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The Strictest Common Relaxation of

a Family of Risk Measures

Berend Roorda∗ Hans Schumacher†

September 19, 2010

Abstract

Operations which form new risk measures from a collection of given (often simpler)

risk measures have been used extensively in the literature. Examples include convex

combination, convolution, and the worst-case operator. Here we study the risk measure

that is constructed from a family of given risk measures by the best-case operator; that

is, the newly constructed risk measure is defined as the one that is as restrictive as

possible under the condition that it accepts all positions that are accepted under any

of the risk measures from the family. In fact we define this operation for conditional

risk measures, to allow a multiperiod setting. We show that the well known VaR risk

measure can be constructed from a family of conditional expectations by a combina-

tion that involves both worst-case and best-case operations. We provide an explicit

description of the acceptance set of the conditional risk measure that is obtained as the

strictest common relaxation of two given conditional risk measures.

JEL Classification: D81.

Keywords: nonconvex risk measures, Value at Risk, best-case operator.

1 Introduction

Operations which construct a new risk measure out of a family of given (usually simpler)

risk measures have been extensively studied in the literature. For example, a well known

operation of this type is taking a convex combination of two or more risk measures, or
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more generally, forming an integral of a continuously parametrized family of risk measures.

Such a mixture operation was applied by Gerber and Goovaerts [10] to Esscher principles.

Kusuoka [12] showed that all coherent law-invariant risk measures, under a weak continuity

condition and a technical condition on the probability space, can be represented as mixtures

of expected shortfall risk measures. Another example of a combination is the convolution of

risk measures, used for instance by Barrieu and El Karoui [3] and by Klöppel and Schweizer

[11]. Several ways of combining coherent risk measures, including the worst-case operator,

were studied by Delbaen [6].

In this paper we consider the best-case operator, which can be viewed as a natural

counterpart of the worst-case operator but has received less attention in the literature,

presumably because of the fact that it does not in general preserve convexity. We show

however that the best-case operator is useful as a means of constructing risk measures; in

particular, we show that Value at Risk can be described in terms of this operator. There

are also direct applications of the concept. For instance, if an institution is insuring the

five worst credit events among a given collection of names, but at the same time is buying

insurance against the two worst credit events among the same names, then the remaining

risk for the institution can be described as the “three best cases out of the five worst”. For

an example outside the domain of finance and insurance, it may be noted that at many

universities the grade obtained by a student who takes part in several exams on the same

subject is determined as the best result obtained in any of the trials; in other words, the

results are combined on a best-case basis. In figure skating, the lowest among the grades

awarded by the judges is dropped from the calculation that leads to the final result of

contestants; to describe such an aggregation system, again the best-case operator can be

used.

The best-case operator produces a relaxation of each of the risk measures on which it

operates; that is, all positions are accepted that are accepted by at least one of the original

risk measures. To make the result of the operation well-defined, we look for the most

restrictive measure that has this property. In other words, the best-case operator is the

operator that produces, starting from a given family of risk measures, the strictest common

relaxation of the family.

Much of the recent literature on risk measures has focused on multiperiod models and

consequently on conditional risk measures; see for instance [2, 9, 15, 17, 7]. In this paper

too we work with conditional risk measures. It may be noted that the “partial information”

case can also be viewed as a “partial aggregation” case, so that the idea of a conditional risk

measure can not only be applied in multiperiod situations but also in any context in which

evaluation takes place in several stages through successively higher levels of aggregation.

The most basic object related to a risk measure is its acceptance set, and in fact it has
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been argued that the acceptance set is more fundamental than the risk measure itself [1].

Our main purpose in this paper is to characterize the acceptance set corresponding to the

strictest common relaxation of two conditional risk measures. In the unconditional case this

set is easily described as the union of the acceptance sets of the two given risk measures,

but when we have only partial aggregation the set-theoretic union is in general not even

the acceptance set of any conditional risk measure. For this reason we introduce a concept

which we call the conditional union. The conditional union is a superset of the set-theoretic

union, and we show that it gives the acceptance set of the strictest common relaxation.

The literature on risk measures is marked by differences in terminology and in conven-

tions. Even the term “risk measure” as it has been used in the recent literature may be

viewed as debatable, one of the reasons being that it refers to a focus on adverse outcomes

which is in fact from a mathematical perspective largely immaterial. In this paper we will

use the term “evaluation”, following Peng [13]. The sign convention that we use is “posi-

tive/positive”, meaning that positive outcomes of random variables are interpreted as gains

rather than losses, and outcomes are evaluated in a way that preserves rather than inverts

signs. Under these conventions, convex risk measures are replaced by concave evaluations,

and the best-case operator is obtained by taking supremum rather than infimum.

We start with recalling some basic definitions and properties in the next section. All

main results are in Section 3, and Section 4 concludes. There is an Appendix containing

some technical material on the essential supremum which is needed in the proof of the main

theorem in Section 3.

2 Basic definitions and properties

In this section we list some basic definitions and properties and fix notation. The material

in this section is well known (cf. [7, 5, 8]).

2.1 Standing assumptions and notation

Throughout the paper we use a probability space (Ω,F , P ). The terms “measurable” and

“almost surely” without further specification mean F-measurable and P -almost surely, re-

spectively. The complement of an event F ∈ F is denoted by F c. We write L∞ =

L∞(Ω,F , P ). Elements of L∞ will be referred to as random variables but also as “pay-

offs” or “positions”. We work with bounded random variables for simplicity; cf. [4] for

methods of generalization to the case of unbounded variables. The notation Q ¿ P , when

Q and P are measures, means that Q is absolutely continuous with respect to P .

Throughout the paper we work with a fixed sub-σ-algebra G of F , which we refer to as the

conditioning sub-σ-algebra. The σ-algebra G is thought of as representing an intermediate
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level of aggregation between the trivial σ-algebra {∅,Ω} which represents full aggregation

and the σ-algebra F which corresponds to complete disaggregation. All statements and

properties that involve conditioning are taken with respect to G, unless otherwise indicated.

We write L∞G to indicate the subset of L∞ consisting of G-measurable random variables.

Given a random variable X ∈ L∞, the random variable ‖X‖G ∈ L∞G defined by ‖X‖G =

ess inf{m ∈ L∞G |m ≥ |X|} ∈ L∞G is referred to as the conditional norm of X. The notation

‖X‖ (without subscript) refers to the usual L∞-norm of X, which is the same as the G-

conditional norm when G is the trivial sub-σ-algebra {∅, Ω}. We have ‖X‖G ≤ ‖X‖ for all

X ∈ L∞.

All equalities and inequalities applied to random variables are understood to hold almost

surely; also, convergence is taken in the almost sure sense unless indicated otherwise. We use

inf X and sup X to refer to the essential infimum and the essential supremum, respectively,

of an element X of L∞. Given a nonempty set S ⊂ L∞, ess supS is defined as the least

element in the a.s.-equivalence classes of measurable functions from Ω to R ∪ {∞} that

dominate all elements of S in the almost sure sense (see for instance [8]); ess inf S is defined

similarly.

2.2 Conditional evaluations

The definition below follows [5] (cf. also [7]). We follow [14] in using the term “translation

equivariance” rather than the more often used phrase “translation invariance”.

Definition 2.1 A conditional evaluation is a mapping φ from L∞ to L∞G that is monotonic

(i.e. for X, Y ∈ L∞, if X ≥ Y then φ(X) ≥ φ(Y )), normalized (i.e. φ(0) = 0), and translation

equivariant (i.e. for X ∈ L∞, if C ∈ L∞G then φ(X + C) = φ(X) + C).

Conditional evaluations, just like conditional expectations, map F-measurable functions

to G-measurable functions. Unlike conditional expectations, conditional evaluations can be

nonlinear. The following concavity property is often considered in the literature but plays

a lesser role in the current paper.

Definition 2.2 A conditional evaluation φ is said to be concave if

φ(ΛX + (1− Λ)Y ) ≥ Λφ(X) + (1− Λ)φ(Y ) (2.1)

for all X, Y ∈ L∞ and for all Λ ∈ L∞G with 0 ≤ Λ ≤ 1.

An important fact is the following.
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Lemma 2.3 ([7, Prop. 1,2], [5, Prop. 3.3]) Let φ be a conditional evaluation. Then φ satisfies

the local property, that is to say, for all G ∈ G and X, Y ∈ L∞ we have

φ(1GX + 1GcY ) = 1Gφ(X) + 1Gcφ(Y ). (2.2)

When normalization (i.e. φ(0) = 0) is taken as a part of the definition of a conditional

evaluation as we do in this paper, the local property for conditional evaluations is equivalent,

as shown in [7, Prop. 1], to the regularity property [13, 9, 5]

φ(1GX) = 1Gφ(X) for all G ∈ G and X ∈ L∞. (2.3)

2.3 Acceptance sets

The acceptance set of a conditional evaluation φ : L∞ → L∞G is defined by

A(φ) = {X ∈ L∞ |φ(X) ≥ 0}.

Conversely, given an arbitrary set S ⊂ L∞, one may define a mapping from L∞ to L∞G by

φS(X) = ess sup{Y ∈ L∞G |X − Y ∈ S}. (2.4)

The mapping was introduced in [7] and is called the conditional capital requirement in-

duced by S. The following proposition states conditions under which the conditional capital

requirement is a conditional evaluation.

Proposition 2.4 ([7], [5], [16, Prop. 2.3]) If S ⊂ L∞ is such that

0 ∈ S (2.5)

X ∈ S, Y ∈ L∞, Y ≥ X ⇒ Y ∈ S (2.6)

X ∈ L∞G ∩ S ⇒ X ≥ 0 (2.7)

then the conditional capital requirement φS defined by (2.4) is a conditional evaluation.

The relation φ = φA(φ) holds ([7, §2.3], [5, Prop. 3.9]), as well as the inclusion A(φS) ⊃ S.

Necessary and sufficient conditions under which this inclusion is in fact an equality can be

stated as follows.

Proposition 2.5 For S ⊂ L∞, the relation A(φS) = S holds if and only if S satisfies the

three properties (2.5–2.7) as well as the two additional properties

1GX + 1GcY ∈ S for all X,Y ∈ S, G ∈ G (2.8)

Xn ∈ S (n = 1, 2, . . . ), ‖Xn −X‖G → 0 ⇒ X ∈ S (X ∈ L∞). (2.9)
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Condition (2.8) may be called the local property of subsets of L∞, and (2.9) may be referred

to as conditional closedness. The proposition above is an immediate consequence of the

following result ([5, Prop. 3.10]).

Proposition 2.6 Let S ⊂ L∞ satisfy (2.5–2.7), so that φS is a conditional evaluation.

Then A(φS) is the smallest subset of L∞ that contains S, has the local property, and is

conditionally closed.

A property that is related to the local property is closedness under isolation:

1GX ∈ S for all X ∈ S, G ∈ G. (2.10)

When 0 ∈ S, closedness under isolation is implied by the local property.

3 The strictest common relaxation

3.1 Definition

Let us say that a conditional evaluation φ is at least as strict as another conditional evalu-

ation φ′ if

φ(X) ≤ φ′(X) for all X ∈ L∞. (3.1)

In this case we also say that φ′ is a (possibly non-strict) relaxation of φ. We write φ ≤ φ′ or

equivalently φ′ ≥ φ. When Φ is a family of conditional evaluations, we write φ ≥ Φ in case

φ ≥ φ′ for all φ′ ∈ Φ.

Definition 3.1 Let Φ be a family of conditional evaluations. We say that a conditional

evaluation φ is the strictest common relaxation of the conditional evaluations in the family

Φ if φ ≥ Φ, and φ ≤ φ′ for any conditional evaluation φ′ that satisfies φ′ ≥ Φ.

The definition does not immediately ensure that the strictly common relaxation of any given

family does indeed exist, but this fact is easily established. Given a family Φ of conditional

evaluations, we can define a mapping
∨

Φ from L∞ to L∞G by

(
∨

Φ)(X) = ess sup{φ(X) |φ ∈ Φ} (X ∈ L∞). (3.2)

It follows from elementary properties of the essential supremum that
∨

Φ is a conditional

evaluation. This leads to the following conclusion.

Proposition 3.2 Let Φ be a family of conditional evaluations. The strictest common re-

laxation of Φ exists and is given by the essential supremum
∨

Φ.
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If G is trivial and the collection Φ is finite, then (
∨

Φ)(X) is simply the maximum of all

evaluations φ(X) with φ ∈ Φ. In other words, the strictest common relaxation is a best-

case operator. It is a natural counterpart of the worst-case operator given by (
∧

Φ)(X) =

ess inf{φ(X) |φ ∈ Φ}. Another related operator is the convolution [6, 3, 11] defined (for a

finite collection Φ = {φ1, . . . , φN} of conditional evaluations) by

(¤Φ)(X) = ess sup
{ N∑

i=1

φi(Xi) |Xi ∈ L∞ (i = 1, . . . , N),
N∑

i=1

Xi = X
}

.

We have ¤Φ ≥ ∨
Φ, but equality does not hold in general. Indeed, it may happen that the

convolution is infinite, whereas the strictest common relaxation of two conditional evalua-

tions is always finite. On the other hand, if all conditional evaluations in Φ are concave,

then their convolution (if finite) is also concave [11, Thm. 4.1], whereas the strictest common

relaxation in general does not preserve concavity.

3.2 Application to VaR

Value at Risk (VaR) can be defined as follows [8, Ex. 4.11]:

VaRα(X) = inf{m ∈ R |P (X + m < 0) ≤ 1− α}.

This is an unconditional risk measure, that is to say, the conditioning sub-σ-algebra G is

trivial. Of course it would be possible to consider conditional versions, but our purpose

here is to show how VaR can be defined in terms of simpler operations (namely conditional

expectations) by means of sup and inf operations.

Proposition 3.3 The following relation holds, with F ∈ F being understood:

VaRα(X) =
∨

P (F )≥α

∧

Q¿P

EQ[X |F ]. (3.3)

Proof We already know that the operation on the right gives a conditional evaluation, so it

is sufficient to show that the acceptance sets of the mappings on the left and on the right are

the same. First, assume that VaRα(X) ≥ 0. By definition, this means that P (X ≥ 0) ≥ α,

so that the set F ′ := {X ≥ 0} is among the sets that define the supremum at the right hand

side of (3.3). Clearly we have EQ[X |F ′] ≥ 0 for all Q ¿ P , so that
∧

Q¿P EQ[X |F ′] ≥ 0

and consequently
∨

P (F )≥α

∧

Q¿P

EQ[X |F ] ≥ 0. (3.4)

Conversely, suppose that (3.4) holds. To show that VaRα(X) ≥ 0, assume that the opposite

is true, so that P (X < 0) > 1 − α. Then in fact there must be an n ∈ N such that

P (X < − 1
n ) > 1−α. For every F ∈ F such that P (F ) ≥ α, we then must have P (F ∩{X <

− 1
n}) > 0. Consequently there exists a measure Q′ ¿ P such that Q′(F ∩ {X < − 1

n}) = 1,
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which implies EQ′ [X |F ] < − 1
n . It follows that

∧
Q¿P EQ[X |F ] < − 1

n for all F with

P (F ) ≥ α, so that
∨

P (F )≥α

∧
Q¿P EQ[X |F ] < − 1

n . We have a contradiction. ¤

3.3 Corresponding operation on acceptance sets

The order relation between conditional evaluations is related in a natural way to the inclusion

relation between acceptance sets.

Proposition 3.4 Let φ and φ′ be conditional evaluations. We have

φ ≤ φ′ ⇐⇒ A(φ) ⊂ A(φ′). (3.5)

Proof The inequality relation between the conditional evaluations obviously implies the

inclusion relation between their acceptance sets. Conversely, assume that the inclusion

relation holds, and take X ∈ L∞. Write Y = X − φ(X); then φ(Y ) = 0 so that Y ∈ A(φ)

which by assumption implies that Y ∈ A(φ′) or in other words φ′(Y ) ≥ 0. This in turn

implies φ′(X) ≥ φ(X) due to the conditional translation equivariance of φ′ and the fact that

φ(X) is G-measurable. ¤

It is easy to verify (as noted in [6]) that A(φ1∧φ2) = A(φ1)∩A(φ2), where ∧ denotes the

operation of taking the essential infimum. However, when the conditioning sub-σ-algebra G
is nontrivial, the supremum operation (3.2) on conditional evaluations does not in general

correspond to the set-theoretic union of acceptance sets. We therefore propose the following

operation.

Definition 3.5 Given two subsets S1 and S2 of L∞, the set

S1 ∪G S2 := {X ∈ L∞ | there exist G1, G2 ∈ G, with G1 ∩G2 = ∅ and G1 ∪G2 = Ω,

and X1 ∈ S1, X2 ∈ S2 s.t. X = 1G1X1 + 1G2X2}

is called the conditional union of S1 and S2.

It is straightforward to establish that, when we have three subsets S1, S2, S3,

(S1 ∪G S2) ∪G S3 = {X ∈ L∞ | there exist Gi ∈ G, Xi ∈ Si (i = 1, 2, 3) s.t.

Gi ∩Gj = ∅ (i 6= j), G1 ∪G2 ∪G3 = Ω, X = 1G1X1 + 1G2X2 + 1G3X3}

so that we can unequivocally speak of the conditional union of three subsets, and more gen-

erally the conditional union of any finite number of subsets can be defined. The conditional

union contains the set-theoretic union (let all Gi’s be empty except one) but is in general

larger, unless G = {∅,Ω} (the case of full aggregation).
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Clearly, the notion of conditional union is closely related to the local property. Below it is

shown that, if S1 and S2 are sets having the local property, then their conditional union

is the smallest set that contains both S1 and S2 and that itself has the local property. As

another illustration, consider the following proposition.

Proposition 3.6 A subset S ⊂ L∞ has the local property if and only if

S = S ∪G S.

Proof Suppose first that the condition holds. Take G ∈ G and X,Y ∈ S. Then 1GX +

1GcY ∈ S ∪G S = S. Conversely, assume that S has the local property. Take X =

1G1X1 + 1G2X2 ∈ S ∪G S (G1, G2 ∈ G, G1 ∩ G2 = ∅, G1 ∪ G2 = Ω, X1, X2 ∈ S). Then

G2 = Gc
1 and it follows that X ∈ S. ¤

The conditional union S1 ∪G S2 preserves several properties of interest that the set S1

and S2 may have, as shown in the following proposition.

Proposition 3.7 Let S1 and S2 be subsets of L∞. If S1 and S2 both have one of the

following properties:

(i) the local property (2.8)

(ii) closedness under isolation (2.10)

(iii) conditional nonnegativity (2.7)

then the conditional union S1 ∪G S2 has the same property. If the two sets S1 and S2 are

closed under isolation and solid (i.e. (2.6) is satisfied), then S1 ∪G S2 is solid as well.

Proof Write S = S1 ∪G S2, and suppose that both S1 and S2 have the local property.

Take X, Y ∈ S and G ∈ G; we want to prove that 1GX + 1GcY ∈ S. By definition of the

conditional union, we can write

X = 1HX1 + 1HcX2, Y = 1JY1 + 1JcY2

for some H, J ∈ G, X1, Y1 ∈ S1, and X2, Y2 ∈ S2. We have

1GX + 1GcY = 1G(1HX1 + 1HcX2) + 1Gc(1JY1 + 1JcY2) =

= (1H∩G + 1J∩Gc)(1GX1 + 1GcY1) + (1Hc∩G + 1Jc∩Gc)(1GX2 + 1GcY2).

Note that 1GXi +1GcYi ∈ Si (i = 1, 2) by the fact that S1 and S2 satisfy the local property.

The fact that

1H∩G + 1J∩Gc + 1Hc∩G + 1Jc∩Gc = 1

now implies that 1GX + 1GcY ∈ S.
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Preservation of closedness under isolation is easily shown. Indeed, take X ∈ S and write

X = 1HX1 + 1HcX2 with H ∈ G, X1 ∈ S1, X2 ∈ S2. Then, for any G ∈ G,

1GX = 1H1GX1 + 1Hc1GX2 ∈ S

since 1GX1 ∈ S1 and 1GX2 ∈ S2.

Now assume that both S1 and S2 are conditionally nonnegative. Take X = 1GX1 +

1GcX2 ∈ S (G ∈ G, X1 ∈ S1, X2 ∈ S2), and suppose that X ∈ L∞G . Then 1GX = 1GX1 ∈
L∞G ∩ S1 so that 1GX ≥ 0, by the conditional nonnegativity of S1. Likewise it follows that

1GcX ≥ 0, so that X = 1GX + 1GcX ≥ 0.

Finally, assume that S1 and S2 both are closed under isolation and solid. To prove the

solidness of S, take X = 1GX1 + 1GcX2 ∈ S (G ∈ G, X1 ∈ S1, X2 ∈ S2), and suppose

Y ∈ L∞ is such that Y ≥ X. Then we also have 1GY ≥ 1GX = 1GX1, which by the

solidness and the closedness under isolation of S1 implies that 1GY ∈ S1. Similarly it

follows that 1GcY ∈ S2, so that Y = 1G(1GY ) + 1Gc(1GcY ) ∈ S. ¤

Proposition 3.8 Suppose that S1,S2 ⊂ L∞ both have the local property. Then the condi-

tional union S1 ∪G S2 is the smallest set that has the local property and that contains both

S1 and S2.

Proof It has already been shown in Prop. 3.7 that S1∪G S2 has the local property. Suppose

now that S̃ ⊂ L∞ has the local property and is such that S̃ ⊃ S1 ∪ S2. Then in particular

we have 1GX1 + 1GcX2 ∈ S̃ for all G ∈ G, X1 ∈ S1, and X2 ∈ S2, which means that

S̃ ⊃ S1 ∪G S2. ¤

The following theorem establishes that the conditional union is the operation on accep-

tance sets that corresponds to taking the strictest common relaxation of two conditional

evaluations.

Theorem 3.9 Let φ1 and φ2 be conditional evaluations. Then

A(φ1 ∨ φ2) = A(φ1) ∪G A(φ2).

Proof The setA(φ1∨φ2) has the local property, since it is the acceptance set of a conditional

evaluation; moreover it contains both A(φ1) and A(φ2). It therefore follows from Prop. 3.8

that

A(φ1 ∨ φ2) ⊃ A(φ1) ∪G A(φ2).

To prove the reverse inclusion, it is enough, by Lemma 5.3 in the Appendix, to show that

the assumption

1{φ1(X)<0}φ2(X) ≥ 0 (3.6)
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for X ∈ L∞ implies that X ∈ A(φ1)∪GA(φ2). Write G = {φ1(X) < 0}, and note that G ∈ G.

We have φ1(1GcX) = 1Gcφ1(X) ≥ 0 by definition of G, and φ2(1GX) = 1Gφ2(X) ≥ 0 by

assumption (3.6). It follows that X = 1Gc(1GcX) + 1G(1GX) ∈ A(φ1) ∪G A(φ2). ¤

4 Conclusions

One way to combine two evaluations is to take the best of the two. From a conservative point

of view such an operation may be looked upon as dangerous, and indeed concavity is not

preserved in general. Still under some circumstances this way of combining evaluations can

be reasonable, and the best-case operator can also be of use as an instrument of description

as we have seen in the case of Value at Risk. The acceptance set of the maximum of

two unconditional (fully aggregated) evaluations is simply the set-theoretic union of the

acceptance sets of the separate evaluations, but this statement is no longer true in general

when we consider conditional (partially aggregated) evaluations. In this paper we have

identified the operation on acceptance sets that corresponds to the combination of two

conditional evaluations by the best-case operator.

A limitation in the theory that was developed here is that we have only considered com-

binations of two evaluations. The extension to finite collections of evaluations is straight-

forward, but we have not answered the question how to describe the acceptance set of the

strictest common relaxation of an infinite family of conditional evaluations.

5 Appendix

In this appendix we prove some general results concerning the essential supremum of a family

of random variables. We work in the same context as in the body of the paper.

Lemma 5.1 Let Z ⊂ L∞ be nonempty and bounded. For any F ∈ F , we have

ess sup 1FZ = 1F ess sup 1FZ (5.1)

where 1FZ denotes {1F Z |Z ∈ Z}.

Proof Write Y = ess sup 1FZ; we have to show that Y = 1F Y . The inequality Y ≥ 1F Z

which holds for all Z ∈ Z implies 1F Y ≥ 1F Z, so that 1F Y is an upper bound for the

family 1FZ. Since Y is the least upper bound for this family, we have 1F Y ≥ Y . To

prove the converse inequality, take any Z ∈ Z. The inequality Y ≥ 1F Z implies that

1F cY ≥ 1F c1F Z = 0. ¤
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Lemma 5.2 Let Z ⊂ L∞ be nonempty and bounded. For any F ∈ F , we have

1F ess supZ = 1F ess sup 1FZ. (5.2)

Proof Write Y = ess sup 1FZ. From the fact that ess supZ is an upper bound for the

family Z it follows that 1F ess supZ is an upper bound for 1FZ; consequently we have

1F ess supZ ≥ Y which implies 1F ess supZ ≥ 1F Y . To prove the converse inequality, note

that Z = 1F Z + 1F cZ ≤ Y + 1F cZ for all Z ∈ Z. It follows that

ess supZ ≤ Y + ess sup 1F cZ = Y + 1F c ess sup 1F cZ

where the translation invariance of the essential supremum is used in the first step and the

previous lemma in the second. From the above, we have 1F ess supZ ≤ 1F Y as required.

¤

As an immediate corollary of the two lemmas, we have what might be called the regularity

property of the essential supremum:

ess sup 1FZ = 1F ess supZ. (5.3)

We use this to prove a more specialized result.

Lemma 5.3 The following equivalence relation holds for Z1, Z2 ∈ L∞:

ess sup{Z1, Z2} ≥ 0 ⇔ 1{Z1<0}Z2 ≥ 0. (5.4)

Proof Write F = {Z1 < 0} ∈ F . Assume first that 1F Z2 ≥ 0. To prove that ess sup{Z1, Z2} ≥
0, it suffices to show that for every ε > 0 we have P (ess sup{Z1, Z2} ≤ −ε) = 0. So, take

ε > 0 and define G = {ess sup{Z1, Z2} ≤ −ε}. By the regularity of the essential supremum,

this implies that 1GZ1 ≤ −ε1G and 1GZ2 ≤ −ε1G. Moreover we have 1F cZ1 ≥ 0 and

1F Z2 ≥ 0 by definition and by assumption respectively, so that we can write

0 ≤ 1F c∩GZ1 ≤ −ε1F c∩G ≤ 0

as well as

0 ≤ 1F∩GZ2 ≤ −ε1F∩G ≤ 0.

It follows that all inequalities in the above are actually equalities, so that in particular

1F c∩G = 0 and 1F∩G = 0. Consequently we have 1G = 0, or in other words P (G) = 0.

For the converse part of the proof, assume now that ess sup{Z1, Z2} ≥ 0. Take ε > 0,

and define G = {1F Z2 ≤ −ε}. We then have

1G1F Z2 ≤ −ε1G. (5.5)
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Take k ∈ N and define Fk = {Z1 ≤ − 1
k}. Since Fk ⊂ F , we have from (5.5)

1Fk
1GZ2 ≤ −ε1Fk

1G.

By definition of Fk, we also have

1Fk
1GZ1 ≤ − 1

k1Fk
1G.

Therefore we can write

0 ≤ 1G∩Fk
ess sup{Z1, Z2} = ess sup{1G∩Fk

Z1, 1G∩Fk
Z2} ≤ max(−ε,− 1

k ) 1G∩Fk
≤ 0.

From this it follows that 1G∩Fk
= 0, or in other words, P (G ∩ Fk) = 0. Because G ∩ F =

∪∞k=1(G ∩ Fk), we obtain P (G ∩ F ) = 0. To show that the equality P (G ∩ F c) = 0 holds as

well, multiply both sides of (5.5) by the indicator function of F c to obtain

0 = 1F c1G1F Z2 ≤ −ε1F c1G ≤ 0

which indeed implies that 1F c1G = 0. We conclude that P (G) = 0. Since ε > 0 was

arbitrary, it follows that 1F Z2 ≥ 0, which is what we had to prove. ¤
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