

Tilburg University

Family Sequencing and Cooperation

Grundel, S.; Ciftci, B.B.; Borm, P.E.M.; Hamers, H.J.M.

Publication date:
2012

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Grundel, S., Ciftci, B. B., Borm, P. E. M., & Hamers, H. J. M. (2012). Family Sequencing and Cooperation.
(CentER Discussion Paper; Vol. 2012-040). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/830f760f-f003-40df-a01c-6ae24a7213b7

No. 2012-040

FAMILY SEQUENCING AND COOPERATION

By

Soesja Grundel, Barış Çiftçi,
Peter Borm, Herbert Hamers

May 16, 2012

ISSN 0924-7815

Family Sequencing and Cooperation

Soesja Grundel∗† Barış Çiftçi ‡ Peter Borm∗

Herbert Hamers∗

May 15, 2012

Abstract

This paper analyzes a single-machine scheduling problem with family

setup times both from an optimization and a cost allocation perspective.

In a so-called family sequencing situation jobs are processed on a single

machine, there is an initial processing order on the jobs, and every job

within a family has an identical cost function that depends linearly on its

completion time. Moreover, a job does not require a setup when preceded

by another job from the same family while a family specific setup time is

required when a job follows a member of some other family.

Explicitly taking into account admissibility restrictions due to the pres-

ence of the initial order, we show that for any subgroup of jobs there is an

optimal order, such that all jobs of the same family are processed consec-

utively. To analyze the allocation problem of the maximal cost savings of

the whole group of jobs, we define and analyze a so-called corresponding

cooperative family sequencing game which explicitly takes into account

the maximal cost savings for any coalition of jobs. Using nonstandard

techniques we prove that each family sequencing game has a non-empty

core by showing that a particular marginal vector belongs to the core.

Finally, we specifically analyze the case in which the initial order is family

ordered.

Keywords : Single-machine scheduling, Family scheduling model, Setup times,
Cooperative game, Core, Marginal vector

JEL classification code: C71

1 Introduction

Scheduling is about the optimal planning of processing a number of jobs through
a number of machines. Economies of scale are fundamental to manufacturing
operations. With respect to scheduling, this phenomenon manifests itself in

∗CentER and Department of Econometrics and OR, Tilburg University, P.O. Box 90153,

5000 LE Tilburg, The Netherlands.
†Corresponding author. Email: S.Grundel@uvt.nl
‡World Steel Association, Rue Colonel Bourg 120, B-1140 Brussels, Belgium

1

efficiencies gained from grouping jobs together. In particular, so-called family
scheduling problems have received considerable attention in the scheduling lit-
erature with setup considerations. These problems consider situations where
the jobs can be classified into distinct families with respect to their production
requirements such as the required tooling or container size. Ahn and Hyun
(1990), Bruno and Sethi (1977), Mason and Anderson (1991), and Monma and
Potts (1989) propose algorithms for minimizing total weighted flowtime on a
single machine with family setup times. We refer to Webster and Baker (1995)
and Liaee and Emmons (1997) for a review of scheduling literature on fam-
ily scheduling problems. Further we note here that sequence-dependent setup
times tend to make solutions difficult to find. We refer to Allahverdi et al.
(1999) and Allahverdi et al. (2008) for a review of the scheduling literature with
sequence-dependent and sequence-independent setup considerations.

In this paper we restrict attention to setup considerations of the following
type. A job does not require a setup when following another job from the same
family, but a “family setup time” is required when it follows a member of another
family. An example of a specific application of this type of family scheduling
problems is a production line of colored plastics (cf. Potts and Van Wassenhove
(1992)). In this setting customer orders can be divided into color groups. A
setup is required when switching from a job of one color to a job of another
color. Furthermore our framework assumes that per family, a cost function is
defined that depends linearly on the completion time of its members. Moreover
we assume that there is an initial processing order σ0 on the jobs which provides
the initial right of each job to be completed at a certain time with a given set
of preceding jobs.

Santos and Magazine (1985) show that for each family, an urgency index can
be computed such that, if the jobs are processed in an order of non-increasing
urgency indices, then the total costs are minimized. This result however, can
not be applied when considering the optimization of subgroups of jobs since the
initial order on jobs puts additional constraints on the order of jobs within a
subgroup. An order is admissible if each job outside the subgroup is completed
at least as early as in the initial order, and its set of preceding jobs remains un-
changed. In this paper we show that for each subgroup there is an optimal order
which (within components) processes all jobs of the same family consecutively,
but which is not necessarily the urgency order of Santos and Magazine.

To analyze the allocation problem of the maximal cost savings of the whole
group of jobs, we define a cooperative family sequencing game, corresponding to
the family sequencing situation, which explicitly takes into account the maximal
cost savings for any coalition of jobs. The game theoretic analysis of cost allo-
cation problems arising from sequencing situations dates back to Curiel et al.
(1989) in the setting of one machine sequencing situations with a finite number
of jobs, linear cost functions and an initial order. It was shown that these games
are convex and hence allow for core elements; efficient allocations that can not
be improved upon by a subgroup of jobs. The following studies in this strand
of literature have extended the basic model by considering ready times (Hamers
et al. (1995)), due dates (Borm et al. (2002)), precedence relations (Hamers

2

et al. (2005)) and controllable processing times (van Velzen (2006)). The cur-
rent paper is one of the first to explicitly incorporate setup times. In Lohmann
et al. (2010) sequencing situations are analyzed where for each job some setup
is required which depends on its predecessor.

We show that for our class of family sequencing games the marginal vector
which corresponds to the initial order, belongs to the core of the game. It is
however also seen that these games in general are neither convex, σ0-component
additive, nor permutationally convex (Granot and Huberman (1982)) with re-
spect to the initial order. Therefore, the proof of the result above does not rely
on standard techniques, but requires a tailor made analysis.

Finally, we specifically analyze the case where the initial order of jobs is such
that all members of the same family are processed consecutively. In this case
it turns out that all subgames in which the last job with respect to the initial
order is not participating, are convex. From this we are able to derive a core
element for the corresponding family sequencing game, based on the Shapley
value (Shapley (1953)).

The outline of the paper is as follows. Section 2 formally describes family
sequencing situations and analyzes the optimization problem of all subgroups.
With respect to the associated cost allocation problem, Section 3 shows that
family sequencing games have a nonempty core. In section 4, the specific case
of ordered family sequencing is analyzed.

2 Family Sequencing Situations

In this section, we consider a one machine sequencing situation in which a finite
number of jobs are queued in front of a machine, waiting to be processed. The
machine in the situation can handle at most one job at a time. The set of jobs
is denoted by N . The jobs can be partitioned into f families with respect to
their production requirements. Let F be the set of families with |F | = f . A
family function F : N → F associates to each job i ∈ N the family F(i) that
he belongs to. We denote by nk the number of jobs in family k.

An order on the set of jobs is a bijection σ : N → {1, ..., |N |}. We denote the
set of all orders on N by Π(N). Given an order σ ∈ Π(N) the set of predecessors
of a job i ∈ N with respect to σ is defined as P (σ, i) = {j ∈ N |σ(j) < σ(i)}.
Similarly, the set of successors of i with respect to σ is defined as S(σ, i) =
{j ∈ N |σ(j) > σ(i)}. Moreover, let P̄ (σ, i) = P (σ, i) ∪ {i} and S̄(σ, i) =
S(σ, i) ∪ {i}.

It is assumed that there is an initial order σ0 on the jobs before the processing
of the machine starts. If a job in family k follows a job of the same family, then
it does not require a setup. However, the family setup time sk > 0 is required if
it is preceded by a job of a different family or if it is the first job. Observe that
the setup times are independent of the family of the preceding job. We assume
that each job of the same family requires the same processing time which is
denoted by pk > 0 for every family k ∈ F . For each job i ∈ N , the costs ci(t) of
spending time t in the system is assumed to be linear in the completion time.

3

We assume that all jobs of family k have the same cost parameter αk > 0 such
that ci(t) = αkt for all i ∈ F−1(k).

A one machine sequencing situation as described above is called a fam-
ily sequencing situation and is denoted by Σ(N) = (N,F,F , σ0, s, p, α) with
s, p, α ∈ RF

++. In a family sequencing situation the completion time C(σ, i) of
job i when processed according to the order σ is given by

C(σ, i) =
∑

j∈P̄ (σ,i)

(

xσ,jsF(j) + pF(j)

)

,

where xσ,j equals 1 if job j requires a setup when the jobs are processed with
respect to σ and 0 otherwise, i.e.

xσ,j =

{

1 if σ−1(σ(j) − 1) /∈ F(j) or σ(j) = 1,
0 otherwise.

The total costs if the jobs are processed according to the order σ equals

∑

j∈N

αF(j)C(σ, j).

By reordering the jobs with respect to σ0, the total costs can be reduced. We
call an order optimal if it minimizes the total costs. It was proven by San-
tos and Magazine (1985) and, independently, by Dobson et al. (1987) that a
highest urgency comes first (HUCF) order is optimal for family sequencing sit-
uations. An HUCF order processes the jobs of the same family together as a
group (consecutively) and processes these family groups in nonincreasing order
of the family-specific urgency index uk defined by uk = nkαk

sk+nkpk
. Here the the

numerator indicates that a family with a high cost parameter is likely to be
processed in the beginning of the optimal order, from the denominator can be
seen that families with a high total processing time are processed in the tail of
the optimal order.

Theorem 2.1. (Santos and Magazine (1985)) For every family sequencing
situation an HUCF order is optimal.

Example 2.1. Consider the family sequencing situation (N,F,F , σ0, s, p, α)
with N = {1, 2, 3, 4, 5} and F = {1, 2}. Assume that F(1) = F(4) = F(5) = 1
and F(2) = F(3) = 2. Further assume that σ0 = (1, 2, 3, 4, 5), s = (1, 5),
p = (5, 2) and α = (5, 4). Then the urgencies for the families are u1 = 15

16 and
u2 = 8

9 , respectively. Hence, an HUCF order processes the jobs in family 1 first
and then the jobs in family 2. In Figure 1, we depict the processing orders σ0

and an HUCF order σN .
The cost savings obtained by N when using σN equals

∑

j∈N

αF(j)(C(σ0, j)− C(σN , j))

= 5(6− 6) + 4(13− 23) + 4(15− 25) + 5(21− 11) + 5(26− 16) = 20.

4

Figure 1: The orders σ0 and σN .

♦

For a family sequencing situation Σ(N) = (N,F,F , σ0, s, p, α), the costs of
a subgroup T with respect to an order σ equals

∑

j∈T αF(j)C(σ, j). We want to
determine the maximal cost savings of T when its members decide to cooperate.
For this aim, we have to specify which orders are admissible for T with respect
to the initial order. We assume that an order σ ∈ Π(N) is admissible for a
subgroup T with respect to σ0 if it satisfies the following two conditions:

(i) P (σ, i) = P (σ0, i) for all i ∈ N\T , and

(ii) C(σ, i) ≤ C(σ0, i) for all i ∈ N\T .

Condition (i) is the standard admissibility requirement in the sequencing liter-
ature and requires that T can achieve cost savings only by changing jobs within
its σ0-components, being the maximally connected subsets of T with respect to
σ0. However, in a family sequencing situation, a subgroup may negatively af-
fect the jobs outside the subgroup by reordering its jobs within σ0-components.
Hence, we also adopt condition (ii) which guarantees that T cannot not harm the
jobs outside T . The set of admissible orders of T is denoted by A(T). Then,
the corresponding optimization problem for T in family sequencing situation
Σ(N) = (N,F,F , σ0, s, p, α) is given by

min
σ∈A(T)

∑

j∈T

αF(j)C(σ, j).

An admissible order for which the minimum is attained is called optimal for T .

Example 2.2. Reconsider the family sequencing situation from Example
2.1. Now consider the subgroup S = {1, 2, 3}. Observe that the order σ =
(2, 3, 1, 4, 5) is an admissible order for S with respect to σ0: P (σ, i) = P (σ0, i)
for all i ∈ N\S and both C(σ, 4) ≤ C(σ0, 4) and C(σ, 5) ≤ C(σ0, 5). This can
be seen from Figure 2.
The cost savings obtained by S when using σ equals

∑

j∈S

αF(j)(C(σ0, j)− C(σ, j)) = 5(6− 15) + 4(13− 7) + 4(15− 9) = 3.

5

Figure 2: The orders σ0 and σ.

Actually, σ is an optimal order for S. Notice that σ processes the jobs in family
2 first although with respect to the optimal order for all jobs, jobs in family 1
are processed first.

Now consider the subgroup T = {1, 2, 3, 5}. Clearly, σ is an admissible order
for T . Actually, σ is also an optimal order for T . The cost savings obtained by
T using σ equals

∑

j∈T

αF(j)(C(σ0, j)− C(σ, j)) =
∑

j∈S

αF(j)(C(σ0, j)− C(σ, j))

+α1(C(σ0, 5)− C(σ, 5))

= 3 + 5(26− 25)

= 8.

That is, when the jobs 1,2 and 3 reorder themselves from σ0 to σ, also job 5
profits from an earlier completion time and this profit is now taken into account.

♦

Let T ⊂ N and σ ∈ Π(N) such that T is a connected subgroup with respect
to σ. Define,

f(σ, T) = argmin
j∈T

σ(j),

and
l(σ, T) = argmax

j∈T
σ(j).

Clearly, f(σ, T) is the first job within T , and l(σ, T) the last job within T with
respect to the order σ. We denote by P (σ, T) the collection of jobs which stand
in front of every member of T in the order σ, i.e.,

P (σ, T) = {i ∈ N |σ(i) < σ(f(σ, T))}

and S(σ, T) the collection of jobs which stand behind every member of T in the
order σ,

S(σ, T) = {i ∈ N |σ(i) > σ(l(σ, T))}.

Let σ ∈ Π(N). We call a set of jobs R that are processed between two setups
when the jobs are processed with respect to σ, a run of σ. Obviously, all jobs

6

in the same run are of the same family. A run which consists of jobs of family
k is called a run of family k.

An order σ is family ordered if it processes all jobs that belong to the same
family consecutively, i.e. if for every pair of jobs i, j ∈ N where F(i) = F(j) it
holds that h ∈ F(i) for every h with σ(i) < σ(h) < σ(j).

Since a σ0-component of a subgroup can affect the completion times of the
members of another σ0-component behind it (cf. Example 2.2), it is generally
not easy to find an optimal admissible order for a subgroup. Nevertheless,
there are useful properties regarding the structure of optimal admissible orders.
In the following theorem we show that for every connected subgroup, there
exist an optimal admissible order that processes the jobs of the same family
consecutively.

Theorem 2.2. Let (N,F,F , σ0, s, p, α) be a family sequencing situation and let
T ⊂ N be a subset of jobs. Then, there exists an optimal order for T which
processes all jobs of the same family within a σ0-component of T consecutively.

Proof. Let T = T1∪T2∪· · ·∪Tl where for each y ∈ {1, . . . , l}, Ty is a maximally
connected subset of T with respect to σ0. Let σ ∈ A(T) and suppose σ is an
optimal order for T .

Fix y ∈ {1, 2, ..., l} and suppose that with respect to σ, family k jobs in Ty

are processed in different runs. Let K1 and K2 be the set of family k jobs in Ty

that belong to the first and second run, respectively. Let M be the set of jobs
(of other families) that are placed in between K1 and K2 with respect to σ. Let
γ be the time to process and setup all jobs in M when they are processed with
respect to σ, i.e., γ =

∑

j∈M (xσ,jsF(j)+pF(j)). Let i1 = f(σ,K1), i2 = f(σ,K2),
m = f(σ,M), and h = f(σ, S(σ,K2)).

Now consider the order σ′ ∈ Π(N) which is obtained from σ by moving all
jobs in K1 to the head of K2 and the order σ′′ ∈ Π(N) which is obtained from
σ by moving all jobs in K2 to the tail of K1. Figure 3 depicts the orders σ, σ′

and σ′′.

Figure 3: The orders σ, σ′ and σ′′.

We start by showing that σ′ and σ′′ are admissible. Next we show that

7

either σ′ or σ′′ is also an optimal order, i.e.
∑

j∈T

αF(j)(C(σ, j) − C(σ′, j)) ≥ 0 (1)

or
∑

j∈T

αF(j)(C(σ, j) − C(σ′′, j)) ≥ 0. (2)

First we show that σ′ is an admissible order for T . Clearly, P (σ′, i) =
P (σ, i) = P (σ0, i) for all i ∈ N\T . It remains to show that C(σ′, i) ≤ C(σ0, i)
for every i ∈ N\T . Since σ is an admissible order, it is sufficient to show
that C(σ′, i) ≤ C(σ, i) for every i ∈ N\T . Observe that xσ′,j = xσ,j for every
j ∈ N\{i1, i2,m}. Hence, C(σ′, i) = C(σ, i) for every i ∈ P (σ,K1) and

C(σ, i)− C(σ′, i) =
∑

j∈P̄ (σ,i)

(

sF(j)xσ,j + pF(j)

)

−
∑

j∈P̄ (σ′,i)

(

sF(i)xσ′,i + pF(i)

)

=
∑

j∈{i1,i2,m}

(xσ,j − xσ′,j) sF(j)

≥ 0,

for every i ∈ S(σ,M). The inequality follows from xσ,m = 1 which implies
(xσ,m − xσ′,m)sF(m) ≥ 0. Further it holds that xσ,i2 = 1, xσ′,i1 + xσ′,i2 = 1,
and sF(i1) = sF(i2) such that

∑

j∈{i1,i2}
(xσ,j − xσ′,j) sF(j) = xσ,i1sF(i1) ≥ 0.

Hence, σ′ ∈ A(T).
Next we show that σ′′ is an admissible order for T . Obviously, P (σ′′, i) =

P (σ0, i) for every i ∈ N\T . Since σ is an admissible order, it is sufficient to show
that C(σ′′, i) ≤ C(σ, i) for every i ∈ N\T . It can be observed that xσ′′,i = xσ,i

for every i ∈ N\{i2, h}. Hence, C(σ′′, i) = C(σ, i) for every i ∈ P (σ,M) and

C(σ, i) − C(σ′′, i) =
∑

j∈P̄ (σ,i)

(

sF(j)xσ,j + pF(j)

)

−
∑

j∈P̄ (σ′′,i)

(

sF(j)xσ′′,j + pF(j)

)

=
∑

j∈{i2,h}

(xσ,j − xσ′′,j)sF(j),

for every i ∈ S(σ,K2). Clearly, xσ,i2 = 1 and xσ′′,i2 = 0. However, xσ,h can
either be 0 or 1. First assume that xσ,h = 0, i.e., h is member of family k.
Hence, xσ′′,h = 1 and
∑

j∈{i2,h}

(xσ,j−xσ′′,j)sF(j) = (1−0)sF(i2)+(0−1)sF(h) = (1−0)sk+(0−1)sk = 0.

Next assume that xσ,h = 1. Then,
∑

j∈{i2,h}

(xσ,j − xσ′′,j)sF(j) = (1− 0)sk + (1 − xσ′′,h)sF(h)

≥ (1− 0)sk + (1 − 1)sF(h) = sk.

8

Hence C(σ, i)−C(σ′′, i) ≥ 0 for every i ∈ S(σ,K2). This yields that σ
′′ ∈ A(T).

To prove Theorem 2.2 it is sufficient to prove that either (1) or (2) is satisfied.
First observe that

∑

j∈T

αF(j)(C(σ, j) − C(σ′, j)) ≥
∑

j∈K1∪M

αF(j) (C(σ, j) − C(σ′, j)) , (3)

where the inequality follows from the fact that C(σ′, i) = C(σ, i) for every
i ∈ P (σ,K1) and C(σ, i) − C(σ′, i) ≥ 0 for every i ∈ S(σ,M). Moreover, for
every i ∈ M it holds that

C(σ, i) − C(σ′, i) =
∑

j∈K1

(xσ,jsF(j) + pF(j)) + (xσ,m − xσ′,m)sF(m)

= xσ,i1sk + |K1|pk + (xσ,m − xσ′,m)sF(m)

= xσ,i1sk + |K1|pk + (1− xσ′,m)sF(m)

≥ |K1|pk, (4)

and for every i ∈ K1

C(σ, i)− C(σ′, i) = −
∑

j∈M

(xσ′,jsF(j) + pF(j))− (xσ′,i1 − xσ,i1)sk

≥ −(γ + sk). (5)

The inequality follows from xσ′,i1 = 1 and

∑

j∈M

(xσ′,jsF(j) + pF(j)) =

{

γ, if xσ′,m = 1,
γ − sF(m), if xσ′,m = 0.

Consequently, by inequalities (3)-(5), we have that

∑

j∈T

αF(j) (C(σ, j) − C(σ′, j)) ≥ |K1|



pk
∑

j∈M

αF(j) − (γ + sk)αk



 . (6)

Secondly, observe that
∑

j∈T

αF(j)(C(σ, j) − C(σ′′, j)) ≥
∑

j∈K2∪M

αF(j) (C(σ, j) − C(σ′′, j)) , (7)

which follows from C(σ′′, i) = C(σ, i) for every i ∈ P (σ,M) and C(σ, i) −
C(σ′′, i) ≥ 0 for every i ∈ S(σ,K2). Moreover,

C(σ, i)− C(σ′′, i) =

{

γ + sk, if i ∈ K2,
−|K2|pk, if i ∈ M.

(8)

which implies that

∑

j∈T

αF(j)(C(σ, j) − C(σ′′, j)) ≥ |K2|



(γ + sk)αk − pk
∑

j∈M

αF(j)



 . (9)

9

Either the righthandside in (6) or (9) is non-negative which shows that either
(1) or (2) is satisfied.

From Theorem 2.2 it follows that for the optimization problem for a subgroup
of jobs, the urgency indices of the jobs are not the only factor to take into
consideration. Apparently, the structure of families within the subgroup is also
of concern.

Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation and let T
be a connected subset with respect to σ0. The family urgency index uT,k for T
is defined as

uT,k =
nT,kαk

sk + nT,kpk
,

for all k ∈ F(T), where nT,k is the number jobs of family k in T and F(T) =
⋃

i∈T

F(i) is the set of families associated to T .

Now assume that F(l(σ0, T)) = k̄(T). The tail-adjusted family urgency index
u′
T,l for T is defined as

u′
T,l =

{

uT,l if l 6= k̄(T),
0 if l = k̄(T).

for all l ∈ F(T).
An order σ ∈ Π(N) is called an HUCF order for T , where T is connected

with respect to σ0, if

(i) P (σ, i) = P (σ0, i) for every i ∈ N\T , and

(ii) σ is family ordered and processes the family groups in non-increasing order
of the family urgency index for T .

An order σ ∈ Π(N) is called a tail-adjusted HUCF order for T , where T is
connected with respect to σ0, if

(i) P (σ, i) = P (σ0, i) for every i ∈ N\T , and

(ii) σ is family ordered and processes the family groups in non-increasing order
of the tail-adjusted family urgency index for T .

Example 2.3. Reconsider the family sequencing situation from Example 2.2.
Consider again S = {1, 2, 3}. Then, F(S) = {1, 2} and uS,1 = 5

6 and uS,2 = 8
9 ,

respectively. Since k̄(S) = 2, the tail-adjusted urgencies in S are u′
S,1 = 5

6
and u′

S,2 = 0, respectively. Hence, σ = (2, 3, 1, 4, 5) is an HUCF order and
σ′ = σ0 = (1, 2, 3, 4, 5) is a tail-adjusted HUCF order for S. ♦

Next we focus on the structure of the optimal orders for connected subgroups
which include the job that is processed first with respect to σ0. In the following
lemma, we show that for connected subgroups of this type, either an HUCF
order or a tail-adjusted HUCF order is optimal.

10

Lemma 2.1. Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situation
and T a connected subgroup with respect to σ0 with σ−1

0 (1) ∈ T . Then,

(i) If an HUCF order for T is admissible, then it is optimal for T .

(ii) If an HUCF order for T is not admissible, then a tail-adjusted HUCF order
for T is optimal for T .

Proof. Let σ ∈ Π(N) be an HUCF order for T .
(i) Let σ ∈ A(T). From Theorem 2.1 and Theorem 2.2 it immediately

follows that σ is optimal.
(ii) Let σ /∈ A(T). Then, clearly, S(σ0, T) 6= ∅. Define h = f(σ0, S(σ0, T)).

We first prove the following claim:
Claim: Let π ∈ Π(N) be such that P (π, i) = P (σ0, i) for all i ∈ N \ T , π

is family ordered for T , and π /∈ A(T). Then C(π, h) > C(σ0, h), xπ,h = 1 and
xσ0,h = 0.

Proof of the claim: Since π /∈ A(T) and P (π, i) = P (σ0, i) for all i ∈ N\T ,
it holds that

C(π, i) > C(σ0, i), (10)

for some i ∈ S(π, T). Since σ−1
0 (1) ∈ T and since π is family ordered, the

number of setups in T are minimized, which implies the total setup time is
minimized, and, consequently

C(π, l(π, T)) ≤ C(σ0, l(σ0, T)).

Hence, since π and σ0 coincide after the last job in T , for (10) to hold it must
be the case that xπ,h = 1 and xσ0,h = 0, while in fact C(π, h) > C(σ0, h). This
proves the claim. Clearly, the claim implies that

C(σ, h) > C(σ0, h), xσ,h = 1, and xσ0,h = 0. (11)

Let σ′ ∈ Π(N) denote a tail-adjusted HUCF order for T . Since σ′ is family
ordered, P (σ′, i) = P (σ0, i) for all i ∈ N \ T , and xσ′,h = 0 we readily see from
the claim that σ′ ∈ A(T).

Now consider an arbitrary order τ ∈ Π(N) with τ ∈ A(T). We prove that
all jobs in T that are within F(h) are processed last in T . From (11) it follows
that T ∩F(h) 6= ∅. Now suppose xτ,h = 1 or that at least two members of F(h)
within T are processed in different runs. Then,

C(τ, h) ≥
∑

k∈F(T)

(sk + nT,kpk) + sF(h) + pF(h)

= C(σ, h)

> C(σ0, h).

The equality holds by the fact that σ is an HUCF order and xσ,h = 1. The
strict inequality follows from (11). This establishes a contradiction with the

11

admissibility of τ . Hence, for each admissible order there is no setup required
for job h, and the members of F(h) are not processed in different runs in T .
This implies that for each admissible order all members of F(h) are sent to the
back of T . The tail-adjusted HUCF order σ′ satisfies this condition.

It remains to prove that σ′ is optimal for the set T ′ = {i ∈ T |F(i) 6= F(h)}.
This is obvious by applying (i) since σ′ is defined as a HUCF order for T ′ which
is admissible for T ′.

3 Family Sequencing Games

A transferable utility (TU) game is an ordered pair (N, v) where N is the fi-
nite set of players, and v the characteristic function v on 2N , the collection
of all subsets of N . The function v assigns to every coalition T ∈ 2N a real
number v(T) with v(∅) = 0. Here, v(T) is called the worth or value of the
coalition T . The set of all TU-games with player set N is denoted by TUN .
Where no confusion arises, we write v rather than (N, v). A game v is called
monotonic if v(S) ≤ v(T) for every S ⊂ T and v is called superadditive if
v(S)+v(T) ≤ v(S∪T) for every S, T ∈ 2N with T∩S = ∅. A game v is convex if a
player’s marginal contribution does not decrease if he joins a larger coalition, i.e.,
v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S) for every i ∈ N and S, T ⊂ N\{i} with
S ⊂ T .

The core, denoted by Core(v), of a game v is defined as the set of efficient
allocations for which no coalition has an incentive to split off from the grand
coalition, i.e.,

Core(v) =







x ∈ RN

∣

∣

∣

∣

∑

j∈N

xj = v(N) and
∑

j∈S

xj ≥ v(S) for all S ∈ 2N







.

A game with a nonempty core is called balanced.
A coalition S ⊂ N is called connected with respect to an order σ ∈ Π(N) if

for all i, j ∈ S and h ∈ N such that σ(i) < σ(h) < σ(j) it holds that h ∈ S. We
denote with con(σ) the set of coalitions that are connected with respect to σ.
For a coalition S, S\σ denotes the set of σ-components of S.

Let σ ∈ Π(N). A TU-game v is called σ-component additive if it satisfies
the following three conditions:

(i) v({i}) = 0 for all i ∈ N , and

(ii) v is superadditive, and

(iii) v(S) =
∑

T∈S\σ v(T) for all S ∈ 2N .

Le Breton et al. (1992) showed that σ-component additive games are balanced.

In a family sequencing game corresponding to a family sequencing situation,
players will correspond to jobs, and the value of a coalition T is defined as the

12

maximum cost savings coalition T can achieve by means of an admissible orders
in A(T). Formally, the family sequencing game v corresponding to a family
sequencing situation Σ(N) = (N,F,F , σ0, s, p, α) is defined by

v(T) = max
σ∈A(T)







∑

j∈T

αF(j) (C(σ0, j)− C(σ, j))







, (12)

for every T ⊂ N . It readily follows that v is monotonic.

Example 3.1. Reconsider the family sequencing situation of Examples
2.1 - 2.3. Since σ = (2, 3, 1, 4, 5) is an optimal order for S = {1, 2, 3} and
T = {1, 2, 3, 5} it holds for the corresponding family sequencing game v, that
v(S) = 3 and v(T) = 8. From this can be seen that the game is not σ0-
component additive; {1, 2, 3} and {5} are the σ0-components of {1, 2, 3, 5}, but
v({1, 2, 3, 5}) = 8 6= 3 = v({1, 2, 3}) + v({5}).

The complete family sequencing game v is given by: v(N) = v({2, 3, 4, 5}) =
20, v({1, 2, 3, 4}) = v({2, 3, 4}) = 10, v({1, 2, 3, 5}) = 8, v({1, 2, 3}) = 3 and
v(S) = 0 for every remaining coalition S ∈ 2N . Also observe that this game is
not convex

v(N)− v({2, 3, 4, 5}) = 0 < 3 = v({1, 2, 3})− v({2, 3}).

♦

Let v ∈ TUN . The marginal vector mσ(v) ∈ RN with respect to σ ∈ Π(N)
is defined to be the vector with for each i ∈ N

mσ
i (v) = v(P̄ (σ, i)) − v(P (σ, i)),

where P (σ, i) is the set of predecessors of job i ∈ N and P̄ (σ, i) = P (σ, i) ∪ {i}.
A concept that is closely related to convexity is permutationally convexity.

The game v is said to be permutationally convex with respect to σ ∈ Π(N) if

v(P̄ (σ, i) ∪ T)− v(P̄ (σ, i)) ≤ v(P̄ (σ, j) ∪ T)− v(P̄ (σ, j)),

for every i, j ∈ N with σ(i) < σ(j) and T ⊂ S(σ, j). Permutational convexity
with respect to an order σ ∈ Π(N) is a well-known sufficient condition for the
corresponding marginal vector mσ(v) to be a core element (cf. Granot and
Huberman (1982)). In the following example we show that family sequencing
games need not be permutationally convex with respect to the initial order σ0.

Example 3.2. Consider the family sequencing situation Σ(N) = (N,F,F , σ0,
s, p, α) with N = {1, 2, 3, 4, 5, 6} and F = {1, 2, 3, 4}. Assume that F(1) =
F(3) = 1, F(2) = 2, F(4) = F(5) = 3 and F(6) = 4. Furthermore, let
σ0 = (1, 2, 3, 4, 5, 6), s = (2, 2, 1, 5), p = (1, 2, 2, 5) and α = (10, 10, 10, 1).
Finally, let v be the family sequencing game corresponding to Σ(N).

13

Consider the coalitions

S = P̄ (σ0, 3) = {1, 2, 3}, S′ = P̄ (σ0, 3) ∪ {6} = {1, 2, 3, 6},

W = P̄ (σ0, 4) = {1, 2, 3, 4}, W ′ = P̄ (σ0, 4) ∪ {6} = {1, 2, 3, 4, 6}.

The urgency indices for S are uS,1 =
20
4 and uS,2 =

10
4 . Hence, σS = (1, 3, 2, 4, 5,

6) is an HUCF order for S. Clearly, σS is admissible for S. Then, by Lemma
2.1, σS is optimal for S.

The urgency indices for W are uW,1 = 20
4 , uW,2 = 10

4 and uW,3 = 10
3 . Hence,

σW = (1, 3, 4, 2, 5, 6) is an HUCF order for W . It can easily be observed that
σW is admissible for W . Then, by Lemma 2.1, σW is optimal for W .

Clearly, σS is also an optimal order for S′ while σW is also an optimal order
for W ′. Then, v is not permutationally convex with respect to σ0 since

2 = v(S′)− v(S) > v(W ′)− v(W) = 1.

♦

In the literature on sequencing games, balancedness of a game v is often
proved by using the fact that v ∈ TUN is σ0-component additive. However, in
Example 3.1 is shown that family sequencing games need not be σ0-component
additive. For sequencing games with controllable processing times, van Velzen
(2006) proved balancedness by using the property of permutationally convex-
ity. From Example 3.2 it can be seen that family sequencing games are not
permutationally convex with respect to σ0. Hence, the balancedness of family
sequencing games can not be proved using standard techniques. However, a di-
rect but technically intricate proof shows the marginal vector that corresponds
to initial order σ0 does belongs to the core of a family sequencing game. For this
proof we introduce some orders which we prove to be admissible and hence have
a completion time smaller than or equal to the completion time of the initial
order.

Theorem 3.1. Let Σ(N) = (N,F,F , σ0, s, p, α) be a family sequencing situa-
tion and let v ∈ TUN be the corresponding sequencing game. Then,
mσ0(v) ∈ Core(v).

Proof. Let T \σ0 = {T1, T2, ..., Tl} be such that Ty ⊂ P (σ0, Ty+1) for every
y ∈ {1, ..., l− 1}. Let σ ∈ A(T) be an optimal order for T .

We have to show that
∑

j∈T mσ0

j (v) ≥ v(T). Since

v(T) =
∑

j∈T

αF(j) (C(σ0, j)− C(σ, j))

=
∑

y∈{1,2,...,l}

∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j)) ,

and
∑

j∈T

mσ0

j (v) =
∑

y∈{1,2,...,l}

∑

j∈Ty

mσ0

j (v),

14

it is sufficient to show that

∑

j∈Ty

mσ0

j (v) ≥
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j)) , (13)

for every y ∈ {1, 2, ..., l}.
Pick y ∈ {1, 2, ..., l}. Let D = P (σ0, Ty) and E = D ∪ Ty. If D = ∅, then

y = 1 and (13) follows from Lemma 2.1 and Theorem 2.2 which implies that σ
is also an optimal order for T1. Hence,

∑

j∈T1

mσ0

j (v) = v(T1) =
∑

j∈T1

αF(j) (C(σ0, j)− C(σ, j)) .

For the remainder, let D 6= ∅. Notice that σ−1
0 (1) ∈ D and

∑

j∈Ty
mσ0

j (v) =

v(E)− v(D). Hence inequality (13) boils down to

v(E)− v(D)−
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j)) ≥ 0. (14)

In the remainder of this proof we consider an order µ for E which is the
combination of an optimal order for Ty and an optimal order for D. If µ is ad-
missible for E, then inequality (14) can be shown directly. If µ is not admissible,
then we construct an adjusted admissible order µ′ to indirectly verify (14).

First, we denote by σy and by σ~y the orders defined by

σy(i) =

{

σ(i), if i ∈ Ty,
σ0(i), otherwise,

σ~y(i) =











σ(i), if i ∈

y
⋃

q=1

Tq,

σ0(i), otherwise.

Notice that σ~y is an admissible order for E. Moreover, let π be an optimal
order for D. Then,

v(D) =
∑

j∈D

αF(j) (C(σ0, j)− C(π, j)) .

Since σ−1
0 (1) ∈ D, we can choose π to be either an HUCF order for D or a

tail-adjusted HUCF order for D (cf. Lemma 2.1). Let µ ∈ Π(N) be the order
defined by

µ(i) =

{

π(i), if i ∈ D,
σy(i), otherwise.

Observe that P (σ0, i) = P (µ, i) for every i ∈ N\E.

15

Let iy = f(σ, Ty) and k = F(iy). For all i ∈ S(σ0, D), observe that

C(σ~y , i)− C(µ, i) =
∑

j∈P̄ (σ~y,i)

(

sF(j)xσ~y ,j + pF(j)

)

(15)

−
∑

j∈P̄ (µ,i)

(

sF(j)xµ,j + pF(j)

)

=
∑

j∈D

sF(j)(xσ~y ,j − xµ,j) + sk(xσ~y ,iy − xµ,iy)

≥ sk(xσ~y ,iy − xµ,iy). (16)

Here the second equality follows from the fact that P̄ (σ~y , i) = P̄ (µ, i) for every
i ∈ S(σ0, D) and xσ~y ,i = xµ,i for every i ∈ S(σ0, D)\{iy}. The inequality follows
from the fact that, with respect to µ, the members of D are processed according
to π which is an HUCF or a tail-adjusted HUCF order for D and these orders
require the minimum total setup time to process the jobs in D. Hence, for all
h ∈ F(D) it holds that

∑

j∈D,j∈F−1(h)

xσ~y ,j ≥ 1,

and
∑

j∈D,j∈F−1(h)

xµ,j = 1.

We now distinguish between two cases.

First assume xσ~y,iy − xµ,iy ≥ 0. Then, µ is admissible for E. For this,
first observe that P (σ0, i) = P (µ, i) for every i ∈ N\E = S(σ0, E). Next, by
admissibility of σ~y , it holds that C(σ0, i) ≥ C(σ~y , i) for every i ∈ S(σ0, E).
Hence, by inequality (16) it holds that C(σ~y , i) ≥ C(µ, i) for every i ∈ S(σ0, E).
We may conclude that µ is an admissible order for E and that

v(E) ≥
∑

j∈E

αF(j) (C(σ0, j)− C(µ, j)) . (17)

Combining (16) and (17) one obtains

v(E)− v(D)−
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j))

≥
∑

j∈E

αF(j) (C(σ0, j)− C(µ, j)) −
∑

j∈D

αF(j) (C(σ0, j)− C(π, j))

−
∑

j∈Ty

αF(j) (C(σ0, i)− C(σ, j))

=
∑

j∈Ty

αF(j) (C(σ, i)− C(µ, j))

=
∑

j∈Ty

αF(j) (C(σ~y , i)− C(µ, j))

16

≥ sk(xσ~y ,iy − xµ,iy)
∑

j∈Ty

αF(j)

≥ 0.

The first equality follows from the fact that C(π, i) = C(µ, i) for all i ∈ D.
The second equality holds by C(σ, i) = C(σ~y , i) for all i ∈ Ty. The second
inequality follows from (16). Hence, inequality (14) is satisfied and the proof is
finished.

Secondly, assume xσ~y ,iy − xµ,iy < 0, i.e., for the rest of the proof assume
that xσ~y ,iy = 0 and xµ,iy = 1. Since xσ~y ,iy = 0, F(iy) = F(l(σy , D)) =
F(l(σ~y, D)) = k. Observe that l(σ~y, D) = l(σ0, D). Moreover, from xµ,iy = 1
it follows that F(l(µ,D)) 6= k. Since F(l(µ,D)) = F(l(π,D)) this implies that
π can not be a tail-adjusted HUCF order for D. So, π can be chosen to be an
HUCF order for D.

Define K1, K2, R1, and M as follows

K1 =
{

i ∈ D
∣

∣F(i) = k and F(j) = k for all j ∈ D with σ0(j) ≥ σ0(i)
}

,

K2 =
{

i ∈ Ty

∣

∣F(i) = k and F(j) = k for all j ∈ Ty with σ~y(j) ≤ σ~y(i)
}

,

R1 =
{

i ∈ D
∣

∣F(i) = k
}

⊃ K1,

M =
{

i ∈ D
∣

∣µ(i) ≥ µ(l(µ,R1))
}

.

Note that M 6= ∅. Order µ′ is obtained from µ by moving all jobs in K2 to
the tail of R1. Figure 4 depicts the orders σ~y, µ, and µ′, and K1, K2, R1, and
M .

Figure 4: The orders σ~y, µ and µ′.

To prove (14) it suffices to see that µ′ is an admissible order for E and that
∑

j∈E

αF(j) (C(µ, j) − C(µ′, j)) ≥ sk
∑

j∈Ty

αF(j). (18)

17

Indeed, observe that (18) implies (13) since

v(E)− v(D)−
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j))

≥
∑

j∈E

αF(j) (C(σ0, j)− C(µ′, j))− v(D)−
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j))

=
∑

j∈E

αF(j) (C(σ0, j)− C(µ, j)) +
∑

j∈E

αF(j) (C(µ, j)− C(µ′, j))

−
∑

j∈D

αF(j) (C(σ0, j)− C(π, j))−
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j))

≥
∑

j∈E

αF(j) (C(σ0, j)− C(µ, j)) + sk
∑

j∈Ty

αF(j)

−
∑

j∈D

αF(j) (C(σ0, j)− C(π, j))−
∑

j∈Ty

αF(j) (C(σ0, j)− C(σ, j))

=
∑

j∈Ty

αF(j) (C(σ, i)− C(µ, j)) + sk
∑

j∈Ty

αF(j)

=
∑

j∈Ty

αF(j) (C(σ~y , i)− C(µ, j)) + sk
∑

j∈Ty

αF(j)

≥ sk(xσ~y ,iy − xµ,iy)
∑

j∈Ty

αF(j) + sk
∑

j∈Ty

αF(j)

= 0.

Here the first inequality follows from the admissibility of µ′ and the second from
(18). The first equality follows from and the optimality of order π for D, the
second from the fact that C(π, i) = C(µ, i) for all i ∈ D. The third equality
holds by C(σ, i) = C(σ~y , i) for all i ∈ Ty. The last inequality holds due to (16).
By assumption it holds that xσ~y ,iy = 0 and xµ,iy = 1 such that the last equality
holds.

First we prove that µ′ is an admissible order for E. Clearly, P (µ′, i) =
P (µ, i) = P (σ0, i) for all i ∈ N \ E. So, it is sufficient to show that C(µ′, i) ≤
C(σ0, i) for every i ∈ N \ E.

Let h = f(µ, S(µ,K2)). Observe that h is not necessarily an element of Ty.
For every i ∈ S(µ,K2) it holds that

C(µ, i)− C(µ′, i) =
∑

j∈P̄ (µ,i)

(sF(j)xµ,j + pF(j))−
∑

j∈P̄ (µ′,i)

(sF(j)xµ′,j + pF(j))

=
∑

j∈{iy ,h}

(xµ,j − xµ′,j)sF(j)

= sk + (xµ,h − xµ′,h)sF(h). (19)

18

If xµ,h = 1, then for every i ∈ S(µ,K2) it follows that

C(µ′, i) = C(µ, i)− sk − (xµ,h − xµ′,h)sF(h)

≤ C(µ, i)− sk

≤ C(σ~y , i)

≤ C(σ0, i).

Here the equality holds by (19). The first inequality holds by assumption, the
second by (16), and the third by σ~y ∈ A(E). Hence, µ′ is an admissible order
for E.

If xµ,h = 0 then by definition of K2 it holds that h /∈ Ty and Ty = K2.
Hence, it follows that C(π, i) = C(µ, i) for all i ∈ S(σ0, E). Further it holds
that F(h) = k and xµ′,h = 1 such that for all i ∈ N \ E it holds that

C(µ′, i) = C(µ, i) = C(π, i) ≤ C(σ0, i).

Here the first equality follows from (19), where xµ,h = 0, xµ′,h = 1, and F(h) =
k. The inequality holds since π ∈ A(D). Hence, µ′ is an admissible order for E.

It remains to prove that inequality (18) holds. Let γ be the time to process
and setup all jobs in M when they are processed with respect to µ, i.e., γ =
∑

j∈M (xµ,jsF(j) + pF(j)). For this, we first show that

γαk − pk
∑

j∈M

αF(j) ≥ 0. (20)

Let π′ be the order obtained from π by taking the group R1 behind M .
Figure 5 depicts the two orders π and π′.

Figure 5: The orders π and π′.

Since π is optimal for D, π is not tail-adjusted HUCF, and since the number
of setups in π is equal to the number of setups in π′, order π′ is admissible for
D. Observe that for all i ∈ D

C(π′, i)− C(π, i) =







0 if i ∈ D\(M ∪R1),
γ if i ∈ R1,
−(sk + |R1|pk) if i ∈ M.

(21)

19

Therefore,

|R1|



γαk − pk
∑

j∈M

αF(j)



 − sk
∑

j∈M

αF(j)

= |R1|γαk − (sk + |R1|pk)
∑

j∈M

αF(j)

=
∑

j∈R1∪M

αF(j) (C(π′, j)− C(π, j))

=
∑

j∈D

αF(j) (C(π′, j)− C(π, j))

=
∑

j∈D

αF(j) (C(σ0, j)− C(π, j))−
∑

j∈D

αF(j) (C(σ0, j)− C(π′, j))

= v(D)−
∑

j∈D

αF(j) (C(σ0, j)− C(π′, j))

≥ 0,

where the second equality holds by (21) and the last equality follows from the
fact that π is an optimal order for D. The inequality holds by the admissibility
of π′ for D. Hence,

γαk − pk
∑

j∈M

αF(j) ≥
sk
∑

j∈M αF(j)

|R1|
≥ 0, (22)

which proves (20).
With respect to (18), observe that for i ∈ E

C(µ, i)− C(µ′, i) =















0, if i ∈ P (µ,M),
−|K2|pk, if i ∈ M,
γ + sk, if i ∈ K2,
sk + (xµ,h − xµ′,h)sj if i ∈ Ty \K2.

(23)

Hence,
∑

j∈E

αF(j) (C(µ, j)− C(µ′, j))

=
∑

j∈M

αF(j) (C(µ, j)− C(µ′, j)) +
∑

j∈K2

αF(j) (C(µ, j)− C(µ′, j))

+
∑

j∈Ty\K2

αF(j) (C(µ, j)− C(µ′, j))

= −|K2|pk
∑

j∈M

αF(j) + (γ + sk)
∑

j∈K2

αF(j)

+(sk + (xµ,h − xµ′,h)sh)
∑

j∈Ty\K2

αF(j)

20

≥ −|K2|pk
∑

j∈M

αF(j) + (γ + sk)
∑

j∈K2

αF(j) + sk
∑

j∈Ty\K2

αF(j)

= |K2|



γαk − pk
∑

j∈M

αF(j)



+ sk
∑

j∈K2

αF(j) + sk
∑

j∈Ty\K2

αF(j)

≥ sk
∑

j∈Ty

αF(j).

The second equality follows from (23). The first inequality follows from the fact
that if Ty \K2 6= ∅, then xµ,h = 1. The last inequality follows from (22). Hence,
(18) is verified. This concludes the proof.

4 Ordered Family Sequencing Games

In this section we consider ordered family sequencing situations. A family se-
quencing situation is called ordered if the initial order σ0 is family ordered. Note
that since all family members are processed consecutively the number of setups
is minimized in σ0. In the proof of Theorem 4.2 we see that in this case several
marginal vectors are in the core of ordered family sequencing games. This allows
us to construct a Shapley-based core allocation for ordered family sequencing
games.

Let n = σ−1
0 (|N |). For a game v ∈ TUN the subgame v−n ∈ TUN\{n} is

defined by
v−n(S) = v(S),

for all S ∈ 2N\{n}. The next theorem shows for ordered family sequencing situ-
ations that v−n is convex and that v has a component additive value structure.

Theorem 4.1. Let Σ(N) = (N,F,F , σ0, s, p, α) be an ordered family sequenc-
ing situation with corresponding family sequencing game v ∈ TUN . Let n =
σ−1
0 (|N |). Then,

(i) the subgame v−n ∈ TUN\{n} is convex, and

(ii) v(S) =
∑

T∈S\σ0
v(T) for all S ∈ 2N .

Proof. Set F = {1, . . . , f}. Let Fk = F−1(k) be the set of family members of
family k ∈ F ordered in such a way that

σ0(i) < σ0(j),

whenever i ∈ Fk, j ∈ Fl with k, l ∈ {1, . . . , f} and k < l. Note that n ∈ Ff .
Clearly, a coalition S can be written as

S =
⋃

k∈KS

Fk ∪
⋃

k∈PS

GS
k , (24)

21

with GS
k (Fk for all k ∈ PS . Here KS ⊂ F denotes the set of families from

which each member is in S, and PS ⊂ F denotes the set of families in S of
whom at least one family member is not in S. Hence, GS

k is the set of members
of family k ∈ PS which are in S.

Since in σ0 the number of setups is minimized, the number of setups equals
f and

C(σ0, n) = min
σ∈Π(N\{n})

C(σ, n).

Consequently, each admissible order for an arbitrary coalition of N \ {n} has to
remain family ordered.

Consider the standard sequencing situation (N̂ , σ̂0, p̂, α̂) with N̂ =
{1, 2, . . . , f − 1} and

σ̂0(k) = k,

p̂k = sk + nkpk,

α̂k = nkαk,

for k ∈ N̂ . Denote the corresponding standard sequencing game by v̂ ∈ TU N̂ .
It follows from Curiel et al. (1989) that v̂ is convex and σ̂0-component additive.
Then explicitly using the fact that with respect to v each admissible order for
N \ {n} is family ordered, one readily checks that for every Ŝ ⊂ N̂ it holds that

v̂(Ŝ) = v





⋃

k∈Ŝ

Fk



 . (25)

(i) Let i ∈ N \ {n} and consider S ⊂ T ⊂ N \ {n, i}. For convexity of v−n,
it suffices to prove that

v−n(S ∪ {i})− v−n(S) ≤ v−n(T ∪ {i})− v−n(T),

or equivalently, that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T). (26)

From (24) and (25) and the fact that each admissible order for S has to remain
family ordered it follows that

v(S) = v

(

⋃

k∈KS

Fk ∪
⋃

k∈PS

GS
k

)

= v

(

⋃

k∈KS

Fk

)

= v̂(KS).

The first equality follows from (24), the second from the fact that jobs in GS

are fixed, and the third from (25). Similarly, v(T) = v̂(KT). Also note that
KS ⊂ KT .

If KS∪{i} = KS, then v(S ∪ {i}) = v̂(KS) = v(S) and (26) holds by mono-
tonicity.

22

If KS∪{i} 6= KS, then

S ∪ {i} =
⋃

k∈KS

Fk ∪ FF−1(i) ∪
⋃

k∈PS\F−1(i)

GS
k ,

and
T ∪ {i} =

⋃

k∈KT

Fk ∪ FF−1(i) ∪
⋃

k∈PT \F−1(i)

GT
k .

Hence,

v(S ∪ {i})− v(S) = v̂(KS ∪ F−1(i))− v̂(KS)

≤ v̂(KT ∪ F−1(i))− v̂(KT)

= v(T ∪ {i})− v(T).

The inequality holds since v̂ is convex.
(ii) Set S\σ0 = {S1, . . . , Sl} such that Sy ⊂ P (σ, Sy+1) for every

y ∈ {1, . . . , l− 1}. It follows that if n ∈ S, and n ∈ Sl. Let, as before,

Sy =
⋃

k∈KS
y

Fk ∪
⋃

k∈PS
y

G
Sy

k ,

for all y ∈ {1, . . . , l}. Note that KS\σ̂0 = ∪l
y=1K

S
y where KS

y may be empty for
some y ∈ {1, . . . , l}.

First let S ⊂ N \ {n}. Since each admissible order remains family ordered,
it suffices to prove (ii) for a coalition S =

⋃

k∈KS

Fk (i.e. with PS = ∅). Then,

v(S) = v

(

⋃

k∈KS

Fk

)

= v̂(KS)

=
l
∑

y=1

v̂(KS
y)

=
l
∑

y=1

v





⋃

k∈KS
y

Fk





=
l
∑

y=1

v(Sy)

=
∑

T∈S\σ0

v(T).

The third equality holds since v̂ is σ̂0-component additive. This proves (ii).

23

Secondly, let n ∈ S. Let π be an optimal order for
⋃l−1

y=1 Sy, µ an optimal
order for Sl and define σ as follows

σ(i) =







π(i) if i ∈
⋃l−1

y=1 Sy,

µ(i) if i ∈ Sl,
σ0(i) otherwise.

Using the fact that σ0 is family ordered, one readily verifies that π is also family
ordered and

C(σ, i) = C(σ0, i), (27)

for all i ∈ N \ S. Consequently, σ is also optimal for S. Thus,

v(S) =
∑

j∈S

αF(j) (C(σ0, j)− C(σ, j))

=
∑

j∈∪l−1

y=1
Sy

αF(j) (C(σ0, j)− C(σ, j)) +
∑

j∈Sl

αF(j) (C(σ0, j)− C(σ, j))

=
∑

j∈∪l−1

y=1
Sy

αF(j) (C(σ0, j)− C(π, j)) +
∑

j∈Sl

αF(j) (C(σ0, j)− C(µ, j))

= v(

l−1
⋃

y=1

Sy) + v(Sl)

=
l−1
∑

y=1

v(Sy) + v(Sl)

=

l
∑

y=1

v(Sy)

=
∑

T∈S\σ0

v(T).

where the fifth equality follows from (27). This finishes the proof of (ii).

Theorem 4.1 allows us to provide a suitable solution concept for family or-
dered sequencing situations. For this purpose we use the Shapley value (Shapley
(1953)). The Shapley value is defined as the average of all marginal vectors, i.e.,

Φ(v) =
1

|N |!

∑

σ∈Π(N)

mσ(v),

for all v ∈ TUN .

Theorem 4.2. Let Σ(N) = (N,F,F , σ0, s, p, α) be an ordered family sequenc-
ing situation with corresponding family sequencing game v ∈ TUN . Let n =
σ−1
0 (|N |). Then,

(

Φ(v−n), v(N) − v(N \ {n})
)

∈ Core(v).

24

Proof. To prove Theorem 4.2 it suffices to show that the marginal vector mσ(v)
for an arbitrary σ ∈ Π(N) such that σ(n) = n, belongs to the core of v. Let
σ ∈ Π(N). It suffices to prove that for every S ⊂ N it holds that

∑

j∈S

mσ
j (v) ≥ v(S).

Define σ′ ∈ Π(N \ {n}) by σ′(i) = σ(i) for all i ∈ N \ {n}.
Let S ⊂ N be such that n /∈ S. Then,

∑

j∈S

mσ
j (v) =

∑

j∈S

mσ′

j (v−n) ≥ v−n(S) = v(S),

where the inequality follows from Theorem 4.1(i).
Let S ⊂ N such that n ∈ S. Set S\σ0 = {S1, . . . , Sl} such that

Sy ⊂ P (σ, Sy+1) for every y ∈ {1, . . . , l − 1}. It follows that n ∈ Sl. Choose
x ∈ Core(v). Then,

∑

j∈S

mσ
j (v) =

l−1
∑

y=1

∑

j∈Sy

mσ
j (v) +

∑

j∈Sl

mσ
j (v)

≥
l−1
∑

y=1

v(Sy) +
∑

j∈Sl

mσ
j (v)

=

l−1
∑

y=1

v(Sy) + v(N)− v(N \ Sl)

≥
l−1
∑

y=1

v(Sy) +
∑

j∈N

xj −
∑

j∈N\Sl

xj

=

l−1
∑

y=1

v(Sy) +
∑

j∈Sl

xj

≥
l−1
∑

y=1

v(Sy) + v(Sl)

= v(S).

The first inequality follows from Theorem 4.1(i). The second and third in-
equalities are due to the fact that x ∈ Core(v). The last equality follows from
Theorem 4.1(ii).

In the following example illustrates the solution concept from Theorem 4.2.

Example 4.1. Consider the family sequencing situation (N,F,F , σ0, s, p, α)
with N = {1, . . . , 10} and F = {1, . . . , 5}. Assume that F1 = {1, 2}, F2 = {3},
F3 = {4, 5, 6}, F4 = {7, 8}, F5 = {9, 10}. Further assume that σ0 = (1, . . . , 10),

25

s = (8, 6, 1, 6, 4), p = (2, 4, 3, 2, 3) and α = (1, 1, 53 , 5, 1). Let S = {2, . . . , 7, 9}.
Then v(S) = v({3, 4, 5, 6}).

Consider the corresponding standard sequencing situation (N̂ , σ̂0, p̂, α̂) with
N̂ = {1, 2, 3, 4}, σ̂0 = (1, 2, 3, 4), p̂ = (10, 10, 10, 10), α̂ = (2, 1, 5, 10). Moreover,
v(S) = v̂({2, 3}) = 40.

Then,

(

Φ(v−n), v(N) − v(N \ {n})
)

=
(

15, 15, 80, 35, 35, 35, 37 1
2 , 37

1
2 , 0, 10

)

∈ Core(v).

Note that Φ(v−n)(9) = 0 due to the fact that if 9 ∈ S, then 5 ∈ PS (i.e. job 10
is never in S). ♦

Example 4.2. Reconsider the family sequencing game of Example 3.1 with
set of jobs N = {1, 2, 3, 4, 5} and v(N) = 20. Note that σ0 is not family ordered.
Then,

(

Φ(v−n), v(N)− v(N \ {n})
)

=
(

1
4 , 3

7
12 , 3

7
12 , 2

7
12 , 10

)

/∈ Core(v).

This can be seen from the fact v(N) = v({2345}) such that x1 = 0 for all
x ∈ Core(v). ♦

References

Ahn, B. and Hyun, J. (1990). Single facility multi-class job scheduling. Com-
puters and Operations Research, 17:265–272.

Allahverdi, A., Cheng, T., and Kovalyov, M. (2008). A survey of scheduling
problems with setup times or costs. European Journal of Operational Re-
search, 187:985–1032.

Allahverdi, A., Gupta, J., and Aldowaisan, T. (1999). A review of scheduling
research involving setup considerations. OMEGA, The International Journal
of Management Science, 27:219–239.

Borm, P., Fiestras-Janeiro, G., Hamers, H., Sanchez, E., and Voorneveld, M.
(2002). On the convexity of games corresponding to sequencing situations
with due dates. European Journal of Operational Research, 136:616–634.

Bruno, J. and Sethi, R. (1977). Task sequencing in a batch environment with
setup times. In Proceedings of the International Workshop organized by the
Commision of the European Communities on Modelling and Performance
Evaluation of Computer Systems, pages 81–88, Amsterdam, The Netherlands,
The Netherlands. North-Holland Publishing Co.

Curiel, I., Pederzoli, G., and Tijs, S. (1989). Sequencing games. European
Journal of Operational Research, 40:344–351.

26

Dobson, G., Karmarkar, S., and Rummel, J. L. (1987). Batching to minimize
flow times on on one machine. Management Science, 33:784–799.

Granot, D. and Huberman, G. (1982). The relationship between convex games
and minimal cost spanning tree games: A case for permutationally convex
games. SIAM Journal of Algorithms and Discrete Methods, 3:288–292.

Hamers, H., Borm, P., and Tijs, S. (1995). On games corresponding to sequenc-
ing situations with ready times. Mathematical Programming, 70:1–13.

Hamers, H., Klijn, F., and van Velzen, B. (2005). On the convexity of precedence
sequencing games. Annals of Operations Research, 137:161–175.

Le Breton, M., Owen, G., and Weber, S. (1992). Strongly balanced cooperative
games. International Journal of Game Theory, 20:419–427.

Liaee, M. and Emmons, H. (1997). Scheduling families of jobs with setup times.
International Journal of Production Economics, 51:165–176.

Lohmann, E., Borm, P., and Slikker, M. (2010). Preparation sequencing situa-
tions and related games. CentER Discussion Paper, (2010-31):1–19.

Mason, A. and Anderson, E. (1991). Minimizing flow time on a single machine
with job classes and setup times. Naval Research Logistics (NRL), 38(3):333–
350.

Monma, C. and Potts, C. (1989). On the complexity of scheduling with batch
setup times. Operations Research, 37(5):798–804.

Potts, N. and Van Wassenhove, L. (1992). Integrating scheduling with batch-
ing and lot-sizing: a review of algorithms and complexity. Journal of the
Operational Research Society, 43:395–406.

Santos, C. and Magazine, M. (1985). Batching in single operation manufacturing
systems. Operations Research Letters, 4:99–103.

Shapley, L. (1953). A value for n-person games. Annals of Mathematics Studies,
28:307–317.

van Velzen, B. (2006). Sequencing games with controllable processing times.
European Journal of Operational Research, 172:64–85.

Webster, S. and Baker, R. (1995). Scheduling groups of jobs on a single machine.
Operations Research, 43:692–703.

27

	2012-040 vk
	2012-040

