-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Tilburg University Repository

S

NS
ILBURG & 2z ¢ UNIVERSITY

Tilburg University

Enhanced suffix arrays as language models
Stehouwer, J.H.; van Zaanen, M.

Published in:
Grammatical inference

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):

Stehouwer, J. H., & van Zaanen, M. (2010). Enhanced suffix arrays as language models: Virtual k-testable
languages. In J. Sempere, & P. Garcia (Eds.), Grammatical inference: Theoretical results and applications (pp.
305-308). (Lecture Notes in Computer Science; No. 6339). Springer.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://core.ac.uk/display/420810699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/021f71ec-0e84-4438-9abb-2729eb6998f3

Enhanced Suffix Arrays as Language Models:
Virtual k-testable Languages

Herman Stehouwer and Menno van Zaanen

TiCC, Tilburg University, Tilburg, The Netherlands
{J.H.Stehouwer, M.M.vanZaanen}@uvt.nl

Abstract. In this article, we propose the use of suffix arrays to effi-
ciently implement n-gram language models with practically unlimited
size n. This approach, which is used with synchronous back-off, allows
us to distinguish between alternative sequences using large contexts. We
also show that we can build this kind of models with additional infor-
mation for each symbol, such as part-of-speech tags and dependency
information.

The approach can also be viewed as a collection of virtual k-testable
automata. Once built, we can directly access the results of any k-testable
automaton generated from the input training data. Synchronous back-
off automatically identifies the k-testable automaton with the largest
feasible k. We have used this approach in several classification tasks.

1 Introduction

When writing texts, people often use spelling checkers to reduce the number of
mistakes in their texts. Many spelling checkers concentrate on non-word errors.
However, there are also types of errors in which words are correct, but used
incorrectly in context. These errors are called contextual errors and are much
harder to recognize than non-word errors.

In this paper, we describe a novel approach, which is based on suffix arrays,
which are sorted arrays containing all suffixes of a collection of sequences, to
store the models. This approach can be used to make decisions about alternative
corrections of contextual errors. The use of suffix arrays allows us to use large,
potentially enriched n-grams and as such can be seen as an extension to more
conventional n-gram models. The underlying assumption of the language model
is that using more (precise) information pertaining to the decision is better [3].

The approach can also be seen as a collection of k-testable automata that we
can access using by using a single query. As De Higuera states in [4] choosing
the right size k is a crucial issue. When k is too small over-generalization will
occur, conversely too large k leads to models that might not generalize enough.
The approach described here automatically chooses the largest k applicable to
the situation.

2 Approach

To select the best sequence out of a set of alternative sequences, such as in the
problem of contextual errors in text, we consider all possible alternatives and
use a model to select the most likely sequence. The sequence with the highest
probability is selected as the correct form.

The language model we use here is based on unbounded size n-grams. The
probability of a sequence is computed by multiplying the probabilities of the
n-gram for each position in the sequence.

Pyeqg = H Pry(wlw_q...w_,)

weseq

Considering that the probabilities are extracted from the training data, when
using n-grams with very large n, data sparseness is an issue. Long sequences
may simply not occur in the data, even though the sequence is correct, leading
to a probability of zero, even though the correct probability should be non-zero
(albeit small).

To reduce the impact of data sparseness, we can use techniques such as
smoothing [2], which redistributes probability mass to estimate the probability
of previously unseen word sequences! or back-off, where probabilities of lower
order n-grams are used to approximate the probability of the larger n-gram.

In this article, we use the synchronous back-off method [6] to deal with data
sparseness. This method analyzes n-grams of the same size for each of the al-
ternative sequence in parallel. If all n-grams have zero probability, the method
backs off to n — 1-grams. This continues until at least one n-gram for an al-
ternative has a non-zero probability. This implements the idea that, assuming
the training data is sufficient, if a probability is zero the n-gram combination is
not in the language. Effectively, this method selects the largest, usable n-grams
automatically.

Probabilities of all n-grams (from the training data) of all sizes are stored
in an enhanced suffix array. A suffix array is a flat data-structure containing an
implicit suffix tree structure [1]. A suffix tree is a trie-based data structure [5, pp.
492] that stores all suffixes of a sequence in such a way that a suffix (and similarly
an infix) can be found in linear time in the length of the suffix. All suffixes occupy
a single path from the root of the suffix tree to a leaf. Construction of the data
structure only needs to be performed once.

Due to the way suffix arrays are constructed, we can efficiently find the
number of occurrences of subsequences (used as n-grams) of the training data.
Starting from the entire suffix array we can quickly identify the interval(s) that
pertain to the particular n-gram query. The interval specifies exactly the number
of occurrences of the subsequence in the training data. Effectively, this means
that we can find the largest non-zero n-gram efficiently.

! In this paper we do not employ smoothing or interpolation methods as they modify
the probabilities of all alternatives equally and hence will not affect the ordering of
alternative sequences.

3 Suffix arrays as Collections of k-testable Machines

An enhanced suffix array extends a regular suffix array with a data-structure
allowing for the implicit access of the longest-common-prefix (lcp) intervals [1].
An lcp interval represents a virtual node in the implicit suffix trie. A simple en-
hanced suffix-array with its corresponding implicit suffix-trie is shown in Figure 1
as an example.

We can view a suffix array as a virtual DFA in which each state is described
by a set of lcp-intervals over the suffix array. This view allows us to determine
(by the size of the interval) the number of valid sequences that terminated in
each state. If there is no valid path in the DFA for the queried sequence it results
in an empty state and the sequence is rejected by the learned grammar.

Since the suffix array stores the n-grams of all sizes n, this comes down to a
collection of k-testable machines with k = 1...|T| (with T the training data).
Querying with length k£ automatically results in using a k-testable machine.

There is an interesting property of the n-gram suffix array approach, which
separates it from collections of regular k-testable machine DFAs. All the states
on the suffix array are accepting states. Rejection of a sequence only happens
when the query cannot be found in the training data at all. The system also
does not support negative training examples, only positive ones.

To enhance the system, we have generalized a state to be described by a set of
lcp intervals. This allows for the supports of single position wildcards. In practice,
wildcards allow for the integration of additional information. By interleaving the
symbol sequences with the additional symbols, we can incorporate for instance,
long range information, such as dependency information and local, less specific
features such as part-of-speech tags. Using wildcards, we can construct queries
that either use such additional information on one or more positions or not.

| i[suffix[lcp[S[suffix] |

O|aaacatat$
2|aacatat$ 101
1|acaaacatat$
3|acatat$

1 atat$ | p.5}ka [‘ [6.7+b [| (8.9 I
2/at$
0
2
0
1
0

caaacatat$
E:Egt$ | p.1psa I ‘ 12.3ac [| 4. 5pat [
t$
$

OO N| DY B[W N HO
QO[T |0 D | O] W[N

—
o
—_
o

Fig.1. An enhanced suffix array on the string S= acaaacatat on the left, and its
corresponding lcp-interval tree on the right. From [1].

To evaluate the approach, we ran experiments on three contextual error prob-
lems from the natural language domain, namely confusible disambiguation, verb
and noun agreement and adjective ordering. The synchronous back-off method
automatically selects the k-testable machine that has the right amount of speci-
ficity for selecting between the alternative sequences. These experiments where
run with a simple words-only approach and also with part-of-speech tags. The
experiments show that the approach is feasible and efficient.

When trained on the first 675 thousand sequences of the British National
Corpus building the enhanced suffix array takes 2.3 minutes on average. These
sequences contain about 27 million tokens. When loaded into memory the en-
hanced suffix array uses roughly 500 megabytes. We ran speed-tests using 10.000
randomly selected sequences of length 10. The system has an average runtime
off 10.2 minutes over tens of runs, with as extremes 8.1 and 12.1 minutes. This
means that we can expect the enhanced suffix array to process around 1200
queries per minute. All tests where run on a 2GHz opteron system with 32GB
of main memory. The suffix array process is single-threaded.

4 Conclusion and Future Work

We have proposed a novel approach which implements a collection of k-testable
automata using an enhanced suffix-array. This approach describes automata that
have no explicit reject states and do not require (or support) negative examples
during training. Nevertheless, this approach allows for an efficient implementa-
tion of many concurrent k-testable machines of various k using suffix arrays.
The implementation will be applied as a practical system in the context
of text correction, allowing additional linguistic information to be added when
needed. In this context, the effectiveness of the additional information in com-
bination with the limitations of k-testable languages still needs to be evaluated.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1), 53-86 (2004)

2. Chen, S., Goodman, J.: An empirical study of smoothing techniques for language
modelling. In: Proceedings of the 34th Annual Meeting of the ACL. pp. 310-318.
ACL (June 1996)

3. Daelemans, W., Van den Bosch, A., Zavrel, J.: Forgetting exceptions is harmful in
language learning. Machine Learning, Special issue on Natural Language Learning
34, 11-41 (1999)

4. de la Higuera, C.: Grammatial Inference, Learning Automata and Grammars. Cam-
bridge University Press (2010)

5. Knuth, D.E.: The art of computer programming, vol. 3: Sorting and searching.
Addison-Wesley, Reading, MA (1973)

6. Stehouwer, H., Van den Bosch, A.: Putting the t where it belongs: Solving a con-
fusion problem in Dutch. In: Verberne, S., van Halteren, H., Coppen, P.A. (eds.)
Computational Linguistics in the Netherlands 2007: Selected Papers from the 18th
CLIN Meeting. pp. 21-36. Nijmegen, The Netherlands (2009)

