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Abstract

This paper adresses the robust counterparts of optimization problems containing sums of
maxima of linear functions and proposes several reformulations. These problems include many
practical problems, e.g. problems with sums of absolute values, and arise when taking the robust
counterpart of a linear inequality that is affine in the decision variables, affine in a parameter
with box uncertainty, and affine in a parameter with general uncertainty.

In the literature, often the reformulation that is exact when there is no uncertainty is used.
However, in robust optimization this reformulation gives an inferior solution and provides a
pessimistic view. We observe that in many papers this conservatism is not mentioned. Some
papers have recognized this problem, but existing solutions are either too conservative or their
performance for different uncertainty regions is not known, a comparison between them is not
available, and they are restricted to specific problems. We provide techniques for general prob-
lems and compare them with numerical examples in inventory management, regression and
brachytherapy. Based on these examples, we give tractable recommendations for reducing the
conservatism.

keywords: robust optimization; sum of maxima of linear functions; biaffine uncertainty;
robust conic quadratic constraints

JEL classification: C61

1 Introduction

Robust Optimization (RO) first appeared in Soyster (1973), and after receiving very little atten-
tion in the subsequent decades it has been an active research area since Ben-Tal and Nemirovski
(1999) and El Ghaoui and Lebret (1997) started publishing new results in the late nineties. In
its basic form, it requires a solution of an optimization problem to be feasible for any realization
of the uncertain parameters in a given uncertainty set. For several choices of the uncertainty
region this leads to tractable problems; for instance the robust counterpart (RC) of an LP with
polyhedral uncertainty can be reformulated as an LP and the RC of an LP with ellipsoidal
uncertainty is a conic quadratic program (CQP) (Ben-Tal et al. 2009a, p. 21).

In RO two distinct formulations that are equivalent in the nonrobust case may have differ-
ent RCs. This is the case for optimization problems containing the sum of maxima of linear
functions, of which the sum of absolute values is a special case (|x| = max{x,−x}). These
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problems arise in inventory management, supply chain management, regression models, tumour
treatment, and many other practical situations.

Because RO is applied constraint-wise w.l.o.g. and the objective function can always be
formulated as a constraint (Ben-Tal et al. 2009a, p. 11), we focus on the following robust
constraint:

`(ζ, x) +
∑
i∈I

max
j∈J
{`ij(ζ, x)} ≤ d ∀ζ ∈ Z, (1)

where ` and `ij are biaffine functions in the uncertain parameter ζ ∈ RL and the decision variable
x ∈ Rn, d ∈ R is the right hand side, and Z ⊂ RL is a user-specified uncertainty region, e.g.
a box or an ellipsoid. We can assume this uncertainty region to be closed and convex w.l.o.g.,
as the left hand side is convex in ζ and consequently the worst case is always located at an
extreme point of the uncertainty region. In the remainder of this paper our objective is always
to minimize d, but all methods can still be applied when a different objective is used.

In the literature, often the following RC is used, obtained from a reformulation with analysis
variables yi that is exact when there is no uncertainty:

(RC-R) `(ζ, x) +
∑
i∈I

yi ≤ d ∀ζ ∈ Z (2)

yi ≥ `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J. (3)

In this formulation, to which we refer as the RC-R (RC reformulation), yi ∈ R is a fixed variable,
taking the worst case value of the ith term of the sum. In many cases the terms of the sum do
not all reach their worst case value in the same realisation of the uncertain parameter ζ, and
therefore the RC-R is a conservative reformulation of constraint (1), i.e. a solution (x, d) that
is feasible for RC-R is also feasible for constraint (1), but not necessarily vice versa. However,
this reformulation is oftenly used without mentioning its conservatism.

Bertsimas and Thiele (2006) use the RC-R for a robust inventory problem which includes the
sum of holding and backlogging costs:

∑n
i=1 max{chxi,−cbxi}, where xi is the inventory level at

time period i and ch and cb are the holding and backlogging costs per time period respectively.
Their uncertainty region is the intersection of {ζ : ||ζ1:i||1 ≤ Γi} ∀i and {ζ : ||ζ||∞ ≤ 1},
where ζ1:i is the vector consisting of the first i elements of ζ, and Γi is not necessarily integer
(budgeted uncertainty). The reason they do not just put a bound on ||ζ||1, is because they
notice that the role of this bound disappears for constraints setting the cost for the first few
time periods, because the few uncertain parameters included in those constraints can all take
their boundary values. The restriction imposed by the ||·||∞ makes their model less robust
against large deviations in early time periods. Moreover, their formulation allows that the
values of different analysis variables take values based on different realizations of the uncertain
parameter. The same uncertainty region is also used by Bertsimas and Thiele (2004) for a
supply chain model, by Thiele (2004) for supply chains and revenue management, by Alem and
Morabito (2012) for a production planning problem under uncertain demand, and by Wei et al.
(2009) for a slightly more complicated inventory model in which items can be returned and
remanufactured or disposed. With the exception of (Thiele 2004, p.37), none of these papers
mention the conservatism of the formulation.

Ng et al. (2010) treat a lot allocation problem where each order is assigned to one or more
production locations before the production capacity of each location is fully known. Every
production location is assigned at most one order. Their uncertainty region is an ellipsoid over
all production locations, while an analysis variable is used for every order, so their formulation
is too conservative.

Kropat and Weber (2008) consider a robust linear cluster regression model using the sum of
absolute values with polyhedral and ellipsoidal uncertainty regions. They introduce an analysis
variable for every absolute value, which is too conservative because every uncertain parameter
affects two absolute values.

Ben-Tal et al. (2005) have a multi-period inventory problem and use affine decision rules for
the actual decisions (AARC). For every time period there are analysis variables indicating the
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costs in that time period. These costs are given by the maximum of holding costs and shortage
costs, which both are linear functions of past demand. In other words, each analysis variable is
the maximum of two linear functions of the uncertain parameter. They note that an analysis
variable should therefore be replaced with a function being the maximum of the two linear
functions. Because that would lead to a very complicated robust counterpart, they replace the
analysis variables with linear decision rules instead, which is conservative. Replacing analysis
variables with linear decision rules was also done by Ben-Tal et al. (2009b) and Ben-Tal et al.
(2011a).

Bienstock and Özbay (2008) were the first to identify and eliminate the conservatism of the
RC-R. The idea behind their solution is that it suffices to make constraint (1) hold for just
the vertices of the uncertainty region. The constraint then also holds for all other elements in
the (convex) uncertainty region, because the constraint is convex in ζ. They generalize it to
an iterative procedure that only adds a subset of the vertices, which they successfully tested
for computing basestock levels under budgeted uncertainty. It is not yet known how well this
iterative procedure performs on other problems or different uncertainty regions.

In this paper we identify a frequently existing conservatism in the formulation of a robust
optimization problem. We provide an overview of exact (non-conservative) formulations, ap-
proximations, and iterative methods in Section 2. It is not possible to compare the objective
value of different formulations in RO, so we introduce a new performance number which is in-
dependent of the reformulation in Section 3. The application scope of this paper is extended in
Section 4, where we show that our methods can be applied to a conic quadratic constraint with
box uncertainty. We evaluate the methods in Section 5 on some small toy problems and three
larger problems. We give conclusions in Section 6, and show how the robust counterparts in the
aforementioned papers could be improved.

The LP, MIP and CQP problems in this paper have been solved with AIMMS 3.11 FR3 x32
with ILOG CPLEX 12.1 unless stated otherwise. SDP problems have been modelled with CVX
(Grant and Boyd (2010)) and solved with SDPT3 (YALMIP (Löfberg (2010)) would nowadays
be a better choice as it allows the user to specify a linear constraint with quadratic uncertainty
with an ellipsoidal uncertainty region directly). Reported computing times have been obtained
under Windows XP SP3 on an Intel Core2 Duo E6400 (2.13 GHz) processor and 2 GB of RAM.

2 Solution approaches

2.1 Exact reformulations

2.1.1 Vertex enumeration

Vertex enumeration is an exact solution method introduced by Bienstock and Özbay (2008) that
is powerful especially when the uncertainty region has a small number of vertices. Let ζs(s ∈ S)
denote the vertices, and consider the following reformulation of constraint (1):

(Vertex enumeration) `(ζs, x) +
∑
i∈I

ysi ≤ d ∀s ∈ S (4)

ysi ≥ `ij(ζs, x) ∀i ∈ I ∀j ∈ J ∀s ∈ S.

This reformulation makes constraint (1) hold for all vertices of the uncertainty region. Constraint
(1) is convex in ζ, so it also holds for all other points in the uncertainty region.

2.1.2 Enumeration of robust linear constraints

The RC-R is inexact because it has analysis variables that may take values corresponding to
different worst case scenarios. A constraint with a single max function does not suffer from
this problem, because an equivalent set of linear constraints can be formulated without analysis
variables. An exact reformulation of RC (1) can be obtained by first rewriting it as a constraint
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with a single max{·} function by enumerating all combinations, and then applying RO to the
reformulation:

(EORLC) `(ζ, x) +
∑
i∈I

`i,j(i)(ζ, x) ≤ d ∀j(i) ∈ J ∀i ∈ I ∀ζ ∈ Z.

We call this the enumeration of robust linear constraints (EORLC) formulation. For example,
with I = {1, 2} and J = {1, 2}, the EORLC formulation has the following constraints:

`(ζ, x) + `1,1(ζ, x) + `2,1(ζ, x) ≤ d ∀ζ ∈ Z
`(ζ, x) + `1,1(ζ, x) + `2,2(ζ, x) ≤ d ∀ζ ∈ Z
`(ζ, x) + `1,2(ζ, x) + `2,1(ζ, x) ≤ d ∀ζ ∈ Z
`(ζ, x) + `1,2(ζ, x) + `2,2(ζ, x) ≤ d ∀ζ ∈ Z.

A similar formulation is also given by Bienstock and Özbay (2008), where it was neglected for
its exponential size. While the number of constraints |J ||I| indeed grows exponentially with the
number of terms in the summation, it is effective for small |I|. There are situations in which I
is small indeed, for instance with a planning horizon of up to ten periods. An example in the
literature with small |I| is the robust regression model by Kropat and Weber (2008). For this
regression model, the exact method increases the number of constraints with only a factor four
regardless of the number of observations, while reducing the number of analysis variables with
a factor two, compared to the pessimistic RC-R applied in the paper.

EORLC has a strong relation to vertex enumeration. In fact, it is exactly vertex enumeration
but on a different set. Constraint (1) can be formulated as:

`(ζ, x) +
∑
i∈I

∑
j∈J

λij`ij(ζ, x) ≤ d ∀λi ∈ ∆|J|−1 ∀i ∈ I ∀ζ ∈ Z,

where ∆|J|−1 = {λi ∈ R|J| :
∑
j∈J λij = 1, λij ≥ 0} (the standard simplex in R|J|). The vertices

of the simplex are given by unit vectors. If λi is a unit vector,
∑
j∈J λij`ij(ζ, x) simplifies to

a single `ij(ζ, x). It follows that vertex enumeration on the |J | simplices gives the EORLC
reformulation.

There is one special remark for inequalities of the form amax{0, `(ζ, x)}+bmax{0,−`(ζ, x)} ≤
d with a, b > 0, which are often used for holding and backlogging costs. Before enumerating
robust linear constraints, the inequality should be reformulated as max{a`(ζ, x),−b`(ζ, x)} ≤ d
in order to reduce the number of constraints.

2.1.3 Cases with special structure

There are several special cases of (1) that allow an exact reformulation. This section lists a few
general cases. More specific cases can be found in (Ben-Tal et al. 2009a, Ch. 12.2) and in Xu
et al. (2009).

The first case is when the uncertainty region Z is the direct product of sets Zi, where `ij
only depends on ζi in Zi and x. The RC-R is exact because all analysis variables can take their
worst case values simultaneously.

The second case is when the inequality contains the sum of absolute values of linear functions
of ζi and x:

`(ζ, x) +
∑
i∈I
|αi(x) + βi(x)ζi| ≤ d ∀ζ ∈ Z, (5)

where αi : Rn → R and βi : Rn → R are linear functions, and the uncertainty region Z is closed
under changing the sign of one or more vector elements (a box and an ellipsoid are examples
of such sets). We will call Z symmetric around ζ = 0. Note that the assumption that the
symmetry is around 0 is made w.l.o.g. The following constraint is equivalent to (5):

`(ζ, x) +
∑
i∈I
{|αi(x)|+ βi(x)ζi} ≤ d ∀ζ ∈ Z.
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Equivalence is readily checked by conditioning on the sign of αi(x). The formulation where
absolute values are replaced with analysis variables is equivalent, since the analysis variables do
not depend on ζ.

The third case is when the sum of maxima of linear functions is the sum of a common
nonnegative linear function of ζ and the product of a common nonnegative linear function of ζ
and a linear function of x:

`(ζ, x) +
∑
i∈I

max
j∈J
{αi(ζ) + βi(ζ)`ij(x)} ≤ d ∀ζ ∈ Z,

where αi : RL → R and βi : RL → R+ are linear functions. The common functions of ζ can be
placed outside the max{·} expression:

`(ζ, x) +
∑
i∈I

[
αi(ζ) + βi(ζ) max

j∈J
{`ij(x)}

]
≤ d ∀ζ ∈ Z,

and the RC-R of this constraint is exact. If the range of βi is R instead of R+, then maxj∈J{`ij(x)}
should be minj∈J{`ij(x)} when βi(ζ) < 0. This can be modelled as follows. Given a subset
I+ ⊆ I, we define a set which consists of those ζ for which βi(ζ) ≥ 0 for i ∈ I+, and βi(ζ) ≤ 0
for i ∈ I\I+:

Z(I+) = Z ∩ {ζ : βi(ζ) ≥ 0 ∀i ∈ I+, βi(ζ) ≤ 0 ∀i ∈ I\I+}.

Note that
Z =

⋃
I+⊆I

Z(I+).

The constraint can now be written as:

`(ζ, x)+
∑
i∈I

αi(ζ)+
∑
i∈I+

βi(ζ) max
j∈J
{`ij(x)}+

∑
i∈I\I+

βi(ζ) min
j∈J
{`ij(x)} ≤ d ∀ζ ∈ Z(I+) ∀I+ ⊆ I.

The number of constraints is 2|I| (one for each I+ ⊆ I), which is less than the |J ||I| constraints
obtained with EORLC. The max and min expressions do not depend on ζ, so the reformulation
with analysis variables is exact. Each constraint is still convex despite the min expressions,
because their coefficients βi(ζ) are negative.

2.2 Approximations

The variables yi in constraints (2)-(3) have been introduced for modeling the max{·} expression.
We do not need to know their values because they do not correspond to a “here and now”
decision. Only x has to be known for implementing a solution. The values of yi may be
adjusted according to the realisation of the uncertain parameter ζ as long as the constraints hold
for every realisation of ζ in the perturbation set (Adjustable RC). As first proposed by Ben-Tal
et al. (2005) for a multi-stage problem and later also done by Ben-Tal et al. (2009b) and Ben-Tal
et al. (2011a), we can make yi an affine function of ζ, which leads to the Affinely Adjustable
RC Reformulation (AARC-R). After substituting yi = vi +w

ᵀ

i ζ (with decision variables vi ∈ R
and wi ∈ RL), constraints (2)-(3) become:

(AARC-R) `(ζ, x) +
∑
i∈I

(
vi + w

ᵀ

i ζ
)
≤ d ∀ζ ∈ Z

vi + w
ᵀ

i ζ ≥ `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J.

This substitution gives a less conservative reformulation, while the robust counterpart is in the
same class of problems as the RC-R albeit with a larger number of variables. If `ij does not
depend on one or more components of ζ for all j for some fixed i, the computational complexity
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can seemingly be reduced by making yi a function of only those components that directly affect it.
However, it is easy to construct an example where this reduction introduces more conservatism
if the components are dependent.

There are two different approaches that lead to the same result. The first approach is
considering the Fenchel dual problem of maximizing the left hand side of constraint (1) over ζ
in Z. The resulting constraint is conservative because a non-concave maximization problem is
dualized. We give the full derivation and a proof of equivalence to the AARC-R in Appendix
A. The other approach is derived in Appendix B.

Ben-Tal et al. (2005) not only replace analysis variables with linear decision rules, but also
replace the actual decision variables since they solve a multistage problem. They evaluate
the quality of their formulation by also computing the optimal (possibly nonaffine) policy and
corresponding worst case costs. These costs are the same as the value of the AARC for almost
all of their data sets, from which they conclude that an affine policy provides excellent results.
This conclusion is only about the quality of the decision rules for the actual decision variables,
and not about the decision rules for the analysis variables. We draw the additional conclusion
that the AARC-R is exact for almost all cases in their data set.

An approach that is even less conservative than an affine decision rule, is a quadratic decision
rule:

yi = vi + w
ᵀ

i ζ + ζ
ᵀ

Wiζ,

where vi ∈ R, wi ∈ RL, and Wi ∈ RL×L are new analysis variables. This is called a Quadrat-
ically Adjustable RC reformulation (QARC-R) which is known to be tractable for ellipsoidal
uncertainty and (under some restrictions) for box uncertainty. When the uncertainty set is
ellipsoidal, the RC is an SDP with |I||J |+ 1 variables of size (L+ 1)× (L+ 1) (Ben-Tal et al.
2009a, p. 382). For box uncertainty, when the quadratic terms are restricted such that each
element of ζ is multiplied with itself and at most one other element of ζ, we can use the result
by Yanıkoğlu et al. (2011) to write the RC as an SDP with (|I||J |+ 1)dL/2e variable matrices
of size three.

Another way to reduce the conservatism of the RC-R is by first combining several max
expressions before reformulating. In order to do this, partition I into |G| groups: I =

⋃
g∈G Ig,

where the groups are mutually disjoint: Ig1 ∩ Ig2 = ∅ for g1, g2 ∈ G, g1 6= g2, and partition in
such a way that |Ig| is small for all g. Now introduce analysis variables for all g:

`(ζ, x) +
∑
g∈G

yg ≤ d ∀ζ ∈ Z

yg ≥
∑
i∈Ig

max{`ij(ζ, x)} ∀ζ ∈ Z ∀g ∈ G.

Because the cardinality of Ig is small, the sum of max expression within each constraint can
be transformed into a single max (EORLC). Each constraint in this reformulation is therefore
tractable and can be solved exactly, but the conservatism comes from the analysis variables yg.
These analysis variables can also be written as a linear, quadratic or more general function of ζ.

2.3 Iterative methods

In this section we describe two iterative methods. The first one is based on vertex enumeration,
the other one on EORLC.

An issue with box uncertainty is that the number of vertices grows exponentially in the time
horizon. Also for budgeted uncertainty, which is described in Section 1, the number of vertices
quickly becomes very large. Bienstock and Özbay (2008) proposed an iterative alternative for
vertex enumeration that only works with a subset of the vertices. We give a general description
of their procedure in Algorithm 1.
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Algorithm 1 Iterative vertex enumeration

Require: A linear program LP with constraints (4)
1: S := {ζnom} (the nominal value)
2: k := 0
3: repeat
4: k := k + 1
5: Solve LP
6: Let x∗ be the minimizer of LP , and LB be the value of d in LP
7: Solve MIP := maxζ∈Z

{
`(ζ, x∗) +

∑
i∈I maxj∈J{`ij(ζ, x∗)}

}
8: Let ζk be the maximizer, and UB be the value of MIP
9: S := S ∪ {ζk}

10: until UB − LB < ε

While the algorithm is running, LB is a lower bound on the optimal value of d in (4) because
it is the value of a relaxation of the original problem, and UB is an upper bound on the optimal
d, because it is the maximum for some x and not for the optimal x. The difference UB − LB
indicates the current violation of the constraint. If ε is set to a larger value, the algorithm
terminates quicker but does not give the optimal solution. If ε = 0 and the algorithm terminates,
the final solution is robust feasible and robust optimal. It is possible that this algorithm still
enumerates all constraints, but we have not encountered problems for which this is the case.
Bienstock and Özbay (2008) find that for their problem the number of iterations does not increase
when the time horizon is increased, and is around four on average even for 150 time periods.
The number of vertices of their uncertainty region can not be deducted from their report. In
our numerical examples we often find a larger number of iterations. We argue that the specific
structure of their problem and their specific uncertainty region may explain the effectiveness
of their method, and it is not clear if the method works equally well on other problems. The
problem they solve is an inventory problem with known, time dependent ordering cost, holding
cost and backlogging cost, where they try to determine the optimal time invariant order-up-to
level while demand is uncertain. An order-up-to-policy is computationally-wise simple, because
the inventory level at the beginning of each period is the same. Given the order-up-to-level,
for every time period the cost of the use of one unit of budget can be computed. In the worst
case, the budget is used at those time periods where the cost is maximal. For small changes in
the order-up-to-level, the costs of one unit of budget do not vary much. Hence, the set of time
periods where the budget is used, can be estimated accurately in the first one or two iterations.
It is slightly more complex if the initial inventory is much higher than the order-up-to-level,
because in that case the starting inventory for the first time periods does not equal the order-
up-to-level. We can then split the time horizon into three periods: an initial period in which the
inventory level is above the order-up-to-level, then an uncertain period in which it depends on
the demand in the past whether the inventory level falls below the order-up-to-level, and then the
final period in which the initial inventory level is known for every time period. The uncertainty
mostly affects the second period, which explains why the method adds the same number of
demand trajectories irrespective of the time horizon. They also consider the uncertainty region
with interval demand and a possibility of peak demand of known size at unknown periods each
at least a defined number of periods apart. The solution with this uncertainty region is again
simple: demand in the first few periods should be as small as possible in order to maximize
holding costs, until a point where maximal demand (or peak demand) incurs more backlogging
costs than holding costs with small demand. From that moment onwards, the inventory level at
the beginning of each period is known, and the costs of small demand, large demand and peak
demand can be computed for every time period. The same iterative method was used by Bohle
et al. (2010), again for budgeted uncertainty, but solution times and the number of generated
constraints are not reported. It is still an open question how well this method works on other
problems, and for non polyhedral uncertainty regions.
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The most time consuming step is solving MIP , since this involves the maximization of a
convex function. As pointed out by Bienstock and Özbay (2008), for Algorithm 1 it is not
necessary to find the optimal solution. It suffices to find any ζ for which the maximization
problem has a larger objective value than LB, because it corresponds to a violated constraint in
the relaxation, and adding that constraint strengthens the relaxation. Bienstock et al. report
that also the problem LP does not need to be solved to optimality. Optimization can stop as
soon as the objective value is less than UB, because at that point the current solution is already
better than the solution in the previous run.

The second iterative approach is EORLC. If |I| becomes too large, an iterative method can
add only a subset of the robust linear constraints. It starts with the nominal problem and
adds new robust constraints until the solution does not violate any of the constraints of the full
enumeration method. We give a general description of our procedure in Algorithm 2.

Algorithm 2 Adding robust linear constraints

Require: A linear program LP with constraints (4)
1: S := {ζnom} (the nominal value)
2: k := 0
3: repeat
4: k := k + 1
5: Solve LP
6: Let x be the minimizer of LP , and LB be the value of d in LP
7: Solve MIP := maxζ∈Z

{
`(ζ, x) +

∑
i∈I maxj∈J{`ij(ζ, x)}

}
8: Let ζk be the maximizer, and UB be the value of MIP
9: Let jki be the maximizer of maxj∈J `ij(ζ

k, x)
10: Add the following robust constraint to LP :∑

i∈I
`i,jki

(ζ, x) ≤ d ∀ζ ∈ Z

11: until UB − LB < ε

Similar to Algorithm 1, a lower and upper bound are reported and the stopping criterion
can be adjusted. Also for this algorithm, we have not encountered numerical examples in which
all constraints are enumerated. The main difference between this algorithm and Algorithm 1 is
the constraint that is added in every iteration. The algorithms can easily be combined so that
two sets of constraints are added per iteration.

Again solving MIP is the most time consuming step, and also here it does not need to be
solved to optimality as long as the value is larger than LB. Also LP does not need to be solved
to optimality.

3 The true robust value

This section describes a value that can be used to compare different solutions. For a minimization
problem containing sums of maxima of linear functions, we define the true robust value of a
solution to be the maximum over ζ in Z of the unreformulated problem with all decision variables
fixed. We have assumed that in this paper our objective is always to minimize d, an analysis
variable at the right hand side of (1), so in our case the true robust value of a solution x is:

vtrue(x) = max
ζ∈Z

{
`(ζ, x) +

∑
i∈I

max
j∈J
{`ij(ζ, x)}

}
. (6)
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This value and its maximizer appear in Algorithm 1 and 2. Determining this value is a difficult
problem, because it requires the maximization of a convex function over a convex set. The global
maximum over ζ ∈ Z of the sum of maxima of linear functions does not necessarily coincide
with a maximum over ζ ∈ Z of one of those linear functions. One way to obtain the exact value
is by solving the following optimization problem with integer variables:

max `(ζ, x) +
∑
i∈I

yi

s.t. yi ≤ `ij(ζ, x) +M(1− zij) ∀i ∈ I ∀j ∈ J∑
j∈J

zij = 1 ∀i ∈ I

x ∈ Rn, ζ ∈ Z, y ∈ R|I|, zij ∈ {0, 1}|I|×|J|,

which is a MIP for polyhedral uncertainty, and a MIQCP for ellipsoidal uncertainty. By using
CPLEX, the worst case ζ can be determined in less than a minute for |I| = 50 and |J | = 3
for box uncertainty of dimension 50, and in less than a minute for |I| = 20 and |J | = 2 for
ellipsoidal uncertainty of dimension 20.

Another way of obtaining the exact value is by considering |J ||I| linear optimization problems,
e.g. for I = {1, 2} and J = {1, 2} consider the following four optimization problems:

max
ζ∈Z

`(ζ, x) + `1,1(ζ, x) + `2,1(ζ, x),

max
ζ∈Z

`(ζ, x) + `1,1(ζ, x) + `2,2(ζ, x),

max
ζ∈Z

`(ζ, x) + `1,2(ζ, x) + `2,1(ζ, x), and

max
ζ∈Z

`(ζ, x) + `1,2(ζ, x) + `2,2(ζ, x).

Each of these problems is easy, because the maximum of an affine function over a box or an
ellipsoid can be computed in a few operations. The true robust value is the largest value of the
computed maxima. To get an idea of the performance of this method, we have created a single
threaded C++ application that randomly selects coefficients from the interval [−100, 100] of
an affine function f : R20 → R, maximizes that function, randomly selects new coefficients, et
cetera. Only the running time of the maximization step is measured. It can maximize 2 × 108

affine functions per minute for box uncertainty, and 5 × 107 affine functions per minute for
ellipsoidal uncertainty. Comparing this speed to the speed of the optimization problem with
integer variables, the latter is 1015 times faster for box uncertainty when |I| = 50 and |J | = 3,
but 50 times slower for ellipsoidal uncertainty when |I| = 20 and |J | = 2. After changing the
solver settings such that the MIQCP is solved by checking all leaves of the branch&bound tree,
both approaches are solved at comparable speed.

If determining vtrue(x) is intractable, bounds can still be obtained. Filling in any ζ from the
set Z at the right hand side of equation (6), for instance the nominal value, gives a lower bound.
If the dimension of ζ is small, the bound can be improved with global optimization techniques.
Upper bounds can be obtained by fixing x in any conservative reformulation of constraint (1),
like the RC-R, AARC-R or QARC-R, and optimizing for the analysis variables.

In the remainder of this paper, vtrue and xtrue, vnom and xnom, vRC−R and xRC−R, vAARC−R
and xAARC−R, vQARC−R and xQARC−R, and vI and xI denote the value and the solution of
the true optimization problem, the nominal optimization problem, the RC-R, the AARC-R, the
QARC-R and an iterative procedure, respectively.
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4 RC of a linear constraint with biaffine uncertainty

Constraint (1) may appear in RO itself when a constraint has biaffine uncertainty, and the
uncertainty region of one parameter is a box. In general, such a constraint can be written as:

˜̀(ζ(1), ζ(2), x) ≤ d ∀ζ(1) :
∣∣∣∣∣∣ζ(1)

∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) ∈ Z, (7)

where ˜̀ : R|I| × RL × Rn → R is a triaffine function, ρ is the radius of the box, and Z is the
uncertainty region of ζ(2). Constraints with biaffine uncertainty have never been investigated
before to the best of our knowledge. To show the equivalence to constraint (1), choose `, `i and
I in such a way that constraint (7) is equivalent to:

`(ζ(2), x) +
∑
i∈I

ζ
(1)
i `i(ζ

(2), x) ≤ d ∀ζ(1) :
∣∣∣∣∣∣ζ(1)

∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) ∈ Z,

and maximize the left hand side with respect to ζ(1):

`(ζ(2), x) +
∑
i∈I

ρ|`i(ζ(2), x)| ≤ d ∀ζ(2) ∈ Z, (8)

which is indeed in the form of constraint (1). This RC includes many practical problems, of
which we give four examples.

The first example is a constraint a
ᵀ
x ≤ d where each element of a has been estimated

using a regression model with the same regressors ζ for every element: ai = β0
i + (β(i))

ᵀ
ζ + εi

(β0
i ∈ R, β(i) ∈ RL, εi ∈ R), in that case the constraint is:

(β0 +Bζ + ε)
ᵀ

x ≤ d.

We assume that the coefficients β0 ∈ Rn and B ∈ Rn×L, the matrix having β(i) as rows, have
been estimated with some error, and also that the regressors ζ are not fully known. Current
literature on robust regression only focusses on estimating the regression parameters, and not
on using an estimate in a constraint. The constraint can be written as constraint (7) if β0, B,
ζ and ε lie in some specified general uncertainty region, with box uncertainty on either B or ζ.

The second example appears in Adjustable RCs. Consider a robust constraint

`(ζ(1), ζ(2), x) + b
ᵀ

y ≤ d ∀ζ(1) :
∣∣∣∣∣∣ζ(1)

∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) ∈ Z,

where y ∈ Rm1 is an adjustable variable that represents a “wait and see” decision that can be
made after ζ(1) and ζ(2) are (partially) observed, and b is a vector of known coefficients (fixed
recourse). Determining the true optimal policy for y as a function of ζ(1) and ζ(2) is often
intractable, which is why a suboptimal y is often determined by a parameterization, i.e. y is
written as a function of which the coefficients are decision variables. The first parameterization
in RO was proposed by Ben-Tal et al. (2004) who proposed an affine decision rule, which results
in a problem which is in the same class (LP, CQP or SDP, depending on the uncertainty region)
as the problem with y as a “here and now” decision variable. This was later extended to a
quadratic decision rule with an ellipsoidal uncertainty region, resulting in an SDP (Ben-Tal et al.
(2009a)), and to a polynomial decision rule of arbitrarily large degree restricted to uncertainty
regions described by polynomial inequalities, resulting in a conservative SDP (Bertsimas et al.
(2009)). The latter includes the biaffine decision rule y = `

′
(ζ(1), ζ(2), v), where `

′
is a function

R|I| × RL × Rm2 → Rm1 , and v is a vector of coefficients to be determined by the model. This
decision rule could be very useful if a problem is affected by several sources of uncertainty. The
advantage over affine decision rules is that the former includes cross terms of ζ(1) and ζ(2).
Applying the results of Bertsimas et al. (2009) gives an SDP which is not only conservative, but
also has a potentially large instance size. E.g. if |I| (the dimension of ζ(1)) is very small but
ζ(2) is in a box of (large) dimension L, the conservative SDP has at least one variable matrix
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of size (|I| + 1)L + |I| + 1 and over 2|L| smaller matrices, while our result is exact and gives
a practically solvable LP. If instead ζ(2) is in an ellipsoid of (large) dimension L, the SDP still
has the large variable matrix of size (|I|+ 1)L+ |I|+ 1 while our exact result gives a CQP for
which efficient solvers are available.

The third example is a constraint with unknown coefficients and implementation error. Con-
sider the following constraint:

`(ζ(1))
ᵀ

x ≤ d ∀ζ(1) ∈ Z1, (9)

where ` is a vector of n functions that are linear in the uncertain parameter ζ(1). Now suppose
that there is implementation error in x, i.e. instead of x we implement a vector of which

component i is given by xi + ζ
(2)
i (additive implementation error) or by ζ

(2)
i xi (multiplicative

implementation error). After substituting x, constraint (9) becomes:

`(ζ(1))
ᵀ

(x+ ζ(2)) ≤ d ∀ζ(1) ∈ Z1 ∀ζ(2) ∈ Z2,

in case of additive implementation error, and

n∑
i=1

`i(ζ
(1))ζ

(2)
i xi ≤ d ∀ζ(1) ∈ Z1 ∀ζ(2) ∈ Z2,

in case of multiplicative implementation error. Both constraints are special cases of constraint
(7) if either Z1 or Z2 is a box.

The fourth example is the following robust constraint with box uncertainty:

`(ζ(1), x) +
∑
k∈K

∣∣∣∣∣∣`k(ζ(1), x)
∣∣∣∣∣∣
l
≤ d ∀ζ(1) :

∣∣∣∣∣∣ζ(1)
∣∣∣∣∣∣
∞
≤ ρ, (10)

where `k is a vector of L linear functions, and l equals 1, 2 or ∞. In order to see that this
constraint is equivalent to constraint (7), note that constraint (10) is a reformulation of the
following constraint:

`(ζ(1), x) +
∑
k∈K

(ζ
(2)
k )

ᵀ

`k(ζ(1), x) ≤ d ∀ζ(1) :
∣∣∣∣∣∣ζ(1)

∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) :

∣∣∣∣∣∣ζ(2)
k

∣∣∣∣∣∣∗
l
≤ 1 ∀k ∈ K,

where ||·||∗l is the dual norm, and ζ
(2)
k is a vector in RL for all k in K. We will show how the

results in this paper can be used for solving the robust constraint (10) for different choices of l.
For l = 2 and |K| = 1, constraint (10) is a robust conic quadratic constraint, for which the

RC is known only in special cases, one of which is vertex enumeration (Ben-Tal et al. 2009a, p.
159). The case |K| > 1 has not been covered yet. A (conservative) reformulation with analysis
variables for every

∣∣∣∣`k(ζ(1), x)
∣∣∣∣

2
reduces the problem to a problem with one linear constraint

and |K| robust conic quadratic constraints, each of which is of the form (10) with |K| = 1, so it
can be reformulated using vertex enumeration. A different approach, that is not only exact but
also results in a smaller problem than obtained by using analysis variables, is to apply vertex
enumeration to constraint (10) directly. Vertex enumeration is exact because the constraint
is convex in ζ(1). If the dimension of the box is very large, (iterative) vertex enumeration is
no longer tractable, so even the case |K| = 1 becomes unsolvable, and tractable conservative
reformulations are not known. Our reformulation (8) allows the use of all approaches from
Section 2.

For l = 1 constraint (10) is a special case of constraint (1), and we know from Section 2 how
to solve it or how to find a conservative reformulation. The reformulation may be useful if it is
solved with the RC-R, the AARC-R or the QARC-R, because the resulting formulation is very
different. Vertex enumeration and EORLC are not useful on the reformulation (8), because they
correspond with EORLC and vertex enumeration on the original constraint, respectively.

For l =∞ constraint (10) is a special case of constraint (1) with I = K and J = {1, 2, .., L},
and we know from Section 2 how to solve it or how to find a conservative reformulation. The
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reformulation (8) may be useful if it solved with the RC-R, the AARC-R or the QARC-R, because
the resulting formulation is very different. The reformulation allows to do vertex enumeration
on ζ(2), which may be faster than vertex enumeration in the original constraint (which is done
on the vertices of ζ(1)) if L and |K| are small relative to |I|.

For all three cases of l, it holds that when EORLC is used on the reformulation (8), the
resulting constraints are the same ones resulting from vertex enumeration on constraint (10).
This implies that reformulating (8) is a redundant step if it is followed by EORLC.

5 Numerical examples

5.1 Illustrative small problems

Consider the following toy optimization problem:

(TOY1) min d

s.t. d ≥ max{x, x+ ζ}+ max{x, x− ζ} ∀ζ ∈ [−1, 1]

d ∈ R, x ∈ R+.

The optimal value of this problem is 1 (x = 0, d = 1). If we model this problem as an LP and
then apply RO, we get the following model:

(RC-R) min y1 + y2

s.t. y1 ≥ x ∀ζ ∈ [−1, 1]

y1 ≥ x+ ζ ∀ζ ∈ [−1, 1]

y2 ≥ x ∀ζ ∈ [−1, 1]

y2 ≥ x− ζ ∀ζ ∈ [−1, 1]

y1, y2 ∈ R, x ∈ R+.

The optimal value of this model is 2 (x = 0, y1 = y2 = 1), so the RC-R is not exact. If we
substitute yi = vi + wiζ, the model becomes:

(AARC-R) min y

s.t. y ≥ v1 + w1ζ + v2 + w2ζ ∀ζ ∈ [−1, 1]

v1 + w1ζ ≥ x ∀ζ ∈ [−1, 1]

v1 + w1ζ ≥ x+ ζ ∀ζ ∈ [−1, 1]

v2 + w2ζ ≥ x ∀ζ ∈ [−1, 1]

v2 + w2ζ ≥ x− ζ ∀ζ ∈ [−1, 1]

v1, v2, w1, w2, y ∈ R, x ∈ R+.

The optimal value of this problem is 1 (v1 = v2 = 1
2 , w1 = 1

2 , w2 = − 1
2 , y = 1), which is the

same as the optimal value of the original problem. So, in this case the AARC-R closes the gap.
This is not always the case as the following example shows:

(TOY 2) min d

s.t. d ≥ max{x, x+ ζ1 + ζ2}+ max{x, x+ ζ1 − ζ2}
+ max{x, x− ζ1 + ζ2}+ max{x, x− ζ1 − ζ2} ∀ζ ∈ [−1, 1]2

d ∈ R, x ∈ R+.

We obtain vtrue = 2, vRC−R = 8 and vAARC−R = 4. The AARC-R is an improvement over the
RC-R, but is not exact. The QARC-R, which can be derived by reparameterizing the uncertainty
region to [0, 1]2, applying the work of Yanıkoğlu et al. (2011) to obtain an LMI description of
the uncertainty region, and formulating the RC by dualization as demonstrated in Appendix C,
gives vQARC−R = 2.83. While this value is much closer to 2 than the value of the AARC-R, it
is still inexact.

12



5.2 Least absolute deviations regression with errors-in-variables

An errors-in-variables regression model is a model yi = β0 + β1x
∗
i + εi (εi ∼ N(0, σ2) i.i.d.)

where x∗i can not be measured accurately. Only xi and yi with x∗i = (1 + ζi)xi are observed,
where ζi is an unknown measurement error. The least absolute deviations approach estimates
β0 and β1 by minimizing

∑n
i=1 |yi − β0 − β1x

∗
i |:

min
β0,β1

n∑
i=1

max{yi − β0 − β1(1 + ζi)xi, β0 + β1(1 + ζi)xi − yi}.

Because we do not know the values ζi, we can apply RO:

min
β0,β1

max
ζ∈Z

n∑
i=1

max{yi − β0 − β1(1 + ζi)xi, β0 + β1(1 + ζi)xi − yi},

where we choose Z to be an ellipsoidal uncertainty region: Z = {ζ ∈ Rn : ||ζ||2 ≤ Ω}. Note
that this is one of the special cases in Section 2.1.3 because it is the sum of absolute values, ζi
appears only in term i, and the uncertainty region is symmetric around ζ = 0. It follows that
the RC can be written as:

min
β0,β1

n∑
i=1

max{yi − β0 − β1xi, β0 + β1xi − yi}+ Ω ||β1x||2 , (11)

which can be reformulated as a CQP. Even though there is an explicit and simple formulation
of the exact RC, we also try the other approaches from Section 2 for a comparison. The RC-R
is as follows:

(RC-R) min

n∑
i=1

zi

s.t. zi ≥ yi − β0 − β1xi + Ω|β1xi|
zi ≥ β0 + β1xi − yi + Ω|β1xi|,

which for comparison with formulation (11) can also be written as:

min
β0,β1

n∑
i=1

max{yi − β0 − β1xi, β0 + β1xi − yi}+ Ω ||β1x||1 .

This is more pessimistic than constraint (11), since ||·||1 ≥ ||·||2. The AARC-R is given by:

min d

s.t. d ≥
n∑
i=1

vi + w
ᵀ

i ζ ∀ζ ∈ Rn : ||ζ||2 ≤ Ω

vi + w
ᵀ

i ζ ≥ yi − β0 − β1(1 + ζi)xi ∀ζ ∈ Rn : ||ζ||2 ≤ Ω ∀i ∈ I
vi + w

ᵀ

i ζ ≥ β0 + β1(1 + ζi)xi − yi ∀ζ ∈ Rn : ||ζ||2 ≤ Ω ∀i ∈ I,

which after reformulation becomes:

(AARC-R) min d

s.t. d ≥ Ω ||w||2 +

n∑
i=1

vi

vi ≥ yi − β0 − β1xi + Ω ||β1xiei + wi||2 ∀i ∈ I
vi ≥ β0 + β1xi − yi + Ω ||β1xiei − wi||2 ∀i ∈ I,
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Table 1: A comparison of different solution methods for the regression example averaged over 1, 000
datasets.
Method vmethod vtrue(xmethod)

Nominal 36.326 91.994
RC-R 224.096 92.095
AARC-R 194.091 99.322
QARC-R 99.323 99.322
Exact 91.973 91.973

where ei is the ith unit vector. The QARC-R is derived in Appendix C.
We have run these four models on 1, 000 cases. In each case, we fixed the parameters at

β0 = 2, β1 = 5 and σ2 = 1. A case consists of 15 observations of xi, generated uniformly in
[0, 100] i.i.d., ζ ∈ Rn : ||ζ||2 ≤ Ω uniformly and εi ∼ N(0, σ2) i.i.d. Using these random draws,
we have computed yi = β0 + β1(1 + ζi)xi + εi. For the uncertainty region, we have picked
Ω = 0.05.

Next to comparing the usual way by means of vtrue, we also compare solutions by looking at
how well β0 and β1 are estimated. Histograms, the mean, and s2 statistics for β0, β1 and vtrue
are shown in Figure 1.

In all 1, 000 cases, the AARC-R and QARC-R give the same estimates of β0 and β1. Hence,
they are considered equal in both comparisons. All models do well in estimating the parameters
β0 and β1, except the AARC-R and the QARC-R for β0.

The objective values (averaged over the 1, 000 cases) are listed in Table 1. The AARC-
R and QARC-R objective values are 22.7% respectively 94.4% closer to the optimum than
the RC-R objective value. However, for the true value we have vtrue(xRC−R) = 92.095 while
vtrue(xAARC−R) = vtrue(xQARC−R) = 99.322. The RC-R outperforms the AARC-R and the
QARC-R in 98% of the cases, and even the nominal solution outperforms the RC-R in 99% of
the cases. So, even though the AARC-R and QARC-R provide a much better bound on the
optimal true value, their true value is not necessarily better. This shows two things: it may
be very misleading to compare robust solutions by their objective values, and using a better
approximation of the true objective function might not improve the solution at all.

Algorithms 1 and 2 can run very quickly because the worst case ζ can be computed without
running MIP , as this is a simple case. It is therefore more interesting to look at the number
of iterations the algorithms takes than at the running time. We have generated 1,000 data
sets in which we varied the number of observations. Algorithm 1 adds only 3 or 4 constraints
independent of the number of observations. This shows that the method is not only effective for
polyhedral uncertainty regions. The number of iterations of Algorithm 2 is shown in Figure 2,
where is seems to be a square root function of the number of observations. The regression model
numiteri = α

√
numobsi + εi gives α = 1.258 with a standard error of 0.007 and R2 = 0.966.

For 200 observations, the algorithm generates at most 18 constraints while full EORLC would
result in a model with 2200 constraints. The algorithm needs more iterations than the vertex
enumeration algorithm, but is still very effective.

5.3 Brachytherapy

High dose rate brachytherapy (HDR-BT) is a form of radiation therapy where a highly radioac-
tive sealed source is inserted into a tumour for short time periods via approximately fifteen till
twenty catheters. When the catheter positions are fixed, a treatment plan tells for how long
the radioactive source has to stay at which position inside the catheters. A perfect treatment
plan delivers a prescribed dose to the tumour while not delivering any dose to the surrounding
organs at risk. Because this is physically impossible, the goal is to find a good trade-off between
irradiating the tumour and saving the organs at risk. The quality of a plan can be measured by
means of calculation points. These are artificial points where the received dose can be computed
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Figure 1: Comparison of the nominal solution, the RC-R solution, the AARC-R/QARC-R solution
and the exact solution.

Figure 2: The number of iterations needed by Algorithm 2 to find an optimal solution versus the
number of observations in the regression model of Section 5.2.
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and compared to a prescribed lower and upper bound, that are distributed inside and around
the tumour and organs at risk. The dose in a specific calculation point i can be computed as the
sum of the individual contributions from every catheter k, which in turn is the sum of the dwell
times of the individual dwell positions inside catheter k multiplied by given dose rate vectors
dik: ∑

k∈K

d
ᵀ

iktk.

If calculation point i fails to satisfy the lower bound Li or the upper bound Ui, it contributes
a linear penalty of αi or βi (respectively) per unit of violation to the objective function. This
results in the following optimization problem:

min
tk∈Rn

+

∑
i∈I

max{0, αi(Li −
∑
k∈K

d
ᵀ

iktk), βi(
∑
k∈K

d
ᵀ

iktk − Ui)}.

This convex piecewise linear objective function is commonly used for treatment planning (Al-
terovitz et al. (2006), Karabis et al. (2009), Lessard and Pouliot (2001)).

The parameters dik are computed based on the catheter positions. These positions can not
be measured accurately, hence the data in the optimization problem is uncertain. We assume
that the true catheter position is within some cone around the measured position, which is
justified because one side of the catheter is fixed at a known position. We replace the cone
with a polyhedral cone with a 10-sided base to end up with a polyhedral set, and we make
the simplification that the vector dik inside the cone is a convex combination of the vectors
dik at the sides of the cone. Thus, we only need to know the vectors dik at the catheter
positions corresponding to the 10 edges of the cone connecting the apex to the base. Using
these vectors as the columns of a matrix B, we can write dik = Bikζk, where ζk ∈ ∆|S|−1

(∆|S|−1 = {ζ ∈ R|S| : e
ᵀ
ζ = 1, ζ ≥ 0}, the standard simplex in R|S|), and |S| is the number of

sides of the base of the polyhedral cone. This gives the following RO problem:

min v

s.t.
∑
i

max{0, αi(Li −
∑
k∈K

(Bikζk)
ᵀ

tk),

βi(
∑
k∈K

(Bikζk)
ᵀ

tk − Ui)} ≤ v ∀ζk ∈ ∆|S|−1(k ∈ K)

tk ≥ 0 ∀k ∈ K.

The number of calculation points is usually in the order of magnitude of 5,000. For the
purpose of this paper, we have reduced the number of calculation points to 40 because otherwise
both the maximization step in Algorithm 2 and the AARC-R are intractable. The model does
not lose its value from this reduction, because the objective could be a weighted average between
the nominal objective based on all calculation point, and the robust objective based on a small
fraction of calculation points that is well distributed inside the tumour.

The RC-R is based on the original constraint with the sum of 40 maxima of 3 functions.
We have also solved the RC-R and AARC-R after splitting up the sum, as outlined in the last
paragraph of Section 2.2. If we split the sum in groups of size 4, then the number of sums
reduces to 10 while each term of sum is the maximum of 34 functions.

The results for the different methods are listed in Table 2. The first observation is that the
nominal solution has a true value that is five times the optimal value, so the nominal solution is
nonrobust. The AARC-R has value ≈ 143, which is much closer to the true value (≈ 137) than
to the RC-R value (≈ 229), so the AARC-R almost closes the gap. Algorithm 2 is outperformed
by Algorithm 1. Its long running time when MIP is not solved to optimality is not only due to
the larger number of iterations, but more importantly, to the gradually increasing running time
of solving LP in each iteration. This step becomes so memory consuming, that the algorithm
can not finish with CPLEX on 32 bit hardware. Combining both algorithms reduces the number
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Table 2: A comparison of different solution methods for the brachytherapy example.
Method Iterations Sol. time (s) vmethod vtrue(xmethod)

Nominal − 0 11.033 711.362
RC-R − 1 229.986 157.277
AARC-R − 314 143.104 140.827

RC-R (sum of 8 maxima of 243 functions) − 51 186.219 157.568
RC-R (sum of 10 maxima of 81 functions) − 17 203.100 157.030
RC-R (sum of 20 maxima 9 functions) − 2 218.894 158.438
AARC-R (sum of 10 maxima of 81 functions − 136214 141.481 140.114
AARC-R (sum of 20 maxima 9 functions) − 2774 142.447 139.957

Algorithm 1 25 1, 173 137.628 137.676
Algorithm 2 36 1, 065 137.629 137.662
Combined 20 894 137.628 137.650

Algorithm 1∗ 53 234 137.627 137.668
Algorithm 2∗ > 400 > 50, 000 − −
Combined∗ 41 353 137.628 137.676

ε = 0.05
∗ MIP is stopped as soon as the upper bound is at least 0.05 higher than the lower bound

of iterations, as more work per iteration is done, but also increases the solution time in case
MIP is not solved to optimality. Splitting up the sum does not give any benefit in terms of
true value, though it gives a lower objective value when solving the RC-R.

5.4 Inventory planning

We consider a single item inventory model where backlogging is allowed to compare the AARC-
R with the exact RC. At the beginning of each period, an order can be placed that is delivered
instantly. At the end of each period, the holding and backlogging costs are ch and cb per unit,
respectively. The objective is to minimize the costs:

min
q,w∈R|T |

+

max
d∈Z

 |T |∑
t=1

max{ch[x0 +

t∑
i=1

qi − di], cb[x0 +

t∑
i=1

qi − di]}

 ,

where x0 is the starting inventory, qi is the order quantity at time i, and di is the uncertain
demand at time i. In all formulations we allow qi to depend affinely on the demand in periods
1 up to i− 1.

If the uncertainty region is a box, the AARC-R turns out to be exact for the intervals we
have tried. This is in accordance with the numbers reported by Ben-Tal et al. (2005). We found
that the AARC-R is no longer exact if the uncertainty region is an ellipsoid. Because demand
is nonnegative, the ellipsoid is intersected with the nonnegative orthant:

Z = {d ∈ R|T |+ :
∣∣∣∣d− d̄∣∣∣∣

2
≤ Ω}.

In our numerical study we have looked at 12 time periods, with parameters Ω = 10, d̄ = 5,
ch = 1, and cb = 2.

Each optimization of MIP in Algorithm 2 takes up to 2 minutes if continued to optimality
using CPLEX, making it the most time consuming step in the algorithm. Because the dimension
of the uncertain demand vector is 12, a global solver might be faster. We have tried LGO 1.0,
whose accuracy can be adjusted with the parameters “maximal number of function evaluations”
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Table 3: A comparison of different solution methods for the inventory example.
Method Iterations Sol. time (min) vmethod vtrue(xmethod)

Nominal − 0 0.000 509.903
RC-R − 0 120.000 94.641
AARC-R − 0 120.000 93.315

EORLC − 10 48.750 48.750
RC-R (sum of 2 maxima of 64 functions) − 0 68.613 54.162
RC-R (sum of 3 maxima of 16 functions) − 0 83.631 58.140
RC-R (sum of 4 maxima of 8 functions) − 0 94.456 66.637
RC-R (sum of 6 maxima of 4 functions) − 0 107.627 77.957

Algorithm 1 123 76 48.749 48.796
Algorithm 2 77 36 48.752 48.802
Combined 79 45 48.755 48.798

Algorithm 1∗ 309 180 48.752 48.827
Algorithm 2∗ 112 9 48.753 48.790
Combined ∗ 103 29 48.755 48.825

ε = 0.1
∗ MIP is stopped as soon as the upper bound is at least 0.1 higher than the lower bound

and “maximal number of stalled evaluations”, which initially both are 16,000. Every time the
upper bound found by LGO is less than 0.1 larger than the lower bound, the parameters are
increased by 25% until they exceed 1,000,000. This reflects the idea that it is still easy to find
a violated constraint when the algorithm starts, but gradually becomes more difficult as the
quality of the solution increases. Still, CPLEX finds better solutions in less time.

The RC-R is based on the original constraint with the sum of 12 maxima of 2 functions.
We have also solved the RC-R and AARC-R after splitting up the sum, as outlined in the last
paragraph of Section 2.2. In this example the uncertainty enters the model through time, so
the most natural way of splitting up the summation is in consecutive time periods. We split the
problem into two groups:

min y1 + y2

s.t.
6∑
t=1

max{ch[x0 +
t∑
i=1

qi − di], cb[x0 +
t∑
i=1

qi − di] ≤ y1 ∀d ∈ Z

12∑
t=7

max{ch[x0 +

t∑
i=1

qi − di], cb[x0 +

t∑
i=1

qi − di] ≤ y2 ∀d ∈ Z,

where again we allow qi to depend affinely on the demand in periods 1 up to i − 1. This
reformulation introduces more constraints with the sum of maxima, but each sum contains
less terms, hopefully resulting in a shorter solution time. The worst case d may differ for the
constraints that set y1 and y2, hence this reformulation is not exact.

The results are listed in Table 3. Again note that the order policies (qi) are adjustable in all
formulations, including the RC-R, so the differences in this table are caused only by different
reformulations of the sum of maxima. The first observation is that the AARC-R gives a very
small gain over the RC-R, but still has almost twice the optimal value. So, making the analysis
variables adjustable does not significantly improve the solution. Algorithm 2 is the fastest
iterative method, requiring approximately the same number of iterations when combined with
Algorithm 1. The sum splitting method significantly reduces the computation time at the cost
of nonoptimality. It performs much better than the AARC-R, both in optimal value and in true
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value. Using the AARC-R on the splitted sums gives a very small gain over the RC-R on the
splitted sums, just as for the full problem, so it is not listed in the table. The large true value
of the nominal solution comes from the fact that the order sizes are fixed in advance and are
not adjusted to observed demand.

6 Conclusions

Because RO is applied constraint-wise, it is very important how constraints are formulated. In
this paper we list several approaches to an inequality constraint containing the sum of maxima
of linear functions. The RC-R, often used in the literature, is the most pessimistic approach.
It is obtained by first reformulating the deterministic constraint into linear constraints using
analysis variables, and then applying RO. Its pessimism can be reduced by replacing the analysis
variables with linear decision rules before applying RO, which gives the AARC-R. The AARC-R
seems to work well for the practical problems we analyzed with polyhedral uncertainty regions,
but we have constructed an example with polyhedral uncertainty where the value of the AARC-
R is 100% higher than the true value. Nonlinear decision rules may give better results, but are
computationally more challenging. The conservatism of the approximations can be reduced by
combining several max expressions before reformulating. Especially for ellipsoidal uncertainty
this method gives much better solutions at the cost of a slightly higher solution time.

In many cases it is not necessary to use an approximation because an exact reformulation
can be practically solved. We identify four special cases in which an exact reformulation is
often tractable. For the general case we give two exact general methods: vertex enumeration
and EORLC. Both methods may result in very large optimization models, but have an iterative
counterpart that can handle larger instances. Vertex enumeration adds a set of constraints for
every vertex of the uncertainty region, so this method is preferred if the uncertainty region has
a low number of vertices. Surprisingly, its iterative version is also capable of solving problems
where the uncertainty region has an infinite number of extreme points efficiently. EORLC is
preferred if the number of terms with a maximum function is low. If it is not clear in advance
which iterative method is faster, both methods have to be tried because our numerical examples
do not show a clear preference. Both methods can be combined, but we have not found a
situation in which it is beneficial to do so.

The RC-R is often used in the literature while better approaches could have been applied,
mostly without explicitly mentioning that their approach is conservative. In the paper by Kropat
and Weber (2008), the exact method EORLC would have increased the number of constraints
with only a factor four while reducing the number of variables with almost a factor 2 and not
changing the structure of the problem. Bertsimas and Thiele (2006), Wei et al. (2009) and Alem
and Morabito (2012) apply the RC-R to a problem with polyhedral uncertainty. Our results, and
also the numbers reported by Ben-Tal et al. (2005), suggest that the AARC-R should have been
used as it may give good solutions for polyhedral uncertainty regions. For inventory problems in
general, when the order quantities are made adjustable, then oftenly also the analysis variables
are made adjustable. We show that the latter is not beneficial for ellipsoidal uncertainty, and
that both the RC-R and the AARC-R give very bad solutions. For small planning horizons,
an exact method has to be used, while for larger horizons splitting the sum in small groups
and applying EORLC on the groups significantly improves the solution. Ng et al. (2010) solve
a lot allocation problem with ellipsoidal uncertainty. Because the problem is computationally
challenging, they solve a problem equivalent to our RC-R using Benders decomposition. Even
though all our methods can be applied to their problem, the problem is so challenging that
even the simple RC-R can not be solved within a day. We have been able to get a suboptimal
solution with iterative vertex enumeration, where both the minimization and the maximization
step were stopped before optimality. The solution we got after four hours has a true value
of 26.8, whereas the RC-R (which we tried to solve as a MIP) has a value between 28.7 and
47.2. So the objective value of the solution proposed by Ng et al. (2010) is at least 7-76% too
pessimistic.

From our numerical examples it becomes clear that the RC-R is not necessarily better than
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the nominal problem. Neither of the two optimizes the true problem, so it can not be determined
a priori which one has a better true value. The same holds for the AARC-R and the RC-R: If
the AARC-R gives a much lower value then at least it provides a guarantee on the worst case,
but the RC-R may still outperform the AARC-R. When using an approximation, it is therefore
crucial to measure its quality. This can be accomplished by comparing the true value of the
solution of the approximation with the value of an exact formulation. If the problem is too large
to be solved exactly, the comparison may be based on a smaller instance with similar structure.

A Derivation of AARC-R using Fenchel’s duality

In this appendix we apply Fenchel’s duality to robust constraints, a technique introduced in RO
by Ben-Tal et al. (2011b). First we will briefly mention the general theory, then we will apply
it to constraints of general form, and finally we will apply the general results to constraint (1)
and show that the result is the same as the AARC-R.

A.1 Fenchel’s duality theorem

We start with some definitions that are necessary to formulate Fenchel’s theorem:

Definition A function φ is proper convex if it is convex, its codomain is R∪{∞}, and φ(x) <∞
for at least one x.

Definition A function ψ is proper concave if it is concave, its codomain is R ∪ {−∞}, and
ψ(x) > −∞ for at least one x.

Theorem A.1 (Fenchel’s duality (Rockafellar 1970, p. 327)) Let φ be a proper convex function
on Rn, let ψ be a proper concave function on Rn, and let either of the following conditions be
satisifed:

• ri(dom φ) ∩ ri(dom ψ) 6= ∅
• φ and ψ are closed, and ri(dom φ∗) ∩ ri(dom ψ∗) 6= ∅,

where ri is the relative interior, dom is the effective domain (dom φ = {x : φ(x) <∞}), and φ∗

and ψ∗ are the convex and concave conjugate of φ and ψ, respectively. That is,

φ∗(s) = sup
x
{s

ᵀ

x− φ(x)}

ψ∗(s) = inf
x
{s

ᵀ

x− ψ(x)}.

Then the following equality holds

inf
x
{φ(x)− ψ(x)} = sup

s
{ψ∗(s)− φ∗(s)}.

A.1.1 Fenchel’s duality applied to a robust constraint of general form.

We focus on the general robust constraint

g(ζ, x) ≤ d ∀ζ ∈ Z, (12)

where g is a proper concave function of ζ for any fixed value of x, and the condition for Fenchel’s
duality is satisfied with respect to the first argument for any fixed value of x. Because values of
g are not of interest when ζ /∈ Z, we assume that g(ζ, x) = −∞ for all ζ /∈ Z. We also assume
that Z is a compact set so that this constraint is equivalent to:

max
ζ∈RL
{g(ζ, x)− δZ(ζ)} ≤ d, (13)
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with δZ the indicator function (δZ(ζ) = 0 if ζ ∈ Z, and ∞ otherwise). We can rewrite the
left-hand side by applying Fenchel’s duality:

min
s∈RL
{δ∗Z(s)− g∗(s, x)} ≤ d,

which holds if and only if there exists some s ∈ RL such that:

δ∗Z(s)− g∗(s, x) ≤ d. (14)

Note that this constraint is convex in s. Because every step is ’if and only if’, constraint (12) is
equivalent to constraint (14).

A.1.2 g is the sum of other functions.

If g can be written as the sum of several other functions, it might be impossible or very difficult
to find a closed form solution for its conjugate function. Suppose we have a constraint of the
form: ∑

i∈I
gi(ζ, x) ≤ d ∀ζ ∈ Z, (15)

which is constraint (12) with g =
∑
i∈I gi. If we want to formulate an equivalent constraint

using Fenchel’s duality, we need the concave conjugate of g. Under some mild assumptions on gi,
it turns out to be sufficient to have closed form solutions for the conjugates of gi. The following
lemma appears to be very useful (Rockafellar 1970, p. 145):

Lemma A.2 Let ψi (i ∈ I) be proper concave functions on Rn. If ∩i∈I ri(dom ψi) 6= ∅ then

(
∑
i∈I

ψi)∗(s) = sup∑
i∈I si=s

{
∑
i∈I

(ψi)∗(si)},

and the supremum is attained.

Applying this lemma, we can rewrite constraint (15) as:

δ∗Z(s)− max∑
i∈I si=s

{
∑
i∈I

(gi)∗(si, x)} ≤ d,

which is valid if and only if there exists si ∈ RL(i ∈ I) such that

δ∗Z(
∑
i∈I

si)−
∑
i∈I

(gi)∗(si, x) ≤ d. (16)

So, if all conjugates have closed form solutions, the reformulated constraint also has a closed
form. If all conjugates do not have a closed form, this reformulation is still useful because it
allows computing each term separately. We will show this for piecewise linear convex functions
later in this section. It should again be noted that this constraint is convex in si.

A.1.3 f is not convex or g is not concave.

Let us investigate the consequences to the reformulation if g is not concave. We assume g is
finite on some non-empty set Z, and∞ elsewhere, so that its conjugate is non-trivial. Fenchel’s
inequality (Rockafellar 1970, p. 105) states that:

δZ(ζ) + δ∗Z(s) = δZ(ζ) + sup
ζ′∈Z
{ζ ′

ᵀ

s− δZ(ζ ′)} ≥ δZ(ζ) + ζ
ᵀ

s− δZ(ζ) = ζ
ᵀ

s

g(ζ, x) + g∗(s, x) = g(ζ, x) + inf
ζ′∈Z
{ζ ′

ᵀ

s− g(ζ ′, x)} ≤ g(ζ, x) + ζ
ᵀ

s− g(ζ, x) = ζ
ᵀ

s,

hence:
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δZ(ζ) + δ∗Z(s) ≥ g(ζ, x) + g∗(s, x),

and consequently:

g(ζ, x)− δZ(ζ) ≤ δ∗Z(s)− g∗(s, x).

This implies that if constraint (14) is satisfied, then so is constraint (13), but the reverse implica-
tion is not necessarily true. Hence, constraint (14) is a conservative reformulation of constraint
(13).

Also, Lemma A.2 no longer holds with equality. We can rewrite it as an inequality:

(
∑
i∈I

ψi)∗(s) = inf
t
{s

ᵀ

t−
∑
i∈I

ψi(t)}

= inf
t
{
∑
i∈I

s
ᵀ

i t− ψi(t)},

for any s1, ..., sm ∈ RL for which
∑
i∈I si = s. So in particular:

(
∑
i∈I

ψi)∗(s) = sup∑
i∈I si=s

{inf
t
{
∑
i∈I

s
ᵀ

i t− ψi(t)}}

≥ sup∑
i∈I si=s

{
∑
i∈I

inf
t
{s

ᵀ

i t− ψi(t)}}

= sup∑
i∈I si=s

{
∑
i∈I

(ψi)∗(si)}.

This implies that if constraint (16) is satisfied, then so is constraint (15), but the reverse impli-
cation is not necessarily true. Hence, constraint (16) can be seen as a conservative reformulation
of constraint (15).

A.1.4 g is the sum of pointwise maxima of linear functions.

Let us first derive the conjugates of some functions before we arrive at the theorem:

δ∗Z(s) = sup
ζ∈RL

{s
ᵀ

ζ − δZ(ζ)} = sup
ζ∈Z
{s

ᵀ

ζ} = max
ζ∈Z
{s

ᵀ

ζ},

and

(max
j∈J
{`ij(ζ, x)})∗(si, x) = inf

ζ∈Z
{s

ᵀ

i ζ −max
j∈J
{`ij(ζ, x)}}

= inf
ζ∈Z
{min
j∈J
{s

ᵀ

i ζ − `ij(ζ, x)}}

= min
j∈J
{ inf
ζ∈Z
{s

ᵀ

i ζ − `ij(ζ, x)}}.

Theorem A.3 Applying Fenchel’s duality to:

max
ζ∈Z

∑
i∈I

max
j∈J
{`ij(ζ, x)} ≤ d, (17)

gives a formulation that is equivalent to the AARC-R.

Proof Proof Constraint (17) is equivalent to constraint (15) with gi(ζ, x) = maxj∈J{`ij(ζ, x)}
for ζ in Z and gi(ζ, x) = −∞ otherwise. For for any fixed x, gi is not concave in ζ so we will
end up with a conservative instead of an equivalent reformulation. If we fill in the conjugate
functions in constraint (16), the following conservative reformulation is obtained:

max
ζ∈Z
{
∑
i∈I

s
ᵀ

i ζ} −
∑
i∈I

min
j∈J
{ inf
ζ∈Z
{s

ᵀ

i ζ − `ij(ζ, x)}} ≤ d.
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If we model the second terms as
∑
i∈I zi, we can write this as:∑

i∈I
s
ᵀ

i ζ −
∑
i∈I

zi ≤ d ∀ζ ∈ Z

zi ≤ s
ᵀ

i ζ − `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J,

and by rearranging the terms in each constraint we obtain:∑
i∈I

[(−zi) + s
ᵀ

i ζ] ≤ d ∀ζ ∈ Z

(−zi) + s
ᵀ

i ζ ≥ `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J,

which is the same as the AARC-R.

B Derivation of AARC-R by reformulating the nonrobust
constraint

In this appendix we give a different derivation of the AARC-R of constraint (1) when both the
biaffine functions and the uncertainty region are separable in the following way:∑

i∈I
max
j∈J
{
∑
k∈K

`ijk(ζk, x)} ≤ d ∀ζk ∈ Zk (k ∈ K), (18)

and Zk is the convex hull of different scenarios ζsk (s ∈ S). An example where this constraint
is commonly used, is HDR brachytherapy optimization (Alterovitz et al. (2006), Karabis et al.
(2009), Lessard and Pouliot (2001)). If the summation over k were outside the max expression,
then an analysis variable could be used for every k without introducing any conservatism.
Vertex enumeration can then be done on every Zk separately. For problems not affected by
uncertainty, we generalize a formulation trick by Balvert (2011) to show that indeed there is an
equivalent formulation where the summation over k is outside the max expression. Then we
show equivalence to the AARC-R if there is uncertainty. First, we prove the following equality
for fixed x and ζk:

Lemma B.1∑
i∈I

max
j∈J
{
∑
k∈K

`ijk(ζk, x)} = min
y∈R|I||J||K|:

∑
k∈K yijk=0

∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)}. (19)

Proof Proof Note that:∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} ≥

∑
k∈K

∑
i∈I

yij(i)k + `ij(i)k(ζk, x) =
∑
i∈I

∑
k∈K

`ij(i)k(ζk, x) ∀j(i) ∈ J,

for any j(i) in J , so in particular:∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} ≥

∑
i∈I

max
j∈J
{
∑
k∈K

`ijk(ζk, x)},

for any y, so in particular for the minimum. Hence, the right hand side of (19) is as least as
large as the left hand side. On the other hand, given a feasible point for the left hand side of
(19), we can always construct a feasible point for the right hand side with equal value by taking
the same x, and yijk = 1

|K|
∑
k′∈K `ijk′(ζk′ , x)− `ijk(ζk, x):∑

k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} =

∑
i∈I

∑
k∈K

max
j∈J
{ 1

|K|
∑
k′∈K

`ijk′(ζk′ , x)} =
∑
i∈I

max
j∈J
{
∑
k′∈K

`ijk′(ζk′ , x)}.
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Lemma B.2 A conservative reformulation of constraint (18) is given by:∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} ≤ d ∀ζk ∈ Zk (k ∈ K)∑

k∈K

yijk = 0 ∀i ∈ I ∀j ∈ J.

Proof Proof We use the proof of Lemma B.1. The first part of the proof still holds, so the
equality in constraint (19) becomes a “≤”. The construction of the feasible point in the second
part of the proof depends on the value `ijk(ζk, x). This value does not exist in the robust
constraint (18), since there is no single ζk. Note that the left hand sides of (18) and (19) are the
same, so by replacing the left hand side of (18) with the right hand side of (19), the conservative
reformulation is obtained.

The uncertainty is separable per k in the first constraint of the conservative reformulation.
Hence, analysis variables per k can replace each term without changing the solution. Vertex
enumeration can then be done for every Zk separately:∑

k∈K

zk ≤ d (20)

zk ≥
∑
i∈I

wiks ∀s ∈ S

wiks ≥ yijk + `ijk(ζsk, x)} ∀i ∈ I ∀s ∈ S ∀k ∈ K∑
k∈K

yijk = 0 ∀i ∈ I ∀j ∈ J.

It remains to show that this formulation is equivalent to the AARC-R of constraint (18).

Theorem B.3 The conservative reformulation in Lemma B.2 is the AARC-R in case of sce-
nario generated uncertainty.

Proof Proof The AARC-R of constraint (18) is given by:∑
i∈I

(
vi +

∑
k∈K

w
ᵀ

ikζk

)
≤ d ∀ζk ∈ Zk (k ∈ K)

vi +
∑
k∈K

w
ᵀ

ikζk ≥
∑
k∈K

`ij(ζk, x) ∀i ∈ I ∀j ∈ J ∀ζk ∈ Zk (k ∈ K). (21)

Constraint (21) can be reformulated as:

w
ᵀ

ikζk ≥ yijk + `ij(ζk, x) ∀i ∈ I ∀j ∈ J ∀ζk ∈ Zk ∀k ∈ K∑
k∈K

yijk = −vi ∀i ∈ I ∀j ∈ J.

We have assumed scenario generated uncertainty, so our uncertainty region is Zk = ∆|S|−1, the
standard simplex in R|S|. Suppose an optimal solution has vi 6= 0, then an optimal solution with
vi = 0 can be obtained by increasing all elements of wik for a single random k with vi because
the elements of ζk sum to 1. Hence we fix vi = 0. The AARC-R can then be formulated as:∑

k∈K

zk ≤ d

zk ≥
∑
i∈I

w
ᵀ

ikζk ∀ζk ∈ Zk (k ∈ K)

w
ᵀ

ikζk ≥ yijk + `ij(ζk, x) ∀i ∈ I ∀j ∈ J ∀ζk ∈ Zk ∀k ∈ K∑
k∈K

yijk = 0 ∀i ∈ I ∀j ∈ J.
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Let wiks denote the sth component of wik. Equivalence to (20) now follows from vertex enu-
meration.

C Derivation of the QARC-R for an ellipsoidal uncer-
tainty region

In this appendix the SDP reformulation of the QARC-R of (1) is derived for an ellipsoidal
uncertainty region. Constraint (2) in the QARC-R is a quadratic constraint in ζ, so there exists
v : Rn → R, w : Rn → RL and W : Rn → SL (the space of symmetric matrices of size L × L)
such that the constraint can be written as:

v(x) + w(x)
ᵀ

ζ + ζ
ᵀ

W (x)ζ ≤ d ∀ζ ∈ RL : ||ζ||2 ≤ Ω. (22)

This constraint is valid if and only if:

v(x) + max
ζ∈RL:||ζ||2≤Ω

{w(x)
ᵀ

ζ + ζ
ᵀ

W (x)ζ} ≤ d. (23)

The maximization problem at the left hand side is equivalent to an SDP (Ben-Tal et al. 2009a,
p. 382). In order to simplify notation, let:

C =

 0 1
2v(x)

ᵀ
0

1
2v(x) W (x) 0

0 0
ᵀ

0


After introducing a slack variable X33, the maximization problem can be written as:

max 〈C,X〉
s.t. trX = 1 + Ω2

X =

 1 X
ᵀ

12 0
X12 X22 0

0 0 X33

 � 0

X12 ∈ RL, X22 ∈ RL×L, X33 ∈ R,

where X12 can be seen as a replacement for ζ, X22 as a replacement for ζζ
ᵀ
, and 〈·, ·〉 denotes the

trace inner product. Let z0
1 be the dual variable associated with the constraint trX = 1+Ω2, and

let z0
i (i = 2, 3, 4) be the dual variables corresponding to the constraints X11 = 1, X1,n+2 = 0,

etc. The dual problem is given by:

min (1 + Ω2)z0
1 + z0

2

s.t.

z0
1 + z0

2 0
ᵀ

z0
3

0 z0
1I z0

4

z0
3 z0

4

ᵀ

z0
1

− C � 0

z0
1 ∈ R, z0

2 ∈ R, z0
3 ∈ R, z0

4 ∈ RL,

where I is the L× L identity matrix. After substituting this into constraint (23) and removing
the min operator, we get the following reformulation of constraint (22):

v(x) + (1 + Ω2)z0
1 + z0

2 ≤ dz0
1 + z0

2 0
ᵀ

z0
3

0 z0
1I z0

4

z0
3 z0

4

ᵀ

z0
1

− C � 0

z0
1 ∈ R, z0

2 ∈ R, z0
3 ∈ R, z0

4 ∈ RL.
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Similarly, constraint (3) in the QARC-R is a quadratic constraint in ζ, so there exists vij : Rn →
R, wij : Rn → RL and W ij : Rn → SL (the space of symmetric matrices of size L × L) such
that the constraint can be written as:

vij(x) + wij(x)
ᵀ

ζ + ζ
ᵀ

W ij(x)ζ ≥ 0 ∀ζ ∈ RL : ||ζ||2 ≤ Ω,

which can be rewritten as:

vij(x) + (1 + Ω2)zij1 + zij2 ≥ 0

−

 zij1 + zij2 − 1
2v
ij(x)

ᵀ
zij3

− 1
2v
ij(x) zij1 I −W ij(x) zij4

zij3 zij4

ᵀ

zij1

 � 0

zij1 ∈ R, zij2 ∈ R, zij3 ∈ R, zij4 ∈ RL.

The QARC-R has |I||J |+ 1 matrices of size |L+ 2| × |L+ 2| and |I||J |+ 1 constraints.
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Bienstock, D., N. Özbay. 2008. Computing robust basestock levels. Discrete Optimization 5
389–414. URL http://dx.doi.org/10.1016/j.disopt.2006.12.002.

Bohle, C., S. Maturana, J. Vera. 2010. A robust optimization approach to wine grape
harvesting scheduling. European Journal of Operational Research 200 245–252. URL
http://dx.doi.org/10.1016/j.ejor.2008.12.003.

El Ghaoui, L., H. Lebret. 1997. Robust solutions to least-squares problems with uncer-
tain data. SIAM Journal on Matrix Analysis and Applications 18 1035–1064. URL
http://dx.doi.org/10.1137/S0895479896298130.

Grant, M., S. Boyd. 2010. CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx.

Karabis, A., P. Belotti, D. Baltas. 2009. Optimization of catheter position and dwell time
in prostate hdr brachytherapy using hipo and linear programming. World Congress on
Medical Physics and Biomedical Engineering , Germany IFMBE Proceedings, vol. 25/I.
612–615.

Kropat, E., G.-W. Weber. 2008. Robust regression analysis for gene-environment and eco-finance
networks. URL http://www3.iam.metu.edu.tr/iam/images/3/32/Preprint184.pdf.
Working Paper.

Lessard, E., J. Pouliot. 2001. Inverse planning anatomy-based dose optimization for HDR-
brachytherapy of the prostate using fast simulated annealing algorithm and dedicated
objective function. Medical Physics 28 773–779.
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