.8354
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