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Abstract
We introduce two subclasses of convex measures of risk, referred to as entropy coherent

and entropy convex measures of risk. We prove that convex, entropy convex and entropy
coherent measures of risk emerge as certainty equivalents under variational, homothetic
and multiple priors preferences, respectively, upon requiring the certainty equivalents to be
translation invariant. In addition, we study the properties of entropy coherent and entropy
convex measures of risk, derive their dual conjugate function, and prove their distribution
invariant representation. Some financial applications and examples of entropy coherent and
entropy convex measures of risk are also investigated.

Keywords: Multiple priors; Variational and homothetic preferences; Robustness; Convex
risk measures; Exponential utility; Relative entropy; Translation invariance; Convexity;
Indifference valuation.
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1 Introduction

Among the most popular theories for decision-making under uncertainty is the multiple priors
model, postulating that an economic agent evaluates the consequences (payoffs) of a decision
alternative (financial position) X, defined on a measurable space (Ω,F), according to

U(X) = inf
Q∈Q

EQ [u(X)] , (1.1)

∗We are very grateful to Patrick Cheridito, Hans Föllmer, Dilip Madan, Alexander Schied, Hans Schumacher
and seminar and conference participants at the Fields Institute in Toronto, the AMaMeF Conference in Berlin
and the EURANDOM Lecture Day on Advances in Financial Mathematics for their comments and suggestions.
This research was funded in part by the Netherlands Organization for Scientific Research (Laeven) under grants
NWO VENI 2006 and NWO VIDI 2009.
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where u : R → R is an increasing function, and Q is a set of probability measures (priors)
on (Ω,F). The function u, referred to as a utility function, represents the agent’s attitude
towards wealth, and the set Q represents the agent’s uncertainty about the correct probabilistic
model. Gilboa and Schmeidler [20] establish a preference axiomatization of this robust Savage
representation, generalizing Savage [40] in the framework of Anscombe and Aumann [1]. The
representation of Gilboa and Schmeidler [20], also referred to as maxmin expected utility, is a
decision-theoretic foundation of the classical decision rule of Wald [45] — see also Huber [29]
— that had long seen little popularity outside (robust) statistics.

The multiple priors model is a special case of interest in the class of variational preferences
axiomatized by Maccheroni, Marinacci and Rustichini [33]. Under variational preferences, the
numerical representation takes the form

U(X) = inf
Q∈Q

{EQ [u(X)] + α(Q)}, (1.2)

where α is an ambiguity index (penalty function) on probability measures on (Ω,F). Mul-
tiple priors occurs when α is an indicator function that takes the value zero if Q ∈ Q and
∞ otherwise. Under multiple priors, the degree of ambiguity is reflected by the multiplicity
of the priors. Under variational preferences, the degree of ambiguity is reflected by the mul-
tiplicity of the priors and the esteemed plausibility of the prior according to the ambiguity
index. Recently, Chateauneuf and Faro [9] and, slightly more generally, Cerreia-Vioglio et
al. [8] axiomatized a multiplicative analog of variational preferences, henceforth referred to as
homothetic preferences, represented as

U(X) = inf
Q∈Q

{β(Q)EQ [u(X)]} , (1.3)

with β a penalty function on probability measures on (Ω,F); it also includes multiple priors
as a special case (β(Q) ≡ 1).

To measure the ‘risk’ related to a financial position X, the theories of variational and
homothetic preferences sketched above would lead to the definition of a loss functional L(X) =
−U(X), satisfying

L(X) = sup
Q∈Q

{EQ [φ(−X)]− α(Q)} and L(X) = sup
Q∈Q

{β(Q)EQ [φ(−X)]} ,

respectively, where φ(x) = −u(−x). The disutility (or loss) function φ describes how much
a loss in wealth hurts. One could, then, look at the capital amount m̄X that is ‘equivalent’
to the potential loss of X, solving for m̄X in L(m̄X) = L(X); this number is commonly
referred to as the certainty equivalent of X; see, e.g., Gollier [21]. However, because we are
interested in the amount of capital one needs to hold in response to the financial position X,
we will rather look at the negative certainty equivalent of X, mX , given by −m̄X , satisfying
L(−mX) = φ(mX) = L(X), or equivalently,

mX = φ−1

(
sup
Q∈Q

{EQ [φ(−X)]− α(Q)}

)
and mX = φ−1

(
sup
Q∈Q

{β(Q)EQ [φ(−X)]}

)
. (1.4)

In a related strand of the literature, convex risk measures have played an increasingly
important role since their introduction by Föllmer and Schied [15], Fritelli and Rosazza Gianin
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[18] and Heath and Ku [28], generalizing Artzner et al. [2]; see also the early work of Deprez
and Gerber [13] and Ben-Tal and Teboulle [4, 5], and the more recent Ben-Tal and Teboulle [6]
and Ruszczyński and Shapiro [38, 39]. For a given financial position X that an economic agent
holds, a convex risk measure ρ returns the minimal amount of capital the agent is required
to commit and add to the financial position in order to make it ‘safe’: the theory of convex
risk measures postulates that from the viewpoint of the supervisory authority, the financial
position X + ρ(X) is acceptably insured against adverse shocks. Convex risk measures are
characterized by the axioms of monotonicity, translation invariance and convexity. They can
— under additional assumptions on the space of financial positions and on continuity properties
of the risk measures; see Section 2 — be represented in the form

ρ(X) = sup
Q∈Q

{EQ [−X]− α(Q)}, (1.5)

where α is a penalty function defined on probability measures on (Ω,F). With

α(Q) =
{

0, if Q ∈ Q;
∞, otherwise;

we obtain the particular subclass of coherent measures of risk, represented in the form

ρ(X) = sup
Q∈Q

EQ [−X] .

The contribution of this paper is twofold. First we derive precise connections between
risk measurement under the theories of variational, homothetic and multiple priors preferences
— (1.4) — and risk measurement using convex measures of risk — (1.5). In particular, we
identify two subclasses of convex risk measures that we call entropy coherent and entropy
convex measures of risk, and that include all coherent risk measures. We show that, under
technical conditions, negative certainty equivalents under variational, homothetic, and multiple
priors preferences are translation invariant if and only if they are convex, entropy convex, and
entropy coherent measures of risk, respectively. It entails that convex, entropy convex and
entropy coherent measures of risk induce linear or exponential utility functions in the theories
of variational, homothetic and multiple priors preferences. We show further that, under a
normalization condition, this characterization remains valid when the condition of translation
invariance is replaced by requiring convexity. The mathematical details in the proofs of these
characterization results are delicate.

Second we study the classes of entropy coherent and entropy convex measures of risk.
We show that they satisfy many appealing properties. We prove various results on the dual
conjugate function for entropy coherent and entropy convex measures of risk. We show in
particular that, quite exceptionally, the dual conjugate function can explicitly be identified
under some technical conditions. We also study entropy coherent and entropy convex measures
of risk under the assumption of distribution invariance. Due to their convex nature, a feature
that singles out entropy convex measures of risk in the class of negative certainty equivalents
under homothetic preferences, we can obtain explicit representation results in this setting.
Some financial applications and examples of entropy coherent and entropy convex measures of
risk are also provided, explicitly utilizing some of the representation results derived.

In the traditional setting of Von Neumann and Morgenstern [44], where the probability
measure is known and given so that simply U(X) = E [u(X)], analogs of the characterization
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results established in this paper are relatively easy to obtain; see Hardy, Littlewood and Pólya
[27] (p. 88, Theorem 106), Gerber [19] (Chapter 5) and Goovaerts, De Vylder and Haezendonck
[22] (Chapter 3). It is intriguingly more complicated for the variational, homothetic and multi-
ple priors preferences considered here, and we will show that without richness assumptions on
the probability space and subdifferentiability conditions on ρ, our representation theorems in
fact break down. In recent work, Cheridito and Kupper [10] (Example 3.6.3) suggest (without
formal proof) a connection between certainty equivalents in the pure multiple priors model and
convex measures of risk. They restrict, however, to a specific and simple probabilistic setting
which, as we will see below, can be viewed as supplementary (and non-overlapping) to a special
case of the general setting considered here. While there is a rich literature on both theories
(1.4) and (1.5), to the best of our knowledge, we are not aware of other work establishing
precise connections between these prominent paradigms.

The rest of this paper is organized as follows: in Section 2, we review some preliminaries for
coherent and convex measures of risk. In Section 3, we introduce entropy coherent and entropy
convex measures of risk and discuss some of their basic properties. In Section 4, we prove
axiomatic characterization results for convex, entropy convex and entropy coherent measures
of risk. Section 5 studies the dual conjugate function for entropy coherent and entropy convex
measures, and Section 6 proves their distribution invariant representation. Section 7 presents
some financial applications and examples of entropy coherent and entropy convex measures of
risk. Conclusions are in Section 8.

2 Preliminaries

We fix a probability space (Ω,F , P ). Throughout this paper, equalities and inequalities between
random variables are understood in the P -almost sure sense. We let L∞(Ω,F , P ) ≡ L∞ denote
the space of all real-valued random variables X on (Ω,F , P ) for which ||X||∞ := inf{c >
0|P [|X| ≤ c] = 1} <∞, where two random variables are identified if they are P -almost surely
equal. We denote ]0,∞[ by R+ and ]−∞, 0] by R−

0 .

Definition 2.1 We call a mapping ρ : L∞ → R a convex risk measure if it has the following
properties:

• Normalization: ρ(0) = 0

• Translation Invariance: ρ(X +m) = ρ(X)−m for all m ∈ R

• Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

• Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1]

• Continuity from above: If Xn ∈ L∞ is a decreasing sequence converging to X ∈ L∞, then

ρ(Xn) ↑ ρ(X).

Furthermore, ρ is called a coherent risk measure if additionally it is positively homogeneous,
i.e.,

• Positive Homogeneity: For λ > 0 : ρ(λX) = λρ(X).
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We denote by Q(P ) ≡ Q all probability measures that are absolutely continuous with respect
to P. If Q ∈ Q, we also write Q� P . It is well-known that if ρ is a convex risk measure then
there exists a unique lower-semicontinuous and convex function α : Q → R ∪ {∞}, referred to
as the dual conjugate of ρ, such that the following dual representation holds:

ρ(X) = sup
Q∈Q

{
EQ [−X]− α(Q)

}
. (2.1)

Furthermore,

α(Q) = sup
X∈L∞

{
EQ [−X]− ρ(X)

}
; (2.2)

α is minimal in the sense that for every other (possibly non-convex or non-lower-semicontinuous)
function α′ satisfying (2.1), α ≤ α′; see, for instance, Föllmer and Schied [16] and Ruszczyński
and Shapiro [38, 39]. We define the subdifferential of ρ by

∂ρ(X) = {Q ∈ Q|ρ(X) = EQ [−X]− α(Q)}. (2.3)

We say that ρ is subdifferentiable if for everyX ∈ L∞, ∂ρ(X) 6= ∅. In this paper, we furthermore
denote by Cn(E) the space of all functions from R to R for which the first n-derivatives exist
and which are continuous in an open set E. Finally, for a set M ⊂ Q, we denote by ĪM the
penalty function that is zero if Q ∈M and ∞ otherwise.

3 Entropy Coherence and Entropy Convexity: Definitions and
Basic Properties

Throughout this section we suppose that γ ∈ [0,∞] is fixed. A risk measure that is particularly
popular in insurance and financial mathematics (Gerber [19], Föllmer and Schied [16] and Mania
and Schweizer [34]), macroeconomics (Hansen and Sargent [25, 26]), and decision theory (Gollier
[21] and Strzalecki [43]), is the (standard) entropic risk measure defined by

eγ(X) = γ log
(

E
[
exp

{
−X
γ

}])
,

with e0(X) = limγ↓0 eγ(X) = − ess infX and e∞(X) = limγ↑∞ eγ(X) = −E [X]. In a setting
with distribution invariance, it is commonly referred to as the exponential premium; see Gerber
[19] and Goovaerts et al. [23]. As is well-known (Csiszár [11]),

eγ(X) = sup
P̄�P

{
EP̄ [−X]− γH(P̄ |P )

}
,

where H(P̄ |P ) is the relative entropy, i.e.,

H(P̄ |P ) =

 EP̄

[
log
(dP̄
dP

)]
, if P̄ � P ;

∞, otherwise.

The relative entropy is also known as the Kullback-Leibler divergence; it measures the distance
between the measures P̄ and P.
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Risk measurement with the relative entropy is natural in the following setting: the economic
agent has a reference measure P ; the measure P is, however, an approximation to the probabilis-
tic model of the payoff X rather than the true model. The agent therefore does not fully trust
the measure P and considers many measures P̄ , with esteemed plausibility decreasing propor-
tionally to their distance from the approximation P. Note that for every given X, the mapping
γ → eγ(X) is increasing. Consequently, the parameter γ may be viewed as measuring the
degree of trust the agent puts in the reference measure P . If γ = 0, then e0(X) = − ess infX,
which corresponds to a maximal level of distrust; in this case only the zero sets of the measure
P are considered reliable. If, on the other hand, γ = ∞, then e∞(X) = −E [X], which corre-
sponds to a maximal level of trust in the measure P. In the case that γ ∈ R+, it is well-known
that ∂eγ(X) is given by the Esscher density with respect to P : exp

{
−X
γ

}
/E
[
exp

{
−X
γ

}]
.

In certain situations the agent can possibly consider other reference measures Q� P. Then
we define the entropy eγ,Q with respect to Q as

eγ,Q(X) = γ log
(

EQ

[
exp

{
−X
γ

}])
.

Consider the following example:

Example 3.1 Suppose that the agent is only interested in downside tail risk. The standard risk
measure focusing on tail risk is the Tail-Value-at-Risk (TV@R), also referred to as Conditional-
Value-at-Risk or Average-Value-at-Risk (Rockafellar and Uryasev [36] and Rockafellar, Uryasev
and Zabarankin [37]). TV@R is defined by

TV@Rα(X) =
1
α

∫ α

0
V@Rλ(X)dλ, α ∈]0, 1],

with V@Rλ(X) = −q+X(λ), where q+X is the upper quantile function ofX: q+X(λ) = inf{x|P [X ≤
x] > λ}. If the distribution of X is continuous, TV@Rα(X) = E

[
−X|X ≤ q+X(α)

]
, so that

TV@R computes the average over the left tail of the distribution of X up to q+X(α). It is
well-known that

TV@Rα(X) = sup
Q∈Mα

EQ [−X] ,

where Mα is the set of all probability measures Q � P such that dQ
dP ≤ 1

α . Let dQ
dP =

1
αI{X<q+X(α)} + cI{X=q+X(α)}, where c should be chosen such that E

[
dQ
dP

]
= 1. Then one can

show that
Q ∈ arg max{EP̄

[
−X|P̄ ∈Mα

]
},

i.e., TV@Rα(X) = EQ [−X] , and, for continuous distributions, Q = P [.|X ≤ q+X(α)]. Thus,
the measure Q coincides with the original reference measure P , but concentrated on the left
tail of X. The economic agent may, however, not fully trust the probabilistic model of X under
P , hence under Q. Therefore, for every fixed Q, the agent considers the supremum over all
measures absolutely continuous with respect to Q, where measures that are ‘close’ to Q are
esteemed more plausible than measures that are ‘distant’ from Q. This leads to a risk measure
ρ given by

ρ(X) = sup
P̄�Q

sup
Q∈Mα

{EP̄ [−X]− γH(P̄ |Q)} = sup
Q∈Mα

sup
P̄�P

{EP̄ [−X]− γH(P̄ |Q)} = sup
Q∈Mα

eγ,Q(X)

= γ log

(
sup
Q∈Mα

EQ

[
exp

{
−X
γ

}])
= γ log

(
TV@Rα

(
− exp

{
−X
γ

}))
,
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where we have used in the second and third equalities that H(P̄ |Q) = ∞ if P̄ is not absolutely
continuous with respect toQ. The risk measure given by ρ(X) = γ log

(
TV@Rα

(
− exp

{
−X
γ

}))
accounts for tail risk and model uncertainty. Furthermore, it is computationally attractive be-
cause all one needs is a reference model P for the payoff X, which in a probabilistic approach
seems a mild presumption.

This example motivates the following definition:

Definition 3.2 We call a mapping ρ : L∞ → R γ-entropy coherent, γ ∈ [0,∞], if there exists
a set M ⊂ Q such that

ρ(X) = sup
Q∈M

eγ,Q(X).

It will be interesting to consider as well a more general class of risk measures:

Definition 3.3 The mapping ρ : L∞ → R is γ-entropy convex, γ ∈ [0,∞], if there exists a
penalty function c : Q → [0,∞] with infQ∈Q c(Q) = 0, such that

ρ(X) = sup
Q∈Q

{eγ,Q(X)− c(Q)}. (3.1)

Henceforth, we call a mapping entropy coherent (convex) if there exists a γ ∈ [0,∞] such that
ρ is γ-entropy coherent (convex).

Considering

−ρ(X) = inf
Q∈Q

{
−γ log

(
EQ

[
exp

{
−X
γ

}])
+ c(Q)

}
,

the definition of entropy convexity (whence the special case of entropy coherence as well) can
also be motivated as follows: an economic agent with a CARA (exponential) utility function
u(x) = 1−e−x/γ computes the certainty equivalent to the payoff X with respect to the reference
measure P. The agent is, however, uncertain about the probabilistic model under the reference
measure, and therefore takes the infimum over all probability measures Q absolutely continuous
with respect to P , where the penalty function c(Q) represents the esteemed plausibility of the
probabilistic model underQ. The robust certainty equivalent thus computed is precisely −ρ(X).

Proposition 3.4 Every γ-entropy convex functional is a convex risk measure.

Proof. For every fixed Q with Q � P we have that if X = Y P -a.s. then also X = Y Q-
a.s., hence, eγ,Q(X) = eγ,Q(Y ) and therefore supQ∈Q{eγ,Q(X) − c(Q)} = supQ∈Q{eγ,Q(Y ) −
c(Q)} as well. Furthermore, eγ,Q(X) − c(Q) is translation invariant, monotone, convex and
lower-semicontinuous (hence, continuous from above). Thus, also supQ∈Q{eγ,Q(X) − c(Q)}
is translation invariant, monotone, convex and continuous from above. Normalization follows
because infQ∈Q c(Q) = 0 by assumption. 2

In principle, one might consider as well more general classes of risk measures, replacing
eγ,Q(X) in (3.1) by an arbitrary functional on L∞×Q, for example, the certainty equivalent of
an agent with CRRA (power) utility. In that case, however, one generally loses the translation
invariance property and the resulting ρ will no longer be a convex risk measure. We therefore
do not pursue this route.

As e∞,Q(X) = EQ [−X] , (2.1) implies that ρ is a convex risk measure if and only if it is ∞-
entropy convex. As we will see later (for example, Theorem 5.2 below), however, with γ <∞,
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not every convex risk measure is γ-entropy convex. This is important: in Theorem 4.1 below we
will see that, under some technical conditions, negative certainty equivalents under homothetic
preferences are translation invariant if and only if they are γ-entropy convex with γ ∈ R+ or
∞-entropy coherent, ruling out the general ∞-entropy convex case. But the following result is
available:

Proposition 3.5 Let ρ be a convex risk measure. Then for every γ ∈ [0,∞] there exists a
γ-entropy convex risk measure ργ,dom dominating ρ.

Proof. We have eγ,Q(X) = supP̄�Q{EP̄ [−X] − γH(P̄ |Q)} ≥ EQ [−X] . Thus, setting α = c,
ρ(X) = supQ�P {EQ [−X]− α(Q)} ≤ supQ�P {eγ,Q(X)− c(Q)} = ργ,dom(X). 2

For a risk measure ρ we define

ρ∗(Q) = sup
X∈L∞

{eγ,Q(X)− ρ(X)}

and
ρ∗∗(X) = sup

Q�P
{eγ,Q(X)− ρ∗(Q)}.

Lemma 3.6 If ρ is γ-entropy convex, then for every X ∈ L∞,

ρ∗∗(X) ≤ ρ(X). (3.2)

Proof. As ρ∗(Q) = supX∈L∞{eγ,Q(X) − ρ(X)} it follows that eγ,Q(X) − ρ∗(Q) ≤ ρ(X) for all
X ∈ L∞. Taking the supremum over all measures Q which are absolutely continuous with
respect to P yields (3.2). 2

The next proposition establishes a basic duality result for γ-entropy convex risk measures:

Proposition 3.7 A normalized mapping ρ is γ-entropy convex if and only if ρ∗∗ = ρ. Further-
more, ρ∗ is the minimal penalty function.

Proof. This duality result follows in principle from the general duality results in Moreau [35].
We provide a short proof to be self-contained. The ‘if’ part holds because if ρ(X) = ρ∗∗(X) =
supQ�P {eγ,Q(X)− ρ∗(Q)} then by virtue of the equalities

0 = −ρ(0) = − sup
Q∈Q

−ρ∗(Q) = inf
Q∈Q

ρ∗(Q),

ρ is γ-entropy convex. Let us prove the ‘only if’ direction. We already know from Lemma
3.6 that ρ∗∗ ≤ ρ. We will prove that ρ∗∗ ≥ ρ. If ρ is γ-entropy convex there exists a penalty
function c such that

ρ(X) = sup
Q∈Q

{eγ,Q(X)− c(Q)}.

Thus, for every Q � P we have c(Q) ≥ eγ,Q(X) − ρ(X). By the definition of ρ∗ this yields
c(Q) ≥ ρ∗(Q). This proves that every penalty function ρ is dominating ρ∗. Moreover,

ρ∗∗(X) = sup
Q�P

{eγ,Q(X)− ρ∗(Q)} ≥ sup
Q�P

{eγ,Q(X)− c(Q)} = ρ(X).

2

Proposition 3.7 suggests a way to find out whether a risk measure ρ is γ-entropy convex:
compute ρ∗ and ρ∗∗, and verify whether ρ∗∗ = ρ.
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Remark 3.8 ρ∗ measures how much ρ deviates from below from the Q-entropy. If there exists
a Q� P such that ρ(X) ≤ eγ,Q(X) then ρ∗(Q) ≥ eγ,Q(X)−ρ(X) ≥ 0. This and the convexity
of ρ∗ jointly imply that ρ is entropy coherent if and only if ρ∗ = ĪM for a set M ⊂ Q.

Remark 3.9 Let A be the acceptance set of ρ, i.e., A = {X ∈ L∞|ρ(X) ≤ 0} . ρ∗ can be
represented as

ρ∗(Q) = sup
X∈A

eγ,Q(X).

To see this, note that clearly,

ρ∗(Q) = sup
X∈L∞

{
eγ,Q(X)− ρ(X)

}
≥ sup

X∈A

{
eγ,Q(X)− ρ(X)

}
≥ sup

X∈A
eγ,Q(X).

On the other hand, if X ∈ A then X + ρ(X) ∈ A, which implies that

ρ∗(Q) = sup
X∈L∞

{
eγ,Q(X)− ρ(X)

}
= sup

X∈L∞

{
eγ,Q(X + ρ(X))

}
= sup

X+ρ(X)=Y ∈L∞
eγ,Q(Y ) ≤ sup

Y ∈A
eγ,Q(Y ).

Definition 3.10 For a γ-entropy convex function ρ we denote by

∂entropyρ(X) = {Q∗ ∈ Q|ρ(X) = eγ,Q∗(X)− c(Q∗)}

the entropy subdifferential. Furthermore, if for every X ∈ L∞, ∂entropyρ(X) 6= ∅, then we say
that ρ is entropy subdifferentiable.

Remark 3.11 If γ ∈ R+ and Q∗ ∈ ∂entropyρ(X), then
exp

n
−X
γ

o

EQ∗
h
exp

n
−X
γ

oi ∈ ∂ρ(X), where ∂ρ(X) is

the usual subdifferential defined by (2.3). In the case that there exists a c such that (3.1) holds
and such that the domain of c is a separated compact space it follows directly from Theorem
2.4.18, Zalinscu [47] that every P̄ in ∂ρ(X) can be written as the L1 limit of convex combinations

of measures P̄n given by dP̄n

dP =
exp

n
−X
γ

o

EQ∗n

h
exp

n
−X
γ

oi with Q∗n ∈ ∂entropyρ(X). In particular, in this

case ∂entropyρ(X) 6= ∅ if and only if ∂ρ(X) 6= ∅.

Proposition 3.12 Suppose that ρ is a γ-entropy coherent risk measure with γ ∈]0,∞]. Then
the following statements are equivalent:

(a) For every X ∈ L∞,
ρ(X) = max

Q∈M
eγ,Q(X).

(b) M ⊂ Q is weakly compact.

(c) ρ is continuous from below, i.e., Xn ↑ X ⇒ ρ(Xn) ↓ ρ(X).

Proof. Let
ρ̄(X) = sup

Q∈M
EQ [−X] . (3.3)
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First of all, notice that by Corollary 4.35 in Föllmer and Schied [16] and the translation
invariance of ρ̄, M being weakly compact is equivalent to the maximum in (3.3) being attained
for every X < 0.
(a)⇒(b): Suppose that X < 0. Then

ρ̄(X) = exp
{

1
γ
ρ(−γ log(−X))

}
= exp

{
1
γ

max
Q∈M

γ log(EQ [−X])
}

= max
Q∈M

EQ [−X] .

(b)⇒(a): We write

ρ(X) = γ log

(
sup
Q∈M

EQ

[
exp

{
−X
γ

}])
= γ log

(
max
Q∈M

EQ

[
exp

{
−X
γ

}])
= max

Q∈M
eγ,Q(X).

(b)⇔(c): Corollary 4.35 in Föllmer and Schied [16] implies also that M being weakly compact
is equivalent to ρ̄ being continuous from below. Now clearly ρ̄ being continuous from below
implies that ρ is continuous from below. On the other hand, suppose that Xn ↑ X. Since
ρ̄ is translation invariant we may assume without loss of generality that Xn < 0. Define
Yn := −γ log(−Xn) ↑ Y =: −γ log(−X). Then the continuity from below of ρ implies that

ρ̄(Xn) = exp
{
ρ(Yn)
γ

}
↓ exp

{
ρ(Y )
γ

}
= ρ̄(X).

2

4 Axiomatic Characterizations

In this section, we axiomatize convex, entropy convex and entropy coherent measures of risk,
showing that they emerge as certainty equivalents under variational, homothetic and multi-
ple priors preferences, respectively, upon requiring the certainty equivalents to be translation
invariant.

In the main characterization theorems (Theorem 4.1, Corollary 4.10 and Theorem 4.12), we
consider, more specifically, negative certainty equivalents of the form ρ(X) = φ−1(ρ̄(−φ(−X))),
with

ρ̄(X) =


supQ∈Q β(Q)EQ [−X] ,
supQ∈M EQ [−X] ,
supQ∈Q{EQ [−X]− α(Q)},

respectively. These constitute the negative certainty equivalents in the theories of homothetic,
multiple priors and variational preferences, respectively; cf. (1.4), and also Section I.3 in
Föllmer, Schied and Weber [17]. Recall that a rich probability space supports a random
variable with a uniform distribution.

4.1 Homothetic Preferences and Entropy Convex Measures of Risk

We state the following theorem:

Theorem 4.1 Suppose that the probability space is rich and that ρ̄ : L∞ → R is monotone,
convex, positively homogeneous and continuous from above and for all m ∈ R−

0 , ρ̄(m) = −m. Let
φ be a strictly increasing and continuous function satisfying 0 ∈ closure(Image(φ)), φ(∞) = ∞
and φ ∈ C3(]φ−1(0),∞[). Then the following statements are equivalent:
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(i) ρ(X) = φ−1(ρ̄(−φ(−X))) is translation invariant and the subdifferential of ρ̄ is always
nonempty.

(ii) ρ is γ-entropy convex with γ ∈ R+ or ρ is ∞-entropy coherent, and the entropy subdif-
ferential is always nonempty.

Remark 4.2 In the proof of Theorem 4.1 (see also Corollary 4.10 below), it will become
apparent that ρ(X) = φ−1(ρ̄(−φ(−X))) is entropy coherent if and only if ρ̄ is a coherent risk
measure. In this case, ρ̄(X) = supQ∈M EQ [−X] for a setM ⊂ Q, and ρ(X) = φ−1(ρ̄(−φ(−X)))
is a negative certainty equivalent in the multiple priors model. In addition, it will turn out
that in this case φ is linear or exponential.

Furthermore, we will see that the case that ρ(X) = φ−1(ρ̄(−φ(−X))) is entropy convex
corresponds to ρ being the negative certainty equivalent under homothetic preferences, with
ρ̄(X) = supQ∈M β(Q)EQ [−X], where β : M → [0, 1] can be viewed as a discount factor, and
with φ being linear (implying β(Q) ≡ 1) or exponential. In this case, every probabilistic model
Q is discounted by a factor β(Q) corresponding to its esteemed plausibility. If β(Q) = 1 for all
Q ∈M , we are back in the multiple priors framework. However, if there exists a Q ∈M such
that β(Q) < 1, ρ is entropy convex with γ ∈ R+ but not entropy coherent.

Remark 4.3 The direction (i)⇒(ii) in Theorem 4.1 does not hold (even not in the case that we
additionally assume that ρ̄ is translation invariant as in Corollary 4.10 below) if the probability
space is not rich, or if the assumption on the subdifferential of ρ̄ is omitted.

Suppose, for instance, that Ω = {ω1, ω2, . . . , ωn} and that, without loss of generality,
P [{ωi}] = pi > 0, i = 1, . . . , n. Then for a payoff X we can define ρ̄(X) = maxi=1,...,n−X(ωi),
where the maximum is attained in the measure Q that sets Q[{ωi0}] = 1, where ωi0 =
arg maxω −X(ω). Such a discrete worst case measure of risk is popular in robust optimiza-
tion. Let φ be a strictly increasing and continuous function. Then it always holds that

φ−1(ρ̄(−φ(−X))) = φ−1(max
i
φ(−X(ωi)))

= φ−1(φ(−X(ωi0))) = −X(ωi0) = ρ̄(X).

In particular, ρ(X) = φ−1(ρ̄(−φ(−X))) = ρ̄(X) is translation invariant for every function φ
that is strictly increasing and continuous. This shows that (i)⇒(ii) in Theorem 4.1 does not
hold if the probability space is finite.

If, on the other hand, the probability space is rich but we omit the assumption that ρ̄ is
subdifferentiable, then the coherent risk measure ρ̄(X) = ess sup−X satisfies for every strictly
increasing and continuous function φ that ρ(X) = φ−1(ρ̄(−φ(−X))) = ρ̄(X) is a convex risk
measure. The equality may be seen to hold as

φ−1(ρ̄(−φ(−X))) = ess supφ−1(φ(−X)) = ess sup−X = ρ̄(X).

Remark 4.4 In financial mathematics, translation invariance is typically motivated by the
interpretation of a risk measure on L∞ as a minimal amount of risk capital. It ensures that
ρ(X + ρ(X)) = 0.

Remark 4.5 Notice that since φ is positive somewhere and 0 ∈ closure(Image(φ)) we have
that φ−1(δ) is well-defined for all δ > 0 small enough and we can define φ−1(0) = limδ↓0 φ

−1(δ).
The common condition that φ(∞) = ∞ implies that ρ remains loss sensitive.
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Before proving Theorem 4.1, we first present the following two lemmas:

Lemma 4.6 Suppose that ρ̄ : L∞ → R is monotone, convex, positively homogeneous and
continuous from above and for all m ∈ R−

0 , ρ̄(m) = −m. Then there exists a function β : Q ⊃
M → [0, 1] with supQ∈M β(Q) = 1, such that for all X ∈ L∞ with X ≤ 0,

ρ̄(X) = sup
Q∈M

β(Q)EQ [−X] . (4.1)

Furthermore, if additionally we have ρ̄(1) = −1 then M can be chosen such that β(Q) = 1 for
all Q ∈M.

Proof. By standard arguments (see, for example, Lemma A64 in the appendix of Föllmer and
Schied [16]), we may conclude that ρ̄ is weak∗ lower-semicontinuous. Proposition 3.1.2 in Dana
[12] implies that

ρ̄(X) = sup
X′∈L1

+

{E
[
−X ′X

]
− ˆ̄ρ(X ′)},

and it follows from standard results in convex analysis that the positive homogeneity of ρ̄
entails that ˆ̄ρ is an indicator function of a convex nonempty set, say H ⊂ L1

+. Hence,

ρ̄(X) = sup
X′∈H

E
[
−X ′X

]
= sup

X′∈H
E
[
X ′]E [− X ′

E [X ′]
X

]
= sup

X′∈H
E
[
X ′]EQX′ [−X] , (4.2)

where in the case that X ′ ≡ 0, we set 0/0 = 1 and QX
′

= P . Now set M =
{
Q ∈

Q| there exists a λ ≥ 0 such that λdQdP ∈ H
}

. Then (4.2) entails that for all X ∈ L∞ with
X ≤ 0,

ρ̄(X) = sup
Q∈M

β(Q)EQ [−X] ,

where for Q ∈M, β(Q) = sup{λ ≥ 0|λdQdP ∈ H}. This shows (4.1). Furthermore,

sup
Q∈M

β(Q) = ρ̄(−1) = 1.

To see the last part of the lemma note that if ρ̄(1) = −1 then we must have −1 = ρ̄(1) =
supX′∈H E [−X ′] . This implies that

inf
X′∈H

E
[
X ′] = 1.

On the other hand, since ρ̄(−1) = 1, we also have that supX′∈H E [X ′] = 1. Hence, for every
X ′ ∈ H we get that E [X ′] = 1 and by the definition of β we obtain that β(Q) = 1 for every
Q ∈M . 2

Subsequently, we will identify the measure β(Q)Q (given by (β(Q)Q)(A) = β(Q)Q(A) for every
A ∈ F) with its density β(Q)dQdP . We recall that an element X ′ ∈ H ⊂ L1

+ is in ∂ρ̄(X) if it
attains the supremum in (4.2), i.e., ρ̄(X) = E [−X ′X] .
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Lemma 4.7 Suppose that ρ̄ : L∞ → R is monotone, convex, positively homogeneous and
continuous from above and for all m ∈ R−

0 , ρ̄(m) = −m. Let X ∈ L∞ with X > 0. Then for
every Q with β(Q)Q ∈ ∂ρ̄(−X) we have that

β(Q) ≥ ess infX
ess supX

.

Proof. Choose Q ∈M such that β(Q)Q ∈ ∂ρ̄(−X). Then by (4.1) and the monotonicity of ρ̄

ess infX = ρ̄(− ess infX) ≤ ρ̄(−X) = β(Q)EQ [X] ≤ β(Q) ess supX,

where the last inequality holds as β(Q) ≥ 0. Dividing both sides by ess supX completes the
proof. 2

Proof of Theorem 4.1. (i)⇒(ii):
Since φ is positive somewhere and 0 ∈ closure(Image(φ)), there are two cases:

(H1) There exists an x0 such that φ(x0) = 0.

(H2) limx→−∞ φ(x) = 0 and for every x ∈ R we have φ(x) > 0.

Let φz(·) := φ(·+ z) for z ∈ R. By translation invariance,

φ−1
z (ρ̄(−φz(−X))) = φ−1(ρ̄(−φz(−X)))− z = φ−1(ρ̄(−φ(−X))).

Thus, by considering φz instead of φ, we may assume without loss of generality that:

• If (H1) holds then φ(0) = 0 and φ ∈ C3(]φ−1(0),∞[) = C3(R+).

• If (H2) holds then φ(0) > 0 and φ ∈ C3(]φ−1(0),∞[) = C3(]−∞,∞[).

In particular, we may always assume that φ−1(0) ∈ {−∞, 0} and

φ(0) ≥ 0. (4.3)

Next, let us look at X ∈ L∞ such that X < 0. By assumption, ∂ρ̄(−φ(−X)) 6= ∅. As
−φ(−X) < 0 (since φ(0) ≥ 0 and φ is strictly increasing), by (4.1) and the assumption that
the subdifferential of ρ̄ is always nonempty we have that

ρ̄(−φ(−X)) = max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ [φ(−X)] . (4.4)

Now we need the following lemma:

Lemma 4.8 Let X ∈ L∞ with X < 0. Under the assumptions of Theorem 4.1 (i) we have that

φ′ ◦ φ−1
(

max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ [φ(−X)]
)

= max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
. (4.5)

Proof. Note that as φ is in C3(]φ−1(0),∞[) we have for |m| < ess inf −X,

ρ̄(−φ(−X +m)) = ρ̄(−φ(−X)− φ′(−X)m+O(m2)).
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As a result, we will find that

lim
m→0

ρ̄(−φ(−X +m))− ρ̄(−φ(−X))
m

= lim
m→0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

= max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
. (4.6)

That the last equality holds is seen as follows: For arbitrary ε > 0 we have for small m that
|O(m2)

m | ≤ ε. Therefore,

lim sup
m↓0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≤ lim sup
m↓0

ρ̄(−φ(−X)− (φ′(−X) + ε)m)− ρ̄(−φ(−X))
m

= max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X) + ε

]
,

where the inequality holds by the monotonicity of ρ̄ while the equality holds by Theorem 2.4.9
Zalinescu [47]. As ε can be chosen to be arbitrary small we find that

lim sup
m↓0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≤ max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
.

Similarly, one can prove (with ε replaced by −ε) that the same inequality holds when lim supm↓0
on the left-hand side is replaced by lim supm↑0. It means that

lim sup
m→0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≤ max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
.

The reverse inequality

lim inf
m→0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≥ max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
is proven analogously. Hence, indeed (4.6) holds. In particular, the mapping g(m) = ρ̄(−φ(−X+
m)) is differentiable in m = 0 and

g′(0) = max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
. (4.7)

Now by assumption, φ−1(ρ̄(−φ(−X))) is translation invariant and for all m ∈ R,

φ−1(ρ̄(−φ(−X +m)))− φ−1(ρ̄(−φ(−X)))
m

= 1. (4.8)

Letting m converge to zero in (4.8) we get that

(φ−1 ◦ g)′(0) = 1. (4.9)
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On the other hand, applying the chain rule to φ−1 ◦ g, we obtain

(φ−1 ◦ g)′(0) =
∂
[
φ−1(ρ̄(−φ(−X +m)))

]
∂m

∣∣∣
m=0

=
g′(m)

φ′ ◦ φ−1
(
ρ̄(−φ(−X +m))

)∣∣∣
m=0

=
maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ′(−X)]

φ′ ◦ φ−1
(
ρ̄(−φ(−X))

)
=

maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ′(−X)]

φ′ ◦ φ−1
(

maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ(−X)]
) , (4.10)

where we applied (4.7) in the third and (4.4) in the last equality. Finally, (4.9) together with
(4.10) entail that (4.5) holds true. 2

Continuation of the Proof of Theorem 4.1. (i)⇒(ii):
Next, we will show that Lemma 4.8 implies that there exists p, γ, q such that, for all x ∈
]φ−1(0),∞[, φ(x) = p exp{xγ }+ q or φ(x) = px+ q. We state the following lemma:

Lemma 4.9 In the setting of Theorem 4.1, suppose that there does not exist p, γ, q such that,
for all x ∈]φ−1(0),∞[, φ(x) = γ exp{xγ } + q or φ(x) = px + q. Then the function φ′ ◦ φ−1 is
not linear on φ(]φ−1(0),∞[) = R+.

Proof. Suppose that there exists c, d such that φ′ ◦ φ−1(x) = cx + d for all x ∈ R+. As

φ′ ◦ φ−1 =
1

(φ−1)′
we get that

(φ−1)′(x) =
1

cx+ d
.

If c = 0 then φ is linear on ]φ−1(0),∞[ contrary to our assumptions. As φ−1 is strictly

increasing on R+, we must have that c > 0. This entails φ−1(x) =
1
c

log(cx+ d), which yields

that φ(x) = 1
c exp{cx} − d

c on ]φ−1(0),∞[. This contradicts again our assumptions. Hence,
under the stated assumptions, φ′ ◦ φ−1 is not linear on R+. 2

Continuation of the Proof of Theorem 4.1. (i)⇒(ii):
Now assume that (i)⇒(ii) does not hold, i.e., there does not exist p, γ, q such that, for all
x ∈]φ−1(0),∞[, φ(x) = p exp{xγ } + q or φ(x) = px + q. We will then prove that we obtain
a contradiction to Lemma 4.8. By Lemma 4.9, this assumption implies that φ′ ◦ φ−1 is not
linear on φ(]φ−1(0),∞[) = R+. As φ is in C3(]φ−1(0),∞[), φ′ ◦ φ−1 is in C2(R+). Now the
second derivative of φ′ ◦ φ−1 cannot be constantly zero on R+ as φ′ ◦ φ−1 is not linear. Let

u = inf
{
t > 0

∣∣∣(φ′ ◦ φ−1
)′′

(t) 6= 0
}
≥ 0. There are two cases:

(i) There exists a nonempty interval J =]u, t[⊂ R+ such that
(
φ′ ◦ φ−1

)′′
< 0, i.e., φ′ ◦ φ−1

is strictly concave on J.

(ii) There exists a nonempty interval J =]u, t[⊂ R+ such that
(
φ′ ◦ φ−1

)′′
> 0, i.e., φ′ ◦ φ−1

is strictly convex on J .
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As φ′ ◦ φ−1 is continuously differentiable on ]0, t[ and linear on ]0, u] (by the definition of u),
φ′ ◦ φ−1 in case (i) is concave on ]0, t[ and in case (ii) is convex on ]0, t[. Let ε > 0 such that
(1− ε)2t > u. Since the probability space is rich we may choose X ∈ L∞ satisfying both of the
following two properties:

(a) −X ∈ φ−1(](1− ε)t, t[) ⊂ φ−1(J).

(b) −X is diffuse.

From (a) it follows in particular that φ(−X) ∈](1− ε)t, t[⊂ J. Denote

Q1 = arg maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ(−X)] .

Q2 = arg maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ
[
φ′(−X)

]
.

Since Qi � P and −X is diffuse under P we have that Qi[−X = x] = 0 for i = 1, 2 and every
x ∈ φ−1(J). Thus, −X is also diffuse under Qi. As by (a) and (4.3) φ(−X) ∈ J ⊂ R+ and
φ(0) ≥ 0, we have that φ(−X) > 0. Since β(Qi)Qi ∈ ∂ρ(−(φ(−X)), Lemma 4.7 gives

β(Qi) ≥
ess inf φ(−X)
ess supφ(−X)

≥ (1− ε)t
t

= 1− ε > 0.

Therefore, β(Qi)φ(−X) is a diffuse random variable under Qi and

t > φ(−X) ≥ β(Qi)φ(−X) ≥ (1− ε)φ(−X) ≥ (1− ε)2t > u,

where the second inequality holds as β(Qi) ∈]0, 1]. In particular, β(Qi)φ(−X) ∈ J. Finally let
us derive the contradiction. Assume case (i) above: Then

φ′ ◦ φ−1
(

max
i=1,2

β(Qi)EQi [φ(−X)]
)

= max
i=1,2

φ′ ◦ φ−1
(
EQi [β(Qi)φ(−X)]

)
> max

i=1,2
EQi

[
φ′ ◦ φ−1

(
β(Qi)φ(−X)

)]
= max

i=1,2
lim
δ↓0

EQi
[
φ′ ◦ φ−1

(
β(Qi)φ(−X) + (1− β(Qi))δ

)]
≥ max

i=1,2
lim inf
δ↓0

{
EQi

[
β(Qi)φ′ ◦ φ−1

(
φ(−X)

)]
+ (1− β(Qi))φ′ ◦ φ−1(δ)

}
= max

i=1,2

{
β(Qi)EQi

[
φ′(−X)

]
+ (1− β(Qi)) lim inf

δ↓0
φ′ ◦ φ−1(δ)

}
≥ max

i=1,2
β(Qi)EQi

[
φ′(−X)

]
,

where the first inequality holds because of Jensen’s inequality for strictly concave functions for
the diffuse random variable β(Qi)φ(−X) ∈ J , with i = 1, 2, respectively (where we used that
β(Qi)φ(−X) ∈ J and the strict concavity of φ′ ◦φ−1 on J). The second inequality holds by the
concavity of the function φ′ ◦ φ−1 on ]0, t]. The third inequality holds because φ′ ◦ φ−1(δ) > 0
for every δ > 0 such that φ−1(δ) is well-defined, as φ′ is positive. The (strict) inequality above
is a contradiction to Lemma 4.8, applying to case (i).

Now consider the more challenging case (ii): Then the function φ′ ◦ φ−1 is convex on ]0, t]
and strictly convex on J . Choosing a sequence δn ↓ 0 such that

lim inf
δ↓0

φ′ ◦ φ−1(δ) = lim
n
φ′ ◦ φ−1(δn),
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the same argumentation as before yields

φ′ ◦ φ−1
(

max
i=1,2

β(Qi)EQi [φ(−X)]
)
< max

i=1,2
EQi

[
φ′ ◦ φ−1

(
β(Qi)φ(−X)

)]
≤ max

i=1,2
lim
n

{
EQi

[
β(Qi)φ′ ◦ φ−1

(
φ(−X)

)]
+ (1− β(Qi))φ′ ◦ φ−1(δn)

}
= max

i=1,2

{
β(Qi)EQi

[
φ′(−X)

]
+ (1− β(Qi)) lim inf

δ↓0
φ′ ◦ φ−1(δ)

}
. (4.11)

Notice that if
(1− β(Qi)) lim inf

δ↓0
φ′ ◦ φ−1(δ) = 0, (4.12)

then (4.11) would imply that

φ′ ◦ φ−1
(

max
i=1,2

β(Qi)EQi [φ(−X)]
)
< max

i=1,2
β(Qi)EQi

[
φ′(−X)

]
,

which is a contradiction to Lemma 4.8. To see that (1− β(Qi)) lim infδ↓0 φ′ ◦ φ−1(δ) = 0 note
that there are two cases:

(1.) ρ̄(1) = −1,

(2.) ρ̄(1) 6= −1.

In the first case the second part of Lemma 4.6 implies that β(Qi) = 1 for i = 1, 2 and, in
particular, (4.12) is satisfied. Let us look at the second case: by positive homogeneity (2.)
entails that ρ̄(m) 6= −m for all m > 0. Now suppose that there exists x0 ∈ R such that
φ(−x0) < 0. Since by assumption there also exists x1 such that φ(−x1) > 0 the continuity of φ
yields that the assumption (H1) above holds. In particular, φ(0) = 0. By (2.) and the positive
homogeneity of ρ̄, ρ̄(−φ(−x0)) 6= φ(−x0). This gives

φ−1(ρ̄(−φ(−x0))) 6= −x0. (4.13)

However, by translation invariance and since ρ̄(0) = 0,

φ−1(ρ̄(−φ(−x0)) = −x0 + φ−1(ρ̄(−φ(0)) = −x0 + φ−1(ρ̄(0)) = −x0 + φ−1(0) = −x0,

which is a contradiction to (4.13). Hence, φ(x) ≥ 0 for all x ∈ R and the assumption (H2)
holds, i.e.,

lim
x→−∞

φ(x) = 0. (4.14)

By construction in (H2) we have φ ∈ C3(] − ∞,∞[). Now (4.14) implies that the positive
function φ′(x) cannot be bounded constantly away from zero on (−∞, z) for any z ∈ R. This
means that there is a sequence xn converging to −∞ such that

lim inf
n

φ′(xn) = 0.

Choose δ̄n = φ(xn). By (4.14) we have that limn δ̄n = 0 and

0 ≤ lim inf
δ↓0

φ′ ◦ φ−1(δ) ≤ lim
n
φ′(φ−1(δ̄n)) = lim

n
φ′(xn) = 0.
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Consequently,
lim inf
δ↓0

φ′ ◦ φ−1(δ) = 0.

This proves (4.12). Hence, we have derived a contradiction to Lemma 4.8, applying to case
(ii). Furthermore, we have seen that the cases (H1) and (1.), and (H2) and (2.) coincide,
respectively.

Hence, (4.5) of Lemma 4.8 implies that the function φ′◦φ−1 has to be linear, and by Lemma
4.9 this implies that there exist constants p, γ, q ∈ R such that φ(x) = pex/γ+q or φ(x) = px+q
for all x ∈]φ−1(0),∞[ (where in case (H1) φ−1(0) = 0 and in case (H2) φ−1(0) = −∞).

As φ is strictly increasing we have p > 0. Now in the case (H2) we must have that
φ(x) = exp{x/γ} (with q = 0) as only then limx→−∞ φ(x) = 0. On the other hand, in the
case (H1), condition (1.) holds and the second part of Lemma 4.6 implies that β(Q) = 1 for
all Q ∈M. Therefore, φ−1(ρ̄(−φ(−X))) is invariant under positive affine transformations of φ.
Thus, we may always assume that q = 0. Let us first consider the case that φ is not linear,
i.e., φ(x) = ex/γ . Then

φ−1(ρ̄(−φ(−X))) = φ−1

(
sup
Q∈M

β(Q)EQ [φ(−X)]

)

= γ log

(
sup
Q∈M

β(Q)EQ

[
exp

{
−X
γ

}])

= sup
Q∈M

{
γ log

(
EQ

[
exp

{
−X
γ

}])
+ γ log(β(Q))

}
= sup

Q∈M
{eγ,Q(X)− c(Q)},

with c(Q) = −γ log(β(Q)) ≥ 0 if Q ∈ M and c(Q) = ∞ else. Thus, indeed φ−1(ρ̄(−φ(−X)))
is γ-entropy convex. As the supremum on the right-hand side of the first equality is always
attained because ∂ρ̄(−φ(−X)) 6= ∅, (ii) follows.

Now in the case that φ is linear, we may assume that φ(x) = px. But then by our assump-
tions, ρ(X) = φ−1(ρ̄(−φ(−X))) = ρ̄(X) is translation invariant. In particular, ρ is a coherent
risk measure attaining its maximum. Thus, ρ is γ-entropy convex (even γ-entropy coherent)
with γ = ∞ and its entropy subdifferential is always nonempty. This completes the proof of
the implication (i)⇒(ii) of Theorem 4.1.

Proof of Theorem 4.1. (ii)⇒(i):
To see the direction (ii)⇒(i), we distinguish between two cases: in the case that γ < ∞,
we let φ(x) = ex/γ , and ρ̄(X) = supQ∈Q β(Q)EQ [−X], with β(Q) = e−ρ

∗(Q)/γ ≥ 0. Then
ρ(X) = γ log

(
ρ̄
(
−e−X/γ

))
= φ−1(ρ̄(−φ(−X))). Clearly, ρ̄ is monotone, convex, positively

homogeneous and continuous from above. As infQ∈Q ρ∗(Q) = 0, we get that supQ∈Q β(Q) = 1.
This implies that for m ∈ R−

0 , ρ̄(m) = −m. Furthermore, because ρ is entropy convex it is
translation invariant.

In the case that γ = ∞, we let φ(x) = x and ρ̄(X) = ρ(X). Notice that in both cases we
have ∂ρ(X) 6= ∅ and hence ∂ρ̄(X) 6= ∅. 2

Corollary 4.10 In the setting of Theorem 4.1, if ρ̄ is additionally assumed to be translation
invariant, then statement (i) implies that ρ is γ-entropy coherent with γ ∈]0,∞].
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Proof. As ρ̄ is assumed to be translation invariant, we have that ρ̄(m) = −m for all m ∈ R.
By Lemma 4.6 this implies that in the proof of Theorem 4.1 we can choose M ⊂ Q such that
β(Q) = 1 for all Q ∈M. Hence, we get c(Q) = γ log(β(Q)) = 0 if β(Q) = 1 and ∞ else. Thus,
indeed φ−1(ρ̄(−φ(−X))) is entropy coherent. 2

Remark 4.11 In recent work, Cheridito and Kupper [10] (Example 3.6.3) suggest (without
formal proof) a result quite similar to, but essentially different from, Corollary 4.10. Their
suggested result can in a way be viewed as supplementary to the statement in Corollary 4.10:
they restrict attention to a specific and simple probabilistic setting with a finite outcome space
Ω and consider only strictly positive probability measures on Ω. By contrast, in Corollary 4.10,
we consider a rich outcome space and allow for weakly positive probability measures.

4.2 Variational Preferences and Convex Measures of Risk

We state the following theorem:

Theorem 4.12 Suppose that the probability space is rich and that ρ̄ : L∞ → R is a convex
risk measure with dual conjugate α that has uniformly integrable sublevel sets. Let φ be a
strictly increasing and convex function with φ ∈ C3(R) satisfying either φ(−∞) = −∞ or
φ(x)/x x→∞→ ∞. Then the following statements are equivalent:

(i) ρ(X) = φ−1(ρ̄(−φ(−X))) is translation invariant and the subdifferential of ρ̄ is always
nonempty.

(ii) ρ is a convex risk measure and the subdifferential is always nonempty. Furthermore, in
the case that φ(x)/x x→∞→ ∞, ρ is γ-entropy coherent with γ ∈ R+.

Remark 4.13 Note that under the conditions of Theorem 4.12, ρ̄(X) = supQ∈Q{EQ [−X] −
α(Q)}, so that ρ(X) = φ−1(ρ̄(−φ(−X))) is a negative certainty equivalent under variational
preferences. In the proof of Theorem 4.12, we will see that φ is either linear or exponential. In
the latter case α, the dual conjugate of ρ̄, only takes the values zero and ∞ and ρ is γ-entropy
coherent with γ ∈ R+.

Remark 4.14 Jouini, Schachermayer and Touzi [31] prove that if the probability space is
separable, then α(Q) = supX∈L∞{EQ [−X] − ρ̄(X)} having uniformly integrable sublevel sets
is equivalent to ρ̄ being continuous from below. But because we do not want to impose any
additional assumptions on the probability space, we simply require the sublevel sets of α to be
uniformly integrable.

Proof of Theorem 4.12.
The direction (ii)⇒(i) is straightforward. Let us prove (i)⇒(ii). Clearly, for m′ ∈ R we can
consider φ(x) + m′ instead of φ(x). Hence, we may assume without loss of generality that
φ(0) = φ−1(0) = 0. We need the following lemma, of which the proof is similar to the proof of
Lemma 4.8 and therefore omitted.

Lemma 4.15 Let X ∈ L∞. Under the assumptions of Theorem 4.12 (i) we have that

φ′ ◦ φ−1
(

max
Q∈∂ρ̄(−φ(−X))

{EQ [φ(−X)]− α(Q)}
)

= max
Q∈∂ρ̄(−φ(−X))

EQ
[
φ′(−X)

]
. (4.15)
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We also need:

Lemma 4.16 For any X ∈ L∞ such that Q ∈ ∂ρ̄(X),

0 ≤ α(Q) ≤ ess sup−X − ess inf −X.

Proof. Since ρ̄(0) = 0 we must have that α(Q) ≥ 0. Furthermore, by monotonicity and
translation invariance of ρ̄

α(Q) = EQ [−X]− ρ̄(X) ≤ ess sup−X − ess inf −X.

2

Continuation of the Proof of Theorem 4.12. (i)⇒(ii):
First of all note that as φ is strictly increasing and convex we must have that φ(∞) = ∞.
Assume now that there does not exist p, γ, q such that, for all x ∈]φ−1(−∞),∞[, φ(x) =
p exp{xγ } + q or φ(x) = px + q, and let us derive a contradiction to Lemma 4.15. By Lemma
4.9, this assumption implies that φ′ ◦φ−1 is not linear on ]φ(−∞),∞[. As φ is in C3(R) we have
that φ′ ◦φ−1 is in C2(]φ(−∞),∞[). Now the second derivative of φ′ ◦φ−1 cannot be constantly
zero on ]φ(−∞),∞[ as φ′ ◦ φ−1 is not linear. Hence, one may see as in the proof of Theorem
4.1 that there are the following two cases:

(a) There exists a nonempty interval J =]u, t[ such that φ′ ◦ φ−1 is strictly convex on J .

(b) φ′◦φ−1 is concave on ]φ(−∞),∞[. Furthermore, there exists a nonempty interval J =]u, t[
such that φ′ ◦ φ−1 is strictly concave on J .

Assume case (a). Choose an ε > 0 such that ](1− ε)t, t[⊂ J. Since the probability space is rich
we may choose X ∈ L∞ satisfying both of the following two properties:

(a’) −X ∈ φ−1(](1− 2
3ε)t, (1−

1
3ε)t[) ⊂ φ−1(J).

(b’) −X is diffuse.

Denote

Q1 = arg maxQ∈∂ρ̄(−φ(−X)) {EQ [φ(−X)]− α(Q)} .
Q2 = arg maxQ∈∂ρ̄(−φ(−X)) EQ

[
φ′(−X)

]
.

Similar to the proof of Theorem 4.1, it may be seen that −X is diffuse under each Qi. From
(a’) and Lemma 4.16 it follows in particular that φ(−X) − α(Qi) are in ](1 − ε)t, t[⊂ J for
i = 1, 2. Now let us derive the contradiction. We write

φ′ ◦ φ−1

(
max
i=1,2

EQi [φ(−X)]− α(Q)
)

= max
i=1,2

φ′ ◦ φ−1
(
EQi [φ(−X)− α(Qi)]

)
< max

i=1,2
EQi

[
φ′ ◦ φ−1 (φ(−X)− α(Qi))

]
≤ max

i=1,2
EQi

[
φ′ ◦ φ−1(φ(−X))

]
= max

i=1,2

{
EQi

[
φ′(−X)

]}
,

where the strict inequality holds because of Jensen’s inequality for strictly concave functions
for the diffuse random variable φ(−X) − α(Qi) ∈ J , with i = 1, 2, respectively. The second
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inequality holds since α(Qi) ≥ 0. The (strict) inequality above is a contradiction to Lemma
4.15.

Now assume that case (a) does not hold. Then we are in case (b) and φ′ ◦ φ−1 is concave
on ]φ(−∞),∞[. Note that, by assumption, φ′ ◦φ is also increasing and positive (as φ is convex
and strictly increasing). Since no non-constant concave function having domain equal to R is
bounded from below, φ(−∞) 6= −∞. Hence, by our assumptions on φ, we must have that in
this case limx→∞

φ(x)
x = ∞.

Next note that since the derivative of φ′ ◦ φ−1 is decreasing and positive it must converge
to a constant, say c ≥ 0. By the monotonicity of φ′ ◦ φ−1 (as φ is assumed to be convex) there
exists a constant d ∈ R such that for every ε > 0 there exists Mε > 0 such that

cx+ d ≤ φ′ ◦ φ−1(x) ≤ cx+ d+ ε, for all x > Mε.

As φ′ ◦ φ−1 =
1

(φ−1)′
we get that for any ε > 0 there exists a constant Mε > 0 such that for all

x > Mε
1

cx+ d
≤ (φ−1)′(x) ≤ 1

cx+ d− ε
. (4.16)

If c = 0 then (4.16) would imply that φ grows at most linearly contradicting limx→∞
φ(x)
x = ∞.

Hence, c > 0 and (4.16) implies

φ−1(Mε) +
1
c

log
(
cx+ d

cMε + d

)
≤ φ−1(x) ≤ φ−1(Mε) +

1
c

log
(

cx+ d

cMε + d− ε

)
, (4.17)

for all x ∈]Mε,∞[, which yields that

1
c

(
(cMε + d) exp{c(x− φ−1(Mε))} − d

)
≥ φ(x)

≥1
c

(
(cMε + d− ε) exp{c(x− φ−1(Mε))} − d

)
, for all x ∈]φ−1(Mε),∞[. (4.18)

From Lemma 4.17 below we may conclude that (4.17)-(4.18) entail that ρ̄ must be coherent.
Now it follows from Theorem 4.1 (since φ(0) = 0) that φ must be linear or exponential which
is a contradiction to our starting assumption that this is not case. Hence, indeed φ must be
either linear or exponential. Furthermore, if φ(−∞) = −∞, we must have that φ is linear,
while if limx→∞

φ(x)
x = ∞, φ is exponential.

Now all what is left to show is that if φ has an exponential form, then α, the dual conjugate
of ρ̄, has to be an indicator function that only takes the values zero and ∞. In this case ρ
would be γ-entropy coherent with γ ∈ R+. However, note that if φ has an exponential form,
then (4.16) even holds for a certain d and ε = Mε = 0. This implies that (4.17)-(4.18) also hold
for every ε > 0 and every Mε chosen large enough such that ε < cMε + d. Hence, the fact that
in this case α is an indicator function also follows from Lemma 4.17 below. This completes the
proof. 2

Lemma 4.17 Suppose Theorem 4.12(i) and that there exist c > 0 and d ∈ R such that for
every ε > 0 there exists Mε > 0 such that (4.17)-(4.18) hold. Then ρ̄ is coherent.
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Proof. The lemma would be proved if we could show that α, the dual conjugate of ρ̄, is an
indicator function. Let

b(ε) :=
cMε + d− ε

cMε + d
,

and denote b−1(ε) = 1
b(ε) . Without loss of generality we may assume that Mε converges to ∞

as ε tends to zero so that b(ε) tends to one. We will prove the lemma by contradiction. So
assume that there exists Q0 such that 0 < α(Q0) <∞. Let

M =
{
Q ∈ Q|α(Q) ≤ α(Q0)

2

}
. (4.19)

As M is closed and convex, by the Hahn-Banach Theorem there exists an X ′
0 ∈ L∞ such that

EQ0

[
−X ′

0

]
> sup

Q∈M
EQ
[
−X ′

0

]
.

By considering X0 := X ′
0 +m we may, if we choose m suitably, assume that

EQ0 [−X0] > 0 > sup
Q∈M

EQ [−X0] .

For ε > 0 with ε < cMε + d let λε := cb(ε)α(Q0)+ε
cMε+d−ε EQ0 [X0]

−1 . Then

EQ0 [−λεX0] >
cb(ε)α(Q0)
cMε + d− ε

> 0 > sup
Q∈M

EQ [−λεX0] ≥ sup
Q∈M

{
EQ [−λεX0]−

cb(ε)α(Q)
cMε + d− ε

}
,

where we used that α ≥ 0 in the last inequality. Hence,

EQ0 [−λεX0]−
cb(ε)α(Q0)
cMε + d− ε

> 0 > sup
Q∈M

{
EQ [−λεX0]−

cb(ε)α(Q)
cMε + d− ε

}
. (4.20)

Clearly this inequality also holds for −λεX0 + m̄ for any constant m̄ ∈ R. Let us choose a
suitable constant so that −Zε = −λεX0 + m̄ > 1 and consequently log(−Zε)

c is well-defined and
positive. Define

Zε := λεX0 − ||λεX0||∞ − ε− 1.

Then log(−Zε)
c > 0 and

||Zε||∞ ≤ cb(ε)α(Q0) + ε

cMε + d− ε
2||X0||∞EQ0 [X0]

−1 + ε+ 1. (4.21)

Let ρ̃(X) := supQ∈Q
{

EQ [−X]− cb(ε)
cMε+d−εα(Q)

}
. By assumption the sublevel sets of α are

weakly compact. This entails that for every ε with ε < cMε + d there exists Q∗ε ∈ Q such that

ρ̃(Zε) = EQ∗ε [−Zε]−
cb(ε)α(Q∗ε )
cMε + d− ε

.

It follows from (4.20) that

EQ∗ε [−Zε]−
cb(ε)α(Q∗ε )
cMε + d− ε

= sup
Q∈Q

{
EQ [−Zε]−

cb(ε)α(Q)
cMε + d− ε

}
≥ EQ0 [−Zε]−

cb(ε)α(Q0)
cMε + d− ε

> sup
Q∈M

{
EQ [−Zε]−

cb(ε)α(Q)
cMε + d− ε

}
.
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Therefore, Q∗ε /∈ M which by (4.19) implies that for every ε > 0 we have that α(Q∗ε ) >
α(Q0)/2 > 0. Next, choose ε > 0 small enough such that c

cMε+d
< 1, ε < cMε + d and

(b−1(ε)− b(ε))EQ∗ε [−Zε] =
(
(b−1(ε)− 1) + (1− b(ε))

)
EQ∗ε [−Zε]

=
(

ε

cMε + d− ε
+

ε

cMε + d

)
EQ∗ε [−Zε]

≤
(

ε

cMε + d− ε
+

ε

cMε + d

)(
cb(ε)α(Q0) + ε

cMε + d− ε
2||X0||∞EQ0 [X0]

−1 + ε+ 1
)

<
cα(Q0)

2(cMε + d− ε)
<

cα(Q∗ε )
cMε + d− ε

,

where we used (4.21) in the first inequality. In particular,

(b−1(ε)− b(ε))EQ∗ε [−Zε]−
cα(Q∗ε )
cMε + d

< 0.

Next choose m′ > 0 large enough such that

(b−1(ε)− b(ε))EQ∗ε [−Zε]−
cα(Q∗ε )

cMε + d− ε
< −e−cm′

α(Q∗ε ).

This is equivalent to

b−1(ε)
{

EQ∗ε [−Zε]−
cb(ε)α(Q∗ε )
cMε + d− ε

}
< b(ε)

{
EQ∗ε [−Zε]− e−cm

′
b−1(ε)α(Q∗ε )

}
. (4.22)

Finally, let us derive a contradiction. We write

ρ

(
− log(−Zε)

c
− φ−1(Mε)−m′

)
= φ−1

(
ρ̄

(
−φ
(

log(−Zε)
c

+ φ−1(Mε) +m′
)))

≥ 1
c

log
(

1
cMε + d

[
cρ̄

(
−1
c

[(cMε + d− ε)

× exp
{
log(−Zε) + cφ−1(Mε) + cm′ − cφ−1(Mε)

}
− d
])

+ d

])
+ φ−1(Mε)

=
1
c

log

(
c

cMε + d
ρ̄

(
ecm

′

c
(cMε + d− ε)Zε

))
+ φ−1(Mε)

≥ 1
c

log
(
ρ̄

(
cMε + d− ε

cMε + d
ecm

′
Zε

))
+ φ−1(Mε)

=
1
c

log

(
sup
Q∈Q

{
EQ
[
−ecm′

b(ε)Zε
]
− α(Q)

})
+ φ−1(Mε)

=
1
c

log

(
ecm

′
b(ε) sup

Q∈Q

{
EQ [−Zε]− e−cm

′
b−1(ε)α(Q)

})
+ φ−1(Mε)

= m′ +
1
c

log

(
b(ε) sup

Q∈Q

{
EQ [−Zε]− e−cm

′
b−1(ε)α(Q)

})
+ φ−1(Mε)

≥ m′ +
1
c

log
(
b(ε)

{
EQ∗ε [−Zε]− e−cm

′
b−1(ε)α(Q∗ε )

})
+ φ−1(Mε), (4.23)
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where we have used we have used (4.17)-(4.18) in the first inequality as log(−Zε)
c +m′+φ−1(Mε) >

log(−Zε)
c +φ−1(Mε) > φ−1(Mε). In the second equality we have used translation invariance and

performed obvious simplifications. In the second inequality we have used that, as ρ̄ is convex
and ρ̄(0) = 0, we must have, for 0 ≤ λ = c

cMε+d
≤ 1, that λρ̄(X) = λρ̄(X)+(1−λ)ρ̄(0) ≥ ρ̄(λX).

On the other hand we obtain

ρ

(
− log(−Zε)

c
− φ−1(Mε)

)
≤ 1
c

log
(

1
cMε + d− ε

[
cρ̄

(
−1
c

[
(cMε + d) exp

{
c

(
log(−Zε)

c

)}
− d

])
+ d

])
+ φ−1(Mε)

=
1
c

log
(

c

cMε + d− ε
ρ̄

(
cMε + d

c
Zε

))
+ φ−1(Mε)

=
1
c

log

(
c

cMε + d− ε
sup
Q∈Q

{
EQ

[
−cMε + d

c
Zε

]
− α(Q)

})
+ φ−1(Mε)

=
1
c

log

(
b−1(ε) sup

Q∈Q

{
EQ [−Zε]−

cb(ε)α(Q)
cMε + d− ε

})
+ φ−1(Mε)

=
1
c

log
(
b−1(ε)ρ̃(Zε)

)
+ φ−1(Mε)

=
1
c

log
(
b−1(ε)

{
EQ∗ε [−Zε]−

cb(ε)α(Q∗ε )
cMε + d− ε

})
+ φ−1(Mε), (4.24)

where we have used (4.17)-(4.18) in the first inequality.
Finally, we may conclude

ρ

(
− log(−Zε)

c
− φ−1(Mε)−m′

)
= m′ + ρ

(
− log(−Zε)

c
− φ−1(Mε)

)
≤ m′ +

1
c

log
(
b−1(ε)

{
EQ∗ε [−Zε]−

cb(ε)α(Q∗ε )
cMε + d− ε

})
+ φ−1(Mε)

< m′ +
1
c

log
(
b(ε)

{
EQ∗ε [−Zε]− e−cm

′
b−1(ε)α(Q∗ε )

})
+ φ−1(Mε)

≤ ρ

(
− log(−Zε)

c
− φ−1(Mε)−m′

)
, (4.25)

where we have used (4.24) in the first inequality, (4.22) in the strict inequality and (4.23) in
the last inequality. The equality holds by translation invariance. The strict inequality (4.25)
is a contradiction. 2

4.3 Convexity Without the Translation Invariance Axiom

In the previous two subsections the axiom of translation invariance played a key role; see
Theorems 4.1(i) and 4.12(i). As is well-documented (see, for example, Cheridito and Kupper
[10]), the axiom of translation invariance is equivalent to the axiom of convexity for general
certainty equivalents under fairly weak conditions (e.g., continuity with respect to the L∞-
norm). In this subsection we adapt and apply this equivalence relation to the present setting,
to replace the axiom of translation invariance by the axiom of convexity, which will now play
the key role.
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Throughout this subsection, we suppose the probability space (Ω,F , P ) is rich. We state
the following theorem:

Theorem 4.18 Let ρ̄ : L∞ → R be monotone, convex, positively homogeneous and continuous
from above, and let for all m ∈ R−

0 , ρ̄(m) = −m. Suppose that the subdifferential of ρ̄ is always
nonempty. Furthermore, suppose that r : L∞ → R is defined by r(X) = φ−1 (ρ̄(−φ(−X))) ,
for a strictly increasing and continuous function φ ∈ C3(]φ−1(0),∞[). Finally, suppose that
0 ∈ closure(Image(φ)) and that φ(∞) = ∞. Then the following statements are equivalent:

(i) r is convex and r(m) = −m for all m ∈ R.

(ii) r is γ-entropy convex with γ ∈ R+ or r is ∞-entropy coherent.

Proof. The direction from (ii) to (i) holds by virtue of Proposition 3.4. Let us show the reverse
direction. First, notice that r is continuous with respect to the L∞-norm. This can be seen as
follows: from the proof of Lemma 4.6, we have that ρ̄(X) = supX′∈H{E [−X ′X]} with H ⊂ L1

+

and supX′∈H{E [|X ′|]} = supX′∈H{E [X ′]} = 1. Hence, for X,Y ∈ L∞,

ρ̄(Y )− ρ̄(X) = sup
X′∈H

{E
[
−X ′Y

]
} − sup

X′∈H
{E
[
−X ′X

]
}

≤ sup
X′∈H

{E
[
−X ′Y

]
− E

[
−X ′X

]
}

≤ ||Y −X||∞ sup
X′∈H

E
[
|X ′|

]
= ||Y −X||∞.

Switching the roles of X and Y it follows that ρ̄ is indeed continuous with respect to the
L∞-norm. Now as φ is continuous we can conclude that r is continuous with respect to the
L∞-norm as well. But then it follows from Proposition 2.5-(8) in Cheridito and Kupper [10]
that r is translation invariant. The argument is simple, namely, for λ ∈ (0, 1) we have

r(X +m) ≤ λr

(
X

λ

)
+ (1− λ)r

(
m

1− λ

)
= λr

(
X

λ

)
−m.

Letting λ converge to one and using the continuity of r with respect to the L∞-norm we
find that r(X + m) ≤ r(X) − m. Replacing X by X + m and m by −m yields the stated
result. Therefore, r is indeed translation invariant. Now upon application of Theorem 4.1, the
direction from (i) to (ii) follows. 2

Using Corollary 4.10, we now obtain directly the following corollary:

Corollary 4.19 In the setting of Theorem 4.18, suppose that ρ̄ is additionally assumed to be
translation invariant. Then the following statements are equivalent:

(i) r is convex.

(ii) r is γ-entropy coherent with γ ∈]0,∞].

It is straightforward to adapt the proof of Theorem 4.18 to show that, similarly, the condition
of translation invariance in Theorem 4.12 can also be replaced by convexity and the condition
that r(m) = −m for all m ∈ R.
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5 The Dual Conjugate

In this section we study the dual conjugate function, defined in (2.2), for entropy coherent and
entropy convex measures of risk. Quite unusually, some explicit results on the dual conjugate
function can be obtained. Let γ ∈ [0,∞]. We state the following proposition:

Proposition 5.1 Suppose that ρ is γ-entropy convex. Then

ρ∗(Q) = sup
P̄�P

{α(P̄ )− γH(P̄ |Q)}. (5.1)

Proof. We write

ρ∗(Q) = sup
X∈L∞

{eγ,Q(X)− ρ(X)} = sup
X∈L∞

sup
P̄�P

{EP̄ [−X]− γH(P̄ |Q)− ρ(X)}

= sup
P̄�P

sup
X∈L∞

{EP̄ [−X]− ρ(X)− γH(P̄ |Q)} = sup
P̄�P

{α(P̄ )− γH(P̄ |Q)}.

2

Notice that (5.1) yields that α(P̄ ) ≤ ρ∗(Q) + γH(P̄ |Q). Hence,

α(P̄ ) ≤ inf
Q∈Q

{ρ∗(Q) + γH(P̄ |Q)}.

The next penalty function duality theorem will show that this inequality is sharp. It also
establishes the explicit relationship between the dual conjugate α and the penalty function c
for γ-entropy convex measures of risk.

Theorem 5.2 Suppose that ρ is γ-entropy convex with penalty function c. Then:

(i) The dual conjugate of ρ, defined in (2.2), is given by the largest convex and lower-
semicontinuous function α being dominated by infQ∈Q{γH(P̄ |Q) + c(Q)}.

(ii) If c is convex and lower-semicontinuous, then α is the largest lower-semicontinuous func-
tion being dominated by infQ∈Q{γH(P̄ |Q) + c(Q)}.

(iii) If c is convex and lower-semicontinuous and for every r ∈ R+ the set Br = {Q ∈
Q|c(Q) ≤ r} is uniformly integrable, then

α(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)}. (5.2)

Proof. If γ = 0 or γ = ∞ the theorem follows by standard arguments. Let us therefore assume
that γ ∈ R+.

(i): We write

ρ(X) = sup
Q∈Q

{
γ log

(
EQ

[
exp

{
−X
γ

}])
− c(Q)

}
= sup

Q∈Q
sup
P̄�P

{
EP̄ [−X]− γH(P̄ |Q)− c(Q)

}
= sup

P̄�P

sup
Q∈Q

{
EP̄ [−X]− γH(P̄ |Q)− c(Q)

}
= sup

P̄�P

{
EP̄ [−X]− inf

Q∈Q
{γH(P̄ |Q) + c(Q)}

}
,
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where we have used in the second equality that H(P̄ |Q) = ∞ if P̄ is not absolutely continuous
with respect to Q. Since α is the minimal lower-semicontinuous and convex function satisfying
(2.1), statement (i) follows.

(ii): Now assume that c is convex and lower-semicontinuous. We will first show that:

(a) γH(P̄ |Q) is jointly convex in (P̄ , Q).

(b) If P̄n andQn converge weakly to P̄ and Q̄, respectively, then γH(P̄ |Q) ≤ lim infn γH(P̄n|Qn).

To see (a), note that for every X ∈ L∞, −γ log
(
EQ
[
exp

{
−X
γ

}])
is convex in Q, and EP̄ [−X]

is convex in P̄ . Hence, EP̄ [−X] − γ log
(
EQ
[
exp

{
−X
γ

}])
is jointly convex in (P̄ , Q) and

therefore

γH(P̄ |Q) = sup
X∈L∞

{
EP̄ [−X]− γ log

(
EQ

[
exp

{
−X
γ

}])}
is jointly convex in (P̄ , Q) as well.

(b) If Qn ∈ Q converges weakly to Q, and P̄n ∈ Q converges weakly to P̄ , then for every
X ∈ L∞ we have EQn [−X] n→∞→ EQ [−X] and EP̄n [−X] n→∞→ EP̄ [−X] . Since

EP̄ [−X]− γ log
(

EQ

[
exp

{
−X
γ

}])
= lim

n

{
EP̄n [−X]− γ log

(
EQn

[
exp

{
−X
γ

}])}
≤ lim inf

n
sup
X∈L∞

{
EP̄n [−X]− γ log

(
EQn

[
exp

{
−X
γ

}])}
,

it follows that

γH(P̄ |Q) = sup
X∈L∞

{
EP̄ [−X]− γ log

(
EQ

[
exp

{
−X
γ

}])}
≤ lim inf

n
sup
X∈L∞

{
EP̄n [−X]− γ log

(
EQn

[
exp

{
−X
γ

}])}
= lim inf

n
γH(P̄n|Qn).

This proves (b).
(a) and (b) imply that γH(P̄ |Q) is jointly convex and lower-semicontinuous in (P̄ , Q).

Furthermore, c(Q) is convex and lower-semicontinuous. Therefore γH(P̄ |Q) + c(Q) is jointly
convex and lower-semicontinuous as well. By Theorem 2.1.3 (v) of Zalinescu [47] it follows
that infQ∈Q{γH(P̄ |Q) + c(Q)} is convex in P̄ . Now (ii) follows since α is the minimal lower-
semicontinuous and convex function satisfying (2.1).

(iii): If we could show that

β(P̄ ) = inf
Q∈Q

{γH(P̄ |Q) + c(Q)} (5.3)

is also lower-semicontinuous and that the infimum is attained, then (5.2) would follow from
the uniqueness of α. First of all let us show that the infimum in (5.3) is attained. Let Qk � P
be the minimizing sequence. Since c 6= ∞ we have for all P̄ that β(P̄ ) <∞. Thus,

lim sup
k

c(Qk) ≤ lim sup
k

γH(P̄ |Qk) + c(Qk) = β(P̄ ) <∞.
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In particular, (c(Qk))k is a bounded sequence. By our assumptions, Qk must be a uniformly
integrable sequence and by the Theorem of Dunford-Pettis, see for instance Theorem IV.8.9 in
Dunford and Schwartz [14], the sequence Qk is weakly relatively compact. Hence, for fixed P̄
we may take the infimum in (5.3) over the weakly compact set {Q1, Q2, . . .}. As by (b) above
Q→ γH(P̄ |Q) + c(Q) is lower-semicontinuous we may infer that the infimum is attained.

So suppose that P̄n converges weakly to P̄ . For the lower-semicontinuity we have to show
that

β(P̄ ) ≤ lim inf
n

β(P̄n). (5.4)

If lim infn β(P̄n) = ∞ then clearly (5.4) holds. So assume that r := lim infn β(P̄n) <∞. Denote
by (nj)j the subsequence such that lim infn β(P̄n) = limj β(P̄nj ). Let

Q̄nj ∈ arg minQ∈Q{γH(P̄nj |Q) + c(Q)}.

As lim supj c(Qnj ) ≤ limj γH(P̄nj |Qnj )+ c(Qnj ) = r, the sequence Qnj is uniformly integrable.
Again by the Theorem of Dunford-Pettis, Qnj has a subsequence, denoted by njk , converging
weakly to a measure Q̄ ∈ Q. Hence, by the lower-semicontinuity of the mapping (P̄ , Q) →
H(P̄ |Q) proved in (b),

β(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)} ≤ γH(P̄ |Q̄) + c(Q̄)

≤ lim inf
k

γH(P̄nk |Q̄njk ) + c(Qnjk ) = lim inf
n

β(P̄n),

where the second equality holds because njk was a subsequence of the sequence nj . Hence,
indeed β is lower-semicontinuous and we can conclude that β = α. 2

Corollary 5.3 Suppose that
ρ(X) = sup

Q∈M
eγ,Q(X)

for a convex set M ⊂ Q. Then the dual conjugate of ρ is given by the largest lower-semicontinuous
function α being dominated by infQ∈M γH(P̄ |Q). Furthermore, if M is weakly relatively com-
pact, then

α(P̄ ) = min
Q∈M

γH(P̄ |Q). (5.5)

Proof. The first part of the corollary is precisely (ii) of Theorem 5.2 with c = ĪM . The second
part follows as for all r ∈ R+ we have {Q ∈ Q|c(Q) ≤ r} = M. (5.5) now follows as by
the Theorem of Dunford-Pettis, M is weakly relatively compact if and only if M is uniformly
integrable. 2

Corollary 5.4 Suppose that ρ is a convex risk measure with dual conjugate α for which

α(P ) = 0 and α(Q) > 0 if Q 6= P.

Then ρ is γ-entropy coherent if and only if ρ(X) = eγ(X) for γ ∈]0,∞].
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Proof. The ‘if’ direction is trivial. Let us prove the ‘only if’ direction. If ρ is γ-entropy coherent,
then by Corollary 5.3 we must have α(P̄ ) ≤ infQ∈M γH(P̄ |Q) for a convex set M . Note that if
P̄ ∈M then 0 ≤ α(P̄ ) ≤ infQ∈M γH(P̄ |Q) = 0. By the assumptions on α this implies that M
can at most contain P. Hence, either α(P̄ ) = γH(P̄ |P ) for all P̄ � P, or M = ∅ and α = ∞.
However, as infQ α(Q) = ρ(0) = 0 we must have that α(P̄ ) = γH(P̄ |P ). Therefore, by (2.1)
indeed

ρ(X) = sup
P̄∈Q

{EP̄ [−X]− γH(P̄ |P )} = eγ(X).

2

Corollary 5.5 Let ρ be a convex risk measure. Then the following statements are equivalent:

(i) For a convex and lower-semicontinuous function c from Q to [0,∞] with infQ∈Q c(Q) = 0
and uniformly integrable sublevel sets we have

α(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)}. (5.6)

(ii) ρ is γ-entropy convex with a convex and lower-semicontinuous penalty function c which
has uniformly integrable sublevel sets.

Proof. The direction from (ii) to (i) is precisely part (iii) of Theorem 5.2. The reverse direction
holds since

ρ(X) = sup
P̄∈Q

{EP̄ [−X]− α(P̄ )} = sup
P̄∈Q

{EP̄ [−X]− min
Q∈Q

[γH(P̄ |Q) + c(Q)]}

= sup
Q∈Q

sup
P̄∈Q

{EP̄ [−X]− γH(P̄ |Q) + c(Q)} = sup
Q∈Q

{eγ,Q(X)− c(Q)}.

2

In the case that the penalty functions admit uniformly integrable sublevel sets, the next theorem
establishes a complete characterization of entropy convexity involving only the dual conjugate
α. It shows that entropy convexity is equivalent to a min-max being a max-min.

Theorem 5.6 Suppose that ρ is a convex risk measure. Furthermore, let c be defined by
c(Q) := supP̂�P {α(P̂ )− γH(P̂ |Q)}. Then the following statements are equivalent:

(i) ρ is γ-entropy convex with ρ∗ having uniformly integrable sublevel sets.

(ii) c is convex and lower-semicontinuous with infQ∈Q c(Q) = 0 and uniformly integrable
sublevel sets, and for every P̄ ∈ Q,

inf
Q∈Q

sup
P̂∈Q

{
γH(P̄ |Q) + α(P̂ )− γH(P̂ |Q)

}
(5.7)

= sup
P̂∈Q

inf
Q∈Q

{
γH(P̄ |Q) + α(P̂ )− γH(P̂ |Q)

}
.
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Proof. If γ = 0, both (i) and (ii) cannot hold, so that the theorem holds trivially. Suppose,
therefore, that γ ∈]0,∞]. We can write the right-hand side of (5.7) as

sup
P̂∈Q

inf
Q∈Q

{
γEQ

[
log
(dP̄
dQ

)
− log

(dP̂
dQ

)]
+ α(P̂ )

}
= sup

P̂∈Q
inf
Q∈Q

{
γEQ

[
log
(dP̄
dP̂

)]
+ α(P̂ )

}
.

If dP̄
dP̂

6= 1 on a non-zero set we have that log
(
dP̄
dP̂

)
< 0 on a non-zero set. But then

inf
Q∈Q

γEQ

[
log
(dP̄
dP̂

)]
= −∞.

Consequently, we have to choose P̂ = P̄ in the supremum above, which implies that the right-
hand side in (5.7) is equal to α(P̄ ). Moreover, for the left-hand side we have that

inf
Q∈Q

sup
P̂∈Q

{
γH(P̄ |Q) + α(P̂ )− γH(P̂ |Q)

}
= inf

Q∈Q

{
γH(P̄ |Q) + sup

P̂∈Q
{α(P̂ )− γH(P̂ |Q)}

}
= inf

Q∈Q

{
γH(P̄ |Q) + c(Q)

}
.

Now the theorem follows from Proposition 5.1 and Corollary 5.5. 2

6 Distribution Invariant Entropy Convex Measures of Risk

In this section, we derive the distribution invariant representation for entropy coherent and
entropy convex measures of risk. As a bridge towards the distribution invariant representation,
we first present a representation of entropy coherent measures of risk that builds on Schmeidler
[41, 42].

Let γ ∈ [0,∞]. For a normalized, monotone and possibly non-additive measure (or, set
function) v : F → [0, 1] and a (truly) bounded random variable X we define

Ev [X] :=
∫
Xdv :=

∫ ∞

0
v[X > t]dt+

∫ 0

−∞
(v[X > t]− 1)dt.

We say that v is submodular if

v(A ∩B) + v(A ∪B) ≤ v(A) + v(B) for A,B ∈ F .

By Schmeidler [41, 42], v is submodular if and only if for every bounded X,

Ev [X] = max
Q∈Mv

EQ [X] , (6.1)

with Mv = {Q is additive on F|Q(A) ≤ v(A) for all A ∈ F}. Mv is also called the core of v.
We note that every bounded random variable is an element in L∞, and that every P -almost

surely bounded random variable can be identified with a (truly) bounded random variable (by
(re)defining X ∈ L∞ to be equal to its original value for those ω ∈ Ω for which |X(ω)| ≤ ||X||∞
and by setting X(ω) = 0 otherwise). Then, for X ∈ L∞, we define

eγ,v(X) := γ log
(∫

exp
{
−X
γ

}
dv

)
.
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In the case that v is continuous from above, that is, if v(An) ↓ 0 for any decreasing sequence
of events (An) such that

⋂
nAn = ∅, we have that (6.1) holds with Mv = {Q ∈ Q|Q(A) ≤

v(A) for all A ∈ F}. We state the following proposition:

Proposition 6.1 The following statements are equivalent:

(i) ρ(X) = eγ,v(X) is γ-entropy coherent and continuous from below.

(ii) v is submodular and continuous from above, and ρ(X) = maxQ∈Mv eγ,Q(X) with Mv =
{Q ∈ Q|Q(A) ≤ v(A) for all A ∈ F}.

Proof. The direction (ii)⇒(i) follows from (6.1) and the fact that v being continuous from
above implies that Mv ⊂ Q. Furthermore, ρ is continuous from below by virtue of Proposition
3.12.

To see the reverse direction, let M ⊂ Q with ĪM = ρ∗. Since γ log
(∫

exp
{
−X
γ

}
dv
)

=
ρ(X) = supQ∈M eγ,Q(X), we have that∫

exp
{
−X
γ

}
dv = sup

Q∈M
EQ

[
exp

{
−X
γ

}]
.

Now on the one hand, for A ∈ F , setting X = −γ log(e
−1
γ + 1) < 1 on A and 1 else, we get for

Q ∈M

(e−1/γ + 1− e−1/γ)v(A) + e−1/γ =
∫

exp
{
−X
γ

}
dv

≥ EQ

[
exp

{
−X
γ

}]
= (e−1/γ + 1− e−1/γ)Q(A) + e−1/γ .

Thus, Q(A) ≤ v(A) and we may infer that supQ∈M Q(A) ≤ v(A), which implies M ⊂Mv ⊂ Q.
On the other hand, if Q ∈Mv, then

ρ(X) =
∫

exp
{
−X
γ

}
dv ≥

∫
exp

{
−X
γ

}
dQ = eγ,Q(X).

Since Q ∈ Q, this entails that ρ∗(Q) = 0. In particular, Q ∈M. 2

Subsequently, let

Ψ = {ψ : [0, 1] → [0, 1]|ψ is concave, right-continuous at zero with ψ(0+) = 0 and ψ(1) = 1}.

For ψ ∈ Ψ and X ∈ L∞ we define Eψ [X] :=
∫
Xdψ(P ). Furthermore, we define

eγ,ψ(X) := γ log
(

Eψ

[
exp

{
−X
γ

}])
=: eγ,ψ(P )(X).

We state the following proposition:

Proposition 6.2 For a given ψ ∈ Ψ, eγ,ψ is γ-entropy coherent and its entropy dual e∗γ,ψ is
given by

e∗γ,ψ(Q) = ĪM (Q),

where M = {Q ∈ Q|Q ≤ ψ(P )}. Furthermore, the dual conjugate of eγ,ψ, defined by (2.2), is
given by

α(P̄ ) = min
Q∈M

γH(P̄ |Q).
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Proof. As ψ is concave and right-continuous in zero, the corresponding v, defined by setting
v(A) = ψ(P [A]) for all A ∈ F , is submodular and continuous from above. Hence, by (6.1),

eγ,ψ(X) = max
Q∈M

γ log
(

EQ

[
exp

{
−X
γ

}])
,

where M = {Q ∈ Q|Q ≤ ψ(P )} and the first part of the proposition follows. To see that the
second part holds observe that, as ψ is right-continuous in zero, the set M is weakly compact,
see Corollary 4.74, Lemma 4.63, and Corollary 4.35 in Föllmer and Schied [16]. Now Corollary
5.3 yields the proof of the second statement. 2

In the remainder of this section, we assume that the probability space is rich. If ρ is distribution
invariant we can identify ρ with a functional ρ′ on the space of distributions with bounded
support by setting ρ′(q+X) = ρ(X), with q+X the upper (right-continuous) quantile function of X.
Furthermore, we will identify a function ψQ ∈ Ψ with dQ/dP by setting ψQ(t) =

∫ t
0 q

+
dQ
dP

(1−s)ds.
For X ∈ L∞ with X ≥ 0, we have, using Fubini’s theorem,

EψQ [X] =
∫ ∞

0
ψQ(P [X > t])dt

=
∫ ∞

0

∫ 1

0
I{FX(t)≤1−s}ψ

′+
Q (s)dsdt =

∫ 1

0
q+X(1− s)ψ′+Q (s)ds (6.2)

=
∫ 1

0
q+X(1− s)q+dQ

dP

(1− s)ds =
∫ 1

0
q+X(s)q+dQ

dP

(s)ds. (6.3)

For a general X ∈ L∞, (6.2)-(6.3) hold by translation invariance of EψQ [·] . On the other hand,

given a function ψ ∈ Ψ, we can define a measure Qψ ∈ Q by setting dQψ

dP = ψ′+(1 − U). Note
that

{Q� P} =
{
Q� P |dQ

dP

D= ψ′+(1− U) for ψ ∈ Ψ
}
, (6.4)

where dQ
dP

D= ψ′+Q (1 − U) indicates that dQ
dP and ψ′+Q (1 − U) have the same distribution under

P. To see (6.4), note first that for every ψ ∈ Ψ, ψ′+(1 − U) defines a density and thus a
measure Q ∈ Q. On the other hand, for every measure Q ∈ Q, we have dQ

dP
D= ψ′+Q (1 − U),

with ψQ(t) =
∫ t
0 q

+
dQ
dP

(1 − s)ds. Therefore (6.4) holds. Now we can identify ρ∗ with a function

(ρ∗)′ : Ψ → R by setting
(ρ∗)′(ψ) = ρ∗(Qψ).

Next, we need Lemma 4.55 of Föllmer and Schied [16]:

Lemma 6.3 For X ∈ L∞ and Y ∈ L1,∫ 1

0
q+X(t)q+Y (t)dt = sup

X̄
D
=X

E
[
X̄Y

]
.

Then we state the following theorem, presenting the distribution invariant representation for
entropy convex measures of risk (including the special case of entropy coherent measures of
risk). It extends the well-known distribution invariant representation results for coherent and
convex measures of risk (see, for instance, Dana [12]), which arise whenever γ = ∞.
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Theorem 6.4 Suppose that ρ is γ-entropy convex. Then the following statements are equiva-
lent:

(i) ρ is distribution invariant.

(ii) ρ∗ is distribution invariant and (ρ∗)′(ψ) = supX∈L∞ {eγ,ψ(X)− ρ(X)} .

(iii) ρ(X) = supψ∈Ψ {eγ,ψ(X)− (ρ∗)′(ψ)} .
Proof. (i)⇒(ii): We write

ρ∗(Q) = sup
X∈L∞

{
γ log

(
E
[
dQ

dP
exp {−X/γ}

])
− ρ(X)

}
= sup

X∈L∞
sup
X̄
D
=X

{
γ log

(
E
[
dQ

dP
exp

{
−X̄/γ

}])
− ρ(X̄)

}
= sup

X∈L∞
sup
X̄
D
=X

{
γ log

(
E
[
dQ

dP
exp

{
−X̄/γ

}])
− ρ(X)

}

= sup
X∈L∞

{
γ log

(
sup
X̄
D
=X

E
[
dQ

dP
exp

{
−X̄/γ

}])
− ρ(X)

}

= sup
X∈L∞

{
γ log

(∫ 1

0
q+dQ
dP

(s)q+exp{−X/γ}(s)ds
)
− ρ(X)

}
= sup

X∈L∞

{
γ log

(
EψQ [exp{−X/γ}] ds

)
− ρ(X)

}
= sup

X∈L∞

{
eγ,ψQ(X)− ρ(X)

}
,

where we have used the distribution invariance of ρ in the third, Lemma 6.3 in the fifth, and
(6.3) in the sixth equality. In particular, ρ∗ is distribution invariant. It follows that

(ρ∗)′(ψ) = ρ∗(Qψ) = sup
X∈L∞

{eγ,ψ(X)− ρ(X)} .

(ii)⇒(iii): Similar as (i)⇒(ii).

(iii)⇒(i): Clearly, ρ is distribution invariant. Set c(Q) = (ρ∗)′(ψQ). Notice that if dQ
dP

D=
ψ′+(1− U) then by the definition of (ρ∗)′ we have that c(Q) = (ρ∗)′(ψ). We write

ρ(X) = sup
ψ∈Ψ

{
eγ,ψ(X)− (ρ∗)′(ψ)

}
= sup

ψ∈Ψ

{
γ log

(
Eψ

[
exp

{
−X
γ

}])
− (ρ∗)′(ψ)

}
= sup

ψ∈Ψ

{
γ log

(
E

[
ψ′+(1− U)q+

exp
n
−X
γ

o(U)

])
− (ρ∗)′(ψ)

}

= sup
ψ∈Ψ

sup
Q, dQ

dP

D
=ψ′+(1−U)

{
γ log

(
E
[
dQ

dP
exp

{
−X
γ

}])
− (ρ∗)′(ψ)

}

= sup
ψ∈Ψ

sup
Q, dQ

dP

D
=ψ′+(1−U)

{
γ log

(
E
[
dQ

dP
exp

{
−X
γ

}])
− c(Q)

}

= sup
Q∈Q

{
γ log

(
E
[
dQ

dP
exp

{
−X
γ

}])
− c(Q)

}
= sup

Q∈Q
{eγ,Q(X)− c(Q)} ,
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where we applied (6.2) in the third equality. In the fourth equality we used Lemma 6.3. The
fifth equality holds by the definition of c and (ρ∗)′, and in the sixth equality we applied (6.4).
This proves (ii)⇒(i). 2

7 Applications and Examples

In this section, we provide applications of entropy coherent and entropy convex measures of
risk to the classical problems of optimal risk sharing, optimal portfolio choice and indifference
valuation, and specify two more examples of such measures of risk. Most of the results presented
in this section rely on the representation results derived in the previous sections.

7.1 Risk Sharing

Suppose that there are two economic agents A and B measuring risk using a general entropy
convex measure of risk ρA and ρB with γA, γB ∈ R+. Let V = −ρ, ēγ,Q = −eγ,Q and c̄ = −c.
Suppose that A owns a financial payoff XA and B owns a financial payoff XB. We solve
explicitly the problem of optimal risk sharing given by

RA,B(XA, XB) = sup
F∈L∞

{V A(XA − F + ΠF ) + V B(XB + F −ΠF )}

= sup
F̄∈L∞

{V A(XA +XB − F̄ ) + V B(F̄ )} =: V A�V B(XA +XB),

where ΠF is the agreed price of the financial derivative (risk transfer) F and where we have
set F̄ := F +XB.

Proposition 7.1 Assume that

∂entropyV
A

(
γA

γA + γB
(XA +XB)

)
∩ ∂entropyV B

(
γB

γA + γB
(XA +XB)

)
6= ∅. (7.1)

Then we have that

RA,B(XA, XB) = inf
Q∈Q

{
ēγA+γB ,Q(XA +XB)− (c̄A(Q) + c̄B(Q))

}
.

Moreover, the optimal risk sharing is attained in the financial derivative F ∗ = γB

γA+γB
XA −

γA

γA+γB
XB.
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Proof. Let X = XA +XB and F̄ ∗ = F ∗ +XB. We write

RA,B(XA, XB) = sup
F̄∈L∞

{
inf
Q∈Q

(
ēγA,Q(X − F̄ )− c̄A(Q)

)
+ inf
Q∈Q

(
ēγB ,Q(F̄ )− c̄B(Q)

)}
≤ sup

F̄∈L∞
inf
Q∈Q

{
ēγA,Q(X − F̄ ) + ēγB ,Q(F̄ )− (c̄A(Q) + c̄B(Q))

}
≤ inf

Q∈Q
sup
F̄∈L∞

{
ēγA,Q(X − F̄ ) + ēγB ,Q(F̄ )− (c̄A(Q) + c̄B(Q))

}
= inf

Q∈Q

{
ēγA,Q(X − F ∗) + ēγB ,Q(F ∗)− (c̄A(Q) + c̄B(Q))

}
= inf

Q∈Q

{
ēγA+γB ,Q(X)− (c̄A(Q) + c̄B(Q))

}
= (γA + γB) inf

Q∈Q

{
log
(

EQ

[
exp

{
−X

γA + γB

}])
− (c̄A(Q) + c̄B(Q))

}
= γA inf

Q∈Q

{
log
(

EQ

[
exp

{
−X

γA + γB

}])
− c̄A(Q)

}
+ γB inf

Q∈Q

{
log
(

EQ

[
exp

{
−X

γA + γB

}])
− c̄B(Q)

}
= inf

Q∈Q

(
ēγA,Q(X − F̄ ∗)− c̄A(Q)

)
+ inf
Q∈Q

(
ēγB ,Q(F̄ ∗)− c̄B(Q)

)
≤ sup

F̄∈L∞

{
inf
Q∈Q

(
ēγA,Q(X − F̄ )− c̄A(Q)

)
+ inf
Q∈Q

(
ēγB ,Q(F̄ )− c̄B(Q)

)}
,

where the second inequality holds by weak duality. The second equality holds by Borch [7]; see
also Barrieu and El Karoui [3]. To verify the fifth equality, note that ‘≥’ clearly holds, while
‘≤’ follows from (7.1). Since the last line is equal to the term we started with, it follows that
all inequalities must be equalities. This proves the proposition. 2

The assumption on the entropy subdifferentials in Proposition 7.1 is satisfied in particular if
cA = cB and for every d ≥ 0, {Q ∈ Q|cA(Q) ≤ d} is weakly compact.

7.2 Portfolio Choice and Indifference Valuation

Applying the general results of Laeven and Stadje [32], it is possible to solve explicitly the
portfolio choice and indifference valuation problems under entropy coherent measures of risk
with γ ∈]0,∞] in a general setting. Specifically, consider a probability space (Ω,F , P ) with
two independent stochastic processes:

• A standard d-dimensional Brownian motion W.

• A real-valued Poisson point process p defined on [0, T ]×Rd′ \ {0}. Denote by Np(ds, dx)
the associated counting measure such that its compensator is

N̂p(ds, dx) = np(s, dx)ds.

We assume that for every s the measure np(s, dx) is non-negative and satisfies

sup
s
np(s,Rd′ \ {0}) <∞.

Let Ñp(ds, dx) := Np(ds, dx)− N̂p(ds, dx).
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We assume that the financial market consists of a bond with interest rate zero and n ≤ d
stocks. The price process of stock i evolves according to

dSit
Sit−

= bitdt+ σitdWt +
∫

Rd′\{0}
β̃it(x)Ñp(dt, dx), i = 1, . . . , n,

where bi (σi, β̃i) are R (Rd, R)-valued predictable and uniformly bounded stochastic processes.
We also assume that β̃i > −1 for i = 1, . . . , n. We further assume that σt satisfies standard
assumptions; see Laeven and Stadje [32] for further details. Let θt := σᵀ

t (σtσ
ᵀ
t )
−1bt and βt :=

σᵀ
t (σtσ

ᵀ
t )
−1β̃t. If n < d, the market is incomplete. If n = d, the market is still incomplete

except if Np is degenerated. For i = 1, . . . , n, the process πit describes the amount of money
invested in stock i at time t. The wealth process Xπ of a trading strategy π with initial capital
x satisfies

Xπ
t = x+

n∑
i=1

∫ t

0

πi,u
Si,u−

dSi,u = x+
∫ t

0
πuσu(dWu + θudu) +

∫ t

0

∫
Rd′\{0}

πuσuβu(x)Ñp(du, dx).

Let P and B(Rd′) be the predictable σ-algebra on [0, T ]×Ω and the Borel σ−algebra on Rd′ ,
respectively. By Jacod and Shiryaev [30], we can write every density in this setting as Kt =
E
(
(q ·W )t + (ψ · Ñp)t

)
, where q is measurable with respect to P and ψ is measurable with

respect to P⊗B(Rd′). Since Kt is non-negative we must have that ψ ≥ −1, dP ×np(t, dx)×dt-
a.s. The process WQ

t = W −
∫ t
0 qsds is a Brownian motion and the process Ñ has compensator

n(ψ)(s, dx)ds := (1+ψs(x))np(s, dx)ds, under Q. Denote ÑQ
t := Ñt−

∫ t
0 (1+ψs(x))np(s, dx)ds.

Then NQ is a martingale under Q. Notice further that Q is uniquely characterized by q and
ψ. We will therefore also write Q(q,ψ).

Let Ũ be a predictable compact set in R1×n. The set of admissible trading strategies Ã
consists of all n-dimensional predictable processes π = (πt)0≤t≤T which satisfy πt ∈ Ũ , dP ×ds-
a.s. Let F be a bounded contingent claim. We are interested in the following optimization
problem:

V̂ γ(x) := sup
π∈Ã

inf
Q∈M

−γ log
(

EQ

[
exp

{
−1
γ

(
x+

∫ T

0
πt
dSt
St−

+ F

)}])
, (7.2)

where x is the initial wealth and M is a set of measures equivalent to P. We will assume that
the set M in (7.2) has the form

M = {Q(q,ψ)|q and ψ are predictable processes with qt(ω) ∈ Ct(ω), and ψt(ω, x) ∈ Dt(ω, x)},

for a predictable, compact and convex set-valued mapping C and a P ⊗ B(Rd′)-measurable,
compact and convex set-valued mapping D with Dt(ω, x) ⊂] − 1,∞[ for all (t, ω). Denote by
D̄s all Fs ⊗ B(Rd′)-measurable functions ψ such that ψ ∈ Ds(x). Writing

pt = πtσt, t ∈ [0, T ],

the set of admissible strategies Ã is equivalent to a set A of R1×d-valued predictable processes
p, with p ∈ A if and only if p is predictable and pt ∈ Ut := Ũσt, dP × ds-a.s.
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We will look at a solution (Y γ , Zγ , Z̃γ) ∈ S∞ × BMO process × L2(dP × np(u, dx)du) of
the backward SDE

Y γ
t = −F+

∫ T

t
fγ(s, Zγs , Z̃

γ
s )ds−

∫ T

t
Zγs dWs−

∫ T

t

∫
Rd′\{0}

Z̃γs (x)Ñp(ds, dx), t ∈ [0, T ], (7.3)

with

fγ(s, z, z̃) : = ess infp∈Us ess sup(q,ψ)∈(Cs×D̄s)

{
− pθs +

1
2γ
|p− z|2 + q(z − p)

+ γ

∫
Rd′\{0}

(
exp{−1

γ
(pβs − z̃(x))} − 1 +

1
γ

(pβs − z̃(x))

+ ψ(x)(−1 + exp{−1
γ

(pβs − z̃(x))}
)
np(s, dx)

}
. (7.4)

We prove in Laeven and Stadje [32] that in the case that Ũ is compact (or that D is empty)
there exists a BMO p∗ ∈ A, a q∗ ∈ C and (in case D is nonempty) a ψ∗ ∈ D such that

fγ(s, z, Z̃γs ) = −p∗sθs +
1
2γ
|p∗s − z|2 + q∗s(z − p∗s)

+ γ

∫
Rd′\{0}

(
exp{−1

γ
(p∗sβs − Z̃γs (x))} − 1 +

1
γ

(p∗sβs − Z̃γs (x))

+ ψ∗s(x)(−1 + exp{−1
γ

(p∗sβs − Z̃γs (x))}
)
np(s, dx), (7.5)

for γ ∈ R+. In the case that γ = ∞ we get a similar representation for f∞. Specifically:

Theorem 7.2 For γ ∈]0,∞], the (indifference) value of the portfolio optimization problem
(7.2) is given by V̂ γ(x) = x − Y γ

0 , and V̂∞(x) = limγ→∞ V̂ γ(x). Furthermore, the optimal
strategy is given by p∗ if one of the following assumptions holds:

(i) Ũ (and hence also U) is compact;

(ii) D = ∅.

The proof of this result, which can be obtained as a special case of the general results in Laeven
and Stadje [32], relies on the duality results derived in Section 5 above (Theorem 5.2).

7.3 Further Examples

We complement Example 3.1 with two other examples.

Example 7.3 Let ρ be γ1-entropy convex, γ1 ∈ R+, with penalty function c given by γ2 times
the relative entropy with γ2 ∈ R+, that is, ρ(X) = supQ∈Q{eγ1,Q(X)− γ2H(Q|P )}. Then, by
virtue of Theorem 5.2 (iii), the dual conjugate of ρ is given by

α(P̄ ) = min
Q∈Q

{γ1H(P̄ |Q) + γ2H(Q|P )},

and the corresponding discount factor under homothetic preferences takes the form β(Q) =

e
− γ2
γ1
H(Q|P ).
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Example 7.4 Let ψ(x) = Φ(Φ−1(x) + a), a ∈ R+, with Φ the standard normal cumulative
distribution function (see Wang [46] and Goovaerts and Laeven [24]), and consider the corre-
sponding γ-entropy coherent risk measure eγ,ψ, with γ ∈ [0,∞]. Then, by virtue of Proposition
6.2, the dual conjugate of eγ,ψ is given by

α(P̄ ) = min
Q∈M

γH(P̄ |Q),

with M = {Q ∈ Q|Q ≤ Φ(Φ−1(P ) + a)}.

8 Conclusions

In this paper, we have introduced two subclasses of convex risk measures: entropy coherent
and entropy convex measures of risk. We have demonstrated that convex, entropy convex
and entropy coherent measures of risk emerge as translation invariant certainty equivalents
under variational, homothetic and multiple priors preferences, respectively, and induce linear
or exponential utility functions in these paradigms. A variety of representation and duality
results as well as some applications and examples have made explicit that entropy coherent and
entropy convex measures of risk satisfy many appealing properties. The theory developed in
this paper is of a static nature. In future research we intend to develop its dynamic counterpart.
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[39] Ruszczyński, A. and A. Shapiro (2006). Conditional risk mappings. Mathematics of
Operations Research 31, 544-561.

[40] Savage, L.J. (1954). The Foundations of Statistics. Wiley, New York (2nd ed. 1972,
Dover, New York).

[41] Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the
American Mathematical Society 97, 253-261.

[42] Schmeidler, D. (1989). Subjective probability and expected utility without additivity.
Econometrica 57, 571-587.

[43] Strzalecki, T. (2011). Axiomatic foundations of multiplier preferences. Econometrica
79, 47-73.

[44] Von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic
Behavior. Princeton University Press, Princeton (3rd ed. 1953).

[45] Wald, A. (1950). Statistical Decision Functions. Wiley, New York.

40



[46] Wang, S.S. (2000). A class of distortion operators for pricing financial and insurance
risks. Journal of Risk and Insurance 67, 1536.

[47] Zalinescu, C. (2002). Convex Analysis in General Vector Spaces. World Scientific, Sin-
gapore.

41


	vdp2011-031.pdf
	/No. 2011-031

	2011-031

