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Grazing the Commons:

Global Carbon Emissions Forever?

ABSTRACT

This paper presents the results from our investigation of the per-capita, long-

term relation between carbon dioxide emissions and gross domestic product (GDP)

for the world, obtained with the use of a new, flexible estimator. Consistent with

simple economic growth models, we find that regional, population-weighted per-

capita emissions systematically increase with income (scale effect) and usually de-

cline over time (composition and technology effect). Both our in-sample results and

out-of-sample scenarios indicate that this negative time effect is unlikely to compen-

sate for the upward-income effect at a global level, in the near future. In particular,

even if China’s specialization in carbon-intensive industrial sectors would come to

a halt, recent trends outside China make a reversal of the overall global trend very

unlikely.

Keywords: CO2 Emissions; Environmental Kuznets Curve; Panel Data; (Semi)parametric

Estimation

JEL Codes: C33 O50 Q40
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I. Introduction

How many carbon emissions from fossil-fuel use will be added to the global carbon stock

in the future, and, perhaps even more important in international negotiations, by whom?

A question that is at least as important is the question of whether there is any sign

of a slowdown. Predictions of the flow of human-induced carbon emissions and their

regional distribution are uncertain. Indeed, as observed by the Intergovernmental Panel

on Climate Change (IPCC, 2004), roughly half of the estimated variation in the mean

global temperature by 2100 applies to the uncertainty on the future emissions paths

themselves.1 Results from typical Integrated Assessment Models (IAMs) show a large

variety in expected emission patterns for the (distant) future. Predictions on the flow of

greenhouse gas (GHG) emissions, according to long-term scenarios in the IPCC Special

Report on Emissions Scenarios (SRES), vary from a level that is over five times larger

than the current flow to even a reduction by 2100, depending on structural parameter

choices such as population growth, economic or income growth, and technological change

(Van Vuuren and Riahi, 2008).

The difficulty in choosing these parameter levels for making structural, long-term

model predictions is well-known. The IAMs used by the IPCC typically fix these levels by

applying a mix of subjective expert judgement and calibration. Only recently, attention

has grown for the potential implications of the (subjective) uncertainty related to key

parameter values (Den Elzen and Van Vuuren, 2007). One important example is given

by the parameters that fix the relationship between carbon emissions from fossil-fuel use

and economic growth (measured as Gross Domestic Product, GDP), in particular, for

developing countries such as China. According to the well-known Environmental Kuznets

Curve (EKC) hypothesis, rising income correlates with lower (per-capita) emissions after

1The other half of this range is due to the fact that it is not known how sensitive climate will be to
increasing concentrations of greenhouse gases.
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some initial upturn due to (endogenous) mechanisms induced by growing concerns over

increasing emissions at higher income levels (Grossman and Krueger, 1995). Using a

spline-based estimator, Schmalensee et al. (1999) indeed confirm the EKC hypothesis for

carbon emissions in their world sample. According to the hypothesis, China’s recent and

in history almost unparalleled growth in per-capita carbon emissions would be temporary.

The current, rising trend will soon be followed by a decline, because the recent, strong

growth in the industrial sector as well as the strong penetration of coal in the fuel mix

’automatically’ will come to an end. Recent estimates by Brock and Taylor (2009) also

provide further support for this hypothesis.

However, our findings are quite different. With the use of a new flexible estimator,

both our in-sample estimates and our out-of-sample scenarios for regional and global

per-capita carbon emissions leave little room to expect a global EKC pattern in the near

future. In contrast to what is now widely believed, we find that developments in China

are not solely responsible for the current global increase in per-capita carbon emissions.

Indeed, our (anomalous) finding of a positive time effect for China reflects their recent

switch to a coal-based energy input mix, as well as their strong industrial expansion,

both of which unmistakeably have contributed to the recent upsurge in global carbon

emissions. However, this trend has not co-evolved with a strong enough negative time

effect in developed regions, such as western Europe, or ‘Western Offshoots’ (Australia,

Canada, New Zealand, and the United States), in order to induce an overall reduction

in global per-capita carbon emissions. In fact, the underlying regional trends in emission

patterns make a reversal of the overall global trend quite unlikely, for the next decade at

least, despite the current world economic crisis.

Our results are based on a new estimator that makes our priors explicit from the

very beginning. Such priors are often only implicit in the existing literature on panel

EKC estimations. Indeed, as explained by Vollebergh et al., (2009), existing reduced
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form EKC estimations suffer from a fundamental identification problem, due to the need

to disentangle the income from the time effect. Estimation is then only possible after

imposing untestable identifying assumptions. However, this creates model ambiguity

because choosing between different identified models becomes arbitrary, which, to a large

extent, may drive the estimation results (Manski, 2000). Instead, we start with the data

and impose only very weak identifying assumptions on the common decomposition that

characterizes all EKC estimates, that is, the separation of the long-term development

paths into an income and time effect. Given this decomposition, we only assume a

common time trend between two (related) regions, allowing for fully flexible income and

time effects. Given this identification, our estimator provides reasonable and robust

results and produces the standard expected signs of similar theoretical decompositions

in models of (green) economic growth into a positive scale (income) effect, on the one

hand, and a negative composition and technique (time) effect, on the other (for example,

Stokey, 1998; Andreoni and Levinson, 2002; Brock and Taylor, 2009). However, the

estimated negative time effects are such that they do not compensate for the upward-

income effect at the global level, in the near future. As a consequence, the world may face

the enormous challenge of inducing a much stronger negative time effect by stimulating

carbon-extensive sectoral and technological change – at least if the aim is to reduce CO2

emissions.

II. Estimation Approach

Using a panel for estimating correlations between per-capita emissions and income is a

very efficient procedure to gain insight into structural trends in the data. Observations

on per-capita emissions and GDP basically reflect all combined effects of countries that

grow in size (income growth), structural developments in the composition of industries
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and their emission intensities, and the extent to which such developments are affected

by (induced) technological change or differences in (fossil-fuel) resource availability. The

main interest in this correlation stems from the idea that, at higher levels of income,

countries – after some initial neglect – would become engaged in actions that reduce

emissions even if they are heterogeneous.

The simplest decomposition to reveal such underlying trends is one in income and time

effects. Indeed, the reduced form estimation technique, commonly applied in the Environ-

mental Kuznets Curve (EKC) literature, postulates exactly this decomposition. To date,

this literature starts with observed panel data (yrt, xrt), with r ∈ R, where R denotes a

set of cross-sections, such as regions, and t ∈ T , with typically T = {1, 2, ..., T}, repre-

senting time. Then identifying assumptions that separate the effect of the independent

variable from the unobserved effects are applied to allow for proper inference (Heckman,

2000). Panel data, in particular, offer the advantage of allowing for controls at the in-

dividual or cross-sectional level, and allow for time controls to capture these unobserved

effects. The standard approach typically postulates the following decomposition:

yrt = f(xrt, r) + λ(r, t) + εrt. (1)

and subsequently imposes further restrictions on the possible functions λ and f (by

restricting the choices of λ and f to some restricted classes of functions Λ and Φ). Well-

known examples are time or region-specific fixed effects or homogeneous polynomials up

to some order. In this way (f, λ) becomes identifiable.

However, the choice between specifications becomes arbitrary at a certain point.2 For

2See Vollebergh et al. (2009) for an explanation why a fundamental identification dilemma plagues
such reduced form estimations based on panel data. Both cross-sectional and time controls can be
specified at different degrees of heterogeneity and flexibility and this raises the fundamental dilemma of
how much flexibility to allow when specifying the estimation equation. With fully flexible time-effects
that are also cross sectionally specific, all variation in the data will be captured by these control variables,
whereas with restrictive time and cross-section effects, too much variation in the data might be attributed
to the independent variable(s).
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instance, both functions f and λ can be assumed to be homogeneous over cross-sections,

with the only exception being the region-specific constant terms of the function f . Such an

approach assumes that every region reacts similarly to shifts in the independent variable,

for example, according to a similar third-order polynomial, even if the cross-sectional

units are allowed to differ in their intercepts. Clearly, such an assumption imposes very

strong ex ante restrictions, much stronger than would be needed to identify f and λ in (1).

Also, in the case of a semi-parametric estimation framework potential misspecification

remains a problem if a homogeneity assumption is applied to the time effect of all cross-

sectional units. The vast variety of papers in the EKC literature on carbon emissions

illustrates how problematic it is to obtain robust estimations of long-term relationship

between economic growth and the environment – even with comparable data sets.

It has recently been demonstrated that allowing full flexibility in the link function

f while imposing a very weak restriction on the function λ not only generates robust

estimates for income-CO2, but also for income-SO2 relationships (see Vollebergh et al.,

2009). Moreover, and in contrast to the standard EKC literature, the results obtained

also match fundamental theoretical models and basic intuition. The results obtained

for the income effect clearly seem to capture the first main driver behind changes in

total pollution, which is the overall size of the economy (‘scale’), whereas the time effect

reflects the combined effect of changes in the mix of sectors comprising the economy

(‘composition’), together with the technologies employed in production and abatement

(‘technique’).

The approach followed by Vollebergh et al. (2009) employs a non-parametric estimator

based on the very simple assumption that – given the decomposition (1) – cross-sectional

time effects are pairwise similar. So, in our ‘most reasonable’ decomposition we assume

only that it is not (fully) region-specific: for each r ∈ R we assume the existence of at

least one s ∈ R, with s 6= r, such that for all t ∈ T we have λ(r, t) = λ(s, t). Note that
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if λ does not satisfy such a requirement, it cannot really be distinguished from possible

idiosyncratic effects. Using the assumption λ(r, t) = λ(s, t) for all t ∈ T for a given pair

(r, s) we are able to identify and estimate f(x, r) and f(x, s) by taking differences:

yrt − yst = f(xrt, r)− f(xst, s) + (εrt − εst) , t = 1, 2, ..., T, (2)

combined with the assumption that E (εrt − εst|xrt, xst) = 0. This approach allows full

flexibility in f and λ, while the assumption E (εrt − εst|xrt, xst) = 0 guarantees that it is

reasonable to classify the effects captured by εrt as being idiosyncratic.

The unknown regression functions f(x, r) and f(x, s) of equation (2) can be identified

(up to their levels) and estimated by applying Linton and Nielsen’s method (see Linton

and Nielsen, 1995), while imposing their regularity conditions and additional distribu-

tional assumptions. Appendix A describes the technical details, including our estimator

for the time effect λ (r, t).3 Given that any pair of cross-sectional units (r, s) can be used,

our approach leaves N(N − 1)/2 possible relationships for a sample of N cross-sections.

We face model ambiguity, due to a lack of identification (Manski, 2000).4 To deal with

this ambiguity, we proceed by employing priors over the cross-sectional units. Such priors

can be used to express one’s clearly subjective views about which countries or regions

are less or more likely to have common time trends. Note, however, that any specifica-

tion of the time effect, such as one being fixed and homogeneous across cross-sections, is

also based on some prior. Our approach simply makes explicit, from the very beginning,

that the empirical ‘evidence’ on the presence of a possible inverted U relationship can no

longer be inferred ‘automatically,’ but always depends upon one’s prior (Heckman, 2000).

3Note that this specification also implicitly accounts for potential endogeneity if the time trend cap-
tures technological change which – in turn – depends on (the levels of) emissions and income. In the
original Linton-Nielsen estimator, the confidence band is based on the assumption of homoskedasticity.
Vollebergh et al. (2009) extend the asymptotic limit distribution by also allowing for the possibility of
heteroskedasticity.

4Note the important difference with the additional restrictions imposed within the standard literature
(in particular on the time-effects included). These restrictions can be tested.
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In our empirical application, we examine all possible pairs and base our inference on the

combination of these possible pairs. We use different priors to investigate the sensitivity

to the prior choice.

III. Data

Our analysis applies to quantifying equation (1) with y = log (E/P ) and x = log (Y/P ),

with E reflecting CO2 emissions, Y the GDP level and P the population size, and with

the controls r and t referring to country/region and year, respectively. Note that the

control for country/region reflects persistent cross-section specific differences, such as

fossil-fuel availability and prices, regulatory differences and preferences, and that the

control for time picks up changes over time, such as changing prices or technologies.

We use a balanced panel for all countries, for the period between 1950 and 2006. CO2

emission data consist of the sum of emissions from gas, liquid and solid fuels (based

on consumption figures), and from gas flaring and cement production (see Boden et al.,

1995 and 2009). For each type of fuel, data on annual CO2 emissions result from three

aspects: the amount of fuel consumed, the fraction of the fuel that becomes oxidized, and

a factor for the carbon content of the fuel. The fuel types incorporated in the calculations

are coal, other solid fuels, crude oil, petroleum products, and natural gas. Total energy

use and emissions per country are corrected for exports and imports of fuels, as well

as for stock changes, international marine bunkers, and non-energy use of fuels, such as

chemical feedstocks. The estimation of the amounts of CO2 released through gas flaring

are based on the UNSTAT database, supplemented by estimations from DOE/EIA. The

estimations of the amounts of CO2 released from cement manufacturing are based on

figures indicating the quantity of manufactured cement, the average calcium oxide content

per unit of cement and a factor to convert the calcium oxide content into carbon dioxide
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equivalents. Data on Y and P are taken from Maddison (2006). All figures are expressed

in 1990 International Geary-Khamis dollars, using purchasing power parities.

We aggregate data on a country by country basis into nine regions: India, China,

‘Other Asia’, western Europe, eastern Europe, former USSR, ‘Western Offshoots,’ Africa,

and Latin America.5 In contrast to the division into regions by the IPCC, we distinguish

explicitly between eastern Europe and former USSR, divide the ‘old’ OECD in western

Europe (old EU) and what we indicate as ‘Western Offshoots’ (Australia, Canada, New

Zealand, and the United States), while Japan together with the countries of the Middle

East are grouped under the name ‘Other Asia.’ Finally, we split the IPCC region ALM

into Africa and Latin America. Figures 1 and 2 present our basic data.

[INSERT FIGURE 1]

Looking at our data on the distribution of GDP per capita (see Figure 1), ‘West-

ern Offshoots’ have by far the highest income per capita, whereas, in particular, India

and Africa are on the lowest end of the scale. Clearly, the distribution has changed

remarkably over time. At the beginning of our sample period, there were three ‘clubs’

with Russia, Eastern Europe, and Latin America forming a rather stable middle-income

group. Because of instability in these middle income regions as well as the remarkable

growth for ‘Other Asia’ and China since the 1990s, the set of middle-income countries

currently contains five out of our nine regions.6

[INSERT FIGURE 2]

Interestingly, both the distribution and development over time, the region-specific

per-capita CO2-emissions are remarkably different (see Figure 2). The carbon intensity

5Note that – after aggregation – we divide the overall amount of income and emissions by overall
population of this region to obtain per-capita income and emissions.

6Considering China’s rate of growth over the past 10 years, it is likely that, by 2018, it will have reached
the 2006 real income level of a country such as Portugal (which is at the lower bound of traditional OECD
countries).
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in the ‘Western Offshoots’ has always been much higher than in any other region, fol-

lowed by Russia, western and eastern Europe. Since these emissions reached a peak in

western Europe in the 1970s, carbon intensity there has remained more or less constant,

whereas Russia and eastern Europe have experienced a strong decline in emissions since

the beginning of the 1990s, and have ended up even (far) below the level of western Eu-

rope. Most remarkable, however, is the recent, very high growth rate in China. China’s

growth in carbon intensity since 2001 is almost unprecedented. The only precursor in

growth in per-capita carbon intensity since World War II, is the development in ‘Western

Offshoots’ during the 1960s. Indeed, China’s per-capita carbon emissions have already

reached the level of eastern Europe of 2009.

[INSERT TABLE I]

Table I shows descriptive statistics of the data. Our data-set, aggregated over the

regions, contains (9 regions × 57 years =) 513 observations for all variables in our panel

of CO2 emissions. Finally, our data does not seem to suffer from unit root problems.7

IV. Main Results

As explained in section II, we estimate our pairwise model by applying (2) and using

the Linton and Nielsen (LN) method (Linton and Nielsen, 1995). Choosing the ‘right’

combination of regions is key to the identification of the income-related effect in our

pairwise procedure. In theory there are as many identifications possible as there are

potential pairs of regions that is, in our case eight identifications for each of the nine

regions.8 Our prior is that combining two regions with similar time trends will result in

7We found ambiguous results using the KPSS test (see Kwiatkowski et al., 1992). Indeed, results
largely depend on the modeling assumptions of the test itself, which, as is well known, strongly affect
the size and power of this test.

8Although nothing prevents our estimation approach from being applied at the underlying individual
country level, the number of possible potential pairs would be extremely large. This would even become
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a good fit of equation (1), while combining two regions with different time trends will

result in a bad fit. Based on this prior and on the basis of the in-sample fit of (1), for

each region, we select a corresponding region with a similar time trend. This selection

procedure is referred to as the ‘Goodness-of-Fit (GoF) prior’. In this section the results

for this prior are presented.9

For the GoF prior to work we start from (1) and estimate this equation for each re-

gion using all possible pairs, that is, for each region there are eight other likely candidates

to assume a common time effect. Subsequently, selection between these estimates then

follows on the basis of the lowest sum of squared errors (our ‘prior GoF’). We find that

the best fits usually confirm our expectations, such as western Europe versus ‘Western

Offshoots’ (and vice versa) and China versus Other Asia. However, and perhaps some-

what more surprisingly, we also observe pairs such as India versus former USSR (and vice

versa).

Figure 3 shows in-sample estimates for each of the nine regions (in logs). Since the

levels of the curves are not identified in the semi-parametric specifications, we normalize

the curves per region in such a way that the average level equals the corresponding sample

average of the logarithm of CO2 emissions per capita. In case of the income effect we

plot the f(xrt, r) for a given r as a function of time t, so that we actually plot the income

effect using the income level at time t. Thus, moving from 1990 to 1991, the figure shows

the effect of the change in per-capita between 1990 and 1991. Similarly, the time effect

in the figure represents the estimated effect of time for an additional year. Finally, the

total effect just consists of the time t income effect plus the time effect of time t (but at

the level of the sample average of the logarithm of CO2 emissions per capita).

infinite if we would also allow for the construction of ‘artificial’ regions, by taking, for example, convex
combinations of countries or regions.

9See Appendix B for a robustness assessment of the choice for this prior. Interestingly, Vollebergh et
al. (2009) observe that a Goodness-of-Fit measure has little discriminatory power (see footnote 20 on
p.36) in their sample of 24 ‘traditional’ OECD countries for the two priors they present in their paper: a
rather involved ‘author’ based assessment of pairs and a simple Bayesian approach for these 24 countries.
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[INSERT FIGURE 3]

Our first important finding is the rather robust positive pure income-related effect

which – in most cases – is even less or more linear (thus, exponential in levels). In other

words, the income related effect positively influences per-capita emission levels for most

income levels within our regions, including those of a relatively poor region such as India.

Only for certain regions, such as former USSR and to a lesser extent eastern Europe,

we find a somewhat different pattern. This could easily be explained by the somewhat

anomalous development due to the initial collapse of these economies after 1989 and

their recovery since the end of the 1990s. Note that these results are in stark contrast to

the results usually presented in the empirical literature on EKC. Instead, the estimates

confirm again the finding by Vollebergh et al. (2009) of there being no empirical support

for an inverted U of the income effect as such. Even the richest regions in our sample,

‘Western Offshoots’ and western Europe, show an almost linear rise in this income effect.

What really makes a difference in emission reduction is the pattern of the time-effect.

Even with an upward income effect, the overall emission pattern might still produce an

‘overall’ inverted U shape, if the time effect would (more than) compensate for the upward

income effect. As noted before this time effect typically reflects unmeasured temporal

variability that is correlated with CO2 emissions and captures the combined effect of

sectoral and technological change. The estimated region-specific time effects show an

inverted U shape or even a linear downward trend for most regions. The richer regions in

our sample have the strongest negative time effect, although this effect is not enough to

compensate for the income effect entirely. Apparently, the richer countries have succeeded

in combining per-capita growth (in income) with a reduction in emissions due to a shift

to less CO2-intensive sectors as well as by technological improvements in the remaining

sectors. This pattern – although with some delay – could be observed even for poorer

regions such as India and Latin America. The estimations for China provide the only
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exception to this rule of a downward trend in the time effect.

[INSERT FIGURE 4]

We also include estimates for the world based on population-weighted averages for

each region’s best-fit estimates. To compute these global averages we weigh each of our

region specific GoF estimates (after transforming our log estimates into levels) against the

region specific population levels. We consider as average one where all curves are at the

same level (see Figure 4a).10 The results provide a concise summary of the development of

global per-capita carbon emissions reflecting our region specific findings of both income-

and time-related effects. Nevertheless, the income effect is positive with some slowdown

after the two oil crises of the 1970s and the breakdown of the former USSR and Eastern

Europe. In contrast, the time effect is downward sloping with a structural break around

1980.11 This result is dominated by the ‘Western Offshoots’ and western Europe, in

particular, in case of the average at the regions’ own levels, but also in case of the

average at equal levels.

The combined income and time effect shows the large impact of the oil crises of

the 1970s. After 1980 global per-capita emissions stabilized due to a combined effect

of a slowdown in the pace of the income effect and a somewhat stronger negative time

effect. For the last decade we clearly observe a strong upward trend, again due to an

increase in the income effect and some slowdown in the time effect. Although the recent

strong growth in per-capita emissions in China certainly have contributed to this renewed

upward overall trend, the same result is obtained when we exclude China from the sample

(see Figure 4b). This suggests that the underlying current developments in other regions

have been such that the downward sloping time effect can no longer compensate for the

strong positive income effect since about 2000. Indeed, we observe a flattening trend

10Levels matter due to changing population weights over time. However, the average where each
region-specific curve is at the average level of the region itself yields comparable results.

11Lanne and Liski (2003) found a structural break in 1978.
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in the time effect for this period, combined with a sometimes even strong increase in

the income effect in most regions. This remarkable result is at odds with the popular

view that particularly China would be the most important threat to policies that aim at

stabilizing global carbon emissions. The next section returns to this important finding

and discusses its underlying mechanisms, as well as their likely implications for future

emission developments.

V. Analyzing the Results

Our reduced form estimates show little sign of a structural slowdown in global per capita

carbon emissions. Building on the different, but also sometimes strongly diverging pat-

terns between regions, our population weighted global emission pattern shows a rapid

overall increase since 2000. Moreover, this effect does not depend on the inclusion or ex-

clusion of China. This section provides a deeper understanding of the likely mechanisms

behind these findings as well as some further explorations of scenarios that could help

predict global future emission pathways based on real data.

A. Income level, negative time effects, and China

We start with a more extensive analysis of the likelihood of an inverted U for CO2

emissions with income, that is the likelihood that emissions at some point will decline

when income is rises. Several authors report that such an effect applies even to the more

or less unregulated CO2 case (for example, Holtz-Eakin and Selden, 1995; Schmalensee

et al., 1998), although others challenge this view (for example, Azomahou et al., 2006).

On the face of it our results seem to confirm the inverted U conjecture for CO2-emissions

because the regions with the highest per-capita income levels, such as ‘Western Offshoots’

and western Europe, also show overall stabilizing emission patterns. In fact, we identify
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a positive correlation between emissions and income independent of the income level.

Stabilization in both regions only took place because the negative time effect more or

less compensates for the upward income effect, in particular, since the oil crises of the

1980s.12

Indeed, the question of whether emissions decline after a country passes some thresh-

old income level crucially depends on time effects being strong enough to compensate for

a positive income effect. Thus, using our identification procedure, the likelihood of find-

ing such strong negative time effects should increase as income rises. At first glance, the

estimated time effects in our sample seem to back up such a likelihood. Three of the nine

regions with a clear declining trend over the whole period are also the richest regions,

and the richer the region, the stronger the negative time effect is. However, counter-

evidence exists as well, such as the inverted-U time effect for the poor India region and

the strong rising time effect for China, with income levels per capita currently comparable

with those of Latin America, Russia, and eastern Europe. A final anomalous sign is the

reduced rate of decline in the time effect for the richest regions already mentioned in the

previous section.

From our global perspective, however, it is not only the level of income that matters,

but also the co-evolution of region-specific developments and their weight in the overall

estimate. If declining time effects in a high-income region with a smaller population is

due to regional specialization in carbon-intensive production methods in a lower income

region with a (much) larger population (for example, China), our population-weighted

global per-capita estimate would suggest that a global inverted U is very unlikely for the

near future.13 Indeed, much of the global economic expansion in the last decade has been

12Only recently has the time effect slowed down and has been no longer able to compensate enough
for the (still) positive income effect and overall emissions have been increasing again.

13The population-weighted OECD average that resulted from applying our GoF prior to the whole
OECD sample of Vollebergh et al. (2009), resembles our findings for western Europe and ‘Western
Offshoots’, in particular after the oil crises (see Figure C in Appendix B).
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due to China specializing in carbon-intensive production which is also reflected in our

positive time effect for China. Understanding this exceptional ‘China effect’ seems key

to understanding the global development in carbon emissions.

China, in 2008, overtook the United States as the world’s largest emitter of CO2.

This happened much earlier than was previously anticipated. For instance, the IPCC

expected this to happen not before 2020 (IPCC, 2000). This unexpected increase in

carbon emissions in China invoked a torrent of studies explaining how China’s past carbon

emission trajectory has changed from a dramatic decline in energy intensity from the onset

of economic reform in the late 1970s until 2000 to its subsequent equally dramatic increase

in energy intensity since 2003. Apart from concerns over the reliability of both carbon

emission and growth data for China, little discord exists on whether the general trend

in the data does describe real changes in China (compare, for example, Aufhammer and

Carson, 2008; Van Vuuren and Riahi, 2008).

Two major factors are likely to have influenced our overall estimate of the time effect

for China: i) the absolute rise in the per-capita level of energy consumption, due to the

strong growth in the industrial sector; ii) the shifting role of fuel input, in particular, the

increased use of coal. Figure 5, derived from the National Accounts Estimates of Main

Aggregates, United Nations Statistics Division, documents structural developments in

sectoral composition for China, relative to those in regions and countries such as the

United States, the EU and India between 1990 and 2006, measured as the annual growth

in Gross Value Added (at constant 1990 prices in US dollars). Clearly, China has had

the highest real sectoral growth in both primary and secondary sectors, and the growth

of its tertiary sector is only slightly below that of India. Furthermore, China has had

the lowest growth in its secondary, relative to that in the tertiary sector, indicating

China’s specialization in the industrial sector. For all other regions and countries (with

the exception of France), this figure is above 1, indicating that specialization has been
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in tertiary activity. For India, this figure is twice as high, while for the United Kingdom

this figure is even a factor of ten higher.

[INSERT FIGURE 5]

Further evidence of an exceptional development for China is the decomposition of

total energy demand in its main energy sources as well as their developments over time.

With a 61% coal share in total energy demand, China already had a relatively CO2-

intensive energy structure in 1990, but this share grew even further to 66% by 2006. The

share also by far exceeds that of any other region or country (see Table II, derived from

OECD, 2009). Although the coal share in India has been growing as well, its level of 41%

is still well below that of China. Clearly, the role of less carbon intensive energy sources,

such as gas or nuclear energy, lags far behind in both China and India compared to the

richer countries. These figures are even more extreme if one looks at the energy sources

used for electricity generation (not in the table) for which China almost exclusively relies

on coal (81%).

[INSERT TABLE II]

The more than proportional growth in the industrial sector together with the con-

tinued and even expanded exploitation of coal as the major energy input, explains our

exceptional time effect estimates for China. Technological change has not been able to

compensate for the strong carbon intensification of the energy system together with its

strong growth in industrial activity, both in absolute and relative terms. Here, globaliza-

tion is key. Decomposition analysis indicates that the rise in energy demand in China is

not only for domestic purposes, but is strongly export based (for example, Jiang and Hu,

2008). Moreover input-output analysis of the carbon content of trade flows by Aichele

and Felbermayr (2010) suggests statistical evidence of Kyoto commitments affecting car-
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bon trade, whereas, on average, the Kyoto protocol has led to substantial carbon leakage

in the rich countries.

Some authors believe that the exceptional increase in carbon emissions in China is

unlikely to continue forever and should slow down for good reasons (for example, Van

Vuuren and Riahi, 2008). As a consequence, overall global per-capita emissions would

start to decline ‘automatically’ if global income levels would continue to grow. This

view favors the carbon EKC hypothesis. Our estimations of the concurrent trends in

rich regions, such as ‘Western Offshoots’ and western Europe, and Other Asia, would

suggest a different prospect, however. If recent findings by Levinson (2009) for air quality

emissions linked to US imports would also apply to carbon emissions, one would expect

the time effect profiles for these regions to be much more negative than those actually

observed in our data. Indeed, the positive time trend we find for China suggests that the

importing (rich) regions are expanding consumption by growing industrial activity with

a typical more carbon intensive energy profile abroad (in particular, in China). However,

the time trends for the rich countries suggest this shift will not be enough to correct for

the carbon-intensive activities at home. The negative time effects for the richer regions

would not only be insufficient to compensate for the positive scale effects at home, they

would also contribute to the existing upward global carbon emission trend, even if China

is excluded.14

Our estimates illustrate that a simple unweighed inverted U panel approach of the

correlation between emissions and income could be misleading. First, estimations should

take account of differences in relative weights between cross sections, in particular if

the likelihood of observing declining time trends would be concentrated in (very) small

countries (such as Luxembourg; see Vollebergh et al., 2009). Second, if highest income

countries also are most likely to show (strong enough) negative time effects, one should

14These observations, however, cannot simply be carried over to India, which has experienced more
growth in the less carbon-intensive service sector.
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still be very careful to make inferences about the existence of an inverted U of the total

effect. Such an approach could easily undervalue the possibility that trends reflect devel-

opments in global specialization and, therefore, could even be ‘explained’ by the upward

trend in another region (or countries). Indeed, if recent income growth is strongly cor-

related with more than proportional growth in energy supply and demand in the export

sector and if fuel inputs would become more carbon intensive, technological improve-

ments have to be very substantial to compensate for these upward tendencies in order to

produce an overall negative global time effect. Our region-specific estimates provide little

evidence of such a trend, not only for China (such as Aufhammer and Carson, 2008), but

also for the world as a whole.

B. ‘As if’ Scenarios and Scenarios for the Future

Our estimates of global per-capita carbon emissions do not provide an optimistic picture

for the near future. First, according to our estimation, the increasing scale of the global

economy is likely to continue its effect of increasing per-capita carbon emissions – given

that we have not found any evidence whatsoever of a different income effect at higher

income levels. Second, regions tend to differ in the extent to which their time effect might

compensate for this positive scale effect. In particular, the anomalous time trend in China

and, to a lesser extent, the recovery in Russia and eastern Europe create major challenges

for the world. These challenges will even be larger as the observed negative time effect

for ‘Western Offshoots’ and western Europe is also driven by international specialization

in industrial activity in China. Third, our estimations suggest a reversal of this trend is

not simply solved by China participating in some post-Copenhagen agreement, because

other regions in the world might simply take over China’s role of providing a carbon-based

bandwagon to world industrial development.

To illustrate what the development path of richer regions, such as ‘Western Offshoots’,
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would have been without the option of outsourcing industrial activity to China, we con-

structed ‘as if’ scenarios using estimated time effects for different regions. Figure 6, first

of all, repeats both income and time effect for ‘Western Offshoots’ based on our GoF pro-

cedure explained in section IV. Subsequently, we ask what would have happened if this

region had followed the same development as China, that is, a gradual expansion of coal

intensity combined with an intensification of the industrial sector. Thus, we combine the

estimated time effect for China based on the GoF pairwise estimation for China versus

‘Other Asia’ with the income effect for ‘Western Offshoots’. As one might expect, this

leads to a steep and continuous increase in emissions.15 When using the India time ef-

fect instead, the overall pattern looks like an inverted U because the time trend declines

at the end of the period. Both ‘as if’ scenarios illustrate that per-capita emissions in

‘Western Offshoots’ would have been dramatically higher with a coal-based energy mix

and without the option for technological change and outsourcing. To put these findings

into perspective, ‘Western Offshoots’ would have contributed an additional 130,000 Mt

of carbon to the overall amount of human-induced carbon emissions had it followed the

Chines time pattern.16 Similar findings would apply to the other rich region, western

Europe. Conversely, and for the sake of comparison, we include in the bottom panels

of Figure 6 ‘as if’ emission paths for India and China, replacing their own time effects

by the time effect of ‘Western Offshoots’. Clearly, the time effect of ‘Western Offshoots’

would be nearly strong enough to avoid an increase in per-capita emissions in China and

also, but to a lesser extent, in India.

15Of course, it is unlikely that the time trend for China would be driven only by export to ‘Western
Offshoots’. Other relatively rich countries also have been targeted by the Chinese export industry due
to international specialization.

16This equals the total difference in emissions in Mt per-capita between ‘Western Offshoots’ following
the time pattern of China and its own time pattern times the actual population between 1950 and 2006.
We also assume that the time pattern for China also would be driven by export to other relatively rich
countries (western Europe and Other Asia). Therefore we assume that only 37% of the total effect can
attributed to ‘Western Offshoots’, which is equal to the share of GDP of ‘Western Offshoots’ in the
overall sum of GDP in all rich regions together.
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[FIGURE 6]

Apart from building such ‘as if’ scenarios, we also study extrapolations of per-capita

emission trends into the near future. Our forecasts are simple linear extrapolations (in

logs) of in-sample region-specific income and time ‘trends’. Using a linear regression

we link the income effect to GDP per capita and then extrapolate GDP per capita. We

account for structural breaks, including oil crisis for ‘Western Offshoots’, Other Asia, and

western Europe (i.e., we extrapolate the trend after 1973), the breakdown of the Russian

and East European economies (i.e., extrapolation after 2000), and the economic crisis in

Africa and Latin America of the late 1970s (i.e., extrapolation after 1979). Finally, we

weigh each of these region specific forecasts (transformed to levels) again by population,

extrapolated out-of-sample, to obtain our global estimates in levels (see Figure 7). The

first panel presents the weighted results, the other nine panels show the region-specific

results.17

[FIGURE 7]

Based on our region-specific forecasts it is very unlikely that global per-capita CO2

emissions will follow a downward trend in the near future. Apparently, the underlying

trends in most regions and their weight in the final, aggregated forecast is such that

the negative time effects will not suffice to compensate for the upward income effects.

Indeed, there is little evidence that the income effect slows down, whereas forecasts of

the negative time effect indicate that they do not provide large enough compensation to

get the overall level down for most regions. In other words, we do not find any indication

of an inverted U for the overall, global per capita CO2 emissions.

[FIGURE 8]

17We also tried various alternative (but related) scenarios, but all scenarios more or less produce the
same outcome.
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Given this negative result, we finally investigate whether any alternative scenario

would produce a more promising future scenario. Carbon emissions are still very closely

linked to the fuel input mix and the carbon content of these fuels because typical abate-

ment options for CO2 emissions, such as carbon capture and storage (CCS), have been

rarely applied in the past. Moreover, international regulation of CO2 emissions is often

hardly binding, despite some coordinated efforts such as the Kyoto protocol or the EU

Emission Trading System (EU ETS). To explore what might happen when binding reg-

ulations for CO2-emissions would be implemented, we create a scenario based on similar

estimations for SO2-emissions, in particular for the pair ‘Western Offshoots’ versus west-

ern Europe. Both regions typically started to regulate these emissions at the beginning of

the 1970s and again around 1985 (see also Popp, 2006). This is clearly illustrated by the

data (see Figure 8a). Similar to the CO2-case, we also find an upward income effect for

both regions. However, here the time effect is now strongly negative and even compen-

sates for the upward income effect. If this time effect for ‘Western Offshoots’ would be a

representative proxy for stringent regulation of CO2-emissions, the picture becomes much

gloomier. With the strongly negative time effect for SO2-emissions an overall reduction

in per-capita CO2-emissions at world level should certainly be possible (see Figure 8b,

the analogue of Figure 4, with aggregation at regional levels, but this time reported in

logs).18

VI. Conclusion

The EKC approach is a very comprehensive way to explore structural mechanisms behind

the stylized facts of global per-capita CO2 emissions and GDP. The results show how a

simple decomposition in income and time effect may yield powerful insights despite its

18Some likely conditions for such a prospect already exist, such as the large number of patents available
for carbon emission reduction technologies (for example, Dechezlepetre et al., 2009).
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sensitivity to the (necessary) choice of the prior. Consistent with the scale effect in the

international trade literature, our findings support a positive link between income and

emissions, irrespective of whether or not a region is rich. However, the conjecture that

higher income as such would correlate with a negative effect on emissions is rejected. In

our data we do not observe any evidence for time related effects that are strong enough

to more than offset the positive scale effect. In fact, we find evidence for the opposite.

China (and to a lesser extent Africa) appears to be an important exception to the rule

of an inverted U or declining time effect even though its per-capita income level now

approaches that of regions such as Eastern Europe. Moreover, the overall global, rising

per-capita trend that we observe is even visible when we exclude China.

The new estimation approach applied in this paper has shown that the EKC literature

is not necessarily approaching a dead end as, for instance, Stern and Common (2001)

argue. In fact, the new flexible estimator exploited in this paper produces reasonable

results for the simple decomposition that characterizes overall developments for each of

our nine regions. For these regions the very different patterns for these regions over

time, including severe economic crises in Latin America, eastern Europe, and Russia,

and structural changes in the composition of sectors and energy use, are clearly reflected

in our estimates. Because our approach follows the data, regional differences are also

likely to be better represented in our region specific results. This is clearly illustrated by

our findings for China. At first glance, the positive time effect we find might look like an

anomalous result. Closer inspection, however, reveals the opposite. This finding not just

reflects recent fundamental changes in the Chinese economy and its energy system, but

also summarizes (very recent) findings in other fields of research, such as decomposition

or convergence analysis. Further research along this line seems promising given that this

data-driven approach is relatively easy to implement.

There are some caveats too. First of all, our approach is a per-capita analysis. So,
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deriving trends in overall carbon emissions also requires better insight into population

growth. Furthermore, subjective judgements cannot be avoided when applying the es-

timator described in this paper, is the case with the use of the GoF prior for global

per-capita carbon emissions. One of the strong advantages of this approach, however, is

that this judgement should be made explicit from the very beginning and not hidden, for

instance, by choosing a (parametric) second-order polynomial estimator with homoge-

neous time trend. In addition, the choice of relevant pairs also clearly suffers from what

might be called ‘irrelevancy.’ A specific pairwise comparison of countries that have little

in common is likely to lead to irrelevant results. This shows that expert judgement in

choosing priors is necessary.

Finally, we believe that our global per-capita estimates contain some important lessons.

The first, well-known lesson is that future developments of global world carbon emissions

depend strongly on the emission pathway that China is going to follow. The second, more

surprising lesson is that the recent upsurge in global per-capita carbon emissions is not

only due to these recent changes in China, but also to developments in other regions. Our

findings show that the global pathway also strongly depends on what happens in other

regions, like the slow down of the negative time effect in western Europe and ‘Western

Offshoots.’
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Tables and Figures

Table I

Descriptive statisticsa

Variable Unit Mean Std Dev Minimum Maximum
Income bln 1990 $ 2,266 2,297 185 10,655
Carbon mtons 498 445 18 1,832
Population mln 487 330 88 1,470
Per-capita income 1990 $ 5,820 6,057 448 29,956
Per-capita carbon kg 1,480 1,524 39 5,607
a) Descriptive statistics are for the period 1950-2006 (N = 513)

Table II
Composition of Shares in Total Energy Demand in the US, EU, China,

India, and the World, Source: OECD (2009)

USA EU
1970 1990 2006 1970 1990 2006

Coal 19 24 24 29 28 19
Oil 45 40 39 56 37 35
Gas 32 23 23 8 18 25
Nuclear 0 8 9 1 13 14
Renewables 4 5 5 6 5 8

China India World
1971 1990 2006 1971 1990 2006 1971 1990 2006

Coal 51 61 66 25 33 41 26 25 27
Oil 9 13 18 11 19 24 44 37 34
Gas 0 1 3 0 3 6 16 19 21
Nuclear 0 0 1 0 1 1 1 6 6
Renewables 40 24 12 64 44 29 13 13 13
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Figure 1. GDP per Capita (US $ 1990)
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Figure 2. Carbon Dioxide Emissions in kg per Capita
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Figure 3a. Estimation results for nine regions based on best fit analysis
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Figure 3b. Estimation results for nine regions based on best fit analysis
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Figure 4a. Estimation results for the World
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Figure 4b. Estimation results for the World excluding China
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Figure 5. Percentage change sectoral Gross Value Added, 1990-2006

Source: National Accounts Estimates of Main Aggregates, United Nations Statistics

Division.
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Figure 6. Alternative Regional Scenarios

’As If’ Scenarios based on varying time effects
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Figure 7a. Regional Forecasts

World: scenario via GDP per capita & linear in logs

300

500

700

900

1100

1300

1500

1700

1900

2100

2300

1950 1960 1970 1980 1990 2000 2010 2020

C
a
rb
o
n
 e
m
is
s
io
n
s
 p
e
r 
c
a
p
it
a

Time (original) Income (original) Total (original)

Time (scenario) Income (scenario) Total (scenario)

Observations

China: scenario via GDP per capita & linear in logs

0

200

400

600

800

1000

1200

1400

1600

1950 1960 1970 1980 1990 2000 2010 2020

C
a
rb
o
n
 e
m
is
s
io
n
s
 p
e
r 
c
a
p
it
a

Time (original) Income (original) Total (original)

Time (scenario) Income (scenario) Total (scenario)

Observations

India: scenario via GDP per capita & linear in logs

0

200

400

600

800

1950 1960 1970 1980 1990 2000 2010 2020

C
a
rb
o
n
 e
m
is
s
io
n
s
 p
e
r 
c
a
p
it
a

Time (original) Income (original) Total (original)

Time (scenario) Income (scenario) Total (scenario)

Observations

Other Asia: scenario via GDP per capita & linear in logs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1950 1960 1970 1980 1990 2000 2010 2020

C
a
rb
o
n
 e
m
is
s
io
n
s
 p
e
r 
c
a
p
it
a

Time (original) Income (original) Total (original)

Time (scenario) Income (scenario) Total (scenario)

Observations

Western Europe: scenario via GDP per capita & linear in logs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1950 1960 1970 1980 1990 2000 2010 2020

C
a
rb
o
n
 e
m
is
s
io
n
s
 p
e
r 
c
a
p
it
a

Time (original) Income (original) Total (original)

Time (scenario) Income (scenario) Total (scenario)

Observations

Western Offshoot: scenario via GDP per capita & linear in logs

2000

4000

6000

8000

10000

12000

14000

1950 1960 1970 1980 1990 2000 2010 2020

C
a
rb
o
n
 e
m
is
s
io
n
s
 p
e
r 
c
a
p
it
a

Time (original) Income (original) Total (original)

Time (scenario) Income (scenario) Total (scenario)

Observations

37



Figure 7b. Regional Forecasts
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Figure 8a. Estimation Results for SO2
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Figure 8b. World Scenario for CO2

(With time effect SO2 Western Offshoot versus Western Europe)
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Appendix A: Econometric Background

In this appendix we explain the estimation approach of the model described in Section II

in more detail. The estimation approach proceeds as follows. First, consider the auxiliary

nonparametric regression

yrt − yst = `(xrt, xst, r, s) + εrs,t E (εrs,t|xrt, xst) = 0. (3)

One can estimate ` nonparametrically, using a standard Kernel estimator. Next, consider

some distribution Q over xst. Then taking expectation of `(xrt, xst, r, s) with respect to

Q, keeping xrt fixed, we find

EQ(`(xrt, xst, r, s)) = f(xrt, r) + EQ(f(xst, s)) = f(xrt, r) + cQ, (4)

with cQ some constant depending on Q. Thus, f(·, r) can be estimated nonparametrically

up to a constant by calculating EQ (` (·, xst, r, s)), using for h its nonparametric estimator.

Similarly, f(·, s) can be estimated nonparametrically (up to a constant) by using an

auxiliary distribution Q over xrt. Similar to Linton and Nielsen (1995), we used the

empirical distribution functions of xrt and xst to form the auxiliary distribution Q.

Note that, given the fundamental separability assumption (1), this procedure can be

seen as the ultimate reduced form estimation of the inverted U curve, because identifying

the inverted U relation between income and emissions no longer depends on the effects

of the time variables. Furthermore, assuming that two arbitrary regions have the same

time effect does not impose a priori a specific structure on this time effect; it would still

allow any structure, as long as this structure applies to both regions under consideration.

So, the only remaining choice is to select the appropriate combination of cross-sectional

units (r, s) according to the assumption λ(r, t) = λ(s, t).
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However, this choice cannot be made on the basis of the data alone. To illustrate this,

notice that the time effects λ(r, t) and λ(s, t) might be retrieved from

yrt − f(xrt, r) = λ(r, t) + εrt, (5)

yst − f(xst, s) = λ(s, t) + εst,

using the estimated functions f on the two left-hand sides. However, allowing full flexi-

bility for each t, we only had one observation to retrieve λ(r, t) (namely, yrt − f̂(xrt, r)),

one observation to retrieve λ(s, t) (yst − f̂(xst, s)), and only two observations to retrieve

λ(t) = λ(r, t) = λ(s, t). Although this allows estimation of the time effects,19 it does

not allow a consistent estimation of fully flexible time trends, since this would require

many cross-sectional observations. In other words, λ(t), λ(r, t), and λ(s, t) are not iden-

tified and, as a consequence, we are unable to consistently test a hypothesis such as

H0 : λ(t) = λ(r, t) = λ(s, t).

Appendix B: Some Additional Results

The results presented in Section IV might be sensitive to the assumption that allows

regions to have a time effect in common. Moreover, no a priori reason exists for excluding

any particular pair of region (see section II). Other combinations of countries yield quite

different results in some cases, but also sometimes produce low GoFs. One example is that

of applying a (Bayesian) uniform prior that gives each likely candidate an equal weight

and then looks at the average of all 9 pairs (‘world’). With such a prior the findings on,

in particular, western Europe and ‘Western Offshoots’ are quite different (see Figure A).

[INSERT FIGURE A]

19A simple estimator for λ (t) consists of taking the average of yrt − f̂(xrt, r) and yst − f̂(xst, s).
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However, for some of these estimates the in-sample predictions perform poorly. This

suggests that time effects between certain regions are unlikely to be similar. The case

of the pairwise comparison for ‘Western Offshoots’ with its best and worst fit is most

illustrative. Combining ‘Western Offshoots’ with its worst fit (China) instead of its best

fit (Western Europe, shown in Figure 3) yields even opposite results for the time and

income effect (not presented). However, pairing ‘Western Offshoots’ with China is hardly

convincing, considering some elementary GoF statistics.20 We observe such extreme cases

for each region. Therefore, a uniform prior approach for our sample suffers from this large

variation between region pairs and this is the main reason why we prefer our GoF prior

for this sample.21

For our selection of country pairs based on the GoF prior, we conducted a further

robustness check by testing whether the GoF of our selected pair could be improved (at

the margin) by allowing for the second and third best country specific time effects (in

terms of GoF). This ‘time weighted’ test works as follows. Our initial choice yields for

each region a one other region b as best fit, based on its in-sample predictive power.

Then we test whether weighted combinations with the two next best other regions c and

d yield an improvement of the overall GoF. Here, we first let the data decide on which

weights should be attached to region c and d. To be more specific, we optimize the fit

by optimizing over w ∈ [0; 1], when region a has the same time effect as the following

w-specific ‘artificial region’:

(1− w)× region b + w × (wc × region c + wd × region d)

20For ‘Western Offshoots’, for instance, the variance of errors is 0.0006 and the average absolute errors
is 0.0181 for its best fit (with Western Europe) and 0.0345 and 0.1254 for its worst fit (with China).

21Apparently, the more homogeneous sample of ‘traditional’ OECD countries studied by Vollebergh
et al. (2009) does not suffer from this problem (see also section V).
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where wc ≥ wd, satisfying wc + wd = 1, are based on the fits, when regions c and d have

the same time trend as region a.22

[INSERT FIGURE B]

Figure B illustrates the results for the optimal w for each of the nine regions. Our

initial findings for all but one region only slightly change when we allow for this opti-

mization procedure. Indeed, in most cases w is zero or close to zero. Only for China do

we find some difference, although the improvement in fit is very minor. With an optimal

w of close to 0.9, we find a more increasing time effect in the earlier period, followed by

some flattening and a slight decrease, although the time effect is rising again at the end

of the sample.23 However, the total time effect (difference between end period and first

period) in both cases is almost the same.

The general picture emerges that the income effect is positive, irrespective of the

income level, which is perfectly in line with standard theory of economic growth. The

time effects reflect region-specific patterns as might also be expected from this theory, in

particular, if one allows for international trade (Copeland and Taylor, 2003). Our find-

ings also corroborate decomposition analyses as well as earlier findings in (per-capita)

convergence analysis. For instance, Rezek and Rogers (2008) present a decomposition

of CO2-emissions for developed countries (21 countries, 1971-2000) in scale, composition

(substitution between sectors), and productivity effects, concluding that for most coun-

tries the CO2-saving productivity effect is not large enough to offset the additions in

CO2-emissions due to the scale effect. This is perfectly in line with our estimates for

Western Europe and ‘Western Offshoots’. Sun (1999) also shows that, for a sample of

22AssumeSSEc represents the sum of squared error, when we estimate the model, assuming that
regions a and c have the same time trend. Define SSEd similarly. The weight wc is then given by
wc = (1− SSEc) / ((1− SSEc) + (1− SSEc)), and wd = 1− wc.

23The reason for this finding is that the second and third best pair for China are – a little surprising
in our view – Russia and eastern Europe. Clearly, these regions went through very different evolutions
since the end of the 1980s.
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OECD countries between 1960 and 1995, the GDP growth effect is always positive and

nearly always larger than the sum of changes in the CO2 emission coefficient, energy

intensity, and sectoral composition (it is only negative in the 1980-1985 period). Finally,

our findings are also consistent with the earlier analysis by Aldy (2006) who observed

convergence of CO2 emissions per capita for the original 24 OECD countries, but could

not find emission convergence for a global sample of 88 countries. Indeed, the strong

negative time effect that we identify for Western Europe and ‘Western Offshoots’ is not

representative for the other regions in our sample, in particular not for China.

[INSERT FIGURE C]

Finally, Figure C presents the population-weighted OECD average that resulted from

applying our GoF prior to the whole OECD sample of Vollebergh et al. (2009), resembling

our findings for western Europe and ‘Western Offshoots’, in particular after the oil crises.
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Additional Figures Appendix B

Figure Aa. Estimation results for nine regions using a uniform prior
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Figure Ab. Estimation results for nine regions using a uniform prior
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Figure Ba. Robustness Check
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Figure Bb. Robustness Check
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Figure C. Estimation results OECD, weighted by population

Countries aggregated at their own levels (prior GoF)
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