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Abstract

Textbooks on Design Of Experiments invariably start by explaining why one-factor-at-a

-time (OAT) is an inferior method. Here we will show that in a model with all interactions

a variant of OAT is extremely efficient, provided that we only have non-negative

parameters and that there are only a few large parameters. In the extreme, this means

that there is one positive parameter. In that case, for m variables, that is, for 2m − 1

parameters, the procedure only needs m + 2 observations to find. In other examined

cases, the proposed method is also very fast.

1. Introduction

Screening techniques are used to reduce the number of potentially important factors

influencing a system’s performance to the few really important factors, and to do so in

an economical way. The latter is important because either we are dealing with a real

system, for which it is difficult or expensive to change factor values for a new run, or we

are dealing with a complicated simulation for which a single simulation run may take so

long (hours, days) that performing many runs is unacceptable.

The first publications on (group) screening appear in the 1960’s: see Watson (1961),

Patel (1962), or Li (1962); an overview of the various methods of screening is given in

Morris (2006) and Webb (2010), who both discuss among others Bettonvil’s (1995)

Sequential Bifurcation. The latter technique has the desirable property that if exactly one

factor out of 2m is nonzero, it will be found in m + 2 observations. In the sequel we will

see a corresponding logarithmic relation between the number of parameters in the

problem at hand and the number of observations.

In this paper we assume we are dealing with (a simulation of) a system depending on

m factors, each of which can be in two positions: low and high. Consequently, the

system can be in any of 2m states. We assume that the real system is, to start with, in

the state with all factors "low"; that going from one state to another by increasing one (or

more) factors does not decrease the output, or yield, of the system (so the yield either

increases or remains the same), but on the other hand, there is are known (positive)

costs involved for the increment of each factor. We do not want to maximize the yield of

the system; that would be trivial (the yield is maximal in the state with all factors "high"),

but instead we want to maximize the profit reached by increasing some factors, that is,



maximize the difference between yield and costs, or the quotient of yield and costs.

Our model is

yx1, . . . ,xm = β0 + β1x1 +. . .+ βmxm + β1,2x1x2 +. . .+ βm−1,mxm−1xm + β1,2,3x1x2x3 +

+. . .+ βm−2,m−1,mxm−2xm−1xm +. . .+ β1,2,..,mx1x2. . .xm. 1

where, without loss of generality, we assume that all x i ∈ 0,1. Further, we assume that

(apart from β0) all β′s are non-negative, with the majority of them zero or small, and with

only a few large ones, where we will discuss "small" and "large" later. Model (1)

represents a system with m inputs and one output; we think of systems like productions

lines, where changing input variables like conveyor-belt speed, buffer sizes, and the like,

can increase the production volume. We assume that, starting from the "present

situation" with all input variables at their low levels (all x i = 0), changing one or more

input variables to their high levels will increase (at least: not decrease) the yield y, and

that there are only a few combinations that do increase the output, with the ideal case:

there is exactly one combination of input variables that plays a decisive role in

determining the output.

Most screening methods are restricted to main effect models. The exceptions are

Morris (1991), who detects (but does not measure) quadratic effects and interactions,

and Bettonvil (1990), who finds important main effects in models with first order

interactions, using the Box and Wilson’s (1951) foldover principle. As (1) shows, we

assume a model with all interactions, but without quadratic effects.

In the following, we deviate from standard notation to improve readability. Instead of

writing yx1, . . . ,xm, where x1, . . . ,xm is a series of 0’s and 1’s, we write yS, where S is

the set of inputs at their high levels; so y∅ is the present yield: all inputs at their low

levels; and yU is the yield with all inputs at their high levels. If the inputs with indices in

set S are at their high levels, we have costs CS = Σs∈Scs with cs > 0 s = 1, . . . ,m, and

yield yS. We can either maximize the absolute profit yS − CS, or the relative profit

yS − y∅/CS. In the sequel we will mainly deal with the relative profit, where for simplicity

we assume all c’s equal to one, so we concentrate on yS − y∅/#S, but this not a

fundamental restriction. Also see Appendix A, remark 1.1.

In section 2 we consider three versions (including a trivial one) of, what we call,

"perfect" cases, namely the case where all parameters are zero, the cases where

exactly one parameter (be it a main effect or an interaction of any order) is positive, and

the case with only main effects. In section 3 we switch to the general case, and we show

how we arrive at the optimal vertex. In section 4 we give some examples, and in section

5 we discuss our findings.

2. "Perfect" cases

2.0. All parameters zero

Just for the sake of completeness we consider the case where all parameters are zero.

In that case the yield is the same, whatever measures are taken to increase it, so the

best policy is: do not invest any money in taking such measures: y∅ is optimal. We can

see that all parameters are zero by observing y∅ and yU. All parameters are zero if and

only if (in the sequel: iff) yU = y∅.



2.1. Exactly one positive parameter

If exactly one parameter is positive, then yU > y∅. If we observe this, we turn to OAT. In

general, OAT is used starting at the origin, so apart from y∅ we would observe

y1,y2, . . . ,ym. But only if the one positive effect is a main effect, we get to see it. If we

observe y∅,y1,y2, . . . ,ym, and yU, and we find that there one index i with yi = yU, and

all other yj = y∅< yU, we conclude that there is only one effect, and this is a main

effect. Applied in this way, OAT has very limited use.

Figure 2.1.1. Two ways of OAT

Ø

UU/{1}

U/{2}

U/{3}

{1}

{2}

{3}

But, there is an alternative. Suppose, apart from y∅ and yU, we observe

yU\1,yU\2, . . . ,yU\m; that is, OAT starting from U: the point where all inputs are at their

high levels. Notice the correspondence between yU − y∅ and yU\i − y∅: while the first is

the sum of all regression parameters in a model with m variables, the latter is its

equivalent in a model with m − 1 variables, where variable i is left out, so

PROPERTY

(P1) yU\i − y∅ is the sum of all regression parameters that do not have i as an

index.

(P2) yU − yU\i is the sum of all regression parameters that have i as an index.



(P2) is an immediate consequence of (P1). This partitioning of parameters is similar to

Homma and Saltelli’s (1996).

If some βS > 0 and this is the only positive parameter, then, as a consequence of

(P1), all observations yU\i with i ∈ S will be equal to y∅, and, as a consequence of (P2),

all observations yU\i with i ∉ S will be equal to yU.

And the reverse also holds. Suppose we observe y∅, yU, and yU\1,yU\2, . . . ,yU\m,

and we find that y∅ < yU, and there is a set S ⊂ 1,2, . . .m such that for i ∈ S , yU\i = y∅,

and that for i ∉ S, yU\i = yU. Then βS is the only positive parameter. See proof 2.1.1 in

Appendix B.

This is an important property of the systems under study: in case there is a single

non-zero parameter (in a collection of 2m − 1 parameters), it takes m + 2 observations to

find it.

See appendix A, remarks 2.1.1 through 2.1.3 for some further aspects of the one

positive parameter case.

2.2. Only main effects

Suppose that only the main effects are positive. For ease of notation we take y∅ = 0. It is

plain to see that

yU = Σjβj 2a
yU\i = Σjβj − βi 2b

so that ΣiyU − yU\i = Σiβi = yU.

If, on the other hand, we observe that ΣiyU − yU\i = yU, can we conclude then that

we are dealing with main effects only? Because yU − yU\i is the sum of all parameters

with an index i, we have

ΣiyU − yU\i = Σiβi + 2Σi,jβi,j + 3Σi,j,kβi,j,k +. . . . .+mβ1,2,...,m. 3

Any βi,j appears twice in this summation, one time coming from i, one time coming from

j; any βi,j,k appears three times, caused by i, j, and k; etcetera. But also

yU = Σiβi + Σi,jβi,j + Σi,j,kβi,j,k +. . . . .+β1,2,...,m 4

trivially. Equality of (3) and (4) is only possible if all terms with coefficient greater than

one are zero, due to the fact that all regression coefficients are non-negative.

3. The general case

3.1. Admissible observations

Given the observations y∅ < yU, and yU\i with y∅ ≤ yU\i ≤ yU i = 1, . . . ,m, we have to

determine whether these observations satisfy the model constraints, that is, model (1)

with all non-negative regression coefficients. We already saw, see remark 1, that not all

data with y∅ ≤ yU\i ≤ yU i = 1, . . . ,m satisfy our model demands: for i = 1, . . . ,m yU\i

may not be too large, or, equivalently, yU − yU\i may not be too small. The derivation in

section 2.2 leads to the idea that Σi=1
m yU − yU\i ≥ yU − y∅.



PROPOSITION

Model (1) holds with only non-negative regression parameters if and only if

Σi=1
m yU − yU\i ≥ yU − y∅ (provided that y∅ ≤ yU\i ≤ yU i = 1, . . . ,m).

The proof is given in Appendix B, proof 3.1.1. The outlines of the proof and the following

example are the same.

EXAMPLE

We have 6 variables; y∅ = 0, yU = 6 and yU − yU\i i = 1, . . 6 are given in Table 1.1

below. To simplify matters, we ordered the observations in ascending order. Now we will

show how to arrive at seven positive parameters that are in accordance with these

observations, and with model (1). We start with the tentative parameters

β

1
,

β

2
,...,


β

6

and

β

1,2,3,4,5,6
as given in Table 1.2, where x ∈ 0,0.228, that is, we start with giving each

βi the value yU − yU\i i = 1, . . 6 and next we let them all decrease, and at the same

time we let

β

1,2,3,4,5,6
increase in such a way that the sum of the parameters containing an

index i remains yU − yU\i i = 1, . . 6. The total sum of these parameters is far too large:

it goes from 18.092 to 16.952 as x goes from 0 to 0.228. Now we take a next step: after

"exhausting"

β

6
and maximizing


β

1,2,3,4,5,6
, that is, after maximizing x, we will gradually

replace

β

5
by


β

1,2,3,4,5
. We switch to Table 1.3, where x ∈ 0,0.313 (Table 1.2 with

x = 0.228 is identical to Table 1.3 with x = 0). Still, for all i = 1, . . 6 the sums of the

parameters satisfy the equality to yU − yU\i, as is easily verified, and as x increases

from 0 tot 0.313, the sum of all parameters decreases from 16.952 to 15.700. In the next

step, we replace

β

4
by


β

1,2,3,4
and adapt the other parameters to keep the sums OK: see

Table 1.4. In this table, as x increases from 0 to 0.290, the total decreases from 15.700

to 14.830, which is still too large. Next, we replace

β

3
by


β

1,2,3
and again adapt the

parameters, see Table 1.5. Here, as x increases from 0 to 4.598, the total sum

decreases from 14.830 to 5.634, which is smaller than the "goal value" 6.000. However,

for x=4.415 we have a solution which satisfies our demands; see Table 1.6.

yU − yU\1 5.560

yU − yU\2 5.503

yU − yU\3 5.429

yU − yU\4 0.831

yU − yU\5 0.541

yU − yU\6 0.229

yU 6


β

1
5.560 − x


β

2
5.503 − x


β

3
5.429 − x


β

4
0.831 − x


β

5
0.541 − x


β

6
0.228 − x


β

1,2,3,4,5,6
x


β

1
5.332 − x


β

2
5.275 − x


β

3
5.201 − x


β

4
0.603 − x


β

5
0.313 − x


β

1,2,3,4,5
x


β

1,2,3,4,5,6
0.228

Table 1.1 Table 1.2 Table 1.3




β

1
5.019 − x


β

2
4.962 − x


β

3
4.888 − x


β

4
0.290 − x


β

1,2,3,4
x


β

1,2,3,4,5
0.313


β

1,2,3,4,5,6
0.228


β

1
4.729 − x


β

2
4.672 − x


β

3
4.598 − x


β

1,2,3
x


β

1,2,3,4
0.290


β

1,2,3,4,5
0.313


β

1,2,3,4,5,6
0.228


β

1
0.314


β

2
0.257


β

3
0.183


β

1,2,3
4.415


β

1,2,3,4
0.290


β

1,2,3,4,5
0.313


β

1,2,3,4,5,6
0.228

Table 1.4 Table 1.5 Table 1.6

It follows that we can write the m + 2 observations y∅, yU, and yU\i i = 1, . . . ,m in terms

of β0 and m + 1 positive (to cover exceptional cases: non-negative) regression

parameters, and 2m − m − 2 regression parameters equal to zero. This is not only true for

these particular observations, but for any set of observations generated by model (1),

which includes y∅.

LEMMA.

If the k + 1 observations y∅, ySj (j = 1, . . .k) are generated by model (1), then k

non-negative parameters suffice to explain ySj − y∅. That is, let

yS1
− y∅

yS2
− y∅

ySk − y∅

= Xβ with X

a kxℓ matrix with k < ℓ, the elements of X and β follow from model (1), which implies that

X contains only 0’s and 1’s, and that β contains only non-negative elements. Then we

can reduce the number of elements of β from ℓ to k; that is, we can select k columns of X

giving us a kxk matrix X, and find a k-vector

β with only non-negative elements such that

yS1
− y∅

yS2
− y∅

ySk − y∅

= Xβ = X

β.

See proof 3.1.2 in Appendix B.

3.2. Candidates

Before describing the way in which the optimal vertex is found, that is, where is the profit

maximal, we must consider the matter of candidates. It is quite possible that not every

vertex is acceptable as a solution. It may be that the company fixed an upper limit of the

costs; maybe taking some measure prohibits taking some other measure, or prescribes

some other measure. Anyway, it is possible, and even probable, that not all vertices are

acceptable as a solution. The vertices that are acceptable as a solution, are called

candidates, and we indicate then as CAND(0). In the sequel we will see how to arrive at

just one candidate: the optimal solution.



3.3. Determination of minima and maxima

In this section, we assume that β0 = y∅ = 0. Assume we have performed k observations,

collected in vector yS. There is a k-vector

β (a basic solution) such that yS = X


β, where

the elements of the kxk matrix X are determined by the indices of the observations and

those of the regression coefficients. For any

y, not yet observed, we can compute the

value, based on the values of the elements of

β:


y = xn

′

β, where xn is a k-vector, the

elements of which are determined by the index of

y and the indices of


β. This does not

give us the value of

y if we actually performed this observation, but it is a feasible value;

that is, there is an interval, although unknown at the moment, in which the value of

y

lies, and also xn
′

β lies within this interval. So we have

yS


y

=
X

xn
′


β.

Now we add one extra elements βe to this system, and we give it the value 0, so it

leaves everything unchanged. The system changes into

yS


y

=
X xe

xn
′ xne


β

βe

(5)

where the elements of xe and the value of xne are determined by the y- and β-indices.

What is the effect if we let βe increase, taking care that yS does not change? We see

that yS = X

β + xeβe, implying that


β = X

−1

yS − X
−1

xeβe, provided that X is not singular. For

this issue, see remark 3.3.1. We also see that

y = xn

′

β + xneβe. In this expression we

substitute the value of

β just found, giving us


y = xn

′ X
−1

yS + xne − xn
′ X

−1

xeβe.

Depending on the choice of e (that is, which extra β do we add to the system) we can

let

y increase or decrease. Assume that we want to let


y increase (decreasing goes in a

similar way). We find an index e such that xne − xn
′ X

−1

xe > 0 and let βe increase while

keeping yS constant, and keeping all elements of

β non-negative. The latter demand

gives the limit of how far we can let βe increase. At the point where one element of

β

becomes 0, we stop increasing βe and, at the same point, we can remove this

zero-element from

β and replace it by βe.

We then can look for another element to increase

y further, and repeat this process

until

y can not be increased anymore.

3.4. First application of minima and maxima

For all candidates we can now compute the minimum and maximal value attainable.

Consider the maximin of these: what is the maximum of the minimum values. All

candidates with a maximum attainable value smaller than this maximum can be



discarded, and in this way the set of candidates is reduced from CAND(0) to CAND(1).

Figure 3.4.1. Reducing the number of candidates.

3.5. Second application of minima and maxima

As a next step, we compute the minimum and the maximum values attainable for all

vertices not yet observed. This is done in the same way as the computation of these

quantities for the candidates. We choose a value a bit larger than the minimum and a

value a bit smaller than the maximum (see remark 3.5.1 in Appendix A), and for each of

these we continue as if we had observed this value.

We then can compute what would happen to the candidates, had that particular

value been observed ("first application of minima and maxima"). That gives us for all

vertices (not yet observed) a reduction of the number of candidates for a small value in

the vertex as well as such a reduction for a large value. The optimal new observation is

the one with the largest reduction of candidates.

To be more specific:

We compute the reduction for a small value and for a large value in a vertex (say) x. Call

the minimum of these two minx and the maximum maxx. We do so for all vertices (not

yet observed). Then we select

(a) the vertex where minx is maximal: max(minx|x not observed}. If this maximum is

attained in a unique point, this point is selected. If not

(b) among the points with maximal minimum, we selects the point or points with the

largest maximum: max(maxx|x not observed}. Again, if this maximum is attained in a

unique point, this point is selected. If not,

(c) among the points, found in (b), the point with the smallest difference in attainable

large value and small value is selected (see remark 3.5.2 in Appendix A). If this still does

not give a unique point, a point is selected randomly from the group now left over.

In this way, a vertex is selected and in this vertex an observation is performed. First it

is checked whether this observation falls in the interval of attainable values (computed

earlier). If it is not, the model restrictions are violated, so we must stop. However, if the

observed value is admissible, then a new basic solution is computed (see remark 3.5.3

in Appendix A), and the set of candidates is updated.

If necessary, this procedure is repeated until we have found an optimum.



4. Some synthetic examples

To see how the screening procedure works out, we generated data as follows: we drew

a random sample of size 255 from the negative exponential distribution (with parameter

1) and assigned these values to the parameters in model (1) (we gave β0 value zero).

Using the vertex values based on these parameters we ran the procedure. This was

replicated 100 times. The number of observations needed is given in figure 4.1. We see

a minimum of 18, a maximum of 40, and a mean of 24 observations. Note that without

constraints 256 observations would be needed.

But our data do not really satisfy the demand of "a few large, the majority small". For

each replication we computed the number of parameters that are larger than the mean

of these parameters. This measure of skewness was inspired by the intuitively appealing

Cyhelský’s a, see Appendix A, remark 4.1. For our 100 replicates the number of large

parameters varied between 81 and 104, with a mean of 93. This is by no means "a few".

So for far-from-ideal data the method works efficiently.

To improve the skewness, we simply squared all parameters, and we did so again,

and again, and again. So we have our original parameters (from the negative

exponential distribution), and these values squared, and raised to the powers 4, 8, and

16. The results are in table 4.1. This table shows that with a decreasing number of large



parameters, the number of observations needed decreases, as is to be expected.

Power MinObs MaxObs MeanObs MinLarge MaxLarge MeanLarge

1 18 40 24 81 104 93

2 15 32 23 48 76 62

4 11 31 18 15 46 31

8 10 25 14 2 23 11

16 10 12 10 1 12 4

Table 4.1. Simulation Results

5. Discussion

Finding the optimal vertex in 0,1m, given a model with only non-negative regression

parameters, can be done in an efficient way, especially for the cases (a) there is exactly

one positive parameter, and (b) only the main effect parameters are positive. These

cases may only be of theoretical interest, the method described in this paper also proves

its value in more general cases, as is shown in the examples.

Some questions are still open. First, how robust is the method against "minor"

assumption violations (small negative parameters)? Second, how can the method be

adapted for models with random error? Third, can the method be accelerated by using

more sophisticated techniques than LP? Finally, we do not yet have a real-world

example.

Appendix A. Remarks

REMARK 1.1.

The cost structure should be such that going from one vertex in the hypercube 0,1m to

a neighbor by replacing one 0 into a 1, the cost always increases ("nothing comes for

free"). This can of course be achieved in many ways, but a rather general formula is

C = x′Ax where A is a (symmetric) positive definite matrix. Further, the profit is a function

of yield and cost, in such a way that if y1 < y2, then Py1,C < Py2,C and if C1 < C2,

then Py,C1 > Py,C2. The exact shape of the cost structure and the profit structure is

irrelevant, but both must be known functions.

REMARK 2.1.1.

There are 2m ways in which yU\1,yU\2, . . . ,yU\m can assume the values yU and y∅ (with

yU > y∅). Each of these combinations corresponds to one non-zero parameter, except

the combination yU\1 = yU\2 =. . .= yU\m = yU. The latter would mean that no

parameter is important, and that is impossible when yU > y∅.

REMARK 2.1.2.

In order that the two statements

(i) only βS > 0

(ii) for i ∈ S , yU\i = y∅, and for i ∉ S, yU\i = yU

are equivalent, it is not necessary to assume that all parameters are non-negative. It

suffices to assume that



(a) increasing a factor does not decrease the output, for any combination of values of

the remaining factors: ∀i∀T⊂U : yT∪i ≥ yT

(b) consider two points in 0,1m, both with index i at value 0, where one of the points

has all its indices at least as high as the indices of the other point. Then the effect of

increasing factor i at the first point is at least as big as the effect of increasing factor i at

the second point: ∀i∀T⊂V⊂U,i∉V : yV∪i − yV ≥ yT∪i − yT.

This is proven in Appendix B, proof 2.1.1. Nevertheless, we maintain our demand of

non-negative parameters to be able to find the optimal point in "imperfect" cases.

REMARK 2.1.3.

If there is exactly one non-negative parameter (say) βS, then only the adaptation of the

system from the "present situation", indicated by Ø, which is "no change", to S MAY

make sense. We know the cost of going from Ø to S is cS and the extra yield is βS and

these must be weighted one against the other.

REMARK 2.2.1.

"Main effects only" is the only situation in which OAT from the origin (the "classic" or

"naive" approach) is useful; in order to verify whether all interaction effects are zero, it

suffices to perform the observations y∅, yi, and yU. If indeed yU − y∅ = Σiyi − y∅, then

there are only main effects. Notice that in addition to the standard observations, yU has

to be observed. So we can give the advice: if for some reason you want to apply the

classic OAT design, you can check the quality of the underlying main-effects-only model

by adding observation yU.

REMARK 2.2.2.

If only main effects play a role in y(x), then it depends on the relationship between p(x),

y(x), and C(x), which is the optimal solution:

if p(x)=y(x)-C(x), then the optimal solution includes all variables i for which βi > c i;

if p(x)=(y(x)-yØ)/C(x), then choose variable i for which βi/c i is maximal.

REMARK 3.3.1.

Matrix X in (5) may be singular, implying that only k − 1 parameters are needed to

explain k observations. In that exceptional case, we can remove a row in X, and an

element of

β, in the way described in proof3.1.2 in Appendix B. Next we add an row that

does not depend on the rows already in X (which is always possible, given the structure

of model (1)), and the corresponding element (say)

βj, which is given value 0. Only

minor adaptations are needed to the search procedure of the main text.

REMARK 3.5.1.

If we would choose the maximum and minimum value attainable in a not yet observed

vertex, then we would certainly arrive in a situation where at least one regression

parameter is zero. Take a look at equation (5), and let us assume that we are

maximizing

y. Then there is some final step in the search procedure. Let that be βe. This

parameter is increased until one of the elements in

β becomes zero. According to our

final step assumption we have reached the maximum, and one of the elements is zero.



REMARK 3.5.2.

After steps (a) and (b) we are left with some vertices for which the reductions of the

number of candidates are the same. We tested the following situation, which is not at all

like having one, or a few, large parameters, namely we took a model with all parameters

in (1) equal to one, and we compared selecting the vertex with the largest and the

smallest difference in attainable large value and small value. It turned out that selecting

the smallest difference results in fewer observations.

REMARK 3.5.3.

Starting from the "old" basic solution, see whether the observed value in the selected

vertex is smaller or larger than the value based on the actual β′s : xn
′

β in terms of model

(5). Then increase or decrease the value of

y until the observed value is reached. This is

the new basic solution.

REMARK 4.1.

In the ideal case, there is only one positive parameter. The situation where all

parameters are equal to each other, is very unfavorable for our technique. The ideal

case is very skew, the second case mentioned is symmetric ("unskew"). We want a

measure that is informative on the skewness after ordering the parameters (say) for

small to large. We could, of course, use the skewness measure γ1 = μ3/σ3, but this is

not intuitively appealing. Cyhelský’s skewness coefficient

a = (number of observations below the mean - number of observations above the

mean)/total number of observations, however, is intuitively appealing. But even more,

just the number of observations above the mean is a good measure of "large

parameters". We encountered Cyhelský’s skewness coefficient on

http://en.wikipedia.org/wiki/Skewness.

Appendix B. Proofs

PROOF 2.1.1.

First, for all i ∉ S, all parameters with an index i in it, are zero, because yU − yU\i is the

sum of all parameters containing index i, yU − yU\i is zero, and all parameters are

non-negative, so all parameters with an index i in it, are zero.

Second, for all i ∈ S, the sum of all parameters containing index i, equals yU − y∅, but

this can only hold if only βS = yU − y∅.

PROOF 3.1.1.

(a) Suppose model (1) holds with only non-negative regression parameters. Then

Σi=1
m yU − yU\i = yU − yU\1 + yU − yU\2 +. . . . .+yU − yU\m ≥

≥ yU − yU\1 + yU\1 − yU\1,2 +. . . . .+ym − y∅ = yU − y∅.

This is because any yU − yU\S ≥ yU\T − yU\S∪T. For the first term simply contains more

(non-negative) regression parameters than the second term.

(b) Suppose Σi=1
m yU − yU\i ≥ yU − y∅. Without loss of generality we may assume

that yU\1 ≤ yU\2 ≤. . . . .≤ yU\m, which is equivalent to

yU − yU\1 ≥ yU − yU\2 ≥. . . . .≥ yU − yU\m. We consider m − 1 β-structures. In the first

structure we take

βi = yU − yU\i − x i = 1, . . . ,m and


β

1,2.,...,m = x with x ∈ 0,yU − yU\m.



The sum of these regression parameters is Σi=1
m yU − yU\i − m − 1x. In the second

structure, we take

βi = yU\m − yU\i − x i = 1, . . . ,m − 1,


β

1,...,m−1
= x with

x ∈ 0,yU\m − yU\m−1, and

β

1,2,...,m = yU − yU\m. And so an.

In the k th structure (k = 3, . . . ,m − 1) we take

βi = yU\m−k+2 − yU\i − x

i = 1, . . . ,m − k + 1, ,

β

1,...,m−k+1
= x with x ∈ 0,yU\m−k+2 − yU\m−k+1,


β

1,...,m−k+2
= yU\m−k+3 − yU\m−k+2, .....,


β

1,2,...,m = yU − yU\m. In this way, in all structures and

for all x, all yU − yU\i are the sum of the

β parameters containing index i (i = 1, . . . ,m),

and the sum of all parameters starts at Σi=1
m yU − yU\i in the first structure, x = 0; it is a

continuous function, and with the value yU − yU\1 in structure m − 1,

x = yU\m−k+2 − yU\m−k+1. Because of the fact that Σi=1
m yU − yU\i ≥ yU − y∅ and

yU − yU\1 ≤ yU − y∅, model (1) holds with only non-negative regression parameters.

PROOF 3.1.2.

Since ℓ > k, there exists a non-trivial ℓ-vector t such that Xt = 0. Since X contains only

non-negative elements (0’s and 1’s), t must contain positive as well as negative

elements. Then there exists a λ such that β + λt contains only non-negative elements

and (at least) one element equal to zero. This element can be removed from β, and the

corresponding column of X can be deleted. This can be repeated until we have k

columns left.

Any k-vector β that that suffices to explain the k-vector yS − y∅ is called a basic solution

of order k. It is characterized by its indices and its values.
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