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Preface

Writing the articles in this dissertation was literally a trip. I traveled from Amsterdam to
Barcelona and from applied research to methodology and statistics, meeting many won-
derful people, colleagues and friends.

e trip began when, still in Amsterdam, I met Willem Saris. Willem was the coor-
dinator of the specialization in research methods at the University of Amsterdam, and I
worked for him as an assistant to the 2005 European Survey Research Association confer-
ence and programmer on the SQP soware. Just about to start a new group for his work
on the European Social Survey, he invited me to work for him in Barcelona. Although
I was unsure what I would do there, the concreteness and attractiveness of this proposal
obliterated my vague plans to do “something” in the United States. With the decisiveness
of someone who has no idea what he is getting into, I packed my bags and moved to Spain,
where I had never been before in my life.

Before I got there, Laura Guillén had braved the gruelling Barcelona housing market
for me and had found an apartment for me to live in. is incredible act of kindness from
Laura, who I had only met once before, immediately made me feel welcome. By an un-
known fortune, many subsequent acts of kindness from colleagues and other people would
only strengthen that feeling.

I started working at the ESADE business school in Barcelona where I was received with
open arms by Willem and his wife Irmtraud Gallhofer, Laura, Lluís Coromina, Desiree
Knoppen, and the department’s director Joan Manuel Batista. Lluís immediately became
my Catalan teacher and my friend. I’m afraid I did not study much Catalan in those days,
but I did learn how to drink from a porró (sort of). Joan Manuel needed just one look at
me to proclaim that I was “still landing”, and did everything he could to help me “taxi to
the gate”.

Willem became my patient mentor and tour guide. He showed me many important
sights of themethods and statistics landscape and gaveme just the right amount of freedom
to explore on my own without getting lost. His innate empathy and uncanny ability to
motivate inspiredme to accomplish tasks that would have otherwise been insurmountable.

At the same time I started a PhD at the department of methods and statistics at Tilburg
University and the Interuniversity Graduate School of Psychometrics and Sociometrics
(IOPS). I preferred this to a PhD in business administration or political science; by now I
was firmly hooked on research methods and statistics.

is was possible thanks to Jacques Hagenaars, who became my promotor together
with Willem. On trips to Tilburg I came to know Jacques as a warm, friendly man with
a resounding laugh that he used oen and effectively to dispel any possible discomfort
one might have had on meeting such an impressive figure. He also provided me with his
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personal perspectives on research, and enthusiastically explained the many applications of
latent class analysis. He was always critical and constructive, and could help me a great
deal by making one small remark. Every one of our meetings produced a collection of
scribbled-on slips of paper which I hoard to this day.

On the same trips I was extremely fortunate to meet Jeroen Vermunt. On one occasion
especially, Jeroen spent quite a bit of his time instructing me and answering my cloddish
questions. is private session aided me enormously in writing the second chapter of this
book. Later he would also comment on the manuscript and was always supportive and
helpful.

Together with Willem and Jacques I had been working on a paper about differences in
quality between countries. is paper would later become the first chapter of this disserta-
tion. Ever-capable IOPS secretary Susañña Verdel arranged for me to present this paper at
my first IOPS conference, where I received useful feedback from the IOPSmembers. Even-
tually, thanks to the editing efforts of Tim P. Johnson, Michael Braun, and Janet Harkness,
a revised version was also published as a book chapter by Wiley.

Around the same time I met and started working with another essential person for this
thesis, who would become my third promotor: Albert Satorra. I had an idea for a paper,
and wanted to talk to Albert about it. He had an even better idea: I could get a temporary
contract teaching the practicum of his multivariate statistics course at the economics de-
partment of Pompeu Fabra University, and in the meantime we would work on the paper.

It turned out Albert’s idea was the best possible one, as I learned much about structural
equation modeling from patient explanations in his office over the course materials. With-
out his teachings and guidance on SEM Iwould have been unable to write the third chapter
of this dissertation. We worked on the paper, which later became the last chapter of this
dissertation. Albert treated me to many lunches in a certain Basque restaurant with an
even larger number of stimulating conversations about all kinds of topics. He showed me
that it is possible to combine an unforgivingly serious demeanor when it comes to science
with kindness and generosity.

e trip continued as our research group grew, with the addition of my wonderful
colleaguesWiebkeWeber andMélanie Révilla. Wemoved to a new institution, the Pompeu
FabraUniversity in Barcelona. erewewerewelcomedby a newgroup of colleagues: Aina
Gallego, Maria José Hierro, Gerardo Maldonado, Clara Riba, and the subdirector of our
newly-founded center Mariano Torcal. Later on we would be joined by Paolo Moncagatta,
Diana Zavala, André Pirralha, and Tom Gruner. I immensely enjoyed all of their company
and support. Mélanie as well as Guy Moors from Tilburg helped me with their comments
on earlier versions of chapter two. Collaborating with Mélanie, Tom, Aina, Wiebke, and
Paolo is a joy – and a productive one!

Becoming more involved in the European Social Survey, I attended ESS meetings.
ere I had the privilege of collaborating withmembers of the Central Coordinating Team,
in particular Jaak Billiet, Annelies Blom, Michael Braun, Brita Dorer, Gillian Eva, Rory
Fitzgerald, Matthias Ganninger, Eric Harrison, Roger Jowell, Knut Kalgraff Skjåk, Joost
Kappelhof, Achim Koch, Kirstine Kolsrud, Geert Loosveldt, Brina Malnar, Hideko Mat-
suo, Lorna Ryan, Angelika Scheuer, Ineke Stoop, and Sally Widdop. Even though these
meetings did not contribute directly to my dissertation, they certainly provided a very
stimulating experience in the world of survey research, which I am all too conscious of
being extremely fortunate to have had.

On a course on SEM in Ljubljana, I was course assistant to Peter Schmidt, who turned
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out also to be an expert on Ljubljana nightlife. In Berlin I met Frauke Kreuter. We talked
about latent class analysis and lost spectacularly in a Wii karaoke competition because –
according to the obviously faulty soware – I did not get a single note right. When even
such abominable singing cannot destroy a friendship, it is clearly something to hold onto,
which I do gratefully.

As I neared completion ofmy dissertation I returned temporarily to the Netherlands to
finish up. ere I found that even though I had lemy friends and family behind, they had
not abandoned me. My parents, Arnan and Helga, Sacha and Micha, Lucas, Lea, Simon,
and all my friends and family members; without their love and friendship I would be a dif-
ferent person. My friend Joost Heetman made the design for the cover of this dissertation.

At first aer arriving in Amsterdam I worked onmy own, until one dayHeike Schröder
put me in touch with Harry Ganzeboom who extended great hospitality by offering me a
desk to work at in the VU University Amsterdam. is helped me prepare for several
courses and talks I was giving and gave me a more scientific environment to work in.

Carla is the only secret I have kept from this account so far. rough the past years
she gave me her love and support. And when we dance together I cannot help but go from
flustered to excited about life.

Now I write this preface in Amsterdam it might appear as though the trip has come full
circle. In reality I’m still on it, and look forward to the rest of it. But this is a good moment,
from the bottom of my heart, to thank all the people who have in smaller or larger ways
joined my trip.

Amsterdam, December 2010
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Introduction

Comparative surveys nowadays provide a wealth of survey data on a diverse range of topics
covering most countries in the world. e online companion¹ to the “SAGE handbook of
public opinion research”, for example, (Donsbach & Traugott, 2007) lists some 65 cross-
national comparative social surveys that have been conducted around theworld since 1948.
Besides these general social surveys, there are also many surveys with specific topics such
as education, old age and retirement, health, working conditions, and literacy, to name just
a few.

Comparative surveys have several goals. One the one hand, they may serve to estimate
and compare populationmeans, totals, andmarginal distributions, while on the other hand
relationships between variables can be estimated. Van de Vijver and Leung (1997) called
studies with these goals respectively “level” and “structure” oriented.

Comparative surveys are clearly popular, but not necessarily completely successful: er-
rors due to various sources may interfere with the attainment of the two goals. Many cat-
egorizations exist for the sources of such survey errors (Groves, 1989; Weisberg, 2005). A
relatively simple division can be drawn between errors due to the selection of sample units,
and errors due to the measurement instrument. e error sources can have an effect in the
form of both bias and variance, which together influence the root mean square error of
the estimator. ere are thus several different possible sources of error, which can have an
effect in the form of bias and variance on the two different goals.

is book consists of four chapters that deal with a particular subset of these effects:
the effect of measurement error on inference for and comparison of relationships. Before
giving an outline of the chapters, however, this topic is placed in the more general frame-
work of survey errors, discussing the various combinations of errors, goals, and effects.
Figure 1 shows these combinations schematically in the form of arrows. e eight num-
bered arrows stand for effects of selection procedure and measurement instrument on two
aspects (bias and variance) of the two goals (means and relationships) of surveys. Although
it is impossible to review all of the literature that has been written about survey errors and
their effects on estimators, the next few paragraphs are intended to give a short general
overview, discussing each of the arrows in the figure in turn.

Arrows 1–4 in figure 1 stand for the effects of the selection procedure. e selection
procedure comprises sampling, unit and item nonresponse, and coverage issues. e ef-
fect of sampling on variance (arrow 1 in figure 1) and bias (arrow 3) in the estimation of
means is perhaps the most well-known topic in survey research (Neyman, 1934; Cochran,

¹http://www.gesis.org/en/services/data/portals-links/comparative-survey-projects/
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Figure 1: Effects of themeasurement instrument and selection procedure on the estimation of means
and relationships.

1977). e effect of complex sampling designs on the estimation of linear regression coef-
ficients (arrows 2 and 4) was discussed by Scott andHolt (1982) and extended to structural
equation models by Muthén and Satorra (1995).

More recently, growing nonresponse rates in household surveys have driven an in-
creasing interest for the effect of nonrandom selection processes such as coverage, unit
nonreponse, item missingness on bias in means (Little & Rubin, 2002; Groves & Couper,
1998; Groves, 2002). It remains an open question for any given variable whether a bias
due to nonresponse can be expected, although many examples of bias in means have been
encountered in empirical studies (e.g. Stoop, 2005; Stoop et al., 2010). On the other hand,
the few studies that have examined bias in relationships (arrow 4 in the figure) were unable
to find bias in relationships due to nonresponse (Goudy, 1976; Voogt, 2004).

A possible explanation for these findings is that, while a relationship between partici-
pation and the target variable is sufficient to cause nonresponse bias inmeans, nonresponse
bias in relationships requires an interaction between one of the target variables and partic-
ipation (Groves & Couper, 1998, chapter 2). is of course does not rule out the possibility
that such a bias might exist (Groves & Peytcheva, 2008, 182), but does suggest that nonre-
sponse can be expected to be play a smaller role for bias in relationships than it does for
the goal of estimating means.

e effect of nonresponse on the variance of means and relationships (arrows 1 and
2) has been treated theoretically by Rubin (1987) as the so-called “proportion of missing
information”. e effect of nonresponse on variance of estimators without assuming equal
variances for respondents and nonrespondents was discussed by Tångdahl (2005). e
literature on variance increase due to nonresponse weighting and adjustments can also be
placed in this category (Little & Rubin, 2002; Little & Vartivarian, 2006).

e effect of the measurement instrument is symbolized in figure 1 by arrows 5–8. It
comprises interviewer effects and systematic and random measurement errors.

Interviewer effects on the variance of mean and relationship estimates have been stud-
ied in the past in the same way as clustering effects in sampling (Kish, 1962). Specific
research designs, first introduced by Mahalanobis (1946), are generally necessary to esti-
mate such effects so as not to confound interviewer effects with other factors (Hagenaars &
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Heinen, 1982; R. Schnell & Kreuter, 2003). Interviewer effects on bias in means has been
studied by Cannell et al. (1981); Fowler and Mangione (1990); Smit et al. (1997); Dijkstra
and Van der Zouwen (1982), while bias in relationships due to the interviewer is, to my
knowledge, a topic open for empirical study.

e systematic components of measurement error may also cause bias in means (ar-
row 7). For example, socially desirable behavior or yea-saying may cause respondents
to provide an answer close to the perceived norm independently of their true opinion
(Tourangeau et al., 2000). Solutions to reduce such effects that have been suggested in
the literature are random response (Warner, 1965), item count techniques (Droitcour et
al., 1991), web surveys, and anonymity (Dillman, 2007; Tourangeau & Smith, 1996).

Measurement error increases the variance of variables and thus the sampling variance
of means and marginals (arrow 5). Biemer et al. (2004) gave a design-type of effect of
measurement error on the variance of means. Such effects of measurement error on the
variance of means do not require a special correction as they are subsumed by regular
sampling theory.

Finally, measurement error may both cause bias and variance increase in relationships.
is is the general theme in which the four chapters of this book may be placed.

e biasing effect of random and systematic measurement error on parameters of linear
models is well-known (Fuller, 1987; Andrews, 1984). Some common nonlinearmodels are
discussed in Carroll et al. (2006). In general one can say that random measurement error
will decrease correlations, while stochastic systematic error will tend to increase correla-
tions (Saris & Gallhofer, 2007a). is does not mean, however, that the bias in multiple
regression coefficients will also be in these directions: the parameters of linear models de-
pend on the observed correlations in a nonlinear way (Fuller, 1987, chapters 1 and 4). For
this reason it is essential to estimate and correct for measurement error whenever relation-
ships are to be studied.

In comparative surveys, the amount of measurement error may differ across countries.
is causes the bias in relationships to differ also, rendering comparisons of relationships
across countries invalid. Chapter one attempts to provide an explanation for cross-country
differences in the quality of measures in the European Social Survey, where large cross-
country variation was found (Oberski et al., 2007). It is shown how the discrete and non-
interval nature ofmeasurementsmay provide an explanation for this variation. In addition
the role of systematic measurement error in the form of method variance is highlighted.

e analyses of chapter one suggest that estimation of the quality of survey measures
should, when appropriate, take into account that some variables are discrete and do not
have an interval measurement level. In practice in such cases oen the ordinal confirma-
tory factor analysis (CFA) model (Muthén & Christoffersson, 1981) is used, meaning the
factor analysis of so-called polychoric correlations (Pearson, 1900; Jöreskog, 1994). is
model is equivalent to the two parameter normal ogive model of Lord (1952) in Item Re-
sponse eory (Christoffersson, 1975; Muthén, 1978).

e ordinal CFA model is highly restrictive in form since a normality assumption is
made on the latent response variables. Equivalently, one may say that the response proba-
bilities of categories in the ordinal CFA model are cumulative and additive and are sums of
standard normal cumulative density curves with equal steepness. An alternative and less
restrictive model exists in the form of the latent class factor model (Vermunt & Magidson,
2004a). e latent class factor model is a special case of the latent class model (Lazarsfeld
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& Henry, 1968), in which instead of one nominal latent variable several latent variables
are specified which are discrete but have interval level measurement (Heinen, 1996). e
observed variables are then treated as discrete with nominal or ordinal level measurement
(Hagenaars & McCutcheon, 2002; Vermunt & Magidson, 2005b).

Chapter two applies the latent class factor model to an existing design for the esti-
mation of measurement error, the multitrait-multimethod (MTMM) design (Campbell &
Fiske, 1959). By combining the latent class factor model with the MTMM design a new
model, the so-called “latent class MTMM model”, is developed. is model can be em-
ployed to estimate measurement error in discrete and noninterval-level survey questions
under fewer assumptions than made in the ordinal CFA model. e use of the model
is demonstrated by application to an MTMM experiment in the European Social Survey,
and its utility for cross-national analysis is demonstrated by comparing the results for two
countries.

e first part of the book thus deals with the issue of discrete and non-interval level
measurement error models in comparative surveys. Chapters three and four in the second
part of the book both treat the influence of measurement error on the sampling variance
of relationships (arrow 6 in the figure).

Some techniques for taking these effects into account were discussed by Fuller (1987,
chapter 4) for multivariate regression, and by Carroll et al. (2006) for logistic regression
and other generalized linear models. A more general formulation of linear models, which
encompassesmost of themodels discussed by Fuller (1987), is given by structural equation
models (SEM) (Jöreskog, 1970; Bollen, 1989).

In SEM,measurement error-related parameters and “structural” regression parameters
can be estimated simultaneously. In this case standard errors of regression parameters will
automatically take into account the estimation of the measurement error-related param-
eters. A comment in the literature on the effect of the level of measurement error on the
standard error of structural parameters in the context of a SEM was made by Heise (1970,
15–18), who went on to state that “one might attempt to work out mathematically the re-
lationship between measurement error [and] sampling error, (…) but resulting formulas
would be complicated and difficult to interpret.” (p. 16).

Chapter three proposes to leverage the theory of general SEM models to separate out
the effect on the variance of estimates of measurement error, sampling error, interviewer
clustering and other components. It provides a method of judging the percentage of vari-
ance contributed by each error source without the need for Monte Carlo simulation. A
disadvantage of the method presented is that it is model-dependent. An advantage is that,
conditional on the model, one can judge the relative importance of different survey error
components. An example application is given.

As mentioned before, when measurement error and structural parameters are esti-
mated simultaneously, standard errors automatically take into acocount the uncertainty
in the estimation of measurement error. But there are several reasons why it is not always
possible or practical to perform a simultaneous estimation. First, the model may become
very large due to the need for multiple indicators for each of the latent variables of interest.
In addition, while the main interest of a substantive researcher will lie in the structural
relationships, such analyses require a certain amount of expertise on measurement error
models. Finally, social surveys oen provide only one rather than multiple measures of a
particular concept, so that the estimation of measurement error is impossible.

When it is not possible or desireable to subsume the estimation of measurment error
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into the model, it is still possible to correct for measurement error using SEM. An external
estimate based on a previous study is then required to correct for measurement error. Such
estimates are sometimes available for a particular question and population (e.g. Coromina
et al., 2008; Alwin, 2007, appendix), or a prediction may be obtained from meta-analysis
through the program SQP (Saris, van derVeld, &Gallhofer, 2004; Oberski et al., 2004; Saris
& Gallhofer, 2007b). e correction can then proceed by specifying latent variables with
single indicators and fixing the measurement error variance parameters to the estimated
values (e.g. Hayduk, 1987).

e single indicators or ‘two-step’ approach is sometimesmore convenient but also has
a problem: standard errors of structural model parameters do not take into account that
themeasurement error estimates are only estimates. In general confidence intervals will be
too narrow and inference is affected. is problem had not been solved to date for general
structural equation models.

Chapter four solves the problem of underestimated standard errors in the single indi-
cators case by providing an exact formula for the asymptotic variance-covariance matrix
of SEM estimates obtained by the single indicators approach. e form and implications
of this analytical solution are discussed and a Monte Carlo study shows that inference is
only correct when this correction is applied, demonstrating its validity.
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Chapter 1

Categorization errors and
cross-country differences in the
quality of questions

Abstract

e European Social Survey (ESS) has the unique characteristic that in more
than 20 countries the same questions are asked and that within each round of
the ESS Multitrait-Multimethod (MTMM) experiments are built in to eval-
uate the quality of a limited number of questions. is gives us an excep-
tional opportunity to observe the differences in quality of questions over a
large number of countries. e MTMM experiments make it possible to esti-
mate the reliability, validity, and method effects of single questions (Andrews,
1984; Saris, Satorra, & Coenders, 2004; Saris & Andrews, 1991). e product
of the reliability and the validity can be interpreted as the explained variance
in the observed variable by the variable one would like to measure. It is a
measure of the total quality of a question.

ese MTMM experiments showed that there are considerable differences in
measurement quality across countries. Because these differences in quality
can causewrong conclusionswith respect to differences in relationships across
countries, this paper studies the quality of themeasures from the viewpoint of
categorization. We assume that each category represents a range of scores on a
latent continuous variable that have been grouped together, causing grouping
errors. It depends on the distribution of values of the latent response variable
in each category whether the intervals between the categories are equally far
apart. If they are not, there is also transformation error. Both grouping and
transformation are sources of measurement error due to categorization and
therefore possible explanations for differences in the quality of questions. e
results show that this effect is quite strong.

1



Introduction

Measurement error can invalidate conclusions drawn from cross-country comparisons if
the errors differ from country to country. For this reason, when different groups such as
countries are compared with one another, attention should not only be given to absolute
levels of errors, but also to the differences between the groups. Different strategies have
been developed to deal with the problem, for example within the context of invariance
testing in the social sciences (Jöreskog, 1971), differential item functioning in psychology
(Muthén & Lehman, 1985), and differential measurement error models in epidemiology
and biostatistics (Carroll et al., 1995).

In the ESS a lot of time, money, and effort is spent tomake the questions as functionally
equivalent across countries as possible (Harkness et al., 2002) and to make the samples
as comparable as possible (Häder & Lynn, 2007). Nevertheless, considerable differences
in quality of the questions can be observed across countries. To study these differences is
important because they can cause differences in relationships between variables in different
countries which have no substantive meaning but are just caused by differences in quality
in the measurement (Saris & Gallhofer, 2007a). In order to avoid such differences it is also
important to study the reasons behind them.

In an earlier study, we investigated differences in translations, differences in the exper-
iments’ design, and differences in the complexity of the question as possible reasons for
differences in question quality across countries (Oberski et al., 2007). Because these fac-
tors did not explain much of the differences we now consider differences in categorization
errors as a source of differences between countries.

Categorization errors are part of the discrepancy between an unobserved continuous
variable and a discrete observed variable that measures the unobserved continuous vari-
able. Specifically, categorization errors are the differences between the score on the latent
variable and the observed category that are due solely to the categorization process.

For example, suppose a person’s age is known only to belong in one out of three cate-
gories, which are assigned the scores one, two, and three, but there are never any mistakes
in this categorization. In spite of the absence of mistakes, there is still a discrepancy be-
tween the age of the person and the category she is assigned to; first, because people of dif-
ferent ages have been lumped together. And second, the distance between the categories in
terms of average age may not be equal to the distances of unity between the numbers one,
two, and three, assigned to the categories. is means that if one treats the observed vari-
able as an interval level measure, the result of calculations such as correlations will differ
also from what would have been obtained if the original age variable had been used.

In general, one can say that categorization errors arise when a continuous latent re-
sponse variable is split up into different categories. is leads to two types of errors: group-
ing and transformation errors (Johnson&Creech, 1983). Grouping errors occur when dif-
ferent opinions are grouped together in the same category. Transformation errors occur
when the differences between the numerical values of adjacent categories do not corre-
spond to equal distances between the means of the latent response variables in those cate-
gories. If, for instance, the distances between categories are not the same in two different
countries, this can lead to larger categorization errors in one country than another, leading
in turn to lower question quality. is is why the distance between categories is a possible
explanation for differences in question quality across countries.

e first section will discuss the models we use to estimate the measurement error co-
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efficients of survey questions starting from a basic response model. We will then present
the data from the European Social Survey that will be used. A short discussion of previous
results follows. First the estimates from our previous research are shown. In a previous
study, we already examined some possible explanations for the large differences in these
estimates found across countries. ese will be shortly reviewed. We then go on to present
the model that will be the focus of this study, which accounts for categorization errors. It
will be shown what we mean by such errors and how we compare the results we get from
categorical models with those from continuous models. e statistical method of estima-
tion is presented, aer which we discuss our results. Since we have many such results, they
are followed by a meta-analysis of the results. Finally, we discuss our general conclusions
from this meta-analysis.

1.1 Theory

In Figure 1.1 we show the basic response model (Saris & Gallhofer, 2007a) we use as our
starting point.

Figure 1.1: e continuous response model used in the MTMM experiments.

edifference between the observed response (y) and the variable of interest or concept
by intuition (f) is both random measurement error (e) and systematic error due to the
respondent’s reaction to the method (M). is method effect is the only systematic error
considered in the model.

An example of a method effect is when each respondent chooses her own reference
points for all 11 point scales. For instance, an 11 point agree-disagree scale might label the
highest category with the text ‘disagree’. But in principle one can also disagree ‘strongly’
or even ‘completely’, although such opinions are not marked with a number on the answer
scale. us it is up to the respondent to choose a location for these most extreme refer-
ence points. is choice will influence which category is finally chosen, given any opinion.
Different reference points are generally chosen by different people if these points are not
fixed by the question, causing non-substantive random variation. If the same reference
points are chosen by the same people given the same answer scale, then there will also be
a correlation between the answers to all 11 point scales that has nothing to do with the
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respondents’ opinions (Saris, 1988). is systematic variation can be considered method
variance.

e coefficient q represents the quality coefficient and we call q2 the total quality¹. is
quality–sometimes also called the reliability ratio–equals V ar(f)V ar(y) : it can be interpreted as
the proportion of variation in the observed variable that is due to the unobserved trait
of interest. e correlation between the unobserved variables of interest is denoted by
ρ(f1, f2).

Several remarks should be made. e first is that the correlation ρ(yij , ykj) between
two observed variables measured with the same method is:

ρ(yij , ykj) = ρ(fi, fk)︸ ︷︷ ︸
Correlation of interest

· qij · qkj︸ ︷︷ ︸
Attenuation factor

+ mij ·mkj︸ ︷︷ ︸
Correlation due to method

(1.1)

where i 6= k index the concepts by intuition and j a method.
ismeans that the correlation between the observed variables is normally smaller than

the correlation between the variables of interest, but can be larger if the method effects are
considerable. A second remark is that one can not compare correlations across countries
without correction for measurement error if the measurement quality coefficients are very
different across countries: this follows directly from the above equation (1.1). A third
point is that one can not estimate these quality indicators from this simple design with two
observed variables. In this model there are two quality coefficients, two method effects,
and one correlation between the two latent traits, leaving uswith five unknown parameters,
while only one correlation can be obtained from the data. It is impossible to estimate these
five parameters from just one correlation.

ere are two different approaches to estimate these coefficients. e first is direct
estimation from MTMM experiments. e second is the use of the prediction program
SQP. SQP predicts the quality coefficient andmethod effect of a single question frommany
of its characteristics such as the topic, the number of categories, etc². It is currently based
on a meta-analysis of 87 MTMM experiments and 1028 different questions, while many
more experiments are soon to be added (Oberski et al., 2004). In this study we use the
MTMM approach.

Campbell and Fiske (1959) suggested using multiple traits and multiple methods to
evaluate the quality of measurement instruments (MTMM). e classical MTMM ap-
proach recommends the use of a minimum of three traits that are measured with three
different methods leading to nine different observed variables. An example of such a de-
sign is given in Table 1.1. Given the responses on all the variables, the coefficients described
above can be estimated. A more elaborate introduction to MTMM and SQP can be found
in Saris and Gallhofer (2007).

1.2 Data

eEuropean Social Survey (ESS) has the unique characteristic that inmore than 20 coun-
tries the same questions were asked and that within each round of the ESS Multitrait-

¹One can also separate the reliability and method variance. is response model is known as the true score
model and is more easily interpreted in terms of classical test theory, but mathematically equivalent to the
classic MTMMmodel used here. For more details of the different models we refer to (Saris & Andrews, 1991)

²See the website http://www.sqp.nl/
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Table 1.1: e classic MTMM design used in the ESS pilot study.

e three traits were presented by the following three items:

• On the whole, how satisfied are you with the present state of the economy in Britain?

• Now think about the national government. How satisfied are you with the way it is
doing its job?

• And on the whole, how satisfied are you with the way democracy works in Britain?

e three methods are specified by the following response scales:

(1) Very satisfied; (2) Fairly satisfied; (3) Fairly dissatisfied; (4) Very dissatisfied

Very dissatisfied Very satisfied
0 1 2 3 4 5 6 7 8 9 10

(1) Not at all satisfied; (2) Satisfied; (3) Rather satisfied; (4) Very satisfied

M1 M2 M3

f1 f2 f3

y11 y12 y13 y21 y22 y23 y31 y32 y33

Figure 1.2: MTMM model illustrating the observed scores and their factors of interest.

Multimethod (MTMM) experiments are built in to evaluate the quality of a limited number
of questions. is gives us an exceptional opportunity to observe the differences in quality
of questions over a large number of countries. In this paper we have used the MTMM
experiments of round 2 of the ESS, collected in 2004.

e questionnaires were administered by face to face interviewing in all countries. In
Finland, France, Ireland, Italy, the Netherlands, Norway, and Sweden, the supplemen-
tary questionnaire with the repetition questions was self-completed with the interviewer
present rather than asked face to face. is confounds mode effects with country effects
for these countries. e countries we compare in subsequent sections all used face to face
interviewing for both questionnaires, however. erefore mode effects are not an issue in
this particular study.

e topics of the four MTMM experiments from the ESS we will study were the fol-
lowing:
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1. e social distance between the doctor and patients;

2. Opinions about job;

3. e role of men and women in society;

4. Political efficacy.

Concerning each of these topics three questions were asked and these three questions were
presented in three different forms following the discussed MTMM designs. e first form,
used for all respondents, was presented in the main questionnaire. e two alternative
forms were presented in a supplementary questionnaire which was completed aer the
main questionnaire. All respondents were only asked to reply to one alternative form but
different groups got different version of the same questions (Saris, Satorra, & Coenders,
2004). For the specific questions in the experiments we refer to the ESS website where the
English source version of all questions are presented³, and for the different translations we
refer to the ESS archive⁴.

Each experiment varies a different aspect of the method by which questions can be
asked in questionnaires. e ‘social distance’ experiment examines the effect of choosing
arbitrary scale positions as a starting point for agreement-disagreement with a statement.
e ‘job’ experiment compares a four point true-false scale with direct questions using 4
and 11 point scales. In the ‘role of women’ experiment agree-disagree scales are reversed,
there is one negative item, and a ‘don’t know’ category is omitted in one of the methods.
Finally, the political efficacy experiment pitted agree-disagree scales against direct ques-
tions.

A special group took care that the samples in the different countries were proper prob-
ability samples and as comparable as possible (Häder & Lynn, 2007).

e questions asked in the different countries have been translated from the English
source questionnaire. An optimal effort has been made to make these questions as equiv-
alent as possible and to avoid errors. In order to reach this goal two translators indepen-
dently translated the source questionnaire and a third person was involved to choose the
optimal translation by consensus if differences were found. For details of this procedure
we refer to the work of Harkness et al. (2002).

Despite these efforts to make the data as comparable as possible, large differences in
measurement quality were found across the different countries. Table 1.2 shows the mean
and median standardized quality of the questions in the main questionnaire across the
experiments for the different countries.

A remarkable phenomenon in this table is that the Scandinavian countries have the
lowest quality of all while the highest quality has been obtained in Portugal, Switzerland,
Greece, and Estonia. e other countries are in between these two groups. e differ-
ences are considerable and statistically significant across countries (F = 3.19, df = 16,
p < 0.001) and experiments (F = 92.65, df = 5, p < 0.0001). e highest mean quality
is 0.79 in Portugal while the lowest is 0.57 in Finland. If the correlation between the con-
structs of interest is 0.60 in both countries and the measures for these variables have the
above quality then the observed correlation in Portugal would be 0.47 while the observed
correlation in Finland would be 0.34. Most people would say that this is a large difference

³http://www.europeansocialsurvey.org
⁴http://ess.nsd.uib.no
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Table 1.2: e quality of all 18 questions included in the experiments in the main questionnaire.

Country Mean Median Minimum Maximum
Portugal 0.79 0.81 0.63 0.91
Switzerland 0.79 0.84 0.56 0.90
Greece 0.78 0.79 0.64 0.90
Estonia 0.78 0.85 0.58 0.90
Poland 0.73 0.85 0.51 0.90
Luxembourg 0.72 0.73 0.53 0.88
United Kingdom 0.70 0.71 0.56 0.82
Denmark 0.70 0.70 0.52 0.80
Belgium 0.70 0.73 0.46 0.90
Germany 0.69 0.70 0.53 0.83
Spain 0.69 0.64 0.54 0.90
Austria 0.68 0.68 0.51 0.85
Czech Republic 0.65 0.60 0.52 0.87
Slovenia 0.63 0.60 0.46 0.82
Norway 0.59 0.59 0.35 0.83
Sweden 0.58 0.58 0.43 0.68
Finland 0.57 0.54 0.42 0.78

in correlations which requires a substantive explanation. But this difference can be ex-
pected because of differences in data quality and has no substantive meaning at all. Not all
of these differences are necessarily due to categorization, however. Below we discuss other
possible explanations for some the differences.

1.3 Explanations for cross-country differences in questionqual-
ity

e previous section showed that in some cases large differences were found in question
quality across the countries of the ESS. In a previous study, we examined a few possible
explanations of these discrepancies (Oberski et al., 2007).

e first explanation we studied were errors in the translation. Although in the ESS a
lot of care has been taken to ensure the correct translation of the questions, we found that
a few questions in the supplementary questionnaire had not been translated in the way
intended. In particular, one item in the ‘social distance’ experiment had been translated
in all French questionnaires as ‘Doctors rarely tell their patients the whole truth’ rather
than ‘Doctors rarely keep the whole truth from their patients’. Since these sentences have
opposite meanings, it is unsurprising that we should find a different relationship with the
trait of interest.

Another alternative explanation for differences across countries is differences in the
implementation of the experimental design. Here one difference existed between the im-
plementations inNorway, Sweden, and Finland, and the other countries: in these countries
respondents could send in the supplementary questionnaire containing the repetitions at
a time chosen by themselves, while the general design used in other countries was that the
supplementary questionnaire should be administered directly aer the main interview.
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Some respondents waited quite some time before answering the supplementary questions.
In the time between the two interviews their opinions may have changed, or have been in-
fluenced by new considerations unique to that moment. An MTMM analysis of a sample
split according to whether the questionnaire was returned within two days or later pro-
vided strong evidence that this was indeed the case. In fact, the sample of people who had
returned the questionnaire on the same day was by itself very similar in the quality to other
countries.

e third alternative we considered was that the language of the questions might be
more complex in one language than in another. Previous meta-analyses found that lan-
guage complexity can have an effect on the quality (Saris & Gallhofer, 2007b). However,
we found no strong evidence that the complexity of the questions could explain the differ-
ences in question quality in this case.

us, in some cases we found artificial differences in quality which are likely to be due
to an erroneous translation or different implementation of the experimental design–notably
in the Scandinavian countries except Denmark and for one item in the French-speaking
countries. However, these cases are not so numerous that they can explain the large overall
variations in question quality found in the ESS. erefore we now turn to the possibility
that the distance between the categories in the categorical questions differs from country
to country. Before we proceed to investigate the influence of categorization errors on the
quality in different countries and experiments, we explain in more detail the model used
to estimate the distances between the categories.

1.3.1 The categorical response model

e response model discussed so far makes no mention of the fact that many of the mea-
sures we use are in fact ordinal–that is, they are most likely ordered categories rather than
measured on an interval scale. Broadly speaking, two types of measurement models have
been proposed for this situation. e first assumes that there is an unobserved discrete
variable, and that errors arise because the probability of choosing a category on the ob-
served variable given a score on the unobserved variable is not equal to one. at is, the
errors are modelled by the conditional chances of choosing a category on the survey ques-
tion given the unobserved score. Such models are oen referred to as latent class models
(Lazarsfeld & Henry, 1968; Hagenaars & McCutcheon, 2002).

e second approach deals with the case where a continuous scale or ‘latent response
variable’ (LRV) is thought to underly the observed categorical item. Suchmodels are some-
times called latent trait models. Several extensions are possible, but we focus on a special
case described by Muthén (1984). is is the model we will use in our subsequent analysis
of the data (figure 1.3)⁵.

Errors may arise at two stages. e first is the connection between the latent response
variable (LRVij in figure 1.3) and its latent trait (fi). is part of the error model is com-
pletely analogous to factor analysis or MTMM models for continuous data: the scale is
modeled as a linear combination of a latent trait (fi), a reaction to the particular method

⁵It can be shown that analysing polychoric correlations in an MTMMmodel is a special case of the model
we use (Muthén & Asparouhov, 2002). However, we do not use polychoric correlations because it would be
necessary to assume that the variances of the latent response variables are equal across countries. Since we try
to separate categorization errors from differences in the continuous part of the model, this is not a desirable
assumption. e model we use is equivalent to a multi-dimensional two parameter graded response model in
item response theory (Muthén & Asparouhov, 2002).
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Figure 1.3: e categorical response model used in the MTMM experiments.

used to measure the trait (Mj), and a random error (eij), and interest then focuses on the
connection between the trait and the scale (qij), which we again term the ‘quality coeffi-
cient’ (see also figures 1.1 and 1.2).

e second stage at which errors arise differs from the continuous case. is is the
connection between the variables LRVij and yij in figure 1.3. Here the continuous latent
response variable is split up into the different categories, such that each category of the
observed variable corresponds to a certain range on the unobserved continuous scale. e
sizes of these ranges are determined by threshold parameters. In figure 1.3 this step func-
tion has been represented by a black triangle. Examples of step functions are illustrated in
figure 1.4.

In figure 1.4, the steps (solid line) show the relationship between the LRV and the ob-
served variable, while the straight (dotted) line plots the expectation of the LRV given the
latent trait. In the step function on the le-hand side, the LRV has been categorized us-
ing equal intervals. e error that is added by the categorization is the vertical distance
between the dotted line and the step. at is, the distance between the dotted line and
the horizontal segments of the solid line. It can be seen that the error is zero when the
straight line crosses the steps, and that at each step, the error is the same (at 3, 6, and 9).
e expectations within the categories have the same interval as the thresholds of unity,
and so if the values 1, 2, 3, and 4 are assigned to the categories, no transformation occurs.
Errors still occur, because the values along the dotted line have been grouped into the four
categories formed by the solid line. Relationships of the observed categorical variable with
other variables will therefore be attenuated.

Conversely, the right hand side shows a latent response variable that has been catego-
rized with unequal steps. e figure shows that the distances between the thresholds τ1,
τ2, and τ3 are very different from each other. e consequence is that at the second step,
i.e. in between τ2 and τ3, there is almost no extra error, while at the first and third steps
the errors are much larger. Here a transformation occurs. Suppose that the categories are
given the numerical values 1, 2, 3, and 4, as is oen done. en the distances between the
expectations of the LRV in each of the categories do not equal unity, which is the distance
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Figure 1.4: Two hypothetical step functions which result from categorization. e solid lines plot
the observed categorical variable as a function of the latent response variable (LRV). e diagonal
dotted lines plot the expectation of the LRV as a function of the latent trait on the same scale. e
thresholds used for categorization are denoted by the symbols τ1, τ2, and τ3.

between the values chosen for categories.
To sum up, two types of errors can be distinguished at this stage (Johnson & Creech,

1983):

1. Grouping errors occur because the infinite possible values of the latent response vari-
able are collapsed into a fixed number of categories (the vertical distances between
the diagonal line and the steps in figure 1.4). ese errors will be higher when there
are fewer categories;

2. Transformation errors occur when the distances between the numerical scores as-
signed to each category are not the same as the distances between the means of the
latent response variable in those categories. is happens when the thresholds are
not equally spaced, or when the available categories do not cover the unobserved
opinions adequately.

We have described the categorization process here. Is is important to note, however,
that normally this process is not observed and one only observes a discrete variable, which
we then assume is the result of this process.

Categorization, then, can be expected to be another source of measurement error be-
sides random errors and method variance. If these errors differ across countries, then so
will the overall measurement quality, and differences in means, correlations, regression
coefficients, and cross-tables across countries result which are due purely to differences in
measurement errors.

us, the model we use allows to a certain extent for the separation of errors due to the
categorization, errors due to the reaction to the method and random errors. In this paper
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we take advantage of this separation to compare the amount of error due to categorization
introduced across countries.

1.3.2 Categorization errors in survey questions

eprevious sections showed that, using theMTMMdesign, it is possible to obtain amea-
sure (q2) of the total quality of a question. If a continuous variable model (hereaer re-
ferred to as CV model) is used, this quality is influenced by errors in both stages of the
categorical response model: not only random errors and method effects are included, but
also errors due to the categorization. For this reason Coenders (1996) argued that the lin-
ear MTMM model assuming continuous variables does not ignore categorization errors,
but absorbs them to a certain extent in the estimates of the random error and method cor-
relations. How this absorption functions exactly will depend on the model in use and is
not extensively studied. e extent to which it holds in general is thus a topic that is still
under discussion.

However, since the quality coefficient is estimated from the covariance matrix of the
measures, it can be both reduced and increased by categorization errors. In general all cor-
relations between measures increase aer correction for categorization, but they need not
all increase equally. If categorization errors are higher using the first method, the correla-
tions between the latent response variables using this method will increase more relative
to the observed correlations than the correlations of each variable with its repetition us-
ing a different method. In this case the amount of variance in the response variable due
to the method will be larger in the categorical model than in the CV model, and the es-
timated quality of the measure in the categorical response model can become lower than
the estimated quality in the continuous MTMM model. is is because there are method
effects (correlated errors) on the level of the continuous latent response variables which
do not manifest themselves in the observed (Pearson) correlations between the categori-
cal variables. Categorization can therefore in some cases inflate estimates of the quality of
categorical observed variables, even though, at the same time, it causes errors which re-
duce the quality. ere are thus two processes at work, which have opposite effects on the
estimates of the quality. a

As noted before, the quality of a variable is defined as the ratio of the true trait variance
to the observed variance (see also figure 1.1 in the first section):

q2 =
V ar(f)

V ar(y)
. (1.2)

However, we have now seen that y is itself a categorization of an unobserved continuous
variable (c), and therefore the above equation 1.2 can be ‘decomposed’ into

q2 =
V ar(f)

V ar(LRV )
· V ar(LRV )

V ar(y)
. (1.3)

e scale of LRV , the latent response variable, is arbitrary, except that it may vary across
countries due to relative differences in variance (Muthén & Asparouhov, 2002). However,
the ratio V ar(LRV )/V ar(y) can easily be calculated once q2con, the quality from the con-
tinuous analysis, and V ar(f)/V ar(LRV ), the quality from the categorical MTMM anal-
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ysis (q2cat.), have been obtained. So equation (3) shows that q2con = q2cat · c and

c =
q2con
q2cat

,

where c is the categorization effect, or (assuming q2cat, q2con > 0)

ln(q2con) = ln(q2cat) + ln(c).

is correction factor is a useful index of the relative differences between the quality esti-
mates of the continuous and categorical models.

In the present study, we estimate this ‘categorization factor’ for different countries and
experiments, and examine to what extent it can explain the differences in quality across
countries.

1.4 Methods

In almost every country of the ESS, respondents were asked to complete a supplemen-
tary questionnaire containing the repetitions used in the experiments. Not all respondents
completed the same questionnaire. e sample was randomly divided into subgroups, so
that half of the people answered the first and second form of the questions, and the other
half answered the first and third form.

is so-called split-ballotMTMMapproach lightens the response burdenby presenting
fewer questions and fewer repetitions. Saris, Satorra, and Coenders (2004) showed that the
different parameters of theMTMMmodel can still be estimated using this plannedmissing
data design. If the different parts of the model are identified, so is the entire model. Since
we can identify the necessary covariances in the categorical model, this is identified as well
(Millsap & Yun-Tein, 2004).

For each experiment, two different models were estimated. e continuous analysis
was conducted using the covariance matrices as input, and estimated using the maximum
likelihood estimator in LISREL 8. e results presented in the tables below were standard-
ized aer the estimation.

e categorical model can in principle also be estimated using maximum likelihood.
However, in order to deal with the planned missing data (split-ballot) a procedure such as
full-information maximum likelihood would be necessary. is requires numerical inte-
gration in the soware we used (Mplus 4), making the procedure prohibitively slow and
imprecise. We therefore used an alternative two step approach, whereby in the first step
the covariance matrices of the latent response variables were estimated, and in the second
step the MTMM model is fitted to the estimated matrices. e estimation in the first step
was done using the weighted least squares approach described by Flora and Curran (2004),
and the second step again employed the maximum likelihood estimator⁶.

is approach has the advantage that consistent and numerically precise estimates can
be obtained within seconds rather than days (Muthén & Asparouhov, 2002). e disad-
vantages are that the standard errors of the estimates of the categorical MTMM model are

⁶We note here that the categorical MTMM model is equivalent to the ‘graded response model’ in item
response theory. ere is a simple relationship between the threshold and quality coefficients of our model
and difficulty and discrimination parameters in IRT models: the quality coefficients are scaled discrimina-
tion parameters, while a scaled difficulty for each category can be obtained by dividing each threshold by the
corresponding quality coefficient (Muthén & Asparouhov, 2002).
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incorrect, and that the chi-square statistic and modification indices may be inflated. Al-
though the problem could in principle be remedied by using the asymptotic covariance
matrix of the covariances as weights in the estimation (Jöreskog, 1990), in the present pa-
per we compare only the consistent point estimates of this model.

We model categorization errors using threshold parameters. ese thresholds are the
theoretical cutting points where the continuous latent response variable (LRV) has been
discretized into the observed categories. If the thresholds are different across countries,
the questions are not directly comparable, since differences in the frequency distribution
are partly due to differences in the way the LRV was discretized. If the thresholds are the
same across countries the questionsmay still not be comparable due to differences in linear
transformations (loadings) and random errors. But in that case it is not categorization
error that causes incomparability. A final possibility is that loadings, random errors, and
thresholds are all the same across countries. In that case the frequency distributions can
be directly compared.

In this paper we will perform only a basic invariance test on thresholds. If the thresh-
olds are equal, categorization error is not a likely cause of differences in quality. However,
we do not continue with tests for invariance on loadings and error variance, but will com-
pare the results of the two different models.

e two models are the same with respect to the covariance structure of the response
variables (the ‘MTMM part’ of the model). However, they differ in their basic assump-
tions about the ‘observation part’ of the model: the CV model assumes that the continu-
ous response variables have been directly observed, while the categorical model assumes a
threshold connection between the response variables and the observed ones.

Both models assume normality of the response variables, but the differences in basic
assumptions cause the categorical model to be more sensitive to departures from normal-
ity. While in the CV model, under quite general conditions, violation of normality will
not affect the consistency of the estimates (Satorra, 1990), this is not so in the categorical
model. ere, the threshold estimates are derived directly fromquantiles of the normal dis-
tribution which the latent response variable is assumed to follow. erefore, if the LRV’s
are not normally distributed, the threshold estimates will be biased. eMTMMestimates
depend on the thresholds and can also change, though the precise conditions under which
such estimates would change significantly have, to our knowledge, not been investigated
analytically. It has been found in several different simulation studies that bias may occur
especially when the latent response variables are skewed in opposite directions (Coenders,
1996).

us, while the categorical model may be more realistic in modelling the observed
variables as ordinal rather than interval levelmeasures, theCVmodelmay bemore realistic
in that it is robust to violations of normality⁷. In any particular analysis, whether one or
the othermodel provides amore adequate estimate of the quality of the questions therefore
depends on the degree to which these assumptions are violated⁸. is should be kept in

⁷One important point tomake here is that even when univariate distributions such as histograms and tables
of the observed categorical variables are highly non-normal, this does not necessarily imply that the normality
assumption of the categorical model is violated. e reason is that a very non-normally distributed observed
variable may be the consequence of a perfectly normally distributed variable that has been categorized in a
very uneven way.

⁸In principle the normality assumption on the latent response variables is testable. However, the question
then still remains what impact any non-normality would have on the estimates. is question is beyond the
scope of the present paper.
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mind in the interpretations of the results.
We estimated the quality of the measures based on the CV model and based on the

categorical model for four experiments which used an answer scale of five categories or
less in the main questionnaire. For each experiment, the countries with the highest and
the lowest qualities in the CV model were analysed. For each of the questions we took
the ratio, called ‘categorization factor’, of the two different quality measures as an index
of the effect that categorization has on the continuous quality estimates. e next section
presents the results.

1.5 Results

1.5.1 Results of the experiments

e first experiment’s results will be described in some detail, while we provide the results
of the other experiments in the appendix.

efirst experiment concerned opinions on the role of women in society (see table 1.3).
We first turn to the hypothesis that all thresholds are equal across different countries. If
this hypothesis cannot be rejected there is also little reason to think that the categorization
is causing differences in the quality coefficients.

We selected the two countries with the highest and the country with the lowest quality
coefficients. In this experiment, the wording of the question was reversed in the second
method. For example, the statement ‘When jobs are scarce, men should have more right
to a job than women’ from the main questionnaire was changed to ‘When jobs are scarce,
women should have the same right to a job as men’ in the supplementary questionnaire.
e countries with high quality coefficients were, in this case, Portugal and Greece. e
lowest coefficients for this experiment were found in Slovenia. To be able to separately
study misspecifications in the categorization part of the model, we imposed no restrictions
on the covariance matrix of the latent response variables at this stage.

In the first analysis, all thresholdswere constrained to be equal across the five countries.
is yields a likelihood ratio statistic of 507 on 48 degrees of freedom. e country with the
highest (128) contribution to this chi-square statistic is Portugal. When we examine the
expected parameter changes, it also turns out that in this country these standardized values
are very large with some values close to 0.9 while in other countries the highest obtained
and exceptional value is 0.6. For some reason, the equality constraint on the Portuguese
thresholds appears to be a particularly gross misspecification.

As it turns out, this particular misspecification is very likely due to a translation error.
e intention of the experiment was to reverse the wording of the question in the second
method. But in Portugal the reverse wording was not used, and the same version was
presented as in the main questionnaire. To prevent incomparability when the MTMM
model is estimated, we omit Portugal from our further analyses and continue with two
countries.

e model where all thresholds are constrained to be equal yields a likelihood ratio of
351 and 36 degrees of freedom (p < 0.00001). is model should therefore be rejected:
the thresholds are significantly different across countries.

We use the procedure of Saris et al. (2009) to determine whether misspecifications are
present in the model. For this test we need the Expected Parameter Change (EPC), Modi-
fication Index (MI) and the power of the test. e EPC gives direct estimates of the size of
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Table 1.3: e ‘role of women’ experiment: questions and threshold estimates (in z-scores).

‘A woman should be prepared to cut down on her paid work for the sake of her family’
1 τ1 2 τ2 3 τ3 4 τ4 5

Agree
strongly Agree Neither/nor Disagree Disagree

strongly
Slovenia -1.4 -0.1 0.6 1.8
Greece -1.1 -0.2 0.5 1.4

‘A woman should not have to cut down on her paid work for the sake of her family.’
1 τ1 2 τ2 3 τ3 4 τ4 5

Slovenia -1.5 -0.0 0.6 2.0
Greece -1.5 -0.3 0.4 1.5

‘Men should take as much responsibility as women for the home and children.’
1 τ1 2 τ2 3 τ3 4 τ4 5

Slovenia -0.5 1.3 1.9 2.6
Greece -0.6 0.7 1.6 2.3

‘Women should take more responsibility for the home and children than men’
1 τ1 2 τ2 3 τ3 4 τ4 5

Slovenia -1.7 -0.7 -0.2 1.2
Greece -1.6 -0.5 0.0 1.4

‘When jobs are scarce, men should have more right to a job than women.’
1 τ1 2 τ2 3 τ3 4 τ4 5

Slovenia -1.8 -0.8 -0.3 0.9
Greece -0.9 0.1 0.6 1.4

‘When jobs are scarce, women should have the same right to a job as men.’
1 τ1 2 τ2 3 τ3 4 τ4 5

Slovenia -0.8 0.7 1.1 1.9
Greece -1.1 -0.1 0.7 2.0

the misspecification for all fixed parameters, while the MI provides a significance test for
the estimated misspecification (Saris et al., 1987).

However, these two indices are not sufficient for determiningmisspecifications because
the MI depends on other characteristics of the model. For this reason, the power of the MI
test must be known in order to determine whether a restriction is misspecified. We use
these quantities to incrementally free parameters that were indicated to be misspecified.

Using the modification indices and power as guides, we formulated a new model in
which some thresholds were constrained to be equal, while others were freed to vary.
Equality of thresholds is not required to estimate the relationships, but it is useful because
the equality of thresholds allows for differences in variances of the response variables across
the groups. is is in contrast with the use of polychoric correlations where the variances
are constrained to be equal across the groups.

e resultingmodel has an approximate likelihood ratio of 2.8 on 2 degrees of freedom
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Table 1.4: Quality (q2) and method effects (m) according to the continuous and categorical models,
with categorization factors for the experiment on opinions about the role of men and women in
society.

‘Women’
CutDown Respnsib. MenRight

Continuous analysis
q2 Greece 0.71 0.66 0.71

Slovenia 0.54 0.25 0.68
m Greece 0.15 0.15 0.15

Slovenia 0.17 0.24 0.15
Categorical analysis

q2 Greece 0.51 0.35 0.48
Slovenia 0.69 0.29 0.65

m Greece 0.49 0.14 0.32
Slovenia 0.33 0.75 0.19

Categorization factor
Greece 1.4 1.9 1.5
Slovenia 0.8 0.9 1.0

(p = 0.24)⁹. e resulting estimates of the threshold parameters are presented in table 1.3.
ese estimates have been expressed as z-scores in order to make them comparable.

Table 1.3 presents three different traits, each asked in two different forms. e first
form of each trait is the form asked in the main questionnaire, while the second form was
asked in the supplementary questionnaire (the third form has been omitted for brevity).

e thresholds in this model represent how extreme the ‘agreement’ has to be before
the next category is chosen rather than the previous one. is strength is expressed in z-
scores, i.e. standard deviations from the mean. Take, for instance, the third statement in
the table: “Men should take as much responsibility as women for the home and children”.
Slovenians need to have an agreement differing from the country mean 2.6 times more
than the standard deviation, before they will respond ‘disagree strongly’.

Note that the threshold part of the relationship between LRV and observed response
is deterministic. However, not all Slovenians with an opinion on the indicator of 2.6 stan-
dard deviations or more away from the mean will necessarily answer ‘disagree completely’.
is is so because the latent response variable is also affected by random measurement
error. e combination of the threshold model and normally distributed random mea-
surement error gives rise to a familiar probit relationship between indicator and response.
Because the random error plays an important role in this relationship, not only the thresh-
olds should be discussed here, but also the quality coefficients.

Looking at the first question, it can be seen that the distances between the thresholds are
unequal for these two countries and different fromone. One can also see that the endpoints
are somewhat distant, especially in Slovenia: there the category ‘disagree strongly’ is 1.8
standard deviations or more away from the mean, reducing the number of scale points
that are available for some people.

⁹It is also possible to free more parameters and put no restrictions at all on the model. is might lead us to
find differences between countries more easily, since the parameters are allowed to vary. However, we prefer
to aid our estimation by imposing these restrictions: if they do not hold in the population, this leads us to be
conservative in ascribing differences between countries to the categorization.

16



e second form of the same question is similar to the first form in this respect, except
that here both of the endpoints are rather distant in both countries, again reducing the
number of scale points. As noted above, a reduction in scale points can be expected to
increase grouping errors.

e second trait (‘responsibility’) presents a radically different picture. In both coun-
tries the ‘disagree’ and ‘disagree strongly’ categories are quite far away from the mean. is
again reduces the number scale points, while, at the same time, the scale is cut off in this
manner only from one side. Large transformation errors can be expected. Moreover, in
Slovenia this effect is much worse than in Greece: the category ‘neither disagree nor agree’
is already 1.3 standard deviations or more away from the mean, reducing the amount of
information provided by this variable in Slovenia even further.

e second phrasing of this question seems to provide a better coverage of the prevail-
ing opinions on women and men’s responsibility for the home and children.

For the third and last trait–the right to a job–themost striking feature of the thresholds
is that in Slovenia, the first three categories represent opinions below the mean, while in
Greece only the first category does. Beyond this, it is difficult to say which scale might pro-
duce fewer categorization errors. Surprising, however, is that the second form of the same
question seems to produce much more comparable scales with respect to the thresholds
than the first one.

It is also clear from the table that the two forms of phrasing are not exactly opposite in
the way they are understood and/or answered. is is especially true for the ‘right to a job’
item. However, the choice for one phrasing or the other seems arbitrary. is particular
way of phrasing a question is therefore inadvisable, because a decision that seems arbitrary
is not arbitrary in its consequences. e key problem in this case may be the complex
sentence structure in which men are compared to women, given an attribute (right to a
job) under a certain condition (when jobs are scarce), and then a ‘degree of agreement’
with a norm (‘should have’) is asked. A more accurate way of measurement that may be
less sensitive to such arbitrary shis in response behavior might be to ask questions about
the rights men and women should have according to the respondent directly.

e thresholds provide some insight into the nature of differences in categorization.
However, the quality of the measure in the continuous model depends also on parameters
of the categorical response model such as the method effects and the error variances, and
on the latent response variable distribution.

Besides the thresholds also the correlations between the LRVs are estimated. Based on
these correlations the MTMM model mentioned before has been estimated and so esti-
mates of the quality and method effects of the measures corrected for categorization are
estimated for all questions. e quality and method effects of the CV model have also
been estimated. e results are presented in table 1.4. Based on these results the catego-
rization effect can be derived because it is the ratio of the two coefficients. is result, too,
is presented in table 1.4.

e top two rows of table 1.4 show that the quality in Greece was higher than in Slove-
nia using the CV model; this is, indeed, the reason we chose these particular countries to
compare. e quality in Slovenia is lower for the first question, dramatically lower for the
second question, and very similar for the third question. is is in principle in line with
the descriptions given above of our expectations of categorization errors.

However, table 1.4 also shows that such interpretations of the possible influence of the
thresholds are not as straightforward as they might seem. We fitted the MTMM model to
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the estimated covariancematrix of the latent response variables, and obtained amodel that
fit reasonably well (χ2 = 20, df = 10, p = 0.02). While for the first and second questions
the low qualities are indeed corrected upwards somewhat aer the categorization has been
taken into account, the opposite happens in Greece. In that country all quality coefficients
are lower in the categorical analysis than they are in the continuous analysis.

A consequence of this is that, using theCVmodel, a higher quality is obtained inGreece
than in Slovenia, while the reverse is true in the categoricalmodel for the first and last items.
is is rather striking given that, taken over all questions in themain questionnaire, Greece
had a substantially higher quality estimate than Slovenia (see table 1.2).

e analyses of the other three experiments show that sometimes no large differences
between the countries are found, while in others the thresholds are rather different. In
particular we found several cases where the same question did not cover the distribution
of the opinion in one country, but provided more information in another. We also found
both examples of cases where differences in the quality do not go together with differences
in the thresholds, and examples of cases where they do. A more detailed discussion of the
results for the other three experiments can be found in the appendix.

Now that we have presented and discussed the results of one experiment in detail, the
question remains whether there is a connection between the categorization factor and the
quality of the question. e next section therefore presents the results of a meta-analysis
we conducted on the categorization factors.

1.5.2 A meta-analysis of the results

Does the categorization factor affect the quality? Using the results presented in the previ-
ous sections, we constructed a data set consisting of the categorization factor for all ques-
tions–including those from the supplementary questionnaire not shown above–in the four
different experiments for which this index was available. is yielded 72 cases in total.

As shownbefore, the categorization factor equals c = q2con/q
2
cat, and so q2con = q2cat(c).

If there were no effect of the categorization, then there would be no relationship between c
and q2con, since q2cat would be higher or lower by a constant factor. If c and q2con are plotted
against one another, one would then expect to find the points randomly distributed along
a horizontal line. Figure 1.5 shows the scatter plot of these two quantities. Estimates from
different experiments have been indicated with different symbols.

e clear relationship shown in the figure indicates that high quality coefficients from
the continuous model tend to be lower in the categorical model, and vice versa. Figure 1.5
shows that categorization factors above unity were mostly found for questions with a high
quality. We can estimate the relationship between the quality from the continuous model
for each experiment easily by the transformation ln(q2con) = αk+βk ln(c). Here k indexes
the four different experiments. We then fit a linear regression to the transformed variables.
e resulting predictions for each experiment are shown in figure 1.6 on the original scales.

Figure 1.6 shows that both the intercepts and slopes for the ‘efficacy’ and ‘job’ experi-
ments are rather similar, while the coefficients for the ‘role of women’ and ‘social distance’
experiments are completely different. e effect of the categorization factor is strongest in
the ‘social distance’ experiment, where also some large differences between the threshold
distances were found (see appendix). e experiment with the smaller number of cate-
gories, ‘job’, does not have a high coefficient.

We now turn to the question if these factors also differ between countries with ‘high’
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Figure 1.5: Scatterplot of the categorization factor (c) and the total quality of a measure (q2con) across
the experiments. Note the log-log scales.

and ‘low’ quality coefficients. If the sample is split according to whether the quality was
‘high’ or ‘low’, the means of the categorization factors of the two groups are 1.25 and 0.85,
respectively, for the questions in the main questionnaire (t = 3.7, df ≈ 18, p = 0.002.
For the questions in the supplementary questionnaire, the difference is in the opposite
direction, but not statistically significant (t = −1.70, df = 28, p = 0.10). is suggests
there is a considerable effect of the categorization, at least in the main questionnaire.

One possible explanation for the interaction effect found is that method factors were
oen constrained to zero for the main questionnaire. e questions in the main ques-
tionnaire were selected exactly because they were expected to have high quality and low
method effects. e initial continuous analysis oen indicated that the questions in the
main questionnaire indeed had zero method variance. Since the categorical model tends
to increase correlations, if the monomethod correlations for the main questionnaire go up
more than the other correlations, it can happen that in the categorical model a method
factor is found where none was found before. is will then lower the quality estimates.

A test was done of the hypothesis that questions for which the method effect was con-
strained to zero in the continuousmodel have the same categorization factor as other ques-
tions, controlling for country effects. is hypothesis was rejected (p = 0.02)¹⁰. e ex-
planation that constraining the method factors to zero causes the interaction found above
therefore seems plausible.

¹⁰Result of a hierarchical linear model fit using R 2.6.1 with fixed effects of country and restricting the
method to zero or not (0/1), and a random intercept across topics to account for the dependency among the
observations.
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Figure 1.6: Scatterplot of the categorization factor (c) and the total quality of a measure (q2con) by
experiment. e prediction line of themodel ln(q2) = α+β ln(c), as estimated for each experiment
separately, is also given.. For the numerical estimates of these coefficients, please see the appendix.

1.6 Discussion and conclusion

Using the multitrait-multimethod design and model in the ESS, we found large differences
between countries in the quality of survey questions. Because such differences can have
important implications for cross-country research and survey design, we set out to dis-
cover whether these differences could not be attributable to errors due to the use of a small
number of categories.

Overall, we found that categorization errors do occur besides randomerrors andmethod
effects. ese errors have two types of effects on the quality of the questions, which can
work in opposing directions. e first is that the quality is lower when there ismore catego-
rization error. e second, that the categorization attenuates the relationships between dif-
ferent variables in the model differently, affecting not only the quality, but also the method
effects and other parameters of the model. is in turn has as its consequence that the
quality parameter under the CV model is not always smaller than the quality under the
categorical model, as evidenced by the many ‘categorization factors’ above unity which we
found.

A caveat should be added to the interpretation of this result, because a violation of
the assumptions of the models (no categorization error versus bivariate normality) can
have different consequences for the estimates. It is therefore not necessarily true that a
categorization factor above unity indicates overestimation of the quality in the CV model.
Several studies of the robustness of factor analysismodels to categorization errors exist (see
Olsson, 1979). However, we found that their results do not necessarily apply in theMTMM
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model, which also includes method factors. Given the ubiquity of correlated errors in
survey questions, it would be useful to study more closely the robustness of this particular
type of measurement error model to categorization error. is, however, is beyond the
scope of the present paper.

In a meta-analysis, we gathered the results from our four different experiments and
analysed the relationship between the categorization factor and the quality in the contin-
uous model. Effects were found for all four experiments.

If the categorization factors were equal for countries with the highest and lowest quality
coefficients, they could not explain the differences in quality which we found earlier. e
meta-analysis suggested that there is a considerable difference in the categorization factor
between countries where the highest and the lowest quality coefficients were found given
whether the question was part of the main or supplementary questionnaire.

emethods in themain questionnaire were chosen beforehand based on other exper-
iments as the ones least likely to cause method effects. For example, direct questions rather
than batteries were used. Aer re-examining the experiments on which the meta-analysis
was based, it appears this is closely related to the interaction effect found there.

e main reason for the interaction effect we found in the meta-analysis appears to
be that the method variance for the main questionnaire method was oen close zero. e
general rise in correlations that results from correction for categorization seems to have
‘pushed’ the monomethod correlations of the main questionnaire variable to the point
where the method variance could not anymore be constrained to zero. And as the method
variance rises, the quality must decrease in our model.

In other words, the correction for categorization has a negative influence on the quality.
When the method factors were constrained to zero in the first instance, the effect was that
the quality was in general lower in the categorical model than in the continuous model.
is is contrary towhat onemight expect considering that all of the polychoric correlations
are higher than their Pearson counterparts.

In this study we have shown that it is possible to split the measurement error model
into three parts:

• A part due to random errors;

• A part due to systematic errors;

• A part due to splitting the variable into just a few categories: ‘categorization error’.

is study has been largely descriptive of the effects of categorization error. Given
our findings, it seems important to better judge the relative merits of the continuous and
categorical models, and the effects that different question characteristics have, not only on
quality and method effects, but also on the categorization errors.

Our study also has some limitations due to the assumptions made to attain the above
separation. ese are: normality of the latent response variables, linearity of the relation-
ship between the latent traits and latent response variables, and interval measurement of
the latent traits. In another paper these issues will be addressed by examining ways to re-
lax the assumptions. Future research might also focus on finding other explanations for
differences in quality across countries.
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Chapter 2

Latent Class Multitrait-Multimethod
Models

Abstract

epresent paper suggests a statisticalmethod, the latent classMTMMmodel,
of estimating the quality of single questions while making fewer assumptions
than have been made so far in such evaluations. e method is a combination
of the multitrait-multimethod research design of Campbell and Fiske (1959),
the basic response model for single questions of Saris and Andrews (1991),
and the latent class factor model of Vermunt andMagidson (2004a, 227–230).
e latent class MTMM model is thus not novel in itself, but combines an
existing design, model, andmethod to improve the analysis of single questions
in survey research.

A real experiment from the European Social Survey (ESS) is analyzed and the
results are discussed at length, yielding valuable insights into the functioning
of these questions.
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Introduction

Since the late 19th century, psychometricians have studied the measurement quality of
scales. With the advent of item response theory (IRT), the focus has shied somewhat
from scales per se to the quality of indicators as measurements of the scale (Hambleton et
al., 1995). An IRT analysis of items provides more information about the functioning of
the different indicators of the scale, separate from the properties of the scale as a predictor
of behavior.

However, in some cases or disciplines, only one indicator may be available, an indi-
cator may be used for different scales, or different countries must be compared with each
other. Furthermore, a scientific interest exists among survey researchers in the effects of
different design choices on the question quality, separate from the scaling properties of an
indicator. In these cases, we argue, it is important to study the quality of single questions as
a measurement of the indicator: the focus should then be shied from indicators to single
questions.

e present paper suggests a statistical method of estimating the quality of single ques-
tions as measurements of an indicator, while making fewer assumptions than have been
made so far in the evaluation of single questions. e method is a combination of the
multitrait-multimethod research design of Campbell and Fiske (1959), the basic response
model for single questions of Saris andAndrews (1991), and the latent class factormodel of
Vermunt and Magidson (2004a, 227–230), originally formulated by Lazarsfeld and Henry
(1968). e latent class MTMM model is thus not novel in itself, but combines an existing
design, model, and method to improve the analysis of single questions in survey research.

edata obtained frommultitrait-multimethod experiments (Campbell & Fiske, 1959)
allow for a separation of systematic errors due to the method of asking a question and
random measurement errors from the indicator of interest (Schmitt & Stults, 1986). By
applying the latent class factor model, we obtain very precise information about the way
responses are generated from underlying opinions on single indicators.

We discuss the method by applying it to a real dataset from a multitrait-multimethod
experiment done in the European Social Survey (ESS). In an earlier study this experiment
and several others were analyzed using the commonly applied confirmatory factor anal-
ysis and ordinal probit models (Oberski et al., 2007). e assumption of normally dis-
tributed latent response variables made in those analyses – that is, of an ordinal probit
relationship between trait and indicator with parallel cumulative probability curves – may
be false. e present application shows how this assumption can be relaxed. e latent
class approach has the advantage that many assumptions that are usually made can be in-
vestigated. Among them are the measurement level (nominal, ordinal, or interval) of the
observed variables, and the distribution of the latent variables. emodel does not require
the assumption of normally distributed latent variables, since the marginal distribution of
the latent variables is le to be estimated.

e next section argues that it is essential to estimate the quality of single questions.
We then explain the experimental design and the response model applied to analyze this
quality. e rest of the paper applies this model to a real dataset, presented in the subse-
quent section. We then briefly note the soware and methods used, aer which the results
of the analysis are discussed. Finally, conclusions are drawn from the analysis, showing
the added value of our approach.
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Figure 2.1: eoretical true score and response options for the question ‘How happy are you?’. e
choices to be made when going from true score to response options are not always obvious.

2.1 Measurement error in single questions

Answers to survey questions cannot be taken for granted. ere are randomand systematic
components in the answers given by respondents that have nothing to do with the opin-
ion the question was supposed to measure. Such components are therefore measurement
errors.

Systematic components arise because different people have their own idiosyncratic way
of answering questions given their opinion (Saris, 1988). Some give extreme answers on
five-point scales while others tend to choose themiddle point, for instance (Hui&Triandis,
1989). Some are more sensitive to social desirability than others, causing differences de-
pending on how the question is phrased (Crowne&Marlowe, 1960). Onemay also say that
respondents ‘satisfice’, using simplifying answering strategies to reduce cognitive burden
(Krosnick, 1991). ese processes are distinct but have in common that they may cause
two people with the same underlying opinion to give different answers, and will cause two
answers to unrelated questions answered by the same person to correlate.

Such systematic ways of answering the question vary across people, but may be sta-
ble across questions. ey therefore cause both error variance and spurious relationships
between answers to questions asked in the same way. If the way of answering a question
is specific to both person and method, it is called a ‘method effect’. An example would
always choosing to agree or disagree ‘strongly’ on agree-disagree scales, but not on other
kinds of scales: this would be extreme response behaviour specific to the method. If the
same respondent has a tendency to choose the extreme categories for any type of answer
scale, the systematic error is called a ‘style factor’ (Jackson & Messick, 1958). Crucially,
neither method effects nor style factors are related to the question content.

Random error is another source of measurement error; aer the respondents have
moulded their opinion into the form required by the question, some element of arbitrari-
ness in choosing a response option may still remain. Consider the lines in figure 2.1. e
possible opinions aer correction for systematic effects or ‘true scores’ (Lord & Novick,
1968) of the respondent are represented as a line, while the response options below are
categorical. Person A would presumably have no difficulty choosing ‘not at all’. However
he or she may make a mistake and accidentally mark option 2 rather than option 1. Person
B, at the same time, could equally well choose options 4 or 5, and might do so at random
from occasion to occasion. Both processes may occur at the same time and give rise to
random measurement error.

is suggests that answers to survey questions contain random and systematic mea-
surement errors. Estimating such errors (1) assesses the general quality of a question; (2)
allows for the correction of study quantities of interest such as regression coefficients or
group differences for the influence of errors; (3) assesses the cross-group comparability of
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(Construct) (Indicators) (Answers)

Extraversion

Respondent 

likes being the 

center of attention

Respondent

feels comfortable 

around people

Other causes of 

feeling comfortable

Other causes of 

enjoying attention

Respondent's answer to the question

"How accurate is the statement

'I like being the center of attention'?"

Respondent's answer to the question

"How accurate is the statement

'I feel comfortable around people'?"

Systematic 

measurement error

Random 

measurement error

Systematic 

measurement error

Random 

measurement error

Consistency Measurement quality

Figure 2.2: Illustration of the difference between puremeasurement quality (the relationship between
observed answer and unobserved indicator) and the consistency of indicators (the relationship be-
tween the unobserved indicator and the unobserved construct). In the present paper we will only
study the connection between indicator and observed answer: pure measurement errors. e indi-
cators are taken from the International Personality Item Pool (http://ipip.ori.org/)

.

quantities of interest.
e question has been asked for the purpose of measuring a construct. We term the

degree to which the indicator, aer correction for pure measurement error, measures this
construct the ‘consistency’ of the indicator (Saris & Gallhofer, 2007a). e combination of
measurement error and consistency has been called ‘construct validity’ by Andrews (1984).
An illustration of the distinction between measurement errors and consistency is given in
figure 2.2.

Assessing the general quality of items that form a scale and their cross-group compa-
rability is a fairly common activity in psychological research¹. is quality concerns both
the degree to which an indicator is influenced by a construct (‘consistency’) and the pure
measurement errors discussed above. ere are, however, advantages to estimating the
pure measurement errors separately rather than this combination.

First, there is a scientific interest among survey researchers in the effect on the quality
of the questions of various choices to do with survey design. Such choices could refer to
the number of response options, use of an agree-disagree scale, linguistic complexity, etc.
(Saris & Gallhofer, 2007b). ey can also refer to nonresponse (Olson & Kennedy, 2006),
or the study of special populations such as immigrants or elderly people (Groves, 2002).
In order to separate this effect on quality of survey design from effects on consistency with
the construct, it is necessary to estimate measurement error separately.

¹Dividing the number of matches in Google Scholar (http://scholar.google.com/) to each of the APA’s ‘core
of psychology’ four largest impact factor journals (including PsychologicalMethods) by the number ofmatches
adding the term ‘differential item functioning’ suggests DIF is mentioned an average of 6%. If the percentages
are weighted by the journal’s impact factor in 2007, the average is about 4%. Although DIF is not mentioned
very oen, it is clearly a well-known technique.
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Second, in studies that compare groups such as cross-national research, the measures
must be invariant across groups: only measures with equal consistency across groups al-
low for comparisons. Having only the combination of measurement and consistency er-
ror available results in the stricter requirement that both must be equal across countries.
Saris and Gallhofer (2007a) argued that such tests are unnecessarily strict and only the
higher-order relationship between construct and indicators need to be invariant. Such a
test requires separation of measurement error from consistency.

e third reason for estimating pure measurement errors is that in the social sciences,
there are few standardized scales. Consequently, questionnaires oen contain only one
question instead of a number of questions to measure a single construct. A classic example
in sociology is the question used to measure social trust: “Would you say that most people
can be trusted, or that you can’t be too careful in dealing with people?”². Furthermore,
it may also happen that different researchers construct different scales post-hoc using the
same questions. Examples in political science are questions on citizens’ trust in various
political institutions. In such cases, estimating the extent of measurement errors in the
question allows for the correction of the attenuation of relationships with other variables
due to errors, and provides an upper bound for construct validity.

For these three reasons it is essential to estimate the quality of single questions. Two
general approaches are possible: longitudinal designs using quasi-simplex models (Alwin,
2007) and ‘multitrait-multimethod’ (MTMM) experiments (Campbell & Fiske, 1959). We
will discuss an approach of estimating the quality of single questions based on MTMM
experiments that requires fewer assumptions than the approaches used so far for such data.
An approach similar to quasi-simplex models for longitudinal designs such as the ones
discussed in Alwin (2007) was discussed by Biemer and Bushery (2000)³.

2.2 Multitrait-multimethod experiments

Campbell and Fiske (1959) suggested measuring multiple indicators (’traits’) by multiple
methods (MTMM).e correlations thus obtainedwere posited to follow a certain pattern.
Later, different models were proposed to analyze these patterns, of which confirmatory
factor analysis is the most commonly used (for a review, see Schmitt and Stults (1986)).

What the models applied to MTMM data have show is that the MTMM design can be
used to separate the relationship between the indicator to be measured and the observed
variable from random and systematic measurement errors. Note that here we mean by
traits the indicators in the sense of figure 2.2 rather than the construct.

e classical MTMM approach recommends the use of a minimum of three traits that
aremeasured with three differentmethods leading to nine different observed variables. An
example of one trait measured with three different methods is given in figure 2.3.

Collecting data using this MTMM design, data for nine variables are obtained. ese
variables become the subject of a measurement or MTMM model. ere is an ample lit-
erature about MTMM models using confirmatory factor analysis and the different choices

²e question was devised by Noelle-Neumann in 1948 in Germany. Later Rosenberg (1956) created a
multiple item concept (scale) using this question. But to date, many questionnaires only contain the single
question.

³It should be noted that the notion of reliability estimated by longitudinal models is different from that
employed here: in the longitudinal studies mentioned unique considerations of the moment that form part of
the true variance are included as measurement error (Veld, 2006).
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Method 1 

Not at 
all true 

A little 
true 

Quite true Very true (Don’t 
know) 

There is a lot of variety in my 
work. 

1 2 3 4 8 

Method 2 

Please tick one box. 
Not at all varied 1 

A little varied 2 

Quite varied 3 

Very varied 4 

Method 3 
Please indicate, on a scale of 0 to 10, how varied your work is, where 0 is not at all varied and 
10 is very varied. 
Please tick the box that is closest to your opinion 

Not at 
all varied 

Very 
varied

0 1 2 3 4 5 6 7 8 9 10 

Using this card, please tell me how true each of the following statements is about your current job.

The next 3 questions are about your current job. Please choose one of the following to describe 
how varied your work is.

Figure 2.3: e trait ‘perception of variety of job’ measured by three different methods.

that can be made for such models. Here we wish to start from a more general model for-
mulation that specifies the relationships between the latent and observed variables without
necessarily being a confirmatory factor analysis.

2.3 The response model

Figure 2.4 specifies the relationships between the observed scores and their general factors
of interest as a graph. e directed arrows indicate second-order effects, while the double-
headed arrows indicate second-order relationships. e absence of an arrow implies con-
ditional independence. We assume that in this graph no higher-order interactions exist.
One responsemodel forMTMMdata that does contain interactions between the traits and
methods was suggested by Browne (1984). However, when Corten et al. (2002) compared
the fit of different models to data from many different MTMM experiments, no evidence
of interactions was found. us there are empirical indications that the assumption of no
higher-order interactions in these types of MTMM experiments is reasonable.

is figure shows that each trait (Ti) is measured in three ways. It is assumed that the
traits are dependent but that the method factors (M1,M2,M3) are independent.

In figure 2.4, y11 through y33 are the observed variables belonging to the experiment.
efirst digit (i) corresponds to the trait number and the second (j) to themethodnumber.
Following the graph, each trait is indicatedwithTi and eachmethodwithMj , In total there
are I = 3 traits and J = 3 methods.

e quality of a measure is the strength of the relationship between the trait and the
indicator that is supposed to measure it. e amount of systematic error or method effect
depends on the strength of the relationship between the method factor and the indicators
measured using that method. It should be noted here that a drawback of the MTMM
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M1 M2 M3

T1 T2 T3

y11 y21 y31 y12 y22 y32 y13 y23 y33

Figure 2.4: A model graph for multitrait-multimethod data. e method factors (M) represents
different answering strategies used by the respondents that may be similar across questions. e
trait factors (T) represent the opinion of the respondent aer correcting for idiosyncratic response
sets and random measurement error. Random error components for each observed variable are not
shown here for clarity but can be imagined.

design we use is that one cannot separate method effects from other systematic errors.
us an assumption is made that all systematic errors are specific to the method used. In
an investigation of different explanations for correlated errors in MTMM data, Corten et
al. (2002), provided some evidence that this assumption is reasonable.

e most common model applied to this graph is the continuous confirmatory factor
analysis (CFA) model. In that case one can define the quality as the amount of variance
explained in the indicator by its trait (Saris & Gallhofer, 2007a).

However, the assumption of continuous and interval measurement implicit in the CFA
model may be false when responses with only a few categories are obtained. In that case
the ordinal CFA (oCFA) model of Muthén (1984) is oen applied (Scherpenzeel & Saris,
1997). is model is equivalent to Samejima’s graded response model (Samejima, 1969) in
item response theory. Such an analysis can be accomplished by applying the CFA model
to so-called polychoric correlations, or by special soware.

e oCFA model takes the discrete and ordinal nature of the responses into account,
but at the cost of strong assumptions about the specific form of the relationship between
latent and observed variable. In particular, it is assumed that there are continuous latent
response variables that have been split up into just a few categories. ese latent response
variables are assumed to have a normal or logistic distribution, leading to the familiar pro-
bit or logit relationship between trait and observed variable (and between method and
observed variable). More importantly, the slope parameters of the influence of the trait on
the indicator are restricted to be equal for all categories. is implies that the cumulative
probabilities of all categories are restricted to be parallel S-shaped curves.

It should be noted that although the normal distribution is a commonly used and com-
putationally convenient choice for the latent response variables, other choices have also
been suggested in the literature. Skew-normal (Roscino & Pollice, 2006), copula (Joe,
2005), and mixtures of normal distributions (Uebersax & Grove, 1993) have been sug-
gested. Rost and Walter (2006) applied mixture Rasch models and the LLTM to MTMM
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data. e alternative approach of optimal scaling should also be mentioned (Takane et al.,
1977). ese approaches do relax the assumption of normality, but express all relation-
ships only in terms of the latent response variables, which does not allow for a full analysis
of the relationship between the traits and observed variables we are interested in.

In this paper we will elaborate on a different approach: the latent class factor model
(Vermunt andMagidson (2004a, 227–230); see also Vermunt andMagidson (2004b, 185)).
is model (the LCM) derives from the latent structure model formulated by Lazarsfeld
and Henry (1968). Goodman (1974) further developed the latent structure model and
gave a method for maximum likelihood estimation of the parameters. Haberman (1979)
discussed the parameterization in terms of log-linear coefficients used here, and suggested
explicitly that different restrictions on these coefficients yield models for different mea-
surement levels of the observed variables. Different applications of other variants of these
models are discussed by Hagenaars and McCutcheon (2002).

eLCMspecifies the following relationship between trait, method, and observed vari-
able:

p(yij = k|Ti,Mj) :=
exp(aijk + b

(t)
ik Ti + b

(m)
jk Mj)∑K

l=1 exp(aijl + b
(t)
il Ti + b

(m)
jl Mj)

; k, l ∈ {1, ...,K}, (2.1)

whereK is the number of categories for the observed variable. e latent variables (traits
and methods) are scaled to have equal-distance values lying between 0 and 1. us a trait
with 5 categories will have scores {0, 0.25, 0.50, 0.75, 1} for category numbers 1 through
5. e log-linear parameters a and b are set to sum to zero over all categories of y. is
is an arbitrary restriction necessary for identification. By b(t)ik we mean the slope for trait
number i and category k, whereas the b(m) are slopes for the method.

e bk parameters in themodel of equation 2.1 are the associations or log-linear effects
and the ak parameters are intercepts for each category. e effects bk differ by category.
Each effect can also be written as bk = bk, meaning there is only one slope b for the effect
of the latent variable on the observed one, and k is the category score. e category scores
can be restricted to increase by a certain number for each category, or they can be freely
estimated. By different restrictions a different assumption about the measurement level of
the observed variable results.

If the observed variable is assumed to be have interval level, the category scores can be
assumed to be of equal distance, in general increasing by unity. A common choice is to use
the scores 1, 2, 3, 4, 5 for the first, second, third, etc. categories. e effects bk in equation
2.1 then become b, 2b, 3b, 4b, 5b for each category k. ismodel is also known as the linear
by linear associationmodel, since the local odds ratios of adjacent rows and columns in the
cross-table of the latent and observed variables have the same value everywhere, namely
exp(b) (Agresti, 2002, pp. 369-370). In item response theory this formulation is equivalent
to the partial credit model (issen & Steinberg, 1986).

e category scores k can also be estimated by the model. In this case a linear relation-
ship between trait and the log-odds of choosing a given category is still assumed, but the
scores of the observed variables’ categories can take on any value. is includes values that
do not increase or decrease monotonically with the category number. e observed vari-
ables would then have nominal measurement level. In practice oen the scores do increase
monotonically with the category number, yielding an ordinal measurement level. is or-
dinality is, however, not a restriction imposed by the model but may or may not be found
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Latent variable
Nominal Interval

Observed variable
Nominal (Classical LCA) Row/column association model
Ordinal (Classical LCA with constraints) (RC association with constraints)
Interval (Row/column association model) Uniform association model

Table 2.1: Different measurement levels for latent and observed variables can be accomodated within
the latent class model (Heinen, 1996). We consider only the models where the latent variable is
interval and the observed variable either nominal or interval. Other possible models are indicated
in brackets.

in practice. Since the effects bk equal bk, one cannot determine whether the differences in
bk stem from different categories or different slopes (or both). us for this model we will
only report their combination bk.

e model where the observed variables have nominal or ordinal measurement level
is also known as the row (or column) association model (Hagenaars, 2002, 243), aer the
set of loglinear models for observed variables of the same name (Agresti, 2002, pp. 373-4).
It can also be described as a latent class version of the nominal response model from item
response theory (Bock, 1972).

e LCM can thus accommodate different measurement levels of the latent and ob-
served variables (see table 2.1; see Heinen (1996) for further discussion). Both latent and
observed variables are always regarded as discrete, but one can impose the restriction of
interval measurement on latent and/or observed variables. We use this possibility to ex-
amine whether the responses can be taken to have been measured at interval level or not,
and whether the assumption of ordinal categories is warranted. In this table ‘classical LCA’
indicates the model where no restrictions are placed on the pairwise loglinear parameters.

Again the quality and amount of systematic error of the observed variable can be de-
fined in terms of the relationship between the trait and method variables and the observed
variable. Where in the CFA model the quality is the amount of explained variance, in the
LCM the relationship is more complex and depends on the value of the latent trait. It is
determined by the log-linear a and b parameters of equation 2.1, which can be used to
express the effect of the trait or method on the observed variable in odds ratios. We can
say that the quality of the measure is zero for all values of the trait if the relative odds of
choosing any category do not increase or decrease with the trait. is is the case only when
all b coefficients are zero. In contrast, a good measure has a high quality for values of the
trait that cover as much of its distribution in the studied population as possible. Note that
typically very high and very low (and unlikely) values of the trait will still be inaccurately
measured, even by a high-quality measure.

e odds ratios aid in understanding the model, but make it more difficult to interpret
in terms of probabilities. We will therefore also examine the probability of each category
given the trait (item category characteristic curves). We will further evaluate the quality
of the questions by plotting the amount of information that each item provides on its own
about its latent trait. e so-called ‘item information’ is a generalization of the concept of
reliability and used in test construction in IRT (Hambleton et al., 1995). In sum, although
the relationship between latent variable and indicator is more complex than in the linear
CFAmodel, this relationship can still be examined, and in great detail. In general the LCM

31



provides much more detailed information about the use of the scale than the other models
mentioned above.

e LCM approach also has disadvantages. First, in our previous conceptualization,
the latent variables were continuous and measurement errors arise partly because answers
are obtained only in categories. To put it another way, only an unknown range of values
on an underlying continuous variable is observed, and the latent response variables are
discretized into the observed variables. In the latent class model this aspect of the errors
is not modeled: the latent variables are still discrete. us, if the real variable of interest is
continuous the latent classes still contain measurement error. Whether the classes of the
LCM provide an accurate enough approximation to this continuous distribution is a topic
for discussion and research.

e LCM approach may also appear to have the disadvantage that the models have
many parameters. However, models with linear or ordinal parametric relationships can
be formulated in this framework using testable restrictions, and are thus special cases of
the LCM. erefore, if a complex model is necessary, the LCM can be used to estimate it.
And if a parsimonious model fits the data just as well, such a model can be found using the
same approach as well. Here we will use the Bayesian Information Criterion (BIC), which
penalizes extra parameters, to investigate whether the more complex or the simpler model
is necessary.

2.4 Data

eEuropean Social Survey (ESS) has the unique characteristic that inmore than 20 coun-
tries the same questions were asked and that within each round of the ESS Multitrait-
Multimethod (MTMM) experiments are built in to evaluate the quality of a limited number
of questions. is gives us an exceptional opportunity to observe the differences in quality
of questions over a large number of countries. In this paper we have used the MTMM
experiments of round 2 of the ESS. e topics of the 6 MTMM experiments in the second
round of the ESS were (1) Time spent on housework; (2) e social distance between the
doctor and patients; (3) Opinions about job; (4) e role of men and women in society; (5)
Satisfaction with the political situation; (6) Political trust.

Concerning each of these topics 3 questions were asked and these three questions were
presented in 3 different forms following the discussed MTMM designs (Campbell & Fiske,
1959). e first form, used for all respondents, was presented in the main questionnaire.
e two alternative forms were presented in a supplementary questionnaire which was
completed aer the main questionnaire. All respondents were only asked to reply to one
alternative form but different groups got different version of the same questions (Saris,
Satorra, & Coenders, 2004). For the specific questions for the 6 experiments we refer to
the ESS website where the English source version of all questions are presented⁴, and for
the different translations we refer to the ESS archive⁵.

Each experiment varies a different aspect of the method by which questions can be
asked in questionnaires. e ‘housework’ experiment compares numeric estimates by re-
spondents with other scales. e ‘doctors’ experiment examines the effect of choosing
arbitrary scale positions as a starting point for agreement-disagreement with a statement.

⁴http://www.europeansocialsurvey.org
⁵http://ess.nsd.uib.no
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Figure 2.5: Top: Greece. Bottom: Slovenia. Barplots, including proportion of missing data (-) of
the observed variables for the first two methods of the ‘role of women’ experiment in two countries.
Below each barplot the mean and standard deviation (in brackets) are given.

e ‘job’ experiment compares a 4 point with an 11 point scale and a true-false scale with
a direct question. In the ‘women’ experiment agree-disagree scales are reversed, there is
one negative item, and a ‘don’t know’ category is omitted in one of the methods. e ‘sat-
isfaction’ experiment varies the extremeness and number of fixed reference points of the
scale. And finally, the experiment on political trust was meant to investigate the effect of
repeating the same question in the same format.

e questions asked in the different countries have been translated from the English
source questionnaire. An optimal effort has been made to make these questions as equiv-
alent as possible and to avoid errors. In order to reach this goal two translators indepen-
dently translated the source questionnaire and a third person was involved to choose the
optimal translation by consensus if differences were found. For details of this procedure
we refer to the work of (Harkness et al., 2002).

We applied the LCM model specified above to the experiment on the role of men and
women in society. ree traits were measured in this experiment, namely:

1. “A woman should be prepared to cut down on her paid work for the sake of her
family;”

2. “Men should take as much responsibility as women for the home and children;”

3. “When jobs are scarce, men should have more right to a job than women.”

ese traits were measured using a five category agree-disagree scale in different phrasings
of the question for the first two methods, and using an item-specific scale as the third
method (see appendix for question formulations). Barplots and descriptive statistics for
the variables we will study are given in figure 2.5.

In order to be able to compare countries on the quality of measurement, we selected
the country with the highest and the country with the lowest quality for the questions, as
estimated in the confirmatory factor analysis model. In this experiment Greece (n=2406)
had the highest qualities and Slovenia (n=1442) the lowest. More information can be found
together with the precise quality estimates for all countries in Oberski et al. (2007).
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2.5 Methods

We used the program Latent Gold 4.5⁶ (Vermunt & Magidson, 2005a) to estimate the fol-
lowing models which result from different assumptions about the relationships in figure
2.4:

Observed variable measurement level
Interval Nominal
Traits (no. classes) Traits (no. classes)

Methods 3 4 5 Methods 3 4 5
2 × × × 2 × × ×
3 × × × 3 × × ×

In all models we take the latent variables to be of interval level measurement, while the
observed variables may be interval or nominal. We also investigate models with different
numbers of classes, to the extent allowed by the amount of information in the data and
the estimation procedure⁷. In order to limit the number of possible models, we vary the
number of classes for all traits at the same time and for all methods at the same time. We
do not consider models with 5 classes for one trait and 3 for another trait, for instance.

No restrictions are imposed on the associations between the latent traits, except that
there are no third-order interactions. is implies that the associations between any two
latent traits may be of any form but do not vary across levels of the third trait.

Although not shown here, we also estimated models with no method factors and dif-
fering numbers of classes for the traits. In all cases the fit indices indicated a strong need
to introduce method factors.

In the analysis, aside from dealing with the planned missing data design that can be
considered missing completely at random (MCAR), we also take into account the design
weights provided by the ESS, interviewer clustering effects on estimates and standard er-
rors, and data missing at random (MAR). e solutions are obtained by the EM algorithm
with at least 10 random starting values in order to find the global optimum, switching to
Newton-Raphson at the end of optimization.

2.6 Results and discussion

Model selection

We estimated the latent class MTMM model described above with different numbers of
classes and different assumptions about the measurement level of the observed variables.
at is, a so-called linear-by-linear association model and a row association model. Table
2.2 shows the resulting BIC model selection criteria and selected models⁸. Lower numbers
indicate a better and more parsimonious fit to the data. Note that models with differing
number of classes are not nested and cannot be compared using a likelihood ratio test. For

⁶http://www.statisticalinnovations.com/products/latentgold_v4.html
⁷For example, estimating the nominal model with 5 trait classes and 3 method classes for Greece took 2.5

days on our computer.
⁸e BIC based on the log-likelihood of the model−2 lnL+(lnN)npar is reported. An alternative is the

BIC based on the L2. e two measures always yield the same model choice, however (Vermunt & Magidson,
2005b, 60-1)
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Greece
Observed variable measurement level

Interval Nominal
Traits (no. classes) Traits (no. classes)

Methods 3 4 5 Methods 3 4 5
2 31438 31209 31017 2 30922 30595 30478
3 31083 30852 30880 3 . 30502 30498

Slovenia
Observed variable measurement level

Interval Nominal
Traits (no. classes) Traits (no. classes)

Methods 3 4 5 Methods 3 4 5
2 17417 17342 17335 2 . 16149 16160
3 17427 17332 . 3 . 16158 .

Table 2.2: BIC for the different models estimated on the ‘role of women’ experiment. e model
selected by the BIC is shown in bold face. e model selected by the AIC (not shown) is shown in
italics. For Greece BIC and AIC select the same model.

such comparisons the BIC can be used (Raery, 1995). e selected model according to
the AIC criterion is also indicated.

In both countries, the BIC and AIC indicate that models including method factors fit
the data much better than models without method factors. erefore the criteria indicate
that method factors must be introduced. Also for both countries, the observed variables
cannot be taken to be measured at interval level: a model with nominal (or ordinal) level
observed variables fits the data much better. is brings into question the assumption of
interval level measurements made by the confirmatory factor analysis model. e degree
of the difference between the equal and unequal interval models can be deduced from the
parameter estimates discussed later.

In Greece the AIC and BIC select the same model, which has 5 classes for the traits and
2 classes for the method factors. e observed variables are measured at nominal level in
this model. e model has 2257 degrees of freedom. In Slovenia the AIC selects this same
model (1246 degrees of freedom), while the BIC selects the more parsimonious 4-class
solution for the traits (1249 df). In the interest of being able to compare the two countries,
we will select the same solution for both countries, choosing the model with 5 classes for
the traits and 2 for the methods for both Greece and Slovenia.

Quality of the questions

Parameter estimates eresults for the selectedmodel forGreece and Slovenia are shown
in table 2.3. is table only shows the parameter estimates for the questionsmeasured using
the first method (i.e. the questions asked in the main questionnaire of the ESS).

emodel selected has a separate parameter for each category of the observed variable.
is parameter can be seen as a varying the effect of the trait on the observed variable (see
equation 2.1). e parameters can be interpreted in terms of odds ratios: if the latent trait
increases by one category, the odds of choosing category 2 over category 1 of the first item
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in Greece, for instance, increase by 20. is is so because a one category increase of the
latent trait is scored as 0.25 and 0.25(e−17.4/e−21.8) ≈ 20 . So for each one-category
increase in the trait the odds of choosing category two rather than one increase 20-fold.

e model does not restrict the items to be of ordinal measurement level. Ordinality
may hold, however. An item is ordinal if the estimated log-linear effects (b) of the trait on
the observed variable are all increasing (or all decreasing) numbers. e table therefore
shows that ordinality holds for all observed variables shown here except for the ‘Take re-
sponsibility’ item in Slovenia, although the difference between the offending coefficients
is not statistically significant. is item has an exceptionally low measurement quality in
all analyses we have performed.

e same effects are also very unevenly spaced. In some cases, such as categories three
and four (‘neither agree nor disagree’ and ‘disagree’) for the ‘Take responsibility’ item in
Greece, they are almost equal for two different categories. is suggests that these cate-
gories represent much the same opinion and that therefore these items can not be taken to
be of interval measurement level.

Turning to the effects of the method factors, it can be seen that these represent an
‘extreme versusmiddle response’ factor. Take, for example, the first item inGreece (column
three in the table). If a person were to go from class 1 to class 2 on the method factor, their
odds of choosing ‘agree strongly’ rather than ‘agree’ increases about 50-fold, keeping the
trait score constant. At the same time, their odds of choosing ‘disagree strongly’ rather than
just ‘disagree’ increase about 100-fold. Considering that disagreeing with the statement is
the obviously socially desirable answer, higher scores of the method factor are associated
with answers that are extreme, butmore so on the socially desirable side. is finding holds
for all items and methods, including the ones not shown here.

e table shows also that the parameters have been estimated with considerable uncer-
tainty. is uncertainty includes sampling design and interviewer effects, since we have
included these in the model estimation procedure. In spite of the large standard errors,
most coefficients have been estimated with sufficient precision to distinguish between the
parameter values. e highest uncertainty is associated with categories one and five, which
were chosen much less oen than the other three categories. e lack of data points for
these categories, which, as we shall see, is a consequence of the poor quality of some of
these items, aggravates the uncertainty inherent in the analysis.

Item characteristic curves e parameters shown in table 2.3 can be used to compare the
countries on the relationships mentioned. But they do not provide a complete picture of
the quality of the indicators. We are primarily interested in the conditional probabilities of
belonging to each category of the observed variables given the latent class, and these prob-
abilities are also determined by the intercepts in equation 2.1. As a clarification, one can
consider that in an analysis with two classes and two observed categories the conditional
probabilities would be the true positives and false negatives rate. To shed more light on the
precise relationships the traits have with the indicators, therefore, we also provide plots of
the so-called item characteristic curves⁹. ese are sometimes also called ‘item-category
response functions’.

Figure 2.6 provides the curves describing the conditional probability of belonging to
each category, given the score on the latent trait the variable is supposed to measure.

⁹Note that here we show the conditional probabilities rather than the cumulative probability oen graphed.
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In the figures, the three methods of asking the question correspond to the rows, so that
the first row contains the three graphs of the ICC’s for the first method (main question-
naire), and the second and third rows the graphs for the supplementary questionnaires.
e columns and graph titles correspond to the three traits described above.

e solid lines in the graph correspond to the probability of choosing a category, given
the trait score. e lines have been marked with a color and the number of the category.
is category number is moreover plotted at the point where the conditional probability
of choosing that category is highest, i.e. at the peak of the item characteristic curve. If an
item is ordinal then the ICC’s peak in succession, and one will read either ’1 2 3 4’ or the
reverse from le to right. It is also of interest whether the peak is high (close to one) or
not, as this is an indication of the specificity of the category. Last, the peak should ideally
not be underneath another curve.

e dotted lines provide approximate 95% confidence intervals around the ICC’s. is
is an example of the richness of the output that can be obtained from Latent Gold. e
uncertainty noted in table 2.3, which is considerable for the extreme categories, is again
reflected here.

e top le graph for Greece shows that item ‘cut down’ from the main questionnaire
has very good measurement properties in this country. e category curves peak in suc-
cession, meaning that all categories provide information about the score on the latent trait.
Moreover these peaks, which can be likened to the probability of true positives or sensitiv-
ity in two category models, are quite high, in the Pr(y = k|T1 = k,M = E(M)) = 0.8
range, except for the first category. Since all the curves are steep, the probability of choos-
ing any other category than the modal one–false negatives or (un)specificity–decreases
sharply. is graph is highly similar to the same graph as calculated from the probit IRT
model by the program Mplus (Muthén & Muthén, 1998) based on our previous research.
us for this indicator the probit IRT or categorical factor analysis model may describe the
relationship between trait and indicator adequately.

e same graph for Slovenia (figure 2.7) is quite different. Here it is clear information
is only being obtained from the three middle categories. e extreme categories are hardly
used at all. For these middle categories, however, the peaks are successive and relatively
high for categories 2 and 4. us, although not all categories are used, resulting in a loss of
information, the discriminating power of the three middle categories is quite good.

is is not the case for the same itemmeasured by the secondmethod in Slovenia. Here
the quality is extremely low, as almost no discriminating power exists except for choosing
the second category versus all the others. In general the measurement quality for the sec-
ondmethod ismuchworse in both countries. e thirdmethod fares better in Greece then
it does in Slovenia, where the measurement quality is disastrous; in the second item only
choosing the first versus all the other categories provides any information.

It can also be seen that in general the measurement properties in Slovenia are worse
than in Greece. is is in line with the findings from CFA and ordinal probit models; in
fact, it was the reason these two countries were selected. As an example one can compare
item 2 ‘take responsibility’ in the main questionnaire across the countries. In Greece again
only the three middle categories provide goodmeasurement properties. us this item has
intermediate quality. But in Slovenia the middle category is equally likely to be chosen for
all values of the trait, and in fact just as likely as categories 4 and 5. e only differenti-
ation one can make between people on the latent trait comes from a distinction between
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categories one and two¹⁰. is item has an extremely low quality in all models we have
examined for these data so far; in the continuous CFA model the percentage of variance
explained in the item by the trait was estimated at 25%. An explanation is now found in the
extremely limited use of the scale. In the estimated marginal distribution (prevalence) of
this opinion in Slovenia the proportion of people in categories of the latent trait associated
with disagreement is below 0.10.

When the comparisons described above are made across the methods it can be seen in
figures 2.6 and 2.7 that the second row consistently hasworsemeasurement properties than
the other two rows. e first and third methods have comparable measurement quality.
e same conclusion was also drawn in the categorical CFA analyses that were conducted
earlier. e linear CFA analysis suggested that the first method was slightly better than the
other two.

Item information A more direct measure of the quality than has been used so far is the
item ’information’. It is the inverse of the error variance of the maximum likelihood esti-
mate of the trait that one can get from each item, and can be seen as a generalized reliability.
e information function I(T ) is a measure of precision in the estimation of the trait T :
σ(T̂ ) = 1/

√
I(T ). us, as the curve approaches zero, less and less can be said about

the person’s trait score. e item information functions are shown for all items in figures
2.8 and 2.9. For more details about the information function and how it was computed we
refer to the appendix.

Because of the non-linear specification of the model, and contrary to CFA, the infor-
mation varies across levels of the trait¹¹. Instead of a single number, a plot is obtained
across the range of the trait. One can also obtain the marginal or average information in
a particular country by averaging over categories of the trait, weighting the information at
each category by the prevalence of that category (e.g. Donoghue, 1994). is average in-
formation is a single number that provides the expected information for that country. It is
important to note, however, that it depends on the marginal distribution of the trait: items
in two countries with the same information curve but different marginal distributions will
in general provide different average information.

In the figures the information has been plotted on a log scale to allow for comparison
of the different items, which vary widely in information provided. erefore any visible
differences in height of the curves are usually substantially large. One can appreciate the
absolute values of the curves by considering for example that an information value of 74
(the average for the direct version of item 1 in Greece) implies that the best estimate of the
latent trait for a particular person that one can obtain with this item will have a standard
deviation of 0.12, on a scale of 0 to 1. One can also compute the relative efficiency of two
items as the ratio of their information (Hambleton et al., 1995). e average information
in the country has been indicated at the top of the graphs.

e agree-disagree versions of the ‘cut down’ item in Greece are clearly asymmetrical.
is implies that opinions against the ‘feminist direction’ are measured much less accu-
rately than ‘pro-feminist’ opinions. e item-specific scale is much better overall and also
provides better coverage of the entire range of opinions. It is for the population studied

¹⁰Note that the scale of this latent trait has been reversed relative to Greece. is ordering of the classes is
arbitrary and does not affect the results.

¹¹A complication omitted here is that it also varies across levels of the method. e curves shown provide
the marginal information collapsed over categories of the method. See the appendix for an explanation.
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slightly (1.1 times) more efficient than the first method and 1.7 times as efficient as the
second method.

e direct version of the ‘take responsibility’ item has a very high peak and provides
muchmore information about opinions close to the average Greek opinion than the agree-
disagree scales. However, away from the average the information provided is much higher
for the first two methods. In principle these are therefore better adjusted to measure rel-
atively ‘feminist’ or ‘anti-feminist’ opinions than the item-specific scale, where ‘feminist’
opinions are again better measured than ‘anti-feminist’ ones. On average the item-specific
scale is still about twice as efficient as the agree-disagree scales for the population studied.

e ‘menmore right’ item has high quality overall, and covers the whole range of opin-
ions quite well. In this respect the item-specific scale again does much better than the
agree-disagree scales, whose information curves are skewed towards the measurement of
‘feminist’ opinions. On average the item-specific scale is 1.3 times more efficient than the
positive agree-disagree version, andmuch (4 times) more efficient than the negative agree-
disagree version.

e graphs for Slovenia immediately reveal the much lower overall measurement qual-
ity of the items in that country. e median item in Greece is 4.3 more efficient on average
than in Slovenia. is is more than the largest information ratio in Greece. us the differ-
ences between the countries are much larger than the differences between the items within
each country.

‘Men more right’ is also the better item in Slovenia. ere the measurement is skewed
towards measurement of ‘pro-feminist’ opinions for both the direct and positive agree-
disagree versions. Contrary to the pattern found in Greece that the item-specific scale
providedmore equalmeasurement across thewhole range of the scale, in Slovenia the item-
specific scale’s information curve is more skewed than the other two method’s curves. e
average information for the Slovenian population is not very different, however, reflecting
the highly skewed marginal distribution of the trait in that country.

e ‘take responsibility’ trait is not well measured in Slovenia. e negative agree-
disagree is slightly (1.3 times) better than the item-specific scale, and seems to be able to
pick up also negative opinions somewhat. is is the only item where the negative agree-
disagree scale is better than the other two methods.

‘Cut down’ negative agree-disagree is the worst item of all. It has a variance which is
higher than the entire range of the trait scale. is means one knows about as much about
a Slovenian’s opinion aer asking this question as before asking it. e other measures are
better, the direct version being the best of the three.

Overall we found that the item-specific scales were better than the agree-disagree ver-
sions (3.5 times more efficient on average), and that the positively formulated items were
better than the negatively formulated ones (1.8 times on average). is finding is in line
with Saris et al. (frth). e difference in quality between the countries that motivated the
choice of countries in the first place was also clearly found.

Method effects

So far we have only discussed the relationship between the traits to be measured and their
observed variables, that is, the quality of the questions as indicators of the trait they are
supposed tomeasure. As discussed previously, another important part of answers to survey
questions can be described as ‘method effects’. ese have been modeled in our case as
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Figure 2.10: Estimated histograms of the latent method factors with approximate 95% error bars.

Figure 2.11: Bi-plots for the first item, ‘Women should be prepared to cut down on their paid work’,
for all three methods in Greece. Plotted is the conditional mean of the trait (horizontal axis) and
method factors (vertical axis) influencing the item given that a particular category (the points labeled
with a category number) was chosen.

latent variables that affect the answers in the same way for questions asked in the same
way, but are unrelated to the traits to be measured.

e coefficient estimates for these method factors are shown in table 2.3 and were al-
ready discussed. e method factors found in both countries represent a contrast between
only using the middle categories or giving extreme answers, more so on the socially desir-
able side. e fact that class 1 on the method factor is more associated with disagreement
is not in line with the hypothesis that respondents tend to ‘acquiesce’, that is, to tend to
agree with any statement.

e estimated proportion of people (with approximate 95% confidence intervals) in
each of the two categories of the method factors is shown in figure 2.10. e majority of
people are in the class which uses only the middle categories. But a substantial propor-
tion of people also are extreme responders. For the third method there are more extreme
responders, with the difference in proportions of extreme and middle responders not sta-
tistically significant. is may be a consequence of the fact that the first two methods were
fully labeled scales while the third method has only the two extremes labeled, perhaps at-
tracting more responses.

An instructive way of examining the relationship an item’s categories have with its trait
and method factors is through a bi-plot (Magidson & Vermunt, 2001). Bi-plots for the
first item (‘women should be prepared to cut down on paid work’) for Greece are shown
in figure 2.11. e plots shown in this figure plot the conditional mean of the trait and
method factors given a choice for each of the five categories of the items. e plot again
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makes the meaning of the method factors readily apparent: categories 1 and 5 versus the
rest.

When one projects the points (categories) onto the trait axis, it can be seen that the
categories are quite unevenly spaced as was already remarked. For the first method cate-
gories 5 and 4 are much closer together than categories 1 and 2, suggesting the scale is not
symmetric. e same happens in the opposite direction for the second method. For this
method choosing themiddle category represents an above-average opinion, suggesting the
phrase ‘neither agree nor disagree’ does not have its intended neutral meaning in this case.
In all three methods two of the categories are much closer to the middle category than the
other two. It can also be seen that the method and trait factors represent very different
things as they are unrelated.

External validation of the method factors e model as estimated so far appears to give
valid inferences about the items. However, the meaning of the method factors has been
assumed rather than checked by using external data. We now do this, demonstrating how
one can use the factor score estimates of the latent class MTMM model to perform addi-
tional analyses.

It was suggested that the method factors represent an ‘extreme response style’ (ERS),
and, to a much smaller extent, social desirability. is conclusion was based on the coeffi-
cient estimates. We now test the same conclusion with data not used in the model. Similar
studies have been done using CFA by Billiet andMcClendon (2000) and using a latent class
factor model by Kieruj and Moors (frth).

One important reason for this is that the literature on ERS suggests that it is a stable
personality trait that is different for different people but the same across all questions for
each person (Billiet & McClendon, 2000). In the MTMM model developed above, how-
ever, the method factors are independent, suggesting that ERS on one set of items does not
imply ERS on another. erefore the correlation with external measures can be seen as a
validation of the MTMM model.

We selected 39 variables from the ESS main questionnaire that had an answer scale on
which extreme response was possible. In order to prevent confounding of variables, the
items on position of women studied here were excluded. A measure of extreme response
style was constructed by counting the number of times each respondent chose the most
extreme possible categories on the answer scale (the minimum or the maximum). is
variable, called ’stylesum’, had mean 7.1, median 6 and interquartile range 6.

e method factor scores of the three methods was estimated for each person and
added to the data set with the variable ’stylesum’. e modal (most likely) method scores
(0 or 1) were also added.

We then computed the correlation between the method factor scores and the extreme
response style (ERS) measure that was computed completely independently of the ‘role of
women’ variables. We also computed the polyserial correlation between the modal cate-
gory of the method and the ERS measure. e results are shown in table 2.4.

It can be seen that the first and third method factor scores correlate significantly with
the independent ERS measure. Method 1 correlates much higher with this measure than
the other two methods. is shows that extreme response style works differently for dif-
ferent items; a person who answers one type of item in an extreme manner does not neces-
sarily do the same for another. e differences in correlation can in part also be explained
by the amount of time between the questions; most questions used to measure ERS were
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Correlation with ERS
Method 1 Method 2 Method 3

Pearson correlation with factor scores -0.222* -0.027 -0.076*
Polyserial correlation with modal category -0.261* -0.069 -0.086*
∗Significantly different from zero (p < 0.01)

Table 2.4: Correlations between the method factor scores and the external extreme response style
(ERS) measure. is measure is constructed as the number of extreme responses on 39 other ques-
tions.

asked in the main questionnaire, closer to the questions used to estimate the factor scores
of method 1. e factor scores for methods 2 and 3 were estimated from questions asked
in the supplementary questionnaire, approximately one hour aer the start of the main
interview. is suggests that respondents may also change their reponse style during the
interview.

Another method of testing the suggestion that extreme response style is a stable per-
sonality trait is to correlate it with other stable personality traits. To this end we correlated
the method factor scores and modal categories, as well as the ERS ‘stylesum’ measure, with
26 questions from the Schwartz ‘human values scale’ asked in the supplementary question-
naire of the ESS (Schwartz, 1992). ese correlationswere very small; we found none above
0.1.

From the significant correlation of -0.26 above we can conclude that to some extent
the method factors do indeed measure a response style independent of the content of the
questions. However, the low correlations with other methods, and of the methods with a
person’s values, it would appear that the this response style is not a stable personality trait
but can vary across methods and even during the interview. us the model with separate
method factors used here appears more warranted than a model with one style factor that
represents a personality trait of extreme response tendency. It should also be noted that
it would be very difficult to model extreme response using a traditional or ordinal factor
analysis model.

It was clearly shown that the method factors represent a middle versus extreme re-
sponse. It was also suggested that, to a much smaller extent, they represent susceptibility
to socially desirable answers to some extent. So far this claim does not rest on much more
than the fact that one of the positive log-linear coefficients for each method factor is larger
than the other one, and this happens on the socially desirable side. However, it can also be
validated directly.

In the European Social Survey besides the data from themain and supplementary ques-
tionnaires data was also gathered in interviewer questionnaires. ese included a question
for the interviewer on whether ‘anybody [was] present, who interfered with the interview’.
If the method factor truly represents social desirability in part, then the probability of be-
longing to the classes should be influenced by the presence or absence of another person
during the interview. It is not completely that simple, however; given the content of the
questions men and women should show opposite behavior depending on whether their
partner is present. Also, presumably, religion plays a role in what is considered desirable.

When each of the items are regressed on explanatory variables and the presence of
another person during the interview, it is clear that this variable has a statistically significant
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Method 1 Method 2 Method 3
Est. s.e. t Est. s.e. t Est. s.e. t

(Intercept) 1.58 0.24 6.65 3.15 0.47 6.76 2.37 0.29 8.19
Other person present -0.04 0.51 -0.08 -0.07 1.03 -0.07 1.13 0.81 1.39
Female -0.12 0.13 -0.93 -0.63 0.30 -2.13 0.24 0.17 1.41
Religion -0.14 0.22 -0.61 0.21 0.42 0.49 0.37 0.26 1.41
Church attendance 0.10 0.05 1.94 0.26 0.11 2.35 -0.12 0.06 -1.96
Married 0.01 0.13 0.07 -0.21 0.28 -0.76 -0.26 0.17 -1.53
Present×Female 0.00 0.28 0.00 -0.60 0.73 -0.83 -0.86 0.34 -2.53
Present×Religion -0.17 0.48 -0.36 1.49 0.80 1.87 -1.53 0.78 -1.96
Present×Married 0.29 0.29 0.99 -0.57 0.85 -0.67 0.69 0.35 1.99
N 2401 2401 2401
Deviance 2118 608 1460
−2LLR(Modelχ2) 6.52 18.03* 24.52*

Table 2.5: Logistic regression of the probability of belonging to the first class on each method as
influenced by the presence or absence of a third person during the interview, mediated by different
variables that influence what is socially desirable: gender, religion, and marital status.

influence. For women the expected mean of the 5-point scale increases by 0.5 when their
partner is not present compared to when they are. For men this effect is in the opposite
direction but much smaller¹². us it is clear that social desirability effects are present in
the items. It remains to be investigated, however, whether the method factors estimated in
our analysis account for the effect of social desirability.

For this reason we created a data set that combines the original variables from the ESS
main, supplementary, and interviewer questionnaires with the factor scores (modal classes
and probabilities) obtained from our LCM analysis. We then regressed the logit of the
probability of belonging to the first class of each method factor on presence of another
person, as well as gender, religion, marital status, and their interactions with the presence
or absence of another person during the interview. e results of this analysis for the three
method factors for Greece are shown in table 2.5.

It can be seen in the table that the effects for the first method are all non-significant.
For the second method there are main effects of church attendance and gender, and the
interaction effects, though not statistically significant, are in the expected direction. For
the third method the model is clearest. All of the interaction effects as well as the main
effect of church attendance are statistically significant.

To give an example of the meaning of the above analysis, consider the estimates for the
third method. For a woman who is religious, the probability of moving into class 1 of the
method factor increases from 0.80 to 0.93 if somebody is present at the interview. is
in turn increases her chances of saying that ‘a woman should be prepared to cut down on
her paid work’, for instance. Incidentally it also decreases the chance that she will use an
extreme category considerably. All these effects happen, in our model, while keeping her
trait score constant. us any difference in the answers provided by respondents differ-
ing on the characteristics in table 2.5 has nothing to do with a change in their underlying
opinion.

¹²e model controls for age, gender, education, religion, living with a partner, and marital status. e
analysis is not shown here but can be obtained upon request from the first author.

48



It should be noted that the social desirability effects found on the method factors are
small relative to the effects found on the items themselves. is suggests that there is an el-
ement of social desirability, different across respondents, that still remains to be explained.
e model could be expanded to include an acquiescence style factor, for instance (Billiet
& McClendon, 2000). However, it is questionable whether a model with such an extra
latent variable can be estimated with the experimental design used here. is remains a
topic for further investigation.

2.7 Conclusion

e goal of this study was to show how more general measurement models can be formu-
lated, and in particular to demonstrate the use of latent class models for analysis of the
quality of single questions.

We have formulated latent class factor models from our general graphical model and
applied these models to a multitrait-multimethod experiment on the role of women in so-
ciety. Furthermore we compared the results for two countries, one of which was previously
estimated to have low question qualities (Slovenia) and the other (Greece) high ones.

We investigated the quality of the questions using the item characteristic curves and
information functions. To our knowledge this paper is the first to provide formulas for the
item information function of latent class factor models (see appendix).

e investigation of question quality using the LCM yielded a wealth of information
about the functioning of the questions. It was established that for the agree-disagree scales
only the middle three categories (out of five) provide information about the traits to be
measured, and that for the items with exceptionally low quality the number of categories
providing information is reduced even more.

e quality in Slovenia was again found to be much lower than in Greece, in line with
previous findings. It was also clear that the positively worded items were better than the
negatively worded ones, and that the item-specific scales provided much more informa-
tion than the agree-disagree format. With two exceptions, they also provided more equal
information across the whole range of the trait. e agree-disgree versions provide more
accurate measurement of ‘pro-feminist’ than of ‘anti-feminist’ opinions.

is finding is important: items with an approximately equal amount of information
across the range of the trait are desirable, especially in cross-national research.

An item with much skew in its information function is less likely to be useful for cross-
national comparisons. is is so because even if the information functions were the same
in all countries, countries with higher average opinion would have a higher measurement
quality¹³. Asmeasurement errors affect the analysis ofmeans and regression (Fuller, 1987),
differential measurement errors across countries invalidate comparisons of means and re-
lationships.

In the present analysis we found that the information functions for Slovenia andGreece

¹³Skew in the amount of information will also bias regression analyses with interactions. As an example,
consider the ‘take responsibility’ item’s information function in Greece. A regression of a dependent variable
on ‘take responsibility’, a third variable, and their interaction is formulated. Figure 2.8 shows that agreement
is measured accurately, while disagreement is not. us two groups of Greeks which have a different average
opinion on the trait will have different amounts of measurement error in this item and therefore different
correlations with other variables. erefore a regression analysis which includes both a main effect and an
interaction with the opinion on this item will give biased estimates.
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were very different. us it is not clear that the lower quality in Slovenia is due to a differ-
ence in the average opinion. e analysis shows that the difficulty of categories indicating
‘anti-feminist’ opinions was far higher in Slovenia. us most Slovenians are le with only
two choices, ‘agree’ versus ‘neither agree nor disagree’, which are used differently by differ-
ent people as evidenced by themethod effects. Clearly this item does notmeasure opinions
in a way equivalent to the way they are measured in Greece. If answers are to be compared
or the items in Slovenia to be analyzed, therefore, improvements should be made. One
suggestion would be to rephrase the question so that it is less extreme.

We examined the method effects. Bi-plots showed clearly what the method factors
represent: a distinction between extreme versus middle responses. Most people (about
80%)were found to use only themiddle categories. is is a strong indication of satisficing;
the questionmight not be clear enoughor too cognitively difficult to answer. eparameter
estimates suggested that the method factors also represent a susceptibility to answering in
a socially desirable way. is was investigated by regressing the estimated method factor
scores onto the presence or absence of a third person during the interview. Effects were
found for the third and second methods, but not the first. Considering that the effects of
this variable on the items are much larger precisely for the first method, there may still be
room in the model for a social desirability or style factor. Such an study would also shed
light on the plausibility of the assumption we have had to make that all systematic errors
are specific to the method of asking the question. is is, however, is outside the scope of
the present study.

e latent class analysis elaborated in this paper provides much information about the
precise workings of the items, as well as suggestions for their improvement. Furthermore
this was achieved without any assumption of normality or of parallel probability curves.
Indeed these assumptions, made in (ordinal) confirmatory factor analysis models usually
applied to MTMM data, were found not to hold. erefore we hope to have shown the
utility of this approach for the evaluation of categorical items usingmultitrait-multimethod
designs.
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Appendix: Phrasingof thequestions used in the ‘role ofwomen’
experiment

Figure 2.12: Main questionnaire (method 1)
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Appendix: Item information function for the polytomous La-
tent Class Factor Model

In this section we explain how to obtain the variance of the best estimate of the trait T that
one can obtain from an observed item y. is variance is also called the item informa-
tion, as it equals the Fisher information in the likelihood of the item given only the trait
(Hambleton et al., 1995).

e observed variable has a multinomial likelihood:

L =

K∏
k=1

PUk

k ,

where Uk is an indicator function that equals 1 if y = k and 0 otherwise.
e item-category response function for the model used is

p(y = k|T,M) := Pk(T,M) =
exp(ak + bkT +mkM)∑K
c=1 exp(ac + bcT +mcM)

. (2.2)

For succinctness we will refer to Pk(T,M) simply as Pk. is model is very similar to a
generalized partial credit model (PCM, see Muraki (1993)). Indeed, if for a given relation-
ship one replaces the category scores for the observed variable in the PCM by the slope
for that category and sets the discrimination parameter to unity, identical first and second
derivatives result.

e equation above gives the conditional probability of choosing category k, given both
the trait and the method. In total there areK categories and item-category response func-
tions. ese functions are also called the item characteristic curves.

e item information function (IIF) is now equal to the Fisher information in the item,
with respect to the trait:

I(T ) = −E(
∂2 lnL(T )
∂T 2

)

For any given value ofM we can derive the second partial derivative of the item like-
lihood with respect to T as

∂2 lnL
∂T 2

=

K∑
k

[Uk(λ
2 − ν)],

where

λ =

K∑
k

[bkPk]; ν =

K∑
k

[b2kPk].

A proof follows from the derivation for the PCM in the appendix of Donoghue (1994),
replacing in that paper the quantities D and a by 1 and all category scores (k, c) by the
slope bk for that category.

Noting that E(Uk|T,M) = Pk(T,M) and E(x|T ) =
∑L
l E(x|T,M)p(M = l)

for any random variable x, we can conclude that the information in the item about T ,
conditional onM is

I(T |M) =
K∑
k

β2
kPk(T,M)− [

K∑
k

βkPk(T,M)]2. (2.3)
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and the marginal information then equals

I(T ) =
L∑
l

[I(T |M) p(M = l)], (2.4)

where the index l runs over all scores of the method factor. In the model selected in this
paper l ∈ {0, 1}.

One can also calculate a trait score estimate for each person based on the parameters.
e standard error of the estimation of this score then equals 1/

√
I(T ) (Hambleton et al.,

1995).
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Chapter 3

Joint estimation of survey error
components in multivariate
statistics

Abstract

We outline a procedure for simultaneously estimating the “design” effects of
different survey error components, in the context of structural equationmod-
els. e effects of clustering,measurement error, andnon-normality, are jointly
estimated for an example multivariate model involving reciprocal effects, in-
strumental variables, correlated error terms, and measurement error. e ex-
ample is estimated on real data from the European Social Survey 2008.

It is shown how estimates of the effects of these different survey error compo-
nents can be obtained. In the example given, it is also shown that the relative
sizes of these effects are very different than commonly found in the estimation
of means and totals. In particular, measurement error is an important factor
in our example.

Finally, it is remarked that our general knowledge of the relative importance of
different survey error components for multivariate statistics could be greatly
increased by the application of the method discussed in this paper to a cross-
section of real analyses.
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3.1 Introduction

e total survey error literature is rich in discussions of the effects of different error com-
ponents on the bias and variance of mean estimators (starting points for the abounding
literature are Cochran, 1977; Groves, 1989). Effects on parameters of multivariate models
are also discussed, though less oen (e.g. Scott & Holt, 1982; Lyberg, 1997; Biemer et al.,
2004). Such discussions, however, focus mostly on bias in the multivariate statistics due
to survey errors, a notable exception being Kish and Frankel (1974). Here we will attempt
to take also into account the effect on the variance of the estimates, with a focus on the
simultaneous estimation of the effect of different error sources.

e same error components that affect means may also affect regression coefficients
and other multivariate statistics such as factor loadings, and latent variable variances. e
influences and relative influences they have, however, cannot be expected to be similar. For
example, the design effect due to clustering for a mean is

1 + (c− 1)ρ, (3.1)

where ρ is the intraclass correlation (icc) and c is the common cluster size (e.g. Cochran,
1977). Compare this with the same design effect for a simple regression coefficient, which
approximately equals

1 + (c− 1)ρερx, (3.2)

where ρε is the icc for the residuals and ρx the icc for the independent variable (Scott &
Holt, 1982): clearly the design effect due to clustering for the regression coefficient is in
general smaller than the design effect on means.

Randommeasurement error, meanwhile, does not add systematic errors and can there-
fore be ignored in the analysis of bias in means and totals¹. On the other hand, regression
coefficients are well-known to be biased by measurement error if le uncorrected (Fuller,
1987, 3). For example, in a simple linear regression of a dependent variable Y on an ob-
served independent variable X , denote the linear regression slope of Y on X by γ. If X
is not a perfect measure, but contains measurement error, X has a reliability ρxx, some-
times termed ’reliability ratio’ in the survey error literature (e.g. Groves, 1989). If the true
regression slope is denoted by β, the relationship between the regression slope of observed
variables, the true slope, and the reliability is (Fuller, 1987, 5):

γ = ρxx · β. (3.3)

us the bias in the regression slope uncorrected for measurement error is multiplicative
in the reliability. Since reliabilities of 0.7 are not uncommon (Saris & Gallhofer, 2007b;
Alwin, 2007), large biases can occur.

Measurement error in the independent variable, when le uncorrected, will also de-
crease the explained variance and thus increase the variance of the estimated (standard-
ized) coefficient. Since the mean square error (MSE) of the regression coefficient is the
sum of bias squared and variance, it follows that measurement error influences the MSE
through both bias and variance increase.

¹Obviously measurement error biasing effects also exist in the form of systematic errors (’relative bias’);
these do affect mean estimation (see also Biemer & Trewin, 1991).
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Depending on sample size, cluster size, and effect size, the effect on the mean square
error of measurement error may exceed that of clustering or vice versa. us, careful at-
tention should be given to the relative sizes of the effect of different error sources: they
cannot be assumed similar to those for means and totals.

We will in turn discuss different error components, both sampling and nonsampling,
and how their impact onmultivariate statisticsmay bemeasured. We do this in a structural
equation model context developed in the following section. Due to the generality of struc-
tural equation models, our discussion will cover (multivariate) regression, factor analysis,
longitudinalmodels, andmodels with ordinal, count, and censored variables among others
(Muthén, 1984).

3.2 Structural equation models

Suppose a sample of J clusters has been drawn from a population, and in total n persons
have been selected within the clusters by random sampling with probability weights wi.
In this way, n observations of the measures y are observed. ese observed variables are
assumed to be imperfect measures of a vector of variables η, with possibly correlated ran-
dom measurement error ε. Systematic stochastic measurement errors such as method and
style effects can also be incorporated through the latent variable structure (see e.g. Werts
& Linn, 1970; Jöreskog, 1970).

A structural equation model (SEM) can then be specified as

η = B0η + ζ, (3.4)
y = Λη + ε, (3.5)

∀k∈K∀l∈L(E(εk, ζl) = 0), (3.6)

with ΦK×K the covariance matrix of the latent variable disturbance term vector ζ and
ΨL×L the covariance matrix of the measurement error variables ε. is specification is
known as the “LISREL all-y model” (Jöreskog, 1970). Other well-known model formula-
tions are the Bentler-Weeksmodel (Bentler &Weeks, 1980) and the RAMmodel (McArdle
& McDonald, 1984). All three models can be re-written into equivalent specifications to
fit the form of the other models. e parameters of the model are collected into a vector θ.

We assume there is amatrix of observed variances and covariancesS on the p observed
variables that converges in probability to a population covariancematrixΣ. e p(p+1)/2
unique elements of S can be collected into a vector s := vechS.

e implied variance-covariance matrix by the model above is then

Σ(θ) = B−1ΛΦΛ′B−1 +Ψ, (3.7)

where B := I − B0. We collect the unique elements of Σ(θ) into a vector σ(θ) :=
vechΣ(θ).

Given the above assumptions, the parameters of the model can be consistently esti-
mated by minimizing the weighted least squares fitting function

F = (s− σ(θ))′V (s− σ(θ)), (3.8)

where V is a positive definite, possibly stochastic, weight matrix (Satorra, 1989).
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e weighted least squares fitting function will be equivalent to maximum likelihood
estimation if V is chosen as the inverse of themodel-implied fourth-ordermoments under
normality. us the discussion given here encompasses normal-theory maximum like-
lihood as well as generalized least squares and ‘asymptotic distribution free’ estimation
methods, among others.

Consistency is not affected by the choice of V , as long as V does not violate identifi-
cation conditions. Only one choice of V is asymptotically optimal, however; namely that
V such that V converges in probability to Γ−1, where Γ is (a function of) the matrix of
fourth-order moments of y. e consistency of the estimates also does not depend on any
assumption about the distribution of y.

Under the model the asymptotic variance of the estimates θ̂ is

avar(θ̂) = n−1(∆′V∆)−1∆′V ΓV∆(∆′V∆)−1, (3.9)

where ∆ is the first derivative of the implied covariance matrix Σ(θ) with respect to the
parameters θ, and Γ the matrix of fourth-order moments (e.g. Satorra, 1989). An expres-
sion for ∆ in terms of the parameters of the model was given by Neudecker and Satorra
(1991). Wewill employ this expression to calculate the asymptotic variance under different
conditions.

e matrix Γ in equation 3.9 will play an important part in the discussion that follows:
it is the matrix of fourth-order moments of y, and the primary means by which survey
error components affect the variance of the estimates θ̂. In general, if there is no clustering
a consistent estimate of Γ under general conditions is given by

Γ̂ = n−1
n∑
i=1

(bi − b̄.)(bi − b̄.)
′, (3.10)

where bi = D+~(yi − ȳ)(yi − ȳ)′ (e.g. Fuller, 1987, 332) and D+ is the Moore-Penrose
inverse of the duplication matrix (Magnus & Neudecker, 2002).

With clustering and weighting the estimate of Γ can be obtained by first aggregating to
the level of the clusters while using the sampling weights. en the estimate becomes

Γ̂(c) =
J

n2(J − 1)

J∑
j=1

(bj − b̄)(bj − b̄)′, (3.11)

where bj is the weighted sum of all bi’s in cluster j, replacing ȳ with the weighted sample
mean (Muthén & Satorra, 1995).

e matrices Γ̂ and Γ̂(c) provide consistent estimates of the fourth-order moments re-
gardless of the distribution of y. If, however, y can be assumed to have a multivariate
normal distribution, then the Γ matrix can be consistently estimated by

Γ̂∗ = 2D+(S ⊗ S)D+′
. (3.12)

e fourth order moments are then a function only of the variances and covariances.
As we have remarked earlier, the choice of V determines the estimation procedure.

By replacing Γ in equation 3.9 with Γ̂∗, Γ̂, or Γ̂(c), normal-theory variances, variances
robust to non-normality, or cluster and weighting-corrected variances are obtained. Here
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it should be noted that the cluster-corrected variances of Muthén and Satorra (1995) are
also robust to non-normality.

e elements of the measurement error variance matrix Ψ can, if identification con-
ditions have been met, be estimated simultaneously with the ’structural’ parameters B0

and Φ. However, in practical applications, not enough information may be available to
estimate the measurement error from the sample or doing so simultaneously might lead
to very large models (Saris & Gallhofer, 2007a). In such cases an estimate of the mea-
surement error in the measures y may be obtained from other sources, such as published
evaluations of psychometric properties of scales or meta-analyses of measurement error
estimates (Saris & Gallhofer, 2007b; Alwin, 2007). Correction for measurement error can
then proceed by fixing the elements of Ψ (the ’single indicators’ approach)².

Now that we have developed some results for the general structural equation model
we will discuss an application of a structural equation model from the literature. We then
proceed to separately estimate the magnitude of the error components in the variance of
parameters of an analysis of this real data set.

3.3 Application of a structural equation model to real data

Saris and Gallhofer (2007a) provide an analysis of a structural equation model of social
and political trust with corrections formeasurement error. A simplified adaptation of their
model is shown in figure 3.1. e model shown in the figure can be expressed as:

Figure 3.1: Structural equation model adapted from Saris & Gallhofer (2007a).

SocTrust = β34 PolTrust + β31 Fear + ζ3 (3.13)
Poltrust = β43 SocTrust + β42 Efficacy + ζ4 (3.14)
E(φ1ζ3) = E(φ1ζ4) = E(φ2ζ3) = E(φ2ζ4) = 0. (3.15)

It can be seen that the model cannot be estimated with ordinary linear regression because
it contains a reciprocal effect between social and political trust, which is identified by the
“instruments” fear of crime and political efficacy. In line with standard practice in econo-
metrics we allow for the possibility of a covariance between the disturbance terms ζ3 and
ζ4.

²An alternative method that will not be discussed here is the so-called ’covariance reduction’ approach
(Saris & Gallhofer, 2007a).
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Table 3.1: Histograms of the observed variables and number of interviews per interviewer (cluster
size) in Denmark.

Variable Mean Std dev Skewness Kurtosis icc ρ̂x (s.e.) ψ̂ (s.e.)
socialTrust 20 4.7 -0.70 -0.80 0.25 0.73 (0.01) 6.0 (0.22)
systemTrust 21 4.8 -0.79 -0.54 0.11 0.77 (0.01) 6.3 (0.24)
fearCrime 5 1.7 0.77 -0.31 0.17 0.57 (0.02) 1.3 (0.04)
efficacy 7 1.7 -0.25 0.05 0.11 0.64 (0.03) 1.2 (0.07)

Table 3.2: Summary statistics for theDenmark dataset. e total sample size was 1610. e icc shown
is the intra-interviewer correlation coefficient.

Whether this model is reasonable is not the topic being discussed here. Wewill assume
that an interest exists in estimating the model among users of a survey and show how the
effect of different survey error components on the parameters of interest can be estimated
using the theory outlined in the previous sections.

e variables shown in the model are not observed variables, but rather they are con-
structs defined as influencing the answers to certain survey questions. For each of these
constructs we can obtain at least two measures from the European Social Survey (ESS)
round 4, conducted in 2008 (Jowell et al., 2007). As an illustration we will select one coun-
try only, Denmark, because it had a simple random sampling design, simplifying the dis-
cussion needed below. We stress, however, that our methods can be equally easily applied
to designs with unequal inclusion probabilities.

e variables used tomeasure each of the four constructs can be found in the appendix.
An estimate of the composite scores was constructed by taking the simple sum of indica-
tors. Table 3.2 shows the histograms and summary statistics for the resulting sum scores.

In order to estimate the reliability of each construct and the associated error variance,
we estimated a four-factor model using the soware EQS 6.1 (Bentler, 1995). We obtained
the standard errors of the reliability and error variance through a non-parametric bootstrap
³. e resulting reliability and error variance estimates are shown in the last two columns
of table 3.2.

e data collection mode was computer-assisted personal interviewing in the home of
the respondent. Each interviewer conducted at least 4 and atmost 48 interviews. Belowwe
will investigate the effects on the variance of the estimates of the model due to correlation
between the answers of different respondents interviewed by the same interviewer. e
sixth column of table 3.2 shows the univariate intra-interviewer correlation coefficients⁴ It

³e procedure we used is similar to that of Raykov (2009), except that in contrast with the approach
discussed there, we also allow for randomness in the loadings in estimating the error variance and reliability.

⁴e intra-interviewer correlation coefficient was estimated using R 2.11.0 by fitting a multilevel linear
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can be seen that considerable intra-interviewer correlations exist. e average number of
interviews per interviewer was 20; the distribution of the number of interviews per inter-
viewer ranged between 4 and 48 and is shown in the rightmost histogram.

Using the statistical soware R 2.11.0 (R Development Core Team, 2010) and the
package OpenMx (Boker et al., 2010), we estimated the model⁵ shown in figure 3.1. e
parameter estimates are shown in table 3.4.

e parameters ofmost interest to substantive researchers are the direct effects of social
trust on political trust and vice versa, as well as the so-called ’total effects’. e direct effect
of social trust on political trust is stronger than the converse effect. e total effects of
social trust and political trust can be calculated as 1.0 and 0.40, respectively. is implies
that for a given amount of change in social trust, political trust, which was measured on
the same scale, is expected to increase by the same amount. e reverse is not the case, as
social trust can be expected to increase by only 40% of the change in political trust. is is
largely in correspondence with the literature on social capital (e.g. Putnam, 2001).

We do not comment on whether the model discussed is correct. is must be assessed
by thorough investigation into a combination of appropriate theoretical considerations and
model fit to observed data, which is outside the scope of this paper. We only show how the
contribution of different survey error components to the variance of the coefficients can be
estimated, also formodels involving such complexities as instrumental variables, reciprocal
effects, and a correlated error term.

3.4 Estimation of sampling and non-sampling errors in SEM

In the previous section we presented the structural equation modeling framework as well
as an parameter estimates of a model found in the literature using real data. We will now
discuss how different survey error components affect the variance of those estimates, and
proceed to separately estimate their effects in the analysis presented.

3.4.1 Complex sampling and (interviewer) clustering

Muthén and Satorra (1995) provided an in-depth discussion of the estimation of structural
equationmodels under complex sampling. Our discussion of this topic largely follows their
results.

Unequal selection probabilities necessitate the estimation of the covariance matrix by
a weighted estimator. We will denote this estimator as S(c). e variance of the parameter
estimates can be obtained by the normal variance estimator if an adjustment is made to the
estimated Γ matrix of fourth-order moments. e effect of unequal sampling weights on
the variance, operating through theΓmatrix, is therefore in generalmultiplicative. Indeed,
all survey error components that affect the fourth-order moments have a multiplicative
effect on the variance of the estimates.

Clustering does not affect the estimator needed for the estimation of Σ. e variance
of the estimates is affected, however. Muthén and Satorra (1995) discuss two separate ways

model with a random interviewer intercept to each variable. e icc was then estimated as the square root of
the ratio of the random intercept variance to the residual variance.

⁵In formulating thismodel it was simpler to parameterize the error covariance as an effect of a latent variable
with fixed loadings. is model is mathematically equivalent to the model shown in the figure but implies that
the error variance parameters φ of social and political trust equal φi − φij .
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to take clustering into account: one design-based and one model-based. e model-based
method proceeds by specifying a random effects (multilevel) model with the clusters (for
example, PSU’s or interviewers) as second-level units. eir design-based solution pro-
vides an adjustment to the Γ matrix that takes both clustering and stratification into ac-
count. eir method also allows for complex sampling designs on levels lower than the
PSU through aggregation to the level of the PSU’s.

In the discussion that follows we will adopt the design-based approach to variance es-
timation in the presence of clustering. e resulting variance estimator can be seen as
obtained through the Taylor linearization method (Muthén & Satorra, 1995, 284).

3.4.2 Non-normality

e asymptotic distribution of estimators of the mean of a variable are free of the distri-
bution of that variable (e.g. Neyman, 1934). Such is not the case, however, for regression
coefficients and other parameters of multivariate models. e variance and the form of the
distribution of these parameters depends on the fourth-order moments of the observed
variables (Satorra, 1989; Muthén & Satorra, 1995).

It has been shown that even under non-normality, normal-theorymaximum likelihood
estimates of structural equation models are still consistent (e.g. Satorra, 1989). Indeed,
this result holds for the entire family of minimum distance-estimators discussed in the
preceding section. us, non-normality does not cause asymptotic bias in the estimates.

When the y vector does not follow a multivariate normal distribution, this does affect
the variance of structural equation model parameters. e Γ∗ matrix of equation 3.12,
which is a function purely of the observed variances and covariances, no longer provides
a consistent estimate of the matrix of fourth-order moments. In this case the general Γ
matrix of equation 3.10 must be used; or, in the case of complex samples, Γ(c) of equation
3.11. It should be noted that the default behavior of all commonly used structural equation
modeling soware is to provide the variance estimators assuming normality.

us, the effect of non-normality is in general to change the matrix used as an estimate
of Γ used in equation 3.9. erefore non-normality, similarly to complex sampling, has a
multiplicative effect on the variances and covariances of the parameter estimates.

3.4.3 Measurement error and its estimation

e effect that measurement error has on regression coefficients is well-known (Fuller,
1987; Biemer & Trewin, 1991). For general structural equation models the effect will de-
pend on the structure of the model, which can be deduced from the matrix of first deriva-
tives of the population covariances with respect to the parameters. For regression with a
single predictor, the regression coefficient will be biased downwards. In multiple regres-
sion the bias is not necessarily downwards. Bias in multiple regression coefficients can
be upwards or downwards, depending on the correlations between the predictors and the
relative amount of measurement error in each of them.

If the measurement error was correctly estimated, either in the model itself or in an
earlier analysis, the estimates are consistent even under non-normality, adding no asymp-
totic bias component to the total error. is is because the measurement error has already
been corrected for. As will be shown, however, the correction does add variance.
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Structural equation models can be used to simultaneously estimate measurement er-
rors and correct for them. In fact, the distinguishing characteristic of structural equation
models is that they are a marriage of psychometric (factor analysis) and econometric (re-
gression) models (Jöreskog, 1978).

In practice, however, simultaneous estimation of measurement and ’structural’ param-
eters may be impractical or impossible.

e inclusion of both a measurement and structural part in the model simultaneously
may cause a model to become prohibitively large. In the example discussed above the
model size would not be exceedingly large as the four constructs are estimated from 11
indicator variables. is is close to the minimum needed of 8 indicators. On the other
side of the extreme, educational and psychological scales may have hundreds of indicators
each.

Oen, moreover, repeated measures or validation data are not available in the same
study as that used for the estimation of the structural model, although the measurement
properties of the variables used have been estimated in other studies. In such cases simul-
taneous estimation is impossible, and the structural model must be corrected for measure-
ment error using the estimates from previous studies. Another approach is the prediction
ofmeasurement error frommeta-analyses of reliability based on characteristics of the ques-
tion (Oberski et al., 2004; Saris & Gallhofer, 2007a).

3.4.4 Nonresponse, coverage, and survey mode

To the extent that other error components such as nonresponse, coverage, and mode bias
the covariance matrix, the parameters θ will be correspondingly biased.

e theoretical effect of nonresponse bias on the covariances was discussed by Groves
and Couper (1998, chapter 2): it is a function of the nonresponse bias, nonresponse rate,
and the difference in variances between respondents and nonrespondents. A similar result
can be developed for coverage errors. e theory therefore suggests that nonresponse and
coverage errors can in principle bias multivariate parameter estimates.

One can conclude from the results developed that for a bias to exist, there must be an
interaction between variables correlated with nonresponse and the variables under study.
Such might for example occur when, in a simple regression of social trust on fear of crime,
there would be an interaction with living in a city or not, so that the relationship between
fear of crime and trust were different for city dwellers. Since urbanicity is a commonly
found correlate of nonreponse (Groves & Couper, 1998) this would imply a bias caused by
nonresponse in the simple regression coefficient. us, for nonresponse bias to occur in
a regression coefficient or other function of covariances mean, a ’third order’ interaction
must exist, whereas for nonresponse bias in means and totals a bivariate relationship or
’second order’ interaction with participation correlates suffices.

e general focus in studies examining such effects in real surveys is on the estimation
of means (De Leeuw & Van der Zouwen, 1988; Groves, 2002; Groves & Peytcheva, 2008).
Due to this focus very few studies examine the extent of such biasing effects onmultivariate
statistics. An exception for nonresponse is Voogt (2004), who used official record data and
found nonresponse bias in political variables’ means to be high but did not find bias for
logistic regression coefficients. Recently Révilla and Saris (frth), comparing a web survey
with the face-to-face ESS, investigated possible mode effects and found no differences in
the correlations between repeated measures and other variables.
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Distribution of y Clustering /
weighting

Measurement
error

Γ Σ̂η ΣΨ

1 Normal - - Γ̂∗ S 0
2 Normal - Fixed Γ̂∗ B−1ΦB−1 0

Normal - Estimated Γ̂∗ B−1ΦB−1 Σ̂Ψ

Normal Yes - Γ̂(c)∗ S(c) 0
Normal Yes Fixed Γ̂(c)∗ B−1ΦB−1 0
Normal Yes Estimated Γ̂(c)∗ B−1ΦB−1 Σ̂Ψ

Non-normal - - Γ̂ S 0
3 Non-normal - Fixed Γ̂ B−1ΦB−1 0

Non-normal - Estimated Γ̂ B−1ΦB−1 Σ̂Ψ

Non-normal Yes - Γ̂(c) S(c) 0
4 Non-normal Yes Fixed Γ̂(c) B−1ΦB−1 0

Non-normal Yes Estimated Γ̂(c) B−1ΦB−1 Σ̂Ψ

Table 3.3: Different error components and their effect on the choice of estimators of the parameters
θ and their variance. e effect of weighting is not shown separately because in our subsequent
example simple random sampling was employed. However, the procedure for examining its effect is
identical to that for clustering. e final variance is always obtained by equation 3.9.

e record of nonresponse, coverage, andmode effects onmultivariate statistics is thus
rather incomplete. eoretically biases can exists, but more is required than for means and
totals. Two studies could not find any biases, but a generalization cannot be made. It
is worthy of note, however, that the study of such biases requires a special data collection
design (e.g. Biemer, 2001), which is not available to us in the examplewe discuss. erefore
we are forced to ignore the possible biasing effects of nonresponse, coverage, and survey
mode in our subsequent discussion.

3.4.5 Decomposition of the variance of multivariate statistics

e variance of the parameter vector θ was given in equation 3.9. Clustering, unequal
sampling weights, and non-normality are all factors that affect the choice of the matrix Γ
necessary for obtaining correct variance estimates. Sampling weights and measurement
error also affect the necessary choice of a covariance matrix estimator.

Each row of table 3.3 yields a different estimator of the variance (or standard errors)
of the parameter estimates of the model. A simple model, based on the observation that
the effects of the conditions are in general multiplicative, is then to assume that each of
the variance vectors under the different conditions is the result of a multiplication of the
effects of non-normality, clustering, measurement error and a general scaling constant of
the variance.

varcondition = vNCM, (3.16)

whereN ,C , andM are the multiplicative ’design’ effects of non-normality, clustering, and
measurement error, respectively.

ese effects can be estimated by estimating the four numbered rows shown in table
3.3. We then report the square roots of the encountered effects (des), since these are on
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soctrust → poltrust 0.77 0.08 0.16 0.17 0.17 1.92 1.06 1.02
efficacy → poltrust 0.51 0.08 0.16 0.18 0.23 1.94 1.11 1.30
poltrust → soctrust 0.30 0.11 0.19 0.21 0.25 1.77 1.10 1.17
fearcrim → soctrust -0.68 0.12 0.22 0.25 0.25 1.88 1.10 1.03
φ(poltrust, soctrust) 6.54 1.60 3.17 3.52 4.20 1.98 1.11 1.19

φ(efficacy) 1.64 0.06 0.10 0.10 0.11 1.71 0.99 1.11
φ(fearcrime) 1.71 0.06 0.11 0.12 0.14 1.78 1.07 1.16

cov(efficacy, fearcrime) -0.60 0.06 0.10 0.08 0.09 1.73 0.77 1.10

Table 3.4: Parameter estimates, standard error estimates under various conditions, and square root
design effects (de) for the example analysis.

the scale of the parameters rather than their square.
We now apply this decomposition to the example multivariate analysis discussed ear-

lier, reporting standard errors under the various conditions as well as the square root of
the interviewer clustering, measurement error, and non-normality effects.

3.4.6 Estimation of error components in the example

e analysis of the structural equation model of political and social trust presented earlier
can be used to show how the effects of different survey error components can be estimated.

Table 3.4 shows the standard error estimates under different conditions. Four condi-
tions are shown, corresponding to the numbered rows of table 3.3. From these standard er-
ror estimates the ’design effects’ of measurement error, non-normality, and clustering can
be estimated⁶. e square roots of these design effects (des) are shown in the last three
columns. ese show the percentage increase in the standard error due to each factor. It
can be seen that, in general, measurement error is the primary concern for the variance of
the estimates, as it almost doubles the standard errors of the structural parameters of the
model. e smallest measurement error de is a 71% increase in the standard error for the
variance of the independent variable efficacy.

e effect of interviewer clustering is less than the effect of measurement error but also
considerable, with des ranging between 1.03 for the standard error of the effect of ’fear
of crime’ on ’social trust’ and 1.30 for the effect of ’political efficacy’ on ’political trust’.
e relative sizes of the des of clustering may appear surprising considering equation 3.2;
since the icc of social trust is rather large (0.25), in a simple regression we would expect
the effect of social trust as a predictor to have the largest design effect. However, there are
two important differences between the model of Scott and Holt (1982) leading to equation
3.2 and our model: the cluster sizes are not equal for all interviewers as shown in table
3.2, and we are not dealing with simple regression but with a complex structural equation

⁶We have designated the within-interviewer clustering effect an ’interviewer effect’. However, because the
sample was not interpenetrated, some correlation between interviewer and region may exist.
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Figure 3.2: Percentage of variance of the regression coefficients of themodel (see fig. 3.1) contributed
by each error component.

model. is shows that approximations such as equation 3.2 cannot always be used inmore
complex situations.

Finally, it can be seen in table 3.4 that non-normality in general increases the variance
of the estimates. is is not always the case in our sample, however, as the ’robustness
effect’ for the covariance between efficacy and fear of crime is smaller than unity. is
most likely reflects the fact that the Γ matrix used is not the true population matrix, but a
sample-based estimate. It may also reflect the fact that the second order sample moments
may be negatively correlated. In general percentage increase in the standard errors due
to non-normality is modest compared with the effects of interviewer clustering, and even
more so when compared with the effects of measurement error.

e previous sections showed that the effects of measurement error, interviewer clus-
tering, non-normality, and the sampling design in general aremultiplicative in the variance
of the estimates. For this reason the design effect or its square root is the more appropri-
ate summary of their effects on the variance. However, for a given solution one can also
calculate the percentage of variance due to each factor. Here a caveat should be added that
such a measure is necessarily conditional on the sample, sample size, model, and param-
eter values encountered and cannot easily be generalized. However, it can be instructive
for a given analysis to examine how much of the variance in the regression coefficients can
be attributed to sampling, measurement error, non-normality, and interviewer clustering.

Figure 3.2 shows the amount of variance in the four structural (regression) coefficients
of the model attributable to each of the four survey error sources studied here. Due to the
simple random sampling scheme employed for the data collection, the factor “sampling”
indicates purely the sample size. It can be seen that only a fih of the total variance is at-
tributable to sampling for all four parameters. It is also clear that measurement error is
another important source of uncertainty about the parameter estimates. Interviewer clus-
tering contributes in about equal parts with measurement error for two of the parameters,
while not apparently playing any large role in the other two. e percentage of variance
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% MSE
θ̂correct θ̂naive ^bias

2
σ2(θ̂naive)

√
MSE Bias Var.

soctrust → poltrust 0.77 0.83 0.00 0.02 0.16 15% 85%
poltrust → soctrust 0.30 0.44 0.02 0.04 0.25 32% 68%
efficacy → poltrust 0.51 0.28 0.05 0.02 0.26 76% 23%

fearcrim → soctrust -0.68 -0.31 0.13 0.01 0.38 89% 10%

Table 3.5: If the model is not corrected for measurement error the parameter estimates of interest
will be biased. e Mean Square Error (MSE) of the naive (not corrected for measurement error)
estimate then equals bias2 + σ2(θnaive). e last two columns show the approximate percentage of
mean square error in the naive estimates due to the bias and the variance, respectively. (Percentages
not adding up to 100 are due to rounding errors.)

due to non-normality is slightly less that that simply due to sampling.
From the above discussion it is clear that sampling is by no means the only or even the

most important factor contributing to the inferential uncertainty about the parameters in
this example. It also shows that the error sources are far from equal and show a different
pattern from that typically found in the estimation of means and total. is finding cannot
be generalized to other models, but does show that in an analysis of real data using amodel
found in the literature such differences can occur.

So far we have assumed that the practitioner obtains estimates of the measurement
error variances and correct for them. If the correction is applied and assuming that the
model is correct, the asymptotic bias is zero, even under non-normality and clustering.
However, such corrections are not always applied. erefore we will briefly show the effect
that not correcting for measurement error has for this example.

Table 3.5 repeats, in the first column, the consistent estimates of the four regression co-
efficients while correcting for measurement error. e second column shows the estimates
obtained by incorrectly assuming no measurement error. e square of the difference be-
tween these two is shown in the column labeled “ ^bias

2
”. As discussed above, the mean

square error of the naive estimates will equal the sum of the bias squared and the variance
of the estimates. e last column shows the amount each of bias and variance contribute
to the mean square error.

Without correction formeasurement error the estimates of themodel are biased. ere-
fore the root mean square error shown in the column

√
MSE in table 3.5 is a function of

both this bias and the variance of the estimate. is rootmean square error without correc-
tion for measurement error can be compared with the column labelled σ4 in table 3.4. is
is so because the model in that table has been estimated with correction for measurement
error so that the estimates are unbiased (asymptotically and under the null hypothesis). In
that case the rootmean square error of an estimate will equal the right-most standard error
shown in table 3.4.

When thus comparing the root mean square errors with and without correction for
measurement error, it is clear that the MSE of this model without correction is larger for
all parameters than theMSE of the correctedmodel estimates. e bias caused by ignoring
measurement error causes theMSE to exceed that of the unbiased estimates in this example.

Both from the point of view of obtaining unbiased estimates and that of minimizing
the mean square error it is therefore necessary to correct for measurement error.

67



3.5 Discussion and conclusion

is paper studied the effects of total survey error sources on multivariate statistics.
e first sections developed the structural equation modeling framework, which al-

lows for the formulation of a wide range of common and specialized multivariate models;
multiple regression, factor analysis, instrumental variables, multilevel models, and longi-
tudinal models are among some of the wide variety of possible models that can be for-
mulated within this framework. An example analysis with a model involving reciprocal
effects, correlated errors, and measurement error demonstrated the use of structural equa-
tion models.

A review of existing studies showed that both theoretical and empirical considerations
suggest such effects may differ greatly in relative size from their effects on the more com-
monly discussed estimation of means and totals.

It was discussed how each of the error sources (interviewer) clustering, unequal proba-
bility sampling, non-normality, andmeasurement error can be taken into account in struc-
tural equationmodels. It was shown exactly how each source influences the variance of the
estimates of such models.

e relative effects of each error source on the estimates of our example analysis were
then shown in terms of (root) ’design effects’ (des) and percentages. It was clear from
this exercise that in the example given, estimated on real data from the 2008 European
Social Survey, the effects of measurement error were the most pronounced, leading almost
to a doubling of the standard errors relative to the variance the estimates would have had
if there had been no measurement error. Clustering was another important factor, with
non-normality leading to relatively smaller differences.

is result might lead one to think that it may not be worthwhile to correct for mea-
surement error. However, the bias introduced by assuming no measurement error in the
same analysis caused the mean square error to exceed that of the corrected model for all
estimates. erefore even if the goal is to obtain estimates that have the smallest mean
square error, but that are not necessarily unbiased, the choice of preference should be the
measurement error-corrected estimator.

One limitation of our example is that we have spoken of interviewer effects, while the
interviewers were not randomly assigned to respondents (interpenetrated). erefore it is
possible that the clustering effects found were not (solely) due to the interviewer, but, for
example, due to region. For a design allowing for the separation of such effects, see Bassi
and Fabbris (1997). Another limitation is that in our example it was not possible to si-
multaneously estimate the effects of nonresponse, noncoverage/overcoverage, and survey
mode. Again, a special study design is necessary for the study of such effects. e proce-
dure presented in this paper, however, can easily be extended to encompass such effects.

A more fundamental caveat should be added about the use of the term “design effect”.
is term usually is taken tomean the variance of an estimator under the sampling scheme
used, relative to the variance under simple random sampling. For measurement error,
clustering, and non-normality, we have employed the same term, but the comparison is
not with simple random sampling per se but with a design without measurement error,
clustering, or non-normality. us, there is a strong analogy with the pure “design effect”
but the two measures are not exactly the same.

We hope to have shown that it is possible to simultaneously estimate the effect on mul-
tivariate statistics of different survey error sources. We have given one example analysis.
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e relative importance of different survey error sources in general, across different stud-
ies, remains a topic of considerable interest. e methods discussed in this paper could be
applied to enable such a study.

Appendix: Questions used in the example analysis

Here we show the questions used to measure the four constructs analyzed above. All ques-
tions come from the European Social Survey Round 4 and were translated into each coun-
try’s respective language (in our case Danish). e first item of political efficacy and the
last two items of fear of crime were reverse-coded so higher scores indicated more efficacy
or more fear, respectively.

3.5.1 Social Trust
Using this card, generally speaking, would you say that most people can be
trusted, or that you can’t be too careful in dealing with people? Please tell
me on a score of 0 to 10, where 0 means you can’t be too careful and 10 means
that most people can be trusted.

Most
You can’t people
be too can be
careful trusted

00 01 02 03 04 05 06 07 08 09 10

Using this card, do you think that most people would try to take advantage of
you if they got the chance, or would they try to be fair?

Most people Most people
would try to would try to

take advantage be fair
of me

00 01 02 03 04 05 06 07 08 09 10

Would you say that most of the time people try to be helpful or
that they are mostly looking out for themselves? Please use this card.

People People
mostly look mostly try

out for to be
themselves helpful

00 01 02 03 04 05 06 07 08 09 10

3.5.2 Political efficacy
How often does politics seem so complicated

that you can’t really understand what is going on?
Please use this card.

Never 1
Seldom 2

Occasionally 3
Regularly 4
Frequently 5
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B3 CARD 7 How difficult or easy do you find it to make
your mind up about political issues? Please use this card.

Very difficult 1
Difficult 2

Neither difficult nor easy 3
Easy 4

Very easy 5

3.5.3 Political trust
Using this card, please tell me on a score of 0-10 how much you
personally trust each of the institutions I read out. 0 means you do not trust
an institution at all, and 10 means you have complete trust. Firstly...

No trust Complete
at all trust

B4 ...[country]’s 00 01 02 03 04 05 06 07 08 09 10
parliament?

B5 ...the legal 00 01 02 03 04 05 06 07 08 09 10
system?

B6 ...the 00 01 02 03 04 05 06 07 08 09 10
police?

3.5.4 Fear of crime
How safe do you – or would you - feel walking alone
in this area after dark? Do – or would – you feel... READ OUT...

...very safe, 1
safe, 2

unsafe, 3
or, very unsafe? 4

How often, if at all, do you worry about your home being burgled?
Please choose your answer from this card.
All or most of the time 1
Some of the time 2
Just occasionally 3
Never 4

How often, if at all, do you worry about becoming a victim of
violent crime? Please choose your answer from this card.

All or most of the time 1
Some of the time 2
Just occasionally 3

Never 4

Appendix: EQS input for reliability analysis
/TITLE

Factor analysis of construct indicators ESS round 4 Denmark
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/SPECIFICATIONS
DATA=’denmark.ess’;
VARIABLES=46; CASES=1610; GROUPS=1;
METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/LABELS
...

/EQUATIONS
V2 = 1F1 + E2;
V3 = *F1 + E3;
V4 = *F1 + E4;
V6 = 1F2 + E6;
V7 = *F2 + E7;
V8 = 1F3 + E8;
V9 = *F3 + E9;
V10 = *F3 + E10;
V17 = 1F4 + E17;
V18 = *F4 + E18;
V19 = *F4 + E19;

F5 = V2 + V3 + V4;
F6 = V6 + V7;
F7 = V8 + V9 + V10;
F8 = V17 + V18 + V19;

/VARIANCES
F1 = *;
F2 = *;
F3 = *;
F4 = *;
E2 = *;
E3 = *;
E4 = *;
E6 = *;
E7 = *;
E8 = *;
E9 = *;
E10 = *;
E17 = *;
E18 = *;
E19 = *;

/COVARIANCES
F1,F2 = *;
F1,F3 = *;
F2,F3 = *;
F1,F4 = *;
F2,F4 = *;
F3,F4 = *;

/PRINT
TABLE=EQUATION;
COVARIANCE=YES;
CORRELATION=YES;

/SIMULATION
bootstrap = 1610;
replication = 2000;
seed = 123456789;
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/OUTPUT
parameters;
standard deviation;

/END

All replications converged. e output from this analysis was read in using R 2.11.0, and
the reliability calculated as

(
∑
λ)2var(Fi)

var(Fi+4)
; i = 1, 2, 3, 4,

in each of the 2000 replications. e averages and standard deviations across replications
are shown in table 3.2.
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Chapter 4

Measurement error models with
uncertainty about the error
variance

Abstract

Measurement error biases regression estimates, making it necessary to correct
for measurement error whenever it is present. Structural equation modeling
has been developed to deal with this problem, allowing for the estimation of
a very wide class of models with correction for measurement error.

Oen the amount ofmeasurement error cannot be estimated directly butmust
be obtained from external analyses. In this situation one can still correct for
measurement error by fixing error variance parameters of the model to the
estimated values. So far the only recourse has been to assume these values
are perfect estimates of the true amount of measurement error present in the
observed variables. Usually, however, this assumption is false since the fixed
values represent estimates based on an external study.

In this paper we show that this procedure can cause the standard errors of the
model to be smaller than they should be, causing inference to be incorrect.
Even though the parameter estimates are still consistent, confidence intervals
based on standard program output will be too small.

We also provide a solution to this problem for general structural equation
models. is solution comes in the form of an explicit analytical expression
that should be added to the standard errors found in the standard program
output.

e implications of the results are discussed, while a Monte Carlo study con-
firms their validity.
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(a) Simple regression with multiple indicators.

(b) Regression with single indicators.

Figure 4.1: Two different ways of correcting for measurement error in a simple regression using SEM

Introduction

Measurement error in variables is a serious problem for the estimation of regression mod-
els (e.g. Fuller, 1987; Bollen, 1989). Error in dependent variables will bias R2 and stan-
dardized regression coefficients, while error in independent variables will, in addition, bias
unstandardized regression estimates. Ignoring such errors can severely affect estimates and
conclusions. An important issue in the analysis of (simultaneous) regression equations is
therefore how to correct for measurement error.

Structural equation modeling (SEM) was developed precisely to deal with this issue
(Bollen, 1989). SEM allows the researcher to estimate simultaneous regression equations
while also correcting for measurement error. e most direct way of correcting is by si-
multaneously specifying the “measurement part” and the “structural part” of the model,
using multiple indicators of the latent variables whose relationships are of interest.

Figure 4.1(a) shows the simplest possible example of such a model: the latent indepen-
dent and dependent variables of interest are respectively denoted ξ and η and their indi-
cators x1, x2, y1, and y2. e arrows at the bottom signify the influence of measurement
error. Estimating this model the researcher obtains estimates of the variance of the mea-
surement error in the indicators, as well as the “structural” relationship between ξ and η
corrected for measurement error. us the correction for measurement error is subsumed
in the model.

A second possibility, recommended in various textbooks on SEM (Bollen, 1989; Hay-
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duk, 1987; Schumacker & Lomax, 2004), can be characterized as the “two-step” procedure.
e latent variable ξ is defined as having the sum x1 +x2 as a single indicator, while η has
the sum y1 + y2 as a single indicator. Means or weighted sums are also used as observed
composite scores. e resulting model, shown in figure 4.1(b), is not identified. e vari-
ance of themeasurement error in the composite scores must be calculated separately based
on the error variances of the indicators (Saris & Gallhofer, 2007a), or obtained from other
sources such as published reliability studies. Step one is then to fix the error variance pa-
rameters for the two composite scores to these estimates. In the second step the structural
model is estimated while correcting for these fixed measurement error variances.

e two-step solution to correction for measurement error has at least two advantages.
First, it can dramatically reduce the size of the model and the number of possible parame-
ters the researcher has to deal with. Since at least two indicators are usually needed for each
latent variable to subsume the measurement error in the model, the number of variables is
at reduced by at least one half.

A second advantage of the two-step method is a separation of labor between reliabil-
ity studies and more substantive research. To estimate measurement error variances one
requires specific research designs that are adequate for this purpose. Oen the models
that must be applied to these designs are rather complex (Alwin, 2007; Saris & Gallhofer,
2007a). To subsume the measurement error into the analysis, it is therefore necessary that
the research design both addresses the substantive question and allows for the estimation of
measurement error. It is also required that the researcher has both the substantive knowl-
edge to formulate the correct structural model, and is in addition well-versed in the analy-
sis of measurement error models. e two-step solution allows substantive researchers to
concentrate on the substantive model while still correcting for measurement error.

Examples of studies employing the two-step approach abound in the literature. Some
examples from different fields of application are Beckie and Hayduk (1997, 30), Varki and
Colgate (2001, 236), Small et al. (2003, 170), and Rhodes et al. (2006, 3150). Each of these
studies employs an estimate of the error variance froma previous study or separate analysis,
and fixes the corresponding parameters to these estimates. e model of interest is then
estimated keeping these values fixed.

e two-step solution has advantages, but also introduces a problem: the error vari-
ance parameters are fixed to certain values, but these values are themselves estimates from
previous studies. e uncertainty about these estimates is not taken into account in the
second step, where they are held fixed. Because the variance of the fixed parameters is not
taken into account, the standard errors of the “structural” parameters will be too low.

All of the studies using this method published so far suffer from the problem of down-
wards biased standard errors. is implies that up until now, the onlymethod to correct for
measurement error while performing correct inferences is to subsume the measurement
error directly into the model as shown in figure 4.1(a).

e purpose of this paper is therefore to provide a solution to the problem of down-
wards biased standard errors in the two-step method of correction for measurement error.
e solution takes the form of a simple correction formula, which is straightforward to
implement in standard SEM soware. We show that when our solution is applied, the
standard errors allow for correct inferences in the face of uncertainty about the fixed pa-
rameters. is paves the way for inferentially correct applications of the two-step method
of correction for measurement error.
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e first two sections discuss the general problem of measurement error in the estima-
tion of structural equation models. It is shown how such uncertainty in the reliability can
impact the standard errors of estimates of a correlation coefficient. A correction to the
standard errors in the presence of uncertainty about the amount of measurement error is
therefore needed. An example of SEM analysis with correction for measurement error is
given in the form of a relatively complex model which cannot be formulated as a multi-
ple regression model. is analysis does not take into account the uncertainty about fixed
measurement error variance parameters.

Section three proposes a general solution to this problem in the context of structural
equation models. First it is shown that the variance of parameters in two-step models
equals the sum of a “standard” variance and an “extra” variance due to the uncertainty
about the fixed parameters. is shows that under certain conditions, the current standard
SEM program output will underestimate standard errors and confidence intervals. We
then present our correction to the standard errors, taking into account the uncertainty
about fixed measurement error variance parameters. An explicit analytical formula for the
correction in the context of SEM is provided. Given the parameter estimates of the model,
this correction to standard errors can be readily applied.

Section four elaborates our correction by application to a multiple regression model
with two uncorrelated regressors. e effect of uncertainty about fixed parameters on the
standard errors of the regression is shown. It is also shown how the form of the model
determines the size and presence of the effect.

If our assertions are correct, models with uncertainty about fixed measurement error
variance parameters should underestimate standard errors without our correction, while
applying the correction should bring confidence intervals in linewith the nominal coverage
rate. e fih section shows that this is indeed the case in a Monte Carlo study that varies
the standard errors of the measurement error variance parameters over a wide range.

e final section provides a conclusion, and discusses some limitations and needs for
further investigation.

4.1 The problemof uncertainty about the reliability estimates

Uncertainty about the reliability is a potentially important source of variability in estimates
corrected for measurement error using the two-step method. A short simulation shows
why this should be the case, and why the uncertainty about measurement error should be
taken into account.

One of the simplest and most well-known procedures of correction for measurement
error is the classical correction for attenuation of the correlation coefficient (e.g. Fuller,
1987):

ρ(η, ξ) =
ρ(y, x)

κ1κ2
, (4.1)

where y and x are observed indicators of respectively η and ξ. is equation states that
the correlation between the variables of interest η and ξ equals the correlation between the
observed variables y and x divided by the product of their reliability “coefficients” (Saris
& Gallhofer, 2007a) or “ratios” (Fuller, 1987). is holds true for a population of subjects;
when a sample is obtained, the sample correlation coefficient serves as an estimate of the
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population correlation between the observed variables:

ρ̂(η, ξ) =
ρ̂(y, x)

κ1κ2
. (4.2)

e only difference between this equation and the previous one is that the population cor-
relation coefficient was replaced by its sample counterpart. e estimate of the corrected
correlation between η and ξ depends on the sample estimate of the correlation between y
and x. It is therefore easy to see that as the sampling variation of ρ̂(y, x) increases, so will
the variation in the estimate ρ̂(η, ξ).

However, in equation 4.2 the reliability coefficients κ1 and κ2 were assumed perfectly
known and equal to their true population values. If they are not exactly known but es-
timated in a separate analysis, the estimates κ̂1 and κ̂2 replace their population counter-
parts in equation 4.2. It can again be seen, then, that the variation in the estimate ρ̂(η, ξ)
increases with increased variability in the reliability estimates κ̂1 and κ̂2.

We show the effect that variability in the reliability estimates has on the estimate of the
corrected correlation coefficient ρ̂(η, ξ) by constructing a simulation. In each simulation
the correlation between the observed variablesρ(y, x) is perfectly known andheld constant
at the true population value, but a random draw is taken from the sampling distribution of
the reliability estimates κ̂1 and κ̂2. e resulting variation in the corrected correlation is
therefore exclusively due to variation in the reliability estimates: the effect of uncertainty
about the reliability estimates is shown in the limit of an infinite sample used to estimate
the correlation between the observed variables.

In the simulations the correlation between the observed variables ρ(y, x) was chosen
to equal 0.40. e reliabilities κ21 and κ22 in the population were chosen as κ21 = 0.75
and κ22 = 0.65. ese choices imply that in the population the true correlation between
the two constructs of interest ρ(η, ξ) ≈ 0.573. We assume the sampling distributions of
the reliability estimates are normal with a certain standard error, and drew 500 samples
from this distribution of κ̂12 and κ̂22. On average the estimates of κ̂21 and κ̂22 equaled their
population values 0.75 and 0.65, but in any given sample the estimate differed from the
population value due to variation in the reliabilities. For each sample drawn, we then com-
pute the corrected correlation coefficient ρ̂(η, ξ) = 0.40/ (κ̂1κ̂2), obtaining 500 estimates
of the correlation between the latent variables.

is processwas repeated using different standard errors for the reliabilities. Increasing
amounts of uncertainty about the reliability were used by setting the standard errors of the
reliabilities to 0.001, 0.01, 0.05, and 0.1. Figure 4.2 shows the boxplots of 500 draws from
four distributions of the corrected correlation for these different standard errors of the
estimates of the reliability.

e dotted line in figure 4.2 shows that the mean of all of these distributions equals the
true corrected correlation∼ 0.57. It can be seen that all of the estimates are far away from
the population correlation between the observed variables of 0.4; if the correction had not
been made then a very precise but biased estimate would have been obtained.

When the standard errors of the estimated reliability are very small (.001), almost all of
the corrected correlations are very close to the true correlation .57. Small standard errors
of .01 already cause a greater variability in these corrected values. For medium and larger
standard errors – of .05 and .10 – the corrected correlations vary considerably. e boxplot
shows that corrected correlations varied between .42 and .87 when the standard error was
.10. Of the corrected correlations 95% lay between .49 and .70.
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Figure 4.2: Estimates of the true correlation of interest can vary widely when variability in the relia-
bility ismediumor large. Each box represents 500 draws from the distributions of the two reliabilities
for increasing standard errors. e sample size used to estimate the correlation between the observed
variables is assumed to be large, so that the boxplots represent only variation due to the uncertainty
about the reliabilities.

is short simulation study shows that treating the reliability as a known constant is
only warranted when it has been precisely estimated with a very small standard error. In all
other cases, the estimation of statistics which take measurement error into account can be
affected quite a bit by uncertainty in the measurement error variance or reliability. ere-
fore the assumption of zero uncertainty about fixed measurement error variances can have
negative consequences for inference.

4.2 Measurement error in structural equation models: an ex-
ample

e previous section showed that uncertainty about the reliabilities can be a problem in
the two-step method of correction for attenuation of correlations and simple regression
models. e same problem occurs for more complex structural equation models.

is section provides an example analysis of a structural equation model with correc-
tion for measurement error. e model chosen contains reciprocal effects and correlated
errors, making it impossible to formulate as a multiple regression. Aer formulating the
structural part of the model, the two-step procedure to correction for measurement error
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Figure 4.3: Structural equation model adapted from Saris & Gallhofer (2007a). Variance parameters
are shown as circular arrows.

is applied using previously obtained estimates of the variances of the error variables.
e relationship between political and social trust is a central point of interest in the

study of social capital. While Putnam (2001) has argued that social trust engenders good
government and subsequently trust in politics, others have argued that political trust may
in turn affect social trust: the correlation between social and political trust may be due
to effects in both directions. Saris and Gallhofer (2007a) discuss an analysis of the recip-
rocal effect between social and political trust with correction for measurement error. A
simplified version of their model is shown in figure 4.3.

emodel shown in figure 4.3 contains a reciprocal effect between the variables “social
trust” and “political trust”, as well as a covariance between the disturbance terms of these
two variables. e exogenous variable “fear of crime” affects only “social trust” and not
“political trust”, while “political efficacy” affects only “political trust” and not “social trust”.
ese restrictions are enough to identify the reciprocal effect between “social trust” and
“political trust”, as well as the disturbance term covariance.

Whether thismodel is correctmust be studied by careful examination of the underlying
theory and the model fit to actual data, which is not the topic of the present example.
Here we will discuss only how measurement error can affect the analysis of such a complex
model.

All four variables in themodel are complex concepts, measured as simple sum scores of
several survey questions¹. Data from the European Social Survey round 4 (2008) in Den-
mark are used. e sample size was 1610 Danish residents, surveyed by computer-assisted
personal interviewing (CAPI) in their home. Table 4.1 shows the summary statistics for
the resulting sum scores. Also shown is the estimated reliability for each sum score, and the

¹For the full questionnaire we refer to http://ess.nsd.uib.no/ess/round4/fieldwork.html
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Variable Scale Mean Std dev R̂el. (s.e.) ψ̂ (s.e.)
fearCrime 3–12 5 1.7 0.57 (0.02) 1.3 (0.04)
efficacy 2–10 7 1.7 0.64 (0.03) 1.2 (0.07)
socialTrust 0–30 20 4.7 0.73 (0.01) 6.0 (0.22)
systemTrust 0–30 21 4.8 0.77 (0.01) 6.3 (0.24)

Table 4.1: Summary statistics for the Denmark dataset.

Uncorrected Corrected
Est. s.e. t Est. s.e. t

β43 0.86 (0.15) 5.9 0.77 (0.16) 4.9
β34 0.45 (0.15) 3.0 0.30 (0.19) 1.6
β42 0.27 (0.09) 3.1 0.51 (0.16) 3.2
β31 -0.30 (0.10) -3.1 -0.68 (0.22) -3.0

Table 4.2: Unstandardized estimates without and with correction for measurement error. Only the
regression coefficients in themodel and not the variance parameters are shown for the sake of brevity.

corresponding estimate of the error variance, with standard errors². It can immediately be
seen that the reliabilities and error variances are not perfectly estimated but contain some
uncertainty.

e model shown in figure 4.3 can easily be specified in standard structural equation
modeling soware³. e latent variables “fear of crime”, “political efficacy”, “social trust”,
and “political trust” are each specified to have a composite (sum) score as a single indicator.
e error variance ψii of each single indicator is fixed to the corresponding value found
in the last column of table 4.1. e relationships between the latent variables are then
estimated correcting for measurement error in the composite scores.

Using this procedure we can obtain estimates of the “structural” parameters in the
model corrected for measurement error. If the model is specified without latent variables
or by fixing the error variances to zero, the “naive” parameter estimates without correction
for measurement error are obtained. Table 4.2 shows both the naive and measurement
error-corrected unstandardized estimates with standard errors and t-values.

Table 4.2 shows that in complex models such as the one analyzed, measurement error
biases the estimates. is bias is not necessarily downwards. e corrected effects of the in-
struments efficacy and fear of crime are indeed increased aer correction formeasurement
error, but the reciprocal effects between social and political trust are lower than without
correction for measurement error. e standard errors for the corrected coefficients are
larger, but those of the effects of efficacy and fear of crime are much more increased than
the standard errors of the reciprocal effects of social and political trust.

e parameters ofmost interest to substantive researchers are the direct effects of social

²e error variances and reliabilities were obtained by first fitting a confirmatory factor model to the in-
dicators of these constructs. e error variance and reliability of the simple sum score was then obtained by
adding “ghost variables” to the model. e standard errors of these quantities were obtained by bootstrapping
(Raykov, 2009).

³We have used theOpenMx package inR (Boker et al., 2010; RDevelopment Core Team, 2010), and LISREL
(Jöreskog & Sörbom, 1996) to double-check the results.
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trust on political trust and vice versa, as well as the so-called ’total effects’. e direct effect
of social trust on political trust is stronger than the converse effect. e total effects of social
trust and political trust can be calculated as 1.0 and 0.40, respectively. is implies that for
a given amount of change in social trust, political trust, which was measured on the same
scale, is expected to increase by the same amount. e effect is also statistically significant
at the 0.05 level (t = 2.7). e reverse is not the case, as social trust can be expected
to increase by only 40% of the change in political trust, but this effect is not statistically
significant at the 0.05 level (t = 1.2). is is largely in correspondence with suggestions
made in the literature on social capital (Newton, 2007).

If the same model were analyzed without correction for measurement error, the con-
clusions would be rather different. Without correction, both direct effects are significant
at the .05 level. e direct effect of social trust on political trust and vice versa are 11%
and 50% too large respectively, and the total effects are respectively 40% and 50% overes-
timated.

It is clear that in the example, correction for measurement error has effects that do not
just bias the results in a “conservative” direction, but that affect the conclusions in an way
that is unpredictable without knowledge of the variable’s reliabilities. For this reason the
estimation of reliability and correction for the errors is essential.

is example assumed that the error variances were known precisely, rather than esti-
mated as was the reality. We will now show that this false assumption may cause inference
to be affected, and provide a solution to this problem.

4.3 Correction of the standard errors for uncertainty about
fixed error variances

Structural equation models are linear simultaneous equations, and therefore can be ex-
pressed as hypotheses about the population covariance matrix Σ of some vector of ob-
served variables. A structural equation model can always be formulated by the equation

Σ = Σ(θ), (4.3)

where θ is a vector of model parameters (Bollen, 1989). Among these parameters are the
structural regression coefficients and variance parameters, as well as the measurement pa-
rameters. We will denote the variance of the measurement error variables by the matrix
Ψ.

Given an observed covariance matrix S and a model Σ(θ), the parameters θ of the
model can be consistently estimated by minimizing the minimum-distance function

F = (s− σ(θ))′V (s− σ(θ)), (4.4)

where V is a possibly stochastic weight matrix that converges in probability to a positive
definite matrix. Here s = vechS, the unique observed variances and covariances, and
σ(θ) = vechΣ(θ), the unique model-implied variances and covariances. It can be shown
that different choices for the matrix V yield different estimators, including maximum like-
lihood (Satorra, 1989).

If there is no uncertainty about Ψ, a standard formula for the variance of the pa-
rameter estimates applies (Satorra & Bentler, 1990, 239). We will denote this variance as
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varstandard(θ̂). is is the standard error output given by SEM soware. e precise form of
this equation will depend on distributional assumptions as well as possible complex sam-
pling and other issues, which are not the topic of this discussion. All of these expressions
have in common, however, that it is assumed that any fixed measurement error variances
are exactly known with no uncertainty.

When the measurement error variance is not known exactly, but only fixed to a con-
sistent estimate, the estimation procedure still provides consistent estimates corrected for
measurement error. As will now be proved, standard errors obtained from varstandard(θ̂)
must be adjusted: the measurement error variances in Ψ affect the free parameters of the
model but are themselves fixed in the analysis.

e error (co)variance matrix is denoted Ψ. Let its variance matrix due to a previous
estimation be called ΣΨ. e problem we are now faced with is how to take this vari-
ance matrix of Ψ into account in standard error calculations aer the model corrected for
measurement error has been estimated.

Consider the vector of parameter estimates θ̂, which is a function of the data (the ob-
served covariance matrix S, and of the now random matrix Ψ.

θ̂ = θ̂(S, ψ), (4.5)

where ψ := vechΨ.
Conditioning on ψ the variance of the estimate θ̂ equals:

var(θ̂) = Eψ[var(θ̂(S|ψ)] + varψ[E(θ̂(S|ψ)], (4.6)

where the first term will be close to the “standard” variance formula,

Eψ[var(θ̂(S|ψ)] ≈ var[θ̂(S|ψ)] = varstandard(θ̂), (4.7)

and, by a Taylor expansion, the second term equals

varψ[E(θ̂(S|ψ)] ≈

(
∂θ̂

∂ψ′

)
var(ψ)

(
∂θ̂

∂ψ′

)′

, (4.8)

which is clearly non-negative definite. us the correct asymptotic variance of the esti-
mated free parameter vector θ̂ under the null hypothesis is a simple sum of two terms: the
‘standard’ variance and the added variance due to the estimation of the measurement error
variance matrix Ψ:

var(θ̂) = ‘Standard’ variance + variance due to estimation of Ψ. (4.9)

is finding is highly important because it shows clearly that under two conditions the vari-
ance of the estimates is always increased by uncertainty about the fixedmeasurement error
parametersψ. e standard errors without correction will necessarily be biased downward
under these conditions:

1. e variance of ψ is positive, i.e. there is some uncertainty about the measurement
error variance, and

2. e parameter in question is related to the measurement error variance ψ. Parame-
ters that are independent of ψ will be unaffected.
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We will now derive an explicit formula for the variance of parameters of structural
equation models with uncertainty about ψ. is provides a solution to the problem of
downward biased standard errors when the measurement error variances ψ have been
fixed.

Let f(θ̂, ψ) := ∂F/∂θ. en θ̂ and ψ are related by the fact that θ̂ equals the solution
to the equation f(θ̂, ψ) = 0. We can therefore invoke the implicit function theorem to
find ∂θ̂/∂ψ′:

∂θ̂

∂ψ′ = −
(
∂f

∂θ̂

)−1
∂f

∂ψ
= −

(
∂2F

∂θ∂θ′

)−1(
∂2F

∂θ∂ψ′

)
. (4.10)

From Satorra (1989) and Neudecker and Satorra (1991) it can be shown that

−E
(
∂2F

∂θ∂θ′

)
= ∆′

θV∆θ ≡ J (4.11)

and

E

(
∂2F

∂θ∂ψ′

)
= ∆′

θV∆ψ ≡ D. (4.12)

We can conclude that the ‘extra’ variance due to the estimation of Ψ under the null hy-
pothesis equals

varψ[E(θ̂(S|ψ)] ≈ ∂θ̂

∂ψ′ var(ψ)

(
∂θ̂

∂ψ′

)′

= J−1DΣψD
′J−T (4.13)

= (∆′
θV∆θ)

−1(∆′
θV∆ψ)Σψ(∆

′
ψV∆θ)(∆

′
θV∆θ)

−T . (4.14)

It is interesting to note that this formula does not depend on the sample sizen. e amount
of variance added due to the uncertainty of Ψ is independent of the sample size used to
estimate θ̂.

e∆θ and∆ψ matrices are a function only of the model parameters in θ (Neudecker
& Satorra, 1991). Estimates of these derivative matrices can be obtained by replacing the
model parameters by their estimates. us, we have provided in equation 4.14 the ex-
pression that provides a one-step solution for the correction of the standard errors for the
estimation of measurement error variances.

4.4 Application to a multiple regression model with uncorre-
lated regressors

In this section we give an analytical and numerical example of our solution by applying
our method to multiple regression model with uncorrelated regressors.

Suppose the regression of a dependent latent variable η on two independent latent vari-
ables ξ1 and ξ2 is of interest. e dependent variable η is measured with an error-prone
single indicator y, the independent variable ξ1 with an error-prone single indicator x1.
e independent variable ξ2 is measured perfectly by the error-free observed variable x2,
so that we may just as well write x2 instead of ξ2. e two independent variables ξ1 and x2
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Figure 4.4: Path diagram for a multiple regression model. e independent variables ξ1 and x2 are
uncorrelated. Circular arrows denote variance parameters. Unstandardized population parameter
values are given. e reliabilities of x1, x2, and y equal 0.75, 1, and 0.75, respectively.

are, moreover, uncorrelated with each other. is model can be formulated as a structural
equation model as shown in figure 4.4.

e figure provides fictional population parameter values for the unstandardized co-
efficients. It can be seen that x2 has been perfectly measured while x1 and y both have a
reliability of 0.75. e regression coefficients of interest β1 and β2 both equal 0.5, and the
R2 also equals 0.5. e independent variables are uncorrelated.

Since x2 is error-free, there are two estimated error variances that have been fixed in
the matrixΨ. is measurement error variance matrix is not exactly known, but has been
estimated with its own variance matrix ΣΨ. e diagonal elements of this matrix, which
denote the variance of the fixed error variance parameters, are named v1 and v2. e
uncertainty about the error variance of the dependent variable y is called v1 while v2 is the
uncertainty about the error variance of x1.

We can now calculate, using equation 4.14 from the previous section, the term that
should be added to the variance-covariance matrix of the parameter estimates. e “extra”
term to be added to the standard variance equation can be expressed as a function of v1
and v2:

J−1DΣΨD
′J−T =



var(ζ) var(ξ) var(x2) β1 β2

var(ζ) v1 +
v2
16

var(ξ) v2
4 v2

var(x2) 0 0 0
β1 −v2

8 −v2
2 0 v2

4
β2 0 0 0 0 0

 (4.15)

e diagonal of this matrix is the expected added variance in the parameter estimates due
to the uncertainty about Ψ. Each element in the matrix corresponds to a variance of a
parameter or a covariance between two parameters. e parameters are shown in the row
and column headers.

It can be seen that the standard error of the residual variance var(ζ) is themost affected.
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Figure 4.5: Increase in the variance of the three free parameter estimates as a function of the standard
error of the measurement error variance (fixed) parameters.

e addition to the variance parameter of the independent variable ξ1 is exactly equal to
the variance of the error variance of its indicator x1. e variance of the unstandardized
regression coefficientβ1 ismuch (four times) less affected by uncertainty about the amount
of measurement error than the other two parameters.

Notably, the variance of the regression coefficientβ2 and the variance parameter var(x2),
both parameters of the error-free variable x2, are completely unaffected by the uncertainty
about the error variances of y and x1. Because the error-prone x1 and error-free x2 vari-
ables are uncorrelated, the derivative of the parameters β2 and var(x2) with respect to
the two error variances equals zero. Since β2 and var(x2) are independent of the error
variances of x1 and y, their standard errors are immune to uncertainty about the error
variances. While the situation shown is not oen encountered in practice, it demonstrates
how the effect of uncertainty about fixed parameters depends on the model structure.

e diagonal of the matrix as a function of the square root of the non-zero elements of
ΣΨ is shown in figure 4.5. e increase in standard error of the parameter estimates will
depend on the actual value of the “standard” variance of the parameter estimates.

is section illustrated our results with respect to the effect of uncertainty about fixed
error variance parameters on standard errors. It was shown what effects occur in a simple
model. e example illustrated that the effect on standard errors depends not only on
the amount of uncertainty (v1 and v2 in this example), but also on the form of the model
(uncorrelated regressors, one of which is error-free).

In the following section a series of Monte Carlo experiments evaluate to what extent
the effect on standard errors in a more complex structural equation model is reflected in
the coverage of confidence intervals. To validate our suggested correction, the section will
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compare the performance of confidence intervals constructed using the “standard” vari-
ance with those constructed using our correction.

4.5 Monte Carlo evaluation of the new approach

In the previous sections it was shown that standard errors are underestimated when only
the naive “standard” variance formula is used in the two-step method. is underestima-
tion in the presence of uncertainty about fixed error variance parameters should lead to
an undercoverage of nominal 95% confidence intervals when using only the “standard”
variance formulas. Confidence intervals using our correction should always provide the
nominal coverage rate. is section will use a series of Monte Carlo experiments to eval-
uate by simulation how well naive and corrected standard errors fare in the case of the
more complex structural equation model discussed in section 4.2. e simulation is more
realistic than the demonstration given in section 4.1, as in that section the population pa-
rameter values were assumed known: here we will also simulate sampling variation in the
parameter estimates.

As our starting point for this study of the performance of the correction in structural
equation models we set up the model of the example shown in figure 4.3. We took the
parameter values obtained from the model estimation on the Danish example presented
earlier as true population values. Measurement error variance parameters were set to equal
those of table 4.1 in the population. is yielded a population covariancematrix of the four
observed variables.

We then performed seven Monte Carlo experiments with increasing amounts of un-
certainty about the fixed error variance parameters. In each experiment the following steps
were followed:

1. e estimation of the error variances in a separate analysis was first simulated. For
each of the four error variances, 2000 random draws were taken from normal dis-
tributions with means equal to the true population error variances. e standard
deviations of these distributions equaled the standard error found in the example of
section 4.2 multiplied by the scale factor for the experiment.

2. Next, 2000 samples of size 1500 were taken from a multivariate normal distribution
with the population covariance matrix.

3. For each of the 2000 samples and estimated error variances the error variances of the
model were fixed to the estimated error variances (step one of the two-stepmethod).

4. e model shown in figure 4.3 was estimated, correcting for measurement error us-
ing the fixed error variance parameters (step two of the two-step method).

5. Both naive and corrected standard errors for the models were calculated for each of
the 2000 samples, as well as 95% confidence intervals.

6. e percentage of samples out of 2000 for which the 95% confidence interval of the
estimates contained the true population parameter values was calculated.

is process was repeated seven times in total, each time with a different amount of
uncertainty. To vary the uncertainty we took the original estimates of the variances of
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Resulting s.e. of reliability coef,
when variance of error var. scaled by

ψ̂ s.e. ˆRel.. 1 2 4 8 16 32
socialTrust 6.00 (0.22) 0.85 0.01 0.01 0.02 0.05 0.09 0.19
systemTrust 6.29 (0.24) 0.88 0.01 0.01 0.02 0.05 0.10 0.19

fearcrime 1.33 (0.04) 0.75 0.01 0.02 0.04 0.07 0.15 0.25
efficacy 1.17 (0.07) 0.80 0.02 0.03 0.07 0.14 0.24 0.33

Table 4.3: Error variances of the four observed variables of themodels, and their basic standard errors
(columns two and three). Corresponding reliability coefficients and their basic standard errors are
also shown (columns four and five). Each Monte Carlo experiment multiplied the original variance
of the error variance by the scale value. Corresponding standard errors of the reliability coefficients
are shown in the last columns.

θ̄ Rel. bias sd(θ̂) s.e.naive s.e.cor C.I.naive C.I.cor
β43 0.77 -0.00 0.16 0.17 0.17 95.9% 95.9%
β42 0.52 0.03 0.15 0.16 0.16 97.0% 97.0%
β34 0.28 -0.08 0.20 0.21 0.21 98.5% 98.5%
β31 -0.70 0.04 0.23 0.24 0.24 98.0% 98.0%
φ33 12.19 0.06 3.87 1.96 1.96 97.0% 97.0%
φ22 1.64 -0.00 0.10 0.10 0.10 94.3% 94.3%
φ34 -6.22 -0.05 3.12 3.38 3.38 96.9% 96.9%
φ44 12.42 0.03 1.60 1.68 1.68 94.4% 94.4%
φ12 -0.60 0.00 0.07 0.08 0.08 95.4% 95.4%
φ11 1.71 -0.00 0.11 0.11 0.11 95.0% 95.0%

Table 4.4: Simulation results without uncertainty in the estimates of measurement error variance.

the error variance parameters (the squares of the standard errors) and multiplied them by
different “scale” values. A scale value of 0 indicates no uncertainty, i.e. perfect estimates
of the error variances, a scale value of 1 indicates the same amount of uncertainty as was
found in the example, and higher scale values indicate x times as much variation in the
error variance estimate as found in our example. One consequence of this choice is that
the different relative sizes of the standard errors will cause different effects on the standard
errors of the model parameter estimates. is has been done in an attempt to introduce
realistic differences in the relative amounts of uncertainty into the experiments. To provide
a large range of different amounts of uncertainties, powers of two were taken as the scale
values, yielding seven separate Monte Carlo experiments.

e scale values are essential in our simulations as they represent the actual amount
of uncertainty present in the fixed parameters of the model for each experiment. e true
population values of the error variances are shown in table 4.3 along with their standard
errors in the example (scale = 1). ese values are difficult to interpret in absolute terms.
erefore table 4.3 also provides the corresponding true population reliability coefficients
(i.e. the square roots of the reliabilities) and the standard errors of these reliability coef-
ficients for different scale values⁴. Standard errors for scale = 0 are not shown as they all

⁴In calculating these standard errors the estimation of a covariance matrix from a sample of size 1500 was
also taken into account.
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equal zero. is provides an insight into the amount of uncertainty corresponding to each
scale value. It is clear from the table and the preceding discussion that we can expect that
the naive standard errors will be more biased downwards as the scale factor increases, so
that the coverage of 95% confidence intervals will worsen as the scale value becomes larger.

Without uncertainty in the measurement error estimates, the average of the simula-
tions should equal the true parameter values and the coverage of 95% confidence intervals
using both the uncorrected and the corrected standard errors should approach 95% as the
number of simulations increases.

Table 4.4 shows the results of a monte carlo simulation without any uncertainty in the
measurement error variances: in this experiment the assumption of perfect certainty about
the error variances is correct. e table shows the average over samples of the parameter
estimates θ̄, as well as the relative bias (θ̄ − θ)/θ. e fourth column shows the standard
deviation over samples sd(θ̂) of the estimates. e subsequent two columns show the av-
erage of the “naive” and “corrected” standard errors. As might be expected, these two are
exactly equal when the assumption of perfect certainty is correct. e last two columns
show the percentage of samples for which the true parameter value is included in nominal
95% confidence intervals.

In general the results shown in table 4.4 suggest that the parameter estimates when
there is no uncertainty about the fixed coefficients are approximately unbiased and that
95% confidence interval provide a coverage close to this nominal rate.

e real question, however, is what results are obtained when the assumption of per-
fect certainty about the error variances does not hold. We will now briefly discuss the
simulation results shown in figures 4.6 and 4.7 which show the properties of the naive and
corrected standard errors at increasing levels of uncertainty.

Uncertainty about the measurement error variance does not influence the unbiased-
ness of the estimates. In all simulations the estimates obtained are indistinguishable from
those shown in the first column of table 4.4, while also the relative bias is not affected. A
slight difference starts to occur at very high levels of uncertainty due to an increased num-
ber of improper solutions. When these improper solutions are excluded from the analysis
the effect disappears.

e standard deviation of the estimates across samples is, however, clearly affected by
increasing uncertainty about the error variance parameters. Figure 4.6 shows, for each pa-
rameter of themodel except φ21, the standard deviation of that parameter’s estimate across
samples (the solid line marked “True”). It can clearly be seen that for all parameters the
variability of the parameter estimate increases as the amount of uncertainty is increased.

e same figure also shows, in each graph, the average of the “naive” standard errors
and our “corrected” standard errors. e regular standard errors calculated under the as-
sumption of perfect certainty about the error variances do not change appreciably as the
uncertainty about the error variances increases. Since the “true” standard deviations across
samples does increase for all parameters, this indicates an underestimation of the standard
error. Our corrected standard errors do increase with the uncertainty, and follow the “true”
standard deviation closely.

Figure 4.7 summarizes the main coverage results for all parameters. e graph on the
le-hand side in figure 4.7 shows the proportion of 95% confidence intervals constructed
using “naive” standard errors (i.e. standard program output) that contain the true popula-
tion parameter value. It can be seen that while some parameter estimates are not affected
by the amount of uncertainty in this model, for other parameters the coverage properties
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Figure 4.6: True standard deviations across the simulations (solid lines), corrected standard errors
(striped lines), and “naive” standard errors (dotted lines) for different uncertainty scale values. Each
graph represents these relationships for one model parameter.

worsen considerably. At the highest amount of uncertainty studied, the 95% confidence in-
terval for the variance of “efficacy”, has deteriorated to a clearly unacceptable 40% coverage.
Other variance parameters are also affected, while unstandardized regression coefficients
appear impervious in this model.

e right hand side of figure 4.7 shows the coverage of 95% confidence intervals con-
structed using our corrected standard errors. e graphs clearly shows that our correction
succeeds in correcting the standard errors of the parameter estimates for uncertainty in the
fixed error variance parameters.

4.6 Discussion and conclusion

Measurement error biases parameter estimates in structural equation models, making it
impossible to ignore in the analysis of such models. SEM allows the researcher to subsume
measurement error directly into the model, simultaneously estimating and correcting for
measurement error.

However, this method requires that the study design is adequate both for the analysis
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Figure 4.7: Coverage of nominal 95% confidence intervals for the different parameters of the model,
as a function of the amount of uncertainty in the measurement error variance estimates. Le the
coverage using the naive standard errors is shown, while the right graph shows the coverage when
using the newly proposed corrected standard errors.

of the substantive model and the evaluation of measurement error. It also requires that the
researcher is knowledgeable about both measurement and substantive issues. A popular
alternative that circumvents these disadvantages is to use estimates of measurement error
variances from external studies to correct analyses. Error variance parameters in such
analyses are fixed to the estimates that were obtained separately, followed by an analysis of
the substantive model with correction for measurement error. We have called this method
the “two-step” approach.

e two-step approach does not take into account that the fixed error variances are, in
reality, estimates with a certain amount of uncertainty. We have shown, first by a simple
simulation and subsequently by analytics, that the uncertainty about fixed error variance
parameters in the two-step approach will bias standard errors downwards.

e effect of uncertainty about the error variances and therefore the downwards bias
depends on two factors: the amount of uncertainty, and the relationship between the fixed
and free parameters. When there is no uncertainty (zero variance) about the fixed param-
eters, the corrected standard errors will equal the uncorrected standard errors.

However, even when there is uncertainty about the fixed parameters, there are models
in which certain parameters’ variance will remain completely unaffected. is was demon-
strated by the example of a multiple regression where the regressors are uncorrelated and
one of the regressors is error-free. In such a case the parameters related to the error-free
variable are completely independent of the measurement error variance of the error-prone
variable, and uncertainty about the fixed error variance will not affect the unstandardized
regression coefficient of the error-free variable. e independence in this model is created
by the lack of correlation between the regressors.

Section 4.3 presented an analytical solution to the problem of downwards biased stan-
dard errors in the two-step method in the form of a term that should be added to the
“naive” covariance matrix of the parameter estimates. An estimate of this term can be
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readily calculated from the parameter estimates of the model⁵.
e subsequent section evaluated our newly developed method by Monte Carlo sim-

ulation. Simulations at different levels of uncertainty showed that the variability of the
estimates can increase considerably due to uncertainty about the measurement error vari-
ance. It was shown that only our corrected standard errors provided the nominal confi-
dence interval coverage, while “naive” confidence intervals can deteriorate substantially in
the presence of increasing uncertainty about the fixed parameters.

Comparison with other approaches ere are three alternative approaches to the analyt-
ical correction we have discussed.

e first alternative to our procedure is the analytical solution for multivariate regres-
sion models estimated by the method of moments given by Amemiya and Fuller (1984),
and further discussed by Fuller (1987). is solution has several disadvantages. First, it
is formulated only for multivariate regression models, and therefore could not be used for
more complex models such as the one given as an example in section 4.2. Second, it as-
sumes that the error variance estimates follow a chi square distribution with degrees of
freedom, as is the case for certain simple measurement models. is makes the use of
measurement error estimates from more complex measurement models much more diffi-
cult. Last, extensions developed for SEM such as categorical, count, or censored dependent
variables and complex sampling designs are not available. To our knowledge this solution
has only been implemented in the soware EV CARP (D. Schnell et al., 1987).

A second plausible alternative to the analytical solution of equation 4.14 is a paramet-
ric bootstrap procedure (Efron & Tibshirani, 1997). e model or models used to estimate
the measurement error variances yield distribution for these parameters. A typical ex-
ample would be error variances from a factor model, which are asymptotically normally
distributed.

Sampling k times from this distribution, and re-applying the estimation procedure cor-
recting for measurement error each time, we obtain a consistent estimate of the variance
over replications of θ̂ that is purely due to the variation in Ψ. is quantity can be used
as an estimate of the right-hand term of 4.9. erefore the corrected variance can be ob-
tained by summing the variance from the analysis correcting for measurement error in the
previous section and the parametric bootstrap variance.

e bootstrap procedure has the advantage that one does not need to perform the cal-
culations. However, it also has important disadvantages. First, if the measurement error
variance is too low or too high relative to the corresponding observed covariances, the
bootstrap procedure will yield many inadmissible or non-convergent solutions. is may,
in turn, yield inconsistent estimates of the variance to be added. Oen measurement er-
ror estimates are obtained from multiple sources, and to the above problem are added
concerns about the second-order probabilities of inadmissible solutions. Finally, the pro-
cedure is conceptually simple but can be tedious to implement, adding another step to the
estimation procedure, and requires non-standard soware.

e third and final alternative to our solution is MCMC estimation of the model as
performed in Bayesian structural equation modeling (Lee, 2007). is requires that in the
specification of themodel, the distribution of the error variances or reliabilities is explicitly
specified along with the measurement and structural part of the model. An advantage is

⁵An implementation for the SEM package OpenMx in R is available upon request from the first author.
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that non-normally distributedmeasurement error parameters can be taken into account. A
disadvantage is that the entire estimation procedure is changed and must be reformulated
to take the uncertainty about the amount of measurement error into account, whereas our
method is simply an extension of standard methods. us this option may be attractive
when the researcher already planned for other reasons to estimate the model by MCMC.

In conclusion, different alternatives to our solution exist but each introduces additional
complexities and in some cases limits the models that can be analyzed. Considering the
disadvantages of the alternatives and the fact that equation 4.14 can be hidden from the
user by simple function calls which are provided for free by the authors, we recommend
the analytic approach.

Future studies e method presented was evaluated by Monte Carlo simulation using a
specific model. However, a key aspect of the effect of uncertainty on a parameter as shown
in equation 4.8 is that the parameter must be influenced by changes in the error variance.
is was demonstrated explicitly by the numerical example of a multiple regression with
uncorrelated regressors. is example could be constructed in such a way that some pa-
rameters are affected by the uncertainty about the error variances, while others are immune
to this effect.

e amount of uncertainty was taken from a particular example and varied from that
point. It was not shown that such degrees of uncertainty occur in practical research. How-
ever, there are indications that they do.

For example, an oen-cited reliability study by Ware et al. (1978, pp. 40–42) on quality
of life and subjective health indicators reports test-retest reliability coefficients between 0.4
and 0.7 based on a sample size of 138 persons. is suggests the standard errors for the
reliabilities in this study are between approximately 0.04 and 0.06. e simulation shows
that such standard errors are quite high and can have serious implications for inference.
Other studies may employ a larger sample, but report separate coefficients for men and
womenof different age groups (e.g. in Lundberg&Manderbacka, 1996, n=204 andn=409).
is will also cause the uncertainty in the reliability estimates to increase substantially.

ese examples do not give a systematic study of the literature on reliability and as
such cannot be generalized. However, it cannot be excluded that there are many cases in
which the amount of uncertainty in reliability coefficients or error variance parameters,
combined with the form of the model and the parameters of interest (e.g. standardized or
unstandardized regression coefficients), cause the correction we propose to be necessary
for correct inference.

In short, the strength or existence of an effect depends on the model used as well as the
amount of uncertainty. e evaluation provided in this paper is therefore limited in that we
do not know whether the characteristics of the model chosen for the evaluation are typical
of applied work. is is clearly an important topic for further research, as it determines
under which conditions the effect of uncertainty about error variance is a problem for
practitioners.

Without more detailed knowledge about these conditions one should not exclude the
possibility that inference is affected. erefore whenever measurement error variances
have been fixed to an estimate about which uncertainty exists, the correction to standard
errors presented here should be applied.
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