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Abstract

Generalized Residue (GR-)codes C,’;,q’, are cyclic codes of length » over the field GF'(q),
with (n,q) =1, while ¢ has to be a divisor of @(n), where ¢ is the Euler function. The
parameter i can have ¢ different values for fixed values of n, ¢ and ¢, and the ¢
corresponding GR-codes are all equivalent. In this Report we study the idempotent
generators of such codes. In particular, we shall do this for ne {p,2p, p*,2p*}, A1 >1,
when the codes C;, ,. belong to the subclass of 7-residue codes. Explicit expressions are
derived which express the idempotent generators in terms of the sizes of cyclotomic
cosets mod n with respect to ¢, and of the coefficients of the one but highest power of x
in the irreducible polynomials over GF(q)which divide x" —1.
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1. Introduction and definitions

In [1] generalized residue codes are defined as follows. Given some positive integer n
and some prime power g with (n,g) =1. Let » = ord ,(q) and let H be the multiplicative

group generated by ¢, i.e. H ={l,q,....... ,q¢"'}. We also introduce the group G:=U ,
being the group of positive integers mod », which are prime to ». Then | U, | = @(n)
and H is a subgroup of U, . Furthermore, it is well known (cf. also [1,(1.2)]) that

x"=1=(x-1)P(x)®, (x), (1)

where @ (x) is the n” cyclotomic polynomial in GF(q)[x] of degree ¢(n), and where
P(x) is the product of all cyclotomic polynomials @, (x) with & | n, 1<k<n.Wealso
know that @, (x) can be factorized into x := ¢(n)/r irreducible polynomials P(x),
1<i<«k,over GF(g)

@,(0=T]R. )

Next, we choose a group K , such that
HcKcG. 3)

The index of K with respect to G is called 7, while the index of H with respect to K is
called s. The cosets of K with respect to G are denoted by K, =K, K,,........ ,K,, and the

cosets of i with respect to K by {H, =H,H,,.....,H_} . It follows that ¢(n)=rst and
x =st. So, we can write

G=K uUK,u....UK,=yKUyK...UyK, 4)
and

G=H VH,V...0UH_=xHUx,HoU...Ux H, ()
for suitable elements y,,y,,.....,», and x,,x,,.....,x, from G.

Let ¢ be a primitive #” root of unity in some extension field of GF(q). Then the
polynomials

g =]]x-¢h, 1<i<t, (6)

leK;



are polynomials in GF(q)[x] of degree rs. Actually, each g'”(x) is the product of s
irreducible polynomials P(x) over GF(q) of degree r. We consider all these

polynomials as representatives of the elements of the ring of polynomials mod x" —1
over the field GF'(q), which in this Report shall be denoted by R’ .

The polynomials g’ (x) generate in R’ ideals

C =(g"(x), 1<i<t, 7)

n,q,t

called generalized residue codes (GR-codes) with parameters n, ¢ and . These codes are
all equivalent for fixed values of n, ¢ and ¢. Furthermore, it is proven in [1, proof of
Theorem 1.1] that if U, is cyclic, its subgroup K of index 7 consists of the #-powers (-

residues) mod n. A well-known property is that U, is cyclic if and only if
ne{2,4,p*.2p" | A >1}, where p is an odd prime and A any integer > 1. Hence, we
have that for these special values of n, the group K as defined above as a subgroup of U,

with index ¢, is identical to U,’, the subgroup of all #-residues [1, Theorem 2.1].

We define a special subclass of GR-codes in the following way.

Definition 1

If the subgroup K of U, with index t is identical to the subgroup U," of m-powers (m-
residues mod n) of the elements of U, for some m, ml @(n), then the code C}’;’ 4. s called

an m-residue code, if m is the smallest value satisfying this identity.

From the remarks above, it will be clear that for n € {2,4, p*,2p" | A >1} the GR-codes
are ¢-residue codes, for all relevant values of ¢, 7 and i.
In general, the index 7, ,, of a subgroup U,"” with respect to U, will not be equal to m.

In stead we have the following relations. If we write for an arbitrary n-value

n=2"p"..p", (®)

(m, 2" (1, (P, 2)) e (m,p(p/)), A <2 v modd, 9)

2(m, 257 (m, @(p, 2 ). (m,@(p,")), A >2 A m even. (10)



So, we can immediately state the following theorem.

Theorem 2
If C;,qqf, 1<i<t, is an m-residue code of dimension n—@(n)/t, based on some subgroup

u'"cU,, thent=1,,.

The next example (cf. also [ ,Example 2.4]) shows that 7 is not always equal to m.

Example 3
For n =45 we find ¢(45)=@(5)p(9)=4.6 =24 and

Us=1,2,4,7,8,11,13,14,16,17,19,22,-1,-2,-4,-7,-8,-11,-13,-14,-16,-17,-19,-22}

First we take K =U,;"= {1,4,16,19,—14,—11} (m = 2) which has index 1,5, =
(2,0(5)(2,0(9)) =(2,4)(2,6) =4 . Since H :=< g > has to be a subgroup of K, we can
take for instance ¢ =4 or ¢ =16. Actually, one could take any power of 4, since all 4-
powers mod 45 are in K. Let g =4. Then r.=ord ,;(4)=6, H =K and
k=p(45)/6=4=st. So, s =1 and ¢ =4 One obtains four (=4) 2-residue codes C25,4,4 ,
1<i<4, over GF(4) of dimension 45—-24/4 =39. When taking ¢ =16 the data
become r =ord ,5(16) =3, H ={1,16,-14}, ¢(45)/3=8, s =2, t =4. In this case one

will obtain four 2-residue codes C, 1<i<4, of length 45 over GF(16) again of

45,16,4 >
dimension 39.

Next we take K =U,;* = {1,16,-14} (m = 4) with index L5, =(4,4)(4,6)=8. Now one
could take any power of 16 for ¢q. Consider ¢ =16, giving r:=ord ,;(16) =3, H =K and
K=@(45)/3=8=st.S0, s=1, t =8 and one obtains eight 4-residue codes st’m’g ,
1<i<8, over GF(16) of dimension 45—24/8 =42. Similarly, one obtains eight §-
residue codes Cjs ¢, over GF(16). The latter case (m = 8) demonstrates that 7 can be

equal to m when n ¢ {2,4, p*,2p"} . In the first two cases one has? > m . 0

Another non-trivial example of a group K with Hc K cU, , K=U,", satistying
I1,,=m,while n¢ (2,4, p*,2p"} is presented below (cf. also [1, Example 2.5]).

Example 4

Take n=36 and g =17. Since ord,(17) = 2, the group H = {1, 17}.
Now, we define K = U363 = {1,17, -1, —17}. Hence, | U363 | =4 =
»(36)/(3,2)(3,6)=12/3 ., and the index of K is 3.



On the other hand, for m =6 we find I, =(6,2)(6,6)=12#6.
We conclude that the choice K =U,,” delivers three equivalent 3-residue codes over

GF(17) . These codes are generated by polynomials g (x), 1<i<3, of degree 4. Each
such polynomial is the product of two irreducible polynomials over GF(17) of degree 2.

A choice K =U,,° ={l} is not possible, since H would not be contained in K.

The next case we shall explore is K =U 453= {1,8,17,19,—1,-8,—17,—19} which has index
t=1,;=03,9005)3,009)=(3,4)3,6) =3. If we take g =8, the group H ={1,8,19,17}
has index 2 with respect to K, and so s =2 . Furthermore, » =4 and x =24/4 =6 in
accordance with s7 =6, s =2 and ¢ =3. Hence, there are three 3-residue codes Cs 5,

1<i<3, of length 45 over GF(8). Each of the minimal generators is the product of 2 (=s)
irreducible polynomials of degree 4 over GF(8). In this case we also have ¢ = m(=3).

Now, let K =U 456 = {119} with index 7 =1,;, = (6,4)((6,6) =12. The only possible non-
trivial group H < K is H = K ={1,19} generated by ¢ =19 . The corresponding
parameter values are 7 :=ord ,5(19) =2, ¢ =12, s =1, t =12. So, there are twelve 6-
residue codes of length 45 over GF(19) of dimension n—@(n)/t =45-24/12=43.

If one defines K = {1,8,17,19} there is no m-value such that K =U,," , and therefore GR-
codes based on this group K do not belong to the family of m-residue codes. Possible
values for g are 8, 17, 19 or powers of these values. Taking ¢ =8 gives r =4, k=6,

t=6, s =1.So, there are six GR-codes Cjs,, 1 <i <6, of length 45 over GF(8). m

For more examples of GR-codes and for their relationship with similar codes already
present in the literatue, we refer to [1]. In this Report we shall focus on the idempotent
generators for GR-codes, especially for a couple of families of #-residue codes. After a
general introduction to idempotent generators for cyclic codes in Section 2, we develop a
new approach to this topic in Section 3 by defining a matrix M the columns of which
yield the primitive idempotent generators for cyclic codes of length #. In particular, we
apply this approach to GR-codes in Section 4. In Sections 5, 6, 7 and 8, we study the
idempotent generators for GR-codes of length p, 2p, p* and 2p*, respectively. All
these codes belong to the subfamily of 7-residue codes. The reason to treat the cases
n=p and n= p* separately, is that the case n = p and ¢ an arbitrary prime power with
(p,q) =1, is dealt with in the literature as a generalization of quadratic residue codes

(when ¢ is a quadratic residue (cf. [1])), while the case n = p” is a further generalization

(cf. [1,4 ]). The other two families of z-residue codes, i.e. the cases n=2p and n=2p"*,

are less known. In our next report we shall present a couple of references where these
codes are introduced. Finally, in Section 9, we investigate a GR-code which is not
covered by one the previous cases, by taking n =21.



We would like to remark that in practice, the M-matrix approach is not a very efficient
substitute for the methods which were briefly discussed in Section 3, since one needs the

coefficients of the one-but highest power of x in a// irreducible factors of x" —1.

2. Idempotent generators of cyclic codes

Let g(x) be the minimal generator polynomial of a cyclic code C of length » over the
field GF(g), and let A(x) be its check polynomial. So we have

X' =1=g()h(x), (11)
and hence, in R’

2(x)h(x)=0. : (12)

Definition S
Let C be a cyclic code. A polynomial e(x) € C, of degree less than n, which is an identity

element of C is called the idempotent generator of C.

One can easily derive from this definition, that every cyclic code has an idempotent
generator which is unique and which satisfies

e(x)’ =e(x). (13)

As for the uniqueness of such an idempotent, we refer to the textbooks, e.g. [3,5]. It is
also well-known, that e(x) can be obtained from the relation

a(x)g(x)+b(x)h(x)=1, (14)

which holds for certain polynomials a(x) and b(x) in R, because g(x) and /(x) have
no common divisors, except the constant polynomial 1. By defining

e(x) = a(x)g(x) (15)

and by applying (12 ) and (14 ) we find that the polynomial e(x) in (15) satisfies (13). A
few well-known properties of idempotent generators are listed in the next theorem.

Theorem 6
(1) An idempotent polynomial in C which is a unit for C, is an idempotent generator of C;

(ii) Relation (13) is equivalent to e(") =0 if g(£')=0 and (') =1 if h({')=0,
where the ', 1<i<n, arethe n” roots of unity lying in some extension field of GF(q);
(ii1) c(x) e C if and only if e(x)c(x) = c(x).



For the proofs we again refer to [3,5].

Of course the polynomial a(x), and hence e(x), can be obtained by carrying out

Euclid’s algorithm to determine the ged of two polynomials. Though this algorithm is
rather efficient, in practice one better can use sometimes the following property, which is
faster in general.

Theorem 7
The idempotent generator e(x), defined in (15), can be written as element of R! as

e(x)= n'xh '(x)g(x), (16)

where n”' is the inverse of n in the field GF(q) and where h'(x) stands for the formal
derivative of the polynomial h(x) .

Proof
First we remark that the degree of the polynomial in the rhs of (16) is less than #, since

we interpret that polynomial as an element of R?. This implies that we have to subtract a

term x" —1 in case that the degree of the polynomial is not a multiple of the characteristic
of the field GF(q). Let ' be a zero of g(x). Then it follows immediately from (16)

that e(¢") =0. Now, assume that ¢ is a zero of A(x) . From the polynomial identity (11)
it follows by taking derivatives that

g()h'(x) + g '(x)h(x) = nx"",

where the coefficient # is taken modulo ¢, and hence can be considered as an element of
GF(gq) (remember that (n,q) =1). So,

e(C) =GN = g =g =1
According to Theorem 6 (ii), and because of the uniqueness of the idempotent generator,

it follows that e(x) equals the expression in the rhs of (16). ]

Corollary 8
The idempotent generator of a cyclic code of length n over the field GF(2") is equal to

e(x) = g()h" (x) = g(x)h"(x), (17)

where, h°(x) and h°(x) are the polynomials obtained from h(x) by taking only the odd
respectively the even powers of x in h(x).



Since n =1 mod 2, the proof is straightforward. For the binary case, Theorem 7 and its
Corollary are presented in [5, Ch. 8, Problem (17)], as an exercise.

In particular, we can apply the above expressions for e(x) to generalized residue codes
which were introduced in [1] (cf. Section 1). We shall give a few examples.

Example 9
Take n=7 and g = 2. Since ord, (2) = 3, the splitting field of x” +1 over GF(2) is

GF(2%). The generating element of the multiplicative group GF(2°)" is a defined by
a’ + o +1=0. Here, we have accidently o = ¢ .

The factorization of x” —1 into x —1 and two irreducible polynomials of degree 3 over
GF(2) is

X +l=(x+D( +x+D(x +x° +1).

If we define g(x):=x’ +x+1,then h(x)=x* + x> + x+1. Corollary 8 now provides us
with e(x) = (x’ +x+Dx=x" +x* +x.

Example 10

Take n=5 and ¢ =19. We write x* —1=(x—1)®,(x). Since ord;(19) =2, the
factorization of @ (x) in GF(19)[x] contains 4/2 =2 irreducible polynomials of
degree 2. Explicitly, we find

¥ —1=(x-D(x> —dx+1) (x> +5x+1).

Let g(x) = (x—1)(x*> +5x+1), then A(x) = x*> —4x+1. Actually, this generating
polynomial defines an extended GR-code. Theorem 7 gives the idempotent

e(x)=5"xg(x)(2x —4) = 4(4x* —5x° =5x" +4x+2).

Indeed, one can verify that in R!” one has e(x)” = e(x), if the coefficients are considered
to be elements of GF(19). o

Example 11
Take n=6 and ¢ =7. We write

xf—1= (x=DD, (x)D; (x)D,(x) =(x—D(x+ (x> +x+D(x* = x+1)
=(x-Dx+Dx-2)(x-dH(x+2)(x+4).

We define g(x)=(x+1)(x* + x+1)=x> +2x” +2x +1), giving rise to

10



h(x)=(x=1)(x>—x+1)=x" —2x> + 2x —1. Strictly speaking, this polynomial g(x)
does not generate a GR-code. Theorem 7 gives for the idempotent corresponding to g(x)
the expression

e(x)=6"xg(x)h'(x) =6 " x(x’ +2x* +2x +1)(3x* —4x+2)= 5x" +x” +5x+4.
Again, one can easily verify the idempotency relation e(x)* = e(x) in R, . 0
Example 12

Take n=11 and ¢ =4. Since ord,,(4) =5, the polynomial @, (x) can be factorized into
two irreducible polynomials over GF'(4) of degree 5. In explicit form we can write

M Hl=(x+ D ot P a i+ D e xt 7 +xt o+ 1),

where a satisfies a” + a +1=0. Actually, a primitive 11" root of unity is defined as a
zero of one of these two 5" degree polynomials. If we define

g(x)=x"+ax* +x’ +x* +a’x+1,then h(x)=x° +ox’ +ox* +a’x* +a’x+1, and
so h'(x)=ax’ +a’x.

Consequently, using Corollary 8, we find

e(x)=h"(x)g(x) = ax +a’x’ o +ax” +ox® +a’ix i xt ot ot +atx.

By a straightforward computation we verified that this expression satisfies the
idempotency relation in R’ . O

Remark 13
Because of the uniqueness of the idempotent generator, we have as a consequence of the

relations (15) and (16) the equalities a(x) =n"'xA'(x) and b(x) = n'xg'(x). Therefore,
in stead of (14) we have in R/ the identity

n ' x(g(Dh' (x) + g'(x)h(x)) =1, (18)
or equivalently,

n”'x(g(x)h'(x) + g'(x)h(x)) =1 mod x" —1, (19)

which of course is obviously true.

11



There is still another tool to compute idempotent generators of cyclic codes. This tool is
based on the so-called inversion rule (cf. e.g. [5, Ch. 7]).

Theorem 14
Let c(x)=c, x" " +c, ,x" 7 +... + ¢, be a polynomial in R’ . Then the coefficients c,,

n—1
0<i<n-1, can be obtained by ¢, =n"' Zc(é”)g”” , where ¢ is a primitive n"” root of
J=0

unity in some extension field of GF(q).

Applying this property to the idempotent generator e(x) of a cyclic code yields the
following theorem.

Theorem 15

Let e(x)=e, x"" +e, ,x"" +........ + e, be the idempotent generator of a cyclic code C,
generated by the minimal polynomial g(x). Then the coefficients e,, 1 <i<n—1, can be
obtained by e, =n"' Z &7 where N is the set of exponents of the nonzeros ¢’ of g(x).

JjeN

Example 16
We shall apply Theorem 15 to the GR-code with parameters n =13, g =3 and 7 =4,

generated by the polynomial g (x) = x" —x —1. This code C113,3, 4> 1s also studied in [1,

Examples 2.2, 3.1 and 4.3]. The zeros of g (x) are ¢, ¢’ and ¢”. Hence, it follows

from Theorem 15 that
12

e = 13—lze(§j)é/—ij _ 1+§—2i +§—4i +§—5i +é/—6i+é/—7i +§8i +é/—10i +§—11i +§—12i.

j=0

The primitive 13" root of unity ¢ is defined by g () = 0, which provides us with the
identities: ¢* =¢+1, ¢ =2+, =2+ +1, 0 =07~ ¢ +1,
{T=-0"-¢+1,¢"=-¢0"-1,¢"=¢0~1,¢"=¢"~¢, {" =—¢"+{ +1 and

12
' = ¢? —1. By also making use of the identity Z§ /=0, itis easy to derive
j=0
e, =e,=¢,=1,e,=¢,=e,=-1,e,=¢,=¢,=1land ¢, =¢, =¢, =0.
Hence, the idempotent generator of the code defined by g (x) is equal to
V) =x"+x"+x +x" —x =+ =P+ x+1.

To apply Theorem 7, we first determine the polynomial /(x) = x" —1/g(x). We find

hx)=x" +x* +x7 +x° =x° = x* + x> —x+1

12



and next
hx)y=x" —x" +x° +x* —x’ —x-1.

When evaluating e (x) := g(x)4'(x) , we end up with the same expression which was
derived before.

Similarly, we can determine the idempotent generator of the code C7}, , defined by its

minimal polynomial g (x)=x’ + x> —1, with zeros ¢*, " and ¢'. The result is

3 12 11 10 8 7 6 5 4 2
eV () =x" —x"Hx" —x® = xT +xHx xt i

Example 17
For n=15, we have U, ={1,2,4,7,8,11,13,14} and ¢(15) =8. The cyclotomic

polynomial ®,,(x) can be obtained from

X =1=(x = DD, (x)D(x)D,(x),
giving
D (x)=x"—x"+x" —x'+x°—x+1.

We consider @, (x) as a polynomial over GF'(2) and write
O (x)=x"+x"+ +x'+ 7 +x+1.

Since ord ;(2) =4, we can factorize @,(x) in R into two irreducible polynomials of
degree 4 (cf. [1,Sectionl])

D (x)= (x*+x+D(x* +x°+1).
The complete factorization of x* —1 in R} is
X =1=(x+ D+ x+ D+ +xf x+ D+ Dt x0T + D).

Let ¢ be a primitive 15" root of unity, defined as a zero of x* + x +1. Then it can easily

be derived that among the irreducible polynomials in the above factorization one has the
following distribution of zeros:

2

¢he,
’412’4/9’

xt+x+1 with zeros ¢,

b

[=N

¢
¢

xt+x’ 41 with zeros ¢,

13



11
s

xt+x’+x* +x+1 withzeros ¢7,¢", "¢
xP+x+1 with zeros  ¢°,¢"
x+1 with zero  ¢°.
For ¢ =2, the only m-values less than 8 and such that 2e U )" are 1, 3, 5 and 7, while
Us =U;s =Uj;
C}s.,, which is a 1-residue code and which is obtained by choosing K :=U,; > H =<2 >.
When we choose K = H ={1,2,4,8}, it follows that  =8/4 = 2, and we obtain two

binary equivalent GR-codes Cy;, ,, 1 <i <2, which are not m-residue codes for any m.

1 3 5

=U,, =U,;. So, the only binary m-residue code is the trivial code

Next, we consider @ (x) in the polynomial ring GF(4)[x]. Since ord,;(4) =2, we now
have a factorization into four polynomials of degree 2 which are irreducible in GF(4)[x]

O (x)=("+x+a)x’ +x+a’ )X’ +ax+a)(x’ +a’x+a’),

where o satisfies o’ +a+1=0.
We conclude that when taking ¢ =4 € K = {1,4}, there are | U,/ K |=¢(15)/2=4

quaternary equivalent GR-codes C|s,,, 1<i<4.Since K =U,;’, these codes are even 2-
residue codes (over GF(4)). We define, g (x) =x" +x+a, g (x) =x* +x+a’,

g?(x)=x*+ax+a and g (x):=x* + a’x+ . In order to obtain the idempotent

generator of the code Cj , ,:=( 2" (x)), we first determine the corresponding check

polynomial
A =x"+x" +a’x" +x" v+ + o’ +x° + o’ +a’x’ v’ rox+a’.
Applying Theorem 7 or Corrollary 8 gives the idempotent generator
V)= x" +xP +a? P x" a7 v +a’xt oty o’ +atx+1.
Similarly, we obtain the idempotent generator of (g'* (x)) by successively computing
WP (x)=x"+ax? +x" +x" + o’ + &% o’ +ad’ +a’x +x7 +a’x+
)= +a’xP o e’ vty +xP v atx ratx +xt o’ X7+ x

The idempotent generators e (x) and e (x) follow from e (x) and e (x) by

replacing o with o, respectively. o
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Example 18
Let n=10 and take first ¢ =3. Then @ (x)=x"—x’+x’ —x+1. Since ord,,(3) =4,

x=@(10)/4 =1, and so the polynomial @ (x) is irreducible in GF'(3)[x]. Taking
g(x)=®,,(x) as generator polynomial of the GR- code C110,3,l , gives a check polynomial

h(x) = x* +x° —x—1. Hence, the idempotent generator of this code is

e(x)=10" xh'(x)g(x)=—x" +x* —x" +x* + X" +x* =’ +x" - x.

Next we take g =9. Since r:=ord ,(9) =2 and ¢(10) =4, we know that @, (x) can be
written as the product of two irreducible polynomials over GF'(9) of degree 2. From the
equality x"" —1=(x—1)D,(x)D,(x)D,,(x), we derive

D, (x)= (" +ax+1)(x" —(@+)x+1),

where « is defined as one the roots of the equation x* +x—1=0 (cf. [1, Example 7.1]),

while the other root is o .
We define K :=H =<9>. S0, K={1,9} and 1 =¢(10)/2=2. Hence, there are two

equivalent 9-ary codes Cj,,,1<i<2, generated by g’ (x)=x"+ax+1 and
g (x)= x> —(a+1)x+1, respectively. We shall determine the idempotent generator of
the code (g (x)). First, we find for the check polynomial

W (x)=x*—ax’ —ax’ +x° —x’ +ax> +ax—1.
Next, applying Theorem 7, we get the idempotent

eV (x) = ax’ +(a+D)x’ —(a+D)x" —ax® —x’ —ax' —(a+1)x’ + (@ +)x* +ax -1

=ax’ —a’x*+a’y —ax’® -~ o’ —a’x +ox 1.
By a straightforward calculation we verified that e (x)* = e (x).

Since a’ = —a —1, we can obtain the expression for #* (x) by replacing  in 4" (x)
with o, and similarly, by the same substitution, we can get e'” (x) from e (x). The
result is

) =a’x’ —ax* +ax’ —a’x* —x* —a’xt o’ o’ +a’x—1.
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We remark that a primitive 10” root ¢ of unity can be defined by as a zero of g (x) in
GF(9%) [x]. This implies ¢* = —a¢ —1, or equivalently o = —(& +¢ 7). O

It is well known that in the binary case, i.e. for ¢ =2, the idempotent generator of some
cyclic code C of length » is the sum of polynomials ¢ (x). Such a polynomial ¢ (x)

corresponds to a cyclotomic coset C;, mod », with respect to 2, in the following way

c,(x)= in . (20)

ieCy

It can easily be proven (cf. also [3,5]) that this property holds more generally for cyclic
codes over a finite field GF(q), if C, stands for a coset mod » with respect to ¢, i.e.

C, ={s,gS,....... g™ 20

Theorem 19
Let C be a cyclic code of length n over the field GF(q), with (n,q) =1, and let e(x) be

its idempotent generator. Then one can write e(x) = Zfscs (x), where s runs through
N

the set of indices of cyclotomic cosets mod n, and with & € GF(q).

Proof
If e(x) is an idempotent generator of C, then by definition e(x)* = e(x), and hence

e(x)" = e(x) for all positive integers k . We write e(x) = Zéxi , &, €GF(q), and we

i J

take k =g, yielding e(x)’ =) &"x" =Y Ex" = & x/ 1f i e C, for some s, then

also gi € C,. Putting j =gi in the right hand side of the above equation, gives &, =&,.
This implies the statement. O

The above theorem is clearly illustrated by the idempotent generators derived in the
previous examples.
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3. A matrix determining all primitive idempotent generators

We now shall develop a fourth method to derive the idempotent generator of a cyclic
code of length n. We consider the complete factorization of x" —1 into irreducible
polynomials over GF(q), (n,q) =1, which is written as

x" =1

1

| £x), R(x)=1. (22)

Let ¢ be again a primitive #” root of unity in some extension field of GF(q), defined as
a zero of one of the polynomials in the rhs of (22) which we shall assume to be F(x).

Then ¢,¢7,......¢ " are the m, zeros of P,(x), where m, is the degree of A (x) In

general, the irreducible polynomial P,(x) has zeros §*,™,........ N4 s , where m_ is the

degree of P (x) So, there is a one-to-one correspondence between the cyclotomic cosets
C. ={5,5¢,.....,5q" "} (23)
and the polynomials P (x) which we write explicitly as

P(x)=x"+p x" " +.... + Do, - (24)

We adopt the convention that the index s stands for the least integer of the relevant coset.
Together these indices constitute an index set S.
On the other hand, there is also a one-to-one correspondence between the cyclotomic

cosets C, and the polynomials (cyclonomials)c (x) € R!, s € S, which are defined as

c,(X)=x"+x"+....... x0T (25)
Forany ie{l,2,....... ,n} and for any s € S, we define the (multi)set
CY = {is,isq,....... Lisqg™ 'Y, (26)

containing all products ia, with a € C,. It will be clear that all elements in C” belong to

the same cyclotomic coset, be it that these elements may occur more than once. We shall
denote this cyclotomic coset by the index is, though this is not necessarily the least

integer in the coset. If the multiset C” contains each element of C, a times, we shall

write C\” = aC,, . More precisely, we have the following lemma.
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Lemma 20

Forall i€{l,2,...,n} and all s €S one has
(i) C =nC, for some positive integer n. which divides m_;

s s

(i) ¢ (&) =-np,,-

Proof
(i) Each element of C'” can be obtained from is by a multiplication with some power of

g, and each element occurs n, = | C, |/ | C, |=m,/mg times.
(i) By definition P,(¢*)=0, and hence P,(¢™)=.....= P,({™™ ) =0. Moreover,
cs(é'i) = g’” +§'isq +..... +§”‘5qm‘xi = n;cl.j(g). So, cs(é'i) = —nipis,l. O

In the next, we consider 7’ as an element of GF(q), and we introduce an | S| x | S| -
matrix M with elements

M, =-np,., i,SES. (27)
In particular, we have
yO,s = ms and lui,O = 1 N (28)

We also introduce two more operations on the family of cyclotomic cosets for certain
fixed values of » and ¢. In the first place we define the sum of two cosets

C,+C,={a+b|acC,beC}, (29)
and secondly, the product
CC,={ab|acC,beC}, (30)
where the sums and products of the integers a and b are taken mod 7.
It will be obvious that the multiset in the rhs of (29) is a union of cyclotomic cosets,

where a coset may occur more than once. Hence, one can write in general

C +C,={Jac, 31
i

for certain integers a, which depend on i and j. The same can be said about the product
(30), so

18



cC,=JbC (32)
1

for certain integers b,. All indices in (31) and (32) are elements of S.
The following simple properties hold.

Lemma 21
Let A be the family of unions of cyclotomic cosets for fixed values of n and q. Then
(1) A is closed under the operations as defined in (31) and (32);

(i1) the integera, in (31 ) is equal to m, if j=—i, andto 0 if j#—i
(iii) the set of polynomials c (x), s € S, is closed in R} under multiplication;
(V) ¢, (') =nlc, (x);

(v) ¢ (x)c;(x)= Za,c, (x) with the integers a, from (31), and a, = m, if j =—iand
/

a, =0 otherwise;

(vi) if ¢ is a primitive n” root of unity, then ch (&) is equal to 0 for i #0, and to n
k

for i=0.

We are now ready to formulate a theorem which provides us with another method to

determine the idempotent generator of the cyclic code generated by an irreducible

polynomial P(x) from (22). In the formulation of this theorem we introduce vectors
g, €S, over GF(q) and of length | S | , which have a one on position i and zeros on

all positions of S\{i}.

Theorem 22

Let the indices of the irreducible polynomials in (22) be such that the primitive n" root
of unity ¢, which lies in some extension field of GF(q), (n,q) =1, is defined as a zero of

u
n,q.t

the irreducible polynomial F,(x). Let furthermore C,' , be the cyclic code of length n

generated by the irreducible polynomial P,(x),u € S, also from (22 ), and
lete,(x) = Zf_vcs (x), & €GF(q), be its idempotent generator. Then the coefficients &

ses§

are uniquely determined by the set of linear equations Z & =e, (¢ N, ieS, with

seS
e, (=0 fori=u and e (') =1 for i # u, or equivalently in matrix form, by
ME =6, with column vectors & and 6, =1—-¢, of length | S| .

Proof
From Theorem 6 we know that the set of equations e, () =0 for i=u and e, ({') =1

fori # u, has a solution and such a solution must be unique. Substituting the relation of
Lemma 20 (ii) and using (27) gives the linear set of equations as stated in the Theorem. o
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Example 23
Take n=15 and ¢ =2 (cf. also Example 17).

The cyclotomic cosets are
C,={0}, C, ={1,2,4,8}, C,={3,6,12,9}, C, ={5,10}, C, ={7,14,13,11} .

The index set S ={0,1,3,5,7}.
The only #! having a value #1 are n| =ny =n) =4 and n{ =n; =2.
Corresponding to the above cyclotomic cosets we have the polynomials

(@) =1, ¢(x)=x+x"+x" +x°, c;(x) =" +x° +x" +x7, c;(x) =x" +x"7,

e (x)=x" +x" +x + 2",

The factorization in (22 ) is given by x"° —1= HR (x) with

seS
P(x)=x+1,P(x)=x"+x+1,P(x)=x"+x +1,P(x)=x" +x+1,

P(x)=x"+x+x"+x+1.

We define a primitive 15" root of unity ¢ by requiring P({)=0.

The idempotent generator of the code C' can be written as ¢,(x) = Z e (x).
seS

According to Theorem 22, we have the following set of equations for the &

1€, +08, +0&, +0&, +0&, =¢, (") =1,
1, +0& +1&, +1E +1&, =¢,(£) =0,
1€, +1& +1&E +0&E +1& =¢,(£) =1,
1&,+0& +0& +1& +0&, =¢,(L°) =1,
1&, +1& +1&E, +1& +0&, =¢,(7) =1.

In matrix form we write this linear set of equations as

ME=5.

with the column vectors & =(&,,&,&,,&,&)" and 8, =(1,0,1,1,1)" and the matrix
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1 00 00O
1 01 11
M=]1 11 0 1]
1 0010
11110

Since the idempotent generator is unique, this system has precisely one solution which
turns out to be £ =(1,1,1,0,0) . If we take for the rhs of the matrix equation the vector

8, =(1,1,0,1,1)", which corresponds to the polynomial P,(x), we find & =(1,0,1,0,1)" as
solution. Hence, for the idempotent generators of the two GR-codes, we find

e(x)=1+x+x"+x +x" +x* +x* +x" +x"7,
e,(X)=1+x" +x°+x" +x" +x" +x + 27+ M

We verified that the same expressions are delivered by eq. (16), using the check
polynomials

h(x)=x"+x"+x"+xX +x° +x" +x+1,

B(x)=x"+x""+x" +x* +x°+xt+ 27+ 1. i

Example 24
Again we study the case =10 and ¢ =3 (cf. Example 18). The cyclotomic cosets are

C, =10}, C, =1{.3,9,7}, C, ={2,6,8,4} , C, ={5}, and the corresponding irreducible
polynomials P(x)=x-1, B(x)=x"-x’+x"—x+1, B(x)=x"+x"+x* +x+1,
P.(x)=x+1. We know that @, (x) = P(x) is irreducible and that B (x) generates Cy, .
The coefficients &, i€ S =1{0,1,2,5}, can be determined by the matrix equation

11 1 1)(&) (1
1 1 -1 -1 0
ME= g =
1 -1 -1 1|&| |1
1 -1 1 -1){&) 1

We find & =(0,-1,1,1)", and so the idempotent generator of the GR-code C, is

g(x)=—x+x" =X +x'+ 27 +x" —x" +x" X,
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We obtained the same expression by applying (16) with 4 (x)=x"+x’ —x—1.

Now, we take g =9 . The cyclotomic cosets C, and C, split and we have new cosets
C,={0}, C,={L9}, C, ={2,8}, C,={3,7}, C, ={4,6}, C; ={5} and §=1{0,1,2,3,4,5}.
Using the same indices, we have the following irreducible polynomials F,(x)=x—1 with
zero ', P(x) = x* + ax+1with zeros £,¢°, P(x)=x" +(a+1)x+1 with zeros ¢?,¢°,
P(x)=x" —(a+Dx+1 with zeros ¢*,¢7, P (x) =x* —ax+1 with zeros {*,{° and
P,(x)=x+1 with zero . Here, the element a € GF(9) satisfies a” +a—1 =0.

The matrix M in this case can readily be determined and is equal to

1 -1 -1 -1 -1 1

1 - -a-1 o+l a -1

1 —a-1 a a —-a-1 1
M = .

1 a+l a - —-a-1 -1

1 o —-a-1 —-a-1 o 1

1 1 -1 1 -1 -1

The equation M¢ =6, with & =(&,,&.,&,,E,E,,&)" and 8, =(1,0,1,1,1,1)" yields the
solution & = (=L, a,x +1,—a —1,—a,—1)", which indeed corresponds to the idempotent

generator e’ (x) as computed in Example 18. |

Due to the previous examples the following theorem presents itself.

Theorem 25

Let F, (x),F, (x),......, B (x), with i,i,,......;; € S, be lirreducible polynomials introduced
in (2), and let C be the cyclic code generated by the product P(x) of these polynomials.
Then the idempotent generator e(x) = Z &.c,(x)of Cis determined by the set of linear

seS§
equations M& =0, where O is the column vector of length | S | with zeros on the

positions i,i,,.....,I,, and ones elsewhere.

In particular, one obtains the primitive idempotent generators, i.e. the idempotent
generators of the so-called minimal or irreducible codes (cf. e.g. [5]), by taking for & a
vector with just one one and zeros on all other positions, whereas the idempotent
generators for the maximal codes are obtained by taking for & a vector with just one zero
and ones on all other positions.

22



It turns out that the inverse of the matrix M can easily be determined.

Theorem 26
Let M be the matrix the elements of which are defined in (27) and let M” be the matrix
obtained from M by interchanging the columns indexed by s and —s, for all s €S . Then

M =n"'"M", where the inverse of n is to be taken in GF(q).

Proof
We consider the inner product of row i and column s of the matrix M. Using (27) and
Lemma 20 (ii), we get

Z:ui,k/uk,s = ch (é/i)cs (gk):

keS keS

DTG TN L M=

mg—1 my—1 mg—1 my—1

Z Z(Zguq’wsq")k ) :Z Z(Zéf(mq”)kq” ).

keS a=0  b=0 keS a=0  b=0

In order to evaluate the rhs of the last equality, we shall make use of the fact that for
every fixed value of b, the set {sq“” | 0<a<m -1} is equal to the cyclotomic coset

C, =1{sq"

0<c<m, —1}. Hence, we obtain

mg—1 my—1

Z z(z ;(mq")kqb):
SIS + Mt 0 = SIS

where ¢'= ¢ is some (not necessarily primitive) n” root of unity. For s # —i one has
that ¢'# 1, and hence the expression between brackets is equal to 0 for each value of c¢.

For s = —i this expression is also 0, except for ¢ =0, giving "+ +...+ " =n.

Hence, we may conclude that Zyi,kyk,s =0, for s # —i and Z,u,.’k,uk’_,. =n fors =—i.0

keS keS

Corollary 27

The primitive idempotent generators 0, (x) = Z .6 (x), ues§, of the minimal cyclic
ses§

codes for certain values of nand q, are determined by the vector £,= n"'M"¢,, where

u’

&, is the vector over GF(q) of length | S | with a one on position u and zeros elsewhere.

/]

The idempotent generators 9,(x) = Z &'

seS§
codes, are determined by &' =n"'M"5

u’

¢, (x) which generate the maximal cyclic

u,s s

with 6,= 1—¢&,, and where 1 stands for the
all-one vector of length | S | .
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This corollary implies that the primitive idempotent generator of the cyclic code
generated by H}’i(x) , u €S, corresponds to the column of M with index —u,

i#u

occasionally called 4 . For practical reasons, we denote this idempotent generator by

0: (x), and so we have forall u e S

0,0)=0,)=n" Y p, e =n"Y (1)) (33)
and similarly,
L) =1-6,(x)=1-0,,(x). (34)

In the next theorem we state some simple symmetry properties of the matrix M. To do
this in a concise way, we shall make use of the Kronecker symbol 6, , which stands for 1

ifa=b,and forOif a#b.

Theorem 28
If we denote the elements of the matrix M by 1, , i, j € S, then the following relations

hold in GF(q):

(W) mp =mu,

(i) Z/ui,k/uk.j = né‘i,—j 5
k

(iii) ka/uk,i/uk,j = nmié‘i,—j;
k

. -1 _ -1
(IV) ka Iui,k/uj,k =nm; é‘i,fj :
k

Proof
Equality (i) follows immediately from the definition (37) of the elements of M.
The other relations are immediate consequences of (i) and Theorem 26 . o

Remark 29
The inverses in Theorem 28 (iv), are only defined as long as m, and m, are unequal to

zero in GF(g) . Multiplying both sides of relation (iv) by m, (= m;) gives the factor
m i,/ m; in the lhs which always exists.

Notice that in the above theorem, all summations are over S, and that all integers m, and
n are to be taken in GF'(q).

Lemma 30
Let (n,q) =1 and let r be the order of ¢ modulo n.
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(1) The size m; of the cyclotomic coset C, is a divisor of r, for all i€ S .

(1) If -1 is a g-power modulo n, then C,=C__ forall s€§S.

Proof
(i) The elements of C, are precisely the elements of the group H :=<g > of order r, and

so m, =r. The cyclotomic coset C, consists of the elements {s,sq,..... ,5g™ '}, and hence
m_ must be a divisor of m, =r.

(i) If —1=¢4', then —s =¢'s, so all elements of C_ can be written as a g-power. Since
¢ l=lc,

, the relation in (ii) follows immediately. i

The following —at least in the binary case — well-known properties can easily be derived
in the usual way (cf. [3,5]).

Theorem 31
For any n and prime power q with (n,q) =1, one has that the primitive idempotent

generators 0 (x), s €S, of cyclic codes of length n over q satisfy:

i >.6,()=1;

seS§
(1) 6. (x)8,(x)=0 forall s,u e Swiths#u;
(iii) 9,()=1-06,(x);
(iv) if e(x) is the idempotent generator of some cyclic code, then e(x) = ZHS (x) for

seT

some subset T — S';
(V) the code with generator polynomial P, (x)F, (X).......F, (x) has idempotent generator

1=, (x) =, (). =6, ().
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4. Idempotent generators of GR-codes

Let again n be some positive integer and g some prime power satisfying (n,q)=1.
We consider the GR-codes C, ,, 1<i<t,as defined in Section 1. It will be clear that

the elements of the group H:=<g> (cf. Section 1) are the same as the elements of the
cyclotomic coset C, ={l,q,....,¢" "'} . Similarly, the elements of the coset H, = x.H (cf.

o2

(5)), are the same as the elements of the cyclotomic coset C, if x, e C,, for I<i<«k.
Therefore, we can identify x, with the least element i of C,. As a consequence, the
index i of H, now runs through the set SNU , i.e. the set of indices of the cyclotomic
cosets mod » which are coprime with 7, and we write from now on instead of (2)

o,= [T R, (35)

seSNU,

where the irreducible polynomial P.(x), s€S§, is defined by

Px)=]](x-¢"). (36)

JeCs

If we take K := H when constructing the code C, 40> wehave k=17 and so p(n)=rt.

With this choice for K, the GR-codes are ‘maximal’ codes, defined by the generators
g”(x)=P(x), ie SNU,. The idempotent generator of C’

n,q.t 2

as follows from

Corollary 27, can be written as e'”(x) = Z & ¢;(x), where &, is the j * component of
jes

the column vector & =&, — , and x , is the column with index —i of the matrix M ,

and hence, & . =06, — 4, ;-

Now we know that for any i € S "U, , the value of m, is equal to r :=ord ,(q), and

n?

hence, we have for such matrix elements s, ,

r

oy Dy, 1€SNU,.

y

(37)

We remark, that m, is the degree of the polynomial P, (x), while p;, is the coefficient

of ™" in that same polynomial. In the present case of GR-codes with P(x), ie SnU,,
as generator, we also know that

| snuU,

=@(n)/r=t. (38)
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In particular, it follows from (37) that the column vector 4 has as j” component

Hijy=———Pj1 (39)
m

From Corollary 27 and from the fact that m_, = m, for all i € S, we may conclude the
following result.

Theorem 32
The idempotent generator of the GR-code C,i,q‘,, ieSNU,, isgivenby 9 (x)=1-6 (x),

with 0, (x) = n"IZ—mLp_Uch (x).

Jjes if

i

In order to determine all idempotent generators of the 7 equivalent GR-codes C,  ,

ie SNU, , itis sufficient to compute 4 (x), or equivalently the column vector £, . The
components of any other column vector x of M, with ie SNU, , constitute a

permutation of the components of 1, .

Theorem 33
Let p,;, i,j €S, bethe elements of the matrix M.

(1) If j and k are elements of SNU,, and if l €U, is such that Ik = j mod n, then
Mg =Hjs
(i1) The components of the column vector u,, k€ S NU ,, form a permutation of the

components of L, ;

(iif) The group U,/ H acts transitively on the set of column vectors { 1, , pi, , ..., i, },
where i, iy, ......, i, are thet elements of SNU, .
Proof

(i) From (27) we infer that 4, , = _Lplk,l = _ij,l =,
Tk m;

(1) If; and k are considered as elements of the group U, , there is precisely one element
1 eU, with [k = j mod n, for any fixed pairj and k. If j and k are elements of SNU,
considered as group, this unique element / is alsoin S NU,,. So, for a fixed index
keSnU,, the components of 4, which correspond to elements of SNU, , form a
permutation of the same kind of components of 1, . Next, take the subset §, = § with
the property that s € S, if and only if (n,s) = a . Divide all elements of S, by a and

consider the quotients as elements of U, ,, . By similar arguments as before, we can prove
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now that the components of x, which correspond to elements of S, are a permutation
of the same kind of components of 1, . Continue this process until there are no
components of y, left. Notice that S, =S NU, in this context.

(ii1) This follows immediately from (ii), when applying the fact that S "U, considered

as a group, is isomorphic to the quotient group U, / H . o

Remark 34
In order to compute the idempotent generator (x), we must know the coefficients p, |

of all irreducible polynomials P;(x). In practice, the second method for computing

idempotent generators, discussed in the previous section, seems to be less demanding,
since one only has to compute 4" (x)=x" -1/ g" (x) for a given g (x) = P(x).

In the next sections we shall derive construction rules for the idempotent generators of
generalized residue codes in the cases n=p, n=2p, n=p” and n=2p" . We remind

the reader that these codes all belong to the subfamily of #-residue codes (cf. [1] and
Section 1 of this Report).

5. The case n=p
In the special case n = p where p is an odd prime, one has

xP =1=(x-DP,(x),
(40)

with deg @ ,(x) = p—1. Furthermore, g is some prime power with (p,q)=1. All
cyclotomic cosets C; mod p , with respect to g, i # 0, have the same size 7 := ord ,(g) .
Hence, all irreducible polynomials P/(x), i # 0, are of the same degree » and

Kk :=@(n)/r=p-1/r.Consequently, all matrix elements y,,, i # 0, are equal to r.

Moreover, for the other elements of M one has

:uj,i :__lpij,ls l,]ES/{O}, (41)
4
while x;, =1 for all j, as always.

Example 35

Take n=13 and ¢ =3. It follows that 7 :=ord,;(3) =3, and that the cyclotomic cosets
mod 13 are

C,=1{0}, C,={1,3,9}, C, ={2,6,5}, C, = {4,10,12}, C, ={7,8,11} .
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Furthermore, we write x* —1 = P,(x)P,(x)P,(x)P,(x)P,(x) with the irreducible
polynomials

P(x)=x-1, B(x)=x"-x-1, B(x)=x"+x"+x-1, P(x)=x"+x" -1,
P(x)=x"—x*—x-1.

By applying eq. (37) we find the following matrix

0 1 2 4 7
1 0 0 0 0)0
1 0 -1 -1 1]1
M=[1 -1 -1 1 0]2.
1 -1 1 0 -1]4
1 1 0 -1 -1)7

So, when using that »™' =1 mod 3, the primitive idempotent generator which corresponds
to C, is equal to

Hl*(x) = Zﬂs,fﬁ« (x)= Z,uMcS (x) ==, (x)+c,(x)—c,(x)

seS seS

= x-x X +x"+x°+x° —x" -2 —x"".
Finally, we obtain

() =1-6"(x)=x"+x" +x* +x" —=x° =’ +x =¥ +x+1,

which is indeed the same polynomial as we found in Example 16. i
Example 36

We take n=31 and ¢ =2.

Since 31 is a prime, we have that U5, with elements {1,2,......... ,30} is a cyclic group.

We find that 7 :=ord, (2) =5, and hence x = @(31)/r = 6. The group H generated by 2

consists of the elements {1,2,4,8,16} . In this case 2 is a 3- residue, since 4° =2 mod 31.
It follows that all elements of H are 3-residues. First, we enumerate all six cosets of H :

H, ={24816}, H,={361217,24}, H,=1{59,10,1820},
H, ={7,14,192528}, H, ={11,13,21,22,26}, H, ={15,23,27,29,30}.
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We remark that if we denote a cyclotomic coset by the least integer it contains, the
correspondence with the various cosets of H is as follows

H =C, H,=C,, H,=C,, H,=C,, H,=C,,, H,=C;.
We extend H by adding the element —1(= 30), yielding the group
K =1{1,2,4,8,15,16,23,27,29,30},
which is the full group of 3-residues. Alternatively, we can write K = H, U H.

The factorization of x*' +1 into irreducible polynomials over GF(2) is

M Hl=+ D+ D+ D +x+ D) (0 +xt P +xP+))

CCFxt +x?+x+D +x 7 +x+ D).
Let the primitive 31" root ¢ of unity be defined as a zero of x° + x* +1. So,
P+ +1=0.
The conjugate roots of ¢ are £%, ¢*, ¢* and ¢'°, and hence

P()=[Gx-¢H=x"+x+1.

leH,

From the defining polynomial of ¢ , it follows that ¢~ = ¢ is a zero of the reciprocal

polynomial x° +x° +1. Therefore, we have similarly as above that

P(x)=[J(x—-¢=x" +x° +1,

leH,
with zeros ¢°,¢%, ¢, and .

Cubing the relation ¢° +¢? =1 provides us with ¢ + ¢ + ¢ +¢° =1, from which

we infer that ¢ is a zero of the polynomial x° + x* +x* +x% +1. So, we conclude

P(x)i=[J(x-¢N=x* +x* +x7 +x7 +1,
leH,

has zeros ¢°,¢°, ¢, and &V
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and next, since —3(=28) € H,, that

Py(x):= l_[(x—é’l)zx5 +x7 +xt +x+1,
leH,

has zeros ¢7,¢", &%, 6% and ¢ o

6. The case n=2p.
First we prove the following lemma.

Lemma 36
If p is an odd prime and q an odd prime power with 2p,q) =1, and if r = ora’pl (),

then ordzpl (q)=r, for any integer 1 >0.

Proof
We have that ¢" =1+ kp” for some integer k>0, and » is minimal with respect to this

property. Since p and ¢ are odd, k is even, i.e. kK =2/.Hence, ¢' =1 mod 2p* . Let
r'= ordzpl (g), then q" =1421'p*, and r' | r. Now, r'<r would imply

ord e (9) £r'<r.This is a contradiction, so r'=r. |

In the case of n=2p we shall apply the lemma for A =1.

In this case, the factorization of x” —1 into cyclotomic polynomials has the form
X —1=(x— DD, (x)P, ()P, ,(x)=(x-D(x+1D)P ()P ,(-x), (42)

with deg @ (x)= deg @, (x)= p—1.Forq we take a prime power such that (2p,q)=1.
The cyclotomic coset mod 2p with respect to ¢ which corresponds to @, (x) is

C, ={p}.If F(x) is a monic irreducible polynomial contained in ® (x), then

(=1)" P(-x) is amonic irreducible polynomial contained in®,  (x) = ® ,(-x) . Hence,
all irreducible polynomials B(x), i€ S/{0, p}, are of degree r:=ord, ,(¢)=ord ,(q),
and there are 2x =2¢p(2p)/r =2¢(p)/r of such polynomials. In general notation, we
shall label the columns (and rows) of the matrix M by the labels

(V16 700 SR J0Y ST SUPYUIRI A /I

K

(43)
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The labels i,i,,....,i. € S indicate the ¥ monic irreducible polynomials contained in

@, (x)=®  (-x),while i_,,i_ ... ., €S indicate the monic irreducible

K+12 l:c+2 4

polynomials contained in @ , (x) .More precisely, we shall choose the indices such that

F, (x)=(=1)"F,_ (-x). Furthermore, since we shall choose a zero of P, (x) as primitive

J

2p"root of unity, we have i, := 1. The irreducible polynomials P,(x),

withi € {i|,iy,......,i,.} , are minimal generators of the GR-codes C;,,,, ¢ = k. The

irreducible polynomials P (x) with ie {i_,,,i_,,,......,I,, } are minimal generators of

i
p,q;t”

codes of length 2p which are equivalent to GR-codes C

As for the matrix elements of M, the elements g, ;, i ¢ {0, p}, are equal to » and
Hyo =k, =1. For the other elements of M one has

m; .
Hi = _m_pij,l ==Pj1>» LJE S/{0, p},
ii
(44)
while g, =1and u; ,=p, =1 forj evenand u; ,=u, =-1 for jodd. In particular,
we have for the column indexed by 1 (which determines the idempotent generator of the
GR-code C;, ), the elements  ,, =r, u, =—p,, for j¢{0,p} and p, =—1. For the

2p.q.t
column indexed by —1 (which determines the idempotent generator of the GR-
code Cém’t ), we have similarly g, ,=r, u;, ,=—p_; for j&{0,p} and p, , =-1. O

The following two lemmas give the precise relationship between the cyclotomic cosets
mod p and those mod 2 p ,with respect to ¢, and also with the corresponding irreducible

polynomials in GF[¢](x). The notation ' stands for the set of indices of cyclotomic
cosets mod p , while S denotes the set of indices of cyclotomic cosets mod 2p .
Similarly, the notation C, stands for a cyclotomic coset mod p , and C , for a cyclotomic
coset mod 2 p . Like always in this section, p is an odd prime and ¢ is an odd prime
power with (p,q) =1, r:==ord ,(¢q) and k= (p—1)/r.Let C, ={i,ig,....,ig" "'} , i€S",
7 | r, be a cyclotomic coset mod p . We define C,, to be the set consisting of all
integers 2a, with a € Cl Furthermore, we introduce for each i € §', a set consisting of
the integers a € C, when ais odd and a+ p when a is even. If i is odd, we call this set
C, andifiiseven C, . Itisclear that C; and C,, , only contain odd integers which are

less than 2p .

Lemma 37
(1) C,, is a cyclotomic coset mod 2p forall ieS";

(i) C,and C,,, are cyclotomic cosets mod 2p forall i€S';
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(1) if ae C,, then modulo 2p, 2a € C,;;

(iv) the cyclotomic cosets in (i) together with the cyclotomic cosets in (i1) constitute the
complete family of 2k + 2 cyclotomic cosets mod 2 p , and their indices constitute the

index set S,

(V) the cyclotomic cosets in (i) correspond to irreducible polynomials contained in

® ,(x) and those in (11) fo irreducible polynomials contained in @, ,(x);

(vi) if F(x) is an irreducible factor of ® ,(x), then P,_ (x)is an irreducible factor of
®,,(x) andvice versa, for all i€ S"' and P, ,(x)=(-1)F(-x);

(vii) if C,,,, j €S andjodd, is the set of integers a € C; for a even, and a+ p for a odd,
then the family {C,,  : j € S} is the same as the family {C,,:i € S'"} as defined in (i);

(viii) C,,=C,,,,and hence P, (x)=F, (x),forall ie S, ifand only if 2€C,.

Proof
(i) The integers a and b are both elements of the cyclotomic class C; if and only if

b=aqg’ mod p for some ;. It follows immediately that this is equivalent to 25 = 2aq’
mod 2p, orequivalently, a and b are in the same cyclotomic coset mod 2p . Since all
relements of C,, are different, the statement now follows.

(i) Take two integers a and b from C, . If both are odd, then b = ag’ mod p for some
j,orequivalently b =aq’ +kp . Since a, b, g and p are odd, k must be even and
therefore b=a ¢’ mod 2p . If both a and b are even, the proof is similar. Now, assume
a is odd and b is even. We know that b = ag’ + kp with k odd. Hence,

b+p=aq’ +(k+1)p,andso b+ p=a g’ mod 2p.

(111) This relationship is immediately clear from the definitions of C, and C,,.

(iv) Since all cosets have size r and since their intersections are all empty, they form a
family of 2« different cyclotomic cosets mod 2p Together with C; and C,, they form

a complete family of 2x + 2 cosets mod 2p .
(v) Assume ¢ is a primitive 2p” root of unity. Then ¢ isa p” root of unity. The ¢ -

powers with an exponent in C,, are all powers of £ and therefore zeros of ® ,(x). The

. . . 2j . .
¢ -powers with an exponent in C, can all be written as £”¢ ™ for some j . Since

¢" =1, these powers are zeros of @, (-x) =D, (x).
(vi) This follows from P, (x)= [] x=¢) =[] (x+<¢7) =) P(—x);
J€Cisp JjeC;

(vii) The family of cosets C; forievenand C,, , for i odd, is precisely the family of
cyclic cosets containing the even integers mod 2p ;

(viii) We have the following equivalencies P,(x)=F, ,(x) <> C,, =C, , < 2ieC, 6 <
2eC,. O

33



Remark 38
It may occur that the index 7 of the cyclotomic coset C, is not the smallest integer in this

coset. If so, we maintain i as index of that coset (remember our conventions of indexing
cyclotomic cosets). Due to this agreement we have that S' is a subset of the complete set
of indices S, though the family of cosets indexed by the elements of S' is not a subfamily
of the complete family of cosets mod 2p .

It follows from Lemma 37 that the irreducible polynomials P, (x), F, (x),...., B (x) can
be identified with the polynomials F(x), i € §"\ {0}, and that the polynomials P, (x),
v, (X)5s B (x) correspond with the polynomials £, (x), i€ S"{0} . It follows that

the choice for the indices i, such that £, (x)=(=1)"F (-x), for 1< j<x, canbe

accomplished by taking i, ; =i, + p, since ¢” =—1if £ is a primitive 2 p" root of unity.

K+j
Another immediate consequence of Lemma 37 (vi) and of the property
®,,(x)=® ,(-x) is that

L1 i<k, (45)

The polynomials (cyclonomials) c . (x), 1< j <k, for the case n =2p, can be obtained

from the polynomials ¢, (x), i, € S"\{0}, for the case n = p , by means of the relation

G, (x)= c’fl (xp”) , 1<j<k. (46)

In the specific case that 2 € C;, and hence 2 € C,, , we may replace x”*' by x°.

+p?
Remember that if ; takes on the values 1,2, ..., x, the index i, of the polynomial

c;/ (x) runs through the set S"\{0}. From the construction of the cyclotomic cosets C,
mod 2p, i e S"\{0}, it follows that ¢ (x) is obtained from the polynomial c;.j (x) by

adding p to the exponents of the even powers of x, and leaving invariant the odd powers.
In a formal way this can be expressed by the relation

¢, (®)=x"c ('), 1< j<x, 47)
as one can verify quite easily, by handling these polynomials mod x** —1.

The next theorem expresses the idempotents &,(x) and §,(x) for the case n=2p in
terms of the cyclonomials and idempotents for the case n = p .

Theorem 39
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i . .
1pgrr LESNU,,, s

(1) The idempotent generator 9,(x) =1-6,(x) of the code C
determined by the expression
6.(x)=2p) " [r(1=x")= 3 p,,, (x" =De, (x" )]
j=1
(i1) If 0. (x) is the idempotent corresponding to column i of the matrix M' for n=p,
then
0,(x)==-2"(x" =DG(x"");

(ili) If 9 (x)is the idempotent generator of the GR-code C;q’,, then

(x)=2"Tl+x" —(x* =1 (x*M)].

Proof
The expressions follow immediately from Theorem 32 and from the relations (45), (46)
and (47). o

Example 40
Take n=10and ¢ =3. It follows that » =4, x =¢(10)/4 =1. The cyclotomic cosets

mod 10 are C, ={0}, C, =1{1,3,7,9}, C, ={2,4,6,8}, C, = {5}, and the corresponding
polynomials are P(x)=x-1, B(x)=x"—x"+x*—x+1, B(x)=x"+x + x> +x+1,
P.(x)=x+1.

The matrix M is equal to

0o 1 2 5

1 1 1 130

I 1 -1 -1]1
M= .

I -1 -1 112

1 -1 1 -1)5

Since =« =1, there is only one generalized residue code Cllm1 , generated by its
minimal polynomial P (x). Here, the cyclotomic cosets are self-inverse, and therefore the
idempotent generator of this code Clloj,1 is determined by the column with label 1. First

we find
0,(x)=10"(c,(x)+¢,(x) —c,(x) —cs(x) )= T+x+x" +x" +x" —x* —x* —x* —x* —x%,

and next
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() =1-0(x)=—x"+x"—x"+x"+x" +x* =’ +x" —x.

Now, we shall compute these idempotents by applying parts (ii) and (iii) of Theorem 39.
The cyclotomic cosets are C,{0}, C, ={1,2,3,4}. The GR-code C 51’3’1 is generated by
P(x)=x"+x’+x>+x+1.

The matrix M' is a 2 x 2 -submatrix of M , which is obtained by taking the first two
columns and the first and third row of M

e )

From Theorem 32 it follows straightforwardly that 6, (x) = —1+x+x” +x° +x*, and
hence & (x)=—x*—x’ —x’ —x—1. When substituting these expressions in the formulas
of Theorem 39 (ii) and (iii) respectively, and using that 27" = —1 in GF[3], one obtains
the same results for 6,(x) and $ (x)as before. i

7. The case n=p”.

Next, we take n = p* and ¢ a prime power such that (p,q) =1.
In order to deal with this case, we need the following lemma.

Lemma 41
Let p be a prime and q be some prime power with (p,q)=1 . Let furthermore a be some

positive integer. For p odd and a >1 or for p even and a =22, the inequality
ordpw (q9) > ordpa (q) implies ora’p(,”,1 (9)= pi’lom’p” (q),forall i=1.

Proof
(1) First we consider the case p odd. For our convenience, we assume a =1, and so the

condition of the Lemma is ord e (¢)>ord (q).

Let r:=ord ,(q) . We shall prove by mathematical induction the following set of relations:

ord (9)=rp"", ¢"" =1+kp', (k,p)=1, (48)

for all i >1. From the condition ord ) (¢) > ord ,(q), it follows that we can write

q" =1+kp, with (k, p) =1. So, (48) holds for i =1, by definition of » and by taking
k,=k.

Next, we assume that the relations (48) are true for some fixed integer i >1. Then

q"" =1+k p', for some integer k, with (k,, p) =1. It follows that
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=0 )

q" =(+kp)’ = i(p](kipi)l

. &lip . .
=1+kip'”+z , (k,p") + k. p".
=2

2

Moreover, since p is odd, we have pi>3i>i+2, and so the last term in the rhs is also

divisible by p’*. Therefore, we can write ¢ =1+k,,,p"" with (k,,,, p) =1, or

i+l
equivalently, ord o (9) | rp'. So, if e:=ord o (), we have rp’ = ey for some integer y.
We also know that e = xrp’™" for some integer x . Combining these two equalities gives
xy = p,soeither x=1or x=p.But x=1 yields ord o (¢9)=ord p, (¢)=rp™", which
contradicts (48). Hence, ord o (¢)=rp". So, the relations (48) also hold for i +1. Due

to the principle of mathematical induction, the relations (48) hold for all i >1. The
equality of the Lemma now follows immediately.
For values a >1the proof is completely similar.

(i1) Next, we consider the case p =2, and we take a=2.
Let r:=ord , (¢q) . The condition of the Lemma yields ord , (¢) > ord . (¢) . We shall
prove by induction that for all i >1

Ord2,+1 (q) — pri-l , qr'z“l —14 ki2i+1 , (k,,Z) =1.
(49).

For i =1 these relations are true, because of the definition of 7'.
Assume (49) holds for a certain value of i >1 . Then ¢’% =1+k,2"" with (k,,2) =1.
It follows that

qr'z" :(1+ki2j+1)2 :1+ki2i+2 +k,~222i+2 :1+ki+12i+29 (k 2) :1.

i+1°

Since i 21, this implies ord .. (¢) | r'2". Therefore, if e"= ord L2 (q) , we can write
r'2" =e'y. We also have e'= xr"2"" . Hence, xy =2,andso x=1or x=2.But x=1
gives ord . (q) = 72" = ord L (q) which contradicts (49). So x =2 and hence (49)

also holds for i +1, and by induction for all i > 1.
For values a > 2 the proof is completely similar.
m
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Remark 42
The above result can also be derived from [2, Lemma 3.34]. Actually, Lemma 41 is a
special case of the lemma in [2].

Remark 43
The case p =2, g =3 shows that the condition a > 2 is necessary, since ord , (3) =2 >

ord ,(3)=1,butord ,(3)=2#4.

As usual we have r:=ord, (¢) =ord . (¢) - Moreover, we define u:=ord ,(g) . In this case

the factorization of x" —1 into cyclotomic polynomials is as follows
X' —1=x" —1= (x —1)(I)p(x)(1)pz (X)eeene. (D,/» (x). (50)

The cyclotomic polynomial @ ,(x) is the product of v :=¢(p)/u =(p—1)/u monic

polynomials of degree »# which are irreducible over GF'(g), say
@ (x) = B(x)B(X)........ P (x). (51)

Similarly, ® , (x) is the product of , = ¢( p")/r,=p"" (p-1)/r, irreducible

polynomials

) o (x) = F,(x)F, (x)........ F (%), (52)

which are all of degree 7,, while 7, = ord ,(¢), r,=u and r, =r.
We now distinguish between p is odd and p = 2. If p is odd and if ord )2 (g)>ord (q), it

follows from Lemma 41 (i) that
r,=up”" , 1<b<A, (53)
and hence
rlu=nl/p. (54)

As a consequence we have that (cf. [ 1, Section 4]) x =k, =v, and moreover that the
polynomials F,(x) can be identified with P,(x"'?), for 1 <i < x. Hence, the cyclotomic

polynomials in (52) can be factorized into irreducible polynomials over GF'(g) as
follows

b-1

® ()= P P ) P, (55)

K
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for all b, 1<h < A.Changing the notation of the labels as introduced in (2), we now
write

©, = []r6").

ieSN{0}

(56)

In eq. (56) i runs through the #(= x) different values of the set S\{0}= {i,i,,....,i_},
where S' stands for the set of indices of the cyclotomic cosets mod p . This notation
expresses the one-to-one relationship between the cyclotomic cosets mod p with respect

to ¢, and the irreducible factors of GDP,, (x) in GF(g)[x]. The polynomials Pl.(x”hfl) are

all of degree r, for a fixed value of b. In particular, the polynomials P (x” . ), ie S\{0},
which are of degree r, =r, are the minimal generators of the generalized residue codes
C', ,witht=x.
VAR
These considerations also hold for p =2, if we require ord , (¢) >ord , (¢) >ord,(g) (cf.
Lemma 41). Therefore, from now on we assume that ord , (¢) > ord  (q) and
p P

additionally, if p =2 that ord , (¢) >ord ,, (¢) . We shall denote this condition by (*).

The columns of the matrix M which correspond to the polynomials P (x” . ), ie S\{0},

determine the idempotent generators of the GR-codes C}’;,v o In general, we shall label

the columns of M by

A A A A1 LA <A-1 .1 .l .1
0,8, 5. [0 S A i, I A AR i (57)

1 E

with i* =1, and such that the indices i;,i} ,......,i> indicate the x irreducible polynomials
P(x” H) , 1€ S"{0} , for 1<h< A. The indices in (57) form the complete set S of

indices of the cyclotomic cosets mod p*.
The following lemma will enable us to establish the one-to-one relationship between the

irreducible polynomials over GF'(g) which are contained in x” " —1 and the cyclotomic

cosets mod p” with respect to g.

Lemma 44
Let condition (*) hold. If C, = {i,iq,......,ig" "'} is a cyclotomic coset mod p’ with respect

to q and of size r,, then pC, = {pi, piq,......, pig" "'} is a cyclotomic coset mod p"*', also
of size r,, while it is a cyclotomic coset mod p° of size 1,/ p, for 1<b< A, if one

replaces integers which occur more than once by just one of these.
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The proof is straightforward and is omitted. According to the rule agreed upon in Section
3, we denote this cyclotomic coset mod p” by C ,» (cf. eq. (26) and Lemma 20). Now,

we consider the cyclotomic cosets in (57) indexed by i, ,.......,i. . Since these are
cosets mod p*, it follows from Lemma 44 that zf p= i_f"l ,for 1< j<k.
More generally, it follows for 1<h < A that
ifpb’1 =" 1< j <k, (58)

L

A o .
ii=i, 1<j<x, (59)
where the integers i;, 1< j < x, are the non-zero indices of the cyclotomic cosets mod p,
i.e. the elements of S"\{0}.

b b

The cyclotomic cosets with indices i’,i,.....,i. are of size / p*™" =r,, and so these

cosets correspond to the irreducible polynomials P, (x” . ), 1 <i <k, which have degree

r,, forall b, 1<bh<A. In particular we may assume that the cyclotomic coset C; mod

p”* corresponds to the polynomial P(x” . ) forall i e {il,if,....,i"}.

Next, we consider the matrix elements s, , i € {i(,ij ,.......,i. } . We know already that

= for these i-values. Furthermore, p.,, =0 if ij ¢ {i',i.,.......,i"}, or since
0,i i1 1272 K

i€ il iy, .nil}, p;, =0 forall j&/{il,i,....i .} . Hence, we obtain from (37) that
u,,; =0 for all these indices. So, we only have to focus on elements x;; with

J €4} ,i}sernil } . We shall restrict ourselves to i = i =1). We remind the reader of the

fact that the columns labeled by if ,....... i* are permutations of column i/ .

'k

We are now ready to prove our next theorem. In that theorem, the set S is the set of the
indices of the cyclotomic cosets mod p“. So, S” is identical with S and S' with S'.

For a <A one can easily verify that S is a subset of S (=S") and that S* N Upl, isa
subset of SNU e We emphasize that throughout the text of this section we assume that

condition (*) holds.

Theorem 45
Let a be some integer with 1<a< A for p odd, and 2<a< A for p even. Let

ieS” mUpa Let 3'(x), ie SN pr , be the idempotent generator of the code C;Z ot

and let $" (x) be the idempotent generator of the code C;a o L€ S“NU o If

ordp(“. (9) > ordpu (q), then 8 (x)=8" (x"H ).
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Proof
For our convenience we take p odd together with a =1.

From Theorem 32 we know that 3, (x) =1-6,(x) with 8,(x)=n""' Z— Lpik,lck (%),
kes My

n=p”*. Again for reasons of convenience, we assume i = 1. We already argued that the

only k -values that contribute in the expression for @,(x)are k =0 and k € {i, ,iy,......,i..}.
. r
From i, =i, p*" it follows that m, = m, , and hence, 4, =-——p, ,. Because of the
i i, s

.o, . . r n 471

condition in the Theorem, we have —=—= p”~, and so
u p
-1 r u -1 0
nof,, =- P =~ Pia=P Hi,-
o nm, m,

i i

Here, 4/, | is an element of the matrix M" for the case that the code length is equal to p .

Since ¢, (x)=c¢, (x? H) , the statement in the Theorem now follows immediately for this

case. For other a-values we apply Lemma 41, to obtain a completely similar proof. i

Remark 46
The above result can also be derived from the fact that P (x” H) is the minimal generator

of C;M,l ,.» P, (x) is the minimal generator of C;,, o

Example 47
We take n =27 and ¢ =7. So, ord,(7) =1< ord,(7) =3. Since u =1, it follows that

ri=ord ;(7) =9. The cyclotomic cosets mod 27 are

C, =10}, C, =1{1,7,22,19,25,13,10,16,4}, C, ={2,14,17,11,23,26,19,5,8} ,

C, ={3,2L12},C, =1{6,15,24} , C; = {9} and C,; ={18}.

We conclude that @,,(x) is the product of two irreducible polynomials over GF(7) of
degree 9, @, (x) is the product of two irreducible polynomials of degree 3 and @, (x) is
the product of two irreducible polynomials of degree 1 all over GF(7) . Actually, we have

X7 =1=(x = DO, ()P, ()P, (x) =(x=D(x=2)(x = 4)(x* =2)(x’ = 4)(x” =2)(x” —4) .
This is in accordance with the formalism on p. 38, since ord,(7) =3 >ord ,(7) =1.

One can easily verify that the irreducible factors in the rhs correspond to the cyclotomic
cosets by means of the indices in the following way:
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P(x)=x-1, P(x)=x" -2, PL(x)=x" -4, P(x)=x" -2, P(x)=x" -4,
Py(x)=x-2 and Py(x)=x—-4.

Using these facts, we derive the matrix elements of the column with index 1:

m 9
Moy =my =9, fo, =my =9, ly, = __lp‘),l =-—(-2)=18,
m, 1
Hig, = M Pisy = —%(—4) =36, while all other elements 4, in this column vanish,

18
because p;, =0 for those elements. After having computed the elements of the other

columns in a completely similar way and reducing mod 7, we finally find for M

0 1 2 36 918
199 3 31 1) 0
1 00002 4|1
1 0000 4 2 2
M=/1 0 0 6 5 1 1| 3.
1 005 6 1 1| 6
14133119
1143 3 1 1)18

From this matrix we derive the primitive idempotent generator

0,(x) = 277 (,uo,zco (x) + Hy 1Cy (x)+ Hig2Cign (%))
=—(2¢)(x) + ¢y (x) + ey (x))

=3x" +6x° +5.

and similarly €, (x) = 6x" +3x’ +5. The idempotent generators of C;mz and C227,7’2 are
G(x)=4x"+x"+3 and § ()= & (x)=x"" +4x” +3 and &, (x) = § (x) = 4x"* +x° +3,
respectively. As one can verify, these generators can be obtained from the corresponding
generators of the codes Cy,, by substituting x” forx. O

Example 48
For n=2" and ¢ =3, we have r:=ord »(3)=2 and 1 =k = ¢(8)/2 = 2. The cyclotomic

cosets mod 2° are C, ={0}, C, ={1,3}, C, ={2,6},C, ={4},C, = {5,7} , implying
S =1{0,1,2,4,5} . The corresponding irreducible polynomials are respectively F,(x) =x-1,
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P(x)=x>-x-1, P(x)=x"+1, P,(x)=x+1 and P,(x) = x> + x +1. The factorization
of x* —1 into cyclotomic polynomials is x* —1=®, (x)®, (x)®, (x)D(x), with

®,(x) = B, (x), D,(x) = P, (x), D,(x) = P,(x) and (x) = B(X)P,(x).

As one can see, the number of irreducible polynomials contained in @,(x) (and in
®,(x)) is less than the number of irreducible factors of ®¢(x). This is due to the fact
that the condition ord ;(3) > ord ,(3) is not satisfied, since both are equal to 2.

The irreducible polynomials P (x) and P;(x) are the minimal generators of the two
equivalent GR-codes Céﬁ,z and Cy,,. Applying the expression (27) for the matrix

elements x,,, i, j €S, we find for the matrix M

|
—_
—
()
|
—
A D o= O

The primitive idempotent generators corresponding to the columns with labels 1 and 5
are respectively

0,(x)=8"(—c,(x)+c,(x)—cs(xX)+c,(x)=x" +x" —x* —x" —x+1,
O,(x) =8"(—c,(x)—c;(x) +cs(x) +c,(x)) =—x" —x" —x* —x’ —x+1.
The idempotent generators of C, 81,3,2 and Cgs’l2 are respectively

G ()= @) =1-60,(x)=x" +x* +x* +x° +x,
and
G(x)=3(x)=1-6,(x)=—x" —x" +x* +x" +x. |

Example 49
Next, we take n =2* and ¢ =3. Now we have r = ord ,(3)=4 and k = p(16)/4=2.

The cyclotomic cosets are C, = {0}, C, ={1,39,11}, C, =1{2,6}, C, ={4,12},
C, ={51513,7}, C, ={8}, C,, =1{10,14}, and the corresponding irreducible polynomials
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are P(x)=x-1, A (x) =x'-x"-1, P, (x) =x"—x-1, P,(x) =x’+1,
P(x)=x"+x" -1, B(x)=x+1 and B (x)=x" +x-1.

For the same reason as in the previous example, the number of irreducible factors in
@, (x) is unequal to the number of irreducible factors in @, (x).

The factorization of @,,(x) into two irreducible polynomials of degree r =4 is
@, (x)=(x* —x> =1)(x* + x* —1). These polynomials are the defining polynomials of
the equivalent GR-codes C 116,3’2 and Cfmz. We now have sufficient data to compute the

elements of the matrix M . Using again (27), we find the following elements in column 1:
Moy =1, ptyy =1, pg, ==1, po, =1, py, = py; = pt5, = 0. So,

0,(x) =16 (c,(x) —c, () —cg(x) + ;g (X)) =1 —x7 —x® —x* + x' +x",
G (x)= —x" =X x4 x" x
Similarly, we find
O5(x) =16 (¢, (x) + ¢, (x) —cg(¥) — ;o (¥) =1+ x7 +x° —x* —x'" —x",
G (x)=x" +x" +x° —x® —x2.

Indeed, the idempotent generators of C; ,, can be obtained from those of C; iy

i € {1,5}, by replacing x by x°. O

8. The case n=2p"
Throughout the discussion of this case we assume again that condition (*) of p. 39 holds.
We have the relations r:= ord, ,(¢g)=ord ,(q), u:=ord ,(q),and

P P P

kK =@(p)/u=p-1/u.In asimilar way as in Sections 6 and 7, we derive that the

factorization of x” —1= x**" —1 into cyclotomic polynomials now has the form

X —1= d)l(x)(I)Z(x)(IDp(x)(Dp2 (%)...... d)pﬂ (D, (x)q)2p2 (%)...... d)2pZ (x)

= =D+ DD, ()P (1) ® L ()P, ()P (=)0 D (), (60)
with
o (=[] "), (61)
ieS"\{0}

for all b, 1<b <A, and where the k¥ monic polynomials P (x), i € S"\{0}, are the

irreducible factors in GF(g)[x] contained in @  (x). Here, like in Section 7, S' stands
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for the set of indices of the cyclotomic cosets mod p . The monic irreducible polynomials
contained in @ 298 (x), which can be written as (—1)" P(—x” . ), ie S\{0}, are the
minimal generators of the GR-codes C ;pl o with ¢ = k. The columns of the matrix M

which correspond to these polynomials determine the idempotent generators of these GR-
codes.

Just like in Section 6, we now present a lemma which will enable us to establish the
relationship between the above irreducible polynomials and the cyclotomic cosets mod

2p” with respect to g. In Lemma 50 the notation S stands again for the set of indices
of cyclotomic cosets mod p”*, while S" denotes the set of such indices mod 2p” .
Similarly as in Section 6, we define that if C, = {i,ig,..... igh 'y, ieS, A | r,isa
cyclotomic coset mod p*, then C,, is the set consisting of all integers 2a, a € C,. This
set C,; 1s a cyclotomic coset mod 2 p” . Furthermore, we introduce for each i € S, a set
consisting of the integers a € C, when a is odd and a+ p* when a is even. If i is odd, we
call this set againC, , and if i is even Ci+p/l . The sets C; and CHP;, , 1 €8, together
contain all odd positive integers which are less than 2p* . The sets C,,, i € S, together

contain all even nonnegative integers less than 2p* .

Lemma 50

(i) C,, is a cyclotomic coset mod 2p* forany i€S;

(i) C, and Ci+p}‘ are cyclotomic cosets mod 2p* forall i€ S ;

(iii) if a e C,, then mod 2p*, 2a e C,,;

(iv) the cyclotomic cosets in (1) and (ii) together constitute the complete family of
2K +2 cyclotomic cosets mod 2 p* and their indices constitute the index set S";

(V) the cyclotomic cosets in (1) correspond to irreducible polynomials contained in
d)pﬁ (x) and those in (ii) to irreducible polynomials contained in ®© 298 (x);

(vi) if P.(x) is an irreducible factor of d)pl (x), then ]lpi (x) is an irreducible factor of
) 23 (x) and vice versa, for all i€ S and Pi+p* (x)=(=1D"P(-x);

(vii) if Cﬂpl, J €S andjodd, is the set of integers a € C, for a even and a + p” fora
odd, then the family {Cﬁpﬂ- 1 J €S} is the same as the family {C,; : j € S} defined in (i);
(viii) C,, = C. and hence P,;(x) = L (x), forall ieS§, ifand only if 2 € C,.

The proofs are similar to the proofs of Lemma 37.

Similarly to the labeling (57), we now introduce the following general labeling of the
columns and rows of the matrix M (cf. the labeling in the cases n=2p and n=p*):
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YY) A -1 LA -A-1 1.l .1
0,7 ,0) e T e 15 SRR IS A AR s
v ) T Y ! -A-1 -1 -1 -1 A
VTR MOPOTNY KS ST S-S Iy e sl igsenesly s P (62)

Together, the indices in (62) constitute the index set S" of the cyclotomic cosets mod
2p” . The mutual dependence of the indices in the first line of (62) is given by the

relations (58) and (59). With respect to these relations, one should remember that the
index of a cyclotomic coset is not uniquely determined, but can in principle be equal to
any of the integers contained in that particular coset.

We choose the labels in (62) such that i,i},....,i" indicate in some order the ¥ monic

irreducible polynomials (—1)" P(—x” H) ,i € S"{0}, contained in ‘szb (x)= (pr (—x),

while %, i’ indicate the monic irreducible polynomials P(x”"), i e S\{0},

K412 "k 42909 2K

contained in ch” (x), for 1<b < 4. In other words, we choose the indices such that

P,(x)=(-1)"P_,(-x),for 1< j<x,and hence P,(x)=P, (x" )=(-1)"P_,(~x).

K+l,

According to Lemma 50 (vi), this can be accomplished by taking 7, =i, + p*, for
1< j<k,since ¢’ C=1if ¢ is a primitive 2p”* " root of unity. We shall always take
for & azero of P,(x)(= F(x” ")) as primitive 2p” root of unity, and so i =1. The

final index p” in (62) indicates the column corresponding to the cyclotomic coset
Cp» ={p /1} .
The columns of M with a label i € {i/,i},.....,i’ } determine the idempotent generators

of the GR-codes C;pl o As for the matrix elements in these columns, we have similarly

as in the case of n=p*, that g, =0 unless j € {i},.....,iy,iL,, ... b yor je{0,p*}. In

> YK+l

particular, 4, =r for these i —values and My =T It will be obvious that the indices

(43) form a special case of (62) for A =1. We shall give an example to illustrate the
above considerations.

Example 51

We take n=18=2.3% and ¢ =5. Then we have p=3, 1 =2, u=ord,(5) =2,
ord,(5) =6 and r :=ord (5) = 6. It follows that x = ¢(18)/r =1, so there is only one
GR-code Cll&s,1 .

To illustrate the relationship between the cyclotomic cosets mod 18 and mod 9, we first
determine the latter cosets: C, ={0}, C, ={1,2,4,5,7,8} and C, ={3,6}. Applying
Lemma 50 (i), (ii) yields the cosets mod 18: C, = {0},

C, ={571L1317},C,(=C,) ={2,4,8,10,14,16} , C, = {3,15}, C,(=C,,) ={6,12} and
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C, ={9} . The labels i} of the rows and columns of M are A’ =1, A, =3, 4, =2 (or 10)
and 4] =6 (or 12).

The factorization of x'* —1 into cyclotomic polynomials is

X —1=@, ()P, (x)D, (x)D( (X)Dy (x)D ¢ (%)
= (x-Dx+DE*+x+ D> —x+ D +x° + D —x7 +1).

All these cyclotomic polynomials are irreducible in GF(5)[x] and hence P,(x) =x-1,
Px)=x-x+1,P(x)=x"+x’ +1,P,(x)=x" —x+1 P,(x) = x> + x +1,
P,(x)=x+1, as one can easily verify.

For the matrix M we find

01 32 6 9
1121 2 1)0
1 01 0 4 41
1 33 2 2 43
M= .
1 040412
1 22 2 2 1|6
1 43 1 2 4)9

The idempotent generator of Cll&s’1 is given by

31* x)=8(x)=1-6/(x)=1-1 8! (co(x) 43¢, (x) + 2¢4(x) + 4cy (X))
=1-2(1-2(x" +x")+2(x* +x"*) = x")

= x4 x? 427 +x =X 1. O

Example 52
Next, we take =18 and g =7. Now, the polynomials ®,(x), ®,(x), ®,(x) and

® . (x) are no longer irreducible, and we can write

xX®—1= D, (x)D, (x)D, (x)D (x) Dy (x)D 5 (x)
=(x=Dx+D(x=4)(x=2)(x +4)(x +2)(x’ —=4)(x’ =2)(x’ +4)(x’ +2),

where the polynomials in the rhs are all irreducible in GF(7)[x].

The cyclotomic cosets mod 9 are C, ={0}, C, ={1,4,7}, C, ={2,5,8}, C, = {3} and
C, = {6} . The corresponding irreducible polynomials are P,(x)=x-1, P (x)=x" -4,
P(x)=x"-2, P(x)=x-4 and P,(x)=x-2.
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Applying Lemma 50 (i) and (ii), we obtain the cyclotomic cosets mod 18:

C,={0}, C, ={1,7,13}, C, ={2,8,14}, C, ={5,11,17}, C, ={4,10,16}, C, ={3},
C,=1{6}, C, ={12}, C,;={15} and C, = {9},

As primitive 18" root of unity in some extension field of GF(7) of degree 3, we take for
¢ azeroof x’ +4=x"—3. Next, by applying £° =3, we find

P(x)=x-1, B(x)=x'-3,P(x)=x" -2, P(x)=x"+2, P(x)=x -4, P(x)=x-3,
P(x)=x-2, B,(x)=x+3, By(x)=x+2 and P(x) =x+1.

As one can verify, this set of irreducible polynomials can be obtained from those for
n=9, by taking {P'(x) | i € S\{0}} U {+ B'(-x) | i e $"{0}}, where the signs in the
second subset depend on the degree of the polynomial P'(—x)Hence, the indices
0,i’,i2,i iy, iy, is ,iy,dy, p" Of (62), have the values 0,1,5,3,15,4,2,12,6,9, respectively.
The idempotent generators of the GR-codes C,"“2 , 1€{l,5}, are determined by the
columns of the matrix M with label 1 and 5. The elements in these columns are (cf. (27))
M= —% Dy, With i equal to 1 and 5, respectively. We find for the corresponding

q

column vectors g, = (3,0,0,2,1,0,0,-2,-1,-3)" and g, = (3,0,0,1,2,0,0,—1,-2,-3)".

Hence, the idempotent generators of C)s,, and Cj,, are respectively

97 (x) =1=0,(x) = 1-187 (3, (%) + €5 (x) + 2¢,5(¥) = €1, (x) = 2¢,(x) = 3¢ (x))
=1-23+x" +2x" —x"? -2x° -3x")
=3x" +2x"7 —x" = 3x* —2x" +2
and
35*()6) =1-6(x)=1-1 8! (3¢ (%) +2¢5(x) + €15 (x) = 2¢,, (X) = ¢4 (x) = 3¢y (%))
=1-203+2x" +x"” —2x" —x° -3x7)
2x7 =3x =’ +2x0 —4xP 4 2.

For reasons of completeness, we finally present the complete matrix M :
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(e}
—_
)
w
—_
W
I
)
—_
)
a
N}

1 3 3 1 1 3 1 1 1) O
1 0 0 3 -2 0 -3 2 -1 1
!1 06 0 -2 3 0 0 2 -3 -1| 5
1 2 1 -1 -1 -2 -1 1 1 -1 3
I 1 1 2 -1 -1 -1 =2 1 1 -1| 15
!1 6 0 3 2 O 0 -3 2 1| 4
!1 6 0 2 -3 0 O 2 -3 1| 2
1 -2 -1 1 2 -1 1 1 1] 12
I -1 -2 1 1 -1 =2 1 1 1| 6
! 3 3 -1 -1 3 3 1 1-1) 9

Notice that the 6” column of M corresponds to the cyclotomic coset C,,, = C,, =C,, and
the 7 columnto C,,, =C,, =C,.

Next, we present a theorem on the relationship between the idempotent generators of GR-
codes of length 2p* and length 2p“ with a <A which is similar to Theorem 45 . We
shall need the following lemma.

Lemma 53
Let p be an odd prime and q some odd prime power with (p,q)=1. Let furthermore a be

some integer > 1. The inequality ord 2o (q)>ord 20° (q) implies

i1 .
Ordzpm (@=p Ol’dzpa (q), forall i>1.

The proof is similar to the first part of the proof of Lemma 41 . Like Lemma 41, the
above result is also a special case of [2, Lemma 3.34] .

In the next theorem, the set S is the set of the indices of the cyclotomic cosets mod 2p*
for some a>1, while S " is the set of such indices mod 2p* . Similarly as in Section 7,
S“ is a subset of S" and S mUzp(, is a subset of S"mUzpl ,ifa< A.

Theorem 54
Let a be some integer satisfying 1<a< 4. Let 3 (x), ie S"nU 2yt be the idempotent

generator of the GR-code C;pl o and let $" (x) be the idempotent generator of C;pu .

.
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ieS” mUzp‘, . Ifordzpm (9)> ordw (q), then 8 (x)=9" (x" ).

The proof is completely similar to the proof of Theorem 45.
We shall illustrate Theorem 54 by an example.

Example 55
Again we take n =18 and ¢ = 7. In the previous example we computed the idempotents

of the GR-codes Cis ,,, i € {1,5}. Now, we shall do the same for the GR-codes C,,,
ie€{l,5}.For n=06 and ¢ =7, we have the cyclic cosets C, = {0},C, ={1},C, = {2},
C, =1{3},C, = {4},C, = {5}. Notice that S' ={0,1,2,3,4,5} is a subset of
§"=10,1,5,3,15,2,4,12,,6,9} and that S' "U, =S""U,, = {1,5}.

We can write

x* =1=(x =)D, (x)D,(x)P(x) = (x—D(x+ (x> +x+D(x* —x+1).

Since u:=ord,(7)=1 and x =2/u =2, we can factorize @ (x) in GF(7)[x] as

x> —x+1=(x-3)(x+2). Similarly, we have x* +x+1= (x—2)(x +3). For a primitive
6" root of unity we choose ¢ = 3. Hence, P, (x)=x -3, and consequently P,(x)=x-2,
P/(x)=x+1, P,(x)=x+3, P,(x)=x+2 and P(x)=x—-1.

Using the convention of labeling (62) and the definition of the matrix elements , ; in

(27), we obtain for the matrix M' in this case

&

\S]

3

\S]

—_
WNL.MF—‘O

Hence,
0" (x)=0,(x)=6"(1-2x+3x" —x’ =3x* +2x*)= = 3x" = 2x* +x* +3x" +2x -1,
47 (x)=3x"+2x* —x* =3x7 - 2x +2.

Since ord 4 (7)=3 > ord ((7) =1, we are allowed to apply Theorem 54 which yields
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9 (x) =3x" +2x"7 —x* =3x° —2x7 + 2,

and which is identical to the expression for & (x) in Example 52.
Similarly, we find

F(x)=-2x"-3x"—x+2x" —4x+2,
and again by Theorem 54

195*(x) =2x" —3x"7 —x" +2x° —4x’ +2,
the same expression as found in Example 52.

Combining Theorems 39 and 54, would yield expressions for the idempotent generators
of codes of length 2p* in terms of idempotent generators of codes of length p , when
a=1. We omit such expressions.

9. A few remarks on the unrestricted casesn=p* and n=2p"*
In this section we briefly discuss the situation when condition (*) is not satisfied.

Example 56
Take n=>5" and ¢ =7. We now have ord(7) = ord ,;(7) =4 and ord ,,(7) =20. So,

=4, r,=4 and r, =20. Hence, the integer a in Lemma 41 cannot be taken equal to 1.
Its minimal value is 2. Furthermore, x, =@(5)/r, =1, x, =@(25)/r, =5 and
K, =p(125)/r,=5.

The cyclotomic cosets mod 5 are C, = {0} and C, ={1,2,4,3} with corresponding
irreducible polynomials (in GF(7)[x]) B(x)=x—land B(x)=x"+x’+x*+x+1.

The second polynomial generates the GR-code C;, .

The cyclotomic cosets mod 25 are C, ={0}, C, ={1,7,24,18}, C, ={2,14,23,11},
C,=1{3,21,22,4}, C,=16,17,19,8}, C, ={9,13,16,12} and C, ={5,10,20,15}. The
irreducible polynomials corresponding to these cosets are respectively B, (x)=x-1,
P(x)=x"+2x" +4x> +2x+1, P(x)=x" +4x° +3x +4x+1, B(x)=x" +4x’ +4x+1,
P(x)=x"+5x+5x" +5x+1, B(x)=x"+6x’ +5x* +6x+1 and
P(x)=x"+x"+x*+x+1.

From these data we derive the explicit form of the matrix M, which appears to be
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The irreducible polynomials F(x), P(x), P(x), P,(x) and F,(x) generate the GR-
codes C;'m!s , 1€41,2,3,6,9}, while the columns with these indices determine the

idempotent generators of these codes. So, similar to the notation (57), we now write
ii=1,i;=2,i=3,ii=6,i=9 and i, =5.

We also investigate the relevant data in the case n=5", ¢=7.

The cyclotomic cosets mod 125 are C, = {0},

C, ={1,7,49,93,26,57,24,43,51,107,124,118,76,32,99,68,111,82,74,18} ,

C,=2C, C,=3C, C,=6C,, C,=9C,, C,=1{5,35,120,90}, C,, ={10,70,115,55},

C, =1{15,105,110,20}, C,, ={30,85,95,40},C,, = {45,65,80,60} and

C,s ={25,50,100,75} .

So, instead of labeling (57), we now have the following indices for the cyclotomic cosets

0,1,2,3,6,9,5,10, 15, 30, 45, 25.

Similarly to the notation of (57), we denote these indices by i’ =1, i; =2, i, =3, i, =6,
ii=9,i=5,i;=10,i =15, i; =30, i; =45, il =25 . The irreducible polynomials
corresponding to the cyclotomic cosets are respectively B, (x)(=x—1), P(x’), B(x’),
P(x"), B(x"), B(x"), B(x), By(x), Bs(x), Py(x), Ps(x) and P(x). From r:=
ord ,(7) =20 and ¢(5°)=5"(5-1)=100, it follows that x =100/20=5. Taking =« ,
gives that the 5 columns of M labeled by 1, 2, 3, 6 and 9 determine the idempotent
generators of the GR-codes CS’SJ’5 ,1€41,2,3,6,9}. |
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The previous example suggests the following extension of Lemma 44 which only holds if
condition (*) is satisfied, i.e. if ord » (9) > ord ,(¢) and additionally ord ,(¢) > ord ,(g)

for p=2.

Lemma 57
Let p be an arbitrary prime and q some prime power such that (p,q) =1. Let furthermore

r, =ord o (q) and x, =(p")/1,, for b>1. Then the following statements hold:

(i) ifpis odd, there is an integer d,d 21, with 1<r, =....=r,<r, <V, ..., T,,, =Pl
Jorb>d,and 1<K, <...<K, =K, =K;., =...., K;,, =pk, for 1<b<d;

(1) if p = 2, there is an integer d, d > 2, such that either
l=r=n=..=r<r,<r,<..and 1=K, <K, <..<K,=K;,, =K;, =.... OF
l=r<2=rn=..=r,<r, <r,<..andl=k =K,<..<K,=K,,, =K., =...., while

r., =2r for b>d, andx,,, =2k, for 1<b<d and 2<b<drespectively ;

(iii) there are K, nonzero cyclotomic cosets mod p” and of size 1, for b>1;

(iv) to each cyclotomic coset C, ={i,qi,....,q""'i} mod p" of size r, with (i, p) =1, there
corresponds a cyclotomic coset C, = {i,qi,....,q" i} mod p""' ofsize r,,, , for b>1;

(v) to each cyclotomic coset C, = {i,qi,....,q""'i} mod p’ofsize r., 1<r,<r,, there
corresponds a cyclotomic coset C,; ={pi, pqi,...., pq" iy mod p"", also of size r., for
b>1.

Proof
Relations (i) and (ii) follow immediately from Lemma 41, (iii) is a consequence of the

relations &, =@(p”)/r, and p(p")=p"'(p-1), (iv) follows from 7,,, =7, for 1<b<d,

and from 7,,, = pr, for b >d in (i), while relation (v) is obvious. O

Similar as eq. (52), the cyclotomic polynomial QDPb (x) 1s the product of x, irreducible

polynomials in GF(q)[x], for b>1, which are all of degree 7, , where the integers «,

and 7, are as described in Lemma 57. For b > d , the irreducible polynomials P, (x) can
be expressed in terms of the polynomials P, (x), according to
P,(x)=P,(x""),
(63)
as a consequence of Lemma 57 (v). (Compare the remarks right after (57) about the

polynomials P (x” . ), ieS\{0}, where d=1.)If n= p*, the columns of the matrix M ,
which correspond to these irreducible polynomials, can be labeled in general by
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A A A 2A-1 A1 - A-1 1.l -1
0,i",i; seeerslp sl sly seecisdy seccueene shyslysedy

(64)

with i =1. We remark that labeling (64) is the same as labeling (57) in case that

condition (*) holds. In that case we have in Lemma 57 that d =1 and hence

K, =k, =....=K,(=«). In the general case, the columns of M with labels if,i,j,....,ii

K2

determine the idempotent generators of the x, GR-codes C;Z o with #=x, and
Pefil iy il }.
In the case that n=2p", 1>1, we have that CDZP,, (x)= ch” (=x), 1<bh< A, isalso the

product of «, irreducible polynomials in GF(g)[x], all of degree 7, , which can be

obtained from those in q)pb (x) by replacing x by —x. In this case the labeling of the

matrix M can be accomplished by

) YR R iy g B
0,007 e A A A S IS A0 S ,1

b, o Lo K
A A 1y . A-1 . A-1 A1 .1 .1 .1 A
USRS SECTOPIN (SN STY ST SRTIR MTTY NEPIRNTY A

(65)

We choose the indices in the second row of (65) such that P, (x) = (- 1" P, (=x), for

1<bh< A, (cf. also the remarks about the irreducible polynomials P(x) on p. 46). Again

the labels zf , lj , ....,I.. refer to generalized residue codes, i.e. the codes C;p;, 0’ with

1
. A A A
1=k, and i €{i iy ,....,i  }.

For the special case that # = x, =2, we state and prove the following property.

Lemma 58

If k, =2, then one has for the integer d in Lemma 57 :

(1) d=1 foroddpand A1>1;

(i) d=2and 222 for p=2 and q=1+4l, | odd,
d=2 and 2=2 for g=1+4l, [ even,

(i) d=3and A>3 for p=2 and q=-1+4l, l odd,
d=3 and A=3 for p=2 and q=-1+4l, [ even.

Proof
(1) We shall show that for odd p and x, =2 we always have

K=K, =.... =K,=2.
Assume that this is not true. From Lemma 57 (i) it then follows that
l=x<..<K,=K;,=..=K, =2.
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Hence, d =2 and x, =2. As a consequence we have 7, =¢(p)/1=p—1 and
r,=@(p*)/2=p(p—1)/2. From the first equality it follows that ¢g”"' =1+ kp and so

p-1/2

since p>2, ¢q —1+Ip, for certain integers k and /. But then we would have

P

qp(p—l)/2 _ (_1+Ip)1’ — _Z(fj(—]p)’ =—-1 mod p2 .

i=0

This contradicts the relation r, = p(p—1)/2.
(1) For p=2 and g =1+4/, [ 0odd, one can easily show, by calculating the values of r,,
i>1, and applying rx, =2"", that

l=r=r<2=n<r<.. and l=k <2=K,=K, =K, =....
If g =1+4/, [ even, one obtains similarly

l=r=rn=rn<r<..and l=k<2=k,<4=K,<kK,<...
The relations for d and 4 now follow immediately.
(iii) In a similar way one obtains for p =2 and g =—-1+4/,/ odd, that

l=rn<2=n=rn<4=r<.. and l=k =kK,<2=K,=K,=.... ,
While for p=2 and g =—1+4/, / even, one finds
l=rn<2=n=rn=rn<r<..andl=x=K<2=Kk<K,<K;<...

Again, the relations for d and A follow immediately. o

Example 59
Wetake p=2 and 1=2,s0 n=2",and g =3. So, we are in the first case of Lemma 58

(iii). The nonzero cyclotomic cosets mod 2 are C, ={1,3}, C, ={2}. Their sizes
correspond to the orders 7, =ord ,(3) =2 and 7 = ord , (3) =1, respectively.
Furthermore, we have x, = ¢(2)/1=1 and «, = p(2*)/2=1.

So, in GF(3)[x], ®,(x) factorizes into x, =1 irreducible polynomial of degree 1 =1
and @,(x) into x, =1 irreducible polynomial of degree r, =2 . Indeed, we can write

X —1= D, (X)D, (x)D, (x) = (x—1)(x +1)(x* +1) . The labeling (64) becomes in this case

0,i’,il =0,1,2, and the corresponding polynomials are B(x)=x"+1 and P,(x)=x+1.

Next, we take A4 =3. The nonzero cyclotomic cosets mod 2’ are C ={1,3}, C,={5,7},
C, =1{2,6} and C, ={4}. The sizes correspond to the orders r, = ord ,(3)=2, r, =

ord ,(3)=2 and 1, = ord ,(3) =1. We can write x" —1 = @, (x)®, (x)®, (x)D(x)
=(x=D(x+D(x>+D(x* +1) = (x=D(x +1)(x* +1)(x*> + x = 1)(x* —x—1) . For the labeling
(64) we now have 0,i,i,,i’,il =0,1,5,2,4 with corresponding irreducible polynomials
P(x)=x"+x-1, P(x)=x"-x—1, B(x)=x+1, P(x)=x+1.
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The next case is 4 =4. The nonzero cyclotomic cosets mod 2* are C, ={1,3,9,11},
C,=151513,7}, C, ={2,6}, C, = {4,12}, C, = {8}, C,, = {10,12}. The size of C, and
C, is equal to 7, = ord ,(3) =4 . Furthermore, @, (x) = x* -1 = (x* + x* - )(x* - x* 1),
where the two polynomials in the rhs are irreducible. Hence, 0,i',i,i’,i,i7 i} =
0,1,5,2,10,4,8 and the irreducible polynomials are P,(x) = x* +x° -1, P(x)=x*—x" -1,
P(x)=x"+x—-1, Py(x)=x"—x-1, P(x)=x"+1 and B(x)=x+1.

Notice that B (x) = P, (x) = P, (x*")=P,(x*) and similarly P,(x)= P, (x*), according to

eq. (63) with d =3 (cf. Lemma 58 (iii)). o

Example 60
Take p=2, A=4 and ¢ =5. So, we are now in the second case of Lemma 58 (iii). We

find =1, =1, =2, r,=4,and hence «, =1, x, =2, x, =2, k, =2, which shows
that indeed d = 2. The cyclotomic cosets mod 2* are C =1{15,9,13}, C, ={3,15,11,7},
C,=1{2,10}, C, ={4}, C,=1{6,14}, C, ={8}, C,, ={12}.In GF(5)[x] we have the
following factorization into irreducible polynomials

X' =1=®,(x) ©,(x)D,(x)Dy (x)D,(x)
=(x=Dx+D(x+2)(x+3)(x* +2)(x* +3)(x* +2)(x* +3).

The labeling (64) becomes 0,i',i; 7,1, ,i5,i' =0,1,3,2,6,4,12,8 . The corresponding
polynomials are P(x)=x-1, B(x)=x"+2, P(x)=x"+3, P(x)=x"+2,
P(x)=x"+3, P(x)=x+2, B,(x)=x+3 and B,(x)=x+1. As one can see

immediately, we have the following relations £ (x)=P,(x) =P, (x*)= P,(x"),

P(x)=P,(x)=P,(x*) = P,(x*) , and similarly P,(x) = P,(x*), B,(x) = P,(x*).
These relations illustrate eq. (63), since ¢ =1+4.1 and d =2 (cf. Lemma 58).

Next, we take p=2, 4A=5, g=7.Forthe , and «,, 1<i< A, wefind r, =1, r,=2,
=2, 1n=2 rn=4and x =1, x,=1, xK;,=2, kK,=4, kK, =4. According to Lemma 57
(i1) we now have d =4.

The nonzero cyclotomic cosets mod 2° are C =1{7,17,23}, C, ={2,14},

C, =1{3,21,19,5}, C, ={4,28}, C, ={6,10}, C, ={8,24}, C, =1{9,31,25,15},

C, ={11,13,27,29}, C, ={12,20}, C,, ={16}, C,; ={18,30}, C,, ={22,26} .

In GF(7)[x] the factorization of x** —1 into irreducible polynomials is as follows
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2 =1= @, (x)D,(X)D, (X)Dy(X)D,, (x)Ds, (%)
=(x=D(x+D(x* +D(x* —4x+D)(x” +4x+1) (x* +4x-D)(x* —x—1)
=(X* = 4x-D(x"+x-1) (x* +4x° 1) (x* =x" =) (x* =4x" =) (x* + x> —1).

The correspondence between cyclotomic cosets and irreducible polynomials is as follows.
If we choose as primitive 32" root of unity a zero of P(x):=x*—x’ -1, then

P(x)=x"+x*—1, B(x)=x"-4x" -1, B,(x)=x"+4x" -1, P(x)=x"—x -1,
Py (x)=x"+x-1, P(x)=x"—4x—1, P,(x)=x"+4x—1, P(x)=x"+4x+1,
P,(x)=x"—4x+1,B(x)=x>+1, By(x)=x+1.

So, we have the following factorizations: ®,,(x)=x'"* +1= B(x)P,(x)P,(x)R,(x),
®,,(x) = x* +1= B(x) Py (0B, (1) Py (x), Dy () = x* 4 1= B, () B, (x) ,
D,(x)=x"+1=B(x), ®,(x)=x+1=PB(x).

The labeling (64) becomes

5.5 .5 .5 W4 4 4 4 3 3 .2 ]
0,i,i5,15,1, 1, iy, 0y .0y 0y 5 15,0y 3, = 0,1,9,3,11,2,18,6,22,4,12,8,16 . O

Remark 61
The last case in Example 60 demonstrates that for 4 =5 the value of x, is not equal to 2.

In case we had defined 4 =3 (and ¢ =7) in the previous example, we would have
K, =k, =2, and so we could apply the first part of Lemma 58 (ii), since ¢ =1+2.3.

10. The GR-codes of length 21 over GF(4)

In this section we shall consider an example where the code length is not of type p” or
2p* . In[1,Section 8] we derived the idempotent generators of the two GR-codes C,,,,

by a method related to the ones mentioned in Section 2. We now shall compute the same
generators by means of the matrix M. Remember that the codes C,, ,, are not 2-residue

codes, though 7 equals 2.

Example 62
We consider the case n =21, ¢ =4 (cf. [1, Section §]).

The cyclotomic cosets are

C, =10}, C, ={l4,16}, C,=1{2,8,11}, C,=1{3,6,12}, C,=15,17,20}, C, ={7},
G, =1{9,15,18}, C,=1{10,13,19}, C,, ={14}.
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The irreducible polynomials corresponding to these cosets are respectively

P(x)=x+1, B(x)=x+ax+1, B(x)=x"+a’x+1, P(x)=x+x"+1,
P(x)=x"+ax’+1, B=x+a, B(x)=x"+x+1, By(x)=x"+a’x’ +1,

P,(x)=x+a’.

Since the sizes of all cyclotomic cosets are odd, the integers n! are all equal to 1 in
GF(4), and so the matrix element M,  is equalto p, , forall i,s € S. We find the

following matrix.

0 1 2 3 5 7 9 10 14
1 1 1 1 1 1 1 1 1 0
1 0 0 1 a a 0 o o 1
1 0 0 1 a a° 0 a «a 2
1 1 1 0 0 1 1 0 1 3
M=l a a> 0 0 a1 0 a«a 5.
l o > 1 &> a | a o 7
1 0 0 1 1 1 0 1 1 9
l > a 0 0 a I 0 a*| 10
l a8 a1l a & 1 a8 a 14

For the code with minimal generator g (x) = P,(x)P,(x), we obtain the idempotent

generator e (x) = Z & c,(x), where the vector & is determined by
seS

E=g,+ Mg, + Me,, = &,+ s + 1, = (1,1,1,0,0,1,0,0,1)" .
The code generated by g* (x) = P,(x)P,,(x) has the idempotent generator e'* (x) with
coefficient vector
E=g,+ Mg, + Me,=¢,+ 4, + 1, = (1,0,0,0,1,1,0,1,1)" .

Similarly, we find for the coefficient vectors of the idempotent generators e!" (x),

e’ (x), e’ (x) and e!” (x), respectively
E=g,+Me,+Me, =(La,a’,1,a,1,1,a’,1)",

E=g + Mg, +Me, =(,a’,a,,a’,1,1,a,1)",
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E=g +Me,+Me, =(l,a,a’,1,a°,0,1,,0)",
E=g Mgy +Me =(,a°,a,1,a,0,1,a,0)" .

These six coefficient vectors yield the same idempotents as derived by a different method
used in [1, Section 8]. i

Remark 63
We still investigate the question in which way the matrix M, as introduced in Section 3,
is related to the character table of a finite abelian or nonabelian group.
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