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Abstract

This paper analyzes optimal procurement mechanisms in a setting where the procure-
ment agency has incomplete information concerning the firms’ cost functions and cares
about quality as well as price. Low type firms are cheaper than high type firms in pro-
viding low quality but more expensive when providing high quality. Hence, each type is
specialized in a certain quality level. We show that this specialization leads to a bunching
of types on profits, i.e. a range of firms with different cost functions receives zero profits
and therefore no informational rents. If first best welfare is monotone in the efficiency
parameter, the optimal mechanism can be implemented by a simple auction. If first best
welfare is U-shaped in type, the optimal mechanism is not efficient in the sense that types
providing a lower second best welfare win against types providing a higher second best
welfare.
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1. Introduction

Recently the market for home care was liberalized in the Netherlands. Local governments now

procure home care for their citizens and money saved on the procurement can be used now by

local governments for other things, like sports facilities (that is, the money received from the

central government to pay for home care is not earmarked). However, the local government

does have a duty to provide care (of some minimum standard). It used to be the case that

regional care offices procured without much incentive to save money. Due to this liberalization,

new players have entered the market. In particular, cleaning companies have moved into home

care. As these new players have no experience with care (to illustrate, they did not use to hire

nurses or other professionals with a medical background) they are seen as low quality players.

At this low quality level, however, they are cheaper than traditional firms. That is, they can

provide simple services like house cleaning and shopping more cheaply than incumbent home

care companies. In this sense, incumbents are specialized in high quality production while

entrants are specialized in low quality/low costs production.1

This pattern –where incumbents are specialized in high quality service while entrants spe-

cialize in a low quality (low price) service– is typical after liberalization. Many European

countries have liberalized sectors like post, taxis, air transport, railway or local transport. This

has led to entry by players who offer lower quality in, for instance, the following sense: only

make deliveries twice a week (instead of 6 days a week), drive cars substantially cheaper than a

Mercedes (see http://www.tuktukcompany.nl/ for an example), operate planes with reduced

seat pitch and limited on board service as well as offering less connections, use old trains and

buses to transport people. A reaction often heard by customers and/or incumbents is that the

liberalization is bad for welfare because of the lower quality.2

In each of these cases, one could argue either that quality did not decrease at all or that

before liberalization quality was inefficiently high. In the former case, incumbents spread rumors

1To a certain extent this can be resolved through market segmentation. People who do not need medical
attention but only someone to clean their home, can be served by cleaning companies. While patients who
stay at home and need a nurse can be served by the incumbents. Hence at the extremes of the home care
spectrum, market segmentation can alleviate the issue. However, many cases in home care are not so clear cut.
To illustrate, a nurse helping an elderly woman putting on her clothes in the morning and cleaning the house
may recognize the first signs of dementia that would be overlooked by an employee of a cleaning company.

2One could even take a broader point of view and also consider the case of foreign workers entering a domestic
labor market. In the EU there was a heated debate about Polish workers coming to the west in case Poland
would join the EU. Again some people argued that this is bad since Polish workers are supposedly less qualified
than domestic workers.
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to reduce the probability that entrants win contracts. In the latter case, after liberalization

quality goes down but total surplus rises. Presumably, in some of the examples mentioned

either of these two cases arise. However, we are interested in the case where indeed entrants

offer both lower quality and lower total surplus than incumbents.3 The question we ask is: How

should a planner (in the home care example: the municipality) who wants to maximize welfare

optimally organize the procurement in the face of such low quality entrants?

A second motivation for the setup we analyze is the following: The private information of a

firm is often interpreted as the production technology it uses. This technology was determined

in the past and can therefore be treated as given in the context of one specific procurement con-

tract. Following this interpretation, one should expect that firms chose production technologies

that are not obviously inferior to alternative technologies, i.e. there should be some level of

quality for which the technology of a firm is efficient. Put differently, firms are specialized in

the production of a certain quality level. As we argue below, this specialization is not covered

by standard procurement models that assume single crossing. In particular, single crossing

implies that high types are more efficient than lower types for each possible quality level.

We show the following results. First, if the firms specialized in low quality (e.g. entrants

in the examples above) are indeed worse than high quality firms (incumbents in the examples)

in a first best sense, the incumbents (under the optimal procurement rules) do not lose from

entry. Second, only if first best welfare is first decreasing and then increasing in type, types

specialized in high quality can lose in the following way: A low quality provider (entrant) can

win the procurement even though the high quality provider (incumbent) would provide higher

welfare under the optimal procurement rules. Third, in this latter case, quality is distorted

above first best for some types and below first best for others. Fourth, in both cases an interval

of types has zero profits (“profit bunching”). Although all types in this interval have zero

profits, they produce different qualities when winning the contract. Fifth, if first best welfare

is monotone, relatively simple auctions can implement the optimal mechanism.

Technically speaking, a contribution of the paper is to solve a two-dimensional mechanism

design problem. A technical challenge is that local incentive compatibility is not straightfor-

wardly sufficient for non-local incentive compatibility, i.e. non-local incentive constraints have

to be checked explicitly. To illustrate the problem, view profits as a function of the probability

3There are two reasons for this focus. First, as argued below, in the home care example mentioned above
there is evidence suggesting that the entrants offer lower surplus. Second, if the entrants offer higher surplus
than the incumbents, it is clear that they should be used by a value maximizing planner. Further, if the cheaper
entrants offer higher surplus, no service should be procured from the incumbents.
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of getting the contract. The assumption that firms are specialized implies then that “marginal

profits” (where marginal refers to a slightly higher probability of getting the contract) are not

monotone in type. This is equivalent to a violation of single crossing in one dimensional mod-

els. As is well known, non-local incentive compatibility does not follow from local incentive

compatibility if single crossing is not satisfied.

Our paper is related to the literature on procurement, especially to those papers in which

more than price matters, e.g. Laffont and Tirole (1987), Che (1993), Branco (1997), Asker

and Cantillon (2008) or Asker and Cantillon (2010). These papers assume that firms are not

specialized, i.e. higher types have lower costs for all quality levels. This assumption seems

to be too strong in some settings, e.g. newly liberalized industries. We show that relaxing it

leads to bunching on zero profits which is, to our knowledge, a new result in the literature on

procurement auctions.

In some sense, our paper connects the literature on competitive procurement with the litera-

ture on countervailing incentives, see Lewis and Sappington (1989) for the seminal contribution

and Jullien (2000) for the most general treatment. By assuming that firms are specialized, our

paper uses a cost function reminiscent of countervailing incentives. As this literature focuses

on scenarios with one agent, the probability of being contracted is one. Consequently, local

incentive compatibility constraints are sufficient for non-local incentive compatibility and many

of the technical challenges encountered in our paper do not occur. From an applied point of

view, having more than one firm leads to the result that optimal procurement auctions can be

second best inefficient.

The set up of the paper is as follows. In section 2 we present the model. Section 3 analyzes

the case where first best welfare is monotonically increasing in type while section 4 deals with

U-shaped first best welfare. In the latter case we find a discrimination result, i.e. some types

with lower second best welfare are preferred to types with higher second best welfare. Section

5 shows how the model extends to situations in which the assumptions of section 2 are not met

and section 6 concludes. Proofs are relegated to the appendix.

2. Model

We consider the case where a social planner procures a service of quality q ∈ Q ⊂ IR+ where Q

is a convex set. The gross value of this service is denoted by S(q) where we normalize quality
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in such a way that S(q) = Sq for some S > 0.4 The cost of production is denoted by c(q, θ)

where the firm’s type θ is distributed with distribution (density) function F (f) on [θ, θ̄]. We

assume that c is (at least) three times continuously differentiable.

We make the following assumptions on the cost function c and distribution function F .

Assumption 1 We assume that

• the function c(q, θ) satisfies cq, cqq > 0, cqθ < 0, cθθ ≥ 0,

• for q ∈ Q it is the case that S is high enough compared to c(q, θ) that the planner always

wishes to procure and

• the function F satisfies d((1−F (θ))/f(θ))
dθ

< 0 and d(F (θ)/f(θ))
dθ

> 0 .

These assumptions are standard in the literature. The first part says that c is increasing

and convex in q. Higher θ implies lower marginal costs cq (the Spence-Mirrlees condition) and

c is convex in θ. It will become clear that this convexity is part of the idea of specialized firms.

The second assumption formalizes the idea in our home care application that the government

cannot decide not to provide the service. That is, it is always socially desirable for the service

to be supplied. The third part is the monotone hazard rate (MHR) assumption. Usually this

assumption is only made “in one direction”. However, in the literature on countervailing incen-

tives it is standard to have MHR “in both directions”, see for example Lewis and Sappington

(1989) or Jullien (2000). Well known distributions that satisfy MHR include normal, uniform

and exponential distributions.5 In section 5, we discuss what happens if MHR is not satisfied.

The following assumption states that firms are specialized which is the case we want to

analyze in this paper.

Assumption 2 For each θ ∈ [θ, θ̄], there exists k(θ) > 0 such that

cθ(q, θ)

{

> 0 if q < k(θ)
< 0 if q > k(θ)

4This is, given our assumptions on the cost function, without loss of generality for weakly concave gross
values S(q).

5See Bagnoli and Bergstrom (2005) for a more complete overview.
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Further,

cqθθ(q, θ)

{

≤ 0 if q < k(θ)

≥ 0 if q > k(θ)

cqqθ(q, θ)

{

≥ 0 if q < k(θ)

≤ 0 if q > k(θ)

Hence for high values of q, a higher type θ produces q more cheaply. This is the usual

assumption. We allow for the possibility where low values of q are actually more cheaply

produced by lower θ types. To illustrate, high θ incumbents may have invested in (human)

capital that makes it actually relatively expensive to produce low quality. If the quality of the

product is mainly determined by the qualification of the staff, incumbents might have more

expensive but also more qualified workers. Replacing these workers is, especially in Europe,

costly because of labor market rigidities and search costs.6 Consequently, it is more expensive

for incumbents to produce low q than for entrants (and the other way around for high q). Note

that kθ(θ) ≥ 0 follows from cθθ ≥ 0 and cqθ < 0 by differentiating cθ(k(θ), θ) = 0 with respect to

θ (see proof of lemma 1). In words, as θ increases the quality level k(θ) where cθ = 0 (weakly)

increases.

To make sure that (i) the planner’s objective function is concave in q and (ii) quality q

increases in type, it is standard in the literature to make assumptions on third derivatives

cqθθ, cqqθ. If cθ does not switch sign, the usual assumption is that these derivatives should not

switch sign either. This is different in our case. To ease the exposition we make the assumptions

on the third derivatives above and discuss in section 5 what changes if these assumptions are

not satisfied. Note that we allow for the simple case where these third derivatives are equal to

zero.

As cθ can be positive, it is not clear how first best welfare varies with θ. Below we define

the two cases that we consider here. In order to do this, we introduce the following notation.

First best output is defined as

qfb(θ) = argmax
q

Sq − c(q, θ) (1)

which is a singleton as cqq > 0 by assumption 1. First best welfare is denoted by

W fb(θ) = Sqfb(θ)− c(qfb(θ), θ) (2)

6That incumbents have more expensive and better qualified staff is evident in the home care sector in the
Netherlands which we mentioned in the introduction. Incumbents’ employees have a training in nursing, while
entering cleaning companies employ mostly low skilled labor.
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Our final assumption makes sure that we can focus on two relevant cases only.

Assumption 3 Assume that c2qθ > cθθcqq.

This assumption implies that first best welfare is convex in θ. Hence we only need to

consider two cases. Either first best welfare is increasing in θ or it is first decreasing and then

increasing in θ. Further, we can show that first best quality increases faster with θ than k(θ);

a result that we use below.

Lemma 1 First best welfare W fb(θ) is convex in θ and qfbθ (θ) > kθ(θ).

Now we define the two cases that we focus on in this paper.

Definition 1 We consider the two cases

(WM) where first best welfare is monotone in θ: dW fb(θ)
dθ

> 0 for all θ ∈ [θ, θ̄] or

(WNM) where θw exists such that dW fb(θ)
dθ

< 0 for θ ∈ [θ, θw) and dW fb(θ)
dθ

> 0 for θ ∈ (θw, θ̄];

further W fb(θ̄) > W fb(θ).

Hence we exclude the case where W fb(θ̄) < W fb(θ) (and by lemma 1 this is the only case

we exclude). In words, we keep on thinking of high (enough) θ as better.7

The following two examples give cost and surplus functions that correspond to cases (WM)

and (WNM) resp.

Example 1 Assume S(q) = q and c(q, θ) = (q − θ)2 + q(1 − θ/2) where θ is distributed

uniformly on [0, 1]. With these functions k(θ) = 4θ/5 and qfb(θ) = 5θ/4. First best welfare is

W fb(θ) = 9
16
θ2 which is increasing in θ ∈ [0, 1].

The interpretation of this example could be that by the qualification of its staff a firm

has the “natural quality level” θ. Producing at different qualities involves adjustment costs

that increase with the distance |q − θ|. Additionally, there is a linear cost of quality, e.g.

from additional (non-staff) input factors. A high type firm, e.g. a firm that traditionally has

had highly qualified staff and therefore is experienced in high quality production, has lower

additional costs of quality.

7Clearly, the opposite case withW fb(θ̄) < W fb(θ) is symmetric and does not need to be considered separately.
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Example 2 Assume S(q) = Sq and c(q, θ) = 1
2
q2 − θq + θk with k ∈ (S + θ, S + θ̄). Thus

k(θ) = k in assumption 2. Then we find that qfb(θ) = S+ θ and dW fb(θ)/dθ = S+ θ−k which

is negative (positive) for θ < (>)k − S ∈ (θ, θ̄).

The second example reflects the standard idea that a firm with high fixed costs (kθ) has

lower marginal costs (cq = q − θ) of producing quality. That is, a firm that produces with a

more capital intensive technology might have lower marginal costs for quality but higher fixed

costs.

Now we are able to set up the mechanism design problem. The planner only needs one firm

to supply the desired service or product. Since n ≥ 2 firms are able to supply, the planner needs

to determine: which firm wins the procurement, what quality level should this firm supply and

how much money should be transferred to firms in return for this.

Let t(θ) denote the (expected) transfer paid by the planner to a firm of type θ and x(θ) the

probability that type θ wins the procurement. That is, the planner offers a menu of choices

for firms and each firm chooses the option that maximizes its profits. The payoff for a type θ

player that chooses option (q, x, t) is written as t− xc(q, θ).8

Following Myerson (1981), we use a direct revelation mechanism. That is, we design a menu

of choices where (q(θ), x(θ), t(θ)) is the choice “meant for” type θ. Then we make it incentive

compatible (IC) for type θ to choose this option. That is, it is IC for θ to truthfully reveal his

type.

Type θ can misrepresent as θ̂ and its profits equal

π(θ̂, θ) = t(θ̂)− x(θ̂)c(q(θ̂), θ) (3)

A menu q(·), x(·), t(·) is IC if and only if

Φ(θ̂, θ) ≡ π(θ, θ)− π(θ̂, θ) ≥ 0 (4)

for all θ, θ̂ ∈ [θ, θ̄].

With a slight abuse of notation we define the function π(θ) as:

π(θ) = max
θ̂

π(θ̂, θ) (5)

8Note that since firms’ and planner’s utility is quasilinear in money, it does actually not matter whether t is
paid conditional on winning or not.
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Hence, using an envelope argument, incentive compatibility implies

πθ(θ) = −x(θ)cθ(q(θ), θ) (6)

This equation makes sure that the first order condition for truthful revelation of θ is satisfied.

The next result derives a tractable form for the local second order condition.

Lemma 2 For the second order conditions to be locally satisfied, we also need that

xθ(θ)cθ(q(θ), θ) + x(θ)cqθ(q(θ), θ)qθ(θ) ≤ 0. (7)

As shown in textbooks like Fudenberg and Tirole (1991), first and second order conditions

above imply global IC (as in equation (4)) if cθ < 0 for all q ∈ Q. Because we assume that

firms are specialized (assumption 2), local IC does not automatically imply global IC. Hence,

we need to verify explicitly below that global IC is satisfied.

Intuitively, assumption 2 is similar to a violation of single crossing. Viewing firm’s payoff,

t − xc(q, θ) as a function of x, the standard single crossing assumption would require that

the derivative of t − xc(q, θ) with respect to x is monotone in type, i.e. single crossing would

require that cθ does not change sign. But assumption 2 states exactly the opposite. It is

well known that in models without single crossing non-local IC can become relevant, see for

example Araujo and Moreira (2010) or Schottmüller (2011). We will first neglect these non-

local incentive constraints and verify ex post that they do not bind. Although there are some

issues with defining single crossing in multidimensional models (see for example McAfee and

McMillan (1988)), we refer to cθ switching sign as a “violation of single crossing”.

Finally, because cθ can switch sign, it is not clear that π(θ) = 0. That is, we cannot rule out

that π(θ) > 0 while π(θ) = 0 for some θ > θ. Hence, we need to explicitly track the individual

rationality constraint

π(θ) ≥ 0 (8)

where we normalize firms’ outside option to zero.

We assume that the planner maximizes utility Sq minus the transfer paid to firms. If the

planner assigns the project to player i with probability xi where i produces quality qi and

receives transfer ti, the planner’s utility from i can be written as xiSqi − ti = xi(Sqi − ci)− πi.

Above, we did not index q and x by i = 1 . . . n although we have n firms. It will be shown now

that this is indeed unnecessary because of the symmetry of the problem. To do so, we write
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the planner’s optimization problem9 including the firm identifier i

max

∫ θ̄

θ

. . .

∫ θ̄

θ

n
∑

i=1

f(θ1) . . . f(θn)/f(θi)
{

f(θi)[xi(Θ)(Sqi(θi)− c(qi(θi), θi))− πi(Θ)]

+ λi(θi)(πi
θi(Θ) + xi(Θ)cθi(q

i(θi), θi))

− µi(θi)(xi
θi(Θ)cθi(q

i(θi), θi) + xi(Θ)cqθi(q
i(θi), θi)qiθi(θ

i))

+ ηi(θ)πi(Θ)
}

−
∑

i

{τ i(Θ)xi(Θ)}+ σ(Θ)

(

1−
∑

i

xi(Θ)

)

dθ1 . . . dθn

where λi(·) and µi(·), ηi(·) ≥ 0 are the Lagrange multipliers (co-state variables) of the con-

straints (6), (7) and (8). Here, xi(Θ) denotes the probability of firm i being contracted when

types are Θ = (θ1 . . . θn). The last constraint ensures that probabilities sum to no more than

1. Because of assumption 1, this constraint will bind and σ(Θ) will therefore be positive. The

second but last term secures nonnegativity of the contracting probabilities where the Lagrange

multiplier τ i(Θ) ≥ 0.

The Euler equation for xi(Θ) can be rewritten as

f(θ1) . . . f(θn)/f(θi)
{

f(θi)[Sqi(θi)− c(qi(θi), θi)] + λi(θi)cθi(q
i(θi), θi)

+µi
θi(θ

i)cθi(q
i(θi), θi) + µi(θi)cθiθi(q

i(θi), θi)
}

= σ(Θ) + τ i(Θ). (9)

As the objective function is linear in xi(·), we get what is called a “bang-bang” solution in

optimal control theory: For any Θ, the firm i with the highest left hand side in (9) is contracted,

i.e. xi(Θ) = 1, while the other firms are not, i.e. xj(Θ) = 0 for all j 6= i.

With this simple structure for the decision x(Θ), the maximization problem is totally sym-

metric across all i. In particular, the first order conditions for qi(·) and πi(·) are the same for

all i. Consequently, we can use a notationally much simpler formulation of the maximization

problem

max

∫ θ̄

θ

f(θ)[x(θ)(Sq(θ)− c(q(θ), θ))− π(θ)] (10)

+ λ(θ)(πθ(θ) + x(θ)cθ(q(θ), θ))

− µ(θ)(xθ(θ)cθ(q(θ), θ) + x(θ)cqθ(q(θ), θ)qθ(θ))

+ η(θ)π(θ)dθ

9We immediately focus on the case with non-random qualities, i.e. each type’s quality is a deterministic
function of his type only. Appendix E in Jullien (2000) can be easily adapted to our setting to show that
optimal mechanisms are indeed deterministic under our assumptions.
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where λ(·) and µ(·), η(·) ≥ 0 are the Lagrange multipliers (co-state variables) of the constraints

(6), (7) and (8) respectively.

The Euler equation for π(·) implies

λθ(θ) = −f(θ) + η(θ) (11)

The first order condition for q(·) can be written as

f(θ)(S − cq(q(θ), θ)) + λ(θ)cqθ(q(θ), θ) + µ(θ)cqθθ(q(θ), θ) = −µθ(θ)cqθ(q(θ), θ). (12)

Define the virtual valuation of type θ as

V V (θ) = Sq(θ)− c(q(θ), θ) +
λ(θ)

f(θ)
cθ(q(θ), θ) (13)

If constraint (7) is not binding, the planner’s objective function is linear in x(θ), where x(θ)

is multiplied by V V (θ). Hence, using standard arguments, the firm with the highest V V wins

the procurement contract.

The following two lemmas are useful in the analysis below. The first lemma establishes that

we have a monotone hazard rate property for our case where single crossing is not satisfied.

Lemma 3 If either

(i) λ(θ) ≥ 0 for all θ ∈ [θ, θ̄] and λ(θ̄) = 0 or

(ii) λ(θ) = λ(θ̄) = 0,

then
d(λ(θ)/f(θ))

dθ
< 0 (14)

for values of θ with η(θ) = 0.

As we will see below, the property in equation (14) is useful to have. It is part of the set of

conditions to make quality q monotone in θ. Case (i) is relevant for the (WM) case and case

(ii) for (WNM). If η(θ) > 0, it turns out that the monotonicity of quality is easy to prove (see

the discussion of profit bunching below).

Lemma 4 Assume µ(θ) = 0 and d(λ(θ)/f(θ))
dθ

< 0 for all θ with η(θ) = 0. Then

11



1. if there is θ̂ such that q(θ̂) = k(θ̂) then qθ(θ̂) ≥ kθ(θ̂),

2. if there is θ′ such that cθ(q(θ
′), θ′) ≤ 0 then cθ(q(θ), θ) ≤ 0 for all θ > θ′ and

3. if there exist θ1, θ2 > θ1 with π(θ1) = π(θ2) = 0 then π(θ) = 0 for all θ ∈ [θ1, θ2].

The first result says that if q and k coincide for some value θ̂, then it cannot be the case

that k exceeds q for higher values of θ. Further, it is the case that once cθ ≤ 0 for the optimal

q(θ) then cθ stays non-positive for all higher θ. Finally, the third result implies that if two types

have zero profits then all types in between have zero profits as well. That is, there cannot be

a type θ ∈ [θ1, θ2] with positive profits (and negative profits are excluded by equation (8)).

Finally, we use the following notation. Let qh(θ) denote the solution to10

S − cq(q(θ), θ) +
1− F (θ)

f(θ)
cqθ(q(θ), θ) = 0 (15)

and ql(θ) the solution to11

S − cq(q(θ), θ)−
F (θ)

f(θ)
cqθ(q(θ), θ) = 0 (16)

In the following two sections we solve the problem for the WM and then the WNM case.

The strategy will be to solve the first order condition and then to verify ex post that (7) and

non-local incentive constraints do not bind under our assumptions. Section 5 returns to the

case where (7) is not satisfied.

3. First best welfare monotone

We will now characterize the optimal mechanism for the WM-case. The following lemma is

useful to characterize the optimal menu. The lowest type θ receives lowest profits (zero) and

the IC constraint (6) is binding downwards. That is, high types would like to mimic low types

(not the other way around).

Lemma 5 In the WM-case we have: π(θ) = 0 and λ(θ) ≥ 0 for all θ ∈ [θ, θ̄].

10If several q solve this equation, we denote the highest by qh. By assumption 1 and 2, there can be at most
one q > k(θ) satisfying equation (15).

11If the solution to this equation is not unique, let the lowest solution be ql. By assumption 1 and 2, there is
at most one q < k(θ) satisfying equation (16).
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Now we are able to characterize the solution for the WM case. There are two cases to

consider. In the first case, the solution (given by equation (15)) is such that the violation of

single crossing plays no role. This is basically the solution to a standard problem. In the second

case, low θ types are bunched on zero profits (but with different quality levels) and from θb ≥ θ

onwards, q(θ) follows the solution in equation (15).

Proposition 1 There are two cases:

1. If cθ(q
h(θ), θ) < 0, then qh(θ) in equation (15) gives the solution for all θ ∈ [θ, θ̄]. We

have πθ(θ), qθ(θ), xθ(θ) > 0 for each θ ∈ [θ, θ̄].

2. If cθ(q
h(θ), θ) ≥ 0 then there exists a largest θb ≥ θ such that

q(θ) = k(θ) for all θ ∈ [θ, θb]

and θb is determined by the unique solution to

S − cq(k(θb), θb) +
1− F (θb)

f(θb)
cqθ(k(θb), θb) = 0 (17)

For all θ > θb quality q(θ) = qh(θ). We have

π(θ) = 0 for all θ ∈ [θ, θb],

πθ(θ) > 0 for all θ ∈ (θb, θ̄], and

xθ(θ), qθ(θ) ≥ 0 for all θ ∈ [θ, θ̄].

In the first case of proposition 1, the possibility that cθ can change sign does not play a

role in the relevant range of q. Therefore, the standard menu as in Che (1993) results. In the

second case, cθ would be positive for some types in the standard quality menu which is given

by (15). A direct corollary of lemma 1 is that cθ ≤ 0 at the first best quality level. Hence,

the standard downward distortion of q caused by the rent extraction motive is responsible

for having cθ > 0 for some types under qh. By (6), profits are decreasing at types where

cθ > 0. If qh was implemented, type θb would therefore have zero profits while lower types

would have positive profits. But now the principal can do better than qh: By assigning k(θ)

to types below θb, the principal (i) saves rents as those types remain at zero profits and (ii)

reduces distortion compared to qh. Because each type is most cost efficient at his k(θ), no other

type can profitably misrepresent as θ if θ expects zero profits and produces quality k(θ). Put

13
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Figure 1: Optimal q(θ) (solid, red) in the WNM case, together with (dashed)
ql(θ), qfb(θ), k(θ), qh(θ).

differently, the incentive constraint is lax in this situation. Therefore, it is not necessary to

distort quality further down than k(θ) for rent extraction purposes.

In conclusion, the menu in case 2 of proposition 1 consists of a standard part for high types

and one part where types produce at k(θ) and consequently the incentive constraint is lax. This

already gives the intuition for the following proposition:

Proposition 2 The solution in proposition 1 is globally incentive compatible.

4. First best welfare non-monotone

In this section, first best welfare is U-shaped. The lowest type θ is no longer worst (in a first

best sense) and therefore he might have positive profits under the optimal mechanism. The

following lemma confirms this intuition.

Lemma 6 Under WNM, π(θ) > 0, π(θ̄) > 0 and λ(θ) = λ(θ̄) = 0.

One can think of the WNM case as having two standard menus. One for lower θ in which

lower types are better, profits are decreasing in type and quality is distorted upwards. The

other for higher θ with higher types being better, profits increasing in type and quality distorted

downwards. These two menus have to be reconciled.
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A first idea could be that bunching on quality12 might be used to connect the two menus. It

is quickly shown that this does not work. To see this, suppose –by contradiction– that q(θ) = qb

for types θ in the bunching interval. As profits are decreasing in θ for low θ and increasing in

θ for high θ, the type θ′ with the lowest profits (π(θ′) = 0) would have to be in the bunching

interval. From (6), the profit minimizing type has to satisfy cθ(q
b, θ′) = 0. Hence, he produces

at qb = k(θ′) and is for this quality level the most efficient type. But then he has the highest

profits of all types in the quality-bunching interval. This contradiction implies that a menu

with quality bunching cannot be the solution.13

The right way to reconcile the two standard menus is an interval of types with zero profits

(but differing quality levels). Incentive compatibility within the bunched interval is no problem

here. Each bunched type θ will produce at quality level k(θ) at which he has lower costs than

any other type. The following proposition describes the optimal menu in the WNM case.

Proposition 3 There exist unique θ1 and θ2, with θ1 < θ2, such that ql(θ1) = k(θ1) and

qh(θ2) = k(θ2). Quality is determined by

q(θ) =











qh(θ) for all θ > θ2

k(θ) for all θ ∈ [θ1, θ2]

ql(θ) for all θ < θ1

(18)

We have

π(θ) = 0 for all θ ∈ [θ1, θ2]

πθ(θ) < 0 for all θ < θ1

πθ(θ) > 0 for all θ > θ2

qθ(θ) ≥ 0

Type θw, who has the lowest first best welfare of all types, is in the zero profit interval and

produces his first best quality. It holds that

xθ(θ) < 0 for all θ < θw

xθ(θ) > 0 for all θ > θw

12See, for instance, Guesnerie and Laffont (1984) or Fudenberg and Tirole (1991).
13Unless it happens at qb = k in the case where k(θ) = k is constant. This is what we call bunching on (zero)

profits.
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Figure 1 illustrates proposition 3. Quality is above first best, i.e. upwards distorted, for

low θ and downwards distorted for high θ. This is a consequence of the U-shaped first best

welfare which implies that low types are better around θ and high types are better around θ̄.

Quality is not distorted at the (locally) best types θ and θ̄ which resembles the well known “no

distortion at the top” result. Quality is also undistorted for the worst type θw which allows a

continuous transition from upwards to downwards distortion.

The boundaries of the zero profit interval [θ1, θ2] are at those types where the low standard

menu and the high standard menu feature q(θ) = k(θ). In the zero profit interval each type

produces the quality for which he is the cost minimizing type, i.e. k(θ). Any other quality

could not be incentive compatible within a zero profit interval as either types slightly higher

or slightly lower would be more efficient. But then they could achieve positive profits by

misrepresenting. From q(θ) = k(θ), it is evident that misrepresenting as any other type θ ∈

[θ1, θ2] cannot be profitable and this is exactly the reason why the zero profit types do not

receive any informational rent.

At θ1 and θ2, q(θ) is kinked. At θ1, for example, the quality according to the standard low

menu (ql) would include additional informational distortion pushing quality upwards. Therefore

ql(θ) > k(θ) for types slightly above θ1 while q(θ) = k(θ) is necessary to stay in the zero profit

interval.

Further, the solution in proposition 3 satisfies equation (4).

Proposition 4 The solution in proposition 3 is globally incentive compatible.

The following proposition formalizes the “grudge” of high θ incumbents against low θ en-

trants: although in second best the incumbent generates higher quality and higher welfare than

the entrant, it can happen that the entrant wins the procurement contract. Incidentally, the

opposite can happen as well: an incumbent wins from an entrant who generates higher (second

best) welfare.

Proposition 5 The optimal allocation is not (second best) efficient in the sense that there exist

types θ′, θ′′ such that θ′ wins against θ′′ while W sb(θ′′) > W sb(θ′).

A similar result is well known in auctions with asymmetric bidders. Myerson (1981) shows

that it is optimal to discriminate between bidders drawing their valuations from different dis-

tributions. In our case, however, there is only one distribution from which types are drawn.
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Nevertheless, the intuition is similar. The reason for discrimination are informational dis-

tortions. For the lower standard menu, the relevant term inducing distortion in the virtual

valuation is −F (·)cθ(·). For high θ, the respective term is (1−F (·))cθ(·). While discrimination

in Myerson (1981) results from the fact that different distributions govern the distortion, dis-

crimination in our model is due to different parts of the same distribution governing distortion:

For low θ, the left tail is relevant and for high types the right tail of the distribution matters

for distortion. The reason is that the local incentive constraint is upward binding in the lower

standard menu and downward binding in the upper standard menu.

We conclude this section with a brief discussion of how to implement the optimal menus in

propositions 1 and 3. We argue that this is more straightforward for the WM than for the WNM

case. In each case, we have in mind that the government announces at the start its willingness

p = t/x to pay (conditional on winning) for each quality level q. In case 1 in proposition 1,

the government can then organize a second price auction to determine the firm that wins the

contract. The firm with the highest bid, wins and pays the second highest bid. This firm is

then allowed to choose its combination (q, p) from the menu announced by the government.

Since the planner wants the highest type to win and profits are strictly increasing in θ, such an

auction selects the right type as winner. Since we assume that the service is valuable enough

that it has to be supplied, there is no reserve price in this auction.

However, in the second case in proposition 1 there are a number of types with equal (zero)

profits while the planner prefers higher θ for the case where quality increases in θ. The auction

described above is not optimal here since it cannot discriminate between types with the same

profits. In that case, the selection mechanism must be based on quality directly. To be more

precise, let firms bid qualities. The firm bidding the highest quality wins, produces this quality

and receives payment p (according to the menu announced by the government).

In the WNM case, there is no standard implementation mechanism. The planner’s prefer-

ence over winning types is given by the virtual valuation V V in equation (13). Again, a price

auction cannot work because of the zero profit interval: These types have the same valuation

for winning the auction but should have different probabilities of winning (V V (θ) and thus x(θ)

is not constant over θ ∈ [θ1, θ2]). An auction based on quality does not work either because qθ

and xθ do not have the same sign for all types. Further, a scoring rule auction, as analyzed in

Che (1993), cannot implement the optimal mechanism either. This can be seen as follows.

Consider a scoring rule of the form score(p, q) = s(q)− p, where the price p is (only) paid

to the winner of the auction. In a second score auction, the second highest score, score(2),
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determines the rents going to the winner. Hence, in a second score auction, it is a dominant

strategy to bid the maximum score that one can deliver at non-negative profits. Thus,

bid(θ) = max
q

{s(q)− c(q, θ)}

To implement the optimal mechanism, it must be the case that the first order condition

sq(q)− cq(q, θ) = 0

yields q(θ) as given by equation (18). As shown by Che (1993), it then follows that

s(q) = Sq +

∫ q

q(θ)

λ(q−1(s))

f(q−1(s))
cqθ(s, q

−1(s)) ds for q ∈ [q(θ), q(θ̄)]

and −∞ for all other q; where q−1(s) is the inverse of q(θ) and λ(θ) is the Lagrange multiplier

(co-state) of the optimal menu derived in proposition 3.

This implies that the winner is determined by the firm bidding the highest value of

bid(θ) = Sq − c(q, θ) +

∫ q

q(θ)

λ(q−1(s))

f(q−1(s))
cqθ(s, q

−1(s)) ds

while in the optimal mechanism, the winner has the highest value of V V as given by equation

(13).14 Put differently, if the scoring rule implements the optimal mechanism it has to hold

that bid(θ′) = bid(θ′′) whenever V V (θ′) = V V (θ′′) under the optimal mechanism. The following

proposition says that generically this is untrue under WNM.

Proposition 6 Generically, a simple scoring rule auction cannot implement the optimal mech-

anism in the WNM case.

Consequently, more general mechanisms are needed for implementation in the WNM case.

As shown in proposition 5, the (optimal) government’s decision may be criticized ex post in

case a firm loses from a winner generating lower (second best) welfare. If the government

cannot implement the optimal mechanism because of its complexity, more inefficiencies will be

introduced in the WNM case.

14Note that there is also an issue in choosing the right tie-breaking rule. From the envelope theorem, d bid(θ)
dθ

=
−cθ(q(θ), θ). Therefore, all types with zero profits have the same bid because q(θ) = k(θ) for them which implies
d bid(θ)

dθ
= 0. The tie breaking rule should follow V V (θ) here, making the mechanism not easy to implement.
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5. Robustness

Above we made some assumptions on third derivatives of the cost function and the distribution

of θ for ease of exposition. Here we discuss how the solution changes when these assumptions

are no longer satisfied. In principle, there are two possible problems that can arise: First, the

second order condition (7) could be violated in the derived solution. Second, the program is no

longer globally concave.

5.1. Violation second order condition

For concreteness, we focus here on the WM case and assume that the problems arise because

of a violation of the MHR assumption. The cases where third derivatives cause problems with

(7) are dealt with analogously. In the WM case, the change in q for θ > θb is given by

qθ(θ) =
cqθ(q(θ), θ)− cqθθ(q(θ), θ)

1−F (θ)
f(θ)

− cqθ(q(θ), θ)
d( 1−F (θ)

f(θ) )
dθ

−cqq(q(θ), θ) + cqqθ(q(θ), θ)
1−F (θ)
f(θ)

. (19)

The assumptions made above are sufficient conditions for qθ(θ) ≥ 0. Hence, if F does not

satisfy the MHR assumption, it can still be the case that qθ(θ) ≥ 0 and xθ(θ) ≥ 0.15 If q and x

are non-decreasing in θ, we know that the second order condition (7) is satisfied. Even if, say,

qθ(θ) < 0 while xθ(θ) > 0, equation (7) can still be satisfied.

Now we consider the case where d((1 − F (θ))/f(θ))/dθ > 0 for θ > θb in such a way that

qθ < 0 causes a violation of (7). We first sketch how this is dealt with in general. Then we work

out an example. As shown by Guesnerie and Laffont (1984) and Fudenberg and Tirole (1991)

for the case of a single dimensional decision (say, only quality), a violation of the second order

condition leads to bunching: several θ-types produce the same quality. However, in our case

the decision is two dimensional: quality q and the probability of winning x. In fact, below we

do not work with x but with the virtual valuation V V as there is a one-to-one relation between

the two (i.e. higher V V implies higher x and the other way around). We show that in this

two-dimensional case, it is not necessarily true that a violation of (7) leads to bunching of types

θ to the same quality q and probability of winning x.

We use figure 2 to illustrate the procedure. This figure shows equation (7) (where it holds

with equality) in (q, V V ) space and the solution (q(θ), V V (θ)) that follows from the planner’s

15Whether xθ ≥ 0 can be derived from the expression for dV V (θ)/dθ in equation (39).
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Figure 2: Solution for quality q(θ) and virtual valuation V V (θ) for the case where (second
order) condition (7) is violated.

optimization problem while ignoring the second order condition; i.e. assuming µθ(θ) = 0 for all

θ. The former curve is downward sloping in the WM case since

dx

dq
=

xθ(θ)

qθ(θ)
= −x(θ)

cqθ(q(θ), θ)

cθ(q(θ), θ)
< 0

In the simple case (that we also use in the example below) where cθθ = 0, this curve boils down

to

x(θ)cθ(q(θ), θ) = −K < 0 (20)

for some constant K > 0, as differentiating equation (20) with respect to θ indeed gives xθcθ +

xcqθqθ = 0.

The solution (q(θ), V V (θ)) ignoring the second order constraint, starts at θ in the bottom

left corner and moves first over the thick (red) part of this curve, then follows the thin (blue)

part, curving back (i.e. both q and x fall with θ) then both q and x increase again with θ and

we end on the thick (red) part of the curve. The part of the curve where qθ, xθ < 0 violates

equation (7).

Hence we need to find θa, θb where (7) starts to bind and µ(θ) > 0. Then from θa onwards,

we follow the binding constraint till we arrive at θb, from which point onwards we follow the

solution (q(θ), V V (θ)) again. As shown in figure, the choice of θa determines both the trajectory

(q̃(θ), ˜V V (θ)) satisfying equation (7) and the end point of this trajectory θb. Since µ(θ) = 0

both for θ < θa and for θ > θb, it must be the case that
∫ θb
θa

µθ(θ)dθ = 0. To illustrate, for the
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Figure 3: Inverse hazard rate with f(θ) = (θ − a)2 + 1/50

case where cqθθ = 0,16 this can be written as (using equation (12)):
∫ θb

θa

f(θ)(S − cq(q̃(θ), θ)) + (1− F (θ)cqθ(q̃(θ), θ)

cqθ(q̃(θ), θ)
dθ = 0 (21)

We now illustrate this approach with an example.

Example 3 To violate the monotone hazard rate assumption we use the density f(θ) = (θ −

a)2 + 1/50 with support [0, a+ 1/4] where a has to be approximately 1.42 to satisfy the require-

ments of a probability distribution. The hazard rate of this distribution is depicted in figure

3.

Assume that there are two firms and that c(q, θ) = 1
2
q2− qθ+ θ. Then cθ(q, θ) = 1− q which

changes sign at q = 1. As cθθ = 0, the binding second order condition takes the form of (20):

x =
K

q − 1

for some K > 0. Note that this equation does not depend on θ. Hence in this case, “following

the constraint” takes the form of bunching θ ∈ [θa, θb] on some point

(q̃, ˜V V ) (22)

where ˜V V corresponds to the probability x̃ = K
q̃−1

. Choosing θa, fixes q̃ = q(θa) and θb since

q(θb) = q̃. Writing the dependency of q̃, θb on θa explicitly, θa solves equation (21):
∫ θb(θa)

θa

f(θ)(S − (q̃(θa)− θ))− (1− F (θ))dθ = 0 (23)

Since equation (7) will already start to bind for θa where qθ(θa) > 0, it is routine to verify that

this equation is downward sloping in θa. The unique solution in this example is θa ≈ 1.1685

which gives a corresponding θb = 1.428 and q̃ = 1.923.

16If cqθθ 6= 0, the differential equation (12) has to be solved for µ(θ). Although a bit tedious, this is do-able
since the differential equation is linear and first order in µ(θ).
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While the ironing procedure described above takes care of the local second order condition

(7), this does not necessarily imply global incentive compatibility. Global constraints are math-

ematically intractable in general frameworks; see Araujo and Moreira (2010) and Schottmüller

(2011) for special examples of how to handle global constraints. However, the following propo-

sition establishes that global constraints do not bind for a family of cost functions. This family

includes the functions we used in the example and the most commonly used linear-quadratic

cost functions.

Proposition 7 If cθθ = 0 and the local second order condition (7) is satisfied, the solution is

globally incentive compatible.

5.2. Concavity in q

The second possible problem with cqqθ not satisfying assumption 2 is that the planner’s objective

function (10) is not necessarily globally concave in q(·). However, in principle, the solution will

still satisfy the first order conditions derived before. In particular, it is never optimal to choose

q → ∞: Since costs are convex and the principal’s utility is linear in q, costs are higher than

benefits for q high enough and therefore optimal qualities cannot be arbitrarily high. Hence, if

Q is not bounded, the solution will be interior and satisfy the conditions derived above.

If the set of available qualities is a compact subset of IR+, corner solutions could play a role;

e.g. if quality cannot be higher than some level q̄, some types might have q(θ) = q̄ and the first

order conditions do not apply for them. However, such a situation can be easily approximated

by a continuous cost function which is very steep around q̄ (instead of jumping discontinuously

to infinity) and to which our analysis would apply.

6. Conclusion

We analyzed a procurement setting in which the procurement agency cares not only about

the price but also about the quality of the product. In many post liberalization situations

incumbents seem to be good at producing high quality while entrants can produce low quality

at very low costs. A similar pattern emerges if there are gains from specialization and firms

can specialize in either high quality or low costs.

Standard procurement models do not account for this possibility because single crossing is

assumed from the start. More precisely, it is assumed that “type” denotes efficiency and not
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specialization. This implies that a more efficient type is simply better for all quality levels. We

relax this assumption and allow each type to be specialized, i.e. to be the most most efficient

type for some quality level. This leads to a bunching of types on zero profits. The intuition is

that distorting quality further than the quality level a type is specialized in (for rent extraction

reasons) is not necessary: A type producing “his quality level” with expected profits of zero

cannot be mimicked by any other type. Hence, the incentive constraint is lax and an interval

of zero profit types is feasible.

If we assume that first best welfare is U-shaped, e.g. there are gains from specializing in low

costs even from a welfare point of view, we get an interesting discrimination result. Types with

lower second best welfare can be preferred to types with higher second best welfare. This is

similar to auctions with asymmetric bidders where discriminatory mechanisms are well known.

Contrary to this literature, bidders are drawn from the same distribution in our model. The

intuition is that the incentive constraint is first upward and then, for higher types, downward

binding. Therefore, different parts of the distribution govern the distortion for low and high

types. Further, in this case “gold plating” can be optimal in the sense that some types produce

quality levels above their first best levels.
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A. Appendix: Proofs

Proof of lemma 1 From the first order condition for qfb we derive that

qfbθ =
−cqθ
cqq

> 0

Then we find that

W fb
θθ (θ) =

c2qθ
cqq

− cθθ > 0

from the assumptions made on the function c(q, θ). Further, it follows from cθ(k(θ), θ) ≡ 0 that

cqθkθ(θ) + cθθ = 0. Hence qfbθ > kθ if and only if

−cqθ
cqq

>
cθθ
−cqθ

which holds by assumption 3. Q.E.D.

Proof of lemma 2 Define the function

Φ(θ̂, θ) = π(θ, θ)− π(θ̂, θ) ≥ 0

By IC this function is always positive and equal to zero if θ̂ = θ. In other words, the function

Φ reaches a minimum at θ̂ = θ. Thus truth-telling implies both

∂Φ(θ̂, θ)

∂θ̂

∣

∣

∣

∣

∣

θ̂=θ

= 0 (24)

and
∂2Φ(θ̂, θ)

∂θ̂2

∣

∣

∣

∣

∣

θ̂=θ

≥ 0 (25)

Since equation (24) has to hold for all θ̂ = θ, differentiating with respect to θ gives

∂2Φ(θ̂, θ)

∂θ̂2

∣

∣

∣

∣

∣

θ̂=θ

+
∂2Φ(θ̂, θ)

∂θ̂∂θ

∣

∣

∣

∣

∣

θ̂=θ

= 0

Then equation (25) implies that

∂2Φ(θ̂, θ)

∂θ̂∂θ

∣

∣

∣

∣

∣

θ̂=θ

≤ 0

It follows from the definition of Φ that

∂2Φ(θ̂, θ)

∂θ̂∂θ

∣

∣

∣

∣

∣

θ̂=θ

= xθ(θ)cθ(q(θ), θ) + x(θ)cqθ(q(θ), θ)qθ(θ) ≤ 0
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which is the inequality in the lemma. Q.E.D.

Proof of lemma 3 We need to show that

d(λ(θ)/f(θ))

dθ
=

λθ(θ)f(θ)− λ(θ)fθ(θ)

f(θ)2
< 0 (26)

We consider the following four cases:

λ(θ)
≥ 0 < 0

≥ 0 (α) (β)
fθ(θ) < 0 (δ) (γ)

Let’s consider the two cases in the lemma in turn.

Case (i): We can solve

λ(θ) = 1− F (θ)−

∫ θ̄

θ

η(t)dt (27)

Hence we need to show

−f(θ)2 − λ(θ)fθ(θ) < 0 (28)

where we use η(θ) = 0. This is obviously satisfied in case (α). In case (δ) we have

−f(θ)2 − (1− F (θ)−

∫ θ̄

θ

η(t)dt)fθ(θ) < 0

Then this inequality is implied by the MHR assumption 1 where we write d((1−F (θ))/f(θ))/dθ <

0 as

−f(θ)2 − (1− F (θ))fθ(θ) < 0 (29)

because η(t) ≥ 0. As we assume λ(θ) ≥ 0, we do not need to consider cases (β, γ).

Case (ii): Here we have a second way in which we can write λ(θ):

λ(θ) = −F (θ) +

∫ θ

θ

η(t)dt (30)

Equation (28) is clearly satisfied in cases (α), (γ). Case (δ) is satisfied for the same reason as

above. Hence we only need to consider case (β). Using equation (30), we write inequality (28)

as

−f(θ)2 − (−F (θ) +

∫ θ

θ

η(t)dt)fθ(θ) < 0

where we use η(θ) = 0. Then this inequality is implied by the MHR assumption 1 where we

write d(F (θ)/f(θ))/dθ > 0 as

−f(θ)2 + F (θ)fθ(θ) < 0 (31)
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and η(t) ≥ 0. Q.E.D.

Proof of lemma 4 We prove the parts in turn.

Part 1.: Suppose not, that is assume that q(θ̂) = k(θ̂) (i.e. cθ(q(θ̂), θ̂) = 0) and qθ(θ̂) <

kθ(θ̂). Then for ε > 0 small enough, it is the case that

cθ(q(θ̂ + ε), θ̂ + ε) > 0

and thus (by (6))

πθ(θ̂ + ε) < 0

This is only feasible if π(θ̂) > 0 and thus η(θ̂) = 0. With µ(θ) = 0 the first order condition (12)

becomes

S − cq(q(θ), θ) +
λ(θ)

f(θ)
cqθ(q(θ), θ) = 0 (32)

Using the implicit function theorem we find

qθ =
cqθ(−1 + (λ/f)′) + cqθθλ/f

cqq − cqqθλ/f
(33)

As derived in the proof of lemma 1, kθ = cθθ
−cqθ

. Comparing qθ and kθ in the point θ̂ we can

simplify the expression in (33) by noting that cqθθ = cqqθ = 0 for θ = θ̂ by assumption 2. Using

this we can write qθ(θ̂) < kθ(θ̂) as

cqqcθθ − c2qθ > c2qθ(−λ/f)′ (34)

which leads to a contradiction because the left hand side is negative by assumption 3 and the

right hand side is positive by assumption. Hence it must be the case that qθ(θ̂) ≥ kθ(θ̂) at such

a point θ̂.

Part 2. Suppose not, that is there exists θ′′ > θ′ such that cθ(q(θ
′′), θ′′) > 0. This implies

that there exists θ̂ ∈ [θ′, θ′′) such that q(θ̂) = k(θ̂) and qθ(θ̂) < kθ(θ̂). Part 1 of this lemma

shows that this is not possible.

Part 3. The proof is again by contradiction. Suppose, profits were positive on some interval

(θ̂1, θ̂2) with θ1 < θ̂1 < θ̂2 < θ2.
17 Quality q(θ) for θ ∈ (θ̂1, θ̂2) will be determined by (32) with

λ(θ) = 1− F (θ)−
∫ θ̄

θ̂2
η(θ) dθ. Clearly, there has to be a type θ̂ ∈ (θ̂1, θ̂2) at which π(θ) attains

a local maximum. From (6), it follows that cθ(q(θ̂), θ̂) = 0. Put differently, q(θ̂) = k(θ̂). Since

profits are increasing for θ̂ − ε and decreasing for θ̂ + ε, (6) implies that

qθ(θ̂) < kθ(θ̂)

17By continuity of π(θ), it cannot be the case that π(θ) > 0 only in a point.
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which is impossible by part 1 of this lemma. This is the required contradiction. Q.E.D.

Proof of lemma 5 In order to proof this, we need the following result.

Lemma 7 At all qualities greater or equal to his first best quality qfb(θ), the costs of type θ are

lower than the costs of all θ̃ < θ, i.e. c(q, θ) < c(q, θ̃) ∀q ≥ qfb(θ) and θ̃ < θ.

Proof of lemma 7 At qfb(θ) the claim follows from the increasing first best net value as-

sumption (WM): If a lower θ had the same or lower costs at qfb(θ), he could produce at least

the same net value by producing at qfb(θ). For higher qualities note that the cost differences

between producing qfb(θ) and q > qfb(θ) is decreasing in θ̃ ≤ θ:

dc = c(q, θ̃)− c(qfb(θ), θ̃) =

∫ q

qfb(θ)

cq(k, θ̃)dk (35)

Because of cqθ < 0, this term is decreasing in θ̃ and the claim follows. Note that an implication

of this claim is that

cθ(q, θ) < 0 for all q ≥ qfb(θ) (36)

as otherwise a marginally lower type would have lower costs. Q.E.D.

The proof of lemma 5 is by contradiction. Suppose there exists θ′ such that λ(θ′) < 0.

Since the transversality condition implies λ(θ̄) = 0,18 it follows from the continuity of λ(θ)

that there must be an interval of types in between θ′ and θ̄ where λθ(θ) = −f(θ) + η(θ) > 0.

This can only happen if η(θ) > 0 or equivalently π(θ) = 0 on this interval. On such a zero

profit interval cθ(q, θ) = 0 as πθ(θ) would not be zero otherwise.19 Hence, each type produces

a quality such that he is the cost minimizing type for this quality. Furthermore, each of these

types has π(θ) = 0. These two facts imply that incentive compatibility cannot be a problem

on the zero profit interval. In other words, we can ignore constraint (7) on this interval, i.e.

µ(θ) = 0 on this interval.

Denote the lowest type with zero profits as θ1 = inf{θ|π(θ) = 0}. Note that from what was

said above λ(θ1) < 0 and µ(θ1) = 0. Furthermore, cθ(q(θ1 − ε), θ1 − ε) > 0 for ε > 0 small

enough.20 Equation (36) then implies q(θ1− ε) < qfb(θ1− ε). However, this contradict the first

order condition with respect to q(·):

f(θ)(Sq(q(θ))− cq(q(θ), θ)) + λ(θ)cqθ(q(θ), θ) + µ(θ)cqθθ(q(θ), θ) = −µθ(θ)cqθ(q(θ), θ) (37)

18Because the highest type has strictly positive profits (see below).
19The alternative would be x(θ) = 0. But this is obviously not possible on an interval of types by assumption

1.
20This follows form the definition of θ1: Since he is the lowest type with zero profits π(θ1 − ε) > 0 and

therefore profits have to be decreasing at θ1 − ε for ε small enough.

28



Since µ(θ1) = 0, we can ignore the µ(θ1−ε) term for ε > 0 small enough. Further, µθ(θ1−ε) ≤ 0

since µ(θ) ≥ 0. But then cθq < 0 and λ(θ1−ε) < 0 imply Sq(q(θ1−ε))−cq(q(θ1−ε), θ1−ε) < 0

which contradicts q(θ1 − ε) < qfb(θ1 − ε). Hence, there is a contradiction and λ(θ) ≥ 0 has to

hold.

To prove the other part of the lemma, suppose (again by contradiction) that π(θ) > 0. Con-

sequently, the dynamic optimization problem will include the transversality condition λ(θ) = 0.

Given that λθ(θ) = −f(θ) + η(θ), this implies that λ(θ) < 0 for some interval of θ starting at

θ.21 As we just proved, it is not possible to have λ(θ) < 0. This is the required contradiction

and we conclude that π(θ) = 0. Q.E.D.

Proof of proposition 1

We will analyze the problem without the incentive constraint (7) first, i.e. µ(θ) = 0, and

show in proposition 2 that it is satisfied. The first order condition (12) becomes

S − cq(q(θ), θ) +
λ(θ)

f(θ)
cqθ(q(θ), θ) = 0 (38)

Since θ̄ is the best type (in a first best sense), we expect his profits to be positive and therefore

η(θ̄) = 0 and also the transversality condition λ(θ̄) = 0 holds (indeed below we verify that

π(θ̄) > 0). Therefore (11) implies λ(θ) = 1 − F (θ) for some high types for which the profit

constraint does not bind. Note that for this case, equation (38) can be written as (15).

Now we have two cases. With the solution qh(θ) given by (15) it is the case that either

1. cθ(q
h(θ), θ) < 0 or

2. cθ(q
h(θ), θ) ≥ 0

The first case implies that q(θ) > k(θ). Hence for the first case, π(θ) = 0 and πθ(θ) > 0 for

(at least) θ close to θ (see equation (6)). It follows from part 2 of lemma 4 that cθ(q(θ), θ) ≤ 0

for all θ. Thus πθ ≥ 0 for each θ > θ and the profit constraint π(θ) ≥ 0 does not bind for θ > θ.

Therefore the solution in equation (15) is the overall solution.

Finally, consider the virtual surplus in equation (13) with λ(θ) = 1 − F (θ). Using an

envelope argument, it is routine to derive that

dV V (θ)

dθ
= −cθ(1−

(

1− F

f

)

′

) +
1− F

f
cθθ > 0 (39)

21To be precise, this follows from the continuity of π(θ): As π(θ) > 0, profits have to be positive for some
interval of low θ and consequently η(θ) = 0 for those θ. This implies λ(θ) < 0.
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Since the project is allocated to the firm with the highest V V , it is allocated to the firm with

the highest θ. Thus xθ(θ) > 0.

Now consider the second case in proposition 1 with cθ(q
h(θ), θ) ≥ 0.

Lemma 8 If cθ(q
h(θ), θ) ≥ 0, then q(θ) = k(θ).

Proof of lemma 8 If cθ(q
h(θ), θ) = 0, the lemma is true.

If cθ(q(θ), θ) > 0 then πθ(θ) < 0. Then π(θ) = 0 (lemma 5) implies that this violates the

constraint that profits should be non-negative. In this case the solution cannot be given by

equation (15) as the profit constraint is binding. Hence the solution q(θ) is given by equation

(32) where (see equation (11)) λ(θ) is given by equation (30). This solution cannot feature

cθ(q(θ), θ) > 0 as this would lead to a violation of π(θ) ≥ 0 for θ close to θ.

The following argument shows that cθ(q(θ), θ) < 0 is not possible either. In this case

πθ(θ) > 0. Then either (i) there exists θ′ > θ such π(θ′) = 0 or (ii) q(θ) = qh(θ). Case (i) leads

to a contradiction because of lemma 4. If (i) does not happen, then η(θ) = 0 for all θ > θ,

which implies case (ii). However, case (ii) with cθ(q(θ), θ) < 0 contradicts the assumption in

the lemma that cθ(q
h(θ), θ) ≥ 0.

Thus we have cθ(q(θ), θ) = 0 or equivalently q(θ) = k(θ). Q.E.D.

Because of lemma 8, there is a largest θb ≥ θ such that q(θ) = k(θ) for all θ ∈ [θ, θb]. This

θb is uniquely defined.

Since π(θ) = 0 and πθ = 0 for all θ ∈ [θ, θb], we have π(θ) = 0 for all θ ∈ [θ, θb].

Uniqueness of θb as defined in (17) follows from the fact that the expression in equation

(17) is strictly increasing in θb. Differentiating the expression with respect to θb and using

assumption 2 we find:
1

−cqθ
(c2qθ − cqqcθθ − c2qθ

(

1− F

f

)

′

) > 0

We can only leave the interval [θ, θb] if πθ(θb+ε) > 0 for ε > 0 small enough. Then π(θ) > 0

for all θ > θb. If not, there would be θ′ > θb such that π(θ′) = 0 which contradicts lemma 4.

Hence q(θ) = qh(θ) for all θ > θb and equation (17) makes sure that q(θ) is continuous.

As in the previous case, we have qθ(θ) > 0 for θ > θb. For θ ∈ [θ, θb] we have q(θ) = k(θ)

which is (strictly) increasing in θ if cθθ > 0. If cθθ = 0, quality is constant over the range

θ ∈ [θ, θb].
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Finally, we show that xθ(θ) ≥ 0:

dV V (θ)

dθ
= −cθ(1−

(

λ(θ)

f

)

′

) +
λ(θ)

f
cθθ ≥ 0 (40)

where the inequality is strict for θ > θb and for θ ∈ [θ, θb] if cθθ > 0. Q.E.D.

Proof of proposition 2 The monotonicity of x(θ) and q(θ) together with cθ ≤ 0 and

cqθ < 0 imply that the local incentive compatibility constraint (7) is satisfied.

For global incentive compatibility we first show that no θ can profitably misrepresent as

θ̂ > θ. This is true if

π(θ)− π(θ̂)− x(θ̂)[c(q(θ̂), θ̂)− c(q(θ̂), θ)] ≥ 0

Using (6), this can be rewritten as

∫ θ̂

θ

x(t)cθ(q(t), t)− x(θ̂)cθ(q(θ̂), t) dt ≥ 0

This last inequality can be rewritten as

∫ θ̂

θ

∫ θ̂

t

xθ(s)cθ(q(s), t) + x(s)cqθ(q(s), t)qθ(s) ds dt ≤ 0 (41)

The second term of the integrand is negative by the monotonicity of q(θ) in proposition 1. Note

that we saw in the proof of proposition 1 that cθ(q(θ), θ) ≤ 0 for all types. Since t ≤ s and

cθθ ≥ 0, clearly ct(q(s), t) ≤ 0 in the first term of the integrand. As xθ ≥ 0 in proposition 1,

inequality (41) has to hold.

To show that no θ gains by misrepresenting as θ̂ < θ we use the following notation introduced

in equation (3).

π(θ̂, θ) = t(θ̂)− x(θ̂)c(q(θ̂), θ)

The idea is to define the following cost function

c̃(a, θ) = min{c(q(a), a), c(q(a), θ)} (42)

where q(a) is the optimal quality schedule derived above. Next define

π̃(a, θ) = t(a)− x(a)c̃(a, θ) (43)
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The following inequalities show that the solution derived above satisfies IC globally as well:

π(θ̂, θ)− π(θ, θ) (44)

≤ π̃(θ̂, θ)− π̃(θ, θ) (45)

=

∫ θ̂

θ

∂π̃(a, θ)

∂a
da (46)

=

∫ θ

θ̂

(

∂π(a, θ)

∂a

∣

∣

∣

∣

θ=a

−
∂π̃(a, θ)

∂a

)

da (47)

=

∫ θ

θ̂

xθ(a)(c̃(q(a), θ)− c(q(a), a)) + x(a)(c̃a(q(a), θ)− cq(q(a), a)qθ(a))da (48)

≤ 0 (49)

where the first inequality follows from the definition of c̃(·) and the observation that π̃(θ, θ) =

π(θ, θ). Equation (47) follows because ∂π(a,θ)
∂a

∣

∣

∣

θ=a
= 0 by the first order condition of truthful

revelation. Equation (48) follows from the definitions of the derivatives of π(a, θ) and π̃(a, θ)

w.r.t. a. The final inequality follows from the properties xa(a), qa(a) ≥ 0 and the following

three observations. First, by definition of c̃(·) we have

c̃(q(a), θ)− c(q(a), a) ≤ 0

Second, for values of a where c̃(a, θ) = c(q(a), θ) we have

c̃a(q(a), θ)− cq(q(a), a)qa(a) = (cq(q(a), θ)− cq(q(a), a))qa(a) ≤ 0

because cqθ ≤ 0. Finally for values where c̃(a, θ) = c(q(a), a) we have

c̃a(q(a), θ)− cq(q(a), a)qa(a) =
∂c(q(a), θ)

∂θ

∣

∣

∣

∣

θ=a

≤ 0

because in our solution cθ(q(θ), θ) ≤ 0 for all θ. Q.E.D.

Proof of lemma 6 We show that a menu featuring π(θ) = 0 is not optimal. In the WNM

case, first best welfare is decreasing in type around θ. A standard envelope argument shows

that this implies cθ(q
fb(θ), θ) > 0. Now suppose, π(θ) = 0. Then πθ(θ) ≥ 0 which implies

cθ(q(θ), θ) ≤ 0 by (6). Therefore, q(θ) > qfb(θ). But then a simple change in the menu would

be beneficial and therefore the menu cannot be optimal: Change q(θ) to qfb(θ) and adjust

transfers such that π(θ) stays zero. As θ has again zero profits his incentive compatibility does

not change. Reducing quality will make θ’s menu point even less attractive for other types.22

By the definition of qfb(·), this change is beneficial. Q.E.D.

22This argument can be made formal using the same dc expression as in the proof of lemma 7.
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Proof of proposition 3 Again the global IC constraint will be neglected. It will become

clear in the proof of proposition 4 that it is satisfied nevertheless.

From lemma 6 we know that π(θ̄), π(θ) > 0 and therefore the transversality conditions

λ(θ̄) = λ(θ) = 0 have to hold. Furthermore, the positive profit constraint is non binding and

therefore η(θ̄) = η(θ) = 0. By (11) and the continuity of π, we have λ(θ) = 1− F (θ) > 0 close

to θ̄ and λ(θ) = −F (θ) < 0 close to θ. For these two expressions of λ(·), the monotone hazard

rate assumption implies that the quality schedule determined in (32) is increasing in type, i.e.

qθ(θ) > 0.

Next we proof the existence of θ1 and θ2. By continuity of λ(θ),23 there exists an interval

[θ̃1, θ̃2] such that λθ(θ) = −f(θ) + η(θ) > 0 and thus π(θ) = 0. Consequently, πθ(θ) = 0 for

all θ ∈ [θ̃1, θ̃2]. Let θ1 (θ2) denote the lowest (highest) θ̃1 (θ̃2) such that this is true for all

θ ∈ [θ1, θ2]. By continuity of q(θ) it follows that ql(θ1) = k(θ1) and qh(θ2) = k(θ2).

As shown in the proof of proposition 1 the expression in equation (17) is strictly increasing

in θb. This implies the uniqueness of θ2 = θb. With a similar argument one shows that

S − cq(k(θ), θ)−
F (θ)

f(θ)
cqθ(k(θ), θ)

is increasing in θ. This implies the uniqueness of θ1 which solves

S − cq(k(θ1), θ1)−
F (θ1)

f(θ1)
cqθ(k(θ1), θ1) = 0

Since

S − cq(k(θ), θ)−
F (θ)

f(θ)
cqθ(k(θ), θ) > S − cq(k(θ), θ) +

(1− F (θ))

f(θ)
cqθ(k(θ), θ)

for all θ it follows that indeed θ1 < θ2.

By the uniqueness of θ1 and θ2, cθ is positive for θ < θ1 and negative for θ > θ2. Together

with (6) this implies the sign of πθ as stated in the proposition.

In (θ1, θ2), there has to be a type with λ(θ) = 0. From (32), this type produces his first

best quality and as he is in the zero profit interval qfb(θ) = k(θ). The only type satisfying

this conditions is the type with the lowest first best welfare θw. Note that all θ < (>)θw have

cθ(q(θ), θ) ≥ (≤)0 and also λ(θ) < (>)0. Differentiating the virtual valuation with respect to θ

tells us the sign of xθ:

d V V

dθ
= cθ(q(θ), θ)

(

−1 +
∂ λ(θ)/f(θ)

∂θ

)

+
λ(θ)

f(θ)
cθθ(q(θ), θ) (50)

23In particular, to connect λ(θ) < 0 for small θ with λ(θ) > 0 for high θ, we need λθ > 0 over some range.
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From the paragraph above and the monotone hazard rate assumption, the virtual valuation,

and therefore x(θ), has to be decreasing on [θ, θ1] and increasing on [θ2, θ̄]. On (θ1, θ2), cθ is

zero and as λ flips sign at θw the proposition follows.

It was already mentioned that q(θ) is increasing for types with positive profits. Since k(θ)

is non-decreasing, q(θ) is non-decreasing for all θ. Q.E.D.

Proof of proposition 4 All θ ∈ [θ1, θ2] produce at k(θ) which is the quality level at which

a type has lower cost than any other type. Since these types also have zero profits, no other

type can profitably misrepresent as θ ∈ [θ1, θ2]. For θ ≥ θw the menu is equivalent to the one

described in proposition 1. Therefore, proposition 2 implies non-local IC on this part of the

menu. The same proof as for proposition 2 with reversed signs implies that the menu for θ < θw

is non-locally IC.

What remains to be shown is that no type θ < θw can profitably misrepresent as θ′ > θw

(and the other way round). Take such a θ and observe that θ2 has lower costs at q(θ′):

c(q(θ′), θ2)− c(q(θ′), θ) =

∫ θ2

θ

cθ(q(θ
′), t) dt < 0 (51)

The inequality follows from the fact that k(θ), k(θ2) < q(θ′) and cqθ < 0. Therefore, the

integrand is negative over the whole range. Incentive compatibility for θ requires

π(θ) ≥ π(θ′) + x(θ′)[c(q(θ′), θ′)− c(q(θ′), θ)]

= π(θ′) + x(θ′)[c(q(θ′), θ′)− c(q(θ′), θ2)] + x(θ′)[c(q(θ′), θ2)− c(q(θ′), θ)] < 0

The first term in the last expression is negative because incentive compatibility between θ2 and

θ′ is satisfied (proposition 2) and the second term is negative because of equation (51).

The proof for θ > θw and θ′ < θw works in the same way with θ1 in place of θ2. Q.E.D.

Proof of proposition 5 Consider θ′ = θ. Define W = W fb(θ) = W sb(θ). Since θ produces

his first best quality and first best welfare is decreasing at θ, there are types θ > θ with lower

welfare than W . By the definition of the (WNM)-case, W fb(θ̄) > W .

Taking these two points together and applying the intermediate value theorem yields the

existence of a type θ′′ such that W sb(θ′′) = W and W sb
θ (θ′′) > 0.

dW sb(θ)

dθ
= (S − cq(q(θ), θ))qθ(θ)− cθ(q(θ), θ) = −

λ(θ)

f(θ)
cqθ(q(θ), θ)qθ(θ)− cθ(q(θ), θ)

where the first order condition for q(·) is used for the second equality. From proposition 3

and its proof we know that λ and cθ both change sign at θw and therefore sign(λ(θ)) =

−sign(cθ(q(θ), θ)). Consequently, W
sb
θ (θ′′) > 0 implies λ(θ′′) > 0 and cθ(q(θ

′′), θ′′) < 0.
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The virtual valuation can be written as

V V (θ) = W sb(θ) +
λ(θ)

f(θ)
cθ(q(θ), θ)

and thus V V (θ) ≤ W sb(θ) since λ and cθ have opposite signs and the inequality is strict if

λ(θ), cθ(q(θ), θ) 6= 0.

If cθ(q(θ
′′), θ′′) < 0 it then follows that V V (θ) > V V (θ′′). By continuity, there exist types θ

that yield strictly higher welfare than θ but still lose from θ in the procurement.

Now consider the case where θ′′ ∈ (θ1, θ2) such that cθ(q(θ
′′), θ′′) = 0. In this case there are

types close to θ that lose from types close to θ′′ although the former yield higher (second best)

welfare W sb. Q.E.D.

Proof of proposition 6: If the scoring rule implements the optimal mechanism it has to

hold that bid(θ′) = bid(θ′′) whenever V V (θ′) = V V (θ′′) under the optimal mechanism.

Now take θ1 and θ2 as defined in proposition 3. Because bidθ(θ) = −cθ(q(θ), θ) and all

θ ∈ (θ1, θ2) have q(θ) = k(θ), it follows that bid(θ1) = bid(θ2). As virtual valuation and bids

are continuous in type, this implies that V V (θ1) = V V (θ2) has to hold if the scoring rule

implements the optimal mechanism: Otherwise, types slightly below θ1 and slightly above θ2

have the same bid but different virtual valuations. Since q(θi) = k(θi), the virtual valuation for

θi is Sk(θi) − c(k(θi), θi) for i = 1, 2. Consequently, the following equation has to hold if the

scoring rule implements the optimal mechanism:

∫ θ2

θ1

d{Sk(θ)− c(k(θ), θ)}

dθ
dθ = 0

This can be rewritten as
∫ θ2

θ1

(S − cq(k(θ), θ))cθθ(k(θ), θ)

−cqθ(k(θ), θ)
dθ = 0.

Note that this equation uniquely pins down θ2 for a given θ1.
24 Furthermore, it does so inde-

pendent of the distribution of types. However,θ2 is defined by the equation S − cq(k(θ), θ) +
1−F (θ)

f(θ)cqθk(θ),θ)
which depends on f(θ2). Hence, slightly perturbing f around θ2 changes θ2 but

not the equation above. Consequently, a scoring rule auction cannot implement the optimal

mechanism in a generic sense. Q.E.D.

24The reason is that the integrand is negative around θ1, positive around θ2 and changes sign only at one
type which is between θ1 and θ2. This follows from lemma 1.
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Proof of proposition 7 As shown in the proof of proposition 2, incentive compatibility

between θ and θ̂ boils down to the inequality

∫ θ̂

θ

∫ θ̂

t

xθ(s)cθ(q(s), t) + x(s)cθq(q(s), t)qθ(s) ds dt ≤ 0.

Now note that cθθ = 0 implies

xθ(s)cθ(q(s), t) + x(s)cθq(q(s), t)qθ(s) = xθ(s)cθ(q(s), s) + x(s)cθq(q(s), s)qθ(s).

But then global incentive compatibility has to be satisfied as xs(s)cθ(q(s), s)+x(s)cθq(q(s), s)qs(s) ≤

0 by the local second order condition. Q.E.D.
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