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A∗ = Re(A)T −
√
−1Im(A)T denotes the conjugate transpose;

Hk×k = {A | A ∈ Ck×k, A = A∗} : set of Hermitian matrices;
A � 0 (A � 0) : A is Hermitian/symmetric positive semidefinite (positive definite);
A � 0 (A ≺ 0) : A is Hermitian/symmetric negative semidefinite (negative definite);

Sk×k+ = {A | A ∈ Sk×k, A � 0};
λi(A) : ith largest eigenvalue of matrix A;

trace(A) =
∑

iAii =
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i λi(A);
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2
ij (Frobenius norm)
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i λ
2
i (A) if A ∈ Sk×k;

〈A,B〉 = trace(ABT );

A
1
2 : unique symmetric square root factor of A � 0;

A(α, β) : submatrix that contains the rows of A indexed by α and the columns
indexed by β, for index sets α, β ⊂ {1, . . . ,k};

A(α) = A(α, α);
A(i, :) : ith row of matrix A;

In : identity matrix of order n;
Jn : n× n all-ones matrix;
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ei : ith standard basis vector;
Eij = eie

T
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Diag(a) : diagonal matrix with components of a ∈ Cn on the diagonal;
diag(A) : vector obtained by extracting the diagonal of A ∈ Cn×n;
vec(A) = [A11, A21, ..., An1, A12, A22, ..., Ann]T for A ∈ Cn×n;

Πn : set of n× n permutation matrices;
Sn : symmetric group on n elements

A⊗B : block matrix with block ij given by AijB (Kronecker product).
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Chapter 1

Introduction

1.1 Semidefinite programming

Semidefinite programming (SDP) may be described as linear programming (LP) with

positive semidefinite matrix variables. For given symmetric n×n matrices A0, . . . , Am

and b ∈ Rm, the standard SDP problem is defined as:

inf 〈A0, X〉
s.t. 〈Ai, X〉 = bi (i = 1, . . .m)

X � 0,

where X � 0 means X must be symmetric positive semidefinite, and the inner

product is the Euclidean inner product: 〈Ai, X〉 := trace(AiX), for i = 0, ...,m.

Semidefinite programming is currently one of the most active areas of research

in mathematical programming. The reason for this is twofold. First, applications of

SDP may be found in control theory, combinatorics, real algebraic geometry, global

optimization, and structural design, to name only a few; see the surveys by Van-

denberghe and Boyd (1996) and Todd (2001) for more information. Secondly, the

extension of interior point methods from linear programming to SDP in the 1990’s

by Nesterov and Nemirovski (1994), Alizadeh (1991), and others, allows the solution

of SDP problems in polynomial time to any fixed accuracy.

This thesis considers applications of SDP to combinatorial optimization problems

such as computing the crossing number of a graph, computing the clique number of a

graph, solving a traveling salesman problem, or finding a maximum equipartition, all

of which are known to be NP-hard. That is, there exists no polynomial-time algorithm

that can solve these problems to optimality, unless P=NP. Therefore, approximating

1



2 Chapter 1. Introduction

their optimal solution in polynomial time is an important goal. New techniques have

been developed in the last thirty years using semidefinite programming approaches.

However, the SDPs involved are often very large and the size of the problems that

can be solved is still limited.

The applications mentioned above are not the only ones in the literature. One

could also mention the work on symmetry in SDP of Vallentin (2009), SDP bounds on

error correcting codes (see Gijswijt, Schrijver, and Tanaka (2006), Schrijver (2005),

and Laurent (2009)), SDP bounds on kissing numbers (see Bachoc and Vallentin

(2008) and Mittelmann and Vallentin (2010)), connections between SDP relaxations

for the maximum cut problem and the computation of the stability number (see

Laurent, Poljak, and Rendl (1997)), SDP bounds on the chromatic number (see

Gvozdenović and Laurent (2008a), Dukanovic and Rendl (2007), and Gvozdenović

and Laurent (2008b)), and engineering applications in truss topology design (see Bai,

De Klerk, Pasechnik, and Sotirov (2009)).

A recurrent difficulty in applying interior point methods is that it is more difficult

to exploit special structure in the data in the SDP case than in the LP case. In

particular, sparsity may be readily exploited by interior point methods in LP, but

this is not true for SDP. There are currently three types of structure (apart from

general sparsity) that may be exploited in SDP:

• chordal structure (i.e., the data matrices of the SDP problem have a common

sparsity pattern that is the same as the sparsity pattern of a chordal graph,

which is a graph that does not contain a cycle of length 4 or more as an induced

subgraph), see Section 3 of De Klerk (2010) for details;

• low rank (i.e., the data matrices have low rank), see Section 2 of De Klerk

(2010) for details;

• algebraic symmetry (the key ingredient used in this thesis), see Chapter 2 for

details.

In the same vein, we will present in this thesis results on exploiting symmetry in

the data of SDP relaxations for structured combinatorial optimization problems such

as those described in the next section.
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1.2 Relaxations of combinatorial optimization prob-

lems

A key observation that connects SDP relaxations to combinatorial optimization prob-

lems is the following:

xTQx = trace(QxxT ), (1.1)

for a given vector x and matrix Q. Then, if we define X := xxT we can rewrite the

quadratic expression in x as a linear formulation in the new matrix variable X:

trace(QxxT ) = trace(QX).

Since any symmetric positive semidefinite matrix X has a factorization X = LLT ,

for some matrix L (see e.g., Section 7.2 in Horn and Johnson (1990)), we can readily

see the equivalence

X = xxT ⇔ rank(X) = 1 and X � 0. (1.2)

The rank constraint is a nonconvex hard constraint, so we omit the constraint rank(X)

= 1 and thus relax the condition X = xxT to X � 0. This relaxation was first used

in optimization by Shor (1987).

A second key observation is that we can view many combinatorial optimization

problems as quadratic optimization problems. A simple illustration is the equivalence

between xi ∈ {−1, 1} and x2
i = 1. Since it is not immediately obvious that we can

benefit from this nonconvex problem reformulation, we give another motivation via

the maximum cut problem.

1.2.1 Maximum cut problem

Let G = (V,E) be an undirected graph with the weighted adjacency matrix W . The

problem is to partition the set V into two subsets S1 and S2 such that the sum of the

weights of the edges between S1 and S2 is maximized. The combinatorial approach

is to introduce for each node i ∈ V a variable xi ∈ {−1, 1}. Node i must be placed

in either S1 or S2. Hence, we can assign xi = 1 if i ∈ S1 and xi = −1 if i ∈ S2.

If |V | = n, then the MAX-CUT problem takes the form of the binary quadratic
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optimization problem

MC := max
n∑

i,j=1

Wij

(
1− xixj

4

)
(1.3)

s.t. xi ∈ {−1, 1}, i ∈ V.

This is indeed true, since if (i, j) ∈ E and i and j are in the same set, then

1 − xixj = 0 and the weight of the edge is not added. On the other hand, if for

example i ∈ S1 and j ∈ S2 then 1− xixj = 2. Since we sum over all edges and every

edge appears twice in the sum, we need the factor of 1
4

to get the actual weight of

the cut.

Let us now define the vector x ∈ {−1, 1}n having as entries the variables xi

(i = 1, ..., n) from (1.3). Further, define the matrix X = xxT . Notice that Xij = xixj,

for any i, j = 1, ..., n, hence Xii = x2
i = 1 (i.e., diag(X)=e). Using (1.2), we can

rewrite (1.3) as the equivalent formulation (having X as a variable):

MC = max
1

4
trace(W (J −X))

s.t. diag(X) = e, (1.4)

X � 0,

rank(X) = 1.

If A is the adjacency matrix of the graph and L := Diag(Ae) − A denotes the

Laplacian matrix of the graph G, we can easily prove that trace(W (J − X)) =

trace(LX) (see Section 5.2.2).

We obtain the SDP relaxation of the MAX-CUT problem by deleting the rank

constraint, to obtain

SDPMC = max
1

4
trace(LX)

s.t. diag(X) = e, (1.5)

X � 0.

The convex hull of the set {xxT | x ∈ {−1, 1}n} is therefore approximated by the

convex elliptope:

E := {X ∈ Rn×n | diag(X) = e, X � 0}.
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With respect to the quality of bound (1.5), Goemans and Williamson (1995)

proved that SDPMC ≤ 1.138MC. This proof is based on the fact that

2

π
arcsin(E) ⊂ conv{xxT | x ∈ {−1, 1}n} ⊂ E ,

where the arcsin function is applied entry-wise. Moreover, they derived a randomized

algorithm that provides a cut with expected value greater than 0.878MC. In practice

this method performs well: the solutions (i.e., cuts) obtained are closer to optimality

than is predicted by the theory.

This Shor-type relaxation of quadratically reformulated combinatorial optimiza-

tion problems has become a powerful theoretical and computational tool, as we will

see in the examples presented in this section.

Maximum bisection

If we additionally require the sets S1 and S2 to have equal cardinality we obtain the

maximum bisection problem. Obviously this is a particular case of the MAX-CUT

problem and adding an appropriate constraint that characterizes the equality of |S1|
and |S2| yields another SDP relaxation, due to Frieze and Jerrum (1997). Equal

cardinality of the sets S1 and S2 requires that x ∈ {−1, 1}n has an equal number of 1

and −1 entries. Therefore, the sum of the elements of each row in matrix X should

be zero. We have

FJ = max
1

4
trace(LX)

s.t. diag(X) = e, (1.6)

Xe = 0,

X � 0.

In Chapter 5 of this thesis we propose another SDP relaxation for this problem and

conduct theoretical and numerical comparisons.

1.2.2 Quadratic assignment problem

The definition of the quadratic assignment problem (QAP) is as follows: given two

sets, P (“facilities”) and L (“locations”), of equal sizes together with a flow function

b : P × P 7→ R and a distance function a : L × L 7→ R, the problem is to find a
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permutation π : P 7→ L (“assignment”) that minimizes the function∑
i,j∈P

b(i, j)a(π(i), π(j)).

If we see the flow and distance functions as matrices over the reals we can consider

the QAP to be the problem of minimizing∑
i,j∈P

bijaπ(i)π(j). (1.7)

This formulation was introduced by Koopmans and Beckmann (1957). Assuming

|P | = |L| = n, we can represent any permutation π via a permutation matrix X as

follows:

Xij =

{
1 if π(i) = j
0 otherwise.

(i, j = 1, . . . , n)

If we denote by Πn the set of all permutation matrices, we have the trace formulation

of QAP:

minX∈Πntrace(BXAXT ). (1.8)

It is well known that the QAP contains the traveling salesman problem (TSP) as a

particular case, when taking for example

B =


0 1 0 . . 1
1 0 1 0 . .
. 1 0 1 0 .
. . . . . .
0 . . . 0 1
1 0 . . 1 0

 , (1.9)

and A = 1
2
D, where D is the distance matrix between the nodes. Therefore, the

QAP is an NP-hard problem. QAPs of size n ≥ 25 are still considered to be difficult,

so branch and bound algorithms (see Anstreicher (2003)) are used to solve them. In

turn these algorithms depend on the quality of the lower bounds computed for the

QAP.

Based on the same equivalence from (1.2), Zhao, Karisch, Rendl, and Wolkow-

icz (1998) and Rendl and Sotirov (2007) lifted the problem from Rn×n to the posi-

tive semidefinite cone of dimension n2 + 1, by considering the matrix variable Y :=
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Figure 1.1: A schematic illustration of Km,m,m,m

(
1

vec(X)

)(
1

vec(X)

)T
, where X is the permutation matrix from (1.8). Again,

Y � 0, rank(Y )=1 and the relaxations are obtained by ignoring the nonconvex rank

constraint.

Continuing in the same vein, bounds for the QAP were obtained by Povh and

Rendl (2009), this time lifting the variable in the cone of n2-dimensional semidefinite

matrices, by setting Y := vec(X)vec(X)T . These bounds are equivalent to the bounds

of Rendl and Sotirov (2007). Later, improved bounds were obtained by De Klerk and

Sotirov (2010b) for certain QAP instances where one may fix one facility to one

location without loss of generality.

We have already seen that the TSP is a special case of the QAP. The maximum

k-section problem is also a special case of the QAP. By maximum k-section we un-

derstand partitioning the vertices of a graph into k sets with equal cardinalities such

that the sum of the edges between the sets is maximized.

To formulate the maximum k-section problem as a QAP, consider the adjacency

matrix of the complete multipartite graphKm,...,m, see Fig. 1.1 (with any fixed labeling

of the vertices), where n = km, e.g.,

B := (Jk − Ik)⊗ Jm ≡


0m Jm . . . Jm

Jm 0m
. . .

...
...

. . . . . . Jm
Jm · · · Jm 0m

 ∈ Skm×km. (1.10)

If X is a permutation matrix that defines a relabeling of the vertices, then the adja-

cency matrix after relabeling is XTBX.

The QAP reformulation of max k-section on a complete graph with vertex set V
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(|V | = km) and matrix of edge weights W is therefore given by

1

2
max
X∈Π|V |

trace(WXTBX). (1.11)

In the case where k = 2 we obtain the maximum bisection problem for which we have

already seen relaxation (1.6).

As a consequence, new bounds on the QAP also offer new bounds for the TSP

and maximum k-section problems. However, the sizes of these relaxations are con-

siderable. The good news is that they do not have to be solved in this form, for these

particular cases.

Exploiting the special structure of the matrix in (1.9), De Klerk, Pasechnik, and

Sotirov (2008) have developed a new SDP relaxation for the TSP. Further, in Chapter

4 of this thesis we propose a new relaxation of a special case of the TSP, where the

matrix of distances is symmetric and circulant. This special structure actually leads

to a linear programming bound. By exploiting the special structure of the matrix

in (1.10), we derive in Chapter 5 of this thesis a new relaxation for the maximum

k-section problem and compare it to that given in (1.6) (for k = 2).

1.2.3 Crossing number of complete bipartite graphs

The crossing number cr(G) of a graph G is the minimum number of intersections of

edges in a drawing of G in the plane. Paul Turán raised the problem of computing the

crossing number of a complete bipartite graph Kr,s; see Turán (1977). The crossing

number of the complete bipartite graph is known only in a few special cases (such

as min{r, s} ≤ 6), and it is therefore interesting to obtain lower bounds on cr(Kr,s).

There is a well-known upper bound on cr(Kr,s) via a drawing that is conjectured to

be tight. This drawing of K4,5 with 8 crossings is presented in Fig. 1.2.

De Klerk, Maharry, Pasechnik, Richter, and Salazar (2006) showed that we can

obtain a lower bound on cr(Kr,s) via the optimal value of a suitable SDP, namely

cr(Kr,s) ≥
s

2

(
s min
X≥0, X�0

{trace(MX) | trace(JX) = 1} −
⌊
r

2

⌋⌊
r − 1

2

⌋)
,

where M is a certain (given) matrix of order n = (r−1)!, and J is the all-ones matrix

of the same size. The rows and columns of M are indexed by all the cyclic orderings

of r elements. (The cyclic orderings are given by the equivalence classes of orderings

that are equal modulo a cyclic permutation.) Therefore, we have r!
r

cyclic orderings
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Figure 1.2: Drawing of K4,5

that we denote u1, ..., u(r−1)!. The entries Mij are given by the distance between cyclic

orderings ui and uj. (This distance is given by the number of neighbor swaps needed

to go from one ordering to another; for example the distance between 123 and 213 is

one.)

De Klerk, Maharry, Pasechnik, Richter, and Salazar (2006) solved the SDP for

r = 7 using partial symmetry reduction and obtained the bound

cr(K7,s) ≥ 2.1796s2 − 4.5s.

Later, De Klerk, Pasechnik, and Schrijver (2007) solved the SDP for r = 9 using

representation theory and obtained the bound

cr(K9,s) ≥ 3.8676063s2 − 8s.

However, when solving the underlying SDP for r = 9, the solution time reported by

De Klerk, Pasechnik, and Schrijver (2007) was 7 days of wall-clock time on an SGI

Altix supercomputer. Using the numerical symmetry reduction presented in Chapter

3 of this thesis we can reduce the time to about 24 minutes on a Pentium IV PC,

including the time for preprocessing the data.

1.2.4 Stability number, chromatic number, Lovász ϑ, and ϑ
′

Let G = (V,E) be an undirected graph without loops. A subset S ⊆ V is called a

stable set of G if the induced subgraph on S contains no edges. The maximum stable

set problem is to find a stable set of maximum cardinality. The stability number,

denoted α(G), is defined as the cardinality of a maximum stable set. The chromatic

number of G is the minimum number of colors required to color the vertices of G
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such that no two adjacent vertices receive the same color. The chromatic number is

denoted χ(G).

The ϑ number, introduced by Lovász (1979), may be defined as the optimal value

of the following semidefinite problem:

ϑ(G) := max trace(JX)

s.t. Xij = 0, (i, j) ∈ E (i 6= j),

trace(X) = 1,

X � 0.

One of the best-known properties of the ϑ number is the so-called sandwich the-

orem.

Theorem 1.2.1 (Lovász (1979)). Let G = (V,E) be a graph with stability number

α(G), and let G be its complementary graph with chromatic number χ(G). Then

α(G) ≤ ϑ(G) ≤ χ(G).

Thus, we can see ϑ(G) as an SDP upper bound for α(G); but also as an SDP

lower bound for χ(G).

The ϑ′-number of a graph was introduced by McEliece, Rodemich, and Rumsey

(1978) as a strengthening of the Lovász (1979) ϑ-number upper bound on the co-

clique number of a graph. Independently, the ϑ′-number was studied in detail for

Hamming graphs by Schrijver (1979). The ϑ
′

number may be defined as the optimal

value of the following semidefinite problem:

ϑ
′
(G) := max trace(JX)

s.t. trace((A+ I)X) = 1,

X ≥ 0,

X � 0,

where A is the adjacency matrix of the graph G. This bound is obtained by adding

the nonnegativity constraint X ≥ 0.

Chapter 3 of this thesis uses this example together with the crossing number of

bipartite graphs to illustrate a numerical reduction technique to reduce the size of

the data in semidefinite programs that exhibit algebraic symmetry.
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1.3 Overview and contribution of this thesis

This thesis is organized into five chapters. Chapter 1 briefly introduced the re-

search questions and Chapter 2 presents the preliminary material necessary for a

self-contained thesis. Chapters 3 through 5 give a detailed treatment of the research

questions, and they are based on the following three research papers, respectively:

• Klerk, E. de, C. Dobre, and D.V. Pasechnik (2010). Numerical block diago-

nalization of matrix ∗-algebras with application to semidefinite programming.

Mathematical Programming, Series B. To appear.

• Klerk, E. de, and C. Dobre (2009). A comparison of lower bounds for the

symmetric circulant traveling salesman problem. Preprint. Tilburg University.

Submitted for publication.

• Klerk, E. de, D.V. Pasechnik, R. Sotirov, and C. Dobre (2010). On semidefinite

programming relaxations of maximum k-section. Preprint. Tilburg University.

Submitted for publication.

The concept of algebraic symmetry is presented in detail in Section 2.5 of Chapter

2, based on the paper of De Klerk, Dobre, and Pasechnik (2010). Some basic ingredi-

ents including introductory notes on semidefinite matrices and matrix ∗-algebras are

presented in Chapter 2. Examples of matrix ∗-algebras are presented in more detail,

since they are key to exploiting symmetry in the SDPs encountered in this thesis. In

addition to the preliminary material, Chapter 2 presents research contributions: Sec-

tion 2.3.3 proves a special structure of the canonical Wedderburn decomposition of

the regular *-representation of a matrix ∗-algebra. These results were stated without

proof in De Klerk, Dobre, and Pasechnik (2010).

Chapter 3 is in its entirety a contribution to the existing literature. Here, a nu-

merical technique to block diagonalize matrix ∗-algebras is presented. This result

is an alternative to the approach by Murota, Kanno, Kojima, and Kojima (2010),

and is useful in particular when the initial data set is too large to be handled by

the method of Murota et al. One important difference between the two methods lies

in the underlying ∗-algebra. Whereas Murota, Kanno, Kojima, and Kojima (2010)

utilize ∗-algebras over the reals, the technique in Chapter 3 deals with ∗-algebras

over the complex numbers. The method we propose is founded on the theorem by

Wedderburn (1907), and it is accomplished in two phases. The decomposition in the
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first phase is carried out not in a given ∗-algebra but in the center of its regular

*-representation, which has nice properties that allow numerical computations. Ex-

amples on computing bounds for the crossing number of a graph and bounds for the

ϑ
′

number of a graph confirm the relevance of our approach.

In Chapter 4 the attention shifts to deriving a new SDP relaxation for the symmet-

ric circulant traveling salesman problem (SCTSP). By exploiting specific structural

and algebraic properties of symmetric circulant matrices we show that in the case of

the SCTSP the SDP-based bound from De Klerk, Pasechnik, and Sotirov (2008) can

be computed by simply solving a linear programming problem of a size that is poly-

nomial in the size of the input. We perform theoretical and numerical comparisons

with the existing bounds in the literature. All the results in this chapter are new and

form the content of the paper by De Klerk and Dobre (2009).

Chapter 5 builds on a general framework for exploiting symmetry in a semidefinite

relaxation of the QAP due to De Klerk and Sotirov (2010b). First, using the isomor-

phism from Section 2.2.4 one can reduce the dimension of the initial QAP relaxation

from, say n2, to roughly 2n. Then, this relaxation is shown to be as least as good as

the SDP relaxation due to Karisch and Rendl (1998). All these results are new and

appeared in the paper by De Klerk, Pasechnik, Sotirov, and Dobre (2010). Chapter 5

also contains a proof of the equivalence between the bound due to Karisch and Rendl

(1998) and the more general QAP bound due to Povh and Rendl (2009), when the

latter bound is adapted for the special case of maximum k-section.



Chapter 2

Preliminaries

The aim of this chapter is to present the definitions and basic facts necessary for a

self-contained thesis. In the first section we present a fundamental result on matrix

C∗-algebras, preceded by the necessary definitions: roughly speaking, any matrix C∗-
algebra can be decomposed as a direct sum of full matrix C∗-algebras. The second

section is dedicated to examples of matrix ∗-algebras over the reals, since they will

feature again in this thesis. The regular ∗-representation used by De Klerk, Pasechnik,

and Schrijver (2007) to reduce semidefinite programs is presented in Section 2.3. Basic

results on positive semidefinite matrices and semidefinite programming are grouped

in Section 2.4. We end this chapter with some nontrivial results on the symmetry

reduction of semidefinite programs that will be used throughout the thesis.

The following properties of the Kronecker product will also be used, see e.g.,

Graham (1981) (we assume that the dimensions of the matrices appearing in these

identities are such that all expressions are well defined):

(A⊗B)(C ⊗D) = AC ⊗BD. (2.1)

trace(A⊗B) = trace(A)trace(B). (2.2)

∃P ∈ Πn2 s.t. ∀A,B ∈ Rn×n : P (B ⊗ A)P T = A⊗B. (2.3)

Moreover, following the notation already introduced, it can easily be verified that for

any column vectors v, w ∈ Rn:

Diag(vec(vwT )) = Diag(w)⊗Diag(v). (2.4)

13
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2.1 Basic properties of matrix ∗-algebras

In what follows we give a review of decompositions of matrix ∗-algebras over C, with

an emphasis on the constructive (algorithmic) aspects.

Definition 2.1.1. A set A ⊆ Cn×n is called a matrix ∗-algebra over C (or a matrix

C∗-algebra) if, for all X, Y ∈ A:

• αX + βY ∈ A ∀α, β ∈ C;

• X∗ ∈ A;

• XY ∈ A.

A matrix C∗-subalgebra of A is said to be maximal if it is not contained in any proper

C∗-subalgebra of A. (Recall that a subset of a set is proper if it is not the empty set

or the set itself.)

In applications one often encounters matrix C∗-algebras with the following addi-

tional structure.

Definition 2.1.2. Assume that a given set of zero-one n× n matrices {A1, . . . , Ad}
has the following properties:

(1)
∑

i∈I Ai = I for some index set I ⊂ {1, . . . , d} and
∑d

i=1 Ai = J ;

(2) ATi ∈ A for each i;

(3) AiAj ∈ span{A1, . . . , Ad} for all i, j.

Then {A1, . . . , Ad} is called a coherent configuration.

Thus, a coherent configuration is a basis of zero-one matrices of a (possibly non-

commutative) matrix ∗-algebra. Such an algebra is called a coherent algebra. More-

over, when the elements of the set {A1, . . . , Ad} commute and I ∈ {A1, ..., Ad}, the

basis of zero-one matrices is called an association scheme.

The following results will be useful for developing the theory of matrix C∗-algebra

decomposition in Chapter 3.

Proposition 2.1.1 (see e.g., Section 1.5 in Godsil (2005)). The elements of a com-

mutative matrix C∗-algebra have a common set of orthonormal eigenvectors. These

may be viewed as the columns of a unitary matrix Q, i.e., Q∗Q = I.
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Proposition 2.1.2 (see e.g., Section 1.5 in Godsil (2005)). Let A ⊆ Cn×n be a

commutative matrix C∗-algebra of dimension t containing the identity. There exists

a basis E1, . . . , Et of A with the following properties:

(1) Ei = E2
i for all i (idempotent);

(2)
∑t

i=1Ei = I;

(3) Ei = E∗i for all i (self-adjoint);

(4) EiEj = 0 if i 6= j (orthogonal).

More information on coherent configurations and related structures may be found

in the papers by Higman (1987) and Cameron (2003).

For matrices A1, A2, the direct sum is defined as

A1 ⊕ A2 :=

(
A1 0
0 A2

)
, (2.5)

and we will denote the iterated direct sum of A1, ..., An by
⊕n

i=1Ai. If all Ai are

equal we define:

t� A :=
t⊕
i=1

A.

Let A and B be two matrix C∗-algebras. Then the direct sum of A and B is:

A⊕ B := {M ⊕M ′ |M ∈ A,M ′ ∈ B}.

We say that A is a zero algebra if A consists only of the zero matrix.

Definition 2.1.3. A matrix C∗-algebra is called simple if it has no nontrivial ideal.

(An ideal of A is a ∗-subalgebra that is closed under both left and right multiplication

by elements of A.)

Definition 2.1.4. A matrix C∗-algebra is called basic if

A = t� Cs×s := {t�M |M ∈ Cs×s} (2.6)

for some integers s, t.
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Definition 2.1.5. Two matrix C∗-algebras A,B ⊂ Cn×n are called equivalent if there

exists a unitary matrix Q ∈ Cn×n such that

B = {Q∗MQ |M ∈ A} =: Q∗AQ.

Proposition 2.1.3 (see e.g., Section 2.2 in Gijswijt (2005)). Every matrix C∗-algebra

A containing the identity is equivalent to a direct sum of simple matrix C∗-algebras.

Proposition 2.1.4 (see e.g., Section 2.2 in Gijswijt (2005)). Every simple matrix

C∗-algebra A containing the identity is equivalent to a basic matrix C∗-algebra.

Propositions 2.1.3 and 2.1.4 imply the so-called fundamental structure theorem

for matrix C*-algebras, which is as follows:

Theorem 2.1.5 (Wedderburn (1907)). If A ⊆ Cn×n is a matrix ∗-algebra that con-

tains the identity, then there exist a unitary matrix Q and positive integers p and

ni, ti (i = 1, . . . , p) such that

Q∗AQ = ⊕pi=1ti � Cni×ni .

Thus, dim(A) =
∑p

i=1 n
2
i and n =

∑p
i=1 tini.

If the identity does not belong to A, then in view of Definition 2.1.5, each matrix

∗-algebra over C is equivalent to a direct sum of basic algebras and possibly a zero

algebra. A detailed proof of this result is given e.g., in the thesis of Gijswijt (2005)

(Theorem 1 there). The proof is constructive and forms the basis for numerical

procedures that obtain the decomposition into basic algebras.

Based on the theorem, we define the ∗-isomorphism:

φ : A 7→ ⊕pi=1Cni×ni (2.7)

for later use, by mapping a matrix from the algebra into its block diagonal form and

deleting the multiple blocks.

2.2 Examples of matrix ∗-algebras

This section is dedicated to the matrix ∗-algebras that we encounter later in this

thesis.
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2.2.1 Circulant matrices

A brief overview of circulant matrices follows. For more details the reader is referred

to the review paper by Gray (2006).

A circulant matrix has the following form:

C ==


r0 r1 r2 . . rn−1

rn−1 r0 r1 r2 . .
. . r0 r1 r2 .
. . . . . .
r2 . . . r0 r1

r1 r2 . . . r0

 , (2.8)

that is,

Cij := r(j−i) mod n.

Sums, products, and conjugate transposes of such matrices remain circulant. As a

consequence, the circulant matrices form a matrix ∗-algebra. Moreover, the multi-

plicative operation is commutative so this is a commutative matrix ∗-algebra. In

addition, the eigenvalues of such matrices can easily be found exactly. Moreover,

they share a common set of eigenvectors, given by the columns of the discrete Fourier

transform matrix :

Qij :=
1√
n
e
−2πij

√
−1

n , (i, j = 0, ..., n− 1).

We have Q∗Q = I, and if C is a circulant matrix, then Q∗CQ is a diagonal matrix.

The eigenvalues of C are given by

λm(C) = r0 +
n−1∑
k=1

rke
−2π
√
−1mk/n, (m = 0, . . . n− 1).

The set of symmetric circulant matrices also forms a matrix ∗-algebra. In this case

the closed-form expression for the eigenvalues, when n is odd, reduces to

λm(C) = r0 +

(n−1)/2∑
k=1

2rkcos(2πmk/n), (m = 0, . . . , n− 1), (2.9)

and when n is even we have

λm(C) = r0 +

n/2−1∑
k=1

2rkcos(2πmk/n) + rn/2cos(mπ), (m = 0, . . . , n− 1). (2.10)
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Furthermore, we may construct a basis B1, . . . Bbn/2c for the symmetric circulant

matrices as follows. For each i = 1, . . . , bn/2c define the entries of Bi by setting in

(2.8) ri = rn−i = 1 and all the other rj’s to zero. We set B0 = In. The positions of

the nonzero entries in matrix Bi are sometimes called the i-th stripe, and we will use

this terminology. Then, using (2.9) and (2.10), the eigenvalues of the basis matrices

are

λm(Bk) = 2cos(2πmk/n), (m = 0, . . . , n− 1, k = 0, . . . , bn/2c). (2.11)

Also note that, in view of Definition 2.1.2, the basis of the circulant matrices forms

an association scheme.

2.2.2 Matrix ∗-algebras from permutation groups

Let G ⊆ Sn be a subgroup of the symmetric group on n elements. With every element

π ∈ G one can associate a permutation matrix Pπ ∈ Cn×n defined as follows:

(Pπ)ij =

{
1 if π(i) = j
0 otherwise.

(i, j = 1, . . . , n). (2.12)

Notice that

P ∗π = P T
π = Pπ−1 .

Moreover, for all π, ρ ∈ G, if πρ denotes the permutation πρ(i) := π(ρ(i)), we have

Pπρ = PπPρ and Pπ−1 = P−1
π .

This means that the mapping π 7→ Pπ defines a representation of G, called the

orthogonal representation.

Definition 2.2.1. Let G = (V,E) be a graph. The automorphism group of G, denoted

aut(G), is defined by those permutations of the vertices that preserve the adjacency

structure of the graph.

The orthogonal representation of aut(G) consists of the permutation matrices P

having the property

P TAP = A,

where A is the adjacency matrix of G.
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Definition 2.2.2. We define the automorphism group of a given M ∈ Cn×n as

aut(M) := {π ∈ Sn |Mij = Mπ(i)π(j) ∀i, j}

In the same vein, given a matrix M , the orthogonal representation of aut(M)

consists of the permutation matrices P having the property

P TMP = M.

Throughout this thesis we will deal only with such orthogonal representations of

permutation groups. Therefore, we will start with the set of permutation matrices

defined in (2.12) and will refer to this set as the group G. That is, in what follows

we will not distinguish between the group and its orthogonal representation.

Definition 2.2.3. The orbit of an element i ∈ {1, . . . n} under the action of the

group G is the set

{j | j = π(i) for some π ∈ G}.

Similarly, the 2-orbit or orbital of an element (i1, i2) ∈ {1, . . . n} × {1, . . . n} under

the action of the group G is the set

{(j1, j2) | (j1, j2) = (π(i1), π(i2)) for some π ∈ G}.

We can easily see that two distinct elements i, j ∈ {1, . . . n} either have the same

orbit or disjoint orbits under the action of G.

Definition 2.2.4. The centralizer ring (commutant) of the group G is defined as:

AG := {Y ∈ Rn×n | Y =
1

|G|
∑
P∈G

P TXP, X ∈ Rn×n}. (2.13)

The linear mapping X 7→ R(X) := 1
|G|
∑

P∈G P
TXP, X ∈ Rn×n is called the

group average or Reynolds operator.

Theorem 2.2.1. We have the following equivalent formulation of AG:

AG = {Y ∈ Rn×n | PY = Y P ∀P ∈ G}. (2.14)



20 Chapter 2. Preliminaries

Proof. Let us denote the set in (2.13) by A1 and the set in (2.14) by A2. We first

show that A1 ⊆ A2.

Let Y ∈ A1. Then Y = 1
|G|
∑

P∈G P
TXP for some X ∈ Rn×n. We have to prove

that PY = Y P ∀P ∈ G. The condition PY = Y P ∀P ∈ G is equivalent to

P
1

|G|
∑
P∈G

P TXP =

(
1

|G|
∑
P∈G

P TXP

)
P ∀P ∈ G,

and therefore to∑
P∈G

PP TXP =
∑
P∈G

P TXPP ∀P ∈ G.

Now fix a permutation matrix P ∈ G. If we write α = |G| and G = {P1, ..., Pα}, then

the equality above can be rewritten as

PP T
1 XP1 + ...+ PP T

αXPα = P T
1 XP1P + ...+ P T

αXPαP . (2.15)

We want to show that these two sums have the same terms (not necessarily in the

same order). Note that for any given j ∈ {1, ..., α} there exists j∗ ∈ {1, ..., α} such

that PP T
j = P T

j∗ . Then, to obtain the equality in (2.15) we still need to prove that

Pj∗P = Pj, but this is immediate since P T
j∗Pj∗ = I = P T

j Pj.

Conversely, let X ∈ A2. This means X ∈ Rn×n and PX = XP ∀P ∈ G.

We have X = P TXP ∀P ∈ G. Summing over all permutation matrices we obtain

X = 1
|G|
∑

P∈G P
TXP , hence X ∈ A1.

We will repeatedly use the following property of the Reynolds operator:

trace(R(X)Y ) = trace(R(Y )X), ∀X, Y ∈ Rn×n. (2.16)

An important observation is that the Reynolds operator gives us the 2-orbits of

elements of {1, . . . n} × {1, . . . n} under the action of G. The 2-orbit of an element,

say (i, j), corresponds to the nonzero entries of the matrix

1

|G|
∑
P∈G

P T eie
T
j P.

The 2-orbits define a coherent configuration, and the corresponding algebra is AG.

Theorem 2.2.2. AG is a matrix ∗-algebra. Moreover, there exists a basis B1, . . . , Bd

of AG with the following properties:
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(1)
∑

i∈I Bi = I for some index set I ⊂ {1, . . . , d};

(2) Bi is a 0-1 matrix for all i;

(3)
∑d

i=1Bi = J ;

(4) Given i, Bi = BT
i∗ for some i∗.

Such a basis is given by the 2-orbits of G.

Proof. We first show that AG is a matrix ∗-algebra. Let A,B ∈ A and α, β ∈ R,

P ∈ G. Then, from (2.14),

(αA+ βB)P = αAP + βBP = αPA+ βPB = P (αA+ βB).

We conclude that AG is a linear subspace of Rn×n.

Further, since P−1 = P T we have A = PAP T . Multiplying this member by the

member with BP = PB yields ABP = PAP TPB. Thus, ABP = PAB and we

conclude that AB ∈ A. Using PP T = I and (AP )∗ = P ∗A∗ we obtain A∗P = PA∗,

which proves that the centralizer ring is also closed under conjugation.

We will now construct the required basis as the image under the Reynolds operator

of the standard basis of Rn×n, i.e., from the matrices

1

|G|
∑
P∈G

P T eie
T
j P.

Since the orbits of ei1e
T
j1

and ei2e
T
j2

under the action of G are either the same or

disjoint, we can define the 0-1 basis matrices by summing over the distinct (say d)

2-orbits:

Bk =
∑

(i,j) has 2−orbit k

1

|G|
∑
P∈G

P T eie
T
j P (k = 1, . . . d).

Moreover, since
∑n

i,j=1 eie
T
j = J we have

n∑
i,j=1

1

|G|
∑
P∈G

P T eie
T
j P = J,

which means

d∑
k=1

Bk = J.
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Moreover,∑
k∈I

∑
(i,i) has 2−orbit k

1

|G|
∑
P∈G

P T eie
T
i P = I,

which proves the first property.

The last property follows from the observation that (Bk)ij = (Bk)
T
ij, and this

concludes the proof of the theorem.

To conclude, starting from a permutation group G ⊆ Sn, we have constructed a

matrix ∗-algebra AG.
Let us consider the following example.

Example 2.2.1. Consider the 5-cycle (pentagon), denoted C5. The automorphism

group of C5 is the so-called dihedral group on 5 elements and has order |aut(C5)| =
10. The orbits of {1, 2, 3, 4, 5}× {1, 2, 3, 4, 5} under the action of aut(C5) correspond

to the matrices:

B1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B2 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , B3 =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 .

Notice that B1 has nonzero entries on the positions corresponding to the orbit of the

pair (1, 1), B2 to the orbit of the pair (1, 2), and B3 to the orbit of the pair (1, 3).

Thus, the centralizer ring of aut(C5) is a matrix ∗-algebra of dimension 3.

2.2.3 Coherent algebras containing given matrices

We consider now a given set of matrices {A0, . . . , Am}. The goal is to identify the

smallest coherent matrix ∗-algebra (say A) that contains these matrices.

One approach is to assume that the multiplicative matrix group G :=
⋂m
i=0 aut(Ai)

is nontrivial. Then, as before, we may take A as the commutant of the permutation

representation of G. According to Theorem 2.2.2 the matrix ∗-algebra A will have

a basis of 0-1 matrices (coherent configuration) given by the orbits of G. However,

this construction does not guarantee that we obtain the smallest coherent matrix

∗-algebra.

One way to obtain A is via the Weisfeiler-Leman algorithm; see Babel, Baumann,

Lüdecke, and Tinhofer (1997). Algorithm 1 and Algorithm 2 briefly show how one can
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use the Weisfeiler-Leman approach to identify the smallest coherent matrix ∗-algebra

containing {A0, . . . , Am}.

Algorithm 1 (Weisfeiler-Leman)

INPUT: A matrix M , whose identical entries define a partition B1, ..., Bd that
satisfies properties (1)–(4) in Theorem 2.2.2.
(i) Replace the entries of the matrix M by noncommuting variable symbols
s0, . . . , sk1 , and call it Mk1 .
(ii) Compute M2

k1
and denote its distinct entries by s0, ..., sk2 .

(iii) Repeat the computation until no new symbols appear; and let s0, ..., skn denote
the symbols in the configuration of Mkn .
(iv) Identify a coherent configuration by constructing kn + 1 0-1 matrices having 1
in the position of the common symbols and zero elsewhere.
OUTPUT: The coherent configuration of the smallest coherent algebra that con-
tains M .

Algorithm 2 Smallest coherent algebra containing given matrices

INPUT: The set of matrices {A0, . . . , Am}.
(i) Take a random combination of the input matrices, call it M .
(ii) Perform the Weisfeiler-Leman algorithm on matrix M .
OUTPUT: A coherent configuration of the smallest coherent algebra that contains
{A0, . . . , Am}.

Example 2.2.2. We illustrate Algorithm 1 for the set of 5 × 5 circulant matrices.

First, notice that any random linear combination of circulant matrices remains cir-

culant. To avoid triviality (completion after one iteration) we will consider two equal

entries in the first row of the matrix from (2.8). Hence, consider the following matrix:

M =


0 1 2 1 3
3 0 1 2 1
1 3 0 1 2
2 1 3 0 1
1 2 1 3 0


Replace the entries of the matrix M by noncommuting variable symbols and obtain:

Mk1 =


s0 s1 s2 s1 s3

s3 s0 s1 s2 s1

s1 s3 s0 s1 s2

s2 s1 s3 s0 s1

s1 s2 s1 s3 s0

 .
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Further,

Mk2 := M2
k1

=


s0 s1 s2 s3 s4

s4 s0 s1 s2 s3

s3 s4 s0 s1 s2

s2 s3 s4 s0 s1

s1 s2 s3 s4 s0

 ,

where the new symbols s0, s1, s2, s3, s4 are given by

s0 ← s2
0 + s1s3 + s2s1 + s1s2 + s3s1,

s1 ← s0s1 + s1s0 + s2s3 + s2
1 + s3s2,

s2 ← s0s2 + s2
1 + s2s0 + s1s3 + s3s1,

s3 ← s0s1 + s1s2 + s2s1 + s1s0 + s2
3,

s4 ← s0s3 + 2s2
1 + s2

2 + s3s0.

Notice that we obtained one extra symbol, s4, so we have to compute Mk3 := M2
k2

.

This computation is carried out in a similar way and the resulting Mk3 does not

introduce any new symbols so the algorithm stops.

We identify the coherent configuration of dimension 5 (i.e., {B0, ..., B4}) from the

formulation Mk3 = Mk2 =
∑4

i=0 siBi.

We have

B0 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B1 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 , B2 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 ,

B3 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 , B4 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

2.2.4 Coherent algebras associated with special graphs

We now give three more examples of matrix ∗-algebras that we will need later in this

thesis (i.e., Chapter 5). Since the cardinality of the basis gives the dimension of the

matrix ∗-algebra we will use the notion of dimension instead of rank when referring

to the cardinality of a coherent configuration.
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Example 2.2.3. Consider the coherent configuration arising from G = aut(Km−1,m)

associated with the complete bipartite graph Km−1,m. The coherent configuration has

dimension 6 and consists of the following matrices:

A1 =

(
Im−1 0m−1×m

0m×m−1 0m×m

)
, A2 =

(
Jm−1 − Im−1 0m−1×m

0m×m−1 0m×m

)
,

A3 =

(
0m−1×m−1 Jm−1×m
0m×m−1 0m×m

)
, A4 =

(
0m−1×m−1 0m−1×m
Jm×m−1 0m×m

)
,

A5 =

(
0m−1×m−1 0m−1×m
0m×m−1 Im×m

)
, A6 =

(
0m−1×m−1 0m−1×m
0m×m−1 Jm − Im.

)
,

and its complex span is isomorphic (as a ∗-algebra) to C ⊕ C ⊕ C2×2. The relevant

∗-isomorphism, say φ (see (2.7)), satisfies:

φ(A1) =

(
1

0
1 0
0 0

)
, φ(A2) =

(
−1

0
m− 2 0

0 0

)
, φ(A3) =

√
(m− 1)m

(
0

0
0 1
0 0

)
,

φ(A4) =
√

(m− 1)m

(
0

0
0 0
1 0

)
, φ(A5) =

(
0

1
0 0
0 1

)
, φ(A6) =

(
0
−1

0 0
0 m− 1

)
.

Example 2.2.4. Consider the following coherent configuration arising from G =

aut(Km−1,...,m) associated with the complete multipartite graph Km−1,m,...,m (i.e., k-

partition of cardinality given by indices) where each matrix contains k2 blocks (block

dimensions are given only for the first matrix; they can be deduced from the context):

A1 =


Im−1 0m−1×m 0m−1×m . . . 0m−1×m

0m×m−1 0m×m 0m×m . . . 0m×m
0m×m−1 0m×m 0m×m . . . 0m×m

...
...

...
. . .

...
0m×m−1 0m×m 0m×m . . . 0m×m

 ,

A2 =


J − I 0 0 . . . 0

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , A3 =


0 J J . . . J
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 ,

A4 =


0 0 0 . . . 0
J 0 0 . . . 0
J 0 0 . . . 0
...

...
...

. . .
...

J 0 0 . . . 0

 , A5 =


0 0 0 . . . 0
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

 ,
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A6 =


0 0 0 . . . 0
0 J − I 0 . . . 0
0 0 J − I . . . 0
...

...
...

. . .
...

0 0 0 . . . J − I

 , A7 =


0 0 0 . . . 0
0 0 J . . . J
0 J 0 . . . J
...

...
...

. . .
...

0 J J . . . 0

 .

The complex span is isomorphic to C⊕ C⊕ C⊕ C2×2. The relevant ∗-isomorphism,

say φ, satisfies:

φ(A1) =

(
1

0
0

1 0
0 0

)
, φ(A2) =

(
−1

0
0

m− 2 0
0 0

)
,

φ(A3) =
√

(k − 1)m(m− 1)

(
0

0
0

0 1
0 0

)
,

φ(A4) =
√

(k − 1)m(m− 1)

(
0

0
0

0 0
1 0

)
,

φ(A5) =

(
0

1
1

0 0
0 1

)
, φ(A6) =

(
0
−1

m− 1
0 0
0 m− 1

)
,

φ(A7) = m

(
0

0
−1

0 0
0 k − 2

)
.

Example 2.2.5. Consider the commutative coherent configuration (i.e., association

scheme) arising from G = aut(Km,...,m) associated with the complete multipartite

graph Km,...,m. The coherent configuration has dimension 3 and consists of the fol-

lowing matrices:

A1 =


Im 0m . . . 0m
0m Im . . . 0m
...

...
. . .

...
0m 0m . . . Im

 , A2 =


0m Jm . . . Jm
Jm 0m . . . Jm
...

...
. . .

...
Jm Jm . . . 0m

 ,

A3 =


Jm − Im 0m . . . 0m

0m Jm − Im . . . 0m
...

...
. . .

...
0m 0m . . . Jm − Im

 .
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Its complex span is isomorphic (as a ∗-algebra) to C ⊕ C ⊕ C. The relevant

∗-isomorphism, say φ, satisfies:

φ(A1) =
(

1
1

1

)
, φ(A2) =

(
(k − 1)m

0
−m

)
, φ(A3) =

(
m− 1

−1
m− 1

)
.

A few remarks on the ∗-isomorphisms from the previous examples:

• The block structure of φ(Ai) can be deduced using (2.7), applying for example

the algorithm in De Klerk, Dobre, and Pasechnik (2010) to block diagonalize

the matrices Ai.

• The eigenvalues of Ai and φ(Ai) are the same up to multiplicities.

• One can verify that φ is a ∗-isomorphism by noticing that the multiplica-

tion tables of the φ(Ai)’s and the Ai’s are the same; and further by verifying

φ(AiAj) = φ(Ai)φ(Aj), for any i, j, and φ(A∗i ) = φ(Ai)
∗ for any i.

2.3 The regular *-representation of matrix ∗-algebras

In Chapter 3 we will not compute the Wedderburn decomposition of a given matrix

C∗-algebra A directly. We will instead compute the Wedderburn decomposition of

a faithful (i.e., isomorphic) representation of it, called the regular *-representation

of A. Of course, the end result is the same, since the Wedderburn decomposition is

canonical, but this approach allows numerical computation with smaller matrices.

2.3.1 General facts

Definition 2.3.1 (see e.g., Section 1 in Etingof, Golberg, Hensel, Liu, Schwendner,

Udovina, and Vaintrob (2009)). A representation of an algebra A is a vector space V

together with a homomorphism of algebras ϕ : A 7→ End(V ), where End(V ) denotes

the set of endomorphisms from V to V .

Definition 2.3.2. When V = A and ϕ : A 7→ End(A) is given by ϕ(A)Y = AY

∀Y ∈ A, one obtains the regular representation of A. Moreover, when A has an

involution operation, say ∗, and ϕ(A∗) = ϕ(A)∗ ∀ A ∈ A, one obtains the regular

*-representation.
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Note that in the definition above A∗ is the involution of A, and ϕ(A)∗ is the adjoint

of the linear operator ϕ(A). We will use the notation ϕA := ϕ(A), so ϕA(Y ) = AY

∀Y ∈ A.

Assume now that A has an orthogonal basis of real matrices B1, . . . , Bd ∈ Rn×n,

with B∗i ∈ {B1, ..., Bd} for any i = 1, ..., d. This situation is not general, but it is

usual for the applications in semidefinite programming that we will consider.

We normalize this basis with respect to the Frobenius norm:

Di :=
1√

trace(BT
i Bi)

Bi (i = 1, . . . , d),

and define multiplication parameters γki,j via:

DiDj =
d∑

k=1

γki,jDk, (2.17)

and subsequently define the d× d matrices Lk (k = 1, . . . , d) via

(Lk)ij = γik,j, (i, j = 1, . . . , d). (2.18)

Lemma 2.3.1. For any k = 1, ..., d, Lk is the matrix representation of the linear

operator ϕDk with respect to the basis {D1, ..., Dd}.

Proof. Since Dk ∈ A, for any k = 1, ..., d we have

ϕDk(Dj) = DkDj =
d∑
i=1

(Lk)ijDi, (j = 1, ..., d),

which completes the proof.

Therefore, we will work with the matrix representation of the linear operator

ϕDk . The matrices Lk form the basis of a matrix ∗-algebra, say Areg. We will abuse

terminology slightly by calling Areg the regular *-representation of A (with respect

to the basis {D1, ..., Dd}).

Theorem 2.3.2. The bijective linear mapping Φ : A 7→ Areg such that Φ(Dk) = Lk

(k = 1, . . . , d) defines a ∗-isomorphism from A to Areg. Thus, Φ is an algebra

isomorphism with the additional property

Φ(A∗) = Φ(A)∗ ∀A ∈ A.
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Proof. For any Y ∈ A we define as before the linear operator ϕY : A 7→ A by

ϕY (X) = Y X ∀X ∈ A. (2.19)

Using Lemma 2.3.1 we have that Lk := Φ(Dk) is the matrix corresponding to the

linear operator ϕDk in the basis D1, ..., Dd. Thus, for any Y =
∑

k ykDk ∈ A, Φ(Y )

is the matrix corresponding to the linear operator

ϕY = ϕ∑
k ykDk

=
∑
k

ykϕDk

in the basis D1, ..., Dd.

Using (2.19) we have for any Y, Z ∈ A:

ϕY Z(X) = Y ZX = Y (ZX) = ϕY (ϕZ(X)) = (ϕY ◦ ϕZ)(X) ∀X ∈ A.

Therefore, for any Y, Z ∈ A we have Φ(Y Z) = Φ(Y )Φ(Z). Thus, Φ is an algebra

homomorphism.

Φ(Y ) = 0 implies that Y X = 0 ∀X ∈ A, and in particular we obtain Y Y ∗ = 0,

which implies that Y = 0. Therefore, Φ is injective and by construction we conclude

that it is a bijection.

We still need to show that Φ is a *-isomorphism (i.e., it preserves symmetry). To

do so, we need to show that Φ(Y ∗) = Φ(Y )∗.

On the one hand, by definition of ϕY we have ϕY (Dj) = Y Dj; on the other hand,

using the fact that Φ(Y ) is the matrix of operator ϕY in the basis D1, ..., Dd we

obtain:

Y Dj =
d∑
t=1

Φ(Y )tjDt.

Using the orthonormality of the basis D1, ..., Dd, in the above relation, we take the

inner product with the matrices Di and use the linearity of the operator. Hence,

trace(DT
i Y Dj) =

d∑
t=1

Φ(Y )tjtrace(DT
i Dt) = Φ(Y )ij.

In the same way:

Y ∗Di =
d∑
t=1

Φ(Y ∗)tiDt
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and we take the inner product with the matrices Dj. Notice that if A ∈ Cn×n then

trace(A∗) = trace(A). From the orthonormality of the basis, the right-hand side

becomes Φ(Y ∗)ji. Hence,

Φ(Y ∗)ji = trace(DT
j Y
∗Di) = trace(DT

j Y
∗Di)∗ = trace(DT

i Y Dj) = Φ(Y )ij,

therefore the preservation of the symmetry is proved.

Since Φ is a homomorphism, A and Φ(A) have the same eigenvalues (up to mul-

tiplicities) for all A ∈ A. As a consequence, we have the following theorem.

Theorem 2.3.3. Let {D1, ..., Dd} be an orthonormal basis of a matrix ∗-algebra A,

{L1, ..., Ld} the basis of the regular *-representation of A (i.e., Areg) as defined in

(2.18), and x ∈ Rd. We have

d∑
i=1

xiDi � 0⇐⇒
d∑
i=1

xiLi � 0.

Example 2.3.1. We revisit Example 2.2.1. Recall that n = 5 and d = 3 for this

example. First, we normalize the basis B1, B2, B3 to get

D1 =
1√
5

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, D2 =

1√
10

(
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

)
, D3 =

1√
10

(
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

)
.

Then, Table 2.1 will give us the coefficients γki,j, i, j, k = 1, . . . 3.

D1 D2 D3

D1
1√
5
D1

1√
5
D2

1√
5
D3

D2
1√
5
D2

1√
5
D1 + 1√

10
D3

1√
10

(D2 +D3)

D3
1√
5
D3

1√
10

(D2 +D3) 1√
5
D1 + 1√

10
D2

Table 2.1: Multiplication table of normalized matrices from Example 2.2.1.

Further, using (2.17) and (2.18), we can easily compute by hand the matrices

L1, L2, L3, that form the basis of the regular ∗-representation:

L1 =
1√
5

1 0 0
0 1 0
0 0 1

 , L2 =

 0 1√
5

0
1√
5

0 1√
10

0 1√
10

1√
10

 , L3 =

 0 0 1√
5

0 1√
10

1√
10

1√
5

1√
10

0

 .

Notice that in this toy example we have reduced the size of the basis matrices from

n = 5 to d = 3.
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2.3.2 A change of basis

By Wedderburn’s theorem, any matrix C∗-algebra A that contains the identity takes

the form

Q∗AQ = ⊕ti=1ti � Cni×ni , (2.20)

for some integers t, ti, and ni (i = 1, . . . , t), and some unitary Q.

Our further goal is to show that the Wedderburn decomposition of Areg has a

special structure that does not depend on the values ti (i = 1, . . . , t). To this end,

the lemmas in this subsection show how the regular *-representation behaves when

the orthonormal basis of the matrix ∗-algebra A is changed.

Lemma 2.3.4. The regular *-representations of A and Q∗AQ are the same.

Proof. Denote by AQ the algebra after block diagonalization.

We have that {Q∗D1Q, ..., Q
∗DdQ} is a basis for AQ. We will prove that applying

the regular *-representation to both A and AQ yields the same matrices denoted

earlier in this section by L1, ..., Ld.

If we denote D
′
i := Q∗DiQ, then from (2.17), by multiplying with Q∗ and Q to

the left and right respectively we obtain:

Q∗DiDjQ =
d∑

k=1

γki,jQ
∗DkQ.

Further, since Q is unitary, we have

Q∗DiQQ
∗DjQ =

d∑
k=1

γki,jQ
∗DkQ,

and using the earlier notation

D
′

iD
′

j =
d∑

k=1

γki,jD
′

k,

which proves that we have the same values γki,j so we obtain the same regular *-

representation for both A and AQ.

This implies that, when studying Areg, we may assume without loss of generality

that A takes the form

A = ⊕ti=1ti � Cni×ni .
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Lemma 2.3.5 (see e.g., Sections 0.1.0 and 1.0.1 in Horn and Johnson (1990)). Let

V be a vector space of dimension d:=dim(V), let L : V 7→ V be a linear operator,

and B = {B1, ..., Bd}, B
′

:= {B′1, ..., B
′

d} two bases of V . Then there exists a matrix

S ∈ Rd×d, independent of L, such that

ML
B = S−1ML

B′S,

where ML
B is the matrix representation of L with respect to basis B and S is the

transition matrix from B to B′.

Corollary 2.3.6. Let V be a vector space of dimension d:=dim(V), let L : V 7→ V

be a linear operator, and B = {D1, ..., Dd}, B
′
:= {D′1, ..., D

′

d} two orthonormal bases

of V . Then there exists a unitary matrix Q ∈ Rd×d, independent of L, such that

ML
B = Q∗ML

B′Q,

where ML
B is the matrix representation of L with respect to basis B, and Q is the

unitary transition matrix from B to B′.

Proof. Let B denote the unitary matrix containing the orthonormal vectors of B, and

B
′

denote the unitary matrix containing the orthonormal vectors of B′ . If Q is the

transition matrix, then B = Q∗B
′
. Since both B and B

′
are unitary matrices, it

follows that Q is also unitary. Using Lemma 2.3.5 we conclude the proof.

Lemma 2.3.7. Let Areg be the regular *-representation of A with respect to the

orthonormal basis {D1, ..., Dd}, and let A′ reg be the regular *-representation of A
with respect to the orthonormal basis {D′1, ..., D

′

d}. Then there exists a unitary matrix

Q such that

Areg = Q∗A′ regQ.

Proof. Define as before the linear mappings Φ : A 7→ Areg such that Φ(Dk) = Lk

(k = 1, . . . , d), and Φ
′

: A 7→ A′ reg such that Φ
′
(D
′

k) = L
′

k (k = 1, . . . , d). Then we

have

Areg =

{
d∑

k=1

αkLk | αk ∈ C

}
and

A′ reg =

{
d∑

k=1

α
′

kL
′

k | α
′

k ∈ C

}
,
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where, by Lemma 2.3.1, Lk = Φ(Dk) is the matrix corresponding to the linear oper-

ator ϕDk in the basis {D1, ..., Dd}, and L
′

k = Φ
′
(D
′

k) is the matrix corresponding to

the linear operator ϕD′k
in the basis {D′1, ..., D

′

d}.
Thus, for any A =

∑
k αkDk ∈ A, Φ(A) is the matrix corresponding to the linear

operator

ϕA = ϕ∑
k αkDk

=
∑
k

αkϕDk

in the basis D1, ..., Dd. Moreover, if we write A =
∑

k α
′

kD
′

k ∈ A, then Φ
′
(A) is the

matrix corresponding to the linear operator

ϕA = ϕ∑
k α
′
kD
′
k

=
∑
k

α
′

kϕD′k

in the basis D
′
1, ..., D

′

d.

By Corollary 2.3.6, if A ∈ A, the matrix representations of ϕA with respect to

the two orthonormal bases {D1, ..., Dd} and {D′1, ..., D
′

d} are related via

Φ(A) = Q∗Φ
′
(A)Q,

where Q is some orthonormal matrix that does not depend on A. This concludes the

proof.

2.3.3 Wedderburn decomposition of regular *-representation

Lemma 2.3.8. Let t and n be given integers. The regular *-representation of t�Cn×n

is equivalent to n� Cn×n, for the standard basis.

Proof. The standard basis of t�Cn×n clearly has n2 elements since we have t repeated

blocks. Let

Di1i2 :=
1√
t
It ⊗ ei1eTi2 , (i1, i2 = 1, . . . , n)

denote the normalized basis matrices. Its regular *-representation will consist of n2

dimensional matrices, say Li1i2 , (i1, i2 = 1, . . . , n).

We will show that for all i1, i2 we have Li1i2 = 1√
t
P T (In ⊗ (ei2e

T
i1

))P , for some

permutation matrix P , and the lemma will therefore be proved.

To this end, for i1, i2 ∈ {1, . . . , n} let us define E(i1i2) := ei1e
T
i2

. Then, using (2.17),

we have

1

t
(It⊗E(i1i2))(It⊗E(j1j2)) =

n∑
k1,k2=1

γ
(k1k2)
(i1i2),(j1j2)

1√
t
It⊗E(k1k2), (i1, i2, j1, j2 = 1, . . . , n),
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for some scalars γ
(k1k2)
(i1i2),(j1j2). This is equivalent to

1√
t
It ⊗ (E(i1i2)E(j1j2)) = It ⊗

n∑
k1,k2=1

γ
(k1k2)
(i1i2),(j1j2)E

(k1k2), (i1, i2, j1, j2 = 1, . . . , n).

This yields:

1√
t
E(i1i2)E(j1j2) =

n∑
k1,k2=1

γ
(k1k2)
(i1i2),(j1j2)E

(k1k2), (i1, i2, j1, j2 = 1, . . . , n).

Since

E(i1i2)E(j1j2) = ei1e
T
i2
ej1e

T
j2

= δi2j1E
(i1j2),

we have

γ
(k1k2)
(i1i2),(j1j2) =

1√
t
δi2j1δi1k1δj2k2

=

{ 1√
t

if k1 = i1, i2 = j1 k2 = j2

0 else.

Using

(Li1i2)(j1j2),(k1k2) = γ
(i1i2)
(k1k2),(j1j2)

we obtain

Li1i2 =
1√
t
(ei2e

T
i1

)⊗ In.

Following (2.3) we obtain, for a suitable permutation matrix P , Li1i2 = 1√
t
P T (In ⊗

(ei2e
T
i1

))P , and this concludes the proof.

Lemma 2.3.9. Let t and n be given integers. The regular *-representation of t�Cn×n

is equivalent to n� Cn×n, for any choice of orthonormal basis.

Proof. By Lemma 2.3.8 the regular *-representation of t � Cn×n is equivalent to

n � Cn×n when using the standard basis It ⊗ (ei1e
T
i2

). Lemma 2.3.7 completes the

proof.

Lemma 2.3.10. Let Aα be matrix ∗-algebras and let Aregα denote their regular *-

representations, for α = 1, ..., t. The regular *-representation of ⊕tα=1Aα is equivalent

to ⊕tα=1Aregα .
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Proof. Let {Dα
1 , . . . , D

α
dα
} denote a given orthonormal basis of Aα for each α =

1, . . . , t. Denote the regular *-representation of eachAα byAregα , with basis {Lα1 , . . . , Lαdα}.
Let d :=

∑t
α=1 dα be the dimension of A := ⊕tα=1Aα. We now construct an orthonor-

mal basis, say {D1, . . . , Dd} of A. Each matrix Di will be block diagonal with exactly

one nonzero block given by Dα
j for some α ∈ {1, . . . , t} and j ∈ {1, . . . , dα}. The

position of this nonzero block will correspond to the “position”’ of Aα in the direct

sum ⊕tα=1Aα.

The exact construction is as follows: matricesD1, . . . , Dd1 are formed fromD1
1, . . . , D

1
d1

respectively, matrices Dd1+1, . . . , Dd1+d2 are formed from D2
1, . . . , D

2
d2

respectively,

etc. If we denote the regular ∗-representation of A by Areg, with basis {L1, . . . , Ld} ⊂
Cd×d, then the matrix Li has exactly the same block structure as Di (i = 1, . . . , d),

by construction. In particular, matrices L1, . . . , Ld1 are formed from L1
1, . . . , L

1
d1

re-

spectively, etc. We now have Areg = ⊕tα=1Aregα . This completes the proof.

Using the last two lemmas, we can readily prove the following theorem.

Theorem 2.3.11. The regular *-representation of A := ⊕ti=1ti�Cni×ni is equivalent

to ⊕ti=1ni � Cni×ni.

The Wedderburn decomposition of Areg therefore takes the form

Q∗AregQ = ⊕ti=1ni � Cni×ni , (2.21)

for some suitable unitary matrix Q.

Comparing (2.20) and (2.21), we may informally say that the ti and ni values are

equal for all i in the Wedderburn decomposition of a regular *-representation. We

will also observe this in the numerical examples in Chapter 3.

2.4 Positive semidefinite matrices

This section is dedicated to the results for positive semidefinite matrices that we need

in this thesis.

Recall that a complex matrix A is called Hermitian if A∗ = A. Moreover, the

eigenvalues of a Hermitian matrix are real. In the case where the matrices have real

entries we can talk about symmetric matrices.

If A,B ∈ Cn×n we can define the following inner product:

〈A,B〉 := trace(AB∗) =
n∑

i,j=1

AijBij,
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where Bij is the complex conjugate of Bij. Recall that we denoted the real symmetric

n× n matrices by Sn×n. If A,B ∈ Sn×n then

〈A,B〉 := trace(AB) =
n∑

i,j=1

AijBij.

This inner product induces the Frobenius (Euclidean) norm:

‖A‖2 := 〈A,A〉 = trace(AAT ) =
n∑

i,j=1

A2
ij.

The following theorem presents equivalent characterizations of Hermitian positive

semidefinite (psd) matrices.

Theorem 2.4.1 (see e.g., Section 7.2 in Horn and Johnson (1990)). Let X be a

Hermitian matrix. The following are equivalent:

(1) X � 0 (X is psd);

(2) z∗Xz ≥ 0 ∀z ∈ Cn×n;

(3) All eigenvalues of X are nonnegative;

(4) The determinants of all the principal minors of X are nonnegative;

(5) X = LL∗ for some L ∈ Cn×n.

A nonsingular matrix X � 0 is called positive definite and we write X � 0. When

the matrix has real entries, the vector z and the matrix L from Theorem 2.4.1 also

have real entries and conjugation becomes transposition. An alternative notation is

Sn×n+ for positive semidefinite matrices and Sn×n++ for positive definite matrices.

Lemma 2.4.2. Let A ∈ Cn×n be a Hermitian matrix. The following holds:

A � 0⇐⇒
[

Re(A) Im(A)T

Im(A) Re(A)

]
� 0.

Proof. Recall that A = Re(A) +
√
−1Im(A). A � 0 so for any z ∈ Cn, z = a+

√
−1b

with a, b ∈ Rn we have

[a+
√
−1b]∗(Re(A) +

√
−1Im(A))[a+

√
−1b] ≥ 0.
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This is equivalent to

[aT −
√
−1bT ](Re(A) +

√
−1Im(A))[a+

√
−1b] ≥ 0.

Thus,

aTRe(A)a− aT Im(A)b+ bTRe(A)b+ bT Im(A)a

+
√
−1(aTRe(A)b+ aT Im(A)a− bTRe(A)a+ bT Im(A)b) ≥ 0.

Since −Im(A) = Im(A)T (i.e., because A = A∗) we have aT Im(A)a = −aT Im(A)a,

which yields aT Im(A)a = 0. Similarly bT Im(A)b = 0, and the other two terms from

the imaginary part cancel each other.

Then the previous inequality is equivalent to

aTRe(A)a+ aT Im(A)T b+ bTRe(A)b+ bT Im(A)a ≥ 0,

which can be rewritten as

[aT bT ]

[
Re(A) Im(A)T

Im(A) Re(A)

] [
a
b

]
≥ 0.

Since this holds for any

[
a
b

]
∈ R2n, we have

[
Re(A) Im(A)T

Im(A) Re(A)

]
� 0,

and this concludes the proof.

Any Hermitian matrix A has a spectral decomposition, that is:

A =
n∑
i=1

λiqiq
∗
i := QΛQ∗,

where qi is the unit eigenvector corresponding to eigenvalue λi. Then Q = [q1, . . . qn],

QQ∗ = I, and Λ is a diagonal matrix having Λii = λi.

Any Hermitian matrix A has a square root factorization.

A
1
2 :=

n∑
i=1

√
λiqiq

∗
i .

Note that A
1
2A

1
2 = A. It follows that for any X � 0

trace(JX) = eTXe = eT (X
1
2 )∗X

1
2 e = ‖X

1
2 e‖2. (2.22)
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Definition 2.4.1. The Schur complement of the invertible matrix D from the block

matrix

M :=

(
A B
C D

)
is defined to be S := A−BD−1C.

Lemma 2.4.3 (see e.g., Appendix A.5.5 in Boyd and Vandenberghe (2004)). Let X

be a symmetric matrix given by

X :=

(
A B
BT C

)
and let S be the Schur complement of C in X. Then X � 0 if and only if A � 0 and

S � 0.

The following result is proved in the thesis of Gijswijt (2005) and, together with

Theorem 2.4.1, it will turn out to be useful for proving that a matrix with a certain

structure is positive semidefinite. For any N ∈ Sn×n, define:

MN :=

(
1 diag(N)T

diag(N) N

)
. (2.23)

Proposition 2.4.4 (see e.g., Proposition 7 in Gijswijt (2005)). Let N ∈ Sn×n be such

that diag(N)=cNe for some c ∈ R. Then the following are equivalent:

(1) MN � 0;

(2) N � 0 and eTNe ≥ (trace(N))2.

2.5 Symmetry reduction of SDP instances

We consider the standard primal SDP problem:

min
X�0
{trace(A0X) | trace(AkX) = bk ∀ k = 1, . . . ,m}, (2.24)

where the Hermitian data matrices Ai = A∗i ∈ Cn×n (i = 0, . . . ,m) are linearly

independent. The dual problem is formulated as follows:

max
y∈Rm , S�0

{bTy |
m∑
i=1

yiAi + S = A0}, (2.25)
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where yi, (i = 1, ...,m) are the dual variables, and the matrix S is also called the

slack matrix.

We say that the SDP data matrices exhibit algebraic symmetry if the following

assumption holds.

Assumption 1 (Algebraic symmetry). There exists a matrix C∗-algebra, say ASDP
with dim(ASDP ) < n, that contains the data matrices A0, . . . , Am.

Under this assumption, we may restrict the feasible set of problem (2.24) to its

intersection with ASDP , as the following theorem shows (taken from De Klerk, Do-

bre, and Pasechnik (2010)). Related, but slightly less general, results are given by

Gatermann and Parrilo (2004), De Klerk (2010), and others.

Theorem 2.5.1. Let ASDP denote a matrix C∗-algebra that contains the data ma-

trices A0, . . . , Am of problem (2.24) as well as the identity. If problem (2.24) has an

optimal solution, then it has an optimal solution in ASDP .

Proof. By Theorem 2.1.5 we may assume that there exists a unitary matrix Q such

that

Q∗ASDPQ = ⊕ti=1ti � Cni×ni , (2.26)

for some integers t, ni, and ti (i = 1, . . . , t).

Since A0, . . . , Am ∈ A,

Q∗AjQ =: ⊕ti=1ti � A
(i)
j (j = 0, . . . ,m)

for Hermitian matrices A
(i)
j ∈ Cni×ni where i = 1, . . . , t and j = 0, . . . ,m.

Now assume X̃ is an optimal solution for (2.24). We have for each i = 0, ...,m:

trace(AjX̃) = trace(QQ∗AjQQ
∗X̃)

= trace((Q∗AjQ)(Q∗X̃Q))

= trace⊕ti=1 ti � A
(i)
j Q

∗X̃Q

=: trace⊕ti=1 ti � A
(i)
j X̄,

where X̄ := Q∗X̃Q.
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The only elements of X̄ that appear in the last expression are those in the diagonal

blocks that correspond to the block structure of Q∗AQ. We may therefore construct

a matrix X̄ ′ � 0 from X̄ by setting those elements of X̄ that are outside the blocks

to zero, say

X̄ ′ = ⊕ti=1

(
⊕tik=1X̄

(k)
i

)
where the X̄

(k)
i ∈ Cni×ni (k = 1, . . . , ti) are the diagonal blocks of X̄ that correspond

to the blocks of the i-th basic algebra, i.e., ti�Cni×ni in (2.26). Thus, we obtain, for

j = 0, . . . ,m,

trace(AjX̃) = trace⊕ti=1 ti � A
(i)
j X̄

′

=
t∑
i=1

ti∑
k=1

trace
(
A

(i)
j X̄

(k)
i

)
=

t∑
i=1

trace

(
A

(i)
j

[
ti∑
k=1

X̄
(k)
i

])

=:
t∑
i=1

trace
(

(ti � A(i)
j )(ti � X̄i)

)
, (2.27)

where X̄i = 1
ti

[∑ti
k=1 X̄

(k)
i

]
� 0. Defining

X :=
t∑
i=1

ti � X̄i

we have X � 0, X ∈ Q∗ASDPQ by (2.26), and

trace(AjX̃) = trace(Q∗AjQX) = trace(AjQXQ
∗), (j = 0, . . . ,m),

by (2.27). Thus, QXQ∗ ∈ ASDP is an optimal solution of (2.24).

In most applications, the data matrices A0, . . . , Am are real, symmetric matrices,

and we may assume that ASDP has a real basis (seen as a subspace of Cn×n). In this

case, if (2.24) has an optimal solution, it has a real optimal solution in ASDP .

Corollary 2.5.2. Assume the data matrices A0, . . . , Am in (2.24) are real symmetric.

If X ∈ Cn×n is an optimal solution of problem (2.24) then Re(X) is also an optimal

solution of this problem. Moreover, if ASDP has a real basis, and X ∈ ASDP , then

Re(X) ∈ ASDP .
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Proof. We have trace(AkX) = trace(AkRe(X)) (k = 0, . . . ,m). Moreover, X � 0

implies that Re(X) � 0. The second part of the result follows from the fact that,

if X ∈ ASDP and ASDP has a real basis, then both Re(X) ∈ ASDP and Im(X) ∈
ASDP .

By Theorem 2.5.1, we may rewrite the SDP problem (2.24) as:

min
X�0
{trace(A0X) | trace(AkX) = bk (k = 1, . . . ,m), X ∈ ASDP} . (2.28)

Assume now that we have an orthogonal basis B1, . . . , Bd of ASDP . We set X =∑d
i=1 xiBi to get

min
X�0
{trace(A0X) | trace(AkX) = bk (k = 1, . . . ,m), X ∈ ASDP}

= min∑d
i=1 xiBi�0

{
d∑
i=1

xitrace(A0Bi) |
d∑
i=1

xitrace(AkBi) = bk, (2.29)

(k = 1, . . . ,m)} .

If ASDP has a basis that is a coherent configuration (see Definition 2.1.2), then we

may assume that the Bi are zero-one matrices that sum to the all-ones matrix. In

this case, adding the additional constraint X ≥ 0 (i.e., X elementwise nonnegative)

to problem (2.28) is equivalent to adding the additional constraint x ≥ 0 to (2.29).

We may now replace the linear matrix inequality in the last SDP problem by an

equivalent one,

d∑
i=1

xiBi � 0⇐⇒
d∑
i=1

xiQ
∗BiQ � 0,

to get a block-diagonal structure, where Q is the unitary matrix that provides the

Wedderburn decomposition of ASDP . In particular, we obtain

Q∗BkQ =: ⊕ti=1ti �B
(i)
k , (k = 1, . . . , d)

for some Hermitian matrices B
(i)
k ∈ Cni×ni (i = 1, . . . , t). Subsequently, we may delete

any identical copies of blocks in the block structure to obtain a final reformulation.

In particular,
∑d

i=1 xiQ
∗BiQ � 0 becomes

d∑
k=1

xk ⊕ti=1 B
(i)
k � 0.
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Thus, we arrive at the final SDP reformulation:

min
x∈Rd

{
d∑
i=1

xitrace(A0Bi) |
d∑
i=1

xitrace(AkBi) = bk ∀k,
d∑

k=1

xk(⊕ti=1B
(i)
k ) � 0

}
. (2.30)

Note that the numbers trace(AkBi) (k = 0, . . . ,m, i = 1, . . . , d) may be computed

beforehand.

An alternative way to arrive at the final SDP formulation (2.30) is as follows. We

may first replace the linear matrix inequality (LMI)
∑d

i=1 xiBi � 0 by
∑d

i=1 xiLi � 0,

where the Li (i = 1, . . . , d) form the basis of the regular *-representation of ASDP .

Now we may replace the new LMI using the Wedderburn decomposition (block-

diagonalization) of the Li’s, and delete any duplicate blocks as before. These two

approaches result in the same final SDP formulation, but the latter approach offers

numerical advantages and is used to obtain the numerical results in Sections 3.5 and

3.6.

Note that, even if the data matrices Ai are real symmetric, the final block di-

agonal matrices in (2.30) may in principle be complex Hermitian matrices, since Q

may be unitary (as opposed to real orthogonal). This poses no problem in theory,

since interior point methods apply to SDP with Hermitian data matrices as well. If

required, one may reformulate a Hermitian linear matrix inequality in terms of real

matrices by applying Lemma 2.4.2 to each block in the LMI. Note that this doubles

the size of the block.

Example 2.5.1. Consider the problem of computing the ϑ
′

number of the pentagon,

denoted C5 (see McEliece, Rodemich, and Rumsey (1978) and Schrijver (1979)). If

A is the adjacency matrix of C5, we have:

ϑ
′
(C5) = max{trace(JX) : trace(AX) = 0, trace(X) = 1, X � 0, X ≥ 0}. (2.31)

The data matrices of this SDP are J , A, and I. Note that the data matrices are

invariant under the action of the automorphism group of C5 (i.e., the dihedral group

on 5 elements).

In our notation, ASDP is the centralizer ring of aut(C5). Recall from Example

2.2.1 that this is the set of 5×5 symmetric circulant matrices. Moreover, the matrices

Bi (i=1,2,3) mentioned there form a basis for the centralizer ring of aut(C5) that

satisfies the properties in Theorem 2.2.2.

Observing that we can assume A = B2 we obtain the SDP:



2.5. Symmetry reduction of SDP instances 43

ϑ
′
(C5) = maxx≥0

{
3∑
i=1

xitrace(JBi) :
3∑
i=1

xitrace(B2Bi) = 0,
3∑
i=1

xitrace(Bi) = 1,

3∑
i=1

xiBi � 0

}
= maxx≥0 {5x1 + 10(x2 + x3) : 10x2 = 0, 5x1 = 1,

3∑
i=1

xiBi � 0

}
= maxx3≥0

{
1 + 10x3 :

1

5
B1 + x3B3 � 0

}
= maxx3≥0 {1 + 10x3 :

1√
5
D1 +

√
10D3 � 0

}
.

Via the regular *-representation we may replace the Di’s by the Li’s from Example

2.3.1 and obtain:

ϑ
′
(C5) = maxx3≥0(1 + 10x3)

s.t.
1

5
I +
√

10x3

 0 0 1√
5

0 1√
10

1√
10

1√
5

1√
10

0

 � 0.

Example 2.5.2. We may obtain an even larger reduction via the Wedderburn de-

composition of ASDP mentioned in the previous example. Recall that we had:

ϑ
′
(C5) = maxx3≥0

{
1 + 10x3 :

1

5
B1 + x3B3 � 0

}
.

From Example 2.2.1 we know that {B1 = I, B2, B3} forms an association scheme, and

from Section 2.2.1 we know that these matrices can be simultaneously diagonalized

via the discrete Fourier transform matrix, say Q. We have Q∗B1Q = I and

Q∗B3Q =


2 0 0 0 0
0 − 2√

5−1
0 0 0

0 0 3−
√

5√
5−1

0 0

0 0 0 3−
√

5√
5−1

0

0 0 0 0 − 2√
5−1

 .

Deleting repeated blocks, we obtain an LP in one variable:

ϑ
′
(C5) = maxx3≥0(1 + 10x3)

s.t.
1

5
I + x3

2 0 0
0 − 2√

5−1
0

0 0 3−
√

5√
5−1

 � 0.
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The optimal solution can be now computed by hand, yielding x3 =
√

5−1
10

, hence

ϑ
′
(C5) =

√
5.



Chapter 3

Numerical block diagonalization of
matrix ∗-algebras

Of particular interest in this chapter is the exploitation of a structure called algebraic

symmetry, where the SDP data matrices are contained in a low-dimensional matrix

C∗-algebra. Although this structure may seem exotic, it arises in a surprising number

of applications, and first appeared in the papers by Schrijver (1979) on bounds for

binary code sizes and McEliece, Rodemich, and Rumsey (1978) on bounds for the

coclique number of a graph.

3.1 Introduction

The numerical block diagonalization of matrix ∗-algebras also has more recent appli-

cations. These are surveyed in the papers by De Klerk (2010), Gatermann and Parrilo

(2004), and Vallentin (2009). The applications include bounds on kissing numbers,

see Bachoc and Vallentin (2008); bounds on crossing numbers in graphs, see De Klerk,

Maharry, Pasechnik, Richter, and Salazar (2006) and De Klerk, Pasechnik, and Schri-

jver (2007); bounds on code sizes, see Schrijver (2005), Gijswijt, Schrijver, and Tanaka

(2006), and Laurent (2009); truss topology design, see Bai, De Klerk, Pasechnik, and

Sotirov (2009) and Kanno, Ohsaki, Murota, and Katoh (2001); quadratic assignment

problems, see De Klerk and Sotirov (2010a); and bounds on the chromatic number

of a graph, see Gvozdenović and Laurent (2008a).

As we have seen in Section 2.1, matrix C∗-algebras have a canonical block diag-

onal structure after a suitable unitary transformation, so algebraic symmetry may

be exploited. Block diagonal structure may in turn be exploited by interior point

45
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algorithms.

For some examples of SDP instances with algebraic symmetry, the required uni-

tary transform can be explicitly computed, e.g., the work of Schrijver (2005) for

the Terwilliger algebra. For other examples, see e.g., De Klerk, Maharry, Pasech-

nik, Richter, and Salazar (2006) and De Klerk, Pasechnik, and Schrijver (2007), it

can not. In the latter case, we can perform numerical preprocessing to obtain the

required unitary transformation. A suitable algorithm is given by Eberly and Gies-

brecht (2004), but the focus there is on complexity and symbolic computation, as

opposed to practical floating-point computation. Murota, Kanno, Kojima, and Ko-

jima (2010) presented a practical randomized algorithm that can be used for the

preprocessing of SDP instances with algebraic symmetry.

In this chapter, we propose another numerical preprocessing approach in the spirit

of the work by Murota, Kanno, Kojima, and Kojima (2010), although the details are

somewhat different (see Section 3.5). We demonstrate that the new approach may

offer numerical advantages for certain group-symmetric SDP instances, in particular

for the SDP instances from the paper of De Klerk, Pasechnik, and Schrijver (2007).

We show how to solve a specific instance from this paper in a few minutes on a PC af-

ter preprocessing, whereas the original solution (as reported by De Klerk, Pasechnik,

and Schrijver (2007)) required a week on a supercomputer. The reduction in compu-

tational time is possible because De Klerk, Pasechnik, and Schrijver (2007) use only

partial symmetry reduction (i.e., regular *-representation) whereas our approach uses

the full block-diagonalization of the regular *-representation. This technique is useful

since the initial data set is too large to be handled by the method of Murota, Kanno,

Kojima, and Kojima (2010).

3.2 Constructing the Wedderburn decomposition

Let A ⊆ Cn×n be a matrix C∗-algebra. To construct the Wedderburn decomposition

from Theorem 2.1.5 we need to define the following subalgebra of A:

center(A) = {X ∈ A | XA = AX for all A ∈ A} .

The center is a commutative subalgebra of A and according to Proposition 2.1.1

has a common set of orthonormal eigenvectors that we may view as the columns of a

unitary matrix Q, i.e., Q∗Q = I. We arrange the columns of Q such that eigenvectors

corresponding to the same eigenvalue are grouped together.
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In what follows we assume that A contains the identity. According to Proposition

2.1.2 there exists a basis of orthogonal, self-adjoint idempotents of center(A). Let us

denote this basis by E1, . . . , Et.

The unitary transform A′ := Q∗AQ transforms the Ei matrices to zero-one diag-

onal matrices (say E ′i := Q∗EiQ) that sum to the identity. We clearly have

A′ =
t∑
i=1

A′E ′i =
t∑
i=1

A′E ′i
2

=
t∑
i=1

E ′iA′E ′i.

Each term E ′iA′E ′i (i = 1, . . . , t) is clearly a matrix C∗-algebra. For a fixed i, the

matrices in the algebra E ′iA′E ′i have a common nonzero diagonal block indexed by

the positions of the ones on the diagonal of E ′i. Define Ai to be the restriction of

E ′iA′E ′i to this principal submatrix. We now have

Q∗AQ = ⊕ti=1Ai. (3.1)

We know from Proposition 2.1.3 that each Ai from (3.1) has to be a simple algebra.

Moreover, each Ai contains the identity matrix.

Numerically, the decomposition (3.1) of A into simple C∗-algebras may be done

using the following framework algorithm.

Algorithm 3 Decomposition of A into simple C∗-algebras

INPUT: A C∗-algebra A that contains I.
(i) Sample a generic element, say X, from center(A).
(ii) Perform the spectral decomposition of X to obtain a unitary matrix Q con-
taining a set of orthonormal eigenvectors of X.
OUTPUT: A unitary matrix Q such that Q∗AQ gives the decomposition (3.1).

In step (i), we assume that a basis of center(A) is available. The generic element

X is then obtained by taking a random linear combination of the basis elements.

This approach is also used by Murota, Kanno, Kojima, and Kojima (2010), see e.g.,

Algorithm 1 there.

3.3 From simple to basic components

Further decomposition of each Ai in (3.1) is possible, according to Proposition 2.1.4.

We may decompose each Ai in (3.1) as

U∗i AiUi = ti � Cni×ni
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for some integers ni and ti and some unitary matrix Ui (i = 1, . . . , t). For the

dimensions to agree, we must have

t∑
i=1

niti = n and dim(A) =
t∑
i=1

n2
i ,

since Q∗AQ = ⊕ti=1Ai ⊂ Cn×n.

Now let B denote a given basic matrix ∗-algebra over C. We can compute the

decomposition U∗BU = t�Cs×s, say, where U is unitary and s and t are integers, as

follows.

Algorithm 4 Decomposition of basic B into basic C∗-algebras

INPUT: A basic C∗-algebra B.
(i) Sample a generic element, say B, from any maximal commutative matrix C∗-
subalgebra of B.
(ii) Perform a spectral decomposition of B, and let Q denote the unitary matrix of
its eigenvectors.
(iii) Partition Q∗BQ into t × t square blocks, each of size s × s, where s is the
number of distinct eigenvalues of B.
(iv) Sample a generic element from Q∗BQ, say B′, and denote the ij-th block
by B′ij. We may assume that B′11, . . . , B

′
1t are unitary matrices (possibly after a

suitable constant scaling).
(v) Define the unitary matrix Q′ := ⊕ti=1 (B′1i)

∗ and replace Q∗BQ by Q′∗Q∗BQQ′.
Each block in the latter algebra equals CIs.
(vi) Permute rows and columns to obtain P TQ′∗Q∗BQQ′P = t�Cs×s, where P is
a suitable permutation matrix.
OUTPUT: A unitary matrix U := QQ′P such that U∗BU = t� Cs×s.

A few remarks on Algorithm 4:

• Step (i) in Algorithm 4 may be performed by randomly sampling a generic

element from B.

• By the proof of Proposition 2.1.4, the diagonal blocks in step (iii) are the

algebras CIs.

• By the proof of Proposition 2.1.4, the blocks B′11, . . . , B
′
1t used in step (v) are

all unitary matrices (up to a constant scaling), so that Q′ in step (v) is unitary

too.
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3.4 Symmetry reduction by sampling from the cen-

ter of the regular *-representation

Let ASDP be the matrix C∗-algebra that contains the data matrices A0, . . . Am of the

following SDP:

min
x∈Rd

{
d∑
i=1

xitrace(A0Di) |
d∑
i=1

xitrace(AkDi) = bk ∀k,
d∑
i=1

xiDi � 0

}
. (3.2)

Moreover, D1, . . . , Dd is an orthonormal basis of ASDP .

Recall from Section 2.3 that we aim to construct the Wedderburn decomposition

of the regular ∗-representation of ASDP , denoted AregSDP , whose basis is given by the

matrices L1, . . . Ld. We showed in Section 2.3 that problem (3.2) is equivalent to

min
x∈Rd

{
d∑
i=1

xitrace(A0Di) |
d∑
i=1

xitrace(AkDi) = bk ∀k,
d∑
i=1

xiLi � 0

}
.

To compute the Wedderburn decomposition of AregSDP we need to sample a generic

element from center(AregSDP ) (see step (i) in Algorithm 3). To this end, assume X :=∑d
k=1 xkLk is in the center of AregSDP . This is the same as assuming that for j = 1, ..., d:

XLj = LjX ⇔
d∑
i=1

xiLjLi =
d∑
i=1

xiLiLj

⇔
d∑
i=1

xi
∑
k

(Lj)kiLk =
d∑
i=1

xi
∑
k

(Li)kjLk

⇔
∑
k

(
d∑
i=1

xi(Lj)ki −
d∑
i=1

xi(Li)kj

)
Lk = 0

⇔
d∑
i=1

xi ((Lj)ki − (Li)kj) = 0 ∀k = 1, . . . , d,

where the last equality follows from the fact that the Lk form a basis for AregSDP .

To sample a generic element from center(AregSDP ) we may therefore proceed as

outlined in Algorithm 5.

In the numerical computation we add the extra constraint
∑d

i=1 xi = 1 to avoid

the zero solution.
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Algorithm 5 Obtaining a generic element of center(AregSDP )

INPUT: A basis L1, . . . , Ld of AregSDP .
(i) Compute a basis of the nullspace of the linear operator L : Cd → Cd2 given by

L(x) =

[
d∑
i=1

xi ((Lj)ki − (Li)kj)

]
j,k=1,...,d

.

(ii) Take a random linear combination of the basis elements of the nullspace of L
to obtain a generic element, say x̄, in the nullspace of L.
OUTPUT: X̄ :=

∑d
k=1 x̄kLk, a generic element of center(AregSDP ).

After obtaining the Wedderburn decomposition, we arrive at the final SDP refor-

mulation:

min
x∈Rd

{
d∑
i=1

xitrace(A0Di) :
d∑
i=1

xitrace(AkDi) = bk ∀k,
d∑

k=1

xk ⊕ti=1 L
(i)
k � 0

}
. (3.3)

Noticing that trace(AkDi) (k = 0, . . . ,m and i = 1, . . . , d) are simply numbers

that can be precomputed, we can now conclude this section with a summary of the

symmetry reduction for problem (3.2).

Algorithm 6 Symmetry reduction of SDP (3.2)

INPUT: Data for SDP (3.2), and a real, orthonormal basis D1, . . . , Dd of ASDP .
(i) Compute the basis L1, . . . , Ld of AregSDP as described in Section 2.3.
(ii) Obtain a generic element from center(AregSDP ) via Algorithm 5.
(iii) Decompose AregSDP into simple C∗-algebras using Algorithm 3.
(iv) Decompose the simple C∗-algebras from step (iii) into basic C∗-algebras using
Algorithm 4.
OUTPUT: The reduced SDP of the form (3.3).

3.5 Relation to an approach by Murota et al.

In this section we explain the relation between our approach and that of Murota,

Kanno, Kojima, and Kojima (2010). These authors study matrix ∗-algebras over R
(as opposed to C). This is more complicated than studying matrix C∗-algebras, since

there is no simple analogy of the Wedderburn decomposition theorem (Theorem 2.1.5)

for matrix ∗-algebras over R. While any simple matrix C∗-algebra is basic, there are
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three types of simple matrix ∗-algebras over R; see the work of Murota, Kanno,

Kojima, and Kojima (2010) for a detailed discussion.

For example, Algorithm 1 in their paper decomposes a basis of the circulant

matrices into real blocks of size 1 × 1 or 2 × 2, while our Algorithm 3 will produce

a complex diagonalization, i.e., 1× 1 blocks that appear as complex conjugate pairs.

Theorem 3.5.2 shows how the methods are related.

We assume now, as in Murota, Kanno, Kojima, and Kojima (2010), that ASDP
is a matrix ∗-algebra over R, that

ASDP ∩ Sn×n = span{A0, . . . , Am},

and that

ASDP = 〈{A0, . . . , Am}〉.

In words, the Ai’s generate ASDP and form a basis for the symmetric part of ASDP .

Murota et al. (see Algorithm 1 in the paper of Murota, Kanno, Kojima, and

Kojima (2010)) decompose ASDP into simple components as follows:

Algorithm 1 in Murota, Kanno, Kojima, and Kojima (2010)

1. Choose a random r = [r0, . . . , rm]T ∈ Rm+1.

2. Let A :=
∑m

i=0 riAi.

3. Perform the spectral decomposition of A to obtain an orthogonal matrix, say

Q, of eigenvectors.

4. Make a k-partition of the columns of Q that defines matrices Qi (i = 1, . . . , k)

so that

QT
i ApQj = 0 ∀ p = 0, . . . ,m, i 6= j. (3.4)

Similarly to our Algorithm 3, this algorithm involves sampling from the center of

ASDP . To prove this, we will require the following lemma.

Lemma 3.5.1. Assume A = AT ∈ ASDP has spectral decomposition A =
∑

i λiqiq
T
i .

Then, for any (eigen)values ri ∈ R, the matrix

R :=
∑
i

riqiq
T
i

is also in ASDP , provided that ri = ri′ whenever λi = λi′.
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Proof. Let k denote the number of positive, distinct eigenvalues of A. Our goal is to

show that the linear system

R = α1A1 + . . .+ αkA
k (3.5)

has a (unique) solution, which implies that R ∈ ASDP . After diagonalization, since

ri = ri′ whenever λi = λi′ , the linear system (3.5) reduces to

ri = λ1
iα1 + . . .+ λki αk (i = 1, . . . , k).

This is a linear system with variables αi whose matrix of coefficients is a nonsingular

Vandermonde matrix. Therefore, the values αi are determined uniquely. Hence,

R ∈ ASDP .

Theorem 3.5.2. The matrices QiQ
T
i (i = 1, . . . , k) are symmetric, central idempo-

tents of ASDP .

Proof. For each i, let Ei := QiQ
T
i , and note that E2

i = Ei, i.e., Ei is idempotent.

Also note that

k∑
i=1

Ei = QQT = I. (3.6)

Fix p ∈ {0, . . . ,m}. Then

EiApEj = Qi

(
QT
i ApQj

)
QT
j

= 0 if i 6= j.

By (3.6) we have

k∑
i=1

EiAp = Ap and
k∑
i=1

ApEi = Ap,

which implies that EjApEj = ApEj and EjApEj = EjAp respectively (j = 1, . . . , k).

Thus, EjAp = ApEj for all j = 1, . . . , k. Since the Ai (i = 1, . . . ,m) are generators

of ASDP , this means that the Ej’s (j = 1, . . . , k) are in the commutant of ASDP .

It remains to show that Ej ∈ ASDP (j = 1, . . . , k). This follows directly from

Lemma 3.5.1. Note that Ej and A share the set Q of eigenvectors, so Ej ∈ ASDP
(j = 1, . . . , k) by the lemma. Thus, Ej (j = 1, . . . , k) is in the center of ASDP .
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Note that the matrix Q is implicitly used to construct the matrices Ej. In par-

ticular, the the k-partition of Q yields the matrices Qj and then Ej := QjQ
T
j are

central idempotents, but they do not necessarily form a basis of the center of the

matrix ∗-algebra.

3.6 Example: Bounds for crossing numbers

We know from Section 1.2.3 that the crossing number cr(G) of a graph G is the

minimum number of intersections of edges in a drawing of G in the plane.

3.6.1 Symmetry reduction of the SDP relaxation

De Klerk, Maharry, Pasechnik, Richter, and Salazar (2006) showed that one may

obtain a lower bound on cr(Kr,s) via the optimal value of a suitable SDP, namely:

cr(Kr,s) ≥
s

2

(
s min
X≥0, X�0

{trace(MX) | trace(JX) = 1} −
⌊
r

2

⌋⌊
r − 1

2

⌋)
,

where M is a certain (given) matrix of order n = (r−1)!, and J is the all-ones matrix

of the same size. The rows and columns of M are indexed by all the cyclic orderings

of r elements. For this SDP problem the algebra ASDP is a coherent configuration

and an orthogonal (orthonormal) basis B1, . . . , Bd (D1, . . . , Dd) of ASDP is available.

Some information on ASDP is given in Table 3.1.

r n = (r − 1)! d := dim(ASDP ) d1 := dim(ASDP ∩ Sn×n)
7 720 78 56
8 5040 380 239
9 40320 2438 1366

Table 3.1: Information on ASDP for the crossing-number SDP instances

The instance corresponding to r = 7 was first solved in the paper of De Klerk,

Maharry, Pasechnik, Richter, and Salazar (2006), by solving the partially reduced

SDP (2.28), that in this case takes the form:

min
x≥0

{
d∑
i=1

xitrace(MBi) |
d∑
i=1

xitrace(JBi) = 1,
d∑
i=1

xiBi � 0

}
.
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The larger instances where r = 8, 9 were solved by De Klerk, Pasechnik, and Schrijver

(2007) by solving the equivalent, but smaller problem:

min
x≥0

{
d∑
i=1

xitrace(MDi) |
d∑
i=1

xitrace(JDi) = 1,
d∑
i=1

xiLi � 0

}
, (3.7)

where the Li’s (i = 1, . . . , d) form the basis of AregSDP .

In what follows we further reduce the latter problem by computing the Wedder-

burn decomposition of AregSDP using Algorithm 6. We computed the basis of AregSDP
using a customized extension of the computational algebra package GRAPE devel-

oped by Soicher (2006), that in turn is part of the GAP (2008) routine library.

The Wedderburn decomposition results in block diagonalization of the Li’s (i =

1, . . . , d), and the sizes of the resulting blocks are shown in Table 3.2.

r ti = ni
7 3 (6×), 2 (4×), 1 (8×)
8 7 (2×), 5 (2×), 4 (9×),

3 (7×), 2 (4×), 1 (9×)
9 12 (8×), 11 (2×), 9 (6×),

7 (3×), 6 (5×), 5 (2×),
4 (2×), 3 (16×), 1 (5×)

Table 3.2: Block sizes in the decomposition Q∗AregSDPQ = ⊕iti � Cni×ni . Since AregSDP
is the regular ∗-representation of ASDP we have ti = ni for all i (see Theorem 2.3.11).

The difference between the sparsity patterns of a generic matrix in AregSDP before

and after symmetry reduction is illustrated in Fig. 3.1 when r = 9. In this case,

AregSDP ⊂ C2438×2438. Before symmetry reduction, there is no visible sparsity pattern.

After AregSDP is decomposed into simple components, a block-diagonal structure is

visible, with largest block size 144. After the simple components are decomposed

into basic components, the largest block size is 12.

After the Wedderburn decomposition, problem (3.7) becomes:

min
x≥0

{
d∑
i=1

xitrace(MDi) |
d∑
i=1

xitrace(JDi) = 1,
d∑
i=1

xi ⊕tk=1 L
(k)
i � 0

}
. (3.8)

3.6.2 Numerical results

Unless otherwise indicated, all computation was done using the SDPT3 solver devel-

oped by Toh, Todd, and Tütüncü (1999), and we used a Pentium IV PC with 2 GB
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(1) (2)

(3)

Figure 3.1: Sparsity pattern of AregSDP for r = 9: (1) before any preprocessing, (2)
after decomposition into simple C∗-algebras, and (3) after decomposition into basic
C∗-algebras.

of RAM. Because of the huge dimension of the data (e.g., the text file containing

information on matrices L1, . . . Ld for r = 9 requires 1.3 GB of memory) we used
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the sparse SDPA format. The use of this format required some preprocessing for the

solution of the relaxation (3.8). In this section we will present the necessary pre-

processing for the SDP instances (3.7) and (3.8), i.e., before and after the numerical

symmetry reduction (Algorithm 6). The results are presented in Table 3.3.

The first issue was that Algorithm 5 uses a basis of AregSDP , whereas the SDPA

format can support only a basis of AregSDP ∩ Sd×d.

Let d1 := dim(ASDP ∩Sn×n) = dim(AregSDP ∩Sd×d). Recall that {B1, . . . , Bd} forms

a coherent configuration, so BT
i ∈ ASDP for each i. This last property is inherited

by matrices Di, Li, and L
(k)
i , so we can group any nonsymmetric matrix L

(k)
i with its

transpose, say L
(k)
i∗ . Moreover, since

∑d
i=1 xi ⊕tk=1 L

(k)
i ∈ Sd×d+ we have xi = xi∗ .

The same grouping was used to compute the coefficients ci := trace(MDi) and

ei := trace(JDi) for i = 1, . . . d1. Hence, problem (3.8) is equivalent to:

min
x≥0

{
d1∑
i=1

cixi :

d1∑
i=1

eixi = 1,

d1∑
i=1

xi ⊕tk=1 L
(k)
i � 0

}
, (3.9)

where L
(k)
i , (i = 1, . . . d1) form a basis of AregSDP ∩ Sd×d.

The SDPA format is a description of the following SDP:

min
x∈Rd1

cTx

s.t.
∑d1

i=1 xiFi − F0 � 0,

where the Fi (i=0,...,d1) denote some real symmetric matrices and c is a vector of

real numbers; these are the input data.

Since we minimize and xi ≥ 0 for all i = 1, . . . , d1, the constraint
∑d1

i=1 eixi = 1

may be replaced by
∑d1

i=1 eixi − 1 ≥ 0. Hence, we represent in the SDPA format the

following equivalent SDP:

min

{
d1∑
i=1

cixi :

d1∑
i=1

xi ⊕tk=1 L
(k)
i � 0,

d1∑
i=1

eixi − 1 ≥ 0, xi ≥ 0, i = 1, ..., d1

}
.

(3.10)
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We define for i = 1, . . . d1:

Fi =



L
(1)
i 0 . . . 0 0 0 . . . 0

0 L
(2)
i . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . L
(t)
i 0 0 . . . 0

0 0 . . . 0 ei 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


.

F0 will have only one nonzero entry (equal to one) in the position of the value ei from

Fi.

For r = 9, the solution time reported by De Klerk, Pasechnik, and Schrijver (2007)

was 7 days of wall-clock time on an SGI Altix supercomputer. With the numerical

symmetry reduction this reduces to about 24 minutes on a Pentium IV PC, including

the time for block diagonalization. For all three instances we obtained 6 digits of

accuracy in the optimal value. Moreover, the same results were obtained for different

random samples in the subroutines of Algorithms 5 and 4.

r CPU time Solution time (3.8) Solution time (3.7)
Algorithm 5

9 16 min 16 s 7 min 48 s > 7 days†

8 4.7 s 3.2 s 5 min 22 s
7 0.04 s 0.6 s 2.7 s

Table 3.3: Solution times on a Pentium IV PC for the SDP instances before and after
decomposition. † refers to wall-clock computation time on an SGI Altix supercom-
puter cluster.

The other dominant operation for the block diagonalization is the execution of

Algorithm 5 (sampling from the center of AregSDP ). The time required for this is shown

in Table 3.3.

3.7 Example: Bounds for the ϑ
′
-number of graphs

Recall that an equivalent definition (due to De Klerk and Pasechnik (2002)) of the

ϑ′-number of a graph G with adjacency matrix A is (see also Definition 2.31):

ϑ′(G) := max
X�0, X≥0

{trace(JX) | trace((A+ I)X) = 1} . (3.11)
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Note that the symmetry group GSDP of this SDP coincides with the automorphism

group of the graph. Thus, we may take ASDP to be the centralizer ring of this group,

as before.

De Klerk, Newman, Pasechnik, and Sotirov (2009) studied the ϑ′ number of the

so-called Erdős-Renyi graphs. These graphs, denoted ER(q), are determined by a

single parameter q > 2, which is prime. The number of vertices is n = q2 + q + 1,

but the dimension of ASDP is only 2q + 11. Note that, for example, if q = 157, then

n = 24807, making it impossible to solve (3.11) without exploiting the symmetry.

The Wedderburn decomposition ofASDP is not known in closed form, as explained

by De Klerk, Newman, Pasechnik, and Sotirov (2009), and the numerical techniques

proposed in this chapter may therefore be employed.

As before, we denote the zero-one basis of ASDP by B1, . . . , Bd and the basis of

its regular *-representation AregSDP by L1, . . . , Ld. De Klerk, Newman, Pasechnik, and

Sotirov (2009) compute ϑ′(ER(q)) for q ≤ 31, by solving the SDP:

ϑ′(ER(q)) = min∑d
i=1 xiLi�0,x≥0

{
d∑
i=1

xitrace(JBi) :
d∑
i=1

xitrace((A+ I)Bi) = 1

}
,

(3.12)

where A denotes the adjacency matrix of the graph ER(q). The times required to

compute the matrices L1, . . . , Ld are given in Table 3.4 and were obtained using the

GRAPE software, as before (see Soicher (2006)).

We can compute ϑ′(ER(q)) for larger values of q by obtaining the Wedderburn

decomposition of AregSDP using Algorithm 6. The resulting block sizes are also given in

Table 3.4. Note that the largest block size appearing in Table 3.4 is 3. As a result, all

q d Computing L1, . . . , Ld ti = ni
157 325 1 h 22 min 2 (79 ×), 3 (1 ×)
101 213 21 min 2 (51 ×), 3 (1 ×)
59 129 4 min 2 (30 ×), 3 (1 ×)
41 93 1 min 22 s 2 (21 ×), 3 (1 ×)
31 73 37 s 2 (16 ×), 3 (1 ×)

Table 3.4: Block sizes in the decomposition Q∗AregSDPQ = ⊕iti � Cni×ni where AregSDP
is the centralizer ring of Aut(ER(q)).

the ϑ′ values listed in the table were computed in a few seconds after the symmetry

reduction; see Table 3.5.
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To solve the SDP relaxation we used the same solver and data format as in

Section 3.6, so all the preprocessing techniques described there were also applied to

this problem.

In Table 3.5 the time required to perform the block diagonalization is shown in

the second column (i.e., the execution time for Algorithm 5). In the last column we

give the value of ϑ′(ER(q)), since these values have not been computed previously

for q > 31.

q CPU time Solution time (3.12) after Solution time (3.12) ϑ′(ER(q))
Algorithm 5 block diagonalization

157 7.47 5.5 351.8 1834.394
101 1.34 1.4 70.3 933.137
59 0.21 0.8 11.6 408.548
41 0.047 0.61 6.5 233.389
31 0.018 0.49 3.4 151.702

Table 3.5: Time (s) to compute ϑ′(ER(q)) with and without block diagonalization.

Note that for q = 157 the block diagonalization plus the solution of the resulting

SDP takes a total of 7.47 + 5.5 ≈ 13 s, as opposed to the 351.8 s required to solve

(3.12) without block diagonalization.





Chapter 4

Bounds for the symmetric circulant
traveling salesman problem

This chapter is based on the work of De Klerk and Dobre (2009). Starting from a new

SDP relaxation of the NP-complete traveling salesman problem (TSP) proposed by

De Klerk, Pasechnik, and Sotirov (2008), we consider a special case where the SDP

formulation can be reduced to a linear programming problem. Further, we compare,

theoretically and numerically, the resulting bounds with the existing bounds in the

literature.

4.1 Introduction

A (weighted) graph G is called circulant if its (weighted) adjacency matrix is circulant

(see Section 2.2.1). Recall that we denoted the standard 0-1 basis of the symmetric

circulant matrices by {B0 := I, B1, . . . , Bd}, where d := bn/2c, and n is the number

of vertices in the graph. Thus,

(Bk)ij :=

{
1 if i− j = k mod n
0 otherwise

(k = 0, . . . , d, i, j = 1, . . . , n).

For circulant matrices it is usual to introduce some additional notation. If {t1, . . . , tm}
is a subset of {0, 1, . . . , d}, for some m ≤ d, we define

Cn〈t1, . . . , tm〉 :=
m∑
i=1

Bti .

Thus, we will informally say that the circulant graph Cn〈t1, . . . , tm〉 consists of the

stripes t1, . . . , tm. In other words, we use the same notation for the circulant matrix

Cn〈t1, . . . , tm〉 and the associated weighted circulant graph.

61
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A natural question is whether a given combinatorial optimization problem be-

comes easier when restricted to circulant graphs. For example, the maximum clique

and minimum graph coloring problems remain NP-hard for circulant graphs, and

cannot be approximated within a constant factor, unless P=NP (see e.g., Codenotti,

Gerace, and Vigna (1988)). Whether or not the Hamiltonian directed circuit prob-

lem restricted to directed circulant graphs remains NP-hard is still an open question;

see Yang, Burkard, Cela, and Wöginger (1997), Heuberger (2002), and Bogdanow-

icz (2005). On the other hand, the shortest Hamiltonian path problem is polynomial

solvable for undirected circulant graphs, as shown by Burkard and Sandholzer (1991).

Likewise, deciding whether a circulant graph is Hamiltonian may be done in polyno-

mial time, see again Burkard and Sandholzer (1991).

The symmetric circulant traveling salesman problem (SCTSP) is the problem of

finding a Hamiltonian circuit of minimum length in a weighted, undirected, circulant

graph. As far as we know, the complexity of the SCTSP is still open (see e.g.,

Van der Veen (1992) and Cook, Cunningham, Pulleyblank, and Schrijver (1998)).

The best-known approximation algorithm for SCTSP is a 2-approximation algorithm

(see Gerace and Greco (2008) and Van der Veen (1992)). The bottleneck TSP is

known to be polynomially solvable in the circulant case, see Burkard and Sandholzer

(1991). The study of the circulant TSP is motivated by practical applications, such as

reconfigurable network design, see Medova (1994), and minimizing wallpaper waste,

see Garfinkel (1977).

The main purpose of this chapter is to compare four lower bounds that can be

obtained in polynomial time for the SCTSP:

1. We introduce a new linear programming bound derived from an SDP relaxation

of TSP due to De Klerk, Pasechnik, and Sotirov (2008).

2. The second lower bound is due to Dantzig, Fulkerson, and Johnson (1954). Its

optimal value coincides with the LP bound of Held and Karp (1970) (see e.g.,

Theorem 21.34 in Korte and Vygen (2008)), and it is commonly known as the

Held-Karp (HK) bound.

3. The third bound (VdV) is due to Van der Veen (1992) and was introduced for

the SCTSP. It is given as a closed-form expression and may be computed in

linear time.
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4. The fourth bound is the well-known 1-tree (1T) bound for TSP (see, e.g., Sec-

tion 7.3 in Cook, Cunningham, Pulleyblank, and Schrijver (1998)).

We will show how bounds 1, 2, and 4 above may be computed more simply for

circulant graphs than for general TSP. Subsequently, we will perform theoretical and

empirical comparisons of the bounds.

4.2 Lower bounds for SCTSP

In this section we discuss four lower bounds for SCTSP.

SDP/LP bound

Let Kn(D) denote a complete undirected graph on n vertices, with edge lengths (also

called weights or costs) Dij = Dji > 0, (i, j = 1, . . . , n). Here D is called the matrix

of distances. The Hamiltonian circuit in Kn(D) of minimum length is often called

the optimal tour.

It is shown by De Klerk, Pasechnik, and Sotirov (2008) that the following SDP

provides a lower bound on the length of an optimal tour:

LPnew := min
1

2
trace(DX(1))

s.t. X(k) ≥ 0, (k = 1, . . . , d)

d∑
k=1

X(k) = J − I, (4.1)

I +
d∑

k=1

cos(
2kiπ

n
)X(k) � 0, (i = 1, . . . , d)

X(k) ∈ Sn×n, (k = 1, . . . , d),

where d = bn
2
c is the diameter of Cn (i.e., standard circuit on n vertices) and J

denotes the all-ones matrix. Note that this problem involves nonnegative matrix

variables X(1), . . . , X(d) of order n. We will see in Section 4.3 that, if D is circulant,

SDP formulation (4.1) reduces to an LP.
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Held-Karp (HK) bound

One of the best-known linear programming (LP) relaxations of the TSP is the Held-

Karp bound, defined as follows:

HK := min
1

2
trace(DX)

s.t. Xe = 2e,

diag(X) = 0,

0 ≤ X ≤ J, (4.2)∑
i∈I,j /∈I

Xij ≥ 2 ∀ ∅ 6= I ⊂ {1, . . . , n},

where e denotes the all-ones vector and J the all-ones matrix, as before. Notice that

when X is the adjacency matrix of a tour then we get the optimal value of the TSP,

which shows that (4.2) is indeed a relaxation of the TSP.

The last constraints are called subtour elimination inequalities and model the

fact that a Hamiltonian cycle is 2-connected. There are 2n − 2 subtour elimination

inequalities, but even so this problem may be solved in polynomial time using the

ellipsoid method (see e.g., Section 58.5 in Schrijver (2003)).

We will show how to simplify LP formulation (4.2) to an equivalent, smaller LP

when the distance matrix D is circulant. The following theorem will allow us to

restrict the optimization of (4.2) to the symmetric circulant matrices.

Theorem 4.2.1. Let A denote the centralizer ring of a permutation group G and let

D ∈ A. If we have an optimal solution, X, for problem (4.2) then there exists an

optimal solution, say Y ∈ A, of problem (4.2).

Proof. The fact that D ∈ A implies that P TDP = D for all P ∈ G. We will show

that if X is optimal for (4.2) then Y := R(X) is also optimal for (4.2). Recall that

R(X) is the image of X under the Reynolds operator (see Section 2.2).

Since Pe = e, P T e = e, and Xe = 2e we have:

R(X)e =
1

|G|
∑
P∈G

PXP T e =
1

|G|
∑
P∈G

PXe

=
1

|G|
∑
P∈G

2Pe =
1

|G|
∑
P∈G

2e = 2e.
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Permuting rows and columns preserves the zero diagonal, so diag(X) = 0 implies

that diag(R(X)) = 0. Moreover, R(X) averages over the permuted entries of X so

that 0 ≤ R(X) ≤ J whenever 0 ≤ X ≤ J .

To show that R(X) is feasible for (4.2) we still have to prove that R(X) satisfies

the subtour elimination constraints. First notice that if P is a permutation matrix

then matrices X and PXP T are the adjacency matrices of two isomorphic graphs.

Thus, the minimum cut in the graph with X as adjacency matrix equals the minimum

cut in the graph with R(X) as adjacency matrix. Thus,∑
i∈I,j /∈I

(PXP T )ij ≥ 2 ∀ ∅ 6= I ⊂ {1, . . . , n}.

Summing over all P ∈ G yields:∑
P∈G

∑
i∈I,j /∈I

(PXP T )ij ≥ 2|G| ∀ ∅ 6= I ⊂ {1, . . . , n}.

Thus, ∑
i∈I,j /∈I

(R(X))ij ≥ 2 ∀ ∅ 6= I ⊂ {1, . . . , n},

and R(X) is therefore feasible for (4.2). Moreover, R(X) is optimal since

trace(DR(X)) = trace(R(D)X) = trace(DX)

by (2.16), and this concludes the proof of the theorem.

Recall that, for the SCTSP, the permutation group G is the dihedral group, and

its centralizer ring is the set of symmetric circulant matrices. By Theorem 4.2.1, we

can restrict the feasible set of (4.2) to the symmetric circulant matrices whose basis

is {I = B0, B1, . . . , Bd}. Since matrix D has zero on the diagonal we can ignore B0

and write:

X :=
d∑
p=1

xpBp and D :=
d∑
p=1

dpBp.

The objective in (4.2) reduces to:

min
d∑
p=1

ndpxp,

if n is odd. If n is even, the last term becomes 1
2
nddxd instead of nddxd.
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To rewrite the subtour elimination constraints we will make use of a {0, 1} matrix

denoted by EI . This matrix will have 1 in positions (i, j) and (j, i) if i ∈ I, j /∈ I
and zeros elsewhere. Notice that

1

2
trace(EIX) =

∑
i∈I,j /∈I

Xij.

The subtour elimination constraints from (4.2) are then equivalent to:

1

2

d∑
p=1

xptrace(EIBp) ≥ 2 ∀ ∅ 6= I ⊂ {1, . . . , n}.

Notice that diag(X) = 0 is implicit because x0 = 0. Moreover, because 0 ≤ X ≤ J

we have 0 ≤ xp ≤ 1, p = 1, . . . , d. We have to split the constraint Xe = 2e into two

cases:

• For n odd: Xe = 2e ⇔
∑d

p=1 xpBpe = 2e ⇔
∑d

p=1 xp = 1.

• For n even: Xe = 2e ⇔ xdBde+
∑d−1

p=1 xpBpe = 2e ⇔ 1
2
xd +

∑d−1
p=1 xp = 1.

We can now give the simplified equivalent form of (4.2). For odd n, we have:

HK = min
d∑
p=1

ndpxp

s.t.
d∑
p=1

xp = 1,

xp ≥ 0, (p = 1, . . . , d) (4.3)

1

2

d∑
p=1

xptrace(EIBp) ≥ 2 ∀ ∅ 6= I ⊂ {1, . . . , n}.

For even n, the last term in the objective function becomes 1
2
nddxd, and the first

constraint should be replaced by 1
2
xd +

∑d−1
p=1 xp = 1.

Van der Veen (VdV) bound

Let D ∈ Rn×n be a symmetric circulant matrix and let r = (r0, r1, . . . , rbn
2
c) be the

vector that completely determines the entries of D (i.e., the first d + 1 components

on the first row). Recall that bn
2
c=d.
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Assume now that r0 = 0 (which is the case for the TSP) and assume that the ri

are distinct. Define a permutation Φ such that Φ(0) = 0 and Φ sorts the values of r

in ascending order. Let gcd(t1, . . . , tm) denote the greatest common divisor of given

natural numbers t1, . . . , tm. A necessary and sufficient condition for Hamiltonicity of

a circulant graph is given by the following theorem.

Theorem 4.2.2 (Burkard and Sandholzer (1991)). The circulant graph Cn〈t1, . . . , tm〉,
with vertex set {0, 1, . . . , n − 1}, consists of gcd(n, t1, . . . , tm) components (m ∈
{1, . . . , bn

2
c}). Each component is a graph on n

gcd(n,t1,...,tm)
vertices. The vertices in

component α (α = 0, 1, . . . , gcd(n, t1, . . . , tm)− 1) are:{
(α + k gcd(n, t1, . . . , tm)) mod n

∣∣∣∣ k ∈ 0, 1, . . . ,
n

gcd(n, t1, . . . , tm)
− 1

}
. (4.4)

Moreover, Cn〈t1, . . . , tm〉 is Hamiltonian if and only if gcd(n, t1, . . . , tm)=1.

Let l be the smallest integer such that gcd(n,Φ(1), . . . ,Φ(l)) = 1. Van der Veen

(1992) shows that one can construct a Hamiltonian tour using edges only from stripes

Φ(1), . . . ,Φ(l). Following his notation, we define:

GCD(Φ(k)) := gcd(GCD(Φ(k − 1)),Φ(k)), k = 1, . . . , d, (4.5)

and GCD(Φ(0)) := n. Further, we can assume without loss of generality (see Van der

Veen (1992)) that

n = GCD(Φ(0)) > GCD(Φ(1)) > . . . > GCD(Φ(l)) = 1. (4.6)

Then Theorem 7.4.2 from Van der Veen (1992) shows that the following value is a

lower bound for the SCTSP:

V dV :=
l∑

i=1

{(GCD(Φ(i− 1))− GCD(Φ(i)))rΦ(i)}+ rΦ(l). (4.7)

The term
∑l

i=1{(GCD(Φ(i − 1)) − GCD(Φ(i)))rΦ(i)} gives the weight of a shortest

Hamiltonian path obtained via the nearest neighbor rule. The last term reflects the

fact that each Hamiltonian cycle must include an edge of weight at least rΦ(l).



68 Chapter 4. Bounds for the symmetric circulant traveling salesman problem

1-tree (1T) bound

Another famous lower bound for TSP is the minimum-cost 1-tree bound.

Definition 4.2.1. Let G=(V,E) denote an undirected graph with edge costs ce, for

each e ∈ E, and let v1 ∈ V . Two edges incident with node v1 plus a spanning tree of

G \ {v1} is called a 1-tree in G.

Definition 4.2.2. Let G = (V,E) denote an undirected graph with edge costs ce, for

each e ∈ E, and let v1 ∈ V . Let δ(v1) denote the set of edges incident to v1. Let

A = min{ce + cf | e, f ∈ δ(v1)} and let B be the cost of a minimum spanning tree in

G \ {v1}. Then A+B is a lower bound for the TSP on G, called a 1-tree bound.

For circulant graphs, we can compute the 1-tree bound more simply than for

general graphs, as we will show in Theorem 4.2.4. Recall that we can construct a

minimum-cost spanning tree using the (greedy) Kruskal algorithm. This algorithm

starts with an arbitrary edge of lowest cost, and recursively constructs a spanning

tree by adding an edge of lowest possible cost to the current forest so that adding

this edge does not form a cycle.

As a consequence of Theorem 4.2.2, after using all possible edges from the lowest-

cost stripe, we may assume that the Kruskal algorithm has constructed x := GCD(Φ(1))

components (i.e., disjoint paths). Moreover, by (4.4) we can describe these disjoint

paths as:

Pα :=
{

(α + k Φ(1)) mod n | k ∈ 0, 1, . . . ,
n

x
− 1
}
, α = 0, . . . , x− 1. (4.8)

An important observation for our purposes is that these paths cover all the vertices;

any edge that is subsequently added by the Kruskal algorithm will therefore connect

two of these paths.

Now we fix v. According to the construction above we have v ∈ Pv mod x. Under

assumption (4.6), we have (v+Φ(i)) mod n ∈ P(v+Φ(i)) mod x, for every i = 2, . . . , l.

Thus, for each i, the edge {v, (v + Φ(i)) mod n} connects the paths Pv mod x and

P(v+Φ(i)) mod x.

Lemma 4.2.3. For any k = 0, . . . , n
GCD(Φ(1))

and for any i = 2, . . . , l and v ∈ V , the

edge {(v+kΦ(1)) mod n, (v+kΦ(1)+Φ(i)) mod n} connects the paths Pv mod x

and P(v+Φ(i)) mod x.
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Proof. By (4.8), (v+ kΦ(1)) mod n belongs to Pv mod x. For any i ∈ {2, . . . , l} we

have

(v + kΦ(1) + Φ(i)) mod n = ((v + Φ(i)) + kΦ(1)) mod n

= ((v + Φ(i)) mod n+ kΦ(1)) mod n.

Since (v + Φ(i)) mod n belongs to P(v+Φ(i)) mod x, using (4.8) again we have

that (v + kΦ(1) + Φ(i)) mod n ∈ P(v+Φ(i)) mod x.

The lemma shows that we can always connect two distinct paths Pα1 and Pα2

(α1 6= α2) using an edge of cost rΦ(i), for any i = 2, . . . , l, in more than one way. Now

we can prove the following.

Theorem 4.2.4. Let G be a circulant graph on n vertices. Let Φ(1) denote the

stripe of minimum nonzero cost. The value of a minimum cost 1-tree equals the value

of a minimum cost spanning tree plus the value of an edge of lowest cost whenever

Φ(1) 6= n
2
. If n is even and Φ(1) = n

2
, then the value of a minimum cost 1-tree equals

the value of a minimum cost spanning tree plus the cost of an edge of second-lowest

cost.

Proof. We will assume gcd(n,Φ(1)) 6= 1, since the case gcd(n,Φ(1)) = 1 is trivial.

Fix v1 ∈ V , and assume no two stripes have the same cost and Φ(1) 6= n
2
. Because

of the circulant structure we have two edges of minimum cost with an endpoint at

v1. Start constructing a minimum spanning tree from v1 using Kruskal’s algorithm

(denote the first added edge by et). After adding the edges of minimum cost Kruskal’s

algorithm has constructed gcd(n,Φ(1)) disjoint paths covering the vertices of G with

edges of lowest cost. After this step any other edge of lowest cost added to the current

forest will create a cycle. Let the path with an endpoint at v1 be Pv1 , and denote

the other endpoint of this path by v2. Connect the paths obtained before using edges

of other costs (again using Kruskal’s algorithm), but do not connect Pv1 via v1 (this

is always possible according to Lemma 4.2.3). When the minimum spanning tree is

constructed add the edge e12 := v1v2. Call the resulting structure T .

By construction v1 has degree 2 in T . The edges that connect v1 to T are e12 and

et. Notice that both have lowest cost. Therefore, et + e12 is minimum among the

sum of the costs of two edges incident to v1, which shows that T is a 1-tree. Since v1

was arbitrarily chosen this concludes the first part of the proof. The second part is

similar and is therefore omitted.
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4.3 A new linear programming bound for SCTSP

In this section we show how to reduce the SDP formulation in (4.1) to an equivalent

LP whenever the distance matrix D is circulant. The following theorem will allow us

to restrict the optimization of (4.1) to the symmetric circulant matrices in the case

of the SCTSP.

Theorem 4.3.1. Let A denote the centralizer ring of a permutation group G and

let D ∈ A. If we have an optimal solution, X(1), . . . , X(k), for problem (4.1) then

{R(X(1)), . . . , R(X(k))} ⊂ A is also an optimal solution of (4.1), where R denotes

the Reynolds operator of the group G.

Proof. Since D ∈ A, D is invariant under the action of the permutation matrices

P ∈ G, that is, P TDP = D for all P ∈ G. We will show that if X(k), (k = 1, . . . , n)

are feasible for (4.1) then Y (k) := R(X(k)) are also feasible for (4.1). For simplicity

of notation we will show this for a fixed k, but everything holds for any k = 1, . . . , d.

If X(k) ≥ 0 and symmetric, then by permuting rows and columns and adding

elements we again obtain a symmetric, positive matrix, so R(X(k)) ≥ 0 and R(X(k)) ∈
Sn.

R(X(k)) is a linear mapping so R(
∑d

k=1X
(k)) =

∑d
k=1 R(X(k)) and R(J − I) =

R(J)−R(I). Notice that R(J) = J and R(I) = I. We thus obtain
∑d

k=1R(X(k)) =

J − I. Using R(I) = I and the linearity of R, from

I +
d∑

k=1

cos(
2kiπ

n
)X(k) � 0, (i = 1, . . . , d)

we obtain

I +
d∑

k=1

cos(
2kiπ

n
)R(X(k)) � 0, (i = 1, . . . , d).

We have seen that R(X(k)), (k = 1, . . . , d), are feasible. Furthermore,

trace(DR(X(1))) = trace(R(D)X(1)) = trace(DX(1))

by (2.16), and this concludes the proof of the theorem.

Recall that, for the SCTSP, the permutation group G is the dihedral group, and

its centralizer ring is the set of symmetric circulant matrices. Now let us restrict the
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feasible set to the circulant matrices. For each X(k), (k = 1, . . . , d), we can write

X(k) :=
d∑
p=1

x(k)
p Bp, (4.9)

where {B0 = I, B1, . . . , Bd} forms the standard basis for the symmetric circulant

matrices, as before.

The matrix of distances D has zeros on the diagonal, and the variables x
(k)
0 may

therefore be set to zero. Since the Bi’s are 0-1 matrices, X(k) ≥ 0 is equivalent to

x
(k)
p ≥ 0, (k, p = 1, . . . , d); and using (4.9) we obtain the equivalent form of (4.1):

LPnew = min
1

2

d∑
p=1

x(1)
p trace(DBp)

s.t. x(k)
p ≥ 0, (k, p = 1, . . . , d)

d∑
k=1

d∑
p=1

x(k)
p Bp = J − I, (4.10)

I +
d∑

k=1

d∑
p=1

cos(
2kiπ

n
)x(k)

p Bp � 0, (i = 1, . . . , d).

Let Q denote the discrete Fourier transform matrix. Then we may diagonalize

the basis matrices via Q∗BpQ = Λ(p), where Λ(p) := diag(λ
(p)
j ), (j = 0, . . . , n− 1), is

the diagonal matrix containing the eigenvalues of Bp.

We have

λ
(p)
j = 2cos(

2πjp

n
) (p = 1, . . . , d, j = 0, . . . , n− 1), if n is odd (4.11)

and

λ
(p)
j = 2cos(

2πjp

n
) (p = 1, . . . , d− 1, j = 0, . . . , n− 1), if n is even (4.12)

λ
(d)
j = cos(

2πjd

n
), (j = 0, . . . , n− 1), if n is even. (4.13)

Because of the simultaneous diagonalization of the Bi, (4.10) reduces to an LP, as we

will now show.

Let us write

D =
d∑
i=1

diBi. (4.14)
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Clearly

trace(BiBj) = 0 if i 6= j.

Multiplying (4.14) by Bp to the right and taking into account that Bi and D are

symmetric, using the previous relation we obtain

trace(DBp) = dptrace(B2
p) = cdp, (4.15)

where c = 2n for p = 1, . . . , d. For n even we have an exception: c = n when p = d.

We will now transform each linear matrix equality into n linear inequalities. To

this end, note that J − I =
∑d

p=1Bp. Then, using the diagonalization, the relation

d∑
k=1

d∑
p=1

x(k)
p Bp =

d∑
p=1

Bp

reduces to

d∑
k=1

d∑
p=1

x(k)
p λ

(p)
j =

d∑
p=1

λ
(p)
j , (j = 0, . . . , n− 1), (4.16)

where the eigenvalues λ
(p)
j are defined in (4.11), (4.12), and (4.13).

Finally, again using the diagonalization, the d linear matrix inequalities

I +
d∑

k=1

d∑
p=1

cos(
2kiπ

n
)x(k)

p Bp � 0, (i = 1, . . . , d)

reduce to the nd linear inequalities

1 +
d∑

k=1

d∑
p=1

λ
(p)
j cos(

2kiπ

n
)x(k)

p ≥ 0, (i = 1, . . . , d, j = 0, . . . , n− 1). (4.17)

We can now state the LP reformulation of (4.10):

LPnew = min
1

2

d∑
p=1

cdpx
(1)
p

s.t. x(k)
p ≥ 0, (k, p = 1, . . . , d)

d∑
k=1

d∑
p=1

λ
(p)
j x(k)

p =
d∑
p=1

λ
(p)
j , (j = 0, . . . , n− 1) (4.18)

1 +
d∑

k=1

d∑
p=1

λ
(p)
j cos(

2kiπ

n
)x(k)

p ≥ 0, (i = 1, . . . , d, j = 0, . . . , n− 1).



4.4. Numerical results 73

4.4 Numerical results

In this section we present numerical results for the new SDP/LP bound and the other

bounds stated in Section 4.2 (i.e., 1T bound, HK bound, and VdV bound); see Table

4.1. The matrices in Table 4.1 have dimensions between 6 and 81, and were generated

in such a way as to avoid trivial solutions.

By trivial solutions we refer to instances of SCTSP that are polynomially solvable.

The most obvious case is where the number of vertices n is prime. Another example

is the case where GCD(φ(1)) = 1 is polynomially solvable. In both situations an

optimal tour can be constructed using only edges from the stripe of lowest cost (i.e.,

φ(1)).

Moreover, at least one of the two heuristics proposed by Van der Veen (1992)

gives the optimal value of a tour (in polynomial time) in each of the following cases:

• n = p2, where p ≥ 2 is a prime number;

• GCD(φ(l − 1)) = 2;

• GCD(φ(l − 1)) = d and both φ(l − 1) and φ(l) are odd numbers;

• l = 2, n
GCD(φ(1))

is odd and GCD(φ(1)) ≥ n
GCD(φ(1))

− 1;

• l = 2, GCD(φ(l − 1)) ≤ 6 and
rφ(l+1)−rφ(l)

rφ(l)−rφ(l−1)
≥ GCD(φ(l − 1))− 2.

In these five cases the value of an optimal tour is attained under the assumption that

the costs of the stripes are distinct.

The only polynomial-solvable instances in Table 4.1 are Dt14, Dt15, and Dt16

since they prove that there is no dominance between the SDP/LP bound and the

1T bound.

The LP problems were solved using the Matlabr toolbox Yalmip (see Löfberg

(2004)) together with the optimization solver Sedumi (see Sturm (1999)). The opti-

mal values of the SCTSP instances were computed using the Concorde1 software for

TSP. Because of the small sizes of the instances, all the values in the tables could be

computed in a few seconds on a standard Pentium IV PC.

A few remarks on Table 4.1:

• The HK and VdV bounds coincide for all the instances in the table.

1The Concorde software is available at http://www.tsp.gatech.edu/concorde/
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matrix n l GCD(φ(l − 1)) SDP/LP 1T HK VdV optimum
D1 54 3 3 2,114 2,140 2,157 2,157 2,174
D10 39 3 3 547.868 550 552 552 553
D11 57 2 3 2,022.715 2,119 2,181 2,181 2,243
D17 36 2 4 4,877.80 4,902 4,916 4,916 4,944
Dt4 24 2 6 123.91 125 126 126 128
Dt6 24 2 6 2,448.08 3,095 3,690 3,690 3,694
Dt14 8 2 2 57.17 57 58 58 58
Dt15 8 3 3 58.34 58 60 60 60
Dt16 6 2 2 43.50 43 44 44 44
Dt18 64 2 4 25,583 26,901 27,484 27,484 27,538
Dtt1 81 4 3 1,316.75 1,590 1,680 1,680 1,680
Dtt2 63 2 7 2,188.52 3,375 3,696 3,696 3,930

Table 4.1: Numerical comparison of the four lower bounds from Section 4.2 for SCTP
instances.

• The HK and VdV bounds are the best bounds in all cases but do not always

equal the optimal value of the SCTSP instance in question.

• The new LP bound is always weaker than the HK and VdV bounds for the test

problems and is even lower than the 1T bound for a few instances. Adding the

subtour elimination inequalities to the new LP did not result in better bounds

than HK for any of the instances in the table.

The instances from Table 4.1 are available online at:

http://lyrawww.uvt.nl/~cdobre/SCTSP_instances.rar.

4.5 Theoretical comparison of bounds

Based on the numerical results presented in the previous section, we may conjecture

certain relations between the bounds, such as VdV = HK ≥ LPnew. On the other

hand, we have been able to prove only that VdV ≥ 1T (cf. Theorem 4.5.1) and HK

≥ VdV (cf. Theorem 4.5.3). It is also well known (see e.g., Cook, Cunningham,

Pulleyblank, and Schrijver (1998)) that HK ≥ 1T. Thus, we have the sandwich-

theorem result

1T ≤ V dV ≤ HK.

Theorem 4.5.1. For SCTSP, the V dV bound is at least as good as the 1T bound.
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Proof. Recall that Φ(1) denotes the stripe of lowest cost. From (4.7) we have that

V dV equals the length of a minimum-weight Hamiltonian path plus the weight of an

edge of cost rΦ(l). Moreover, the weight of a minimum Hamiltonian path is always

greater than or equal to the weight of a minimum-weight spanning tree. The required

result now follows from Theorem 4.2.4.

Thus, we have VdV ≥ 1T. Further, it was shown by De Klerk, Pasechnik, and

Sotirov (2008) that, for general TSP, HK does not dominate the SDP bound in (4.1)

or vice versa. In the case of the circulant matrices we can state the following theorem,

based on the numerical results in Table 4.1.

Theorem 4.5.2. For SCTSP, the new LP relaxation (4.18) does not dominate the

one tree bound, or, by implication, the Held-Karp bound (4.2).

It was not previously known whether the SDP bound (4.1) could be worse than

the 1T bound; see De Klerk, Pasechnik, and Sotirov (2008). Whether or not the

Held-Karp bound dominates the new LP relaxation in the case of SCTSP remains an

open question.

Theorem 4.5.3. For SCTSP, the Held-Karp bound (4.2) is at least as tight as the

Van de Veen bound (4.7).

Proof. Let G = (V,E) be a weighted circulant graph with edge weights now denoted

by ce (e ∈ E), and consider the following equivalent formulation of the Held-Karp

bound (4.2) (the details may be found in Section 7.3 of Cook, Cunningham, Pulley-

blank, and Schrijver (1998)):

HK = min
∑
e∈E

cexe

s.t.
∑
e∈δ(S)

xe ≥ 2, ∀ S ⊂ V, |S| ≥ 2

∑
e∈δ({v})

xe = 2 ∀ v ∈ V

0 ≤ xe ≤ 1 ∀ e ∈ E.
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We enlarge the feasible set and define a value p∗ ≤ HK via

p∗ := min
∑
e∈E

cexe

s.t.
∑
e∈δ(S)

xe ≥ 2, ∀ S ⊂ V, S 6= ∅

xe ≥ 0 ∀ e ∈ E.

By LP duality theory we have

p∗ = max
∑
∅6=S⊂V

2yS

s.t.
∑

S|e∈δ(S)

yS ≤ ce, ∀ e ∈ E (4.19)

yS ≥ 0 ∀ e ∈ E.

We will construct a feasible point of (4.19) with objective value equal to the value

VdV from (4.7). It then follows that p∗ ≥ V dV , and since HK ≥ p∗ we conclude

that HK ≥ V dV for circulant matrices.

Notice that if |V | = n, then the dual formulation in (4.19) has 2n − 2 vari-

ables yS, each corresponding to a nonempty subset of V . Let Ck
i , (k = 0, . . . , l −

1, i = 1, ..,GCD(Φ(k))), denote the connected components of the graph Gk :=

〈Φ(1), . . . ,Φ(k)〉. In this case C0
i represents the vertices of the graph. According

to Theorem 4.2.2, Ck
i 6= C l

j if (i, k) 6= (j, l). We will abuse notation by identifying

the connected component with its vertices. Define:

yC0
i

:=
rΦ(1)

2
, (i = 1, . . . , n)

yCmi :=
1

2
(rΦ(m+1) − rΦ(m)), (m = 1, . . . , l − 1 and i = 1, . . . ,GCD(Φ(m)))

yS := 0, otherwise. (4.20)

For a fixed m all the values yCmi are equal and nonnegative by definition, since the

permutation Φ sorts r in ascending order.

According to Theorem 4.2.2 we have for each m exactly GCD(Φ(m)) nonzero (i.e.,

strictly positive) yCmi variables. Hence, the objective in (4.19) evaluates to:
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∑
∅6=S⊂V

2yS =
l−1∑
m=0

2GCD(Φ(m))yCmi

= GCD(Φ(0))rΦ(1) +
l−1∑
m=1

GCD(Φ(m))(rΦ(m+1) − rΦ(m))

=
l−1∑
m=1

{(GCD(Φ(m− 1))− GCD(Φ(m)))rΦ(m)}

+GCD(Φ(l − 1))rΦ(l)

=
l∑

m=1

{(GCD(Φ(m− 1))− GCD(Φ(m)))rΦ(m)}+ rΦ(l) =: V dV.

The last equality is due to the fact that GCD(Φ(l)) = 1.

To show feasibility, first fix an edge e ∈ E with cost rΦ(k), with k ≤ l. Such an

edge connects two components of Gm (m = 0, 1, . . . , k − 1). Then we have∑
S|e∈δ(S)

yS = 2
k−1∑
m=0

yCmi = rΦ(1) +
k−1∑
m=1

(rΦ(m+1) − rΦ(m))

= rΦ(1) + rΦ(k) − rΦ(1) = rΦ(k).

Now fix an edge e ∈ E with cost rΦ(k), with k > l. Such an edge connects at most

two components of Gm (m = 0, 1, . . . , l − 1). Then we have∑
S|e∈δ(S)

yS ≤ 2
l−1∑
m=0

yCmi = rΦ(l) < rΦ(k).

Thus, we have constructed a feasible point of (4.19) with objective value equal to the

VdV bound. Therefore, HK ≥ VdV.





Chapter 5

Bounds for the maximum k-section
problem

This chapter is based on the work of De Klerk, Pasechnik, Sotirov, and Dobre (2010).

Starting from a new SDP relaxation, proposed by De Klerk and Sotirov (2010b), of

the NP-complete problem of the quadratic assignment problem (QAP) we derive a

new SDP bound for the maximum k-section problem, which is contained in the QAP.

Further, we compare, theoretically and numerically, the resulting bounds with the

existing bounds in the literature.

5.1 Introduction

Recall from Section 1.2 that the k-section (k-equipartition) of a (weighted) graph

is a partition of the vertex set of the graph into k sets of equal cardinality. The

weight (or cost) of a k-section is the sum of the weights of all edges that connect

vertices in different sets of the partition. Thus, the maximum (resp. minimum) k-

section problem is to find a k-section of maximum (resp. minimum) weight in a given

weighted graph.

An equivalent formulation that will be useful is as follows. Let

Km, . . . ,m︸ ︷︷ ︸
k times

denote a complete multipartite graph with k color classes all of size m. The maximum

(resp. minimum) k-section problem is to find a Km,...,m subgraph of maximum (resp.

minimum) weight in a given weighted, complete graph on |V | = mk vertices.

79
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The maximum k-section problem is NP-hard for k ≥ 2; see Garey, Johnson,

and Stockmeyer (1976). When the weights are nonnegative, for maximum bisection

(k = 2), a polynomial-time approximation ratio of 0.7016 is known from the work

of Halperin and Zwick (2002) (see also Frieze and Jerrum (1997) and Ye (2001)).

In other words, the randomized algorithm in Halperin and Zwick (2002) generates a

bisection of the graph of expected weight at least 0.7016 times that of a maximum

bisection. Andersson (1999) proposed a (1− 1/k+ ck3)-approximation algorithm for

maximum k-section (see also Karisch and Rendl (1998)), where c is some (unknown)

absolute constant. The maximum and minimum k-section problems are different in

terms of approximability (although both are NP-hard).

All the above mentioned approximation results involve SDP relaxations. In this

chapter we therefore revisit SDP relaxations for max k-section and establish relation-

ships between several SDP bounds from the literature. In particular, we present a

new SDP bound for the maximum (or minimum) k-section problem, obtained from an

SDP bound proposed by De Klerk and Sotirov (2010b) for the more general quadratic

assignment problem. We show that the new relaxation is at least as good as the re-

laxation due to Frieze and Jerrum (1997) for k = 2 (maximum bisection). For k ≥ 3,

we prove it is at least as good as a bound introduced by Karisch and Rendl (1998).

Moreover, the computation of the new SDP bound may be done much more efficiently

than that of the general bound of De Klerk and Sotirov (2010b), since it requires the

solution of a much smaller SDP.

This chapter is structured as follows. We first see how max k-section may be

reformulated as a QAP, and then we review some known SDP relaxations of max

k-section (Section 5.2). We review some SDP relaxations of QAPs in Section 5.3.

These relaxations lead to large relaxations of max k-section, and to reduce the size of

these SDPs we must exploit algebraic symmetry. The necessary algebraic background

was presented in Section 2.2. In Section 5.3 we also derive the new SDP bound

for max k-section from the QAP relaxation, by performing symmetry reduction.

Theoretical comparisons with existing bounds are carried out in Section 5.4, and

numerical examples are presented in Section 5.5.

5.2 Maximum k-section problem

Recall from Section 1.2.2 that the QAP reformulation of maximum k-section on a

complete graph with vertex set V (|V | = km) and matrix of edge weights W is given
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by

1

2
max
X∈Π|V |

trace(WXTBX), (5.1)

where B is the adjacency matrix of the complete multipartite graph Km,...,m (m

appears k times). Because of the different structures of the coherent configurations

of Km−1,m and Km−1,m,...,m (see Section 2.2), we treat the maximum bisection problem

separately from the maximum k-section (k > 2) problem.

5.2.1 Maximum bisection

We are given a matrix W with nonnegative entries that we view as edge weights of a

graph G = (V,E), where V denotes the set of vertices and E the set of edges. In this

case we consider |V | = 2m. The goal is to find a complete bipartite subgraph Km,m

of G of maximum weight.

As mentioned before, maximum bisection is a special case of the more general

QAP. In particular, B is the adjacency matrix of Km,m (with any fixed ordering of

the vertices), e.g.,

B =

(
0m×m Jm
Jm 0m×m

)
. (5.2)

An SDP relaxation of the maximum bisection problem due to Frieze and Jerrum

(1997) (see also Ye (2001)) is the following:

max

{
1

4
trace(W (J2m −X)) | diag(X) = e2m, Xe2m = 0, X � 0

}
. (5.3)

To see that this is a relaxation of the maximum bisection problem, set X = vvT ,

where v ∈ {−1, 1}2m gives the optimal equipartition of the vertex set.

5.2.2 Maximum k-section

The maximum k-section problem is a generalization of maximum bisection, where

the aim is to find a complete k-equipartite subgraph of maximum total edge weight

in a given weighted graph.

An SDP relaxation due to Karisch and Rendl (1998) of the max k-section problem

is the following:

max

{
1

2
trace(W (Jkm −X)) | diag(X) = ekm, Xekm = mekm, X � 0, X ≥ 0

}
.
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(5.4)

Here we present an equivalent form of the objective. If the matrix L := Diag(Aen)−
A denotes the Laplacian matrix of the graph G, then the objective of (5.4) from

Karisch and Rendl (1998) is 1
2
trace(LX). The equivalence can easily be seen, since:

1

2
trace(LX) =

1

2
trace(Diag(We)−W )X

=
1

2
diag(X)T (We)− 1

2
trace(WX)

=
1

2
eTWe− 1

2
trace(WX)

=
1

2
trace(W (J −X)).

Throughout this chapter we will refer to the SDP relaxation in (5.4) as k − GPR2,

the name given by Karisch and Rendl (1998).

Theorem 5.2.1. If k = 2, the relaxation 2−GPR2 is equivalent to the Frieze-Jerrum

relaxation from (5.3).

Proof. Given an optimal solution X of (5.3), set X := 1
2
(J2m + X). Obviously,

diag(X) = e2m and X � 0. Moreover, since Xe2m = 0 we have Xe2m = 1
2
J2me2m +

Xe2m = me2m. Since diag(X) = e2m and X � 0, its entries lie between -1 and 1,

which in turn implies that the entries of X lie between 0 and 1. It is straightforward

(by construction) to see that the two objective values are equal.

Conversely, assume that X is feasible for (5.4) and set X := 2X − J2m. We have

diag(X) = e2m and Xe2m = 2Xe2m − J2me2m = 2me2m − 2me2m = 0. Since X � 0

we have λmin(X) ≥ 0. Moreover, ekm is an eigenvector of X with the corresponding

eigenvalue equal to m. From the eigenvalue decomposition of X we have

X = mJ2m +
n∑
i=2

λiqiq
T
i ,

where λi ≥ 0 and qi are the eigenvalues and eigenvectors of X. Then

X − 1

2
J2m = (m− 1

2
)J2m +

n∑
i=2

λiqiq
T
i ,

and since m − 1
2
≥ 0 all the eigenvalues of X − 1

2
J2m are nonnegative. This means

X − 1
2
J2m � 0, therefore X � 0.

It is also easy to see (by construction) that the two objectives coincide and this

concludes the proof. �
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5.3 New SDP bound for maximum k-section prob-

lem

The new SDP bound will be obtained by performing symmetry reduction on the SDP

bound of the more general QAP. Further, we distinguish between two SDP relaxations

of the QAP. One was studied by Povh and Rendl (2009), and the other by De Klerk

and Sotirov (2010b).

The Povh-Rendl relaxation is as follows:

max trace(B ⊗ A)Y

s.t. trace(I ⊗ Ejj)Y = 1, trace(Ejj ⊗ I)Y = 1 (j = 1, . . . , n)

trace(I ⊗ (J − I) + (J − I)⊗ I)Y = 0

trace(Jn2Y ) = n2

Y ≥ 0, Y ∈ Sn2×n2

+ ,


(5.5)

where I, J, Ejj ∈ Rn×n. We can easily verify that (5.5) is indeed a relaxation of the

QAP (1.8) by noting that a feasible point of (5.5) is given by

Ỹ := vec(X)vec(X)T if X ∈ Πn,

and that the objective value of (5.5) at this point Ỹ is precisely trace(BXAXT ).

The following discussion is condensed from De Klerk and Sotirov (2010b). Let

X ∈ Πn, and r, s ∈ {1, ..., n} such that Xr,s = 1. Then let α = {1, ..., n} \ r and

β = {1, ..., n} \ s. Also notice that A and B are zero diagonal, symmetric matrices.

De Klerk and Sotirov (2010b) proved that the following SDP provides a lower bound

for the QAP whenever the automorphism group of one of the data matrices (A or B)

is transitive:

max trace(B(β)⊗ A(α) + Diag(c̄))Y

s.t. trace(I ⊗ Ejj)Y = 1, trace(Ejj ⊗ I)Y = 1 (j = 1, ..., n− 1)

trace(I ⊗ (J − I) + (J − I)⊗ I)Y = 0

trace(J(n−1)2Y ) = (n− 1)2

Y ≥ 0, Y ∈ S(n−1)2×(n−1)2

+ ,


(5.6)

where I, J, Ejj ∈ R(n−1)×(n−1) and

c̄ := 2vec(A(α, {r})B({s}, β)). (5.7)
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Let us now consider a matrix Y with the type of block structure that appears in

(5.5) and (5.6):

Y :=

Y
11 . . . Y 1p

...
. . .

...
Y p1 . . . Y pp

 , (5.8)

where p is a given integer and Y ij ∈ Rp×p for i, j = 1, . . . , p.

Lemma 5.3.1 (Povh and Rendl (2009)). A matrix Y of the form (5.8) that is feasible

for (5.5) (resp. (5.6)) satisfies:

trace(Y ii) = 1 (i = 1, ..., p), (5.9)

p∑
i=1

diag(Y ii) = e, (5.10)

eTY ij = diag(Y jj)T (i, j = 1, ..., p), (5.11)

p∑
i=1

Y ij = ediag(Y jj)T (j = 1, ..., p), (5.12)

for p = n (resp. p = n− 1).

In what follows, we will reduce the size of the SDP relaxation (5.6) for the QAP

formulation of maximum k-section. In doing so, we will exploit the algebraic sym-

metry of the data matrices, i.e., the symmetry of the graph Km−1,m,...,m. As in the

previous section, because of the different structures of the coherent configurations of

Km−1,m and Km−1,m,...,m (see Section 2.2), we treat the maximum bisection problem

separately from the maximum k-section (k > 2) problem.

5.3.1 Maximum bisection

We now describe the new SDP relaxation for maximum bisection where the variables

in the relaxation X1, . . . , X6 correspond to the matrices A1, . . . , A6 respectively from

Example 2.2.3.

Letting n = |V | = 2m, w = [W12 . . . W1n]T , and

W̄ =

W22 . . . W2n
...

...
Wn2 Wnn

 , (5.13)
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the new relaxation takes the following form, being obtained via symmetry reduction

from (5.6):

SDPnew := max trace (diag(w)X5) +
1

2
trace

(
W̄ (X3 +X4)

)
(5.14)

s.t. X1 +X5 = In−1

6∑
t=1

trace(JXt) = (n− 1)2

trace(X1) = m− 1

trace(X5) = m

trace(X2 +X3 +X4 +X6) = 0

X3 = XT
4 1

m−1
(X1 +X2) 1√

m(m−1)
X3

1√
m(m−1)

X4
1
m

(X5 +X6)

 � 0

X1 −
1

m− 2
X2 � 0

X5 −
1

m− 1
X6 � 0

Xi ≥ 0 (i = 1, . . . , 6).

Note that the matrix variables Xi are all of order n− 1.

With reference to Example 2.2.3, the reader may verify that a feasible point of

the new relaxation is given by Xi = Ai (i = 1, . . . , 6) if k = m − 1 and l = m in

Example 2.2.3.

In what follows we show that the bound SDPnew in (5.14) coincides with the

SDP bound for the QAP from (5.6). As mentioned before, the proof is via symmetry

reduction, in the spirit of the work of Schrijver (1979) and Schrijver (2005) (see also

Gatermann and Parrilo (2004)). De Klerk and Sotirov (2010b) proved that we may

restrict the variable Y from (5.6) to lie in the matrix ∗-algebra

Aaut(B(β)) ⊗Aaut(A(α)), (5.15)

where

AG := {X ∈ Rn×n : XP = PX, ∀ P ∈ G},

and G is the automorphism group of the corresponding matrix (see also Section 2.2.2).

If a matrix, say B, is the adjacency matrix of a graph, then Aaut(B) is a coherent

algebra that contains B.
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For our purpose, recall that B is the usual adjacency matrix of Km,m, namely

B =

(
0 Jm
Jm 0

)
,

and A := 1
2
W . We fix r = s = 1. Hence, α = {2, ..., n}, β = {2, ..., n}, and

B(β) =

(
0m−1×m−1 Jm−1×m
Jm×m−1 0m×m

)
,

A(α) =
1

2
W̄ , (5.16)

c̄ = vec(awT ),

where aT = [01×m−1 e
T ] with e ∈ Rm the all-ones vector as before. Therefore, we can

assume Y ∈ Aaut(Km−1,m) ⊗ Aaut(W̄ ), and since there is no symmetry assumption on

the weight matrix W̄ we have Y ∈ Aaut(Km−1,m) ⊗ Rn−1×n−1.

Revisiting Example 2.2.3 we can see that {At : t = 1, ..., 6} forms a basis of

Aaut(Km−1,m). Let {Eij : i, j = 1, ..., n−1} denote the standard basis of Rn−1×n−1. We

can recover the basis of Aaut(Km−1,m)⊗Rn−1×n−1 as {At⊗Eij : i, j = 1, ..., n−1 and t =

1, ..., 6} (for details see De Klerk and Sotirov (2010b)). Thus,

Y =
6∑
t=1

n−1∑
i,j=1

ytijAt ⊗ Eij,

for some real numbers ytij. Further, if we denote

Yt :=
n−1∑
i,j=1

ytijEij

we can write

Y =
6∑
t=1

At ⊗ Yt. (5.17)

Notice that since Y is symmetric and the At (t = 1, ..., 6) have distinct support,

Yt∗ = Y T
t whenever At∗ = ATt , for t, t∗ ∈ {1, ..., 6}. We now substitute (5.17) in (5.6).

Since the At are 0-1 matrices with distinct support, Y ≥ 0 is equivalent to Yt ≥ 0 for

t = 1, . . . , 6. The positive semidefinite constraint from (5.6) becomes

6∑
t=1

At ⊗ Yt � 0. (5.18)
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If U is the unitary matrix from Theorem 2.1.5, then (5.18) is equivalent to

(U∗ ⊗ In−1)(
6∑
t=1

At ⊗ Yt)(U ⊗ In−1) � 0,

and using (2.1) we obtain

6∑
t=1

U∗AtU ⊗ Yt � 0.

After eliminating identical blocks from U∗AtU , we reduce the matrix size of the SDP

constraint in (5.6) from (n− 1)2 to 4(n− 1) and write it in the form

6∑
t=1

φ(At)⊗ Yt � 0,

where φ is the *-isomorphism from Example 2.2.3. Defining

Xt := ‖At‖2Yt, (t = 1, ..., 6), (5.19)

where ‖A‖ is the Frobenius norm of matrix A, we have

6∑
t=1

φ(At)

‖At‖2
⊗Xt � 0.

Thus,

1

m− 1


X1

0
X1 0
0 0

+
1

(m− 1)(m− 2)


−X2

0
(m− 2)X2 0

0 0



+

√
m(m− 1)

m(m− 1)


0

0
0 X3

0 0

+

√
m(m− 1)

m(m− 1)


0

0
0 0
X4 0



+
1

m


0

X5

0 0
0 X5

+
1

m(m− 1)


0
−X6

0 0
0 (m− 1)X6

 � 0.

Simplifying the last expression yields:
1

m−1
(X1 − 1

m−2
X2)

1
m

(X5 − 1
m−1

X6)
1

m−1
(X1 +X2) 1√

m(m−1)
X3

1√
m(m−1)

X4
1
m

(X5 +X6)

 � 0.
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We now consider the linear constraints. Using (5.17), the properties of the Kro-

necker product (2.1) and (2.2), and the fact that only A1 and A5 have nonzero traces,

we have

trace(I ⊗ Ejj)Y = trace((I ⊗ Ejj)(
6∑
t=1

At ⊗ Yt))

=
6∑
t=1

trace(At ⊗ EjjYt) =
6∑
t=1

trace(At)trace(EjjYt)

= trace(Ejj‖A1‖2Y1) + trace(Ejj‖A5‖2Y5)

= trace(Ejj(X1 +X5)).

This yields

trace(Ejj(X1 +X5)) = 1, (j = 1, . . . , n− 1),

so X1 +X5 = In−1. Continuing in the same vein,

trace(Ejj ⊗ I)Y = 1, (j = 1, . . . , n− 1)

reduces to

6∑
t=1

trace(EjjAt)trace(Yt) = 1, (j = 1, . . . , n− 1).

If we note that only trace(EjjA1) or trace(EjjA5) can be nonzero—and this can not

happen for the same fixed value of j—we obtain

trace(Y1) = 1 and trace(Y5) = 1.

Multiplying these two equations by the squared norms of A1 and A5 respectively we

obtain two more linear equalities from (5.14), namely

trace(X1) = m− 1 and trace(X5) = m.

Furthermore,

trace(J(n−1)2Y) = trace(Jn−1 ⊗ Jn−1)(
6∑
t=1

At ⊗ Yt)

=
6∑
t=1

trace(Jn−1At)trace(Jn−1Yt) =
6∑
t=1

trace(Jn−1‖At‖2Yt)

=
6∑
t=1

trace(Jn−1Xt).



5.3. New SDP bound for maximum k-section problem 89

This yields the following equality constraint from (5.14):

6∑
t=1

trace(JXt) = (n− 1)2.

There is only one equality constraint left to verify. To this end let S = {2, 3, 4, 6}
and notice the following:

trace(J − I)At =

{
0 if t ∈ {1, 5}

‖At‖2 if t ∈ S.

We get

trace((J − I)⊗ I)Y = trace((J − I)⊗ I
6∑
t=1

At ⊗ Yt)

=
6∑
t=1

trace((J − I)⊗ I)(At ⊗ Yt)

=
6∑
t=1

trace(J − I)Attrace(Yt) =
∑
t∈S

trace(‖At‖2Yt)

=
∑
t∈S

trace(Xt).

Also, trace(At) = 0 if t ∈ S, and X1 +X5 = I, so

trace(I ⊗ (J − I))Y = trace(I ⊗ (J − I)
6∑
t=1

At ⊗ Yt)

=
6∑
t=1

trace(I ⊗ (J − I))(At ⊗ Yt)

=
6∑
t=1

trace(At)trace((J − I)Yt)

= trace(J − I)‖A1‖2Y1 + trace(J − I)‖A5‖2Y5

= trace(J − I)X1 + trace(J − I)X5

= trace(J − I)I = 0.

We can now derive the last constraint in (5.14) immediately, since

trace(I ⊗ (J − I) + (J − I)⊗ I)Y = 0
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is equivalent to∑
t∈S

trace(Xt) = 0.

The last step is to obtain the objective function. Recalling the vectors and ma-

trices from (5.16) and equality (2.4), we can write

trace(Diag(c̄))Y = trace(Diag(a)⊗Diag(w))Y

=
6∑
t=1

trace(Diag(a)At)trace(Diag(w)Yt)

= trace(Diag(w)X5),

where, for the last step, we used the fact that

trace(Diag(a)At) =

{
0 if t ∈ {1, 2, 3, 4, 6}

‖A5‖2 if t = 5.

The first term of the objective function becomes

trace(B(β)⊗ A(α))Y =
1

2
trace(B(β)⊗ W̄ )Y

=
1

2

6∑
t=1

trace(B(β)At)trace(W̄Yt)

=
1

2
trace(W̄ (X3 +X4)),

where, for the last step, we used the fact that

trace(B(β)At) =

{
0 if t ∈ {1, 2, 5, 6}

‖At‖2 if t ∈ {3, 4}.

Therefore, we have proved the following theorem.

Theorem 5.3.2. The bound SDPnew from (5.14) coincides with the SDP bound (5.6)

for the QAP formulation of maximum bisection.

5.3.2 Maximum k-section

We now describe a new SDP relaxation of max k-section, k ≥ 3, where the variables

in the relaxation X1, . . . , X7 correspond to the matrices A1, . . . , A7 respectively in

Example 2.2.4.
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Letting n = |V | = km, the new relaxation takes the following form, obtained via

symmetry reduction from (5.6):

SDPnew := max trace (diag(w)X5) +
1

2
traceW̄ (X3 +X4 +X7) (5.20)

s.t. X1 +X5 = In−1

7∑
t=1

trace(JXt) = (n− 1)2

trace(X1) = m− 1

trace(X5) = (k − 1)m

trace(X2 +X3 +X4 +X6 +X7) = 0

X3 = XT
4 1

m−1
(X1 +X2) 1√

(k−1)m(m−1)
X3

1√
(k−1)m(m−1)

X4
1

(k−1)m
(X5 +X6 +X7)

 � 0

X1 −
1

m− 2
X2 � 0

X5 −
1

m− 1
X6 � 0

X5 +X6 −
1

k − 2
X7 � 0

Xi ≥ 0 (i = 1, . . . , 7).

Note that the matrix variables Xi are all of order n− 1. With reference to Example

2.2.4, the reader may verify that a feasible point of the new relaxation is given by

Xi = Ai (i = 1, . . . , 7).

As mentioned before, the bound in (5.20) coincides with the SDP bound for the

QAP in (5.6). The derivation is similar to the maximum bisection case, using the

isomorphism in Example 2.2.4, and we therefore omit the proof and simply state the

result.

Theorem 5.3.3. For any given integer k > 2, the upper bound in (5.20) on the

weight of a maximum k-section for a given graph coincides with the SDP bound (5.6)

when applied to the QAP formulation (5.1) of maximum k-section.
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5.4 Theoretical comparison of bounds

5.4.1 Relation to the Karisch-Rendl bound

In this section we prove that the new SDP relaxation defined in (5.14) and (5.20)

dominates the relaxation k − GPR2 in (5.4), for any k ≥ 2. The proof is slightly

different for k = 2 and k ≥ 3. We will present the proof only for k ≥ 3, the proof for

k = 2 being similar but simpler. We will need some valid implied equalities for the

feasible region of (5.20). This result will follow as a consequence of Lemma 5.3.1.

Consider the following structure for the matrix variable Y of (5.6):

Y :=

 Y 11 . . . Y 1(n−1)

...
. . .

...
Y (n−1)(1) . . . Y (n−1)(n−1)

 , (5.21)

where Y ij ∈ R(n−1)×(n−1). Following the same argument as for the case k = 2 and

using Example 2.2.4, we can consider a variable Y of the following form:

Y =
7∑
t=1

At ⊗ Yt.

We then have

Y ij =
7∑
t=1

(At)ijYt, (5.22)

where the At are the matrices from Example 2.2.4.

From Lemma 5.3.1

eTY ij = diag(Y jj)T , (i, j = 1, ..., n− 1). (5.23)

Multiplying this relation by the all-ones vector to the right, we obtain

trace(JY ij) = trace(Y jj), (i, j = 1, ..., n− 1),

and furthermore

trace(JY ij) = 1, (i, j = 1, ..., n− 1).

If we substitute i = 1 and j = m in (5.22), then Y 1m = Y3; or if i = m and

j = 1 then Y m1 = Y4. Continuing in the same vein, for suitable choices of i and j,

we obtain

trace(JYt) = 1, (t = 1, ..., 7),
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which is equivalent to

trace(JXt) = ‖At‖2, (t = 1, ..., 7),

and furthermore

trace(JXt) = trace(JAt), (t = 1, ..., 7). (5.24)

Lemma 5.4.1. Assume the matrices X1, ..., X7 are feasible for the new SDP relax-

ation (5.20). Then

7∑
t=1

Xt = J, (5.25)

X1 +X2 +X4 = ediag(X1)T ,

X3 +X5 +X6 +X7 = ediag(X5)T , (5.26)

eTX2 = (m− 2)diag(X1)T ,

eTX3 = (m− 1)diag(X5)T , (5.27)

eTX4 = m(k − 1)diag(X1)T , (5.28)

eTX6 = (m− 1)diag(X5)T ,

eTX7 = (k − 2)mdiag(X5)T . (5.29)

Proof. We will give the proof of (5.25), (5.26), and (5.27). The remaining equalities

can be derived in a similar way.

From
∑n−1

i=1 diag(Y ii) = e and
∑n−1

i=1 Y
ij = ediag(Y jj)T (j = 1, ..., n−1) we obtain∑n−1

i,j=1 Y
ij = J , and further using (5.22) and the fact that the At, t = 1, ..., 7, form a

coherent configuration, we get

7∑
t=1

‖At‖2Yt = J,

which yields
∑7

t=1 Xt = J , and so (5.25) is proved. To prove (5.26) we again use∑n−1
i=1 Y

ij = ediag(Y jj)T , j = 1, ..., n− 1. If we let j = m then

(m− 1)Y3 + Y5 + (m− 1)Y6 + (k − 2)mY7 = ediag(Y5)T ,
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and using the norms of At, t ∈ {3, 5, 6, 7},

X3 +X5 +X6 +X7 = ediag(X5)T .

For the proof of (5.27) we use (5.22) and (5.23). If we let i = 1 and j = m,

eTY3 = diag(Y5)T .

Again using the norms of A3 and A5 we obtain the desired equality. �

We can now prove the main theorem of this section.

Theorem 5.4.2. The new SDP relaxation (5.20) dominates the relaxation k−GPR2

from (5.4).

Proof. We will show that for any feasible point of the new SDP relaxation we can

construct a feasible point of k −GPR2 with the same objective value.

Assume that X1, ..., X7 form a feasible point for (5.20). The dimension of the

all-ones vector, denoted e, can be deduced from the context and is either n− 1 or n.

Define

X̃ :=

(
1 eT − diag(X5)T

e− diag(X5) J − (X3 +X4 +X7)

)
. (5.30)

The traces of X3, X4, and X7 are zero so diag(X̃) = e. We have Xi ≥ 0, i = 1, ..., 7,

and
∑7

t=1Xt = J so J − (X3 +X4 +X7) ≥ 0 and further X̃ ≥ 0.

Recall that n = km; using (5.27), (5.28), and (5.29) we have

X̃e =

(
1 eT − diag(X5)T

e− diag(X5) J − (X3 +X4 +X7)

)(
1
e

)
=

(
1 + eT e− trace(X5)

e− diag(X5) + Je− (XT
4 +XT

3 +XT
7 )e

)
=

(
1 + (n− 1)− (k − 1)m

ne− (k − 1)m(diag(X1) + diag(X5))

)
=

(
m

kme− (k − 1)me

)
= me.

To prove that X̃ � 0 we use (5.26) and write X3 = ediag(X5)T − (X5 +X6 +X7).

Since also X3 = XT
4 we have

X̃ =

(
1 eT − diag(X5)T

e− diag(X5) J − ediag(X5)T − diag(X5)eT + 2(X5 +X6) +X7

)
.
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This matrix is positive semidefinite (psd) whenever the Schur complement (see Section

2.4), denoted S, of J − ediag(X5)T − diag(X5)eT + 2(X5 +X6) +X7 is psd. We have

S = 2(X5 +X6) +X7 − diag(X5)diag(X5)T

= (X5 +X6) + (X5 +X6 +X7)− diag(X5)diag(X5)T .

S is psd as the sum of two psd matrices. To see this first notice that X5+X6+X7 �
0 because 1

m−1
(X1 +X2) 1√

(k−1)m(m−1)
X3

1√
(k−1)m(m−1)

X4
1

(k−1)m
(X5 +X6 +X7)

 � 0.

Further, summing 1
k−2

(X5 + X6 + X7) � 0 and X5 + X6 − 1
k−2

X7 � 0 we obtain

X5 + X6 � 0. Then (X5 + X6 + X7) − diag(X5)diag(X5)T can be seen as the Schur

complement of X5 +X6 +X7, which is a submatrix of

M =

(
1 diag(X5)T

diag(X5) X5 +X6 +X7

)
.

To conclude that X̃ � 0 we have only to prove that M � 0. To this end, notice

that since diag(X6) = diag(X7) = 0 the matrix M has a special structure:

M =

(
1 diag(N)T

diag(N) N

)
.

Using Proposition 2.4.4 we have that such a matrix is positive semidefinite if and

only if N � 0 and trace(JN) ≥ trace(N)2. We saw earlier that N � 0; and using

(5.24):

trace(JN) = trace(J(X5 +X6 +X7)) = trace(J(A5 + A6 + A7))

= (k − 1)m+ (k − 1)m(m− 1) + (k − 1)(k − 2)m2 = (k − 1)2m2

= trace(X5)2 = trace(N)2.

Therefore, M � 0 and eventually X̃ � 0. To conclude the proof we must show that

the objective values coincide. Recall from (5.13) that

W =

(
0 wT

w W

)
.
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Then

1

2
trace(W (J − X̃)) =

1

2
wT (e− e+ diag(X5)) +

1

2
trace(w(eT − eT

+ diag(X5)T ) +W (J − J +X3 +X4 +X7))

=
1

2
(wTdiag(X5) + trace(wdiag(X5)T ))

+
1

2
trace(W (X3 +X4 +X7))

= wTdiag(X5) +
1

2
trace(W (X3 +X4 +X7))

= trace(diag(w)X5) +
1

2
trace(W (X3 +X4 +X7)).

�

Using similar techniques for k = 2 (i.e., bisection), and defining

X̃ :=

(
1 eT − diag(X5)T

e− diag(X5) J − (X3 +X4)

)
,

we can prove the following theorem.

Theorem 5.4.3. The new SDP relaxation from (5.14) dominates the relaxation 2−
GPR2 from (5.4) for any integer k ≥ 2.

5.4.2 Karisch-Rendl bound coincides with Povh-Rendl bound

In what follows we will show that the optimal value of the SDP relaxation k−GPR2

coincides with the optimal value in (5.5) for the case of maximum k-section. To

this end we first perform symmetry reduction of the SDP in (5.5) as in Section 5.3.

As mentioned before, we can restrict the variable Y from (5.5) to lie in the matrix

∗-algebra

Aaut(B) ⊗Aaut(A). (5.31)

For our purpose, B is the adjacency matrix of Km,...,m as defined in (1.10) and A =
1
2
W . Therefore, we can consider Y ∈ Aaut(Km,...,m) ⊗ Aaut(W ) and since there is no

symmetry assumption on the weight matrix W we have Y ∈ Aaut(Km,...,m) ⊗ Rn×n.

Revisiting Example 2.2.5 we can see that {At : t = 1, ..., 3} forms a basis of

Aaut(Km,...,m). Let {Eij : i, j = 1, ..., n} denote the standard basis of n×n matrices. We

can choose a basis of Rn×n⊗Aaut(Km,...,m) as {At⊗Eij : i, j = 1, ..., n and t = 1, ..., 3}.
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Then

Y =
3∑
t=1

n∑
i,j=1

ytijAt ⊗ Eij,

for some real numbers ytij. Further, if we denote Yt :=
∑n

i,j=1 y
t
ijEij, we can write

Y =
3∑
t=1

At ⊗ Yt. (5.32)

Define

Xt := ‖At‖2Yt, (t = 1, ..., 3), (5.33)

where ‖A‖ is the Frobenius norm of matrix A. We can now proceed by substituting

(5.32) into(5.5).

Since the At are 0-1 matrices, Y ≥ 0 is equivalent to Yt ≥ 0 for t = 1, ..., 3 and

also equivalent to Xt ≥ 0 for t = 1, ..., 3. The positive semidefinite constraint from

(5.5) becomes

3∑
t=1

At ⊗ Yt � 0. (5.34)

If I is the identity of dimension n and U is the unitary matrix from Theorem 2.1.5,

then (5.34) is equivalent to

(U∗ ⊗ I)(
3∑
t=1

At ⊗ Yt)(U ⊗ I) � 0

and using (2.1) we obtain

3∑
t=1

U∗AtU ⊗ Yt � 0.

Because of the commutativity of Aaut(Km,...,m), U
∗AtU has a diagonal form and

after deleting the repeated eigenvalues we obtain the 3n-dimensional semidefinite

constraint

3∑
t=1

φ(At)⊗ Yt � 0,
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where φ is the *-isomorphism from Example 2.2.5. Using (5.33) we have

3∑
t=1

φ(At)

‖At‖2
⊗Xt � 0.

We can now expand the sum to obtain

1

km

X1

X1

X1

+
1

m

 1
k
X2

0
−1

k(k−1)
X2


+

1

m

 1
k
X3

−1
k(m−1)

X3
1
k
X3

 � 0.

After simple computations we obtain the following three linear matrix inequalities:

X1 +X2 +X3 � 0

(m− 1)X1 −X3 � 0 (5.35)

(k − 1)X1 −X2 + (k − 1)X3 � 0.

Similarly to the computations carried out in Section 5.3, and using properties

from (2.1) and (2.2), we obtain an equivalent formulation of the linear constraints in

(5.5). Thus, trace(I⊗Ejj)Y = 1, j = 1, ..., n, will be equivalent to trace(EjjX1) = 1,

j = 1, ..., n, and therefore X1 = Ikm. Also, trace(Ejj ⊗ I)Y = 1, j = 1, ..., n will be

equivalent to trace(Y1) = 1 and further to

trace(X1) = km. (5.36)

Further, trace(I ⊗ (J − I) + (J − I)⊗ I)Y = 0 yields

trace(X2 +X3) = 0. (5.37)

Eventually, trace(JY ) = n2 reduces to

3∑
t=1

trace(JXt) = n2. (5.38)

The objective function becomes

trace(B ⊗ A)Y =
1

2
trace(A⊗W )Y

=
1

2

3∑
t=1

trace(AAt)trace(WYt) (5.39)

=
1

2
trace(WX2).
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Therefore, the QAP relaxation of Povh and Rendl will reduce, in the case of the

maximum k-section problem, to

max 1
2
trace(WX2)

s.t. trace(Ikm) + trace(JX2) + trace(JX3) = n2

trace(X2 +X3) = 0

Ikm +X2 +X3 � 0

(m− 1)I2m −X3 � 0

(k − 1)Ikm −X2 + (k − 1)X3 � 0

X2, X3 ≥ 0,


(5.40)

where the redundant constraint (5.36) has been eliminated.

To achieve our goal we need more information on the feasible set of (5.40). This

extra information is obtained using linear equalities implied by (5.5), as shown in

Lemma 5.3.1. We have

n∑
i,j=1

Y (ij) = J. (5.41)

It follows from (5.32) that

Y =



Y1 Y3 . . . Y3 Y2 Y2 . . . Y2

Y3 Y1 . . . Y3 Y2 Y2 . . . Y2
...

...
...

...
...

Y3 Y3 . . . Y1 Y2 Y2 . . . Y2

Y2 Y2 . . . Y2 Y1 Y3 . . . Y3

Y2 Y2 . . . Y2 Y3 Y1 . . . Y3
...

...
...

...
...

Y2 Y2 . . . Y2 Y3 Y3 . . . Y1


This and (5.41) imply that

‖A1‖2Y1 + ‖A2‖2Y2 + ‖A3‖2Y3 = J

which further yields

Ikm +X2 +X3 = J.
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It is easy to see this last constraint implies the first two linear constraints and the

first semidefinite constraint from (5.40), so (5.5) reduces to

max 1
2
trace(WX2)

s.t. Ikm +X2 +X3 = Jkm

(m− 1)Ikm −X3 � 0

(k − 1)Ikm −X2 + (k − 1)X3 � 0

X2, X3 ≥ 0.


(5.42)

We can now prove the main result of this section.

Theorem 5.4.4. The optimal values of the SDP problems (5.42) and (5.4) coincide.

Proof. Recall that (5.4) has the following form (n = mk):

max

{
1

2
trace(W (Jkm −X)) | diag(X) = ekm, Xekm = me, X � 0, X ≥ 0

}
.

Given an optimal solution X2, X3 of (5.42), set

X := Jkm −X2 � 0.

The SDP (5.42) appears as problem (10) in Section 4.3 of the paper by De Klerk

and Pasechnik (2009). It therefore follows from Theorem 3.1 in Section 3 of that

paper that X2ekm = m(k − 1)ekm. Hence,

Xekm = Jkmekm −X2ekm

= mkekm −m(k − 1)ekm = mekm,

where we have used the fact that A2ekm = m(k − 1)ekm, for the association scheme

of Km,...,m (see Example 2.2.5). Moreover, it is easy to verify that diag(X2) = 0, so

diag(X) = ekm. We have X = Ikm + X3 ≥ 0; and obviously the objective values of

the two problems coincide.

Conversely, assume that X is feasible for (5.4). Setting

X2 = Jkm −X, X3 = X − Ikm

yields a feasible solution of (5.42) with the same objective function. We have diag(X) =

ekm and X � 0 so Xij ∈ (−1, 1) and X2 ≥ 0. Also, diag(X) = ekm and X ≥ 0 so

X3 ≥ 0 and obviously Ikm +X2 +X3 = Jkm.
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The LMI (k−1)Ikm−X2 +(k−1)X3 � 0 is equivalent to X− 1
k
J � 0. To see that

the latter is true, notice that ekm is an eigenvector of X and the only eigenvalue that

changes is its corresponding eigenvalue. Moreover, this eigenvalue stays nonnegative

since eTkm(X − 1
k
J)ekm = eTkmmekm − 1

k
(mk)2 = 0.

The LMI (m−1)Ikm−X3 � 0 is equivalent to mImk−X � 0. The spectral radius

of X, ρ(X) ≤ ‖X‖∞ and in our case ‖X‖∞ = m, so no eigenvalue is larger than m.

5.5 Numerical results

In this section we present numerical results for the new SDP bound (5.14) and (5.20),

the bound due to Frieze and Jerrum (5.3), and the bound due to Karish and Rendl,

k −GPR2. The matrices have dimensions between 9 and 30 in order to be tractable

with all the approaches. The column “times” in the tables gives the times in seconds

to compute the new SDP relaxation on a dual core Pentium IV (2× 2, 13 GHz) with

2 GB of RAM. The times reported for the new SDP bound include the time to solve

n SDP relaxations, corresponding to n distinct fixings of rows and columns.

In the first table we deal with minimization (to compare with existing results for

minimum bisection), and the second table presents computational results and times

for maximum 3-equipartition.

The instances denoted by R and a number are randomly generated, up to dimen-

sion 21, so that we could also solve them to optimality by exact enumeration. The

instances cb.30.47 and cb.30.56 were taken from the PhD thesis of Ambruster (2007).

The optimal values of these problems were reported in Table C.50 of Appendix A on

page 203 of that thesis.

The instances from Table 5.1 and Table 5.2 are available online at:

http://lyrawww.uvt.nl/~cdobre/equipart_instances.rar.



Table 5.1: Bounds on optimal values of min bisection

problem dimension time (s) FJ new SDP optimum
R1 14 88 4,316,3 4,375.1 4,387
R2 12 33 3,267.9 3,300 3,300
R3 16 185 531.4 538 538
R4 18 356 694.6 701.9 709
R5 20 715 767.3 773 773

cb.30.47 30 10,447 201.22 213 266
cb.30.56 30 10,139 291.82 302 379

Table 5.2: Bounds on optimal values of max 3-equipartition

problem dimension time (s) 3GPR2 new SDP optimum
R6 9 5.47 2,774.54 2,773 2,773
R7 12 39.28 5,265.58 5,255 5,255
R8 15 179.37 8,095.34 8,029.87 8,000
R9 18 676.49 11,526.20 11,460.04 11,459
R10 21 1,743.1 16,316.74 16,238.74 16,175
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