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LONGEVITY RISK

BY

ANJA DE WAEGENAERE∗, BERTRAND MELENBERG∗∗, RALPH STEVENS∗

Summary

Most of the western world has seen a steady increase in the average lifetime of its inhabitants over
the past century. Although the past trends suggest that further changes in mortality rates are to
be expected, considerable uncertainty exists regarding the future development of mortality. This
type of uncertainty is referred to as longevity risk. This paper reviews the current state of the
literature concerning longevity risk. First, we discuss the modeling of future mortality, including
the Lee and Carter (J Am Stat Assoc 87:659–671, 1992)-approach, as well as other approaches.
Second, we discuss the importance of longevity risk for the solvency of portfolios of pension and
life insurance products. Finally, we investigate possibilities for longevity risk management. In par-
ticular, we consider longevity risk management through securitization and/or pension and insur-
ance (re)design.

Key words: longevity risk, risk quantification, risk management

1 INTRODUCTION

Most of the western world has seen a steady increase in the average lifetime
of its inhabitants over the past century. For example, the expected remain-
ing lifetime of a Dutch male aged 65 increased from 13.5 years in 1975 to
17 years in 2007.1 The potential effects of trends in mortality on pension
costs present significant challenges for governments as well as individual pen-
sion funds and life insurers. Biffis and Blake (2009) report that every addi-
tional year of life expectancy at age 65 is estimated to add at least 3% to
the present value of UK pension liabilities. This clearly illustrates the need
to consider interventions that can mitigate the adverse effects on pension and
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insurance providers, while still guaranteeing an adequate level of retirement
and insurance benefits to policyholders. Identifying appropriate interventions
is challenging. The major challenge, however, is not in the trend itself, but in
the fact that the future development of life expectancy is uncertain. Indeed,
although the past trends suggest that further changes in mortality rates are
to be expected, there is considerable uncertainty regarding the future devel-
opment of mortality. Decisions regarding redesign of pension and insurance
systems should therefore appropriately account for the effects of this partic-
ular uncertainty on the costs of pensions. In addition, since interventions in
the design of pension and insurance contracts can mitigate, but not eliminate,
the effects of mortality risk, there will be residual risk. Whereas the focus of
regulators has long been on the risk in financial investments, there is now
increasing awareness that accurate quantification and management of the risk
in pension and insurance liabilities is equally important. For example, the
Solvency II project (Group Consultatif Actuariel Europeen 2006 ), the goal
of which is to redesign financial regulation of insurance companies in the EU,
has put increased emphasis on the valuation and management of pension and
insurance liabilities. Common approaches taken in practice to deal with the
effect of changes in life expectancy have included regularly re-estimating the
value of the liabilities on the basis of newly estimated death probabilities, or
determining the value of the liabilities on the basis of a projected trend in
mortality. These approaches, however, are either retrospective, or do not prop-
erly account for the uncertainty in the future development of mortality. Risk
management practices may need to be adjusted in order to account properly
for uncertainty in the future development of mortality.

This paper reviews the literature on longevity risk (i.e., the uncertainty in
future changes in mortality rates). The focus is on models to forecast the
probability distribution of future mortality rates, approaches to quantify the
effect of longevity risk on pension and insurance liabilities, and possibilities
for risk management.

The paper is organized as follows. In the next section, we formally define
longevity risk, and discuss the distinction to individual mortality risk. We also
show that, in contrast to individual mortality risk, longevity risk does not
become negligible when portfolio size becomes large. Next, in Section 3 we
review the literature on mortality modeling, including the Lee and Carter-
approach, which is nowadays used extensively to model the uncertainty in the
probability distribution of future mortality. In addition to the original Lee
and Carter (1992)-model, we discuss several alternative approaches. More-
over, we decompose longevity risk into process risk and model risk, where
the latter includes as special case parameter risk. Model risk arises due to
a lack of knowledge regarding the correct probability distribution of future
mortality rates, and process risk is the uncertainty in the mortality trends that
remains, even in case we exactly would know the correct probability distribu-
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tion of future mortality rates. Parameter risk is model risk that arises due to
sampling inaccuracy, given a selected model (class), like the Lee and Carter-
model.

In Section 4, we discuss approaches to quantify the importance of longev-
ity risk for portfolios of (pension) annuities. First, we extend Olivieri (2001)
to demonstrate the relative importance of individual mortality risk and lon-
gevity risk, and the effect of portfolio size. Second, we discuss results from
Hári et al. (2008b) regarding the effect of longevity risk on the volatility of
the funding ratio of pension funds. Third, we discuss the approach in Stevens
et al. (2010b), who quantify longevity risk by determining its effect on the
probability of ruin, i.e., the probability that, for a given (re)investment strat-
egy, the current value of the assets will not be sufficient to meet all future
liabilities.2

Finally, in Section 5 we investigate possibilities for longevity risk manage-
ment for life insurers and pension funds, following Cairns et al. (2008a). We
illustrate some aspects of longevity risk management, in particular, the deter-
mination of solvency buffers, and the effect of the product mix as a natu-
ral approach to diversify longevity risk. We also briefly discuss the attempts
to set up a “life market,” a trading place for mortality-based products, that
could be used to hedge or to reduce the longevity risk. Section 6 concludes.

2 LONGEVITY RISK

In this section, we first demonstrate the importance of longevity trends for
annuity providers. Then, we discuss the distinction between longevity risk
and mortality risk, and provide evidence that longevity risk is substantial.
Finally, we discuss the implications of longevity risks for pricing annuities (or
other longevity related assets and liabilities), as well as for risk management
practices.

2.1 Mortality Trends

We first introduce some basic terminology and results related to mortality.
An important quantity is the “one-year death probability,” denoted by q(g)

x,t ,
which quantifies at year t the probability that a person of age x and belong-
ing to group g will not survive another year. The probability that the same
individual survives at least another year is then given by

p(g)
x,t =1−q(g)

x,t . (1)

2 We would like to emphasize that these studies not only use different approaches to quan-
tify longevity risk, but also use different models to forecast future mortality. Any difference
in the magnitude of longevity risk between these studies can be due to either the choice of
method or the choice of forecast model.
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If, for example, group g (Dutch males or Dutch females) is understood, we
suppress the superindex (g). Moreover, if the probabilities would be indepen-
dent of time t , we can simplify even further, by writing qx and px . Assuming
this for the moment, the probability that the same individual (of age x and
belonging to group g, suppressed) survives at least τ more years is then given
by

τ px =
τ−1∏

j=0

px+ j , (2)

where 1 px = px . Using these probabilities, we can derive ex , the expected num-
ber of years the individual will survive:

ex =
∑

τ≥1

τ px . (3)

Thus, seen from year t this individual is expected to die in year t +ex , at age
x + ex .

The above, however, assumes that one-year death probabilities are constant
over time. There is ample evidence that death probabilities change over time.
In Figure 1 we plot the one-year death probability q(g)

x,t for a number of dif-
ferent ages x and two groups g, namely the group of Dutch males and the
group of Dutch females, for the years t =1950 to t =2006, where we normal-
ize by the one-year death probabilities of year t =1950. These one-year death
probabilities are obtained from the Human Mortality Database.3 This figure
clearly illustrates that, at least over longer periods, the one-year death prob-
abilities decrease over time, reflecting the increase in longevity over time. But
then the assumption that the one-year death probabilities are constant over
time is not valid. As a consequence, the probability at year t that an individ-
ual of age x and belonging to group g survives at least τ other years is no
longer given by (2), but, instead, should be calculated as

τ p(g)
x,t = p(g)

x,t · p(g)

x+1,t+1 · · · · · p(g)

x+τ−1,t+τ−1, (4)

using p(g)
x+ j,t+ j =1−q(g)

x+ j,t+ j ; see also (1).
Then, the expected number of years the individual will survive, calculated

at year t , is given by

e(g)
x,t =

∑

τ≥1

τ p(g)
x,t , (5)

instead of (3). Thus, to calculate (5), we need future projections of the one-
year death probabilities q(g)

x,t ′ , for t ′ ≥ t . Not using such projected one-year

3 See www.mortality.org.
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Figure 1 – One-year death probabilities. This figure plots the observed one-year death probabil-
ities for Dutch males (left panel) and Dutch females (right panel), for different ages and for dif-
ferent time periods, normalized to one for the year 1950. The data originates from the Human
Mortality Database

death probabilities might result in a serious underestimation of the expected
number of years an individual will survive and of the expected discounted
value of the annuity. Indeed, Hári et al. (2008b) show that the expected
remaining lifetime changes substantially when future changes in mortality
rates are taken into account.4 For the age x = 65, they report an increase
in the expected remaining lifetime for males from 11.2 years in 1900 to 15.4
years in 2000, and projected to be 16.1 years in 2025, while for females of the
same age these numbers are 11.8 years for 1900, 19.4 for 2000, and the pro-
jected value for 2025 is 20.6.

Such trends obviously have important implications for the value of pension
annuities. As reported in, for instance, Biffis and Blake (2009), every addi-
tional year of life expectancy at age 65 is estimated to add at least 3% to the
present value of UK pension liabilities. Assuming that such numbers apply
more generally, the economic implications of longevity become obvious.

This is confirmed by results from Hári et al. (2008b), who illustrate the
effect of longevity trends on the expected present value of annuity payments.
Specifically, they consider a (deferred) annuity that pays off one Euro

4 These projections are based on a model, proposed by Hári et al. (2008a).
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(in arrears) every year that the annuitant survives, and is older than 65. The
expected present value, at time t , for an annuitant aged x belonging to group
g is given by:

ã(g)
x,t =

∑

τ≥max{65−x,0}
τ p(g)

x,t · P(τ )
t , (6)

where P(τ )
t denotes the market value, at time t , of a zero-coupon bond matur-

ing at time t +τ (i.e., the date-t value of one Euro to be paid in period t +τ ).
Table 1, taken from Hári et al. (2008b), shows ã(g)

x,t as a function of age, for
ages varying from 25 to 85 based on so-called period tables (first column), i.e.,
assuming that q(g)

x,t ′ =q(g)
x,t , for t ′ ≥ t = 2004, and based on forecasted one-year

probabilities (second column),5 for groups of men and women. Comparison
of the first and the second columns reveals that the present value of annu-
ity payments based on period life tables underestimates6 the value based on
forecasted death probabilities by 7.7% for a 25-year-old man and 8.8% for a
25-year-old woman. For the 65-year-old, the corresponding numbers are 0.4%
and 1.7%, respectively.

2.2 Sources of Mortality Risk

While the above illustrates the importance of mortality trends for pension
providers, there is at hand a more challenging issue. Indeed, Figure 1 shows
not only that the one-year death probabilities (on average) decrease over time,
but also that this decrease is different for various ages and different for males
and for females in an (at least to some extent) unpredictable way. When extrap-
olating this finding to forecasting future one-year death probabilities, it seems
quite implausible to assume that we would be able to know these future
one-year death probabilities in a deterministic way, without any uncertainty.
Instead, it would seem more realistic to deal with this uncertainty, by assum-
ing that the one-year death probabilities q(g)

x,t ′ are stochastic at time t , for t ′ > t .
If so, we are confronted with longevity risk: the probability at year t that an
individual of age x and belonging to group g survives at least τ other years
(see (4)) is not known deterministically, but is random. The literature there-
fore distinguishes two sources of mortality risk:7

5 In Hári et al. (2008b) longevity risk is already taken into account at this stage, but for
pedagogical reasons only we proceed as if the forecasts are deterministic. Hári et al. (2008b)
employ a term structure of interest rates calibrated on the interest rates in 2004.
6 There are some exceptions for elderly men, due to the specific forecasted mortality rates
employed by Hári et al. (2008b).
7 The literature also distinguishes so-called mortality catastrophe risk , which relates to the
risk of higher than expected mortality (for example due to an epidemic). The focus in our
paper is on individual mortality risk, and, more importantly, longevity risk.
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TABLE 1 – MARKET VALUE OF ANNUITIES

Age Men Women

Period table Projected table Period table Projected table

25 0.872 0.944 1.038 1.139
30 1.193 1.279 1.418 1.541
35 1.633 1.733 1.939 2.086
40 2.238 2.350 2.654 2.827
45 3.079 3.198 3.643 3.840
50 4.255 4.373 5.023 5.240
55 5.918 6.022 6.950 7.177
60 8.279 8.356 9.606 9.831
65 10.403 10.441 11.969 12.179
70 8.669 8.677 10.333 10.508
75 6.897 6.881 8.490 8.617
80 5.191 5.151 6.535 6.593
85 3.723 3.675 4.643 4.680

The table shows the market value of the annuity, as a function of age, based on period
tables (first column), and based on forecasted mortality rates (second column), for men and for
women, where the forecasted mortality rates are assumed to be deterministic (see footnote 5).
Source: Hári et al. (2008b)

• Individual mortality risk refers to the risk due to the fact that, for given
death probabilities, an individual’s remaining lifetime is a random variable;

• Longevity risk refers to the risk as a consequence of longer term deviations
from deterministic mortality projections.

As a consequence of longevity risk, the expected number of years the indi-
vidual will survive, calculated at year t (see (5)) becomes random (as well
as all other quantities that depend on future one-year death probabilities).
Thus, for instance, the above mentioned expected remaining lifetimes taken
from Hári et al. (2008b) are just point estimates. Figure 2 illustrates the evolu-
tion of the probability distribution of the expected remaining lifetimes e(g)

x,t for
the groups g of Dutch males and Dutch females of age x =65, for the years
t =2007 to 2050, when the future death probabilities are assumed to be ran-
dom, as will be described in the next section.8 The graph shows a num-
ber of quantiles (ranging from the 0.10- to the 0.90-quantile). The figure
shows that there is already substantial longevity risk in the earliest projections

8 We use the quantification described in the appendix of Stevens et al. (2010a,b), which
allows for both process and model risk, to be explained in the next section.
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Figure 2 – Expected remaining lifetimes. In this figure we plot quantiles (10, 25, 50, 75, 90%) of

the distribution of the expected remaining lifetime e(g)
x,t for the group g of Dutch males (left panel)

and Dutch females (right panel) of age x = 65, for the years t = 2007 to 2050. The quantification
of the longevity risk is described in Stevens et al. (2010b)

corresponding to t = 2007.9 The quantile intervals for the remaining lifetime
of a 65-year old in t =2050 are even much wider.

The significant degree of uncertainty in future expected lifetimes suggests
that the effect of uncertain changes in mortality on the value of pension lia-
bilities may also be substantial.

2.3 On the Importance of Longevity Risk

In this subsection, we demonstrate that longevity risk, in contrast to individ-
ual mortality risk, cannot be diversified away by increasing portfolio size. We
discuss the implications for the pricing of longevity-linked assets or liabilities,
as well as for the risk management practices of pension funds.

In order to do so, we consider a pool of immediate life annuities sold to
N individuals of age x belonging to group g in year t . The annuity pays off
one Euro (in arrears) to an individual every year that this individual survives.
Assume a constant and risk free annual interest rate r , and denote by 1i,t+τ

9 It is a picture similar to that in Dowd et al. (2008), see also Biffis and Blake (2009), who
consider the UK population. The figure clearly illustrates that the expected remaining lifetimes
of 65-years old are projected to increase in the future.
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the dummy variable equal to one in case annuitant i is still alive at time t +τ .
Then the present value at time t of the annuity payments to annuitant i in
years t + τ , τ �1, is given by

Yi =
∑

τ�1

1i,t+τ

1
(1+ r)τ

. (7)

For the sake of argument, first assume that future death probabilities are
known with certainty (i.e., there is individual mortality risk, but no longev-
ity risk). Then, the expected present value at time t of the annuity payments
to annuitant i is given by

a(g)
x,t =

∑

τ≥1

E
[
1i,t+τ

] 1
(1+ r)τ

=
∑

τ≥1

τ p(g)
x,t

1
(1+ r)τ

. (8)

Using a pooling argument, this expected discounted value is also the fair
price of the annuity. The fair price of Yi will be equal to the fair price of
1
N

∑N
i=1 Yi . Assume that the Yi are independent, with expected value μ =

E (Yi ) and variance σ 2 =Var (Yi ). Then the variance of 1
N

∑N
i=1 Yi can be cal-

culated as

Var

(
1
N

N∑

i=1

Yi

)
=σ 2/N . (9)

In case N becomes very large, 1
N

∑N
i=1 Yi becomes risk free, and its fair price

(like the fair price of Yi ) equals its expected discounted value, i.e., there is
no risk premium.10 Thus, the one-year death probabilities q(g)

x,t , and the cor-
responding survival probabilities as defined in (1) and (2), represent mortality
risk at the individual level, which, however, can be eliminated by an insurance
company or pension fund by means of pooling. As a consequence, this indi-
vidual mortality risk should not be priced.

With longevity risk, however, the fair price of the annuity (and other prod-
ucts with a payoff that depends on future survival outcomes) typically will

10 A no arbitrage argument goes as follows. Let Yi,τ denote the payoff of the annuity at time
τ = t ′ − t , and let p denote the no arbitrage price of Yi,τ . Suppose Mτ is the relevant Stochas-
tic Discount Factor, such that p =E

(
Mτ Yi,τ

)
. Then, assuming that the Mτ Yi,τ are identically

distributed for different i , we have

p = (
Mτ Yi,τ

)=E

⎛

⎝Mτ

⎛

⎝ 1
N

∑

i

Yi,τ

⎞

⎠

⎞

⎠=E (Mτ )E

⎛

⎝ 1
N

∑

i

Yi,τ

⎞

⎠+Cov

⎛

⎝Mτ ,
1
N

∑

i

Yi,τ

⎞

⎠ .

Using |Cov
(

Mτ , 1
N

∑
i Yi,τ

)
| ≤ σ (Mτ ) σ

(
Yi,τ

)
/N , we find, for N → ∞, p = E

(
Yi,τ

)
E (Mτ ) =

E
(
Yi,τ

) 1
(1+r)τ

.
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include a (longevity) risk premium. To illustrate this, we return to the annuity
portfolio (see (7)). Conditional upon the future death rates at time t , given by
the set

Ft =
{

q(g)
x,t+τ | τ �1

}
,

it still makes sense to assume that the payoffs Yi are independent, with now
mean μ(Ft ) and variance σ 2 (Ft ), both depending on Ft . However, when
calculating the (unconditional) variance of 1

N

∑N
i=1 Yi we have to take into

account that Ft , the one-year probabilities, are random due to longevity risk.
We find

Var

(
1
N

N∑

i=1

Yi

)
=E

(
Var

(
1
N

N∑

i=1

Yi

)∣∣∣∣ Ft

)
+Var

(
E

(
1
N

N∑

i=1

Yi

)∣∣∣∣ Ft

)
.

Therefore,

Var

(
1
N

N∑

i=1

Yi

)
=E

(
σ 2 (Ft )

)
/N +Var (μ (Ft )) . (10)

The first term on the right hand side (corresponding to the pooling effect) still
vanishes with increasing N . However, the second term (reflecting the effect of
longevity risk) is independent of N . Thus, with longevity risk, even when N
becomes very large, 1

N

∑N
i=1 Yi does not become risk free anymore. As a con-

sequence, the pooling argument no longer results in an elimination of mortal-
ity risk: longevity risk remains, and products whose payoffs depend on future
mortality typically will include a (longevity) risk premium. Thus, the expected
value E (Yi ) = E (μ (Ft )) may no longer be the fair value of the annuity. We
shall refer to this expectation as the best estimate. From the point of view of
an insurer or pension fund, this best estimate might be seen as a lower bound
of the value of the annuity (as a liability).

The result that longevity risk cannot be diversified away using pooling has
important implications for both pricing and risk management. First, this non-
diversifiability implies that the price of a longevity linked asset or liability is
likely to include a (longevity) risk premium. However, annuity payoffs (as well
as the payoffs of other products depending on future survival outcomes) typ-
ically cannot be hedged by currently traded financial products.11 As a con-
sequence of this market incompleteness, arbitrage arguments are insufficient
to obtain unique market prices of annuities and related products. This seri-
ously complicates the fair valuation of liabilities depending on future survival

11 Sometimes, there are natural hedge possibilities, see, for example, Milevsky and Promislow
(2001) or Cox and Lin (2007). See also Section 5.3.
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outcomes due to the presence of a (longevity) risk premium. The current lit-
erature devotes considerable attention to this pricing problem. Specifically,
traditional finance approaches (risk-neutral pricing theories, see, for example,
Cairns et al. 2006a) as well as actuarial pricing approaches (Wang’s premium
principle, see, for example, Lin and Cox 2005) receive considerable attention.
However, market incompleteness implies that calibrating these pricing mod-
els remains difficult. For a recent and thorough overview of the literature on
pricing longevity risk, we refer to Bauer et al. (2010).

Second, non-diversifiability has important implications for risk manage-
ment. Indeed, the traditional approach used in case of individual mortality
risk is to reduce the risk by increasing portfolio size, for example, by mutual
reinsurance. As discussed above, however, increasing the portfolio size does
not reduce the impact of longevity risk, so that other risk management tools
need to be applied. In order to investigate this further, a first important step
is the modeling of the probability distribution of future mortality, which we
will discuss in the next section. In Section 4, we then illustrate how mortality
models can be used to quantify the effect of longevity risk, and evaluate the
effectiveness of risk management practices in the presence of longevity risk.

3 MODELING FUTURE MORTALITY

In this section we discuss the quantification of the uncertainty in the proba-
bility distribution of future mortality. Reviews of such a quantification include
Booth et al. (2006), Pitacco (2004), Tabeau (2001), and the recent mono-
graphs by Girosi and King (2008) and Pitacco et al. (2009) . See also
Benjamin and Soliman (1993), Delwarde and Denuit (2006), Cairns et al.
(2008a) and Hári (2007).

The starting point of the analysis is the (raw) central death rate12 or
observed per capita number of deaths, defined by m(g)

x,t = D(g)
x,t /E (g)

x,t , where
D(g)

x,t denotes the number of people with age x in group g that died in year
t , and where E (g)

x,t denotes the so-called exposure, being the number of person
years in group g with age x in year t . These central death rates are typically
observed on a yearly basis, ranging from age x =0 to some maximum age, like
x =110, while the time index t ranges from some starting year, normalized as
t =1 up to some recent year t = T . The number of deaths D(g)

x,t and the expo-
sure E (g)

x,t can be obtained from population statistics, where the exposure is
usually approximated.13 Given m(g)

x,t for all age groups x , one can calculate the
one-year death probabilities q(g)

x,t , see, for example, McCutcheon and Nestbitt

12 Raw refers to as observed in the data.
13 For more details, see, for instance, Gerber (1997) or the technical report corresponding to
the Human Mortality Database.
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(1973). However, since this is a complicated relationship, one usually makes
some additional assumptions to obtain an easier link between m(g)

x,t and q(g)
x,t .

For instance, assuming that the exposure is linear in x , results in the relation-
ship

q(g)
x,t = m(g)

x,t

1+ 1
2 m(g)

x,t

. (11)

Alternatively, one makes assumptions such that the central death rate equals
the so-called force of mortality,14 in which case one obtains

q(g)
x,t =1− exp

(
−m(g)

x,t

)
. (12)

When quantifying longevity risk, one typically models the evolution of the
raw central death rate m(g)

x,t or the one year death probabilities q(g)
x,t over time

for a given group g. In case of the central death rate this results in a decom-
position of the raw central death rate in a systematic part, say m̃(g)

x,t , and a
remaining idiosyncratic part. The systematic part is then projected into the
future, and Equations (11) or (12) are used to find the projected future one-
year death probabilities, using the systematic part of the central death rates,
instead of the raw versions. In case of the one year death probabilities the
modeling will result in a decomposition into a systematic and idiosyncratic
part, but now in terms of these one year death probabilities, and again the
systematic part (̃q(g)

x,t ) is projected into the future. Since the models used to
quantify central death rates or the one year death probabilities typically con-
sider a fixed group g, we shall suppress the superindex g in the remainder of
this section. In the next subsection, we first briefly review the earlier modeling
of mortality. In Section 3.2 we review the Lee and Carter (1992)-approach,
while in Section 3.3 we discuss some recent developments.

3.1 Dynamic Mortality Laws

For a given time period t , m̃x,t or q̃x,t might be parameterized in some partic-
ular way. Such parameterizations are often called “mortality laws,” describing
mortality (at time t) as a function of age x . Early mortality laws include the
“Gompertz law” (Gompertz 1825), “Makeham’s law”(Makeham 1860), and
“Thiele’s law” (Thiele 1872). A more recent version is the “Heligman-Pollard

14 The force of mortality is defined as μ
(g)
x,t = lim�t→0 P

(
0≤ T (g)

x,t ≤�t
)

/�t , where T (g)
x,t

denotes the remaining lifetime at time t of an individual of age x belonging to group g. When
the force of mortality is constant within bands of time, i.e., μx,t+τ =μx,t , for 0≤ τ <0, then
the force of mortality equals the central death rate. See, for instance, Gerber (1997) for further
details.
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Figure 3 – Log mortality and Lee-Carter fit (Dutch males, using Girosi and King 2006)

law” (Heligman and Pollard 1980), which states (for some given time t , with
t suppressed)

q̃x = A(x+B)C + D exp
(
−E (log x − log F)2

)
+ G H x

1+ G H x
, (13)

where A-H are (unknown) parameters. This law consists of three components,
the first of which aims to capture infant and childhood mortality, the second
one adult mortality,15 and the third one the mortality of the elderly.

An obvious way to obtain dynamic mortality models, is to fit some given
mortality law each period t for which data is available, with some or all
parameters time dependent. The resulting time series of time-dependent
parameter values can then be quantified using appropriate statistical or econo-
metric models. Using such models makes forecasting future mortality trends
as well as quantifying longevity risk a straightforward exercise, at least, the-
oretically. However, as argued by, for instance, Tabeau (2001), fitting mortal-
ity laws per period with time dependent parameters, typically generates rather
unstable results, making forecasting mortality trends using this approach from
a practical point of view quite difficult, if not impossible. One way to avoid
the instability is to combine a mortality law with age and time dependent
polynomials, see, for instance, Renshaw et al. (1996). Using polynomials of
sufficient order allows quite an accurate in-sample fit. However, using higher
order polynomials to make out-of-sample forecasts typically does not work
well, see, for example, Bell (1984) for further clarification.

15 More precisely, the so-called “accident hump,” see Figure 3.
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3.2 The Lee and Carter Approach

Lee and Carter (1992) propose a parsimonious dynamic mortality model that
turned out to perform quite well. The model postulates

ln
(
mx,t

)=αx +βxκt + εx,t , (14)

with time-independent parameters αx and βx , and a (white noise) error term
εx,t , where {κt } is a one-dimensional underlying time-dependent latent pro-
cess that quantifies the evolution of mortality over time. The parameter αx

quantifies the level of the log central death rate of age x , while the param-
eter βx quantifies the age x-specific sensitivity of the log central death rate to
changes in the group-wide evolution (improvement) as represented by κt . The
error term εx,t captures the age and time specific variations around the sys-
tematic trend. Due to lack of identification, Lee and Carter (1992) normalize
by setting

∑
x βx = 1 and

∑
t κt = 0, where the first sum is over all available

ages and the second sum over all time periods available in the sample.
Lee and Carter (1992) proposed estimating the model in three steps. In the

first step, Singular Value Decomposition (SVD) is applied to find the unique
least squares solution (given the normalizations) yielding {̂κt }, {̂αx }, and

{
β̂x

}
.

The estimated {̂κt } are then adjusted to ensure equality between the observed
and model-implied number of deaths in a certain period (i.e., {̂κt } is replaced
by {̃κt }) such that

∑

x

Dx,t =
∑

x

[
Ex,t exp

(
α̂x + β̂x κ̃t

)]
, (15)

with Dx,t the number of deaths and Ex,t the exposure, introduced at the
beginning of this section. This readjustment is done in order to avoid sizeable
differences between the number of observed deaths and the model-implied
number of deaths. The systematic part, defined as m̃x,t = exp (αx +βxκt ), is
estimated by ̂̃mx,t = exp

(
α̂x + β̂x κ̃t

)
. Finally, the Box-Jenkins method is used

to identify and estimate the dynamics of the latent factor κ̃t . Lee and Carter
(1992) find as a process for the dynamics of the latent factor a random walk
with drift, i.e.,

κt = c +κt−1 + δt , (16)

with c the drift term, and with {δt } a white noise process, assumed to follow a
normal distribution with mean zero and variance equal to σ 2

δ . The parameters
c and σ 2

δ can be estimated applying standard statistical or econometric time-
series techniques.

To avoid the second step of this three-step procedure, Wilmoth (1993)
proposed a weighted Singular Value Decomposition. In addition, Lee and
Miller (2001) proposed replacing the matching according to Equation (15) by



LONGEVITY RISK 165

a matching on the basis of observed and modeled life expectancy. Moreover,
these authors suggest restricting the sample period to a recent time period, in
order to avoid a potential misspecification due to a violation of the assump-
tion of constant αx and βx . Booth et al. (2002) suggest using statistical tech-
niques to select an appropriate sample period, in line with the assumption of
constant αx and βx .

The Lee and Carter (1992)-model can easily be extended to include more
time factors (in addition to κt ) (see Renshaw and Haberman (2003a)). How-
ever, Tuljapurkar et al. (2000), investigating the G7 countries (Canada, France,
Germany, Italy, Japan, UK, and US),16 find that a single factor (as in the
original Lee and Carter (1992) specification) already suffices to explain over
94% of the variance in the log-specific raw central death rates. Nevertheless, to
improve the forecast performance, it might be better to include an additional
cohort-specific factor (see Renshaw and Haberman 2006).

Mortality projections can be obtained by first predicting future values κ̃T +t

(with T the final year of the sample), then predicting the systematic part of
the future central death rates as

̂̃mx,T +t = exp
(
α̂x + β̂x κ̃T +t

)
, (17)

and, finally, calculating the corresponding projected future one-year death
probabilities qx,T +t , using Eq. (11) or (12). Alternatively, Lee and Miller
(2001) suggest predicting the future central death rates m̃x,T +t using the
observed (raw) central death mx,T of the final year in the sample as a jump-
off value, i.e., to calculate

̂̃mx,T +t =mx,T exp
(
β̂x (̃κT +t − κ̃T )

)
. (18)

In this way, a jump-off bias can be avoided.
Longevity risk arises, first of all, due to the random character of κ̃T +t ,

whose exact values are of course unknown at time T , even if its distribu-
tion function would be exactly known. This longevity risk is referred to as
process risk. In addition, there is model risk: since we do not know the exact
distribution of κ̃T +t , we have to model it, possibly incorrectly, which gener-
ates model risk. In particular, if we estimate the probability distribution of
κ̃T +t , like in the Lee and Carter-approach, there is model risk due to the sam-
pling error in the estimated parameters α̂x , β̂x , for all ages x , and in the esti-
mates of the drift term c and variance σ 2

δ of the random walk. This particular
model risk is referred to as parameter risk.17 To quantify these risks, Lee and

16 For a more recent multi-country comparison of various stochastic mortality models, see,
for example, Booth et al. (2006).
17 There are other sources of model risk as well. For instance, the Lee and Carter (1992)
model class might be too small, not containing the actual distribution of κ̃T +t . This is also
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Carter (1992) suggest using a bootstrap method. They focus on the parameter
risk in the time process (16) only, arguing that the parameter risk in αx and
βx is small. Koissi et al. (2006) extend the bootstrap procedure to include all
parameter risk. See also Renshaw and Haberman (2008).

The longevity risk, which consists of process and parameter risk, can be
illustrated by a reformulation of the Lee and Carter (1992)-model by Girosi
and King (2006). First, let


t =
⎛

⎜⎝
ln

(
m1,t

)

...

ln
(
mma,t

)

⎞

⎟⎠ , (19)

with ma the maximum age considered; similarly, let α = (α1, . . . , αma)′, β =
(β1, . . . , βma)′, and εt = (

ε1,t , . . . , εma,t
)′. Then, using (16),


t =α +βκt + εt

=βc + (
α +βκt−1 + εt−1

)+ (
βδt + εt − εt−1

)

= θ +
t−1 + ζt (20)

with

θ =βc, ζt =βδt + εt − εt−1.

The Lee and Carter (1992)-model rewritten in this way can easily be estimated
and used to make predictions and to quantify the longevity risk. For instance,
with �
t =
t −
t−1, we can estimate θ simply by the time average of �
t , i.e.,
by

θ̂ = 1
T −1

T∑

t=2

�
t = 1
T −1

(
T −
1) . (21)

This estimator has well-known (T -asymptotic) characteristics (depending on
the distributional assumptions imposed on ζt ), implying that making predic-
tions as well as quantifying the longevity risk becomes a standard exercise
in statistics or econometrics (both theoretically and practically). In Figure 3
the left panel shows the logarithm of the raw central death rates of Dutch

Footnote 17 continued
a source of model risk: we might require a more extensive or an other model class than
the Lee and Carter (1992)-model class if we want to include the actual distribution of κ̃T +t .
Possible other model classes, corresponding to much more (model) longevity risk, are discussed
in the next subsection. However, the limited availability of mortality data makes it quite hard
to determine whether the Lee and Carter (1992) model class is large enough or not. In this
paper, we focus on model risk within the Lee and Carter (1992)-model class.
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males for ages 0 to 99 years and age class 100–110 years (indicated as age
100), over the sample period 1977 to 2006. This graph shows for each year
the typical pattern of mortality as a function of age, starting rather high
at age zero, revealing the level of infant mortality, then going down rather
steeply to around age 10, and then increasing slowly, with a hump around
age 20. This hump is typical for Dutch males, absent in the similar graph for
Dutch females.18 The right panel of Figure 3 shows the fitted values of the
Girosi and King (2006)-variant of the Lee and Carter (1992) model, showing
that this parsimonious model seems to be able to fit the mortality patterns
observed in the data quite well.

Next, we illustrate in Figure 4 the 30 year ahead prediction of the loga-
rithm of the central death rates for 65 year old Dutch males and females,
using the Girosi and King (2006) -variant of the Lee and Carter (1992) model.
The prediction starts at the year 2007, the first year after the available sample
period. In this figure we also include longevity risk, distinguishing between
only process risk and the combination of process and parameter risk (in both
cases 95% confidence intervals). The graphs show a clear estimated downward
trend, both in-sample and predicted out-of-sample. In case of 65 year old
males this trend corresponds to a decrease of the one-year death probability19

of 0.0269 at the beginning of the sample (1977) down to 0.0141, predicted 30
years ahead, a decrease of almost 50%. In case of females, the one year death
probability in 1977 equals 0.0120 and is predicted to go down to 0.0084, pre-
dicted 30 years ahead, a decrease of around 30%. However, these predictions
are surrounded with substantial longevity risk (consisting of both process and
parameter risk), including (with 95% confidence according to the model) no
further decrease in mortality as well as a much more steeper decrease than
during the sample period.

3.3 Recent Dynamic Mortality Models

The number of deaths is an integer-valued variable. Therefore, a Poisson pro-
cess might be a more plausible way to model the number of deaths. Brouhns
et al. (2002a) model the integer-valued number of deaths Dx,t as a Poisson
distributed random variable,

Dx,t ∼Poisson
(
Ex,t m̃x,t

)
, (22)

with the systematic part of the central death rate m̃x,t modeled as m̃x,t =
exp (αx +βxκt ), comparable to the Lee and Carter (1992)-model. The model
can be estimated following the same steps as in the original Lee and Carter

18 In case of other countries, this hump is typically observed for both males and females.
19 Calculated using Eq. (12).
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Figure 4 – Predicting log mortality (using Girosi and King (2006) -variant of Lee-Carter)

(1992)-approach, but with the first step replaced by maximum likelihood
using, for instance, the iterative method proposed in Goodman (1979). Brouhns
et al. (2005) discuss bootstrapping the Brouhns et al. (2002a)-model in order
to quantify the longevity risk.

Cossette et al. (2007) propose as adjustment of the Lee and Carter (1992)-
model to model the number of deaths as a Binomial process

Dx,t ∼Bin
(
Ex,t ,qx,t

)
, (23)

with qx,t modeled as qx,t = 1 − exp
(−m̃x,t

)
, according to Eq. (12). The sys-

tematic part of the central death rate (or force of mortality) is again modeled
in line with Lee and Carter (1992) as m̃x,t = exp (αx +βxκt ). This model can
be estimated like the Brouhns et al. (2002a)-model, and the longevity risk can
be quantified by means of bootstrapping.

The Lee and Carter (1992)-model implicitly assumes that there is no
heterogeneity in the measurement error terms εx,t , see (14). Li et al. (2006)
propose a way to incorporate heterogeneity into the Brouhns et al. (2002a)-
variant of the Lee and Carter (1992)-model. Alternatively, Delwarde et al.
(2007) suggest to use the Negative Binomial distribution to allow for more
heterogeneity.

The Lee and Carter (1992)-model results in estimates for the parameters
αx and βx for each given age x . Using αx and βx for each year of age might
result in localized age induced anomalies. Lee and Carter (1992) proposed
to have age groups

(
[0, 1), [1, 5), [5, 9) . . . , [80, 85)

)
, and in addition the

age group [85, 109). Such age groups avoid localized age induced anomalies.
However, this method leads to mortality rates that are equal for age groups
of five years. Such an approximation might be quite crude, especially for
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valuating pension contracts. Renshaw and Haberman (2003b) propose to first
estimate the parameters of the model using the one-year age groups and then
to smooth using, for instance, a cubic spline. More recently, Delwarde et al.
(2007) propose to smooth the βx parameters as part of the first step, using a
penalized log-likelihood approach in the Brouhns et al. (2002a)-variant of the
Lee and Carter (1992)-model.

The Lee and Carter (1992)-approach also has some drawbacks. An impor-
tant drawback follows from the reformulation by Girosi and King (2006). As
follows from the estimator (21), see also Figure 4, the drift term of the ran-
dom walk can be estimated by fitting a line for each age x through the first
and final observation of the ln

(
mx,t

)
in the sample. Extrapolating these lines

yields the age specific mid-points of the mortality projections (the “point esti-
mates”). However, as long as the lines corresponding to different ages are not
parallel, this implies that (very) long term mortality projections might become
quite implausible, as is clearly illustrated in Girosi and King (2006), see also
Girosi and King (2008). Their solution is to work with appropriate priors.

The problem of deviating long term forecasts might become even worse
when the Lee and Carter (1992) methodology is applied to different groups
g, each with its own specific process {κ(g)

t }, representing the evolution of mor-
tality over time. However, Wilson (2001) documents a global convergence
in mortality levels. Li and Lee (2005) propose to adapt the Lee and Carter
(1992)-approach by first identifying the central tendency, resulting in a com-
mon random walk with drift process {κt }, representing the joint evolution
over time, and then to find the group specific stationary time processes {κ(g)

t },
that represent the short term group g deviations from the common time
trend.

Finally, the Lee and Carter (1992)-model can only be used for groups
for which sufficient data on mortality of different ages is available. Typi-
cally, this is an entire population of males and/or females of a country or
a large region. However, the relevant population for an insurance company
or a pension fund might deviate from the population for which data is avail-
able. For instance, Brouhns and Denuit (2002) and Denuit (2008) find that
there is a significantly lower mortality rate for the group of insured individ-
uals that were investigated compared with the whole male and female Bel-
gian population. This might limit the applicability of the Lee and Carter
(1992)-approach. Plat (2008) proposes a way to construct a portfolio-specific
stochastic mortality model.

Next to the Lee and Carter (1992)-time series based stochastic mortal-
ity models, there are also other classes of time series based stochastic mor-
tality models, for instance, imposing extra smoothness. Cairns et al. (2006b)
propose a model that builds in smoothness in mortality rates across adjacent
ages in the same year. Currie et al. (2004) propose a model assuming
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smoothness across both ages and years. Cairns et al. (2007, 2008b,c) provide
an extensive comparison of these various time series based stochastic mortal-
ity models.

To illustrate the effect of smoothing we present in Figure 5 an applica-
tion of the Currie et al. (2004)-method in terms of the logarithm of the cen-
tral death rate, using the same data as in case of Figs. 3–4. The upper panels
contain the in-sample results for 65 year old males (left) and females (right).
These graphs show that the evolution of mortality over time has some curva-
ture, which is captured quite well and in a smooth way by the Currie et al.
(2004)-method (which employs so-called B-splines). Such a curvature will not
be captured by the Lee and Carter (1992) model. In case of males there seems
to be some acceleration in the decrease of mortality, while for females there
is at first some slowing down and then again a slight acceleration in the
decrease of mortality. The lower panels show the 30 years ahead predictions
including 95% confidence intervals reflecting the longevity risk. The accelera-
tion with regard to the males is translated into forecasts that are much lower
than those derived from the Girosi and King (2006)-variant of the Lee and
Carter (1992) model. In fact, 65 year old males and females are predicted to
have more or less the same mortality characteristics 30 years from now. How-
ever, the longevity risk is quite substantial, leaving the possibility (with 95%
confidence according to the model) of a wide variety of possible future mor-
tality trends. The result of much wider prediction intervals, when changing the
model from Lee and Carter (1992) to Currie et al. (2004), shows the impor-
tance of taking into account model risk.

4 QUANTIFYING LONGEVITY RISK

There are several studies that illustrate the importance of longevity risk for
pension funds and insurance companies. The approaches differ both in terms
of how longevity risk is quantified, and in terms of how the probability
distribution of future mortality is modeled. For the former, we distinguish
three approaches. First, an often used approach to quantify longevity risk in
annuity portfolios is to determine its effect on the probability distribution of
the present value of all future payments, for a given, deterministic, and con-
stant term structure of interest rates (see, for example, Olivieri 2001, Brouhns
et al. 2002b , Dowd et al. 2006, and Cossette et al. 2007). Next, there is some
literature that focuses on the effect of longevity risk on a pension fund’s prob-
ability of underfunding (Olivieri and Pitacco 2003, Hári et al. 2008b). Finally,
longevity risk can be quantified by determining its effect on the probability of
ruin for a portfolio of longevity-linked liabilities (Olivieri and Pitacco 2003,
Stevens et al. 2010b).

With regard to modeling the probability distribution of future mortality,
several approaches discussed in the previous section are used, with the most
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Figure 5 – Smooth log mortality estimation and prediction (using Currie et al. (2004))

popular among them the variants of the Lee and Carter (1992)-approach.
For example, Brouhns et al. (2002a) use the variant with the Poisson distri-
bution, and Cossette et al. (2007) use the variant with the Binomial distri-
bution. Olivieri (2001) and Milevsky et al. (2006) instead present theoretical
studies showing the implications of longevity risk in a setting where uncer-
tainty in future mortality is modeled by means of three hypothetical scenar-
ios. Other illustrations and references can be found in the review articles and
monographs, mentioned at the beginning of the previous section.

In Sections 4.1, 4.2, and 4.3, we discuss the approaches in Olivieri (2001),
Hári et al. (2008b), and Olivieri and Pitacco (2003), respectively. In each case,
we consider a given and fixed date t , and quantify the effect of longevity risk
on the liability payments in all future years.

Throughout this and the following section, we denote B E Lτ for the best
estimate value of the liabilities at date τ ≥ t , which is defined as the market
value of the liabilities in the best estimate scenario for future mortality devel-
opment, i.e.,
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B E Lτ :=
∑

s≥1

Eτ

[
L̃τ+s

] · P(s)
τ , (24)

where L̃τ+s denotes the liability payment at time τ + s, P(s)
τ denotes the date-

τ market value of a zero-coupon bond maturing at time τ + s, and Eτ [·]
denotes the expectation, conditional on death rates up to time τ .

4.1 Discounted Present Value of Liabilities

In this subsection we discuss the analysis in Olivieri (2001), who focusses on
the relative importance of individual mortality risk and longevity risk. She
quantifies longevity risk in annuity portfolios by determining its effect on the
probability distribution of the present value of future payments. The one-year
death probabilities are assumed to follow the mortality law of Heligman-Pol-
lard. Olivieri (2001) incorporates longevity risk by considering three possi-
ble future scenarios (a worst case, a medium case, and a best case). In this
subsection, we replicate her results, but instead of assuming three possible sce-
narios in terms of the Heligman-Pollard mortality law, we model the uncer-
tainty in the probability distribution of future mortality following Stevens
et al. (2010a). This means that we include process and parameter risk in the
future death probabilities on the basis of the Lee and Carter (1992)-approach.
In addition, we shall allow for uncertainty in the model-variant choice: We
include next to the traditional Lee and Carter (1992)-model also the variants
proposed by Brouhns et al. (2002a) and Cairns et al. (2007). In this way we
also allow for model risk.20

For a given and fixed year t , we consider the present value of all future
payments in a portfolio of pension annuities. There are N annuitants, all of
age x = 65 at time t . In our case t corresponds to the year 2006. The annu-
ity pays off one Euro every year that the annuitant survives. The time-t pres-
ent value of the annuity payments to annuitant i , denoted by Yi , is defined in
(7), where we shall assume a constant annual interest rate, equal to r =0.04.
Conditional upon the one year death probabilities after time t , we can calcu-
late the expected value of the present value Yi , for a given i , resulting in a(m)

65,t

for the Dutch male and in a( f )

65,t for the Dutch female, where a(g)
x,t is defined

in Eq. (8). Without longevity risk, this expectation would be the fair value
of the annuity. In Figure 6 we present the distributions of a(m)

65,t and a( f )

65,t ,
when the future death probabilities are random as described above (including
process, parameter, and model risk). The distribution for females (around just
below 13 Euro) is shifted to the right compared to the distribution of males

20 For a detailed description we refer to the appendix of Stevens et al. (2010a or 2010b).
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Figure 6 – Distribution annuity portfolio. This figure presents the distribution of the annuity
portfolio at time t =0 (corresponding to the year 2006) due to longevity risk only (i.e., after pool-
ing). For all annuitants the age is x = 65. The left panel applies to a portfolio of males, the right
panel to a portfolio of females

(around 11 Euro). This reflects the fact that females, on average, become older
than males. Moreover, the figure clearly reveals substantial longevity risk in
the annuities, implying that a fair valuation might require a substantial risk
premium.

Next, we reproduce Table 5 of Olivieri (2001). The present value of the
portfolio of annuities is given by Y = ∑N

i=1 Yi . We shall assume that condi-

tional upon Ft =
{

q(g)
x,t+τ | τ �0

}
the Yi are distributed independently. Table 2

presents our results.
The first row reports the best estimates of the annuity portfolio, for both

males and females for different sizes N . For N =1 it yields the best estimate
for the annuity. The next three rows present the variances of these portfolios,
together with a decomposition as in Eq. (10):

Var (Y)=E (Var (Y |Ft ))+Var (E (Y |Ft )) . (25)

The first term on the right hand side of this equation corresponds to the
portfolio risk if there would be no longevity risk. This risk increases linearly
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TABLE 2 – DESCRIPTIVE STATISTICS ANNUITY PORTFOLIO

Males Females

N =1 N =100 N =1000 N =1 N =100 N =1000

E (Y) 11.024 1102.365 11023.654 12.897 1289.737 12897.374
E (Var (Y|Ft )) 19.604 1960.397 19603.968 17.963 1796.332 17963.316
Var (E (Y|Ft )) 0.031 312.609 31260.878 0.057 567.703 56770.266
Var (Y) 19.635 2273.006 50864.845 18.020 2364.034 74733.582
γ 0.40197 0.04325 0.02046 0.32914 0.0377 0.0212

in N , since E (Var (Y |Ft ))= NE (Var (Yi |Ft )). The second term on the right
hand side of (25) is due to the presence of longevity risk. This term increases
by N 2 with increasing portfolio size N , since Var (E (Y |Ft ))=N 2Var(E(Yi |
Ft )). Thus, for larger portfolios this term will dominate the total portfolio
risk. This can also be seen from the results presented in the table.

The final row of the table presents the coefficient of variation of Y , defined
by γ = √

Var (Y)/E (Y). This coefficient allows a better investigation of the
size of the portfolio on its riskiness. Without longevity risk, this coefficient
vanishes with increasing portfolio size N , due to the pooling effect. However,
with longevity risk, we get

γ =
(

1
N

E (Var (Yi |Ft ))

E (Yi )
+ Var (E (Yi |Ft ))

E2 (Yi )

)1/2

, (26)

showing that for large portfolio sizes N indeed the longevity risk dominates
the total risk, and also does not disappear. In our example, the limiting value
of the coefficient of variation equals γ =0.0160 for males and γ =0.0185 for
females.

Olivieri (2001) also calculates the boundary portfolio size N such that for
portfolio sizes larger than this bound longevity risk dominates the total risk.
She calculates this bound as

N = E (Var (Y |Ft ))

Var (E (Y |Ft ))
. (27)

In our case (i.e., with survival probabilities forecasted with the Lee and Carter-
methodology), the boundary value is N = 628 for males and N = 317 for
females. Although substantially larger than the N = 12 reported by Olivieri
(2001), these numbers are quite low, indicating that also for smaller portfo-
lio sizes longevity risk is an important risk that should be taken into account
in a risk management framework.
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4.2 Funding Ratio Volatility

A drawback of the approach described in Section 4.1 is that it is a “liability
only” approach: it ignores the potential impact of financial risk on the impor-
tance of longevity risk. Therefore, in this subsection we discuss an alternative
approach in which the importance of longevity risk is quantified by determin-
ing its effect on the probability distribution of the funding ratio at a future
date (see, for example, Olivieri and Pitacco 2003, and Hári et al. 2008b). The
funding ratio is defined as the value of the assets divided by the value of the
liabilities. Determining the value of longevity-linked liabilities, however, is still
a contentious issue. There is extensive literature on the pricing of longevity-
linked liabilities (see, for example, Bauer et al. 2010), but due to the high
degree of illiquidity and market incompleteness, it remains difficult to cali-
brate these pricing models. Therefore, the regulator requires that the liabilities
should be valued at so-called fair value.

Hári et al. (2008b) use a simulation analysis to determine the distributional
characteristics of the funding ratio at the beginning of year t + T , for matu-
rities T = 1 and T = 5, respectively, given that the funding ratio in year t
equals 1. They consider a pension fund with N annuitants at the beginning of
year t = 2004, and quantify the uncertainty in future funding ratios for var-
ious investment strategies. In order to illustrate the effect of portfolio size,
they consider portfolios of different sizes. In each case, the age and gender
composition of the pension fund is the portrayal of the Dutch population at
the beginning of 2004. An annuitant aged x has built up the right to receive
a normalized annual old-age payment of min

{
x−25

40 ,1
}

as of the age of 65.
They use a run-off approach (i.e., they consider a setting where there are no
new entrants into the fund, and no rights are built up or premiums are paid
after time t), and let the fair value of the liabilities be given by the best esti-
mate value, as defined in (24).21

Table 3 shows the simulated distributional characteristics of the funding
ratio at time t + T = t + 5, for five investment strategies: (a) liabilities are
’perfectly’ hedged: expected liabilities are hedged with cash-flow matching ini-
tially; (b) liabilities are duration hedged, based on the McCauley duration;
(c) assets are invested exclusively in 5-year bonds; (d) 50% of the assets is
invested into 5-year and 50% in 10-year bonds; (e) 37.5% is invested into 5-
year, 37.5% in 10-year bonds, and the rest is invested into stocks; (f) 25% is
invested in 5-year, 25% in 10-year bonds, while the rest is invested in stocks.
Because individual mortality risk becomes negligible when the portfolio size
is infinitely large, the fourth column yields the effect of different investment
strategies on funding ratio uncertainty in absence of longevity risk.

21 This is in line with Dutch solvency regulations at the time the research was performed.
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TABLE 3 – DISTRIBUTION OF FUTURE FUNDING RATIO WITH MARKET RISK

AND LONGEVITY RISK COMBINED, T =5

NL population

Micro Micro + Macro +
Parameter

500 5000 10000 Infinity 500 5000 10000

Perfect hedge
of market
risk

StDev[FRT]/E[FRT] 0.023 0.007 0.005 0.000 0.058 0.053 0.053

Q(0.025) 0.959 0.986 0.991 1.000 0.901 0.910 0.911
Q(0.975) 1.048 1.015 1.010 1.000 1.120 1.113 1.113
E[FRT|FRT<Q(0.025)] 0.953 0.984 0.989 1.000 0.888 0.898 0.899
E[FRT|FRT>Q(0.975)] 1.058 1.017 1.012 1.000 1.144 1.130 1.130

Static
Duration
hedge

StDev[FRT]/E[FRT] 0.038 0.032 0.031 0.031 0.069 0.065 0.064

Q(0.025) 0.919 0.930 0.931 0.931 0.872 0.878 0.877
Q(0.975) 1.065 1.053 1.051 1.051 1.137 1.124 1.122
E[FRT|FRT<Q(0.025)] 0.903 0.916 0.916 0.917 0.854 0.863 0.864
E[FRT|FRT>Q(0.975)] 1.081 1.064 1.062 1.061 1.159 1.147 1.148

100%-0%-0% StDev[FRT]/E[FRT] 0.033 0.024 0.024 0.023 0.062 0.057 0.057
Q(0.025) 0.954 0.967 0.968 0.968 0.906 0.916 0.915
Q(0.975) 1.082 1.063 1.062 1.061 1.148 1.137 1.137
E[FRT|FRT<Q(0.025)] 0.943 0.957 0.957 0.959 0.891 0.899 0.900
E[FRT|FRT>Q(0.975)] 1.096 1.072 1.071 1.069 1.175 1.159 1.157

50%-50%-0% StDev[FRT]/E[FRT] 0.023 0.007 0.005 0.002 0.058 0.053 0.053
Q(0.025) 0.964 0.991 0.995 1.000 0.907 0.915 0.916
Q(0.975) 1.054 1.021 1.016 1.009 1.129 1.119 1.120
E[FRT|FRT<Q(0.025)] 0.958 0.989 0.993 0.998 0.892 0.903 0.904
E[FRT|FRT>Q(0.975)] 1.064 1.024 1.019 1.010 1.152 1.138 1.137

37.5%-37.5%-
25%

StDev[FRT]/E[FRT] 0.179 0.177 0.177 0.172 0.176 0.175 0.175

Q(0.025) 0.825 0.825 0.825 0.832 0.819 0.826 0.826
Q(0.975) 1.622 1.621 1.619 1.605 1.615 1.602 1.601
E[FRT|FRT<Q(0.025)] 0.779 0.782 0.782 0.791 0.782 0.787 0.786
E[FRT|FRT>Q(0.975)] 1.759 1.755 1.755 1.717 1.725 1.717 1.716

25%-25%-50% StDev[FRT]/E[FRT] 0.346 0.346 0.345 0.335 0.333 0.331 0.331
Q(0.025) 0.660 0.660 0.658 0.669 0.667 0.668 0.668
Q(0.975) 2.398 2.404 2.406 2.381 2.362 2.356 2.356
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TABLE 3 – continued

NL population

Micro Micro + Macro +
Parameter

500 5000 10000 infinity 500 5000 10000

E[FRT|FRT<Q(0.025)] 0.586 0.587 0.587 0.601 0.604 0.608 0.608
E[FRT|FRT>Q(0.975)] 2.785 2.782 2.782 2.689 2.637 2.626 2.624

The table shows the standard deviation of the funding ratio relative to its expectation, the 2.5%
quantile, the 97.5% quantile, and the expected shortfall with respect to these quantiles for an
annuity portfolio, which consists of an annuity population portraying the composition of the
Dutch population with people older than 24. We report the risk measures for maturity T = 5,

for several fund sizes (500, 5000, 10,000, and infinitely large fund), and for several (combined)
risk sources (micro-, macro-longevity and parameter risk) under alternative investment strategies.
The investment strategies are as follows: (a) expected liabilities are cash-flow hedged; (b) liabilities
are duration hedged; (c) assets are invested exclusively in 5-year bonds; (d) 50% of the assets is
invested into 5-year, and 50% in 10-year bonds; (e) 37.5% is invested into 5-year, 37.5% in 10-year
bonds, and the rest is invested into stocks; (f) 25% is invested in 5-year, 25% in 10-year bonds,
while the rest is invested in stocks.
Source: Hári et al. (2008b)

The main findings are as follows:

• As the fund size increases, individual mortality risk in relative terms
decreases to zero, due to the pooling effect. In contrast, longevity risk
does not become negligible; it is almost independent of portfolio size.

• If financial market risk is perfectly hedged (so that uncertainty in future
lifetime is the only source of risk), then pension funds are exposed to a
substantial amount of uncertainty. For instance, for a large fund (10,000
participants), the standard deviation of the funding ratio in a 5-year
horizon is then 5.3% of the expected value.

• If financial market risk is also considered, the contribution of longev-
ity risk to the overall risk becomes less important. However, whenever
the investment strategy is not too risky, longevity risk is likely to remain
significant.

4.3 The Ruin Probability

The approaches discussed in the previous two subsections each have their
drawbacks. First, as argued before, quantifying the uncertainty in the
discounted present value of liability payments for a given and determinis-
tic interest rate, as in Section 4.1, is a liability only approach that ignores
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the effect of a pension fund’s investment strategy on the impact of longevity
risk. In contrast, a funding ratio approach takes into account both assets and
liabilities. However, quantifying the uncertainty in the funding ratio, as dis-
cussed in Section 4.2, requires making assumptions regarding the fair value
of longevity-linked liabilities. As discussed in Section 2.3, it is unlikely that
the price of longevity-linked liabilities equals the best estimate value. The best
estimate is likely to be an underestimate of the price at which the pension
fund could sell its liabilities. One might argue that this problem could be mit-
igated by adding a market value margin to the best estimate value of the lia-
bilities, as suggested by Solvency II. However, when the market value margin
does not accurately reflect the risk premium that a third party would require
in order to be willing to take over the liabilities, it remains unclear to what
extent the funding ratio approach accurately quantifies longevity risk.

In this subsection we discuss an alternative approach to quantify longev-
ity risk, namely by determining its effect on the probability of ruin (see, for
example, Olivieri and Pitacco 2003, and Stevens et al. 2010b). We also dis-
cuss how this approach relates to, and differs from, the approaches described
in the previous two subsections.

Consider again a run-off approach in which there are no new entrants
into the fund, and no rights are built up or premiums are paid after time t .
Then, for a given (re)investment strategy, the probability of ruin is defined as
the probability that the assets available at time t (combined with any future
returns on these assets) are insufficient to meet the future liabilities. Specifi-
cally, let t + T denote the last period in which liabilities need to be paid.22

Then, the probability of ruin is given by P(At+T < 0), where At+T denotes
the terminal asset value, i.e., the remaining asset value just after the last
liability payment has been made (see Olivieri and Pitacco 2003). Longevity
risk can be quantified by determining Amin

t , the minimum level of the asset
value at time t that is required in order to limit the probability of ruin to ε.
To compare this approach to the approaches described in the two previous
subsections, we observe that

P (At+T >0)= P (At > Lt ) , (28)

where Lt denotes the date-t present value of future payments, discounted by
the portfolio return between date-t and the time of the liability payment, i.e.,

22 In case of pension annuities, we assume that the probability that an individual reaches
the age of 111 is negligible, so that T = t +110− xmin, where xmin is the age of the youngest
participant in the fund.
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Lt =
T∑

s=1

L̃ t+s

(1+ r (s)
t )s

, (29)

where r (s)
t denotes the annualized portfolio return over the period [t, t + s].

This allows for the following comparison:

• when the asset portfolio consists of one-year bonds and there is no inter-
est rate uncertainty, then r (τ )

t = r , and Lt = ∑T
s=1

L̃ t+s
(1+r)s . Thus, under the

assumption that the pension fund will earn a minimal return of r on its
investments, the (1− ε)-quantile of the discounted present value of liabil-
ity payments for a constant and deterministic interest rate r , as described
in Section 4.1, can be interpreted as the level of assets that is sufficient to
guarantee that the probability of ruin is below ε.

• Whereas the funding ratio approach described in the previous subsection
amounts to comparing, at a given time t +T , the value of the assets to the
fair value of the liabilities, the ruin probability approach is equivalent to
requiring that the asset value at time t combined with any future returns
on these assets is sufficient to cover the actual liabilities in each future
year.

5 ILLUSTRATING LONGEVITY RISK MANAGEMENT

5.1 Longevity Risk Management

As illustrated in the previous section, longevity risk can be substantial for life
insurers or pension funds. Likely, this risk factor is not the most important
one faced by a life insurer or pension fund, but, given its significance, it can-
not be ignored. The typical approach to deal with the effects of changes in
mortality rates on pension and insurance liabilities has long been to re-estimate
these rates on a regular basis, and to recalculate the value of the liabilities
accordingly. Although this accounts to some extent for changes in survival,
it is a retrospective approach. It does not take into account future changes
in mortality, and thus ignores longevity risk. Instead, a modern risk manage-
ment approach requires to manage longevity risk, just like other risk factors,
in an effective way, see, for instance, Pitacco (2007) or Cairns et al. (2008a).
Following Cairns et al. (2008a), there is a range of possibilities to deal with
longevity risk.

• Life insurers and pension funds might retain longevity risk as part of their
business risk. This would require an appropriate asset liability manage-
ment (ALM) to guarantee that the assets suffice to meet the liabilities.
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As an illustration, we discuss in Section 5.2 the determination of solvency
buffers needed to reduce the probability of underfunding of a pension
fund or insurance company to an acceptable level.

• Life insurers and pension funds might enter into a variety of forms of
reinsurance, or they might arrange a (full or partial) buyout of their
liabilities by a specialist insurer. Blake et al. (2008) discuss this traditional
possibility in some detail. See also Biffis and Blake (2010).

• Life insurers and pension funds might try to diversify longevity risk, in
particular, using different products. Sometimes, natural hedges exist, see,
for example, Milevsky and Promislow (2001) or Cox and Lin (2007). We
illustrate the diversification possibilities through product mix in Section
5.3. Related to this, in order to share the longevity losses or benefits, life
insurers and pension funds might develop new products with adjustable
starting dates or payments depending on realized life expectancy.

• Life insurers and pension plans might try to securitize part of their busi-
ness, or they might try to manage their longevity risk using mortality-
linked derivatives. In Section 5.4 we discuss these possibilities further.

5.2 Solvency Buffers

In this subsection, we discuss literature regarding the impact of longevity risk
on solvency requirements (for example, Olivieri and Pitacco 2003, Hári et al.
(2008b), Stevens et al. 2010b). Olivieri and Pitacco 2003 discuss the effect of
longevity risk on solvency requirements for life insurers and pension funds.
They consider various solvency requirements, each leading to correspond-
ing required asset levels. They illustrate how solvency buffers can be deter-
mined, assuming that the one-year death probabilities can be described by the
Heligman-Pollard mortality law. Longevity risk arises from three possible
future scenarios (a worst case, a medium case, and a best case). Hári et al.
(2008b) focus on the probability of underfunding, and determine correspond-
ing solvency buffers in a framework where the uncertainty in the probability
distribution of future mortality is quantified by means of the Lee and Carter
(1992)-approach. Olivieri and Pitacco (2008) discuss the effect of longevity
risk and solvency requirements in relation to Solvency II.

In this subsection we illustrate the determination of solvency buffers in
a framework where the uncertainty in the probability distribution of future
mortality is quantified by means of the Lee and Carter (1992)-approach.
First, we summarize the approach and results in Hári et al. (2008b), who
determine solvency buffers on the basis of funding ratio constraints. Next,
we summarize the approach in Stevens et al. 2010b), who determine solvency
buffers on the basis of ruin probability constraints. In both cases, the buffer is
defined as the asset value in excess of the best estimate value of the liabilities,
and is expressed as a percentage of that best estimate value. Thus, the value
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TABLE 4 – CALIBRATED SOLVENCY BUFFER, VaR

T N Micro (%) Micro + Macro (%) Micro + Macro + Parameter (%)

T=1 500 1.455 2.624 3.760
1000 1.086 2.412 3.671
2500 0.723 2.256 3.582
5000 0.497 2.210 3.515

10000 0.358 2.179 3.485
T=5 500 3.163 5.178 8.016

1000 2.331 4.826 7.618
2500 1.509 4.486 7.282
5000 1.056 4.269 7.281

10000 0.774 4.238 7.172

The table presents the percentage c of the best estimate value that has to be invested in a
1- or 5-year bond (depending on the maturity) in order to meet the Value-at-Risk solvency
requirement with ε = 0.025 , with several (combined) risk sources (micro-, macro-longevity and
parameter risk).
Source: Hári et al. (2008b)

of the buffer at time t equals Bt =c × B E Lt , and the goal is to determine the
value of c such that:

Amin
t = (1+ c)× B E Lt , (30)

where Amin
t again denotes the minimum required level of assets at time t in

order to meet the solvency requirement.
Hári et al. (2008b) determine the size of the buffer (i.e., the value of c)

required to reduce the probability of underfunding at time t +T to an accept-
able level, for a portfolio of deferred annuities, and for a given investment
strategy. Specifically, they determine the buffer percentage c such that the
Value-at-Risk at the (1 − ε) × 100% level of the funding ratio at time t + T
is equal to one, for T = 1 and T = 5, respectively. To concentrate on mor-
tality risk, all other uncertainties are filtered out. Specifically, they assume
that the best estimate value is cash-flow matched at date t , that the buffer is
invested in a T -period risk-free zero-coupon bond, and that the term struc-
ture of interest rates moves deterministically. They consider pension funds
with different sizes, with fund characteristics as defined in Sect 4.2. Table 4
presents the buffer percentage c that is required to meet the solvency require-
ment with ε =0.025.

Table 4 illustrates the importance of micro-longevity, macro-longevity, and
parameter risk. The combination of micro- and macro-longevity risk implies
that a large pension fund has to reserve 4.2% of the best estimate value of
the liabilities to meet the solvency requirement in a 5-year horizon. Smaller
funds have to reserve even more due to the extra randomness related to
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micro-longevity risk. If parameter risk is included in the analysis, the initial
funding ratio for large funds then has to be 107.2% in order to meet the sol-
vency requirement. It should be noted though that, in view of the results dis-
cussed in Section 4.2, it is to be expected that these results could change sig-
nificantly when investment risk is not filtered out.

Next, we discuss results from Stevens et al. (2010b), who determine the
minimal value of the buffer percentage c that is needed to limit the proba-
bility of ruin to ε, where the probability of ruin is as defined in Section 4.3.
Because pension funds typically also offer partner pensions, they consider two
types of liabilities. The first of these is a normalized old-age pension annu-
ity for a 65-year old retiree. The annuity pays off one Euro in every year that
the retiree is still alive. Second, they consider a partner pension annuity, which
consists of a survivor annuity that pays off one Euro in each year that the
partner outlives the participant. The authors assume that the portfolio size
is sufficiently large for individual mortality risk to be negligible. Moreover,
in order to focus on longevity risk, they consider the case in which the best
estimate value is invested in a zero-coupon bond portfolio that matches the
expected liability payments in each future period. The buffer is (re)invested in
one-year zero-coupon bonds. Given this investment strategy, they obtain the
following minimal buffer percentages c (as a percentage of the best estimate
value) in case ε =2.5%, and for 65 year old individuals:

c =4.4%, for male old-age pension;
=12.9%, for male partner pension;
=4.9%, for female old-age pension;
=24.6%, for female partner pension.

Required buffers are substantial, and significantly higher for partner
pension liabilities than for old-age pension liabilities. This occurs because
partner pension payments occur later in time, and are therefore more sensi-
tive to longevity risk.23

5.3 The Effect of Portfolio Composition and Product Design

An obvious way to deal with longevity risk is to try to diversify it using
existing products or by developing appropriate new products. In case of new
products, the challenge is to identify ways or interventions that limit the

23 These required buffers are substantially lower than those reported by Hári et al. (2008b)
for T =5. This occurs due to two reasons: first, whereas Stevens et al. (2010b) consider port-
folios of 65-year olds, the population considered in Hári et al. (2008b) contains also youn-
ger insured individuals. Annuity payments are more sensitive to longevity risk for younger
insured individuals. Second, different models are used to forecast future survival probabilities.
The model used in Hári et al. (2008b) induces a higher level of longevity risk.
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adverse effects of longevity risk imposed on social security providers, pension
funds, and life insurers, and at the same time maintain an adequate level of
retirement and life insurance benefits. One of the most heavily debated inter-
ventions at the moment, at least in the Netherlands, is an increase in
retirement age. In addition, pension funds and insurers can try to redesign
characteristics of pension and insurance deals in order to reduce the sensitiv-
ity to longevity risk. For example, longevity risk can be affected through stra-
tegic choices with regard to the types of insurance that are offered. Whereas
old-age pension liabilities are sensitive to long-life risk (the risk that individ-
uals live longer than anticipated), the opposite holds for death benefit insur-
ance, which is adversely affected by short-life risk. This implies that portfolios
of death benefit contracts can provide a natural hedge for the mortality risk
in old-age pension liabilities (see, for example, Milevsky and Promislow 2001,
Cox and Lin 2007). In addition, there may be hedge potential from combin-
ing old-age pension annuities and partner pension annuities. Many defined
benefit pension funds offer both old-age pension insurance and partner pen-
sion insurance.24 The former consists of a single life annuity for the life of the
participant. The latter consists of a survivor annuity for the life of the part-
ner, if the partner outlives the participant. Stevens et al. (2010b) investigate
the effect of product and gender mix on longevity risk, as measured by the
probability of ruin, for portfolios consisting of old-age pension liabilities and
partner pension liabilities. Their analysis reveals that:

• both product and gender mix can significantly affect longevity risk;
• in general, partner pension liabilities provide natural hedge potential for

old-age pension liabilities;
• portfolios with a mixture of male and female insured individuals are typi-

cally less sensitive to longevity risk than are portfolios consisting predom-
inantly of males or females.

These results indicate that “unbalanced pension funds” may improve their
risk position by engaging in mutual reinsurance.

Another crucial design aspect of pension plans that offer both old-age pen-
sion insurance and partner pension insurance is the way in which pension
rights are accrued. Two alternatives exist in the Netherlands. In a JointLife
plan,25 the participant accrues both old-age pension rights and partner pen-
sion rights (i.e., he or she builds up the right to receive the combination of
a single life annuity and a survivor annuity). This combination is referred to
as a joint and survivor annuity. To prevent discrimination between participants
with and without a partner, the participant has the option of exchanging,

24 The Retirement Equity Act of 1984 (REA) amended the Employee Retirement Income
Security Act of 1974 (ERISA) to introduce mandatory spousal rights in pension plans.
25 In the Netherlands “nabestaandenpensioen op opbouwbasis.”
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at retirement date, this annuity for a single life annuity that provides higher
old-age pension payments. In a SingleLife plan,26 the participant accrues only
old-age pension rights (i.e., he or she builds up the right to receive a single life
annuity). At retirement date, the participant has the option to exchange this
annuity for a joint and survivor annuity that provides both old-age pension
insurance and partner pension insurance. In both types of plans, the conver-
sion rate (i.e., the rate at which the participant will be able to exchange one
type of annuity for the other type), has to be actuarially neutral at the time of
exchange. Actuarial neutrality requires that the expected present value of the
liabilities before exchange equals the expected present value of the liabilities
after exchange. Stevens et al. (2010a) investigate the effect of product design
on longevity risk. Their figure (copied here as Figure 7) displays the relative
standard deviation of the discounted present value of the liabilities, as defined
in (29) for a deterministic interest rate r = 4%, as a function of the age of
the participant, for the two pension plans, and for two types of insured indi-
viduals: an insured person who will choose a single life annuity at retirement
date, and a couple that will choose a joint and survivor annuity in case they
are both alive. The old-age pension right is normalized to 1; the partner pen-
sion right is normalized to 2/3. The left hand panel is for males and the right
hand panel for females.

It can be seen that in both types of plans, longevity risk is substantially
lower for a participant who prefers a joint and survivor annuity than for a
participant who prefers a single life annuity. Moreover, for both choices, lon-
gevity risk is substantially lower in a JointLife plan than in a SingleLife plan.

5.4 Securitization and Mortality-Linked Derivatives

While redesign of pension and insurance deals as illustrated in the previous
subsection can mitigate the effects of mortality risk to some extent, this risk
will never be eliminated completely. Therefore, uncertainty regarding future
survival rates will continue to impose risk on any pension fund or life insur-
ance company.

The introduction of financial instruments for which the payoff is linked,
to some extent, to the development of mortality rates could help insurers
and pension funds manage their risk. Loeys et al. (2007) investigate whether
a “life market,” where such products might be traded, could be successful.
They explain that for a new capital market to be established and to succeed,
“it (1) must provide effective exposure, or hedging to a state of the world
that is (2) economically important and that (3) cannot be hedged through exist-
ing market instruments, and (4) it must use a homogeneous and transparent

26 In the Netherlands “nabestaandenpensioen op risicobasis.”



LONGEVITY RISK 185

253035404550556065
0

1

2

3

4

5

6

7

x

σ(
L

)/
E

[L
] 

(%
)

253035404550556065
0

1

2

3

4

5

6

7

x

σ (
L

)/
E

[L
] 

(%
)

Figure 7 – Longevity risk and pension plan design. σ(L)/E[L] as a function of age x for
participants without a partner and with a partner who chooses for a singe life annuity at retire-
ment (solid lines), and participants with a partner who chooses for a joint and survivor annuity
at retirement (dashed lines), for a participant in a JointLife plan (lower graphs) and for a partici-
pant in a SingleLife plan (upper graphs). Left panel: males; right panel: females. In each case, the
old-age pension right is normalized to 1 and the partner pension right is normalized to 2/3.
Source: Stevens et al. (2010a)

contract to permit exchange between agents.” They argue that “longevity meets
the basic conditions for a successful market innovation.” Blake et al. (2008)
investigate the conditions suggested by Loeys et al. (2007) in more detail.
These authors maintain that there is insufficient reinsurance capacity to deal
with global longevity risk, while capital markets are more efficient than the
insurance industry in reducing informational asymmetries and in facilitating
price discovery. This makes them confident that a fully developed capital mar-
ket will emerge soon.

One of the first attempts to set up such a market is a standard coupon-
plus-principal bond for which the coupon is determined by the term struc-
ture of interest rates, but the principal of the bond depends on the extent
to which the actual observed survival in a predefined population, measured
by a “survival index,” exceeds a given threshold level (see Blake and Burrows
2001, and Blake et al. 2006). By investing in such longevity bonds, the risk
of higher than expected survival can be partially transferred to the issuer of
the bond. The European Investment Bank (EIB) together with BNP Paribas
issued a longevity bond in 2004, but there was too little demand to reach
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a level adequate enough to sustain in a market.27 The high degree of mar-
ket incompleteness implies that pricing this product is nontrivial. This might
explain why longevity bonds have not yet been successfully introduced in the
market. See Blake et al. (2008) for an extensive investigation of this failure.

Indeed, the potentially severe consequences of underpricing the risk may
hamper the introduction of longevity linked securities. For example, inaccu-
rate pricing of the risk in guaranteed annuity options induced by uncertain
changes in interest rates, led to the downfall of the large British insurance
company Equitable in 2000 (see Pelsser 2003). The current literature devotes
considerable attention to this pricing problem. Specifically, traditional finance
approaches (risk-neutral pricing theories, see, for example, Cairns et al. 2006a)
as well as actuarial pricing approaches (Wang’s premium principle, see, for
example, Lin and Cox 2005) have received considerable attention. However,
market incompleteness implies that calibrating these pricing models remains
difficult.

An alternative and more successful attempt to deal with longevity risk is
securitization.28 In this case, a pool of assets or liabilities is sold to a so-called
Special Purpose Vehicle. These assets or liabilities are then repackaged as new
securities, and as such traded in the capital market. Blake et al. (2008) dis-
cuss the different types of securitization with longevity-linked assets or lia-
bilities, known as insurance-linked securities (see Krutov 2006). Cowley and
Cummins (2005) discuss the earlier types of securitization.

In order to encourage the development of a “life market” JPMorgan intro-
duced in March 2007 so-called “longevity indices.” The idea of introducing
such indices is that this objective information provided by the indices might
stimulate the introduction and subsequent trade of mortality-linked securities.

The mixed success thus far of initiating a life market has generated several
proposals to set up such a market using mortality-linked derivatives. Mortal-
ity and survivor swaps are an example of such derivatives. In case of such
a swap one party pays fixed payments to the other party in exchange for
payments that depend on the number of people in a given cohort that die
in a given period (mortality swap) or that survive during that period (survi-
vor swap), see Dowd et al. (2006) or Dawson et al. (2007). Another example
can be found in mortality and longevity forwards. In this case the contract
involves the exchange of a payment depending on the realized mortality or
survival rate at the maturity of the contract in return for a payment depend-
ing on a fixed mortality or survival rate agreed upon at the initiation of the
contract. See Blake et al. (2008) for a further discussion and illustration.

27 On the other hand, the issue of short-dated mortality bonds, which are similar to cata-
strophic bonds, has been successful. However, such bonds hedge against catastrophic mortality
risk, not longevity risk.
28 We follow Blake et al. (2008).
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Once a market for mortality-linked instruments arises, individual pension
funds and insurers can use these instruments to hedge or reduce their risk.
The asset portfolio should be designed in order to yield an optimal risk-
return trade-off. See, for instance, Haberman and Vigna (2002) or Gerrard
et al. (2004). A concern here is that optimization of risk-return trade-offs
is known to be highly sensitive to parameter estimation if parameter uncer-
tainty is ignored (for example, Best and Grauer 1991, or Chopra and Ziemba
1993). This is clearly undesirable if the optimal portfolios with respect to the
estimated parameter values lead to significantly suboptimal values of the
objective function compared to the optimal portfolios for the true parame-
ter values. In particular, this is a major concern in a setting in which mortal-
ity-linked assets and liabilities are involved, since the probability distribution
of their value depends on very long-term forecasts. This requires the devel-
opment of robust portfolio optimization techniques for Asset Liability Man-
agement of an individual pension fund or insurer in the presence of mortality
risk.

6 CONCLUSIONS

This paper investigates longevity risk, i.e., the uncertainty in future changes
in mortality rates. We illustrate the importance of longevity risk for pension
funds and life insurers, and we illustrate some aspects of longevity risk man-
agement, in particular, the determination of solvency buffers, and the effect of
the product mix as a natural approach to diversifying the longevity risk. We
also briefly discuss the attempts to set up a “life market,” a trading place for
mortality-based products, that could be used to hedge or to reduce the lon-
gevity risk. These initiatives have thus far been only partially successful, even
when “longevity meets the basic conditions for a successful market innova-
tion” (Loeys et al. 2007). As discussed by Blake et al. (2008) the government
might assist by encouraging and facilitating the development of this market.
In particular, the government could issue longevity bonds in order to estab-
lish a default-free term structure for longevity risk, similar to its activity in
the fixed-income market.

Let us conclude by indicating some directions for future research. This
paper focusses on the effect of longevity risk on (pension) annuities. However,
increased longevity will likely also have non-negligible effects on health care
costs. For example, greater numbers of older people in society will obviously
increase the burden on health care systems, because older people on average
need more health care. Second, the health policy literature extensively docu-
ments trends in health status as a function of age (see, for example, Murray
and Lopez 1997, and Stallard 2005). These trends may affect the per capita
costs for health care, which is particularly important to health and disabil-
ity insurers. The mortality models discussed in Section 3 provide a purely
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probabilistic description of the future development of the survival probabil-
ities. In particular, these models do not account for the interaction between
mortality and morbidity. In contrast, the demographic and health policy liter-
ature did develop models that account for the interaction between morbidity
and mortality. Examples are Murray and Lopez (1997), Kytir and Prskawetz
(1995), and Manton et al. (1994). These approaches, however, provide deter-
ministic projections rather than stochastic forecasts. We would argue that
there is a need to develop models to jointly forecast mortality and morbid-
ity rates, as a function of age and gender, accounting properly for dependence
between mortality and morbidity, and for the degree of uncertainty inherent
in the forecasts.

Finally, we have assumed that the development in future mortality is inde-
pendent of the development in other economic quantities. However, as is illus-
trated, for instance, by the Preston curve (see, for example, Preston 2007),
there is a clear correlation between the average life expectancy in a given
country and this country’s welfare level (measured by GDP per capita). This
suggests additional ways to hedge longevity risk, a relevant topic deserving
further research.

Open Access This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distrib-
ution, and reproduction in any medium, provided the original author(s) and source
are credited.
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