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Abstract. This paper revisits a problem of the evaluation of compu-
tational grammatical inference (GI) systems and discusses what role
complexity measures can play for the assessment of GI. We provide a
motivation for using the Rademacher complexity and give an example
showing how this complexity measure can be used in practice.

1 Introduction

Various aspects of grammatical inference (GI) have been studied extensively
from both theoretical and practical points of view [3]. These include formal
learnability results in the frameworks of the identification in the limit and PAC
learning, as well as empirical methods. In the latter case, given a finite amount of
sequential data, the aim is to find the underlying structure that was used to gen-
erate the data. Empirical approaches usually fall into the unsupervised learning
paradigm and explore vast volumes of unlabeled sequences. One of the widely
discussed questions in the literature concerns the performance of GI methods and
their means of assessment. Van Zaanen and Geertzen [5] identify four evaluation
strategies: the looks-good-to-me, rebuilding an apriori known grammars, language
membership detection and comparison against a treebank approaches. All have
weaknesses, some of which can be attributed to subjectivity, low scalability, and
a bias towards specific grammars.

In practice, the comparison against a gold standard remains the most pop-
ular evaluation strategy. For instance the empirical comparison of ABL and
EMILE [4] was based on unlabeled precision and recall. In this paper, we do not
focus on accuracy of the GI methods but on their overfitting. In particular, it is
known from statistical learning theory that classifiers prone to overfitting do not
provide high generalization. In what follows, we give a definition of Rademacher
complexity and discuss how to use it in the context of GI.

2 Rademacher Complexity

A goal of a learning system is to be able to analyze new, unseen examples and
predict them correctly. In other words, given a set of n examples {(xi, yi)}ni=1



drawn i.i.d. from the joint distribution PXY , it is supposed to produce a classifier
h : X → Y such that it is able to categorize a new example x ∈ X. Any incorrect
predictions that a classifier makes on a training set are counted as its empirical
error ê(h) =

∑n
i=1 I(h(xi) 6= yi), where I is an indicator function which returns

1 in the case h(xi) = yi and 0, otherwise. Even though a classifier has access
only to the limited number of examples (training set), one would ideally wish
the empirical error on training examples ê(h) to be close to the true error e(h).

In statistical learning theory, it is common to describe the difference between
true and empirical errors in terms of generalization bounds. These bounds typ-
ically depend on the number of training examples and capacity of a hypothesis
space H. If a hypothesis space is very large and there are only few training ex-
amples, the difference between true and empirical errors can be large. Capacity
closely relates to the notion of overfitting and emphasizes the fact that even
if a classifier performs very well on the training set, it may yield poor results
on a new data set. It is measured either by Vapnik-Chervonenkis dimension or
Rademacher complexity and here we focus on the latter.

Definition 1 For n training examples from a domain X, a set of real-valued
functions H (where h ∈ H, h : X → R), a distribution PX on X, the Rademacher
complexity R(H,X,PX , n) is defined as follows:

R(H,X,PX , n) = Exσ

(
sup
h∈H

∣∣ 2
n

n∑
i=1

σih(xi)
∣∣) (1)

where σ = σ1, . . . , σn are random numbers distributed identically and indepen-
dently according to the Bernoulli distribution with values ±1 (with equal proba-
bility), and the expectation is taken over σ and x = x1, . . . , xn.

Equation 1 shows that Rademacher complexity depends on the number of
training examples n. In particular, larger number of examples will lead to lower
complexity and, consequently, overfitting will also be low. In the binary case,
where h : X → {−1, 1}, Rademacher complexity ranges from 0 to 2. In a nutshell,
Rademacher complexity shows how well a classifier can match random noise.

The use of Rademacher complexity to bound generalization error is discussed
in [1] and is illustrated below.

Theorem 1 (Bartlett and Mendelson) Let PXY be a probability distribution on
X × {−1, 1} with marginal distribution PX on X, H be a set of functions such
that each h ∈ H,h : X → {−1, 1}. Let {(xi, yi)}ni=1 be a training set sampled
i.i.d. from PXY . For any δ > 0, with probability at least 1 − δ, every function
h ∈ H satisfies

e(h)− ê(h) ≤ R(H,X,PX , n)

2
+

√
ln(1/δ)

2n
(2)

Equation 2 shows that if Rademacher complexity is high and a number of
training examples is small, the generalization bound will be loose. Ideally, one
would like to keep Rademacher complexity as low as possible, and a number of
training examples sufficiently large.



3 Grammar Induction: Some Considerations

Tailoring Rademacher complexity to GI is not trivial because even though it is
evaluated against existing annotated resources, it does not always fall in a typical
supervised learning scenario. We assume that a grammar induction algorithm
maintains several hypotheses and chooses the best one available, hg. Depending
on the input data, there are three possible strategies.

Supervised GI When a GI method is supervised, i.e. it is trained on sen-
tences with their corresponding constituency structures, Rademacher complexity
can be used to measure overfitting. This is the case of probabilistic context-free
grammars (PCFGs). To measure Rademacher complexity, we need to specify
what is an input space X and an output space Y . Usually, GI methods take a
text corpus as input and generate constituents as output, which may suggest that
X is a set of sequences (sentences) and Y is a set of subsequences (constituents).
When comparing the output of an algorithm against a structured version of the
sentences (i.e. a treebank), one considers how many constituents where found by
a GI method and whether they match annotations. Consequently, we assume a
hypothesis to be a mapping from constituents to binary labels, hg : X → {−1, 1}.
Labels indicate whether a constituent from the gold standard was found by a GI
algorithm (1) or not (−1).

To summarize, in the supervised case one may use the following evaluation
scheme. For each constituent xi, i = 1, . . . , n from the gold standard corpus, we
generate a random label σi. In addition, we have a binary prediction from the GI
method which indicate whether this constituent is generated by this particular
method, hg(xi). Finally, Rademacher complexity is computed as described in
Equation 1.

Semi-supervised GI The second scenario is applicable when a GI method
uses both labeled and unlabeled data. In such a case, transductive Rademacher
complexity may be used, which is a counterpart of a standard Rademacher com-
plexity.

Unsupervised GI In a fully unsupervised scenario, a GI method does not
make use of labeled data for training and in this case we need another measure
of overfitting instead of Rademacher complexity. However, in order to see what
would happen in the case we simulate an evaluation proposed for supervised
scenario, we have applied Alignment-Based Learning (ABL) [4] on the 578 sen-
tence the Air Traffic Information System (ATIS3) subset of the Penn treebank
(the edit distance-based alignment algorithm and the term probability selection
learning method). As baselines, we also consider left and right branching binary
tree structures. The generated structures have been compared against the ATIS3
gold standard, not taking empty constituents (traces) and the constituents span-
ning the entire sentence into account.

Table 1 shows that complexity rates for all three algorithms are low, which
suggests that overfitting is low. Figure 1 illustrates that increasing the size of
the training data lowers Rademacher complexity, although the differences are
small here as well.



Table 1: Rademacher complexity and stan-
dard deviation on the ATIS3 corpus (100
runs).

Settings Rademacher complexity

ABL 0.0267 (± 0.0227)
left branching 0.0295 (± 0.0215)
right branching 0.0304 (± 0.0219)
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Fig. 1: Learning curve of Rademacher com-
plexity of ABL on ATIS3 corpus.

4 Conclusions

In this paper, we discuss how to use Rademacher complexity to analyze existing
grammar induction algorithms. In addition to commonly used measures, such
as unlabeled precision or recall, the use of Rademacher complexity allows to
measure overfitting of a method at hand. Since complexity is computed for a data
sample, it makes it possible to study overfitting for the entire text collection, as
well as on some subsets defined based on the sentence length or certain linguistic
phenomena.

Rademacher complexity is well suited for supervised and semi-supervised set-
tings. However, it remains an open question how overfitting should be measured
in a completely unsupervised scenario. Recent work on clustering [2] suggests
that, similarly to supervised learning, it is possible to restrict a function space
in order to avoid overfitting. In future, we plan to investigate whether these
findings can be used for unsupervised grammar induction.
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