

Tilburg University

Using UML to model web services for automatic composition

El Gammal, A.; El-Sharkawi, M.

Published in:
International Journal of Software Engineering

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
El Gammal, A., & El-Sharkawi, M. (2010). Using UML to model web services for automatic composition.
International Journal of Software Engineering, 3(2), 87-113.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420811182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/ec37c294-3f60-4ab4-91be-24ed1abec6b7

87

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

Using UML to Model Web Services for
Automatic Composition

Amal Elgammal(1) and Mohamed El-Sharkawi (2)

(1) Department of Information Systems, Faculty of Computers and Information. Cairo

University (Egypt)

E-mail: a.f.s.a.elgammal@uvt.nl

(2) Department of Information Systems, Faculty of Computers and Information. Cairo

University (Egypt)

E-mail: m.elsharkawi@fci-cu.edu.eg

ABSTRACT

There is a great interest paid to the web services paradigm nowadays. One of
the most important problems related to the web service paradigm is the
automatic composition of web services. Several frameworks have been
proposed to achieve this novel goal. The most recent and richest framework
(model) is the Colombo model. However, even for experienced developers,
working with Colombo formalisms is low-level, very complex and time-
consuming. We propose to use UML (Unified Modeling Language) to model
services and service composition in Colombo. By using UML, the web service
developer will deal with the high level graphical models of UML avoiding the
difficulties of working with the low-level and complex details of Colombo. To be
able to use Colombo automatic composition algorithm, we propose to
represent Colombo by a set of related XML document types that can be a
base for a Colombo language. Moreover, we propose the transformation rules
between UML and Colombo proposed XML documents. Next Colombo
automatic composition algorithm can be applied to build a composite service
that satisfies a given user request. A prototypical implementation of the
proposed approach is developed using Visual Paradigm for UML.

Keywords: Automatic web services composition, Colombo composition model,
Web services Composition, Web service description, Unified Modeling
Language.

1- INTRODUCTION

There is a great interest and support paid to the web services paradigm
nowadays. The web services paradigm allows rich, flexible, and dynamic
interoperation of highly distributed and heterogeneous web-hosted services. A
web service is simply a software that describes a collection of operations via
an interface that are network-accessible through standardized XML protocols
[2]. The three main standards that represent the backbone of web services
are: SOAP (Simple Object Access Protocol, the XML standard for message
exchange), WSDL (Web Service Description Language, the XML standard for
describing web services) [3], [4] and UDDI (Universal Description, Discovery

88

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

and Integration of web Services, the registry where services description can
be published) [5].

The web service paradigm is a promising paradigm; however, it has a mine of
problems that need to be solved. The automatic web service composition
problem has gained a great support from both the industry and academia.
Web service composition is the process of combining different web services to
provide a value-added service. In other words, web services composition
represents the situation when the client request can not be satisfied by an
individual available web service, however combining and coordinating a set of
available web services can fulfill her needs.

Composition involves two different issues [1] which are: Composition
Synthesis and Composition Orchestration. Composition synthesis concerns
itself with synthesizing a specification of how component services can
cooperate and coordinate with each other in order to fulfill user’s request.
While composition orchestration concerns itself with how to actually achieve
the coordination among services, by executing the specification produced by
the composition synthesis and by supervising and monitoring both the control
flow and data flow among the participating services. Orchestration has been
intensively studied by other research areas especially the research on
workflows. Hence, the main focus of this research is on the composition
Synthesis.

Performing the composition process manually is a difficult task even for very
simple compositions. Automation of this process is considered one of the most
important challenges that face the web services paradigm. To achieve this
novel goal, available web services should be described following a rich
framework. WSDL is not sufficient to allow the automation of the web services
composition, because it just provides information about the input/output
signature (the message types that the web service can send and receive).
Richer descriptions are needed, such as semantic information and the
behavioral descriptions of web services. Four main models have been
proposed to solve this problem, which are: (i) OWL-S model [6], (ii) Roman
model[7], [8], (iii) Mealy/conversation model [9], and (iii) Colombo model [1],
[10]. Colombo Model is the most recent and richest model, as it combines the
important aspects of the other three models and unifies them in a single
framework.

We can summarize the contribution of this paper as follows:

1. Colombo model adapts formalisms that are complex and time
consuming even for experienced developers and modelers. We
propose to use UML to model web services in Colombo.
Subsequently, the web service developer will deal with the high level,
graphical, and easy models of UML which will significantly facilitate
her work.

2. Colombo is a conceptual model, which means that it does not
have an associated supporting language. We propose a set of related
XML document types that can be a base of a Colombo language.

89

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

3. Furthermore, we propose the transformation rules between
UML and XML, which allows the utilization of the Colombo
composition algorithm. Weassume that the composition algorithm can
accept and produce XML documents.

4. An implementation of this model is developed by creating a
prototype of a CASE tool that would be used to facilitate the design of
composite web services using UML. Figure 1 presents a block diagram
of our proposal

Figure 1 presents the proposed modeling architecture. The process starts with
the web service developer modeling Colombo components using UML. Next,
an automatic mapping is performed to transform UML diagrams to a set of
XML documents.Then, these XML documents are sent as input to the
Colombo composition algorithm proposed in [1], assuming that Colombo
composition algorithm can accept and produce XML documents. Finally, the
composition algorithm will produce a composite service as its output. The
resulting composite service is then automatically transformed to a UML
diagram to facilitate the investigation of the resultant composite web service
by the web service developer.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 briefly illustrates how web services are characterized in
Colombo. Section 4 presents our proposal to model Colombo web services
using UML. Section 5 covers the proposed XML document types to represent
Colombo. Section 6 presents a prototypical implementation of the proposed
approach. Finally, Section 6 concludes the paper.

.

2- RELATED WORK

It is interesting here to mention studies that use UML in various stages of the
web services development as a motivation for our work. The study in [11] used
UML for modeling and development of Service Oriented Architecture (SOA).
They used Model-Driven Architecture (MDA) as it conceives models as first
class elements during system design and implementation and establishes a

UML state
machine model

Modeling
Colombo
Components
using UML

Automatic mapping

Automatic mapping

Colombo
proposed

XML

A composite
service (if any)Applying Composition

algorithm

Figure 1 Proposal overview

90

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

separation of development process into three abstraction levels, which are:
CIM (Computational Independed Model), PIM (Platform Independent Model),
and PSM (Platform Specific Model). They maintained the mappings between
the various levels, which in turn makes it possible to automate the entire web
services development process. They have proposed a PIM level UML profile,
besides its corresponding meta-model for the modeling and development of
SOA. The PIM has been chosen because it does not reflect any constraints
about any specific platform or implementation technology.

Authors in [12] have used UML to define the WSDL descriptions of web
services. They advocate the usage of WSDL-independent models versus
WSDL-dependent models. WSDL-independent models means using pure
UML constructs without introducing any WSDL-specific stereotypes. They is
basically done because pure UML can improve the understanding of web
services, especially when modeling complex web services. The conversation
rules between UML and WSDL have also been introduced and embedded in
UML transformation tool (UMT) [13]. Similar to this work is the work in [14],
which presents a platform-independent service and workflow modeling.
However the transformation rules to a specific platform has not been defined.

On the other hand, several studies have proposed WSDL-dependent UML
profiles. The study in [15] has proposed UML profile for WSDL through the
introduction of WSDL-specific stereotypes. In [16] a Hypermodel tool has been
propoed such that XML schema that is a part of the WSDL document can be
imported into UML. But the resulting UML model will have XML schema
specific stereotypes. We have to point out that web service compositions
based on WSDL descriptions can’t be automated because WSDL lacks any
semantic or behavioral descriptions.

The study in [17] has proposed to model web services composition with
(agent) UML 2.0, which provides some agent-speciifc extensions to UML.
They have considered WSDL web services. WSDL descriptions lacks any
semantic or behavioral descriptions, hence web services composition can not
be automated. They started with a high-level and global description of web
services interactions in an implementation independent way, which is known
as web Service Choreography. Next, these high level descriptions have to be
mapped to a low-level SOAP messages between different interacting web
services, which is known as web service orchestration.Business Process
Execution Language (BPEL) [18] is the defacto standard for orchestrating web
services and is considered in this work. UML has been used to model WSDL
and BPEL descripttions. Furthermore, a mapping has been introduced
between the proposed UML notations and WSDL , as well as between UML
and BPEL. This study considers the manual composition of web services that
opposes with the main focus of this paper, where automatic composition is its
main novel goal.

The study in [19] proposed a model-driven methodology for semantically
described automatic web services composition. A UML profile has been
introduced to represent OWL-S web services. The transformation rules
between UML and OWL-S have also been proposed to show that the

91

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

proposed UML profile is expressive enough to support one of the leading
semantic web service languages. In [20] a graphical tool has been developed
as an OWL-S editor, such that OWL-S documents can be imported and
exported. In [21], a semantic web-independent graphical language has been
presented. The proprietary ODE SWS graphical language has been used for
modeling tasks that can be associated with inputs, outputs, pre-conditions and
post-conditions. However, the transformation rules have not been introduced.

The study in [22] has presented an approach where a user can annotate
operations and its parameters with pre-conditions, post-conditions and
semantic types in a tree view browser. This tool supports both OWL-S and
WSDL-S (extends WSDL 2.0 with semantic descriptions) which provided a
semantic language-independent approach.

To the best of our knowledge, no work has been done for modeling the Roman
model [8] or Mealy/Conversation [9] model in UML. In this paper, we have
considered Colombo model as unifies OWL-S, Roman and
Mealy/Conversation models in a single rich framework. Consequently, we can
claim that our work is more generic than others. In the following Section we
will briefly illustrate how web services are modeled in Colombo to enable their
automatic composition.

3- COLOMBO MODEL

In Colombo [1], a web service is characterized in terms of the following four
components:

a. A world state: representing the real world, viewed as a
database instance over a relational database schema, referred to as
world schema.

b. Atomic processes: represent operations or functionalities that
can be performed by different web services. Atomic processes can
access and modify the world state, and can include conditional effects.
Atomic processes represent a common understanding of an agreed
upon reference alphabet/semantics. Atomic processes represent the
community ontology, such that web services, clients or any other
participant of this community should share this ontology.

c. Message passing behavior: these are messages (message
types) that can be sent or received by a web service. Here we are
concerned with the message types (classes) instead of the message
contents. For example, a message named ‘requestPurchase’ may
hold two variables of type String, which are ‘code’ and ‘PayBy’, which
represent respectively the code of the item the client would like to
purchase, and the payment method.

d. The behavior of the web service: the behavior may include
multiple atomic processes and message passing activities. It is
specified in Colombo using guarded automata. A guarded automaton

92

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

is a finite state machine (FSM), such that conditions can be specified
between transitions. A transition from one state to the next will take
place only when the transition condition is evaluated to true.

Colombo classifies web services into four types, each of them can be modeled
in the same way, using guarded automata:

a. Non-Client Web Services: these are real atomic web services
that perform different functionalities and their descriptions are
published in the UDDI [5] registry.

b. Client Web Services: A client web service represents client
behavior. Since the client interacts with a web service by repeatedly
sending and receiving messages, her behavior can be modeled the
same way as non-client web service. But since client’s behavior is
non-deterministic in terms of the actions she makes and the choices
she selects, her guarded automata will contain only two states, which
are: ReadyToTransmit and ReadyToRecieve. The client will toggle
between these two states until she terminates.

c. Goal Service: This represents the desired behavior to be
achieved. It is also specified as a guarded automaton in terms of
Alphabet of atomic processes A.

d. Mediator Service: Colombo adapts a mediated topological
approach for composition. In the mediated approach a virtual service
named as the ‘mediator’ is responsible for controlling data flow and
control flow among participating services. The behavior of the
mediator service should simulate the behavior of the goal service. The
mediator service represents the composition synthesis specification
which should be orchestrated to fulfill client request, it represents the
expected output from the Colombo automatic composition algorithm.
For an overview of the different web services composition topological
approaches refer to [2].

It is assumed that each non-client and mediator web service instance has:

a. A local store (LStore): can be implemented as a relational
database table, which is used to store parameter values of incoming
messages and output values of atomic processes, and to populate
parameters of outgoing messages and input parameters to atomic
processes. The conditional branching of web services behavior at any
time is based on the values stored in its local store at this time.

b. A port for each incoming or outgoing message to allow
communication between web services.

c. A queue store (QStore): for each incoming message. QStore is
of bounded length to be equal to one

The client web service does not have either a local store or queue store. A
unary relation is maintained for the client service includes the parameter
values of the messages the client has received so far. The work in [1] has

93

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

introduced a complete and sound automatic composition algorithm, and also
has determined the algorithm decidability and complexity under some
restrictions.

3-1 RUNNING EXAMPLE

The running example used throughout the paper is borrowed from [1].
Assuming that an application developer needs to locate a web service to
perform the following functionalities: (i) order an item, (ii) such that payment
can be made by credit card, (iii) request shipment, and (iv) check shipment
status at any time. Figure 2 presents the world state I relevant to this example.
In Figure 2, ‘Accounts’ table checks the validity of a given credit card number,
‘Inventory’ table contains the codes of the items, whether it is available or not,
warehouse name where the item is available and its price. The ‘Shipment’
table includes order numbers, from and to the item will be shipped, the status
of the shipment and the date of the order.

Figure 3 presents the alphabet A of atomic processes. The f symbol
represents the access function. E.g. function accesses the
Accounts relation in the world state I and returns the value of the 1st attribute
after the key of the tuple having a primary key equal to the parameter value
‘C’. The null value is represented using ‘ω’ symbol. And ‘-‘sign indicates that
values remain unchanged after modifications.

Figure 4 presents the available web services represented as guarded
automata. The functionalities of these web services are: (i) Bank: Checks the
validity of a credit card number, (ii) Storefront: Given the code of an item
returns its price and the warehouse in which the item is available, and (iii)
Standard Warehouse (SW): Deals only with orders by credit card, and allows
for shipping the ordered item if the card is valid and the client can check
shipment status at any time. For the transitions between states, if it starts with
‘?’ means the receipt of a message, if it starts with ‘!’ means the send of a
message, otherwise means an atomic process invocation.

Figure 2 World Schema Instance I [1]

94

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

Figure 5 presents the guarded automata of the goal service specified in terms
of alphabet of atomic processes A. After applying the automatic composition
algorithm proposed in [1], a mediator service will be generated. For more
details about the guarded automata of the mediator service of this example
and how it is produced refer to [1]. In the next Section we will show how
Colombo web services can be modeled using UML by introducing some
extensions to UML.

Figure 3 Alphabet of atomic processes [1]

CCCheck
I: C: Dom=; %CC cardnumber
O:app: Bool; %CCapproval
effects:

if)(
1

CAccountsf then

eithermodify Accounts(C;T)or
modify Accounts(C;F) and approved:= T

else
approved:= F

CheckItem
I: C: Dom=; %itemcode
O:avail:Bool; wh:Dom=; p:Dom< % resp. itemavailability, selling warehouse and price
effects:

if
)(

1
c

Inventory
f

then

avail:=Tand wh:=)(
2

c
Inventory

f and p:=)(
3

c
Inventory

f

and either no-op on Inventory or modifyInventory (c;F, -, -)
if ¬)(

1
c

Inventory
f or)(

1
c

Inventory
f =ω then

avial:=F
requestShip

I: wh: Dom=; addr:Dom=; %resp. source warehouse and target address
O:oid:Dom=; d:Dom<; s: Dom=; %resp. order id, shippingdateand status
effects:
 d, o oid: =new(o) and insert Shipment(Oid, wh, addr, “requested, d”) and d =
and s =“requested”

CheckShipStatus
I: oid: Dom=; %order id
O: s:Dom=; d:Dom<; %resp. shippingdate &status
effects:

if
)(

1
oid

Shipment
f

=ω theno-opand s, d uninit

elses:)(
3

oidShipmentf and d:=)(
4

oidShipmentf

95

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

?requestCheckItem(code)

checkItem(code;avail,warehouse,
price

!replyCheckItem(avail,wareh
ouse,price)

(b) Storefront

?requestCCCheck(CCnum)

CCCheck(CCnum; approved)

!replyCCCheck(approved)

(a) Bank

(c) Standard Warehouse (SW)

?requestOrder(CCNum
,addr,price)

!!rreeqquueessttCCCCCChheecckk((CCCCNNuumm))
?replyCCCheck(approved)

[Approved= = F]/
!failMsg()

?requestShipStatu
s(oid) checkShipStatus(oid;

dtate,status)

[Approved= = T]/
requestShip(wh,addr;oid
,date,status) !shipStatus(oid,date,st

atus)

!shipStatus(oid,
date,status)

Figure 4 Guarded automata of the available web services [1]

Authorized= = F /
responsePurchase(“fail”)

CheckItem(code;avail,warehouse,price)

?requestShipStatus(oid)

checkShipStatus(oid;dtate,status)

!shipStatus(oid,date
,status)

(avail= =T) //

!!rreessppoonnsseePPuurrcchhaassee((““pprroovviiddee ccaarrtt nnuummbbeerr””))

?msgCartNum(cartNum)

CCCheck(cartNum;authorized)

Authorized= = T /
requestShip(wh,addr;oid,date,
status)

!shipStatus(oid,date,
status)

?requestPurchase(code)

Figure 5 Guarded automata of the goal service [1]

96

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

4- MODELING WEB SERVICES IN UML

There are three main mechanisms in UML that can be used when extending
UML’s base elements [23]: (i) stereotypes: introduce new elements by
extending a base one, (ii) tagged values: introduce new properties for the new
element, and (iii) constraints: are restrictions on the newly introduced
stereotypes with respect to its base elements. A grouping of a set of
introduced stereotypes is named as a UML profile. We have extended
Standard UML 2.0 base elements and introduced a UML profile that can be
used to model web services in Colombo. Figure 6 presents the meta-model of
the proposed UML profile. Table 1 presents the tagged values of the introduced
stereotypes.

WebService stereotype represents the core element of the proposed UML
profile. WebService stereotype extends standard UML 2.0 Class construct.
The attributes of the WebService stereotype are the message classes that the
web service can send and receive. While in the operation counterpart, the
operations (atomic processes) that the web service can invoke are listed.
WebService stereotype captures the static side of a web service which
describes web services properties and relationships.

Each message class is described by MessageClass stereotype. In Figure 6
MessageClass stereotype extends Standard UML 2.0 Class construct, where
the message class contents can be specified in the MessageClass stereotype
attribute counterpart.AtomicProcess stereotype represents the atomic
processes that web services can invoke during their executions (from the
alphabet of atomic processes A). AtomicProcess stereotype extends Standard
UML2.0 Action construct, such that each atomic process is represented in
UML as an activity diagram. In UML, each action can be triggered by input
events through its InputPin, and after its execution, it can produce some
output events from its OutputPin. Input stereotype extends Standard UML 2.0
InputPin, and output stereotype extends Standard UML 2.0 onputPin. The
inputs and outputs of interest are messages. That is why there is a 1:1
relationship between Input and MessageClass stereotypes, and the same
relation holds between Output and MessageClass Stereotype.

Input and output messages represented by Input and Output stereotypes
respectively can be syntactically typed based on XML schema types, or it can
be semantically typed by utilizing the UML Ontology Profile package [24]. UML
Ontology Profile is a pre-existing package that can automatically import
ontology concepts inside a UML environment. OntClass in UML Ontology
Profile extends Standard UML 2.0 Class construct to represent an ontology
concept.

In order to represent the effect of an atomic process, we have introduced the
new stereotype Effect that extends Standard UML 2.0 Constraint base
element. The relationship between AtomicProcess stereotype and effect
stereotype is 1:M. The two other pieces of semantic information that might be
useful for describing atomic processes, nevethless they are not included in
Colombo are pre-conditions and post-conditions. In UML there already exist

97

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

two built-in stereotypes that can be used to represent pre-conditions and post-
conditions, which are: Standard UML2.0 <<pre-condition>> and Standard
UML2.0 <<post-condition>>. The relationship between AtomicProcess
stereotype and <<pre-condition>> is 1:M and the same relationship holds
between AtomicProcess stereotype and <<post-condition>>. The logical
statements that can express Effect, <<pre-condition>, and <<post-condition>>
can be specified by using Object Constraint Language (OCL). OCL is a formal
language used to express constraints. These are typically invariant conditions
that must hold for the system being modeled. OCL is a part of Standard UML
2.0.

The built-in sterotypes <pre-condition>> and <<post-condition>> should be
linked to an Activity (an AtomicProcess stereotype in our case). However it
may be more readable if <<pre-condition>> and <<post-condition>> are linked
directly to the related inputs and outputs. In Table 1, we have introduced a
tagged value to the <<pre-condition>> sterotype named as ‘Input’ that is used
to specify the input messages that this precondition affects. The same is done
for <<post-condition>> sterotype, we have introduced a tagged value named
as ‘Output’ to specify the output messages that this post-condition affects. If
the <<pre-condition>> does not include any inputs in its logical statement,
then Input tagged value is set to null. If the <<post-condition>> does not
include any outputs in its logical statement, then Output tagged value is set to
null.

The category of the AtomicProcess can be specified using the Category
stereotype [19]. The Category stereotype extends Standard UML2.0 Comment
base element. It has four tagged values as shown in Table 1, which are:
Taxonomy, TaxonomyURI, Value, and Code that identify a category concept
defined within an ontology. In Colombo, each web service can invoke more
than one atomic process. Each atomic process can be invoked by more than
one web service. That is why we have introduced the WebServiceProcesses
stereotype that extends Standard UML2.0 Class construct to break down this
M:N relationship (this M:N relationship is not shown in Figure 6 to avoid a
cluttered diagram). WebServiceProcesses stereotype has two tagged values
as shown in Table 1, which are: (i) WebService typed as WebService, and (ii)
AtomicProcess typed as AtomicProcess.

The WebService stereotype, which represents the static part of web services,
serves as a supertype for the various types of web services. Three
stereotypes are introduced which extend WebService stereotype, which are:
NonClientService, GoalService, and ClientService, respectively. The
MediatorService stereotype has the same properties as NonClientService.
MediatorService can have one or more interfaces (the same as
NonClientService) and its instance is also characterized to have a local store
and a queue store. That is why MediatorService stereotype extends
NonClientService stereotype.

98

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

Figure 6 Meta-model of the proposed UML profile

99

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

Table 1 Proposed tagged values

Stereotype Tagged values Base Element

1. Atomicprocess Standard UML2.0:Activity
2. Input Standard

UML2.0:Activity:InputPin
3. Output Standard

UML2.0:Activity:OutputPin
4. MessageClass Standard UML2.0:Class
5. Category Taxonomy : string

TaxonomyURI : string
Value: string
Code: Integer

Standard UML2.0:Comment

6. Effect Standard UML2.0: Constraint
7. <<Pre-condition>> Input [0..*] : Input Standard UML2.0
8. <<Post-condition>> Output [0..*] : Output Standard UML2.0
9. WebService Standard UML2.0:Class
10. NonClientService WebService stereotype
11. GoalService WebService stereotype
12. ClientService WebService stereotype
13. MediatorService WebService stereotype

14. WebServiceBehavior Standard UML2.0:State Machine
15. NonClientBehavior WebServiceBehavior stereotype
16. GoalBehavior WebServiceBehavior stereotype
17. ClientBehavior WebServiceBehavior stereotype
18. MediatorBehavior WebServiceBehavior stereotype
19. State Standard UML2.0
20. NonClientState TriggerType (send/ receive/ invoke)

:String
Standard UML2.0:State

21. GoalState TriggerType (send/ receive/ invoke)
:String

Standard UML2.0:State

22. MediatorState TriggerType (send / receive) :String
To : WebService
From: WebService

Standard UML2.0:State

23. ClientState Name(ReadyToTransmit/
ReadyToReacieve): String.

Standard UML 2.0 state

24. <<Interface>> Standard UML2.0
25. WebServiceProcesses Web Service [1..*]: WebService

Atomic Process[1..*]: AtomicProcess
Standard UML2.0: Class

26. LStore Parameter[0..*]: String
Value[0..*] : String
InOut[0..*] (In/Out/P/flag): String

Standard UML2.0: Class

27. QStore Parameter[0..*] : String
Value[0..*] : String

Standard UML2.0: Class

28. ServicePort Message[0..*]: message type
Direction [0..*] (In/Out): String

Standard UML2.0: Class

29. HasSeenC ConstantsC[0..*]: String
Parameter[0..*]: string
Value[0..*]: string

Standard UML2.0: Class

LStore and QStore stereotypes extend Standard UML2.0 Class construct to
simulate local store and queue store of Colombo model. LStore has three
tagged values as shown in Table 1, which are: ‘Parameter’, ‘Value’, and ‘InOut’.
The ‘parameter’ can be a message type, a parameter to/from an atomic
process, or distinguished variable ‘π’ that indicate if there is a message in the
relevant queue. ‘InOut’ can take either In/Out/P/Flag, such that, ‘In’ and ‘Out’
represent the direction of the message, ‘P’ if it is a parameter to or from an
Atomic Process, while ‘Flag’ if it is the distinguished variable ‘π’. Qstore has
two tagged values, which are: ‘Parameter’ and ‘Value’. ‘Parameter’ and ‘Value’

100

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

represent the input message type and its value.

NonClientService stereotype may have one or more interfacea (corresponding
to the operations the NonClientService can perform). That is why a 1:M
relationship is introduced between NonClientService stereotype and Standard
UML2.0<<interface>> . ClientService stereotype has a 1:1 relationship with
HasSeenC Stereotype. HasSeenC stereotype extends Standard UML2.0
Class and corresponds to the HasSeenC unary relation of the Colombo
framework. HasSeenC has three tagged values, which are, which are:
‘ConstantsC’, ‘Parameter’, and ‘Value’. ‘ConstrantsC’ represents all the
constants appearing in the service specification, ‘Parameter’ and ‘Value’
corresponds to the parameters and values that have been transmitted to the
client. HasSeenC has a 1:M relationship with Output since all what will be
transmitted to the client is output messages from the perspective of web
services. Futhermore, to simulate service ports, ServicePort stereotype has
been introduced that extends Standard UML 2.0 Class construct. ServicePort
stereotype has two tagged values, which are: ‘Message’ and ‘Direction’.
‘Message’ is typed as MessageClass stereotype, and ‘Direction’ can take
either the values 'In' or 'Out' representing the direction of the message with
respect to the WebService. ServicePort has a 1:1 relationship with
NonClientService.

The behavioral descripton of web services can be represented in UML as
proposed in Figure 7 by using WebServiceBehavior stereotype that extends
Standard UML2.0 State machine. Figure 7 presents a detailed view of the
dynamic representation of web services behavior. In Standard UML2.0, each
state machine diagram can have one or more Standard UML 2.0 State
construct. That is why a 1:M relationship is maintained between Standard UML
2.0 State Machine and Standard UML 2.0 State construct. We have introduced
four new stereotypes that extend Standard UML 2.0 State to represent the
states of the different types of web services which are: NonClientState,
GoalState, ClientState and MediatorState stereotypes. The NonClienState
stereotype has one tagged value, which is ‘TriggerType’ that can assign the
values ‘send’, ‘receive’, or ‘invoke’ representing the cause of the transition
from one state to the next.

Figure 7 Behavioral description of web services

101

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

The ClientState stereotype has one tagged value, which is ‘Name’. ‘Name’
represents the name of the state and it can take either ‘ReadyToTransmit’ or
‘ReadyToRecieve’ values. ‘TriggerType’ tagged value is not introduced for the
client because the cause of the transition from one state to the next can be
implicitly understood from its Name. If the state name is ReadyToTransmit and
the client changes its state to (ReadyToRecieve), this means that the trigger
type is ‘send’, and vice versa.

GoalState stereotype has one tagged value, which is ‘TriggerType’. It
represents the cause of the transition, which can take the values ‘send’,
‘receive’ or ‘invoke’. 'send' and 'receive' are restricted to be a communication
to or from the client. The Mediatorstate stereotype has three tagged values,
which are: ‘TriggerType’, ‘To’ and ‘From’. ‘TriggerType’ represents the cause of
the transition from this state to the next. ‘TriggerType’ can only take two values
which are: ‘send’ or ‘receive’. 'To' is used to represent the WebService that
the MeditorService sends a message to, and 'From' is used to represent the
WebService that the MeditorService receives a message from. 'To' and 'From'
tagged values are only used to improve the readability of MediatorService
state machine. Standard UML2.0 State machine captures all the concepts
need to represent the guarded automata used in Colombo model. In Standard
UML2.0, a guard is a Boolean expression that must evaluate to true before a
given transition can fire. OCL is the natural candidate for expressing these
Boolean expressions. ‘Guard’ element in Standard UML2.0 plays the same
role. Finally Standard UML 2.0 Class diagram can be used to represent World
Schema, and Standard UML 2.0 object diagram can be used to represent
World Schema instance, World State I in a straightforward manner.

By applying the proposed UML profile on the example presented in Section
3.1, Figure 8 presents extended Standard UML 2.0 Activity diagram of the
‘CheckItem’ atomic process of Figure 3. Futhermore, Figure 9 shows the
extended Standard UML 2.0 State Machine diagram of the ‘Standard

Figure 8 Representing ‘CheckItem’ atomic process in UML

102

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

Warehouse’ web service of Figure 4.

5- XML DOCUMENT TYPES FOR COLOMBO

To be able to utilize the automatic composition algorithm proposed in [1], there
should be a mapping between the proposed UML profile and Colombo.
However, Colombo is still a conceptual model, which means that it does not
have a supporting language. We propose a set of coherent XML document
types that can be a base for a Colombo language, and also we propose the
transformations between UML and XML. We have to point out that the
proposed XML is not executable, howver it is an abstract language. Services
in Colombo can be specified using three XML document types that represent,
which are: (i) the world schema, (ii) the alphabet of atomic processes with
links to relevant documents representing the world schema, and (iii) the
behavior of a web service with links to appropriate documents representing
the alphabet of atomic processes. Next, we present the proposed Document
Type Definitions (DTD) and the intuition behind each proposed XML
document. DTD serves as a grammar for the underlying XML document. DTD
can also serve as schema for the data represented by the XML document.

Figure 9 Representing ‘Standard Warehouse’ web service

103

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

5-1 XML DOCUMENT TYPE FOR WORLD SCHEMA

Figure 10 presents the DTD tree for the proposed XML document for
representing world schema. The root of the XML document is named as
WorldSchema. The WorldSchema element can have zero or more relations.
Each relation contains an 'id' as its identifier, one or more 'attribute' element,
and one and only one 'primaryKey' element. Each attribute has an 'id' as its
identifier, 'datatype' and 'ParameterType' elements.

The World Schema of the running example presented in Figure 2 can be
represented as an XML document as shown in Figure 11. Due to space
limitation, only a part of the XML document is shown in Figure 11 that
conforms to the proposed DTD of Figure 10

Multiplicity:
*: Zero or more occur-
rence.
+: one or more occur-
rence.
?: Zero or one occurence

WorldSchema

Relation *

Attribute + PrimaryKey

dataType parameterType ?

Figure 10 DTD tree of the proposed XML document for representing World Schema

104

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

5-2 XML DOCUMENT TYPE FOR ALPHABET OF ATOMIC
PROCESSES

The XML Document type proposed for representing the alphabet of atomic
processes A is inspired from OWL-S [6]. Figure 12 presents the proposed
DTD.

Figure 11 XML document representing world schema of Figure 2

(…)
relation: Relation rdf:ID = “Accounts”

relation: attribute rdf:ID = “CCNumber”
relation:attribute rdf:datatype = “&xsd;#integer”
relation:attribute rdf:parameterType = “#cardNumb-

er”
relation: attribute rdf:ID = “Credit”

relation:attribute rdf:datatype = “&xsd;#Boolean”
relation:attribute rdf:parameterType = “#...”

relation:primanyKey rdf:resource = “CCNumber”
relation: Relation rdf:ID = “Inventory”

relation: attribute rdf:ID = “Code”
relation:attribute rdf:datatype = “&xsd;#String”
relation:attribute rdf:parameterType = “#...”

relation: attribute rdf:ID = “Available”
relation:attribute rdf:datatype = “&xsd;#Boolean”
relation:attribute rdf:parameterType = “#...”
(...)

relation:primanyKey rdf:resource = “Code”

(...)

105

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

The AtomicProcessAplha element (representing the root of the XML
document) contains one and only one 'ID' element as its identifier, zero or
moreAtomicProcess element, and zero or more Ontology element. Each
AtomicProcess element contains a presents element, a describedBy element,
a supports element (presents, describedBy, and supports elements simulate
the service profile, service model and service grounding parts of the OWL-S

<!DOCTYPE AtomicProcessAplha [
<!ELEMENT AtomicProcessAplha (ID,AtomicProcess*, Ontology*)>
<!ELEMENT AtomicProcessAplha:ID (#PCDATA) >
<!ELEMENT AtomicProcess (presents, describedBy, supports, Profile, Process) >
<!ELEMENT Profile (Category, hasInput+ , hasOutput+ , hasPrecondition* , hasPost-
condition* , hasEffect*) >
<!ELEMENT Category (addrParam, value, code) >
<!ELEMENT addrParam (#PCDATA) >
<!ELEMENT value (#PCDATA) >
<!ELEMENT code (#PCDATA) >
<!ELEMENT Profile:hasInput (#PCDATA) >
<!ELEMENT Profile:hasOutput (#PCDATA)>
<!ELEMENT Profile:hasPrecondition SYSTEM "…" >
<!ELEMENT Profile:hasPostcondition SYSTEM "…" >
<!ELEMENT Profile:hasEffect SYSTEM "…" >

<!ELEMENT Process (hasInput+ , hasOutput+ , hasPrecondition* , hasPostcondition* ,
hasEffect*) >
<!ELEMENT Process:hasInput (parameterType) >
<!ELEMENT Process:hasInput parameterType SYSTEM "…" >
<!ELEMENT Process:hasOutput (conditionalOutput, CoCondition, parameterType) >
<!ELEMENT conditionalOutput (#PCDATA)>
<!ELEMENT coCondition SYSTEM "…">
<!ELEMENT Process:hasOutput parameterType SYSTEM "…" >
<!ELEMENT Process:hasEffect (conditionalEffect, ceCondition, ceEffect) >
<!ELEMENT Process:hasEffect:conditionalEffect (#PCDATA)>
<!ELEMENT Process:hasEffect: ceCondition SYSTEM "…">
<!ELEMENT Process:hasEffect: ceEffect SYSTEM "…">

<!ELEMENT Process:hasPrecondition SYSTEM "…" >
<!ELEMENT Process:hasPostCondition SYSTEM "…" >
<!ELEMENT Ontology (class*)>
<!ELEMENT class (PCDATA)>
]>

Figure 12 DTD of the proposed XML document for representing Alphabet of atomic
processes

106

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

model), a Profile and a Process elements. Each Profile element contains a
Category element, one or more hasInput element, one or more hasOutput
element, zero or more hasPrecondition element, zero or more
hasPostcondition element, and one or more hasEffect element. Each Process
element contains one or more hasInput element, one or more hasOutput
element, zero or more hasPrecondition element, zero or more
hasPostcondition element, and one or more hasEffect element. The Profile
element can be viewed as a summarization of the Process element. Each
Ontology element contains zero or more class elements representing the
ontology concepts. Figure 13 shows a part of the XML document representing
alphabet of atomic processes of Figure 3, which conforms with the proposed
DTD.

5-3 XML DOCUMENT TYPE FOR WEB SERVICES BEHAVIOR

Figure 14 presents the proposed DTD for representing web services behavior.
The Service element, which represents the root of the XML document,
contains an APAlphabet element, an ID element, an initialState element, one

Profile:category

Profile: addParam: NAICS rdf:ID = “NAICS.category”

profile:value

Commercial Banking

Profile:code

522110

process:AtomicProcess rdf:ID=”CCCheck”

process:hasEffect

process:ConditionalEffect rdf:ID= “CheckCreditApproved”

process:ceCondition rdf:resource = “#EnoughMoney”

process :ceEffect rdf:resource = “#ModifyAccounts”

process:hasEffect

process:ConditionalEffect rdf:ID= “CheckCreditDisapproved”

process:ceCondition rdf:resource = “#NoEnoughMoney”

process :ceEffect rdf:resource = “”

process:hasOutput

process:ConditionalOutput rdf:ID= “CheckCreditCardApproved”

process:coCondition rdf:resource= “#EnoughMoney”

process:parameterType rdf:resource = “…”

process:hasInput

process:Input rdf:ID= “CheckCreditCardCreditCardNo”

process:parameterType rdf:resource = “#cardNumber”

Figure 13 Part of the XML Document of 'CCCheck' atomic process of Figure 3

107

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

or more finalState elements, and one or more transitionStep elements.
APAlphabet element is a reference to the appropriate atomic process alphabet
used by the service.

The ID element is an identifier of the service. initialState element represents
the initial state of the guarded automata GA. finalState element represents a
final state of the GA. transitionStep element contains a state, a gurad, a transi-

(...)
service:Service rdf:ID = “Bank”

service:APAlphabet rdf:resource = “#atomic_process_alphabet”
service:WorldSchema rdf:resource = “#WorldSchema”

initialState=“Start”
finalState=“End”

(...)
service:transitionStep

service: transitionStep:state rdf:ID = “Start”
service: transitionStep:guard rdf:resource=“#guard1”
service: transitionStep:transitionEvent = “?requestCCCheck(CCnum)”
service: transition: transitionStep rdf:ID = “1”

service: transitionStep
service: transitionStep:state rdf:ID = “1”
service: transitionStep:guard rdf:resource=“#guard2”
service: transitionStep:transitionEvent = “CCCheck(CCnum;approved)”
service: transitionStep:transition rdf:ID = “2”

(…)

Figure 15 XML document for representing Bank web service

Figure 14 DTD of the proposed XML document for representing web services beha-
vior

<!DOCTYPE Service[
<!Element Service (APAlphabet, ID, initialState, finalState+, transitionStep+)

>
<!Element APAplhabet SYSTEM "" >
<!Element WorldSchema SYSTEM "" >
<!Element ID (#PCDATA)>
<!Element initialState (#PCDATA)>
<!Element finalState (#PCDATA)>
<!Element transitionStep (state, guard, transitionEvent, transition) >
<!Element state (#PCDATA) >
<!Element guard SYSTEM "" >
<!Element transitionEvent (#PCDATA) >
<!Element transition (#PCDATA) >

] >

108

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

tionEvent and a transition elements. State element represents current state.
guard is a Boolean expression. Finally, transitionEvent is the cause of the
transition (e.g. receiving a message), and transition is the destination state.
Figure 15 presents the XML document for representing the bank web service
of Figure 4 that conforms to the proposed DTD discussed in Figure 14.

5-4 TRANSFORMATIONS BETWEEN UML AND XML

Table 2 presents a summary of the proposed transformation rules between
UML and XML. These transformation rules can be embedded into UML model
Transformation Tool (UMT) [15]. This is a tool used to transform UML to any
other source (e.g. XML, C#). Embedding the transformation rules ino UMT is
considered as one of our future work directions. Next we will present the pro-
totypical implementation of the approach proposed in this paper.

Table 2 Summary of the transformation rules between UML and XML

109

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

6- PROTOTYPE IMPLEMENTATION

An effective and scalable implementation of the proposed UML profile dis-
cussed above is a challenging yet necessary step to ascertain the soundness
of the approach proposed in this paper. The prototypical implementation is
developed by creating a prototype of a CASE tool that would be used to facili-
tate the design of composite web services. We have used Visual Paradigm for
UML (VP-UML) Version 6 [25] for this purpose, mainly because it supports
UML 2.0 and its extension mechanisms and allows the automatic transforma-
tion from UML to XML. Besides, it allows converting to a wide variety of
source code (such as C#, C++, JAVA, PHP…etc) to UML. VP-UML permits
the user to select a language (such as C#, C++, XML…etc) that allows the
attributes to be typed compatible to the selected language. This feature is of a
great value when transforming the UML diagrams to any other language. Fig-
ure 16 presents a snapshot of the implemented activity diagram of
'CheckItem' atomic process of Figure 3. Moreover, Figure 17 presents the in-
troduced tagged values for the Category stereotype of the CheckItem atomic
process. Furthermore, the state machine diagram of the Bank web service of
the running example is presented in

Figure 18. Finally, Figure 19 presents a cascaded view of the implemented
mapping from the UML diagrams of the running example to XML (refer to [26]
for more details about the expermintal prototype).

Figure 16 Activity diagram of 'CheckItem' atomic process

110

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

Figure 18 Implemented state machine diagram of 'Bank' web service

Figure 17 Tagged values of Category stereotype for 'CheckItem' atomic process

111

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

7- CONCLUCION

In this paper we have proposed to model Colombo web services in UML. For
this purpose, we have proposed a UML profile that can be used to model
every component of the Colombo model. Consequently, the web service de-
veloper will deal with the UML high level graphical models, and this in turn will
have a positive impact on her productivity and will facilitate her work. We have
outlined a prototypical tool by using Visual Paradigm for UML (VP-UML) ver-
sion 6.
Colombo model is a conceptual model, which means that it does not have a
supportive language. We have proposed a set of related XML document types
that can be the core of a Colombo language. Furthermore, we have proposed
the transformation rules between UML and Colombo proposed XML docu-
ments. Next the automatic composition algorithm proposed in [1] can be uti-
lized assuming that it accepts and produces XML documents that conform to
the DTDs proposed in this paper.

Figure 19 A Cascaded view of the corresponding XML document

112

Int.J. of Software Engineering, IJSE Vol.3 No.2 July 2010

REFERENCES

[1] D. Berardi , D. Calvanese, G. Giacomo, R. Hull, and M. Mecella,
“Automatic Composition of Transition-based Semantic Web Services with
Messaging,” 31st Very Large Database (VLDB) Conference, Norway, pp.
613-624, 2005.

[2] R. Hull, M. Benedikt, V. Christophides, and J. SU, “E-Services: A Look
behind the Curtain,” Principles of Database (PODS) International
Conference, USA, pp. 1-14, 2003.

[3] "Web Service Description Language (WSDL) Version 1.1,"
http://www.w3.org/TR/wsdl.

[4] "Web Service Description Language (WSDL) Version 2.0 Part 2:
Predefined Extensions (W3C Working Draft),"
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803.

[5] UDDI.org, UDDI Technical White Paper, 2000.
[6] A. Ankolekar , M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara, “DAML-
S: Web Services Description for Semantic Web,” International Semantic
Web Conference (ISWC’02), Italy, pp. 348-363, 2002.

[7] D. Berardi, “Automatic Service Composition: Models, Techniques, and
Tools,” Dipartimento di Informatica e Sistemistica, Universit`a di Roma “La
Sapienza”, Roma, 2005.

[8] D. Berardi, D. Calvanese, G. Giacomo, M. Lanzerini, and M. Mecella,
“Automatic Composition of E-Services that Export their Behavior,” 1st
International Conference on Service Oriented Computing (ICSOC), Italy,
pp. 43-58, 2003.

[9] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation Specification: A New
Approach for the Design and Analysis of E-Service Composition,”
International World Wide Web Conference (WWW), Hungary, pp. 403-410,
2003.

[10] D. Berardi, D. Calvanese, G. Giacomo, R. Hull, and M. Mecella, “Modeling
Data & Processes for Service Specifications in Colombo,” the Open
Interop. Workshop on Enterprise Modeling & Ontologies for Interope-
rability (EMOI INTEROP’05), Portugal, 2005.

[11] M. Lopez-Sanz, C. Acuna, C. Cuesta, and E. Marcos, “Modelling of
Service-Oriented Architectures with UML,” Electronic Notes in Theoretical
Computer Science, vol. 194, pp. 23-37, 2008.

[12] R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik, “Model-Driven Web
Services Development,” IEEE International Conference on E-Technology,
E-Commerce and E-Service (EEE’04), Taiwan, pp. 42-25, 2004.

[13] R. Gronmo, and J. Oldevik, “An Empirical Study of the UML Model
Transformation Tool (UMT),” 1st International Conference on
Interoperability of Enterprise Software and Applications (INTEROP-
ESA’05), Switzerland, 2005.

[14] S. Thone, R. Depke, and G. Engels, “ Process-Oriented, Flexible
Composition of Web Services with UML,” International Workshop on
Conceptual Modeling Approaches for E-business: A Web Service
Perspective (eCOMO 2002), Finland, pp. 390-401, 2002.

113

Using UML to Model Web Services for Automatic Composition Elgammal and El-Sharkawi

[15] W. Provost. "UML for Web Services, XML.com,"
http://www.xml.com/lpt/a/ws/2003/08/05/uml.html

[16] D. Carson. "Hypermodel," www.ontogenics.com.
[17] B. Bauer, and M. Huget, “Modelling web service composition with UML

2.0,” International Journal of Web Engineering and Technology, vol. 1, no.
4/2004, pp. 484-501.

[18] "BPEL," Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpelsubproc/, 2005].

[19] R. Gronmo, M. Jaeger, and H. Hoff, “Transformations between UML and
OWL-S,” International European Conference on Model Driven Architecture
–Foundations and Applications (ECMDA-FA), Germany, pp. 269-283,
2005.

[20] D. Elenius, G. Denker, D. Martin, F. Filham, J. Khouri, S. Sadaati, and R.
Sena-nayake, “The OWL-S Editor – A Development Tool for Semantic Web
Services,” 2nd European Semantic Web Conference (ESWC 2005),
Greece, pp. 78-92, 2005.

[21] A. Gomez-Perez, R. Gonzalez-Cabero, and M. Lama, “ODE SWS: A
Framework for Designing and Composing Semantic Web Services,” 2nd
International IEEE Conference on Intelligent Systems, Bulgaria, pp. 24-31,
2004.

[22] P. Rajasekaran, J. Miller, K. Verma, and A. Sheth, “Enhancing Web
Services Description and Discovery to Facilitate Composition,” Semantic
Web Services and Web Process Composition, 1st International Workshop
(SWSWPC 2004), USA, pp. 55-68, 2004.

[23] K. Scott, Fast Track UML 2.0: APress, 2004.
[24] D. Djuric, “MDA-based Ontology Infrastructure,” Computer Science

Information Systems (ComSIS), pp. 91-116, 2004.
[25] "Visual Paradigm for UML," http://www.visual-paradigm.com/.
[26] A. Elgammal “Efficient Techniques for Building Web Services,” Masters

dissertation, Information Systems Dept., Faculty of Computers and
Information, Cairo University, Cairo, 2007.

