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The potentially important role of perceptions, ranging from classical
psychophysical perception of attributes, through psychological shaping of

perceptions, to reduced dissonance, to mental accounting for times and costs,
remains largely unexplored in empirical research on economic choice.

Nobel Prize Lecture, December 8, 2000

MCFADDEN, DANIEL L.

Chapter 1

Introduction

Store-level research in retail marketing has focused predominantly on ‘hard variables’

that may influence consumers’ store choice, such as price, assortment, or location. Con-

trary to brands or product categories, however, comparison of alternative stores may be

a daunting task for consumers: typical retail stores carry thousands of different prod-

ucts across a wide range of categories, and their prices fluctuate over time due to, for

instance, frequent price promotions. When evaluating stores, consumers may, there-

fore, resort to their perceptions of relevant store dimensions. Holistic perceptions held

about retail stores, in particular those regarding the retailer’s expensiveness, are thus

regarded among the most important drivers of consumers’ choices (e.g. Bell, Ho, and

Tang 1998, Simester 1995).

Recognizing this pivotal role of store (price) images in consumer decision-making,

the retailers’ battleground has been extended from the stores’ shelves to the consumers’

minds. France-based Carrefour, the largest hypermarket chain in the world, for in-

stance, has invested more than half a billion dollars in its price image in 2009 alone (Mar-

ketWatch 2009). In the Netherlands, the market-leader Albert Heijn started a price war

aiming at improving, among other measures, its unfavorable price image held by most

Dutch consumers (van Heerde, Gijsbrechts, and Pauwels 2008). And in April 2010, the

giant Wal-Mart cut the prices of 10,000 items, mostly food and other staples (CNBC

2010) in the U.S. market, with the goal of “polishing its discount image” (Wall Street

Journal 2010).

Yet, despite the importance of store price images, and the large dollar sums in-
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2 CHAPTER 1. INTRODUCTION

volved in managing these images, research about the topic is sparse and, so far, has left

retailers with little guidance to set their pricing and price image strategies. The present

work hopes to contribute to filling this gap.

1.1 Background

Before introducing our work, it is instructive to set the stage, and briefly characterize

the relevant literature related to store price image (SPI) research. This research has

focused on two aspects: the integration of both actual and perceived prices into behav-

ioral models of decision-making, and the antecedents and conceptualization of store

price images.

1.1.1 Consumer use of actual and perceived overall prices

Behavioral models of consumer decision making typically accommodate two types of

price information: objective prices, and subjective perceived prices or price images (see

e.g. the conceptual models in Dickson and Sawyer 1990, Jacoby and Olson 1977, Zei-

thaml 1982, 1984). According to economic theory, prices influence choices because they

are considered perfect, objective indicators of the monetary costs of purchasing (Mon-

roe 2002). In addition to this classical perspective, psychology and marketing have long

acknowledged the subjective nature of prices and have found support for the existence

and effects of perceived prices (e.g. Zeithaml 1988, Monroe 1973), notably in the form of

reference prices (see e.g. Winer 1986, Kalyanaram and Winer 1995, Briesch et al. 1997).

Recently, this notion of a dual price construct has been extended to the level of the

store, and consists of actual, objective basket prices and subjective holistic summaries

of a store’s overall expensiveness or store price images (see e.g. Mazumdar, Raj, and

Sinha 2005, van Heerde et al. 2008).

1.1.2 Conceptualization of store price images

Store image has been defined as the way the store is perceived in the shopper’s mind (Mar-

tineau 1958). The conceptualization of such a store image rests upon three main pil-

lars (see Ailawadi and Keller 2004, for a recent review of retailer image research). First,

store image is typically seen as a multidimensional construct, with price and quality (of

the assortment) arising as its core dimensions (Mazursky and Jacoby 1986, Hildebrandt

1988). Second, as demonstrated by Alba et al. (1994, p.219), “[store price] perceptions

are very malleable and may be shaped by forces under direct control of those who set

prices.” Specifically, the formation of a retailer’s price (and quality) image is commonly

described as an evolving, dynamic process (Mazursky and Jacoby 1986, Büyükkurt
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1986, Nyström 1970, Feichtinger, Luhmer, and Sorger 1988) – perceptions being up-

dated as new information comes in. Third, given the complexity of the store offer, con-

sumers have only incomplete information and are uncertain about retail stores, thus re-

sorting to available (intrinsic or extrinsic) perceptual cues when inferring the retailer’s

overall price (and quality) (Feichtinger et al. 1988, Mägi and Julander 2005, Alba et al.

1994).

Two types of cues can be distinguished for store price image formation: non-

price cues and actual prices. Non-price cues may come from sources that stores have

little or limited control upon, such as word-of-mouth (e.g. Herr, Kardes, and Kim 1991,

Zeithaml, Berry, and Parasuraman 1993), or from in-store atmospherics (Grewal and

Baker 1994, Baker, Parasuraman, Grewal, and Voss 2002), or store communication in

which the retailer does not advertise any specific prices in a direct manner (see the

SPI studies based on advertising signaling of e.g. Shin 2005, Srivastava and Lurie 2004,

Simester 1995). While non-price cues may help consumers come up with an initial

expectation of the store’s overall price level, they may be inconsistent with or at best

indicative of store prices. Hence, if actual prices become available, consumers are likely

to resort to these more informative actual price cues (Alba et al. 1994). Support for this

contention comes from evidence gathered mostly in lab experiments – namely, from the

early studies of Büyükkurt (1986) and Nyström, Tamsons, and Thams (1975) and the

more recent work of Alba and colleagues (1994, 1999) and that of Desai and Talukdar

(2003). These studies have also suggested that consumers integrate product-specific

price and promotion cues to form their store price perceptions.

While previous studies have underscored some important antecedents of store

price images and the main features of their formation process, many questions remain

largely unanswered.

1.2 Limitations and existing gaps in the literature

1.2.1 Methodological limitations and challenges

Store price images refer to aggregate perceptions assembled from multiple (price) cues.

This makes the process of store price image formation more difficult to study com-

pared to, for instance, the formation of price perceptions for single products or brands.

To our knowledge, the conceptual and analytical models of SPI formation (Büyükkurt

1986, Nyström 1970, Feichtinger et al. 1988) have not been taken outside the lab. While

lab studies provide some relevant insights under highly controlled conditions, they

may not be fully apt to uncover the way price images are formed in real life settings –

where consumers receive a myriad of signals, which are (or are not) integrated and/or

forgotten over time. Hence, experimental studies may not paint the full picture when it
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comes to assessing the impact of various cues on consumers’ price beliefs about stores.

The difficulty of addressing this issue lies essentially in the need to combine more

than one type of data. Consumers’ price perceptions of a retail store can be obtained

through direct inquiry by means of questionnaires. These data can then be linked to

’hard’ data on retail prices, as well as to information on consumer store visits (reflecting

the extent to which these actual store prices were accessible to the consumer). As simple

as it sounds, however, combining purchasing data with longitudinal survey data is not

simple, and involves the non-trivial task of bringing them together in one model. At

least three challenges arise when attempting to do so.

First, both types of data are available at different frequencies. Specifically, survey

data on consumers’ beliefs are seldom longitudinal in nature and, if so, are usually

available at a frequency (much) lower than price or purchasing data. Second, the large

number of cues that may intervene in the formation of store price images (namely the

prices of many different products in a typical supermarket), requires a heavy modeling

structure with a large number of parameters. A last challenge is the need to have both

types of data (store perceptions as well as actual data on store visits and marketing

mix) identified for the same consumers, over time.

Access to a unique data set, combined with state-of-the-art modeling approaches,

will allow us to meet these challenges, and propose answers to a set of research ques-

tions we believe could not be addressed as effectively otherwise.

1.2.2 Unanswered research questions

Given the complexity of the topic, and the methodological difficulties involved, several

SPI-related issues remain as of yet unexplored. These issues relate to two types of pro-

cesses and associated outcome variables. On the one hand, more insights are needed

into what drives the formation of store perceptions – with a particular focus on the role

of retailer marketing actions, such as price and assortment decisions, therein. Here, the

interest is in tracing the effect of ’hard’ retailer instruments, on ’soft’ consumer mindset

metrics. On the other hand, as indicated by Srinivasan, Vanhuele, and Pauwels (2010),

there is a need to empirically assess how – taken together – (retailer) marketing mix

instruments and consumer (store) perceptions translate into ’hard’ outcome metrics,

over time. Our work aims to provide specific insights on both types of issues.

Concerning the formation of store perceptions, one remaining question that is

particularly relevant for category managers (Grewal and Levy 2007), pertains to the

relative importance of the many different category prices present in a typical super-

market for the formation of SPIs, and to the underlying category drivers. Also, we

have little knowledge about how changes in the retail assortment composition, espe-

cially regarding the share of national brands (NBs) and private labels (PLs), impact



1.3. DISSERTATION OVERVIEW 5

consumers’ overall impressions about stores. This is important because the two types

of brands may enjoy different associations in consumers’ minds, and generate differ-

ent overall appreciations of the store. The question becomes particularly compelling

for hard-discount retail chains such as Aldi and Lidl, whose limited assortments were

originally private label-dominated, but who are now under pressure to expand the

share of NBs. How would such changes impact the price and quality perceptions of

these retailers?

Concerning the link between ’mindset metrics’ and ’hard’ performance mea-

sures (Srinivasan et al. 2010, Gupta and Zeithaml 2006), several gaps are to be ad-

dressed as well. What is the size of the impact of store price perceptions, vis-à-vis

actual prices, on retail performance measures such as store traffic? Who are the con-

sumers sensitive to one and/or the other type of information, and why? So far, and

to our knowledge, the link between store price images and traffic has been addressed

only in self-reported survey studies (Arnold, Oum, and Tigert 1983, Severin, Louviere,

and Finn 2001, Finn and Louviere 1990, 1996, Cox and Cox 1990), which lacked actual

marketing data, namely prices. The exception is van Heerde et al. (2008), who include

both objective and perceived prices into their store choice and spending models. How-

ever, their work does not explicitly model SPI formation, and – given its different focus

– does not explore consumer differences in response to actual prices versus price im-

ages – something we intend to address.

We give an overview of our approach to these questions next, and summarize

each of the three essays in more detail afterwards.

1.3 Dissertation overview

To conduct our studies, we use a data set that combines scanner panel records on store

choice and spending, with longitudinal measures of store price and quality images held

by the same individual panel members. These data refer to a GfK panel of households

that represent a stratified sample of The Netherlands and cover a period of four years,

from January 2002 to December 2005 (the third essay makes use of data for 2006 as

well).

Figure 1.1 clarifies the nature and focus of the three main chapters. As indicated

in the columns of the figure, these chapters differ in the input variables used and their

focal level of interest (store level, category differences or brand-type differences). The

rows clarify the outcome variables studied in these chapters: store price images (SPIs)

and store quality images (SQIs) of different stores, and observed store traffic. Two

other dimensions cross all the levels of our data: individuals and time, allowing us

to explore the dynamics of store images, and to specify models at the individual-level
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(and explore unobserved heterogeneity).

Figure 1.1: Overview of dissertation

In Chapter 2, we develop a dynamic individual-level model of store price per-

ception formation. In this model, different product category prices are integrated into

an overall measure of store expensiveness. The informativeness of a category price, in

turn, is a function of that product category’s intrinsic characteristics, over and above its

economic share in the consumer typical shopping basket.

In Chapter 3, we develop a model of consumer patronage decisions to evaluate

the effect of store price images vis-à-vis that of objective basket prices. Within this dual

retail price model, the two types of price information are linked through the dynamic

formation of price images over time, itself based on actual prices. We aim at show-

ing that not accounting for the effect of (dynamic) price perceptions may seriously bias

store traffic estimation in response to price changes. Finally, we explore which de-

mographic and shopping characteristics of consumers may explain or shed light on

differences in sensitivity to different price information.

In Chapter 4, we investigate how different brand typologies and changes in a

retailer’s assortment composition affect consumers’ perceptions about stores. To this

end, we focus on hard discounter stores that have recently introduced national brands

to their all-private-label assortments. Since national brands are regarded as having

higher levels of differentiation and quality than their private label counterparts, and

are, on average, more expensive, this shift in the store’s assortment strategy is expected

to affect store quality and price perceptions.

Methodologically, Chapter 2 combines Bayesian learning with an ordered probit
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specification to capture SPI formation. In Chapter 3, we combine this model of SPI

formation, with a random-coefficients multinomial probit model for store choice. The

models in these two chapters are estimated with state-of-the-art Bayesian approaches

that make extensive use of stochastic simulation methods. In Chapter 4, we use a bi-

variate ordered probit that naturally accounts for the correlation between the price and

quality images of the hard discounter.

1.4 Detailed chapter summaries

1.4.1 Chapter 2 – Store price image formation and category pricing

In this chapter, we address two related questions: which product categories are more

influential in shaping SPIs, and what drives these effects? Regarding the first ques-

tion, we propose a framework that integrates different sources of information, namely

actual prices of different product categories, in a dynamic process of store price im-

age formation. In a nutshell, prior to visiting a store, consumers hold uncertain beliefs

about how cheap or how expensive the store is (Alba et al. 1994) – remaining quite

unsure about the actual overall price level they will face in the store. Upon a store

visit, consumers have access and are exposed to category prices, and by integrating

and updating these incoming price signals, consumers learn about the store’s overall

price level (Büyükkurt 1986, Mägi and Julander 2005).

Regarding the second question, our research proposes characteristics typical of

what we term lighthouse categories, i.e. product categories that signal low prices, and

yet constitute only a small portion of spending. We conceptualize that the over-time

impact of category prices on store price image formation is shaped along two dimen-

sions. The first dimension is the monetary value of the category for the consumer, or

share-of-wallet. Consumers expect higher present and future returns from being aware

of prices in product categories that are monetarily more relevant for them (Wakefield

and Inman 1993, Urbany, Dickson, and Kalapurakal 1996). The second dimension cap-

tures how informative the category prices are about the store’s expensiveness. This

’informativeness’ depends on the extent to which the category prices are (i) accessible

for the consumer and (ii) perceived as diagnostic of the overall store price level (Herr

et al. 1991, Feldman and Lynch 1988), and is linked to the characteristics of the product

category. We discuss both dimensions in detail and offer testable hypotheses regarding

their effect on SPI learning.
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1.4.2 Chapter 3 – Consumer use of basket prices and store price images

when choosing a store

Our questions in this chapter are threefold. First, do prices also influence store choice

through SPI and, if so, what is the size of this effect? Second, do consumers who attend

to weekly actual prices (’Eye-For-Detail’ consumers) for store selection, also adjust their

store patronage to (price-based) changes in SPI (’Big Picture’ consumers)? Third, can

we profile households who rely on different sources of price information?

To answer these questions, we develop an individual-level model of store choice

that includes both short-term, weekly prices and long-term shaped store price images.

These SPIs, in turn, are spelled out explicitly as a function of past store prices, using

a Bayesian updating specification similar to Chapter 2. Taking the perspective that

shopping activity is part of a household’s production process (Becker 1965), we explore

which consumer characteristics related to the cost of acquiring price information on the

one hand, and the expected gains of this price search on the other, trigger the use of each

type of price information. We propose that these costs and gains, and their antecedents,

differ between the two types of price response, such that consumers may fall into four

possible segments: (1) convenience, (2) eye-for-detail, (3) big picture, (4) and combined

use.

‘Convenience’ shoppers correspond to the typical non-price sensitive grocery

shoppers, whose store choice is driven by non-price marketing mix variables such as

assortment (Briesch, Chintagunta, and Fox 2008), or by convenience-factors such as dis-

tance (Gauri, Sudhir, and Talukdar 2008). ‘Eye-for-detail’ consumers, in contrast, keep

track of actual store prices to spot temporary price reductions, and then adjust their

store choices to benefit from the implied monetary savings. ‘Big Picture’ consumers

keep track of stores’ overall expensiveness, such that stores with more favorable price

images have a higher chance of being patronized, or that regularly visited stores can be

abandoned if consumers come to perceive them as too expensive. Finally, consumers

may simultaneously exhibit both types of price-sensitivity, either to compensate for one

another or due to situational factors that may make them rely more on one or the other

type of price cues.

1.4.3 Chapter 4 – The impact of national brand introductions on price and

quality images

Recently, Deleersnyder, Dekimpe, Steenkamp, and Koll (2007) have shown that NB

introductions at hard discount stores may entail short term win-win implications for

both retailers and manufacturers. Yet, an important and thus far unaddressed question

is whether and how NB introductions – so directly at odds with the core positioning of

the hard-discounter format – affect consumers’ long lasting perceptions of these chains.
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If carrying more NBs changes the hard discounters’ price or quality image, this is likely

to affect their performance in the long run.

This chapter aims to address that issue. Since national brands are typically re-

garded by consumers as having higher quality than their private label counterparts,

but are, on average, more expensive (Kumar and Steenkamp 2007, Ailawadi, Pauwels,

and Steenkamp 2008, Geyskens, Gielens, and Gijsbrechts 2010), the shift in the dis-

counter stores’ assortment strategy is expected to improve their quality image, to the

detriment of their price image. As in Jacoby and Mazursky (1984), and consistent with

information economics (Arrow 1963, Akerlof 1970, Spence 1973), we view (national)

brands as cues used by consumers to infer both the overall quality and price levels.

Brands are usually deemed informative about quality, as quality is by definition un-

observed and therefore perceived with uncertainty (Zeithaml 1988, Richardson, Dick,

and Jain 1994). In a store context, however, where prices vary over time and across

products and price information is therefore complex and ambiguous, consumers may

be uncertain about a store’s overall expensiveness too (Alba et al. 1994). In such a set-

ting, the presence of known brands may also prove helpful in the formation of overall

price perceptions (Monroe, Grewal, and Compeau 1991, Biswas, Wilson, and Licata

1993). In Chapter 4, we empirically test for the significance and size of the effects of

NB presence, on both the price and quality image of a hard discounter. One important

aspect to consider in the context of this chapter, is that store price and quality percep-

tions may be correlated directly, which we accommodate explicitly in our methodology.

In Chapter 5 we summarize our main findings and discuss their implications,

and set the directions for a future research agenda.
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Chapter 2

Dynamic Store Price Image

Formation and Category Pricing

2.1 Introduction§

Economic recession and the advent of hard discounters have increased consumers’ sen-

sitivity to prices in their shopping and store choice decisions. However, given the

overwhelming number of items offered by a typical supermarket, reliance on detailed

product-level prices can be prohibitive for consumers. Instead, consumers may use

holistic constructs that summarize how cheap or expensive stores are – store price im-

ages – to guide their store choice and purchasing decisions (Arnold et al. 1983, Mazum-

dar et al. 2005). Defined as consumer perceptions or beliefs about the overall price level

of stores (e.g. Nyström et al. 1975, Brown 1969), price images constitute a key dimen-

sion of the overall image of retailers (Ailawadi and Keller 2004). A recent Nielsen report

indicates that “Good Value for Money is now the most important determinant of grocery

store choice,” and that “. . . of those consumers who rated ‘good value for money’ as

very or quite important when deciding where to do their grocery shopping, 70% said

it was important the store had a reputation for being cheaper than competitors – even if, in

reality, this was not the case” (Nielsen 2008, p.4).

Given this ‘power of perception’, managing store price images has become a ma-

jor concern in retail pricing practice (Levy et al. 2004). For instance, France-based Car-

refour, the largest hypermarket chain in the world, has invested more than half a bil-

lion dollars in its price image in 2009 alone (MarketWatch 2009). As another example, in

April 2010, the giant Wal-Mart cut the prices of 10,000 items in the U.S. market, with the

goal of “polishing its discount image” (CNBC 2010, Wall Street Journal 2010). And, be-

§This chapter is based on joint work with Els Gijsbrechts (Tilburg University) and Richard Paap (Eras-
mus University Rotterdam), under 2nd round review in Journal of Marketing. We thank participants at
Marketing Dynamics 2007 and Marketing Science 2008, and seminar participants at Erasmus School of
Economics, Catholic University of Leuven, University of Groningen, and ISCTE-IUL (Lisbon).

11
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tween 2003 and 2005, the leading Dutch supermarket chain Albert Heijn slashed prices

in a wide range of categories so as to restore a more favorable price perception (van

Heerde et al. 2008).

Dropping prices improves store price perceptions, as was shown for the case of

Albert Heijn (van Heerde et al. 2008). At the same time, price reductions across-the-

board are bound to be highly detrimental to profitability. Hence, with retail margins be-

coming increasingly tight, a critical question for retailers is which product categories are

more salient in the consumer store price image formation process, and why (Grewal and

Levy 2007). Such knowledge is crucial for the development of category-level pricing

policies that create a favorable price perception of the store, while maximally preserv-

ing store revenue or margins. Unfortunately, despite its importance, store price image

(SPI) research is sparse, and little is known about how perceptions of store expensive-

ness are influenced by in-store category prices (Bell and Lattin 1998). The present study

takes one step towards addressing this gap.

The main contributions of this research are twofold. First, we propose a frame-

work on which product categories are more influential in shaping SPIs, and what drives

these effects. Specifically, we identify characteristics typical of what we term lighthouse

categories, i.e. product categories that strongly signal low store prices, yet make up

only a small portion of store spending (we will further characterize lighthouse cate-

gories in Section 2.2). Second, we empirically test this framework, by estimating a

dynamic model of SPI formation including category prices, based on a unique data

set. This dataset combines weekly store visit and purchase information from a repre-

sentative panel of households, with semi-annual store price perceptions of these same

households. The data cover all major retail chains in the Netherlands (close to twenty

chains), contain information on purchases and weekly prices in these stores for nearly

fifty major product categories, and cover a period of four years.

Our focus on category prices is justified by the presence of a wide array of prod-

uct categories in a typical supermarket – the prices of which are not likely to be pro-

cessed by consumers in the same way – and by earlier findings that category-specific

factors are powerful drivers of price response (Bell, Chiang, and Padmanabhan 1999).

It also fits into a category management perspective, and allows generating strategic

guidelines that can readily be put into action by retailers. According to recent industry

reports, 84% of retailers cite the opportunity to increase profitability as their motiva-

tion for using category management, which is becoming increasingly popular among

grocers and other retailers alike (Grocer 2007, Nielsen 2004).

For academics, our framework offers an enhanced understanding of the store

price image formation process and the role of different categories therein. In particular,

we shed light on the category characteristics that drive the formation of store price per-

ceptions. For managers, our findings provide guidance on how to develop a favorable
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price perception of the store, in a setting where margins are already dramatically under

pressure. Specifically, our framework helps to identify which product categories create

a favorable store price image while constituting only a small portion of the consumer

share of wallet (SoW). This latter aspect is important because a drop in prices will al-

low consumers to pay less for the acquired items. If these items constitute an important

share of their spending already allocated to the store anyway, the price drop will entail

a lot of subsidization, and a sizeable revenue reduction for the retailer. In contrast, cat-

egories for which price reductions signal a favorable price image for the store overall,

while representing only a small portion of actual sales, do not have this disadvantage.

The remainder of this chapter is organized as follows. In the next section, we

briefly discuss relevant background literature, and develop our conceptual framework.

In Section 2.3, we present the unique data set that will allow us to test this framework.

Section 2.4 provides a description of the model. Estimation results are presented in

Section 2.5. Finally, Section 2.6 provides conclusions and future research directions.

2.2 Background and conceptual framework

Consumers’ overall judgment of store prices is considered to be stimulus-based (e.g.

Alba et al. 1994, Büyükkurt 1986).1 Hence, as a defining principle of our conceptual

framework, we use insights from research on stimulus-based price judgments, which

are largely influenced by product characteristics (see e.g. Briesch et al. 1997, Pauwels,

Srinivasan, and Franses 2007). Below, we first discuss relevant background literature

on price learning and SPI formation. Next, we present our conceptual framework on

the impact of product category characteristics.

2.2.1 Background: SPI formation as a learning process

Several papers characterize store price image development as a learning process, in

which consumers become knowledgeable about the overall price level of stores, based

on actual in-store prices. Prior to visiting a store, consumers hold beliefs about how

cheap or how expensive the store is. These prior beliefs, however, have uncertainty

associated with them (Alba et al. 1994) – consumers remaining quite unsure about the

actual overall price level they will face in the store. Upon a store visit, consumers are

exposed to several sources of information that signal the overall price level of the store,

namely category prices. By integrating and updating these incoming price signals,

consumers learn about the store’s price image (Büyükkurt 1986, Mägi and Julander

2005).

1When outside the store or in the absence of actual prices, consumers may rely on their memory of
product prices to form their (memory-based) SPIs (see e.g. Ofir et al. 2008). We focus on a stimulus-based
process only.
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Consumer learning about the overall price level of a store occurs whenever new

price information is encountered, and evaluated against previous knowledge or be-

liefs (e.g. Nyström 1970, Feichtinger et al. 1988). Even consumers who have a priori

knowledge about the properties of a price distribution and/or have conducted price

search in the past, do process new incoming price information (Urbany et al. 1996).

Consumers feel a need to continuously update their store price knowledge, either in-

tentionally or incidentally (Mazumdar and Monroe 1990), for at least three reasons.

First, category price information is considered more diagnostic than prior beliefs based

on non-price cues. Hence, consumers may cease using the latter in favor of price infor-

mation to update previous knowledge (Alba et al. 1994). Second, even category prices

are only noisy cues that do not perfectly signal the overall price level of a store. Addi-

tional signals, therefore, further contribute to SPI formation. Third, price information

may become outdated, which further motivates consumers to process recent signals.

Taken together, several studies support that consumers (i) search for and pay

attention to prices, (ii) accumulate price knowledge, (iii) learn over extended periods of

time, and (iv) differ in their extent of learning from different product prices (e.g. Urbany

et al. 1996, Urbany, Dickson, and Sawyer 2000, Vanhuele and Drèze 2002, Monroe and

Lee 1999, Mazumdar and Monroe 1990, Briesch et al. 1997). Our model of store price

image formation builds upon these insights. It postulates that it is the accumulated and

updated price knowledge over time, integrated across several categories, that translates

into an overall store price perception. Which product category prices exert a dominant

role in store price image formation, and why, are key questions that we address next.

2.2.2 Conceptual framework: Category-pricing and store price image for-

mation

Our key objective is to examine the role of different categories in the store price image

formation process. More specifically, we aim to identify product category characteris-

tics that shape how strongly prices of that category influence the overall ‘expensive-

ness’ perception of the store. We conceptualize that the over-time impact of category

prices on store price image formation, is shaped along two dimensions. The first di-

mension is the monetary value of the category for the consumer. Consumers expect

higher present and future returns from being aware of prices in product categories

that are monetarily more relevant for them (Wakefield and Inman 1993, Urbany et al.

1996), i.e. that capture a higher share of their wallet. The second dimension captures

how informative the category prices are about the store’s expensiveness. This ‘infor-

mativeness’ depends on the extent to which the category prices are (i) accessible for the

consumer and (ii) perceived as diagnostic of the overall store price level (Herr et al. 1991,

Feldman and Lynch 1988). Each of these dimensions is linked to the characteristics of
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the product category. We combine the two dimensions in Figure 2.1.

Categories in the bottom-left cell have only weak signaling value about the store’s

overall price level. In addition, they have a high purchase share. Therefore, lower

prices or price cuts in these categories may lead to important revenue losses for the

store, without producing the desired SPI effect. Price cuts in this group of categories are

thus to be avoided by the retailer interested in SPI management. Similarly, categories

in the bottom-right cell are of little interest for the retailer who wants to convey a fa-

vorable store price image. Even though price reductions in these small-share categories

are likely to entail limited revenue losses, their low ‘informativeness’ makes them less

suited for SPI management. Conversely, categories in the top-left cell are deemed in-

formative about the store’s overall expensiveness, yet – because of their large share of

wallet – represent a high risk of subsidization for the retailer.
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Figure 2.1: Conceptual framework defining lighthouse categories in the con-
text of SPI learning

In the top-right cell of Figure 2.1 are situated what we label ‘Lighthouse Cate-

gories’. These product categories are particularly attractive for retailers interested in

benefiting from favorable price perceptions. They have a high potential to shape store

price image, while constituting only a small portion of the consumer share of wallet.

Price reductions in these categories could attract consumers to the store, while entail-

ing a low risk of subsidization. We now discuss both dimensions – monetary value

and informativeness –, and offer directional hypotheses regarding their effect on SPI

learning.

Monetary value

Consumers have more to gain from visiting stores that offer low prices in categories
that constitute a large portion of their typical shopping basket (Wakefield and Inman
1993, Urbany et al. 1996). As a result, categories that represent a large chunk of the
shopping budget of a given consumer – share of wallet – are expected to have a higher
impact on the formation of store price perceptions for that consumer. Accordingly, we
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hypothesize that:

H 1 Share of wallet increases the impact of category prices on SPI formation.

Yet, while share of wallet captures the financial incentives to monitor category prices,

different product categories have different characteristics that distinguish them in their

ability to signal the overall price level of a store.

Informativeness

As already mentioned, the informativeness of a product category depends on its price

accessibility – How salient and easy-to-process is price information from this category?

– and diagnosticity – Is price information from this category indicative of a store’s ex-

pensiveness? Table 2.1 lists a set of category-specific characteristics that may determine

the accessibility and diagnosticity of category prices. These category factors are based

on previous cross-category studies in the marketing literature (e.g. Narasimhan, Nes-

lin, and Sen 1996, Pauwels et al. 2007, Fader and Lodish 1990, Macé and Neslin 2004),

and are actionable for retailers. We organize our discussion around five main groups

of product characteristics: those related to price, promotions, shopping habits, assortment,

and storability.

Price

A category’s expensiveness is expected to be an important driver of store price image
learning from prices. Although related, a category’s expensiveness is not to be con-
fused with share of wallet. Share of wallet reflects the monetary importance of a prod-
uct category relative to other product categories in a consumer’s shopping budget, and
is a consequence of the consumer’s preferences and needs. A category’s expensive-
ness, in turn, represents how much is payed on a typical purchase occasion, regardless
of the distribution of category shares (Narasimhan et al. 1996). It serves as an intense
psychophysical stimulus. More expensive categories attract more attention from con-
sumers. This facilitates price recall from memory (Mazumdar and Papatla 2000), and,
more importantly, increases price awareness and usage (e.g. Zeithaml 1988, Miyazaki,
Sprott, and Manning 2000). We therefore postulate that:

H 2 Category expensiveness increases the impact of category prices on SPI formation.

A second price-related characteristic is the category’s price spread, that is, the difference
between the lowest and highest prices in the category. On the one hand, recent find-
ings by Vanhuele and Drèze (2002) suggest that price spread has a negative impact on
consumer price knowledge. If within-category price differences are high, the price in-
formation may be more diffuse, and consumers may find it harder to form an overall
impression of store expensiveness based on these prices. On the other hand, based on
arguments and findings in Briesch et al. (1997) and Pauwels et al. (2007), consumers
pay more attention to prices in categories with a higher price spread. We therefore
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expect price spread to impact SPI learning from category prices, but without a clear
hypothesis regarding the direction of its effect. Formally,

H 3 Price spread affects the impact of category prices on SPI formation.

Promotions

Apart from more stable price characteristics, the category’s promotional strategy, in
particular the frequency and magnitude of promotional price cuts (Alba et al. 1994, 1999,
Lalwani and Monroe 2005), may affect its importance for SPI formation. From an
accessibility point of view, frequent price promotions may increase price conscious-
ness (Kopalle, Mela, and Marsh 1999, Mela, Jedidi, and Bowman 1998, Mela, Gupta,
and Lehmann 1997). However, promotional activity also requires additional effort in
processing prices, which may deter consumers from keeping track of prices in fre-
quently promoted categories (Mazumdar and Papatla 2000). Moreover, from a diag-
nosticity perspective, frequent price promotions generate many mixed signals – regular
prices and promoted prices – as to what price level consumers may expect in the store,
thus weakening the signals’ informativeness. Given these countervailing forces, we ex-
pect promotional frequency to impact SPI learning from category prices, but without a
clear direction regarding its effect. Formally,

H 4 Promotion frequency affects the impact of category prices on SPI formation.

As far as promotion depth is concerned, deeper price cuts are more likely to exceed
the threshold of noticeable differences (Monroe 2002, Luce and Edwards 2004). Hence,
strong price reductions may become more accessible due to increased salience. In addi-
tion, deeper price cuts may produce a contrast effect, and thus become more diagnostic
about the overall price level of a store (Hamilton and Chernev 2009). We therefore
formulate the following hypothesis:

H 5 Promotion depth increases the impact of category prices on SPI formation.

Instruments that support price promotion activities in a category, such as in-store dis-

play advertising, are expected to have an impact on store price image learning. Display
activity increases the likelihood that consumers notice (i.e. have access to) ongoing
price promotions inside the store (e.g. Bolton 1989, Chevalier 1975). Hence, advertised
(promotional) prices that enjoy enhanced exposure inside the store, are expected to
facilitate SPI learning. Formally:

H 6 Display activity increases the impact of category prices on SPI formation.

Shopping habits

A category’s interpurchase time, i.e. the time between two subsequent purchases from
the category, is also likely to influence how category prices are used for SPI forma-
tion. Conventional wisdom suggests that memory deteriorates over time, a notion that
is supported in consumer research (see e.g. Lynch and Srull 1982). Specifically, the
precision with which constructs are recalled decreases with the time elapsed since the
information was first encoded (Rubin and Wenzel 1996). Recent findings in behavioral
pricing (Vanhuele and Drèze 2002) suggest that long-term price knowledge is even
lower than the short-term price knowledge typically found in price recall studies (e.g.
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Dickson and Sawyer 1990), and that longer interpurchase times make prices less read-
ily available in memory and for use in price judgments (Briesch et al. 1997, Pauwels
et al. 2007, Mazumdar and Papatla 2000). Therefore, consumers have a strong(er) rea-
son to pay attention to prices of infrequently purchased categories. At the same time,
however, prices of product categories bought less frequently may be less salient in con-
sumers’ minds, making them appear less important and be paid less attention to. Given
these opposite expectations, we formulate an hypothesis without a clear direction re-
garding the effect of interpurchase time on SPI learning from prices:

H 7 Interpurchase time affects the impact of category prices on SPI formation.

Brand loyalty in a category produces a dual effect. On the one hand, tracking prices
is facilitated in product categories enjoying high brand loyalty levels, as consumers
closely follow only the price of the brand usually purchased (Biehal and Chakravarti
1983). On the other hand, in product categories where brand loyalty is high, prices may
not be totally diagnostic, as prices of brands consumers are loyal to may not reflect the
average price level of the store. Hence, we do not formulate a directional hypothesis:

H 8 Brand loyalty affects the impact of category prices on SPI formation.

Assortment

Another potential determinant of the informativeness of prices is market concentration in
the product category. In low concentration markets, price-based competition is higher
than in high concentration markets, and consumers switch more among product alter-
natives (Narasimhan et al. 1996). As a consequence, it is harder for consumers to keep
track of all prices in the product category. Moreover, in a differentiated market with
many brands, prices are likely to be non-diagnostic about the product category and
therefore the store expensiveness. Conversely, highly concentrated markets not only
make category prices more diagnostic, but also facilitate price tracking (Pauwels et al.
2007). Hence, we formulate the following hypothesis:

H 9 Market concentration increases the impact of category prices on SPI formation.

A category’s number of stock keeping units (SKUs), may also influence SPI learning. Re-
cent findings by Ofir et al. (2008) show that the number of prices affects the formation of
overall price perceptions. Basically, categories encompassing a large number of SKUs
may confuse consumers due to the existence of many potentially different prices. In
line with these observations, we expect price signals from these categories to entail a
high cost of integration and encoding (low accessibility) and to be relatively uninfor-
mative regarding the store’s overall expensiveness (low diagnosticity). Formally:

H 10 The number of SKUs reduces the impact of category prices on SPI formation.

Storability

All else equal, categories that are storable in nature are expected to exert a stronger in-
fluence on store price image formation. More easily stockpiled and storable categories
often enjoy greater shelf space (Chiang and Wilcox 1997), making their prices more
accessible. Moreover, consumers are more inclined to monitor prices and price cuts
in storable categories, because of the larger potential savings from stockpiling these
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products (Narasimhan et al. 1996). Intentionally learned prices are in general more
accessible than incidentally learned ones (Mazumdar and Monroe 1990), and storable
products are typically less bought on impulse (Pauwels, Hanssens, and Siddarth 2002).
We, therefore, hypothesize that:

H 11 Storability increases the impact of category prices on SPI formation.

The hypothesized effects of product category characteristics on store price image for-

mation are summarized in Table 2.4. Before presenting our dynamic model of SPI for-

mation used to empirically test these propositions, we discuss, in the next section, our

unique data set and the operationalization of the variables.

2.3 Data and operationalizations

2.3.1 Price perceptions, category prices, and overall price levels

For our empirical analysis, we have detailed scanner panel data on store choice and

spending, for a sample of N = 497 households, and for all S = 18 major grocery retail

chains in The Netherlands. The data span a period of four years, from 2002 to 2005.

Store price and promotion data are available on a weekly basis, for C = 49 product

categories. To ensure comparability across categories, we transform observed category

prices – which are expressed in different category-specific units, such as liters or kilo-

grams – into price indices PIc,st. Specifically, we calculate PIc,st = Pc,st/Pc,It , where Pc,st

is category c’s actual price in store s in week t, itself a carefully constructed weighted

average across brands within the category, and Pc,It is category c’s average actual price

across all stores during an initialization period It, which serves as a reference point (see

van Heerde et al. 2008, for more details).

For the same individual panel members and in the same time period, we have

information on perceptions of several store dimensions, including price. Price percep-

tions are measured on an ordinal scale from 1 (= most favorable) to 9 (= least favorable)

and vary at the household-, time-, and store-level. These survey data were collected

semiannually by GfK among their panel members, through store intercept interviews.

Each of the 9 survey waves was conducted during one week, allowing households to

judge the overall price level of more than one store and more than once, depending on

how many stores they visited in that week and how often. Except for the wave that

took place in week 5 in 2004, surveys were conducted in weeks 16 and 40 of every year.

We note that the aggregate distribution of observed SPIs (across households, stores,

and time periods) is bimodal (see first two columns of Table 2.2).

The evolution of aggregate price perceptions of some of the major chains is plot-

ted in the left panel of Figure 2.2, next to their weekly overall price levels (right panel).

The top lines refer to high priced (HiLo) stores such as Albert Heijn or Super de Boer,
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Figure 2.2: Evolution of aggregate SPI (left panel) and overall prices (right
panel) in two HiLo (top lines) and two EDLP stores (bottom lines). HiLo
stores plotted: Albert Heijn (top dotted lines) and Super de Boer (top solid
lines). EDLP stores plotted: Aldi (bottom dotted lines), and Lidl (bottom
solid lines).

the strategy of which is based more on service and quality than on price. Bottom lines

refer to low priced (EDLP) stores or hard discounters such as Aldi or Lidl, whose strat-

egy is focused on (low) price. Consider, for instance, the most (Albert Heijn) and the

least expensive (Aldi) stores (top and bottom dotted lines, respectively). After a dete-

rioration that lasted approximately until the end of 2003, the store perceived as most

expensive enjoyed an improvement in its price image. During that same period, the

store perceived as the least expensive saw its low price image deteriorate over time.

Figure 2.2 reveals three crucial insights in the data that support our conceptual-

ization of a dynamic formation process of store price images. First, consumers perceive

different stores differently with respect to prices or overall expensiveness. Second,

price perceptions evolve over time. Third, actual store prices and store price images

are clearly linked, both cross-sectionally and over time.

2.3.2 Category shares-of-wallet and category characteristics

We compute category shares for each household – shares-of-wallet – based on its pur-

chases across all stores in the data. A list of all product categories, and the distribu-

tion of their average shares-of-wallet across households, is displayed in Table 2.3, to-

gether with the corresponding average prices (across stores and over time). Meat takes

the highest proportion of the shopping budget, with an impressive average share-of-

wallet of 10%, whereas pizzas is the smallest category, with an average share-of-wallet

of only .2%. Out of all 49 product categories considered, the eight categories with high-

est share-of-wallet (Meat, Alcoholic drinks, Vegetables, Fine meat, Fruit, Bread, Cheese, and

Soft drinks) comprise more than half of the budget spent on a typical shopping basket
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Table 2.1: Operationalization and descriptive statistics of product category characteristics

Characteristic Operationalizationa Average
(s.d.)

Min
(product)

Max
(product)

Promotion frequency Number of times price index is below .95 (e.g. Fok, Horvath, Paap, and
Franses 2006, Raju 1992, Nijs, Dekimpe, Steenkamp, and Hanssens 2001)

.860 (.087)
.426
(cleaning products)

.951
(potatoes)

Promotion depth Average promotional price cut (e.g. Fok et al. 2006, Raju 1992, Nijs et al.
2001)

.597 (.272) .340
(cheese)

2.146
(personal care)

Display activity Number of weeks product category was on display (Bolton 1989) .319 (.189)
.008
(cheese)

.722
(soft drinks)

Expensiveness Average euros spent per purchase occasion (e.g. Narasimhan et al. 1996,
Fader and Lodish 1990, Pauwels et al. 2007)

3.153
(1.866)

.949
(bread substitutes)

11.038
(alcoholic drinks)

Interpurchase time Average interpurchase time in weeks (e.g. Narasimhan et al. 1996, Fader
and Lodish 1990, Pauwels et al. 2007)

5.375
(2.940)

1.240
(vegetables)

11.770
(personal care)

Market concentration Sum of shares of top-3 brands (e.g. Pauwels et al. 2007, Raju 1992, Fok
et al. 2006)

.645 (.143)
.272
(pastries)

.921
(soup)

Storability Indicator of ability to stockpile (e.g. Narasimhan et al. 1996, Bell et al.
1999, Macé and Neslin 2004)

– 0 1

Price spread Difference between maximum and minimum prices (e.g. Briesch et al.
1997, Pauwels et al. 2007, Vanhuele and Drèze 2002)

9.345
(15.784)

.458
(eggs)

88.256
(personal care)

Number of SKUs Number of stock-keeping-units in the category (e.g. Chiang and Wilcox
1997, Bell et al. 1999, Macé and Neslin 2004, Pauwels et al. 2007)

1325.354
(1383.005)

101
(cleaning products)

6878
(vegetables)

Brand loyalty Average brand loyalty in the category (e.g. Bell et al. 1999)
6.537
(3.682)

2.206
(cleaning products)

19.052
(milk and dairy drinks)

a The exact expressions can be obtained upon request to the authors.
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(51%).

As discussed earlier, the ‘informativeness’ or SPI-signaling power of category

prices will depend on intrinsic category characteristics. We follow previous cross-

category studies in marketing to guide the operationalization of these variables. Ta-

ble 2.1 lists all characteristics and their corresponding descriptive statistics. The last

two columns display the extreme values (minimum and maximum), and the corre-

sponding product categories. For instance, personal care products have the largest

price spread and interpurchase time, alcoholic drinks are the most expensive products,

and vegetables have the highest number of unique stock keeping units.

2.4 The model

2.4.1 Preliminaries

Building on previous conceptualizations (Büyükkurt 1986, Feichtinger et al. 1988), we

model store price image formation as a process of adaptive learning over time. In line

with recent marketing studies, we adopt a Bayesian framework to capture learning (e.g.

Erdem and Keane 1996, Dixit and Chintagunta 2007). The Bayesian framework mimics

the process of store price image formation suggested above and is an attractive way

to model consumers’ use of prices from memory (Erdem, Keane, and Sun 2008). We

use the following notation: i = 1, . . . , N individual consumers, s = 1, . . . , S stores,

t = 1, . . . , T time periods and c = 1, . . . , C product categories.

2.4.2 SPI formation over time

We assume that a consumer’s beliefs SP̃Iist about the overall price level of stores are un-

observed; the researcher observes only stated price perceptions MSPIist. In our model,

the latent variable SP̃Iist gets mapped onto the measured MSPIist, which can take on

values {j = 1, . . . , J} according to the following rule

MSPIist =





1 if α0 < SP̃Iist ≤ α1

2 if α1 < SP̃Iist ≤ α2
...

...

J if αJ−1 < SP̃Iist ≤ αJ

(2.1)

where the αj are threshold parameters to be estimated, and with higher values of SP̃Iist

linked to higher values of MSPIist. We further assume that unobserved store price

images SP̃Iist can be decomposed into an idiosyncratic component SPI∗ist representing

a consumer’s price beliefs updated over time (see Mazursky and Jacoby 1986), and a

disturbance term ε ist, observed by the consumer but not the researcher. Formally,

SP̃Iist = SPI∗ist + ε ist, ε ist ∼ N(0, σ2
SP̃I

), (2.2)
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where the disturbance term ε ist is assumed to follow a standard normal distribution, to

be independent of the perceptual error variance (i.e. σ2
SPIist

, the variance of SPI∗ist; see

below) and to be independent of SPI∗ist. For identification, we set the variance σ2
SP̃I

= 1.

This identification restriction together with (2.1) leads to the well-known ordered probit

model, often applied to ratings data (Rossi and Allenby 2003).

SPI∗ist is assumed to be updated over time in a Bayesian fashion. In the initial

period, when consumer i has had no access to price information, his/her prior belief

about the expensiveness of store s, SPI∗is0, is assumed to be stochastic (also from the

point of view of the researcher) and to be normally distributed, i.e.

SPI∗is0 ∼ N(SPIs0, σ2
SPIis0

), (2.3)

where the variance σ2
SPIis0

represents the consumer-specific initial uncertainty about the

overall price level of store s. In other words, and similar to previous learning stud-

ies, we assume that when consumers have no other sources of information, their prior

belief about the mean overall price level of store s is the same, yet each consumer is

uncertain about the true overall price level of the store for his/her typical shopping

basket.

Whenever a consumer visits a store (s)he is exposed to in-store price information

in the form of category prices – observed by both the consumer and the researcher –

that will be used as sources of information to update existing overall price level beliefs.

We propose that category prices reflect, i.e. provide a signal for, stores’ true SPIs, up to

a term τc,st. Formally:

PIc,st = SPIst + τc,st, τc,st
i.i.d.∼ N(0, σ2

τc
) (2.4)

and thus PIc,st ∼ N(SPIst, σ2
τc
).

The model assumptions so far imply that, once inside the store, consumers can

be influenced by all category prices. It does not mean, however, that consumers use

all these prices to the same extent. Consumers are different in their motivation and/or

ability to pay attention to observed prices, encode them, or retrieve them from mem-

ory. For instance, consumer motivation to learn prices may be either intentional or

incidental thus resulting in different price information extracted (Mazumdar and Mon-

roe 1990). To accommodate differences in the way price information signals the overall

price level of the store, we specify individual-specific price signals as a combination of

category prices PIc,st and an individual component ηc,ist, observed by the consumer but

not the researcher. Formally, the category price signals that consumers receive in store

s at time t, are assumed to be independently normally distributed around observed

category prices in that store, with a constant variance σ2
ηc,i

across stores and over time,

i.e.

P∗
c,ist = PIc,st + ηc,ist, ηc,ist

i.i.d.∼ N(0, σ2
ηc,i

) (2.5)
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and thus P∗
c,ist ∼ N(PIc,st, σ2

ηc,i
). Substituting equation (2.4) into (2.5), it is clear that

category price signals are also normally distributed around a store’s true mean overall

price level with variance σ2
δc,i

= σ2
τc

+ σ2
ηc,i

, i.e.

P∗
c,ist = SPIst + δc,ist, δc,ist

i.i.d.∼ N(0, σ2
δc,i

), (2.6)

where δc,ist = τc,st + ηc,ist and thus P∗
c,ist ∼ N(SPIst, σ2

δc,i
). Note that the only component

in the variance of category price signals unknown to the researcher is σ2
ηc,i

. The price sig-

nal variances play a crucial role in our learning model since they represent how noisy

or how precise a category price signal is. Moreover, they are not only category-specific

but also consumer-specific, i.e. they capture unobserved heterogeneity in learning from

the different product categories (see Narayanan and Manchanda 2009).

Consumers are assumed to learn about a store’s overall price level according to a

Bayesian rule that combines (i) their prior expensiveness beliefs with (ii) the available

price information in each period (summarized in IPist) into an updated or posterior

belief. Since both the prior belief and all signals are normally distributed, consumer

i’s posterior belief about the overall expensiveness of store s at time t follows a normal

distribution as well (see e.g. Gelman, Carlin, Stern, and Rubin 2004), i.e. SPI∗ist|IPist ∼
N(SPIist, σ2

SPIist
), with mean and variance, respectively,

SPIist = σ2
SPIist

(
1

σ2
SPIis,t−1

SPIis,t−1 +
C

∑
c=1

1
σ2

ηc,i

P∗
c,ist

)
(2.7)

and

σ2
SPIist

=

(
1

σ2
SPIis,t−1

+
C

∑
c=1

1
σ2

ηc,i

)−1

. (2.8)

The posterior mean of the store price belief in (2.7) is a weighted average of the differ-

ent sources of information available: the prior mean belief and the price signals from

different product categories.2 Similarly, the weights are proportional to the precision of

each piece of information: the precision of the prior belief, i.e. 1/σ2
SPIis,t−1

, and, crucial

to our study, the precision of each category price signal, i.e. 1/σ2
ηc,i

(c = 1, . . . , C).3 In

the next subsection we specify the link between the variances of category price signals

and category characteristics.

2The posterior mean can also be written as the prior mean adjusted toward the price signals, i.e.
SPIist = SPIis,t−1 + ∑

C
c=1 γc,ist(P∗

c,ist − SPIis,t−1), with γc,ist = σ2
SPIist

/(σ2
SPIist

+ σ2
ηc,i

). The γs are the so-
called Kalman gain coefficients (see e.g. Erdem and Keane 1996).

3The posterior variance of the store price belief in (2.8) has a similar interpretation, i.e. it combines
the prior variance (precision) and the variance (precision) of the price signals. Over time, this posterior
variance converges to zero. Conditional on the category price signal variances, not only is the posterior
variance deterministic but also the posterior mean, as consumers observe the actual category prices.
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2.4.3 Including category drivers of SPI learning

All else equal, a consumer i with a low value of σ2
ηc,i

in a given product category c, learns

faster from, and attaches higher weight to, the prices of that product than a consumer

l with a high value of σ2
ηc,i

(∀i 6=l) (see Narayanan and Manchanda 2009, for a similar

interpretation). Aggregated across consumers, a product category c with a low σ2
ηc

is

considered more important than a product category d with a high σ2
ηd

(∀c 6=d) for the

formation of store price images. Lighthouse categories are thus those product categories

with low average price signal variance (i.e. a high precision) across consumers, and yet

have a low average share-of-wallet across consumers (see Figure 2.1).

In line with our conceptualization, we specify the category- and consumer-specific

variances σ2
ηc,i

as a function of two components. The first component is a category’s

monetary value wc,i for the consumer i, which is based on the consumer’s share-of-

wallet (SoW). For each consumer, the shares-of-wallet satisfy the sum constraint, i.e.

∑
C
c=1 wc,i = 1. The second component is the category’s informativeness, which is based

on k = 1, . . . , K category-intrinsic characteristics mk,c described in Section 2.2. Formally,

− ln σ2
ηc,i

= β0 + β1 ln wc,i +
K

∑
k=1

βk+1 ln mk,c + ξc,i, (2.9)

with ξc,i ∼ N(0, σ2
ξ ), and thus equation (2.9) corresponds to a normal linear regres-

sion model specification. Note that the double log specification guarantees the signal

variances are positive, allows for interactions between all regressors, and makes the

coefficients directly interpretable as elasticities.4

In summary, the full specification of the store price image model in (2.1)–(2.9)

includes three components: (i) an ordered probit component dealing with the dis-

creteness of our observed store price image measures, (ii) a Bayesian learning process

linking observed price signals to store price image over time, and (iii) a normal linear

regression specification relating the price signal variances to category characteristics.

Instead of using a two-step estimation approach to assess the moderator effects of cat-

egory characteristics, we estimate the parameters of our model jointly, thereby increas-

ing the efficiency of the estimates (see e.g. Fok et al. 2006). For that purpose, we adopt

a Bayesian estimation approach. The Appendix provides details on the estimation pro-

cedure.

2.5 Results

The estimation results are based on an MCMC chain of S1 = 110 000 draws, after dis-

carding the first S0 = 95 000 draws as burn-in.Visual inspection of the evolution of the

4The original specification is a multiplicative model of the form σ2
ηc,i

= e−αw
−β1
c,i ∏

K
k=1 m

−βk+1
k,c e−ξc,i (for

any characteristic operationalized as a dummy we use eβk+1mk,c). Hence, β0 = ln α in equation (2.9).
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sampled values of the parameters of interest suggests that the simulation chain has

converged. Posterior means of the ordered probit threshold parameters α are reported

in Table 2.2. The middle thresholds are further apart than the extremes, in line with

the fact that respondents use extremes relatively less than other values of the SPI scale

(recall that the SPI scale ranges from 1 to 9 and that for identification of the ordered

probit component of the model, α0, α1, and α9 are set to −∞, 0, and +∞, respectively).

The model correctly predicts about one third of all observed SPI scores (28.1%), a fig-

ure that favorably compares to random assignment (11.1%).5 Below, we first report the

estimated precisions of the category price signals. Next, we zoom in on the impact of

underlying category drivers.

2.5.1 SPI learning parameters

The aggregated category price learning parameters across households (i.e. the preci-

sions 1/σ2
ηc

) are reported in Table 2.3, together with the corresponding average shares-

of-wallet (across households) and average actual prices (across stores and over time).

We also rank all product categories based on each of the three variables, from high-

est to lowest. Based on a median split of the categories’ shares-of-wallet on the one

hand, and the estimated precisions of price signals on the other, we classify the cate-

gories into four groups (see the framework in Figure 2.1): Avoid (low learning; high

SoW), Unattractive (low learning; low SoW), Subsidization (high learning; high SoW),

and Lighthouse Categories (high learning; low SoW).

Changes in the prices of product categories in the bottom-left quadrant are to be

avoided for purposes of SPI management. Not only are the price signal precisions in

these categories among the lowest (i.e. below the median), their weight in the typical

consumer shopping basket is also quite high (above the median). This is the case for

Bread or Cheese, for instance, which enjoy a high share-of-wallet (above 5%), but, accord-

ing to our estimates, have a low ability to signal SPIs. In turn, both the estimated price

signal precisions and the shares-of-wallet of categories in the bottom-right group, such

as Vinegar or Sugar, are below the median, making them ’Unattractive’ for purposes

of SPI management. In contrast, product categories in the ’Subsidization’ group have

both above-median price signal precisions and shares-of-wallet. A drop in the prices of

these categories favorably affects the store’s price image, but could be costly in terms of

revenue reduction. This is the case for Alcoholic drinks or Meat, for instance, which have

a high ability to signal SPI but together take almost a fifth of consumers’ shopping bud-

get. Finally, product categories in the top-right quadrant also exhibit estimated price

5In 59% of the cases, the difference is less than 2 points. The non-parametric Spearman correlation is .30
and the mean absolute deviation (MAD) is 1.3(3). The highest variance inflation factor (VIF) is 8.058 and
the lowest tolerance level 0.124, which together suggest absence of high multicollinearity among category
characteristics.
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Table 2.2: Posterior results for cutoff parameters

SPI % parameter mean s.d. 2.5 50 97.5

α0 -999 0 -999 -999 -999
1 1.7 α1 0 0 0 0 0
2 13.1 α2 0.3987 0.0135 0.3720 0.3986 0.4249
3 30.7 α3 1.1147 0.0080 1.0997 1.1144 1.1278
4 17.3 α4 1.5243 0.0105 1.5082 1.5233 1.5436
5 28.8 α5 2.5888 0.0153 2.5570 2.5890 2.6195
6 6.9 α6 3.4006 0.0433 3.3163 3.3977 3.4901
7 0.8 α7 3.6924 0.0583 3.5849 3.6909 3.8048
8 0.5 α8 4.1206 0.1026 3.9322 4.1168 4.3355
9 0.2 α9 999 0 999 999 999

signal precisions above the median, but represent a below-median share in a typical

shopping basket. These are the lighthouse categories, i.e. the product categories able

to signal SPI while having a reduced risk of subsidization. A striking observation is

that almost all product categories in this group are Personal care and Cleaning products.

Below, we zoom in on the category characteristics driving this category grouping.

2.5.2 Product category moderators of SPI learning

Table 2.4 reports the posterior results regarding the impact of category characteristics

on learning from category prices. Note that since the dependent variable is specified as

the (ln)variance of price signals, not as a precision, a positive sign indicates a decrease

in SPI learning, while a negative sign points to an enhanced effect of category prices on

SPI. The 95% highest posterior density intervals of all parameters exclude zero.

As expected, the proportion of the shopping budget or share-of-wallet allocated

to a category, works as an incentive to learn about the store’s overall price level from

that category’s prices (β1 = 0, 047). Similarly, both the category’s price spread and over-

all expensiveness increase learning from category prices (β9 = 0, 032 and β5 = 0, 205,

respectively). While these results confirm that consumers are likely to pay more atten-

tion to, and more closely track the prices of more expensive categories, the price spread

effect is somewhat unexpected. In hindsight, consumers may have a stronger incen-

tive to monitor prices in categories with a large price spread, just to make sure they do

not overpay. This increased price attention may more than compensate for the lower

’diagnosticity’ of category prices – explaining the positive impact on SPI learning.

In line with previous findings (Alba et al. 1994, 1999), we find that both pro-

motional characteristics affect SPI learning, and are actually the strongest to do so.

Whereas promotional frequency decreases learning from category prices (β2 = −0, 732) –

suggesting that prices become less easy to process because of their volatility – promo-
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Table 2.3: List of product categories, precision, SoW, and actual prices

SUBSIDIZATION LIGHTHOUSE CATEGORIES
(High Learning - High SoW) (High Learning - Low SoW)

Product Precision Categ. SoWa Categ. Actual Categ. Product Precision Categ. SoWa Categ. Actual Categ.

Category meana max min rank rank price indexb rank Category meana max min rank rank price indexb rank
Alcoholic drinks 0.954 1.544 0.369 3 7.3% 2 0.953 41 Personal care 1.016 3.850 0.185 1 0.4% 41 1.225 1
Paper towels & toilet paper 0.877 2.207 0.313 5 1.4% 22 1.060 14 Cleaning products 0.961 2.007 0.392 2 0.2% 47 0.833 49
Laundry detergents 0.801 2.088 0.146 7 1.3% 23 0.947 42 Cosmetics hair 0.839 2.188 0.136 6 0.7% 33 0.962 39
Hot drinks 0.778 1.136 0.523 9 3.3% 12 1.158 2 Cosmetics skin 0.931 1.313 0.373 4 1.1% 25 1.156 3
Soft drinks 0.747 2.458 0.124 10 4.8% 8 0.908 46 Diapers & female hygiene 0.779 1.849 0.169 8 0.7% 32 1.020 27
Pastries 0.732 2.787 0.212 11 1.7% 17 0.992 33 Dental care 0.730 1.222 0.267 12 0.4% 42 1.004 31
Meat 0.671 1.141 0.313 13 10.0% 1 1.048 18 Dishwashing 0.665 1.339 0.265 14 0.4% 39 1.072 12
Milk & diary drinks 0.658 2.025 0.129 16 3.7% 9 0.919 45 Mik replacements 0.661 1.125 0.239 15 0.7% 31 0.849 48
Fish 0.658 1.979 0.079 17 1.9% 16 1.033 22 All purpose cleaners 0.643 1.061 0.304 18 0.3% 46 0.901 47
Vegetables 0.601 0.837 0.235 23 6.2% 3 0.978 35 Bake & dessert 0.640 1.240 0.205 19 0.5% 36 0.927 44
Fine Meat 0.601 2.330 0.000 24 6.1% 4 1.113 8 Ice cream 0.598 0.869 0.226 25 0.8% 30 0.981 34
Fruit 0.603 1.584 0.270 22 5.8% 5 1.051 16
Poultry 0.610 1.280 0.217 21 2.6% 13 1.061 13
Cake 0.632 1.158 0.237 20 1.7% 19 1.047 19
Total 0.709c 57.6%d 1.019c Total 0.769c 6.2%d 0.994c

AVOID UNATTRACTIVE
(Low Learning - High SoW) (Low Learning - Low SoW)

Product Precision Categ. SoWa Categ. Actual Categ. Product Precision Categ. SoWa Categ. Actual Categ.

Category meana max min rank rank price indexb rank Category meana max min rank rank price indexb rank
Bread 0.588 0.830 0.424 30 5.4% 6 1.140 5 Soup 0.513 0.727 0.254 44 1.1% 26 1.038 21
Cheese 0.500 2.002 0.128 45 5.4% 7 1.022 26 Meal componment decorating 0.581 1.307 0.269 32 1.0% 27 1.027 24
Milk products 0.575 1.828 0.133 34 3.7% 10 0.996 32 Salads 0.467 1.078 0.131 46 1.0% 28 1.046 20
Biscuits & cookies 0.570 1.452 0.199 35 3.5% 11 1.049 17 Eggs 0.450 1.284 0.109 47 0.8% 29 1.115 7
Salted snacks 0.592 1.061 0.248 26 2.4% 14 0.944 43 Meal decorating products 0.532 1.371 0.165 41 0.7% 34 0.966 38
Oils & fats 0.578 1.066 0.253 33 2.2% 15 1.088 11 Rice & pasta 0.561 2.042 0.189 37 0.5% 35 1.054 15
Potatoes 0.564 1.441 0.219 36 1.7% 18 1.140 4 Sugar 0.529 1.597 0.234 42 0.5% 37 1.101 9
Chocolate products 0.590 0.995 0.260 28 1.6% 20 1.029 23 Bread substitutes 0.432 1.948 0.110 48 0.4% 38 0.968 37
Prepared meals 0.591 2.110 0.091 27 1.5% 21 0.971 36 Specialty bread 0.558 1.550 0.146 38 0.4% 40 1.018 29
Sandwich spread 0.533 1.776 0.168 40 1.1% 24 1.026 25 Air freshner 0.588 2.639 0.114 29 0.3% 43 1.019 28

Bakery 0.541 0.857 0.179 39 0.3% 44 0.960 40
Breakfast products 0.585 1.438 0.177 31 0.3% 45 1.011 30
Pizzas & snacks 0.522 1.670 0.128 43 0.2% 48 1.138 6
Vinegar 0.411 1.625 0.111 49 0.2% 49 1.090 10

Total 0.568c 28.6%d 1.041c Total 0.519c 7.6%d 1.039c

a Average across households.
b Average across stores and over weeks.
c Average across all categories in the set.
d Sum of all categories in the set.
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Table 2.4: Posterior results: effect of product category characteristics

Hypothesisa Mean S.d. 2,5% 50% 97,5%

Intercept -0.6937 0.1417 -0.4632 -0.6709 -0.9821
Share-of-wallet (+) 0.0471 0.0014 0.0498 0.0471 0.0443
Promotion frequency (?) -0.7321 0.0583 -0.6219 -0.7300 -0.8489
Promotion depth (+) 0.2240 0.0252 0.2727 0.2240 0.1745
Display activity (+) 0.0540 0.0054 0.0643 0.0540 0.0434
Expensiveness (+) 0.2050 0.0118 0.2282 0.2050 0.1816
Interpurchase time (?) 0.1649 0.0207 0.2076 0.1637 0.1278
Market concentration (+) -0.0970 0.0305 -0.0371 -0.0969 -0.1558
Storability (+) 0.1081 0.0114 0.1305 0.1080 0.0860
Price spread (?) 0.0322 0.0073 0.0464 0.0323 0.0178
Number of SKUs (−) -0.0602 0.0132 -0.0332 -0.0611 -0.0840
Brand loyalty (?) 0.1511 0.0228 0.1968 0.1500 0.1096

Error precision 3.7307 0.0351 3.6627 3.7307 3.8001
a Since the dependent variable is specified as the (ln)variance of price signals, not as a

precision, the expected signs are the reverse of the hypothesized learning effects.

tional depth, as expected, enhances learning (β3 = 0, 224). Similarly, and in line with

expectations, display activity increases the impact of category prices on SPI formation

(β4 = 0, 054).

The estimated effect of brand loyalty is positive, with higher levels of brand loyalty

increasing learning (β11 = 0, 151). Interpurchase time, also, has a significant negative

effect on the variance of price signals (β6 = 0, 165). That is, high interpurchase times

encourage consumers to integrate category prices into their overall perceptions of store

expensiveness.

Turning to the assortment-characteristics, we find that the number of SKUs in the

category has a positive coefficient. This is as expected: categories with many items

seem to impair rather than facilitate SPI learning (β10 = −0, 060). Similarly, but con-

trary to expectations, higher levels of market concentration appear to be associated with

lower levels of SPI learning from category prices (β7 = −0, 097). One explanation is

that, because of the intense competition, price levels in these categories are not deemed

to differ across stores, and hence considered less informative to evaluate store expen-

siveness. Finally, and as hypothesized, more easily stockpiled categories appear to be

more informative for store price image formation (β8 = 0, 108).

Given the double log specification, our estimates are directly interpretable as

elasticities and thus as measures of the relative importance of product category char-

acteristics on SPI learning. As already mentioned, the two promotional dimensions –

frequency and magnitude – are the most important characteristics in the SPI formation

process. Expensiveness, interpurchase time, and brand loyalty (in this order), come im-

mediately after in the ranking, and only price spread ranks lower than share-of-wallet.
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Table 2.5: Products categories ranking highest (lowest) on category characteristics that
increase (decrease) SPI learning from category pricesa

Characteristics that increase learning of SPI from category prices (highest 5 product categories)

Characteristic Product Category rank learn rank SoW Characteristic Product Category rank learn rank SoW
Promotion depth Personal care (LC) 1 41 Interpurchase time Personal care (LC) 1 41

Paper towels & toilet paper (S) 5 22 Cleaning products (LC) 2 47
Bake & dessert (LC) 19 36 Dental care (LC) 12 42
Cosmetics skin (LC) 4 25 Dishwashing (LC) 14 39
Cosmetics hair (LC) 6 33 All-purpose cleaners (LC) 18 46

Display activity Soft drinks (S) 10 8 Price spread Personal care (LC) 1 41
Biscuits & cookies (A) 35 11 Paper towels & toilet paper (S) 5 22
Milk products (A 34 10 Meal component decorating (U) 32 27
Salted snacks (A) 26 14 Bake & dessert (LC) 19 36
Hot drinks (S) 9 12 Pastries (S) 11 17

Expensiveness Alcoholic drinks (S) 3 2 Brand loyalty Milk & dairy drinks (S) 16 9
Meat (S) 13 1 Milk products (A) 34 10
Cheese (A) 45 7 Bread (A) 30 6
Laundry detergents (S) 7 23 Hot drinks (S) 9 12
Fine Meat (S) 24 4 Oils & fats (A) 33 15

Characteristics that decrease learning of SPI from category prices (lowest 5 product categories)

Characteristic Product Category rank learn rank SoW Characteristic Product Category rank learn rank SoW
Promotion frequency Personal care (LC) 1 41 Number of SKUs Sugar (U) 42 37

Bakery (U) 39 44 Air freshener (U) 29 43
Dental care (LC) 12 42 Pizzas & snacks (U) 43 48
Specialty bread (U) 38 40 Dishwashing (LC) 14 39
Cleaning products (LC) 2 47 Cleaning products (LC) 2 47

Market concentration Cheese (A) 45 7
Cosmetics skin (LC) 4 25
Soft drinks (S) 10 8
Chocolate products (A) 28 20
Pastries (S) 11 17

a U = Unattractive, S = Subsidization, A = Avoid, LC = Lighthouse Categories.
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Table 2.5 combines the insights from our two sets of results. For each product

characteristic with a positive impact on SPI learning, we list the five product categories

with the highest score for that characteristic (top panel). Similarly, for each characteris-

tic that reduces learning, we indicate the lowest scoring categories (bottom panel). We

also report the categories’ rankings in terms of the average effect on SPI learning, and

their average SoW (given by 1/σ2
ηc

and wc, respectively). All but three lighthouse cate-

gories identified earlier (Diapers & female hygiene, Milk-replacements, and Ice cream) figure

among the product categories with either the highest or lowest values in most product

characteristics. All these lighthouse categories share the fact that they are among the

ones with highest values of promotion depth, price spread, and interpurchase times.

At the same time, they exhibit the lowest values of promotion frequency, number of

SKUs, and market concentration – results that have important managerial implications

for retailers interested in managing SPI.

2.6 Conclusions, limitations and future research

2.6.1 Conclusions

In this chapter, we proposed a framework where actual prices of different product cat-

egories are integrated in a process of store price image formation. We argued that a

product category’s ability to signal SPI is determined not only by its share-of-wallet

but also, and more importantly, by a number of category characteristics that drive the

diagnosticity and accessibility of its category prices. Building on this framework, we

developed a model of SPI formation over time in which category prices act as unbi-

ased, noisy signals about stores’ cheapness or expensiveness, and in which consumers

update their overall price beliefs according to Bayesian updating rules. In addition, we

specified the precision of the category price signals as a function of their underlying

category-specific drivers. We estimated the model with a Bayesian approach. In so

doing, we made use of a large and unique data set, combining weekly store visits and

purchase data with semiannual store price perceptions, for a representative panel of

households.

We highlight three main findings. First, we find that various product categories

carried by the retailer play a substantially different role in the SPI formation process,

with average price signal precisions ranging between 1.016 for Personal care to 0.411

for Vinegar. This difference in the categories’ contribution to store price image sug-

gests that, when managing SPIs through prices, careful thought must be given to which

product categories best suit this purpose.

Second, higher share-of-wallet categories have a higher impact on SPI formation.

However, the link is not very tight, as suggested by the low elasticity of share-of-wallet
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(compared to those of most product category characteristics). This further underscores

the importance of a category-specific pricing approach for SPI improvement. It shows

that retailers have the possibility to select categories that contribute favorably to SPI,

yet in which price cuts do not overly hurt revenue. Successful SPI management should

focus on lighthouse categories, which – though they constitute only a small portion

of sales – exert a strong impact on the store’s overall price beliefs. Our results iden-

tify such lighthouse categories – indicating that they are predominantly related with

Personal and Home care.

We also identify categories that are not suitable to create a favorable price image.

Product categories such as Bread or Cheese, for instance, are to be avoided when manag-

ing SPIs, as these categories have a high share-of-wallet (meaning that price reductions

are bound to hurt revenue) yet a low signaling ability. Alcoholic drinks or Meat, in con-

trast, have a high ability to signal SPI, but they still entail a high risk of subsidization,

as they represent almost a fifth of consumers’ shopping budget. This casts doubt on

the conventional wisdom that store price image improvement calls for price cuts in

food categories – as practiced by Wal-Mart (CNBC 2010) – and especially in ‘fresh’ cat-

egories – as was done by Albert Heijn (van Heerde et al. 2008). While our results show

that price drops in these categories, indeed, contribute to a favorable store price per-

ception, they also cut into an important portion of overall store revenue and margin.

Hence, retailers whose profitability is under pressure, may wish to revisit their choice

of ’signaling’ categories based on our findings.

Third, we identify which category characteristics drive the ability to signal low

store prices. Our findings support the notion that category characteristics that increase

the attention to prices, or for which there are strong (monetary) incentives to track

prices – e.g. display activity, promotion depth, price spread – increase SPI learning.

And while characteristics generating simpler price distributions – interpurchase time

and brand loyalty – also increase SPI learning, characteristics likely to generate more

complex distributions of category prices – e.g. promotion frequency and number of

SKUs – decrease SPI learning. Retailers can use these insights to re-consider their pric-

ing approaches across categories – reaping higher margins in these low signaling cate-

gories, while emitting a message of cheapness through low prices in others.

2.6.2 Limitations and future research

Clearly, this study has some limitations that open the way for new research questions.

First, we focused on the impact of prices on store price image development. However,

other variables may also have an impact on the formation of SPIs. For instance, press

or advertising messages (see e.g. Shin 2005, Simester 1995, Srivastava and Lurie 2004),

may signal the overall price level of stores and contribute to the formation of price



2.6. CONCLUSIONS, LIMITATIONS AND FUTURE RESEARCH 33

beliefs in the mind of consumers. Also, other store characteristics such as atmospherics,

lighting, or shelf arrangements and the use of outer-packs may generate an image of

cheapness for the store. For lack of information, we could not analyze the effect of

(changes in) such cues in our study. Interestingly, an emerging practice among retailers

is to manage these cues by store aisle. Specifically, Carrefour Belgium, in an attempt

to enhance the appeal of its hypermarkets, is now refurbishing its stores so as to create

an image of cheapness in some aisles (product categories), while striving for a more

’luxurious’ appearance in others. An interesting question is whether the categories

that contribute to a favorable price image through low prices, are also those where non-

price cues need to signal cheapness – and vice versa. Future research could pursue this

issue.

Second, our study focuses on category prices as signals of SPI. This focus is con-

sistent with a category management perspective, and with the observation that retail-

ers often express their ’differential’ advantage in terms of specific category offers. Yet,

prices within a category may differ in their SPI signaling ability. On the one hand, con-

sumers may be inclined to use the prices of leading national brands, which are available

throughout different stores, as anchors to judge the stores’ overall price levels relative

to others. On the other hand, store wide private label prices may stand out in the for-

mation of SPI. To our knowledge, the importance of national brand versus private label

prices for SPI formation has not been addressed, and we hope that our study stimulates

work in this area.

Third, we identified those lighthouse categories that better signal SPI and yet

have a low share-of-wallet. This conceptualization allowed us to group categories,

and provided an intuitive way to approximate the likely ’subsidization’ of consumers

if prices are dropped in the ’wrong’ categories. However, changes in prices not only

change SPI. They also have a more direct effect on category sales inside the store, which

is not to be overlooked (see e.g. Bolton 1989, Hoch et al. 1995, Bell et al. 1999). For

instance, while we find storability to be associated with enhanced SPI learning from

prices, Bell et al. (1999) found it to be associated with increased elasticity of category

demand. Hence, lowering prices in storable categories would lead to both stronger cat-

egory demand increases and more favorable SPIs. The same authors, however, found

size of the assortment and market concentration to be associated with higher demand

elasticities, while we find the two product characteristics to be detrimental to SPI learn-

ing. Hence, for these category characteristics, it seems that retailers face a trade-off be-

tween higher immediate demand increases, yet lower SPI signaling value when drop-

ping prices. Future studies should further document the net outcomes of price changes

in different categories, by including the impact of category prices on both store traffic

(through SPI) and category spending.

Finally, while we extensively documented the formation of store price beliefs, a
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next question is how changes in SPI translate into store traffic and spending – some-

thing we did not look into. Empirical studies that include SPI as a determinant of store

selection are rare (see van Heerde et al. 2008, for an exception). Moreover, papers that

do consider the impact of SPI typically ignore the fact that SPIs themselves are adjusted

over time, based on actual price levels. Future research, therefore, should address the

mediating role of SPIs for price-induced changes in store traffic and spending.
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2.A Model estimation

Instead of using a two-step estimation approach to assess the moderator effects of cat-

egory characteristics, we estimate the parameters of our model jointly, thereby increas-

ing the efficiency of the estimates (Fok et al. 2006, see e.g.). For that purpose, we adopt

a Bayesian estimation approach. Bayesian estimation is carried out by sampling ran-

dom draws from the joint posterior distribution of all unknowns and parameters. We

first explain our sampling procedure, and then describe the priors and starting values

used to implement the model estimation. Next, we present the joint posterior and the

full conditional distributions.

2.A.1 Bayesian MCMC estimation

Our set of parameters and latent variables consist of: the latent price beliefs SP̃Iist,

the cutoff parameters αj, the category- and consumer-specific price signal variances

σ2
ηc,i

, the parameters β that describe the effects of category characteristics and share of

wallet (and an intercept), and the linear regression error precision h = 1/σ2
ξ . The joint

posterior distribution of all unknowns and parameters in our model has an unknown

form. Therefore, we use Markov Chain Monte Carlo (MCMC) simulation to obtain

draws from the joint distribution.

We split up the vector of parameters in several blocks and use Gibbs sampling to-

gether with data augmentation (Tanner and Wong 1987), that is, we sequentially draw

from the full conditional distributions of the parameters. This generates a Markov

chain which converges under mild conditions (see Gelfand and Smith 1990, Tierney

1994). In particular, we use the Gibbs sampler developed by Albert and Chib (1993) for

discrete ordered data. For parameters for which the full conditional posteriors do not

belong to any known family of distributions we use an independence chain Metropolis

Hastings (M-H) algorithm (Chib and Greenberg 1995).

2.A.2 Likelihood, priors, and joint posterior

For the sake of readability, we define the set of all unknowns Ψ = {Θ, SP̃Iist} and the

subset of parameters Θ = {σ2
ηc,i

, β, h, α}. We use the following priors for the parameters:

β ∼ N(β, Ω), h ∼ Gamma, and p(α) ∝ c (a flat prior), where α is the vector of cutpoints

or concentration parameters. The joint posterior distribution of all unknowns is propor-

tional to the full data likelihood (i.e. it also includes the latent variables) times the prior

distribution, i.e. (prices on the right side of the conditionality symbol are omitted for

simplicity):

p(Ψ|MSPIist) ∝ p(MSPIist, SP̃Iist|Θ)p(Θ). (2.A-1)
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Note that the likelihood function (the first term on the right side in 2.A-1) includes

not only the observed MSPIist but also the unobserved SP̃Iist. Making use of a simple

property of conditional probabilities, the augmented likelihood becomes

p(MSPIist, SP̃Iist|Θ) = p(MSPIist|SP̃Iist, Θ) × p(SP̃Iist|Θ). (2.A-2)

It is clear that the value of MSPIist is known with certainty when conditioned on SP̃Iist

and α, and thus the first term in (2.A-2) can be simplified into

p(MSPIist|SP̃Iist, Θ) = I(αMSPIist−1 < SP̃Iist ≤ αMSPIist
), (2.A-3)

with MSPIist ∈ {1, 2, . . . , J}. Plugging (2.A-2) and (2.A-3) in (2.A-1), the joint posterior

distribution becomes

p(Θ, SP̃Iist|MSPIist) ∝ p(SP̃Iist|Θ)p(Θ)× I(αMSPIist−1 < SP̃Iist ≤ αMSPIist
).(2.A-4)

Let yc,i = ln σ2
ηc,i

, β a M + 1-dimensional vector of coefficients, β = (β0, . . . , βM)′, with

M = K + 1, and Xc,i the collection of X-values for the individual-category pair, and

xc,i = (1 ln wc,i ln m1,c . . . ln mK,c)
′. Writing (2.A-4) with the probability distributions

in use, we get the final expression of the joint posterior:

p(Ψ|MSPIist) ∝
N

∏
i=1

{ S

∏
s=1

T

∏
t=1

[
1√

σ2
SPIist

exp
(
− 1

2
(SP̃Iist − SPIist)

2

σ2
SPIist

+ 1

)]

×
C

∏
c=1

[
h1/2 exp

(
− h

2
(yc,i − x′c,iβ)2

)]}

× |Ω|−1/2 exp((−1/2)(β − β)′Ω−1(β − β))

× h
ν−2

2 exp
(
− hν

2τ′−2

)

× I(αMSPIist−1 < SP̃Iist ≤ αMSPIist
). (2.A-5)

2.A.3 Complete conditional posteriors

Full conditional posterior for h

The terms of 2.A-5 that depend on h are the following (for simplicity, we do not repeat

the conditional arguments in this section):

p(h| ) ∝
N

∏
i=1

{ C

∏
c=1

[
h1/2 exp

(
− h

2
(yc,i − x′c,iβ)2

)]}
h

ν−2
2 exp

(
− hν

2τ′−2

)
. (2.A-6)

Multiplying over c and i (and using matrix notation), we have

p(h| ) ∝ h
NC

2 exp
(
− h

2

(
(y − Xβ)′(y − Xβ)

))
h

ν−2
2 exp

(
− hν

2τ′−2

)
. (2.A-7)
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Summing up the exponentials and rearranging terms, we have

p(h| ) ∝ h
NC+v−2

2 exp
(
− h

2

(
(y − Xβ)′(y − Xβ) + ντ′2

))
. (2.A-8)

which is the kernel of a Gamma density. That is,6

h| ∼ G
(
τ−2, v

)
, (2.A-9)

where

v = NC + ν, (2.A-10)

and

τ2 =
(y − Xβ)′(y − Xβ) + ντ2

v
. (2.A-11)

Full conditional posterior for β

The terms of 2.A-5 that depend on β are the following (overlined parameters refer to

posterior parameters):

p(β| ) ∝
N

∏
i=1

{ C

∏
c=1

[
exp

(
− h

2
(yc,i − x′c,iβ)2

)]}

× exp((−1/2)(β − β)′Ω−1(β − β)). (2.A-12)

Multiplying over c and i and summing up the exponentials, we can write

p(β| ) exp
(
− 1

2

(
h(y − Xβ)′(y − Xβ) + (β − β)′Ω−1(β − β)

))
. (2.A-13)

And manipulating the matrices we can write the term inside the exponential as

(β − β)′Ω
−1

(β − β) + H,

where

H = hy′y + β′Ω−1β − β
′
Ω

−1
β

and

Ω = (Ω−1 + hX′X)−1 (2.A-14)

β = Ω(Ω−1β + hX′y) (2.A-15)

Finally, substituting into 2.A-13 and dropping the terms that do not depend on β, we

get:

p(β| ) ∝ exp
(
− 1

2
(β − β)′Ω

−1
(β − β)

)
, (2.A-16)

which is the kernel of a Normal distribution. Hence,

β| ∼ N(β, Ω). (2.A-17)
6Overlined parameters refer to posterior parameters.
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Full conditional posterior for αj

It is easier to draw from the components of α one at a time (see Koop 2003, p.220).

Because we are conditioning on α−j (i.e. all α with αj removed), αj must lie in the

interval [αj−1, αj+1]. In addition, the fact that we are conditioning on both MSPI and

SP̃I allows us to know which values of the latent data correspond to which values

for the actual data. Finally, the conditioning arguments provide no other information

about αj. Therefore, the posterior conditional for αj is a Uniform distribution:

αj| ∼ U(αj−1, αj+1) (2.A-18)

for j = 2, . . . , J − 1, where

αj−1 = max{αj−1, max{SP̃Iist : MSPIist = j}}

and

αj+1 = min{αj+1, min{SP̃Iist : MSPIist = j + 1}}.

The notation max{SP̃Iist : MSPIist = j} (min{SP̃Iist : MSPIist = j + 1}) denotes the

maximum (minimum) value of the latent data over all individuals who have chosen

the rating level j.

Full conditional posterior for SP̃Iist

Each consumer is independent conditional on the information in X and each observa-

tion for a consumer is independent conditional on the vector of mean beliefs SPIist.

This means that we can draw the latent SP̃Iist for a particular consumer and a particu-

lar observation separately from all other observations (we condition SP̃Iist on SP̃I−ist,

i.e. all set of SP̃Is with SP̃Iist removed). The draws are sequentially obtained from a

truncated normal distribution:

SP̃Iist| ∼ Truncated N(αMSPIist−1,αMSPIist
](SPIist, σ2

SPIist
+ 1). (2.A-19)

Full conditional posterior for σ2
ηc,i

The terms of the joint posterior that depend on σ2
ηc,i

are the following (recall the expres-

sion of the mean price belief in Equation 2.7):

p(σ2
ηc,i
| ) ∝

N

∏
i=1

{ S

∏
s=1

T

∏
t=1

[
1√

σ2
SPIist

exp
(
− 1

2
(SP̃Iist − SPIist)

2

σ2
SPIist

+ 1

)]

×
C

∏
c=1

[
h1/2 exp

(
− h

2
(yc,i − x′c,iβ)2

)]}
. (2.A-20)
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The complete posterior conditional for the individual level parameters σ2
ηc,i

does not

have a known form. We use an independence chain Metropolis-Hastings algorithm (Chib

and Greenberg 1995) with a normal candidate generating density to make draws from

the distribution in (2.A-20). The mean and variance of the candidate density are set

equal to the mean and variance of the linear regression component of the model.

2.A.4 MCMC sampler

The MCMC sampling algorithm can be summarized in the following steps:

• Compute SPIist and σ2
SPIist

from Bayesian learning equations;
• Sample SP̃Iist|( ) from a Truncated Normal distribution;
• Sample α|( ) from a Uniform distribution;
• Sample β|( ) from a Normal distribution;
• Sample h|( ) from a Gamma distribution;
• Sample σ2

ηc,i
|( ) using a Gaussian random-walk chain Metropolis-Hastings algorithm

– Evaluate conditional posterior σ2
ηc,i

|( ) on current draw and on candidate draw
(computing again the Bayesian learning quantities)

– Accept candidate draw depending on acceptance probability

• Repeat

To improve the rate of acceptance of candidate draws for the learning parameters, we

do not sample all learning parameters at once but we sample them in a block per prod-

uct category.

2.A.5 Model implementation

To start up the Gibbs sampler, we put the the initial values for the thresholds equal

to αj = j − 0.5, with j = 2, . . . , J − 1 and J = 9. For the degrees of freedom and the

mean of the (inverse-)gamma prior distribution, we use v0 = 1 and s2
0 = 1 500, respec-

tively. The starting value for the precision h in the linear regression is set equal to 1/s2,

where s2 is the OLS sum of squares using the initial values, divided by the number of

degrees of freedom (number of observations minus the number of regressors). Finally,

the mean prior hyperparameters for β are set equal to either 0, −0.5, or 0.5, depending

on whether there is a clear expectation for the hypothesized effect and in which direc-

tion. The corresponding variances are set equal to 0.5 and all covariances are set equal

to zero.

For the initial values of the Bayesian learning quantities – the mean price image

perceptions SPIis0 and their variances σ2
SPIis0

– we use average values of the observed,

self-reported price images from the first wave period (not used for estimation). Ac-

cordingly, for SPIis0, we add an individual standard normal random value to the store-

specific average prices in the first wave period. We use the first wave store-specific
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average variance values (computed across households) as the mean parameters of the

inverse gamma-distributions from which we draw σ2
SPIis0

. Finally, the C individual ran-

dom starting values for σ2
ηc,i

are drawn from the (absolute) values of a standard normal

distribution. In Equation 2.9 we put wc,i equal to 1 × 10−9 to handle shopping basket

weights equal to zero. The model was coded and estimated in MATLAB R©.



Chapter 3

Consumer Use of Actual Prices and

Price Images When Choosing a Store

3.1 Introduction§

Prices are ubiquitous in consumer decisions about where to shop. While early store

choice papers remained agnostic or at least ambiguous about the store price informa-

tion adopted by consumers, recent literature suggests that consumers may rely on two

distinct types of price cues: (1) observed or expected week-to-week basket prices and

(2) overall store price images (e.g. van Heerde et al. 2008, Mägi and Julander 2005).

Store price image (SPI) has in fact become an increasingly popular pricing tool among

retailers. So much so, that managing SPI is considered essential in profitable retail pric-

ing strategies (Levy et al. 2004) and grocery retailers are spending hundreds of millions

of dollars to develop their SPIs (Kalyanam, Lal, and Wolfram 2006). In 2009 alone,

France-based Carrefour, the largest hypermarket chain in the world, has invested more

than half a billion dollars in its price image (MarketWatch 2009).

Despite its managerial relevance, surprisingly little is known about the effect of

SPIs on observed store choices, let alone in combination with actual prices. For one,

very few empirical studies include SPI as a determinant of store selection, an exception

being van Heerde et al. (2008). Moreover, papers that do consider the impact of SPI,

either separately or in conjunction with weekly actual prices, typically ignore the fact

that SPIs themselves are adjusted over time based on actual price levels. Disregarding

this “mediating role of price image on store traffic” (Fox, Postrel, and Semple 2009) may

have serious consequences. If price changes have an impact on consumer choices not

only directly but also through their effect on SPI, this dual effect must be accounted for to

obtain accurate price response estimates. This is important for academics to correctly

§This chapter is based on joint work with Els Gijsbrechts (Tilburg University). We thank participants
at Marketing Science 2009 (Michigan, USA) and Marketing Dynamics 2010 (Istanbul, Turkey).
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understand the over-time effect of price, relative to other store choice determinants like

assortment or location (Briesch et al. 2008, Bell et al. 1998, Gauri et al. 2008). It is also

crucial for retailers aiming to fine-tune their store pricing.

Apart from market-level effects, there is a lack of understanding about who are

the price-sensitive consumers and, among them, who are the ones more prone to use

one type of price information or the other. Even households that do not immediately

tailor their store choices to weekly prices, may still integrate these prices into their

SPIs, and adjust their store patronage in the longer run. Identifying and profiling these

price-image sensitive consumers would further enhance our understanding of price

response, and prove useful for retailers to develop targeted pricing strategies.

In this chapter we address these pressing issues, and aim at reducing some of the

existing gaps. Our questions are threefold. First, do prices also influence store choice

through SPI and, if so, what is the size of this effect? Second, do consumers who attend

to weekly actual prices for store selection, also adjust their store patronage to (price-

based) changes in SPI? Or, are these routes rather exclusive? Third, can we profile

households who rely on different sources of price information?

To answer these questions, we develop an individual-level model of store choice

that includes both short-term, weekly prices and long-term shaped store price images.

These SPIs, in turn, are spelled out explicitly as a function of past store prices, using a

Bayesian updating specification. The latter is consistent with earlier analytical work on

SPI formation over time (e.g. Feichtinger et al. 1988, Büyükkurt 1986), and its param-

eters can be regarded as indicators of adaptive consumer learning. We estimate these

models on an extensive and unique data set, which combines scanner panel informa-

tion on store choice and spending, with longitudinal survey data on store price images

held by the same individual panel members. Taking the perspective that shopping ac-

tivity is part of a household’s production process (Becker 1965), we then combine our

household-level estimates of price sensitivity, with extensive background data, so as to

explore which demographic and shopping characteristics trigger consumers to use one

or the other type of price information (see e.g. Urbany et al. 1996, Hoch et al. 1995, for

a similar approach).

Our empirical results provide several new and important insights. First, we ob-

tain clear evidence of a dual price effect. Actual price changes influence store choice

both directly, and indirectly through their effect on SPIs, and ignoring this second ef-

fect leads to an underestimation of the long-term impact of store price shifts. Second,

we show that while these two types of price sensitivity may coincide in a small group

of consumers, the majority of price-sensitive consumers adjust their store patronage

to only one type of price cue (either actual weekly prices or SPI). Third, we find that

households that attend to actual weekly prices (’Eye-For-Detail’ consumers) differ from

those guided by SPI (’Big Picture’ consumers) on various socio-demographic and be-
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havioral characteristics – including media usage. These insights are relevant not only

from an academic perspective, they also empower retailers with important knowledge

to set prices while maintaining profitability (Levy et al. 2004, Grewal and Levy 2007).

The remainder of the chapter is organized as follows. In the next section, we

briefly present our conceptual framework. Section 3.3 sheds light on the unique fea-

tures of the data set, and presents the models. Estimation results are summarized

in Section 3.4. In Section 3.5, we explore the profiles of price and SPI-sensitive con-

sumers. Section 3.6 highlights implications, by simulating the over-time impact of a

price change among consumers with different types of price sensitivity. Finally, we

offer conclusions and discuss opportunities for future research in Section 3.7.

3.2 Conceptual framework

3.2.1 Background literature on prices and store choice

According to economic theory, prices influence choices because they constitute objec-

tive indicators of the monetary costs of purchasing (Monroe 2002).1 Consistent with

this premise, academic contributions present price as a major determinant of consumers’

variable cost of shopping at a particular store, and – hence – of store selection (Bell

et al. 1998, Bell and Lattin 1998). Similarly, the prevailing industry wisdom is that (pro-

motional) price changes drive store traffic (Urbany et al. 2000). These views are fur-

ther underscored by consumer surveys, ranking price as one of the top determinants in

store selection (e.g. Nielsen 2008). Yet, empirical evidence on this effect seems less over-

whelming, with several studies reporting small or insignificant market-level effects of

price changes on weekly store choice (e.g. Bell et al. 1998, Briesch et al. 2008). Sim-

ilarly, individual-level analyses have revealed the segment of consumers who cross-

shop to benefit from weekly price changes, to be very small (Gauri et al. 2008). This

discrepancy has led some researchers to conclude that the impact of price has been

over-estimated (Urbany et al. 2000).

However, it is not because one fails to uncover strong (immediate) effects, that

actual prices are unimportant for store choice. For one, even if consumers do not adjust

their weekly store selection to actual, week-to-week price changes, their store patron-

age may still be guided by their overall image of the stores’ expensiveness. Psychology

and marketing have long acknowledged the subjective nature of prices, and have found

support for the existence and effects of price perceptions (Zeithaml 1988). In a retail

context, store price images are defined as consumer perceptions or beliefs about stores’

overall price levels (Brown 1969, 1971, Nyström 1970, Nyström et al. 1975). Considered

a distinct retail price dimension (Mägi and Julander 2005), several studies – indeed –

1For a recent model in economics with imperfect consumer price knowledge, see Carvalho (2009).
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have found consumers’ self-reported store price images one of the most important de-

terminants of store patronage (Nielsen 2008, Arnold et al. 1983, Severin et al. 2001, Finn

and Louviere 1990, 1996, Srivastava and Lurie 2004), over and above objective weekly

store prices. Moreover, such store price images do not come ’out of the blue’. Instead,

they are themselves affected by actual prices charged in the store (Ailawadi and Keller

2004). As argued by Feichtinger et al. (1988) and Büyükkurt (1986), store price image

formation is a dynamic process, by which consumer beliefs about the overall expen-

siveness of stores, are learned adaptively over time based on basket prices.

Bringing together these insights, actual weekly prices can drive store choice in

two ways. First, they can exert a direct influence on the consumers’ store selection – an

effect focused on in most empirical studies on store traffic and choice. Second, they can

shape the store’s overall image of expensiveness and, through this adjusted SPI, affect

store patronage over time. This indirect effect of actual prices on store selection has – to

the best of our knowledge – received far less attention conceptually, and has not been

fully addressed empirically. Some studies measure the effect of prices on store price

image (Desai and Talukdar 2003, Büyükkurt 1986), but not the ensuing store choice

effect. Others consider the impact of price image (Mazumdar et al. 2005, Mägi and

Julander 2005), or of both actual prices and price image (van Heerde et al. 2008), but

treat SPI as an exogenous variable. Moreover, these studies do not shed light on the

size of consumer segments responding to one or the other type of price information,

nor on the profile of these shopper segments.

Below, we present a framework of consumers’ dual response to store prices,

which will be empirically investigated in subsequent sections. We note upfront that

our emphasis is on store choice (or store traffic) as the dependent variable, and not on

promotion-induced shifts in spending once the consumer is inside the store. Given that

"store traffic is essential to retailer profitability" (Fox et al. 2009, p.709) and that stealing

traffic from competitors is the primary reason for retailers to engage in temporary price

cuts (Urbany et al. 2000), this perspective seems worthwhile.

3.2.2 Consumer sensitivity to store-level prices and price images

In line with the discussion above, consumers can be sensitive to prices in their store

selection in two main ways. They can directly respond to changes in actual, objective

basket prices. They can also be influenced by subjective, holistic summaries of stores’

overall expensiveness, which – themselves – may be gradually adjusted to changes

in actual prices. Viewing households as a production unit (Becker 1965), the extent

to which consumers search for and respond to grocery price information is driven by

the cost of acquiring price information on the one hand, and the expected gains of

this price search on the other. These, in turn, depend on a number of contextual and
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household-specific characteristics and constraints (Urbany et al. 1996, Gauri et al. 2008).

We propose that these costs and gains, and their antecedents, may differ between the

response to the two types of price information, such that consumers may fall into four

possible segments, depicted in Figure 3.1: (1) convenience, (2) eye-for-detail, (3) big

picture, (4) and combined use.

Store price images
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NO Convenience Big picture

Figure 3.1: Groups of price sensitive consumers based on use of basket prices
and store price images.

‘Convenience’ shoppers correspond to the typical non-price sensitive grocery

shoppers, whose store choice is driven by non-price marketing mix variables such as

assortment (Briesch et al. 2008), or by convenience-factors such as distance (Gauri et al.

2008). Though these consumers may, as indicated by Gauri et al. (2008), incidentally

benefit from in-store price offers, their store patronage decisions are not price-based.

These consumers either do not care about grocery prices (e.g. for lack of financial

constraints), or do not consider it worthwhile to bother with price information (e.g.

because of time pressure, or mobility constraints).

‘Eye-for-detail’ consumers, in contrast, keep track of actual store prices to spot

temporary price reductions, and then adjust their store choices to benefit from the im-

plied monetary savings. Such behavior implies two conditions. First, consumers need

to collect and encode timely information on actual prices, through, e.g., store feature

ads or flyers, word of mouth, or frequent (same week) store visits. Second, they need

to adjust their shopping patterns so as to benefit from the temporary offers, either by

shifting their entire trip to the store that has the lower temporal prices, or by splitting

their purchases – adding ‘cherry-picking’ trips to stores that offer good deals. Both con-

ditions imply substantial costs of information collection, and of shopping around: even

if no extra store visits are added, the consumer must be willing to switch to less conve-

niently located or less familiar stores. As already suggested by Urbany et al. (1996), "the

benefits of such a regular, extensive search and store switching will exceed the costs for

only a small minority of consumers" (p. 94).

‘Big Picture’ consumers keep track of stores’ overall expensiveness, such that
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stores with more favorable price images have a higher chance of being patronized,

or that regularly visited stores can be abandoned if consumers come to perceive them

as too expensive. Even if the stores’ SPI is updated based on actual price information

(leading to an ’indirect’ actual price-effect), the search and shopping costs of this behav-

ior are quite different from those in the previous segment. For one, instead of actively

having to search for specific weekly price information prior to store selection, con-

sumers may simply ’take in’ price cues as they shop around in the store, and integrate

this information with prior beliefs for future use. This process of price encoding need

not be effortful or time consuming, and can even take place unconsciously (Mazumdar

and Monroe 1990). Moreover, acting upon SPIs does not require consumers to visit

multiple stores or change stores on a weekly basis – as SPI changes tend to come about

gradually (Alba et al. 1994). Hence, even consumers with high time costs, or important

mobility constraints, can be expected to exhibit Big-Picture price response – as long as

they experience some type of budget constraint and/or find it important, psychologi-

cally, to get good value for money.

Finally, even though we do not expect this segment to be large, consumers may

simultaneously exhibit both types of price-sensitivity. This can be true, for instance, if

consumers’ actual weekly price information is (perceived to be) incomplete, such that

they supplement it with a more stable subjective indicator of store expensiveness. Or,

consumers’ willingness/ability to shop around may be driven by situational factors,

making them rely more on one or the other type of price cue depending on the circum-

stances. We label such consumers ‘combined’ price users.

Our methodology, outlined below, will allow us to assess the size of these dif-

ferent segments. Moreover, within each segment, we will quantify the strength of

the households’ response to actual store prices, either directly (Eye for detail con-

sumers), indirectly through the SPI impact and formation (Big Picture consumers), or

both (Combined segment). Last but not least, we will explore how the nature and

strength of these responses varies with a set of household characteristics, related to the

costs and benefits of price search.

3.3 Data and models

Since our approach benefits from the availability of a unique data set, we start with

a brief description of these data. The models, and their estimation approach, are pre-

sented next.
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3.3.1 Empirical setting and data

For our empirical analysis, we have access to an exceptionally rich data set. This in-

cludes scanner panel data from a national GfK panel covering purchases of 4400 house-

holds, at all Dutch grocery retailers, over a period of four years (from January 2002 to

December 2005). For N =1076 of these panel members, we have access to a broad set

of background characteristics, including socio-demographics, shopping behavior and

media usage variables, and attitudinal variables. These data are complemented with

information from Reed Business, specifying store floor spaces and store locations (zip-

code of all available outlets of a chain, on a bi-annual basis) for each of the grocery

chains, and from IRI and Publi-Info, specifying weekly price cuts, feature and display

activities by retailer.

In the analysis below, we focus on the S = 10 major chains, which, together, com-

prise 88% of all store visits among Dutch grocery chains. We include trips made by

households for whom background data are available, over a period of 209 weeks. In

total, our data set consists of 349,586 shopping trips. Table 3.1 provides choice shares

and descriptive statistics aggregated over the entire period of analysis for the non-price

variables in our model, by retail chain. The leading chain is Albert Heijn, with almost

a third of the Dutch market (in terms of shopping trips), the broadest coverage (aver-

age distance of 2.3 km), and the second largest assortment. On average, households

patronize or switch among 3.2 different stores during the period of analysis, and shop

for groceries approximately twice a week.

A unique feature of our data set is that, for the same individual panel members

and in the same time period, we have information on the chains’ price perceptions.

These price perceptions are measured on an ordinal scale from 1 (= most favorable)

to 9 (= least favorable) and vary at the household-, time-, and store-level. The data

were collected semi-annually by GfK among their panel members, using store-intercept

interviews. The surveys took place in weeks 16 and 40 of every year, with an additional

survey in week 5 of 2004. Each of the 9 survey waves was conducted throughout the

whole week, allowing households to judge the overall price level of more than one

store.

The average (and standard deviation) values for actual store prices and store

price images are given in Table 3.2, together with two rankings of the stores based

on each type of price information. Two stores, Aldi and Lidl, are hard discounters and

practice an everyday low price (EDLP) policy with virtually no price promotions (they

have the lowest mean and standard deviation values for prices). Together with Jumbo,

these chains are the ones enjoying the lowest (i.e. most favorable) average store price

image among consumers. All other stores have higher average prices and promote

their products regularly (HiLo policy), with the market leader Albert Heijn practicing
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Table 3.1: Descriptives: mean (standard deviation) values for non-price variables and
market shares by retail chain

Store Number
of visits

Market
share

Weekly
visitsa Distanceb

Floor
spacec Loyalty Featured,e

Albert Heijn 102153 29% 0.55 2.00 (2.57) 1.38 (0.57) 0.31 (0.38) 1.68 (1.23)
Aldi 33310 10% 0.21 2.95 (2.86) 0.43 (0.13) 0.09 (0.18) 1.99 (4.71)
C-1000 78981 23% 0.41 2.56 (2.92) 0.98 (0.35) 0.21 (0.33) 1.00 (1.00)
DekaMarkt 11133 3% 0.06 36.36 (31.76) 0.87 (0.36) 0.03 (0.14) 0.95 (0.81)
Edah 22394 6% 0.12 6.42 (5.42) 1.00 (0.36) 0.08 (0.20) 1.87 (1.36)
Jumbo 9042 3% 0.05 12.48 (9.21) 1.41 (0.69) 0.02 (0.11) 0.05 (0.31)
Konmar 12744 4% 0.07 17.81 (15.30) 2.61 (0.51) 0.05 (0.17) 1.40 (1.10)
Lidl 12350 4% 0.08 4.27 (3.76) 0.68 (0.15) 0.02 (0.07) 2.57 (5.41)
Plus 23208 7% 0.12 5.98 (5.20) 0.89 (0.33) 0.05 (0.18) 2.58 (1.50)
SdB 44271 13% 0.23 4.01 (4.71) 1.01 (0.31) 0.14 (0.29) 1.76 (1.15)
Total 349586 100%

a Given by the households’ number of visits to the store divided by the households’ total number of weeks.
b In kilometers (Km).
c In square meters (m2) and rescaled (divided by 1000).
d To compute this variable we use households’ typical shopping basket weights among a representative set of

product categories.
e Given by the percentage of stores in the chain carrying feature promotion times the percentage of products

promoted.
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the highest average prices. However, the most unfavorable store price image is associ-

ated with Konmar, not Albert Heijn. In general, the relative position of a store based

on its average price image does not align perfectly with the store’s average price level,

but, except for Edah and Jumbo, there are only small differences.

To illustrate the evolution of average price images, we zoom in on the HiLo mar-

ket leader Albert Heijn and the EDLP chain Aldi. Table 3.3 shows the evolution of

SPI for these two stores (where higher SPI values correspond with less favorable per-

ceptions), together with their average price levels. The average price image of Albert

Heijn first deteriorates, from the beginning of the period until the end of 2003, but

then consistently improves again. A similar pattern applies to Albert Heijn’s average

price levels. The average price image of Aldi, however, has the opposite pattern: it is

lower than the overall average until the start of 2004, and higher afterwards. Taken

together, Tables 3.2 and 3.3 suggest that price images vary not only across chains, but

also over time within a chain, as do actual week-to-week prices, thus providing prelim-

inary support for the conceptualization of SPI learning. In the next section, we propose

a model of individual store choice that incorporates this learning mechanism.

3.3.2 Model specification

Our model is designed to capture direct as well as indirect effects of actual weekly

prices on store patronage. The logic is as follows. At a given point in time t − 1, the

consumer holds beliefs about the overall expensiveness of each available store. These

store price images, together with actual store price information, may affect his selection

of a specific store on his next purchase occasion. After his visit to a store, the consumer

will update his beliefs about the expensiveness of that store based on the prices encoun-

tered inside. Below, we first explain the store choice model, followed by our model of

store price image updating.

Store choice

We model store choice through a random coefficients multinomial probit (MNP) model.

On each shopping trip t, we observe consumer i’s multinomial discrete store choice

yit = s among S mutually exclusive stores (for s = 1, . . . , S).2 Ti is the number of

shopping trips observed for consumer i and the total number of observations is thus

given by ∑
N
i=1 Ti. Consumers attach a (partly observed) utility to each store choice,

and choose the store with maximum utility. Let u∗
it = {u∗

it1, . . . , u∗
itS} denote the vector

of store-specific latent utilities underlying choices. Hence, the multinomial outcome

2Throughout the paper we use store and retail chain, as well as shopping trip and time period, inter-
changeably. We consider only single-store shopping trips. See Vroegrijk, Gijsbrechts, and Campo (2010)
for a recent study of multiple-store shopping trip behavior.
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Table 3.2: Descriptives: mean (standard deviation)
values for price variables by retail chain

Store
Pricea

(Index)
Rank
priceb

Price
imagec

Rank
SPIb

Rank
dif.d

Albert Heijn 1.215 (0.057) 10 4.45 (1.17) 9 +1
Aldi 0.589 (0.034) 1 3.12 (1.23) 2 -1
C-1000 0.975 (0.041) 3 3.76 (1.16) 5 -2
DekaMarkt 1.030 (0.055) 5 3.75 (1.14) 4 +1
Edah 1.022 (0.053) 4 4.06 (1.18) 7 -3
Jumbo 1.081 (0.061) 6 2.98 (1.25) 1 +5
Konmar 1.175 (0.077) 9 4.46 (1.14) 10 -1
Lidl 0.592 (0.036) 2 3.26 (1.25) 3 -1
Plus 1.123 (0.060) 7 4.04 (1.20) 6 +1
SdB 1.131 (0.050) 8 4.35 (1.20) 8 =0
a To compute this variable we use households’ typical shopping basket

weights among a representative set of product categories.
b Rank price ordered from cheapest (= 1) to most expensive (= 10) and rank

SPI ordered from most favorable (= 1) to most unfavorable (= 10).
c Measured from 1 (= most favorable) to 9 (= least favorable).
d Extent to which price images among consumers align with average price

levels (= rank price - rank SPI).

variable yit takes the value s if max(u∗
it) = u∗

its. The latent utilities are modeled as a

function of a systematic component of K store-specific variables in the vector wits (for

k = 1, . . . , K) and a normally distributed stochastic component νits representing the

effect of unobservables. Formally,

u∗
its = w′

itsβi + νits, νits ∼ N(0, Ω), (3.1)

where Ω is a symmetric matrix, with non-zero off-diagonal elements. To solve the loca-

tion identification problem present in (3.1) we use differences in utilities.3 Specifically,

we subtract the utility equation of an arbitrarily chosen store – the market leader – from

each of the remaining S − 1 equations. The differenced utility equations can be written

as follows

uits = x′itsβi + ε its, ε its ∼ N(0, Σ), (3.2)

3The model in (3.1) has two identification problems. In particular, there is a locational and a scale
indeterminacy, as adding or multiplying the underlying utilities by a scalar, respectively, leads to the
same likelihood value. The use of differences in utilities is a common practice in the case of an unre-
stricted Ω (see e.g. McCulloch and Rossi 1994). Note that there is no location identification problem if Ω

is restricted to be diagonal. In that case, adding a scalar variable will change the covariance structure by
adding correlation between choice alternatives and the elements of the diagonal of Ω are identified (Rossi,
Allenby, and McCulloch 2005). Further restricting Ω to an identity matrix solves both identification prob-
lems. However, models with a diagonal Ω in which choice alternatives are not allowed to be correlated
are in our view an unrealistic representation of store choice decisions. In the estimation section we explain
how we deal with the scale identification problem.
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Table 3.3: Evolution of
weekly prices and SPI
within pricing formats

Perioda HiLo EDLP
(Albert Heijn) (Aldi)
Prices SPI Prices SPI

2002 : 16 1.200 4.53 0.603 3.00
2002 : 40 1.196 4.60 0.585 2.93
2003 : 16 1.220 4.65 0.603 3.10
2003 : 40 1.229 4.72 0.596 3.07
2004 : 05 1.190 4.36 0.586 3.11
2004 : 16 1.198 4.31 0.583 3.31
2004 : 40 1.224 4.28 0.578 3.20
2005 : 16 1.243 4.21 0.584 3.20
2005 : 40 1.245 4.30 0.584 3.20
a Year:week. Average weekly prices

computed from weeks before and after each
survey week.

where each uits = u∗
its − u∗

itS denotes the differences with respect to the base alternative

S and ε its is a differenced error term. The vector xits contains S− 1 store-specific dummy

variables for the store intercepts and K differenced marketing-mix variables for the sth

store. Stacking together the S − 1 equations of individual i in shopping trip t results in

the following system of equations

uit = Xitβi + ε it, ε it ∼ N(0, Σ), (3.3)

where uit is a vector of S − 1 differenced utilities and Xit = [IS−1 Wit], where IS−1

is an identity matrix of size S − 1 and Wit is a matrix of K differenced marketing-mix

variables for each of the S − 1 stores. The coefficient vector βi of individual i contains

store-specific intercepts representing the intrinsic preferences for the S − 1 stores rela-

tive to the market leader store, and the response coefficients for the K marketing-mix

variables. The stochastic components in the error term ε it represent the effect of factors

known to the consumer but unobserved to the researcher, and are assumed to follow

a multivariate normal distribution N(0, Σ). We assume a random coefficients structure

for βi with a normal distribution, i.e.

βi ∼ N(µβ, Vβ). (3.4)

Note that with a full Ω the model in (3.3) does not suffer from the restrictive IIA prop-

erty. We acknowledge that little correlation may remain in the error terms once we

account for unobserved heterogeneity, but we let the data reveal the extent to which Ω

is a full covariance matrix.4 The model in (3.3), together with (3.4), is thus a multino-

4Our estimation results reveal the existence of non-zero, but negligible covariances in Ω.



52 CHAPTER 3. STORE CHOICE AND PRICE IMAGE

mial probit (MNP) model with random coefficients.

The focal price variables are week-to-week prices, Pits, and consumer price per-

ceptions about the overall expensiveness or price image of store s in the previous pe-

riod, MSPIi,t−1,s. To guide the selection of variables to be included in each utility func-

tion uits, other than the two focal price variables, we use the framework of Bell et al.

(1998). While the price variables capture the variable cost of shopping (Bell et al. 1998),

store distance (Distis) is included as a proxy for fixed transportation costs (monetary

units and traveling time). We further include store size as a proxy for assortment size

(Assortis), promotional feature advertising (Featits), consumer-specific loyalty or trip

share (Loyalis), and past visits (yi,t−1,s). Given the set of selected variables, the utility

function of a consumer i on shopping trip t at store s can be written as follows (recall

that all values enter the utility function in differences),

uits = βs
0iDs + β1iDistis + β2i Assortis + β3iLoyalis +

+ β4iPits + β5i MSPIi,t−1,s + β6iFeatits + β7iyi,t−1,s + ε its, (3.5)

where Ds is a dummy for store s and, as before, ε its ∼ N(0, Σ). Further details on the

variable operationalizations are given below. Equation (3.5) accounts for two sources

of choice dynamics, through a loyalty and a lagged choice variable (see Ailawadi, Nes-

lin, and Gedenk 2001, Gijsbrechts, Campo, and Nisol 2008, for a similar approach). The

loyalty variable captures the store’s trip share for the household, and given positive

state dependence (e.g. due to switching costs from reduced store familiarity), we ex-

pect the effect of this variable to be positive. As for the lagged choice variable, which

equals one if the particular store was chosen on the previous store visit, the effect may

go both ways. It may be positive for consumers with a tendency to always re-visit

the same store. At the same time, we notice from the data that consumers, on aver-

age, exhibit switching behavior among a subset of stores (among 3.2 different stores,

on average), often on multiple trips within one week. A negative coefficient for lagged

choice, combined with a positive effect for trip share, might then point to consumers

alternating visits among stores in their preferred set (Finn and Louviere 1990), in line

with the notion of multiple store loyalty (Leenheer, van Heerde, Bijmolt, and Smidts

2007, Gijsbrechts et al. 2008). Hence, the model already captures a rich pattern of choice

dynamics based on consumer inertia and varied behavior. Still, in line with our concep-

tual framework, we allow for price changes to trigger an additional type of dynamic

response. While current prices in the utility function in Equation (3.5) measure the

same-period effect of prices on store choice, the dynamic effect of prices is captured

through the formation of store price images – a process that we specify below.
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SPI formation

We assume that consumers hold beliefs about the overall price level for each available

store s. While the actual beliefs SP̃Iits are unobserved, the researcher does observe the

(survey-based) categorical price perceptions MSPIits. The latent variables SP̃Iits are

mapped onto MSPIits = j if

αj−1 < SP̃Iits ≤ αJ , j = 1, . . . , J, (3.6)

where αj are cutoff points to be estimated, and with higher values of SP̃Iits linked to

higher values of MSPIits. It is further assumed that unobserved store price images

SP̃Iits can be decomposed into (i) an idiosyncratic component SPI∗its, representing con-

sumers’ price beliefs updated over time in a Bayesian fashion, as suggested by Fe-

ichtinger et al. (1988), and (ii) a disturbance term ξits, unobserved to the researcher but

known to the consumer. Formally,

SP̃Iits = SPI∗its + ξits, ξits ∼ N(0, σ2
SP̃I

), (3.7)

where the disturbance term ξits is assumed to follow a standard normal distribution

and to be independent of SPI∗its. For identification, we set the variance σ2
SP̃I

= 1. To-

gether, (3.7) and (3.6) lead to the well-known ordered probit model.

Whenever a consumer visits a store, (s)he is exposed to in-store price informa-

tion, which will be used to update current overall price level beliefs. To accommodate

differences in the way price information signals the overall price level of the store,

we specify individual-specific price signals, which are obtained as weighted averages.

Formally, the price signals that consumers extract from or receive in store s in period

t, are assumed to be normally distributed around observed prices in that store, with a

constant variance σ2
ηi

across stores and over time, i.e.

P∗
its = Pits + ηits, ηits

i.i.d.∼ N(0, σ2
ηi
) (3.8)

and thus P∗
its ∼ N(Pits, σ2

ηi
). The stochastic term ηits is observed by the consumer but

not by the researcher.

Consumers are assumed to learn about a store’s overall price level according to a

Bayesian rule that combines (i) their prior expensiveness beliefs, with (ii) the available

price information in each period, into an updated or posterior belief. With prior beliefs

and price signals normally distributed, consumer i’s posterior belief about the overall

expensiveness of store s at time t also follows a normal distribution (see e.g. Gelman

et al. 2004), i.e. SPI∗its|(.) ∼ N(SPIits, σ2
SPIits

),5 with mean and variance, respectively,

SPIits = σ2
SPIits

(
1

σ2
SPIi,t−1,s

SPIi,t−1,s +
1

σ2
ηi

P∗
its

)
(3.9)

5To keep notation simple, we use (.) to summarize all price information available in each period.
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and6

σ2
SPIits

=

(
1

σ2
SPIi,t−1,s

+
1

σ2
ηi

)−1

. (3.10)

The posterior mean of the store price belief in (3.9) is a weighted average of the prior

mean belief and the overall price signal. Similarly, the weights are proportional to

the precision of the prior belief and the precision of the overall price signal, respec-

tively 1/σ2
SPIi,t−1,s

and 1/σ2
ηi

. The individual-specific overall price signal variances σ2
ηi

are model parameters to be estimated, and their reciprocals (i.e. the precisions 1/σ2
ηi

)

represent the consumer price learning rates or, stated differently, how much prices af-

fect the formation of consumers’ price perceptions. Together with Equations (3.1) to

(3.8), the Bayesian updating equations (3.9) and (3.10) complete the specification of our

dynamic store choice model with store price image formation over time.

3.3.3 Model estimation

To estimate the MNP model, we use a block-based Bayesian estimation approach, like

the one of McCulloch and Rossi (1994). In particular, we use a Gibbs sampler (see

Gelfand and Smith 1990) to draw from the full conditional posteriors of the parame-

ters. As mentioned above, a scale identification problem remains in the MNP model

in (3.3). This Bayesian approach does not require fixing the scale of the latent utilities

(e.g. by setting the first diagonal element of Σ equal to one) to achieve identification.

With proper priors, a posterior in the unidentified space of Σ (and β) can be defined.

We then ’margin down’ or report the posterior of the identified quantities β̃ and Σ̃ by

normalizing with respect to one of the diagonal elements of Σ, say the first one (see

Rossi et al. 2005)7

β̃ =
β√
σ11

, Σ̃ =
Σ

σ11
. (3.11)

The advantage of this approach is the simplicity of the sampler needed and its good

mixing properties (Rossi et al. 2005), as all draws are sampled from familiar distribu-

tions (e.g. with σ11 = 1 imposed in the prior, the posterior of the precision matrix would

no longer have a standard Wishart distribution). The exact expressions of the full con-

ditional posterior distributions of the unknowns in the random coefficients MNP com-

ponent are derived in 3.A.

6We adopt the usual assumption that the perceptual error variance σ2
SPIits

is independent of the distur-
bance terms ξits.

7A prior put on the full set of unidentified parameters (β and Σ) induces a prior on the identified
parameters (β̃ and Σ̃), as in McCulloch and Rossi (1994). Another approach, described in McCulloch,
Polson, and Rossi (2000) and Imai and van Dyk (2005), is to put a prior directly on the set of identified
parameters, which requires a prior on the set of covariance matrices with the first element equal to 1.
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As indicated above, a unique feature of our data set is that we have information

on individuals’ store price image perceptions at different points in time. This implies

that, rather than having to treat SPI as a latent construct within the store choice equa-

tion, we can explicitly link it with past store prices and estimate the formation process

as a separate equation. This greatly enhances identification, and increases our confi-

dence that we actually capture the effect of store price image – and not some other

mediating construct. To estimate the SPI formation model in Equations (3.6) to (3.10)

we again rely on Bayesian estimation procedures. The complete conditional posterior

distribution of the beliefs SP̃Iits follows a truncated normal with the threshold param-

eters in Equation (3.6) as truncation points. These threshold parameters, in turn, are

drawn from a uniform distribution. Finally, the M-H algorithm is used to estimate the

learning parameters σ2
ηi

with a candidate normal density (for details and the complete

derivation of these posteriors, see Chapter 2).

3.4 Variable operationalization and estimation results

3.4.1 Variable operationalization

We use data on the households’ shopping histories to generate the dependent vari-

able for the store choice model, household i’s multinomial discrete store choice yit = s

among S mutually exclusive stores on each shopping trip t. To obtain household-

and store-specific price (Pits) and feature variables (Featits), we use a procedure similar

to van Heerde et al. (2008) and Fox, Montgomery, and Lodish (2004): we combine the

average weekly price and feature information for each chain and product category (out

of a set of 58 representative product categories as defined by GfK), with households’

shopping basket weights for these categories in an initialization period.8 Promotions

are run on a weekly basis and hence prices and feature faced by a household are con-

stant across multiple shopping trips made to one same store in any particular week.

Our measure of store price image, MSPIits, is based on the GfK survey responses.

Since we do not have these measures for all panel members in each of the 209 weeks,

we impute missing values in the choice model using the same procedure as van Heerde

et al. (2008). Estimation of the store price image formation model is based only on the

actually observed SPI measures. As a proxy for assortment size of each chain’s store

nearest to the household (Assortis), we use store size in square meters (data available

on a yearly basis). Similarly, store locations are combined with the GfK household

panelists’ zip codes to compute the Euclidean distance between a household, and the

8To ensure comparability across product categories, we express category prices as an index (relative
to the average category price across stores, in an initialization period), before aggregating to the store
level (see van Heerde et al. 2008, Fox et al. 2004, for a similar approach). The period from week 27 of 2001
till week 4 of 2002 was used as the initialization period in both cases (see van Heerde et al. 2008).



56 CHAPTER 3. STORE CHOICE AND PRICE IMAGE

closest store from each chain (Distis). Finally, as a measure for household-specific loy-

alty (Loyalis) we compute, for each household, the average trip share across all visited

stores on a household’s trip history, while the lagged choice variable (yi,t−1,s) is simply

an indicator of the household’s chosen store on the previous trip. These variables and

their operationalizations are well established, and similar to earlier literature.

3.4.2 Estimation results

Store choice

Estimation results of the MNP model are based on a Gibbs sampler with a total of 20 000

draws, 10 000 of which were discarded as burn-in to eliminate the effect of the initial

values.9 The mean posterior values of the off-diagonal elements of the error covari-

ance matrix are all close to zero, suggesting that with a random coefficients structure

across households, there is little covariance among stores remaining in the data (the

posterior mean variances are reported in the rightmost column of the second panel of

Table 3.4). Visual inspection suggests convergence of both the individual and the mean

parameters (Fig. 3.2 plots the draws for the two price variables). The model correctly

classifies 71,95% of shopping trips, a figure that favorably compares to a 10% random

assignment.
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Figure 3.2: Gibbs sampler draws for the mean parameter (right panel) for
price images (top panel) and actual prices (bottom panel), after discarding
first 10000 draws for burn-in. For illustrative purposes, the left panel plots
draws for the two types of price information of one particular household.

Table 3.4 reports the identified quantities β̃ = β/
√

σ11 and Σ̃ = Σ/σ11 (see Equa-

tion (3.11)) for the estimated parameters. All store-specific intercepts (from Aldi to

Super de Boer), measuring intrinsic consumer preferences in comparison to the refer-

ence store Albert Heijn, are negative (see second half of Table 3.4). Only for Dekamarkt

9The details about the priors used and initial values can be found in Appendix 3.A.
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the 95% highest posterior density (HIPD) of the intercept includes zero.10 These re-

sults confirm the position of Albert Heijn as the market leader in the Netherlands and

strengthen the face validity of our estimates. The first panel of Table 3.4 summarizes

the mean effects of all benefit and cost variables in the MNP model. The estimated

effects of distance, assortment size and loyalty have the expected sign. Stores located

farther away from consumers have a lower likelihood of being patronized. Assortment

has a positive effect on store patronage: stores with bigger assortments (as measured

by store floor space) having a higher likelihood to be chosen. The estimated effect of

loyalty is positive. This indicates that consumers have a tendency to stick to (a subset

of) earlier visited chains – possibly because of switching costs inherent to visiting less

familiar outlets. The parameter measuring the effect of lagged choices has a negative

sign, in line with the notion of multiple-chain loyalty and consumers alternating be-

tween chains. The effect of out-of-store feature advertising is non-significant, perhaps

because store-level changes in the number of feature ads are rather limited. Further-

more, its effect may be taken up by price changes.

As expected, the posterior means of the parameters for price image and actual

price are negative: all else equal, the higher the actual practiced prices or the more

unfavorable the price image of a particular store, the higher the actual and perceived

monetary costs of shopping in that store, which decreases its likelihood of being chosen

on a given shopping trip. The mean coefficient values are -0.027 for price image and

-0.390 for actual price. However, these are average figures, which do not hold equally

among consumers. The histograms of the household-level posterior means, for the pa-

rameters of price image and actual price, are displayed in the two leftmost panels of

Figure 3.3. These histograms point to quite some dispersion (see also Table 3.4) – espe-

cially for the actual price variable. The correlation between the two sets of parameters

is significant and positive, but very low (r = .103; p < .01), suggesting that actual price

and SPI sensitivity are two distinct constructs.
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Figure 3.3: Histograms (with normal curve) of households’ posterior means
for SPI, actual prices, and price learning parameters (discarding burn-in
draws).

10Inference within a Bayesian estimation approach is conducted by assessing whether a specific highest
posterior density interval of a parameter includes zero (and is thus ‘significant’ in a frequentist sense). We
use a 95% posterior density interval.
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Table 3.4: Posterior results for the MNP model and
SPI thresholds

Mean S.d. 2,5% 50% 97,5% diag(Σ)

Benefits and costs
Distance -0.058 0.007 -0.069 -0.058 -0.048
Assortment size 0.112 0.024 0.062 0.113 0.156
Loyalty 2.498 0.065 2.369 2.500 2.617
Price image -0.027 0.005 -0.016 -0.027 -0.038
Price -0.390 0.045 -0.480 -0.390 -0.302
Feature -0.002 0.001 -0.004 -0.002 0.001
Last visit -0.037 0.011 -0.059 -0.037 -0.015

Intercepts
Aldi -0.838 0.062 -0.948 -0.842 -0.707 1.000
C1000 -0.390 0.059 -0.497 -0.389 -0.274 0.540
Dekamarkt -0.109 0.105 -0.301 -0.109 0.079 0.169
Edah -0.480 0.070 -0.612 -0.477 -0.342 0.450
Jumbo -0.323 0.070 -0.453 -0.325 -0.182 0.183
Konmar -0.512 0.071 -0.629 -0.519 -0.367 0.403
Lidl -1.121 0.063 -1.236 -1.123 -0.990 0.893
Plus -0.720 0.081 -0.850 -0.732 -0.543 0.362
Super de Boer -0.444 0.065 -0.566 -0.439 -0.319 0.426

SPI thresholdsa

Threshold α2 0.375 0.005 0.366 0.376 0.386
Threshold α3 1.078 0.003 1.073 1.077 1.084
Threshold α4 1.515 0.006 1.503 1.515 1.523
Threshold α5 2.605 0.009 2.586 2.605 2.621
Threshold α6 3.505 0.029 3.451 3.505 3.570
Threshold α7 3.877 0.045 3.796 3.875 3.973
Threshold α8 4.552 0.118 4.332 4.547 4.796
a For identification, α0, α1, and α9 are set equal to −∞, 0, and +∞,

respectively.

SPI formation

The estimates for the threshold parameters that allow mapping unobserved beliefs

SP̃Iits into the observed, discrete MSPIits (see Equation (6)) are summarized in the third

panel of Table 3.4. The middle thresholds are further apart than the extremes, in line

with the fact that respondents use extremes relatively less than other values of the SPI

scale (recall that the SPI scale ranges from 1 to 9 and that for identification, α0, α1, and α9

are set to −∞, 0, and +∞, respectively).11 The SPI formation model correctly predicts

about one third of all observed SPI scores (29.8%), a figure that favorably compares to

random assignment (11.1%).12 The distribution of the price learning parameters across

all households is depicted in the right panel of Figure 3.3.

11We used the estimated category- and individual-specific learning parameters from the model specified
in Chapter 2. Hence, for the purposes of the current chapter, where the SPI formation model is based on
one overall price signal ∑c wc,iP

∗
cst, the individual-specific learning parameters are obtained by making
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Next, we explore which household characteristics drive the different price-related

parameters. Our goal is to gain a better understanding of the determinants of the dual

price response across households, and lay the ground for targeted pricing strategies.

3.5 Profiling price and price-image sensitive households

To this end, we run exploratory regressions, with the price-related parameters as the

dependent variables, and a range of potential antecedents or correlates as indepen-

dent variables. We consider three groups of independent variables, related to (1) the

households’ self-reported attention to and use of prices and price cuts, (2) their socio-

demographic characteristics, and (3) variables reflecting the households’ shopping be-

havior and media use (see Table 3.5 for details on the operationalization of these vari-

ables). To account for the estimation error in the price coefficients, we use weighted

least squares, with weights equal to the inverse of the posterior standard deviations.

Table 3.6 lists the regression results. Note that a negative (positive) sign represents an

increase (decrease) in the sensitivity towards the two types of price information and

a decrease in learning (which is regressed directly as 1/σ2
ηi

; see Equation 3.9). A first,

and striking, observation is that the pattern of significant effects strongly differs across

the three regressions. Factors related with sensitivity to weekly prices do not drive re-

sponsiveness to overall store price image, or the strength with which these are updated

based on price signals – corroborating that different households react to the different

price cues. For clarity of exposition, we discuss the effects by type of variable, and

describe only those effects that are significant.

3.5.1 Attitude towards prices and price cuts

As a first group, we consider the survey measures that reflect consumers’ self-reported

attention to various price cues. Some of these statements relate to price awareness and

attention in more general terms. While those measures do not influence the degree of

store switching in response to weekly price changes, we find them to be significantly

correlated with SPI-sensitivity (’importance of low prices when choosing a supermar-

ket’: γ = −.0048; p < .05, ’price awareness’: γ = −.0221; p < .1, ’note discount offers’:

γ = −.0108; p < .1). In contrast, ’buy more of a brand when on price cut’, a statement

reflecting consumers’ actual purchases shifts of specific brands, only increases sensi-

tivity to basket prices (γ = −.0476; p < .05), but not SPI responsiveness or learning.

Consumers who state that they ’take advantage of price promotions, regardless of the

σ2
ηi

= ∑c w2
c,iσ

2
ηc,i

.
12In 57.7% of the cases, the difference is less than 2 points. The non-parametric Spearman correlation is

.29 and the mean absolute deviation (MAD) is 1.28.
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Table 3.5: Operationalization of consumer characteristics

Fram. Variables Scale

Self-perceptions Look first to the price 1 (=totally agree) to 5 (=totally disagree)
Note discount offers 1 (=totally agree) to 5 (=totally disagree)
Low prices choosing supermarket 1 (=very unimportant) to 9 (=very important)
Price awareness 1=a lot/yes’; 0=more or less/no
Check first whether cheaper somewhere else 1 (=totally agree) to 5 (=totally disagree)
Price discounts can save consumers much money 1 (=totally disagree) to 5 (=totally agree)
Pay more for better quality product 1 (=totally disagree) to 5 (=totally agree)
Nice buy items w/ price cut whatever amount saved 1 (=totally disagree) to 5 (=totally agree)
Buy more of a brand when on price discount 1 (=totally disagree) to 5 (=totally agree)

Demographics Occupation level 1=low; 2=medium; 3=high
Education household head 1 to 13
Social class 1 to 5
House owner/tenant 1=rents; 0=owns
Household size 1 to 4 and 5+
Net monthly income 1 to 19
Housewife age years

Shopping Behaviora Albert Heijn customer 1=no; 0=yes
Average quantity purchased nr. of products
Maximum loyalty share 0 to 1
Average weekly private label quantity nr. of products
Mean nr. of weekly shopping trips nr. weeks
Proportion trips before 12:00 (after 18:00; EDLP to HiLo) 0 to 1

Opportunity Costs Average distance and store dispersion in km

I consider myself a brand loyal consumer 1 (=totally disagree) to 5 (=totally agree)
Buy brands that I think others will adopt 1 (=totally disagree) to 5 (=totally agree)
Common to be first trying new brands 1 (=totally disagree) to 5 (=totally agree)
Buy rare latest fashion trends before friends approve 1 (=totally disagree) to 5 (=totally agree)
Put extra effort to shop in favorite supermarket 1 (=totally disagree) to 5 (=totally agree)
NRC Handelsblad reading 1 (=never read) to 7 (=read all numbers)
Parool reading 1 (=never read) to 7 (=read all numbers)

a Computed from purchasing data.
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amount of money saved’, exhibit weaker price and SPI sensitivity (γ = .0562; p < .01,

γ = .0076; p < .05). Interestingly, the only measure in this group that is significantly

linked with learning, is the ’importance of low prices when choosing a supermarket’

(γ = .0277; p < .05).

3.5.2 Economic and socio-demographic characteristics

The second group of variables is formed by economic and socio-demographic charac-

teristics of households, which are related with the costs and gains of collecting and re-

sponding to price information. Table 3.6 reveals that higher education levels and mem-

bership to a higher social class significantly decrease consumer sensitivity to week-to-

week prices (γ = .0176; p < .05 and γ = .0626; p < .05, respectively). Being a ten-

ant of a house significantly increases sensitivity to both week-to-week prices and SPI

(γ = −.0685; p < .1 and γ = −.0125; p < .05, respectively). Interestingly, higher dis-

persion of stores neighboring a household, significantly increases sensitivity to week-

to-week detailed prices (γ = −.0064; p < .05). Higher price learning is associated with

larger households (γ = .0269; p < .1), as household size may be an incentive to keep

track of prices.

3.5.3 Shopping behavior

The third group of variables characterize a household’s purchasing and shopping be-

havior. Not unexpectedly, consumers sensitive to week-to-week prices in their store se-

lection are less store-loyal (γ = .1654; p < .05), buy smaller baskets (γ = .0043; p < .05),

buy more private labels (γ = −.0143; p < .05), and are less brand-loyal (γ = .0338; p <

.05); observations that do not hold for SPI-sensitive households. Also, weekly-price

sensitive shoppers buy more brands that others will adopt (γ = −.0535; p < .01),

while SPI-sensitive shoppers tend to try less new brands(γ = .0054; p < .01). House-

holds that never visited the high-price high-service chain leader in the market, are

significantly more sensitive to weekly prices (γ = −.3040; p < .01) and to SPI (γ =

−.0140; p < .01) in their store choice.

Finally, increased readership of different newspapers is significantly related with

increased sensitivity to one type of price information but not to the other, which makes

these findings important for targeting and communication purposes. NRC Handels-

blad, which has a wider reach in the Dutch society, is weakly related to higher actual

price sensitivity (γ = −.0362; p < .1), whereas higher SPI sensitivity is associated with

Het Parool (γ = −.0078; p < .05), a newspaper associated with more liberal views.
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Table 3.6: Explaining SPI and basket price sensitivities,
and learninga

PRICE PRICE IMAGE LEARNING

Note discount offers −0.0108∗
Low prices choosing supermarket −0.0048∗ ∗ 0.0277∗ ∗
Price awareness −0.0221∗
Nice buy items w/ whatever price cut 0.0562∗ ∗∗ 0.0076∗ ∗
Buy more of a brand when on price cut −0.0476∗ ∗

Education 0.0176∗ ∗
Social class 0.0626∗ ∗
House owner/tenant −0.0685∗
Household size 0.0269∗
Store dispersion −0.0064∗ ∗

Albert Heijn customer −0.3040∗ ∗∗ −0.0140∗ ∗
Average quantity purchased 0.0043∗ ∗
Maximum loyalty share 0.1654∗ ∗
Average weekly private label quantity −0.0143∗

I am a brand loyal coumer 0.0338∗
Buy brands that others will adopt −0.0535∗ ∗
Common to be first trying new brands 0.0054∗
NRC Handelsblad reading −0.0362∗
Parool reading −0.0078∗ ∗
a Weighted least squares with weights equal to the inverse of the posterior

standard deviations. Mean imputation of missing values. *p< 0.1;
**p< 0.05; ***p< 0.01. Complete results are reported in the Appendix.

3.6 Implications

The estimation results indicate that consumers adjust their store choice to actual prices

directly, through the actual price coefficient, or indirectly, through the learning and

SPI parameters. At the same time, we find substantial heterogeneity in each of these

coefficients (explained by different consumer characteristics). These findings raise two

additional questions. First, what is the size of the segments of consumers that do/do

not react to the different types of price cue? Second, what is the immediate and long

term impact of changes in store price, on traffic in each of these segments? We address

these two questions in turn.

3.6.1 Segmenting consumers: Eye-for-detail or Big Picture?

To identify which consumers are influenced by both, none, or one of the two types

of price information, we use the individual-level draws from the Gibbs sampler, for

the actual price and SPI parameters in the store choice model. We compute highest

posterior density intervals for each individual and parameter, and then check whether

they include zero (in which case the individual is said to be responsive to the price cue)

or not (non-responsive). Since we have a clear expectation regarding the signs of both
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the price image and the actual price effects, we use one-tailed 90% posterior density

intervals.

Store price images
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NO Convenience Big picture
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Figure 3.4: Distribution of price sensitive consumers based on use of basket
prices and store price images.

We find that 68.5% of all households do not exhibit any significant price response.

These consumers select stores based on only non-price attributes, such as distance or

assortment, and/or display some form of choice dynamics (persistence and or varied

choice among a subset of stores). The remaining 31.5% of the households do adjust their

store selection in response to price cues (see Figure 3.4). Among these price-oriented

consumers, we find that the great majority uses only one of the two types of price infor-

mation, only 11.5% (3.6% of all households) making use of both actual prices and price

perceptions. Detailed week-to-week prices intervene in the decision making process

of 16.2% of all consumers, and 11.7% of all consumers resort exclusively to their price

perceptions to assess stores’ expensiveness and to guide their choices.

Linking these figures with earlier findings from the literature leads to some in-

teresting observations. In previous survey studies, about two-thirds of consumers self-

report hardly ever comparing prices, the remaining consumers claiming to be price

sensitive (Urbany et al. 2000). At the same time, several authors suggest that far fewer

consumers actually cross-shop to benefit from price deals (e.g. Urbany et al. 2000, Bo-

dapati and Srinivasan 2001, Urbany, Dickson, and Key 1991). Our results appear to

reconcile these views. On the one hand, the total size of our price-sensitive segment

(31.5% of all households) is surprisingly consistent with the self-report data – corrob-

orating the importance of price. We note that shopping trips made by this segment

comprise 35.1% of all grocery trips (see last line of Table 3.7, columns 3 to 5), and their

spending represents nearly half of the total spending in the market (47.4%) – further

underscoring their economic relevance. On the other hand, our dual-effect framework
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reveals that far fewer households (only half of these price-sensitive households: the

eye-for-detail segment) adjust their store choice to weekly price changes – in line with

earlier empirical findings based on actual purchase behavior. This finding may help ex-

plaining why many researchers did not find any significant effect of price promotions

on store traffic (e.g. Srinivasan, Pauwels, Hanssens, and Dekimpe 2004).

While these segment sizes pertain to the total market, retailers have an interest

in the segment-decomposition of their own clientele. As revealed in the top panel of Ta-

ble 3.7, the market shares of the different stores differ across consumer segments. This

holds in particular for the top two players, Albert Heijn and C1000, which comprise

more than half of the market. C1000 is more attractive to Eye-for-Detail price-sensitive

consumers (i.e. obtains a 27.4% choice share within that segment), and less attractive

to those monitoring SPI (17.4% choice share among SPI sensitive consumers), relative

to its overall market share (22.6%). Albert Heijn, in contrast, is relatively more (less)

attractive to SPI-sensitive (detailed price-sensitive) consumers (5.8 percentage points

higher and 4.7 percentage points lower than its market share, respectively). Focusing

on the composition of the stores’ customer base (bottom panel of Table 3.7), we find that

the % of the store clientele that belongs to the convenience segment is far lower for the

hard discounters (Aldi and Lidl) and the more price-oriented HiLo stores (Jumbo and

Dekamarkt) than the market average. Interestingly, these discounter stores do not nec-

essarily have the highest proportion of weekly-price sensitive shoppers (e.g. 18.3% of

Lidl customers, compared to 21.7% for C1000), an important fraction of their customers

being price-image oriented (e.g. 17.3% for Lidl versus 10.1% for C1000).

Even though the customer classification is relevant conceptually, it does not yet

paint a full picture of the impact of price. First, the segmentation reflects responsive-

ness based on statistical significance, but does not shed light on the size of the price

effects. Second, for ’Big Picture’ consumers, the extent to which actual price changes

affect store choice depends on the strength of the learning process, which governs the

adjustments in SPI. Third, the response coefficients reflect the immediate impact of

weekly price, and the one-period lagged effect for SPI, but do not capture the full dy-

namic influence of actual prices over time. For instance, a price change will, through

the updating process, affect the store’s SPI level over multiple subsequent periods. In

the next section, we address these issues.

3.6.2 Impact of price changes across segments

To shed light on the importance of the dual price effect, we use our data and estimated

models as a basis for simulation. We start by drawing parameters from the store choice

model (i.e. the individual-level βi, which include the effect of actual prices and of price

perceptions, and the covariance matrix Σ) as well as the SPI formation model (i.e. the
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Table 3.7: Distribution of trips across stores and segments (in percentage)

Proportions Percentage point (p.p.) difference
Store All Convenience SPI Price Both Convenience SPI Price Both Suma

Within Segment
AH 29.2 29.3 35.1 24.5 29.7 0.1 5.8 -4.7 0.4 1.6
Aldi 9.5 8.3 10.2 12.3 15.5 -1.3 0.6 2.7 6.0 8.1
C1000 22.6 22.8 17.4 27.4 15.5 0.2 -5.2 4.8 -7.1 -7.3
Dekamarkt 3.2 3.9 2.8 1.6 0.1 0.7 -0.4 -1.6 -3.1 -4.4
Edah 6.4 6.4 6.0 6.6 6.4 0.0 -0.4 0.2 0.0 -0.2
Jumbo 2.6 2.2 3.6 3.0 4.2 -0.4 1.0 0.4 1.6 2.6
Konmar 3.7 3.6 5.8 2.5 2.8 -0.1 2.1 -1.1 -0.8 0.1
Lidl 3.5 3.3 4.6 3.6 3.6 -0.3 1.1 0.1 0.1 1.0
Plus 6.6 7.7 3.5 5.1 6.3 1.1 -3.1 -1.6 -0.4 -4.0
SdB 12.7 12.6 11.1 13.5 16.0 -0.1 -1.6 0.8 3.3 2.4
Sumb 0.0 0.0 0.0 0.0 0.0

Within Store
AH 65.1 15.8 15.0 4.2 0.2 2.6 -2.9 0.1 0.0
Aldi 56.3 14.0 23.0 6.7 -8.6 0.9 5.1 2.6 0.0
C1000 65.4 10.1 21.7 2.8 0.5 -3.0 3.8 -1.3 0.0
Dekamarkt 79.5 11.7 8.7 0.1 14.6 -1.5 -9.1 -4.0 0.0
Edah 65.1 12.3 18.5 4.1 0.2 -0.8 0.6 0.0 0.0
Jumbo 54.6 18.3 20.5 6.7 -10.3 5.1 2.6 2.6 0.0
Konmar 63.7 20.8 12.4 3.2 -1.2 7.6 -5.5 -0.9 0.0
Lidl 60.2 17.3 18.3 4.2 -4.6 4.1 0.4 0.1 0.0
Plus 75.5 7.0 13.7 3.9 10.6 -6.2 -4.2 -0.2 0.0
SdB 64.3 11.5 19.0 5.2 -0.6 -1.7 1.2 1.1 0.0
All (Sum)a 64.9 13.2 17.9 4.1 0.8 7.3 -8.0 -0.1 0.0

a Sum of p.p. differences across the four segments (last column) and the ten stores (last row).

thresholds αj and the individual-level price learning parameters 1/σ2
ηi

). We then use

those parameters, in conjunction with the actual database, to predict the effect of a price

drop under two scenarios. The benchmark scenario is one without price learning and,

therefore, no store price image updating. This benchmark is compared with the results

of a model where price learning does take place, and price perceptions are formed

dynamically over time based on price signals. For illustrative purposes, we conduct

our simulation for the market leader (Albert Heijn), and consider the effect of a price

drop from a given week on (the 30th week of the year 2002), by 5, 10, 15, and 20%. The

results are summarized in Table 3.8, where we break down the simulated effects across

segments.

In the benchmark case without learning, price decreases lead to gains in weekly

traffic due to immediate changes in consumer choices. In this static SPI scenario, by

construction, no trip increases can be attributed to the SPI sensitive segment, and most

of the gained trips take place among basket price-sensitive consumers. Even within

those price sensitive-segments, the absolute elasticity of trip share with respect to actual

price changes is smaller than one – in line with earlier findings (Fox et al. 2009) – and

amounts to approximately .70.

In the dynamic SPI scenario, the learning effect becomes apparent due to the im-
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pact on store price perceptions. Depending on the level of the price change, the total

number of shopping trips gained is approximately 15% higher than if only the direct

effect of prices is accounted for, a difference attributable to the price responses in the

’Big Picture’ and ’Combined’ segments. While the Combined segment is much smaller

in size (3.6% of the total market, compared to 11.7% for the Big Picture group), it ac-

counts for many of the indirect (SPI-induced) traffic gains, indicating that this ’hard

core’ group of price mavens not only keeps track of both price cues, but is highly re-

sponsive in its store selection. Hence, a store choice model that does not account for the

dynamic formation of store perceptions, clearly underestimates the impact of a price

cut, and disproportionately so among specific consumer segments.

We further note that, while this 15% difference is already sizable, it is likely to

be a conservative estimate of the indirect effect. For one, while our simulations also

account for changes in the ’lagged choice’ variable, we keep the loyalty variable the

same. Differently stated, our model does not yet allow SPI changes to alter the con-

sumer’s set of ’frequently visited stores’. No doubt, changes in SPI may, in the long

run, also affect the degree to which stores are included in the loyal set, thereby further

adding to the indirect price influence. Moreover, as argued in the conceptual part, Big

Picture consumers are more likely to shift their entire purchase basket to the selected

store, rather than engage in cherry picking visits. Hence, an extra trip among these

Big Picture consumers is likely to bring in more spending than an extra ’Eye-for-detail’

customer visit.

3.7 Conclusions, limitations and future research

3.7.1 Conclusions

In this chapter, we advocate that actual store prices may affect store patronage in two

main ways: directly, by making consumers shop in stores with low prices in that partic-

ular week, and indirectly, by affecting the overall image of expensiveness of the visited

stores and, hence, their propensity to be visited on future trips. To empirically test this

dual price effect, we consider an individual-level store choice model including both

week-to-week basket prices and overall store price images. To account for the fact that

store price images themselves are affected by basket prices, we complement this choice

model with a model of SPI formation over time, using a Bayesian learning framework.

We use this specification to illustrate how a price change may affect store traffic not

only through a direct, same-week effect of basket prices but also in subsequent weeks,

due to the mediating role of store price perceptions updated by consumers.

By considering this comprehensive price effect, our study underscores the impor-

tance of pricing strategies in the context of consumers’ store selection, often overshad-
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Table 3.8: Effects of permanent price changes on store traf-
fic across segments (HiLo format)a

∆ SPI Price Both Sum
in price ↑ trips % total ↑ trips % total ↑ trips % total of trips

static 5 0 0 491 80.2 121 19.8 612
dynamic 5 69 9.8 491 69.6 145 20.6 705

% dif – – 0.0 – 19.8 – 15.2

static 10 0 0 983 79.3 256 20.7 1239
dynamic 10 138 9.6 983 68.0 324 22.4 1445

% dif – – 0.0 – 26.6 – 16.6

static 15 0 0 1529 79.3 399 20.7 1928
dynamic 15 202 9.0 1529 68.2 511 22.8 2242

% dif – – 0.0 – 28.1 – 16.3

static 20 0 0 2090 79.3 546 20.7 2636
dynamic 20 272 8.9 2090 68.7 679 22.3 3041

% dif – – 0.0 – 24.4 – 15.4

a The total number of trips among the Convenience segment is equal to 62598. By
construction, no trip changes can be attributed to this segment in response to any
price changes.

owed by the ’location, location, location’ mantra prevailing in the retailing industry.

In particular, we find that more than one third of consumers use some type of price

information to guide their over-time store selection. The economic relevance of these

basket price- and SPI-sensitive consumers is clearly demonstrated by the fact that their

grocery shopping trips represent more than one third of the total number of trips, and

comprise nearly fifty percent of the total spending in the market. An interesting find-

ing, also, is that compared to mainstream retailers, a higher proportion of (hard) dis-

counters’ clientele is SPI-sensitive. The fact that the remaining two thirds of consumers

use only non-price or convenience cues, may help to explain why previous research did

not find any significant effects of price promotions on store traffic (see e.g. Srinivasan

et al. 2004).

Interestingly, only half of these price-sensitive consumers keep track of actual

weekly prices and use those to adjust their weekly store patronage. The other half tailor

their store selection to overall beliefs about the store’s expensiveness. These beliefs, in

turn, are updated dynamically, based on price signals received in-store – leading to an

indirect actual price effect. Accounting for this indirect effect increases the over-time

impact of actual price changes by approximately 15%, enhancing the importance of

pricing as a strategic instrument for retailers.

Moreover, we find that the majority of consumers attend to only one type of price

cue, very few households adjusting their store patronage to both weekly price changes

and store price images. The two subgroups of households differ in the timing of their

reactions: while consumers sensitive to weekly actual prices exhibit an immediate traf-
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fic change, SPI-sensitive consumers respond with a delay, as they learn about overall

price changes. This underscores the importance of monitoring over-time price response

– as suggested by Fox et al. (2009). While those authors already documented the pres-

ence of lagged price effects, we offer a structural explanation for these effects through

SPI formation. We also expect visits from SPI-sensitive consumers to be economically

more important, as these consumers typically shift their entire shopping basket when

changing stores.

This is confirmed by our exploratory analysis, which links our individual-level

estimates to a broad range of household characteristics. We find that consumers more

sensitive to weekly prices (Eye-for-detail) are those who, in surveys, report using store

price information to direct specific brand purchases. In line with previous research (e.g.

Hoch et al. 1995, Gauri et al. 2008), we find these households to be tenants rather than

home owners, to exhibit lower education levels, and to belong to lower social classes.

In addition, weekly-price sensitive consumers are less store or brand loyal, buy more

private labels, and have smaller purchase baskets – corresponding to the profile of

cherry picking consumers (see e.g. Bell and Lattin 1998, Fox and Hoch 2005).

Households more responsive to stores’ overall price images (Big picture) do not

exhibit these characteristics. These are the households that, when surveyed, attest to a

general attention to prices. In line with this price focus but, also, a desire for efficient

shopping, they are less inclined to try new brands. Moreover, while SPI-sensitivity is

also more prevalent among tenants rather than house owners, it is found in all social

classes and education levels. Similarly, the degree to which these consumers adjust their

SPI beliefs to actual incoming price information does not seem related with their socio-

demographic profile, except for the fact that larger households exhibit stronger SPI

updating. Finally, we find that type of price response is linked to actual store patronage

and journal readership: consumers adjusting their store choice to weekly prices, self-

selecting different stores and reading different magazines than those sensitive to overall

store price beliefs. In all, these findings lead to a better understanding of who are the

price-sensitive consumers, and enable effective segmentation and targeting strategies.

3.7.2 Limitations and future research

Clearly, our study exhibits a number of limitations, that set the stage for future research.

For one, our empirical analysis pertains to only one country (the Netherlands), and

one retail format (supermarkets). It would be interesting to verify the presence of a

dual price effect, but also the size and profile of the Eye-for-detail vs Big-Picture vs

Combined Segments, in other settings. Similarly, while we consider the grocery setting,

the dual price impact may also appear in other categories such as apparel or consumer

durables – an issue that we leave for future study.
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Second, our findings reveal that households can be responsive to SPI, but only

weakly update it using prices. For those households, managing other SPI determinants

becomes strategically important. Unfortunately, our data did not allow to assess the

possible impact of non-price cues such as advertising or store layout on SPI – effects

that future studies may incorporate.

Third, while our focus was on traffic, it would be interesting to analyze the dual

price effect on consumers’ in-store purchase behavior and spending. An intriguing

question is whether households who select stores based on their SPI (rather than low

weekly prices) are also less responsive to in-store promotion announcements or, in con-

trast, make up for their lower responsiveness in store choice by selecting items on deal

within the store. While we expect the former to be true, future research should verify

this.

Last but not least, our analysis shed light on household differences in the use of

actual weekly prices versus price images. In addition to such household heterogeneity,

the type of price cue used to pick stores may be affected by the type of shopping trip –

situational factors or differences in shopping mission favoring the use of one price in-

dicator rather than another. Shedding light on such trip-specific responses may further

fine tune our understanding and management of price as a retail instrument.
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3.A Complete conditional posteriors

Priors

Σ−1 ∼ W(ν0, H0) (3.A-1)

with ν0 = 100 and H0 = IS−1.

βi ∼ N(µβ, Vβ) (3.A-2)

Second stage:

µβ ∼ N(µβ0, Σβ0) (3.A-3)

with µβ0 = 0(S−1)×K and Σβ0 = 500 · I(S−1)×K. And

V−1
β ∼ W(νβ0, V−1

β0 ) (3.A-4)

with νβ0 = (S − 1) × K + 4 and Vβ0 = νβ0 · I(S−1)×K.

Gibbs sampler

For the latent utilities:

uits|uit,−s, Σ−1, β, µβ, Vβ ∼ N(mits, τ2
ss), (3.A-5)

where

mits = x′itsβi + F′(uit,−s − Xit,−sβi), F = −σssγs,−s, and τ2
ss = 1/σss, (3.A-6)

where σjs denotes the (js)th element of Σ−1 and γs,−s refers to the sth row of Σ−1 with

the sth element deleted. Xit,−s is the matrix Xit with the sth column deleted.

For the individual coefficients:

βi|u, Σ−1, µβ, Vβ ∼ N(βi1, Vi1), (3.A-7)

where

Vi1 =

( Ti

∑
t=1

X′
itΣ

−1Xit + V−1
β

)−1

and βi1 = Vi1

( Ti

∑
t=1

X′
itΣ

−1uit + V−1
β µβ

)
.(3.A-8)

For the mean of the parameters:

µβ|u, Σ−1, β, Vβ ∼ N(µβ1, Σβ1), (3.A-9)

where

Σβ1 =

(
Σ−1

β0 + NV−1
β1

)−1

and µβ1 = Σβ1

(
Σ−1

β0 µβ0 + V−1
β1

N

∑
i=1

βi

)
. (3.A-10)
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For the variance of the parameters:

V−1
β |u, Σ−1, β, µβ ∼ W(νβ1, V−1

β1 ), (3.A-11)

where

νβ1 = νβ0 + N and V−1
β1 =

[
(V−1

β0 )−1 +
N

∑
i=1

(βi − µβ)(βi − µβ)
′
]−1

. (3.A-12)

For the variance of the utilities:

Σ−1|u, β, µβ, Vβ ∼ W(ν1, H1), (3.A-13)

where

ν1 = ν0 +
N

∑
i=1

Ti and H1 =

[
H−1

0 +
N

∑
i=1

Ti

∑
t=1

(uit − Xitβi)(uit − Xitβi)
′
]−1

. (3.A-14)

Starting values:

Σ−1 = IS−1, βi = 1(S−1)×K (for all i), µβ1 = 1(S−1)×K, V−1
β1 = I(S−1)×K, and u = 0

∑
N
i=1 Ti×1.

The model was coded and estimated in Matlab.

3.B Profiling price and SPI-sensitive consumers: Full results
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Table 3.9: Explaining SPI and basket price sensitivities, and
learninga

PRICE PRICE IMAGE LEARNING

b̂ t-stat b̂ t-stat b̂ t-stat

Intercept −0.5247 −1.452 0.0613 1.123 1.8025 ∗ ∗∗ 6.746

Look first to the price −0.0058 −0.265 −0.0028 −0.842 −0.0075 −0.461
Note discount offers −0.0220 −0.626 −0.0108∗ −1.943 0.0158 0.601
Low prices choosing supermarket −0.0057 −0.384 −0.0048 ∗ ∗ −2.050 0.0277 ∗ ∗ 2.501
Price awareness −0.0203 −0.276 −0.0221∗ −1.951 −0.0185 −0.338
Check first somewhere else cheaper 0.0108 0.613 0.0042 1.546 −0.0062 −0.475
Price cuts save consumers much money −0.0161 −0.623 −0.0058 −1.501 0.0061 0.316
Pay more for better quality product −0.0356 −1.377 −0.0042 −1.047 −0.0200 −1.033
Nice buy items w/ whatever price cut 0.0562 ∗ ∗∗ 2.581 0.0076 ∗ ∗ 2.407 0.0039 0.243
Buy more of a brand when on price cut −0.0476 ∗ ∗ −2.162 0.000 −0.011 −0.0029 −0.180

Occupation level 0.0046 0.110 −0.0033 −0.514 0.0038 0.123
Education 0.0176 ∗ ∗ 1.973 −0.0004 −0.308 0.0038 0.570
Social class 0.0626 ∗ ∗ 2.526 0.0001 0.017 0.0118 0.644
House owner/tenant −0.0685∗ −1.892 −0.0125 ∗ ∗ −2.222 0.0147 0.545
Household size −0.0072 −0.374 −0.0012 −0.419 0.0269∗ 1.875
Net monthly income 0.0061 1.138 −0.0001 −0.142 −0.0053 −1.329
Housewife age 0.0013 0.589 0.0002 0.507 −0.0017 −1.041
Average distance to all stores 0.0073 1.108 0.0011 1.088 −0.0011 −0.224
Store dispersion −0.0064 ∗ ∗ −2.030 −0.0002 −0.477 0.0009 0.407

Albert Heijn customer −0.3040 ∗ ∗∗ −6.417 −0.0140 ∗ ∗ −2.134 0.0098 0.296
Average quantity purchased 0.0043 ∗ ∗ 2.124 0.0002 0.615 −0.0010 −0.659
Maximum loyalty share 0.1654 ∗ ∗ 2.006 −0.0084 −0.658 0.0745 1.206
Average weekly private label quantity −0.0143∗ −1.847 −0.0002 −0.215 −0.0020 −0.363
Mean nr of weekly shopping trips 0.0218 0.876 0.0009 0.250 0.0074 0.408
Proportion trips before 12:00 0.0070 0.100 0.0037 0.370 −0.0091 −0.176
Proportion trips after 18:00 0.1765 1.015 0.0040 0.153 0.0803 0.633
Proportion of trips EDLP to HiLo 0.0020 0.249 0.0009 0.954 −0.0037 −0.698

I am a brand loyal consumer 0.0338∗ 1.740 0.0046 1.583 0.0107 0.737
Buy brands that others will adopt −0.0535 ∗ ∗ −2.262 −0.0048 −1.340 −0.0265 −1.518
Common to be first trying new brands −0.0036 −0.181 0.0054∗ 1.800 0.0240 1.616
Buy latest trends before friends approve −0.0111 −0.546 −0.0036 −1.197 0.0166 1.101
Put extra effort to shop in favorite store −0.0047 −0.252 −0.0018 −0.639 −0.0159 −1.128
NRC Handelsblad reading −0.0362∗ −1.766 0.0042 1.236 0.0212 1.396
Parool reading 0.0103 0.419 −0.0078 ∗ ∗ −2.076 0.0272 1.498

R2 0.095 0.064 0.037

a Weighted least squares with weights equal to the inverse of the posterior standard
deviations. Mean imputation of missing values. *p< 0.1; **p< 0.05; ***p< 0.01.



Chapter 4

The Impact of National Brand

Introductions on Price and Quality

Images of Discounters: An

Exploratory Analysis

4.1 Introduction§

Sales of the top 10 discounters in the world are expected to grow by 50% in the next five

years (Planet Retail 2010). By then, the German-based retailers Aldi and Lidl, pioneers

of the hard discount concept and ranking number one and two on the top-10 discounter

chart, are both expected to hit the $U.S. 100 billion mark (Planet Retail 2010). This

remarkable success of hard discount retailers is rooted in their ability to practice low

prices – 15 to 20% lower than those of large discounters like Wal-Mart (Wall Street

Journal 2010). Compared to traditional retailers, hard discount stores focus on minimal

assortments (between 1,000 and 1,500 SKUs, compared to 30,000 for an average U.S.

supermarket), rely heavily on own brands, and use a simplified ‘no-frills’ store format

with little promotional and merchandizing activity; strategic options that translate into

cost efficiencies in the supply-chain. Not surprisingly, these hard discounters have

acquired a substantial share of grocery sales at the expense of mainstream retailers in

Western Europe, and are consistently growing in the U.S. (Steenkamp and Kumar 2009,

Cleeren, Verboven, Dekimpe, and Gielens 2009, Planet Retail 2010).

Nonetheless, hard discount chains have realized that growth strategies based

on prices are not without limits, and that an overreliance on price-based competition

§This chapter is based on joint work with Els Gijsbrechts (Tilburg University), under 2nd round review
in International Journal of Research in Marketing.
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makes them vulnerable to incoming discounters. Partly due to this realization, hard

discounters are increasingly introducing national brands (NBs) into their merchandiz-

ing offer. At Lidl, 30% of the assortment is now composed of NBs, roughly the same

percentage as their contribution to total sales (Steenkamp and Kumar 2009). Aldi,

which not long ago had only private labels in its assortment, now lists well-known

manufacturer brands in several product categories and markets, such as PepsiCo’s

Quaker oat, Kraft’s Oscar Mayer hot-dogs or Dole’s fresh fruit in the U.S. – to name just

a few. For manufacturers, presence on the hard discounters’ shelves is an opportunity

to alleviate their dependency on mainstream retailers, who have extensively developed

their own private label lines (Ailawadi et al. 2008), and have put increased pressure on

national brand margins to compete with the discounters’ success (Bloom and Perry

2001).

Despite its strategic importance for both manufacturers and retailers (ter Braak,

Deleersnyder, Geyskens, and Dekimpe 2010), little is known about the impact of NB

introductions at hard discount stores. In an interesting recent study, Deleersnyder et al.

(2007) show that such introductions may entail win-win implications: enabling NBs to

grow their share relative to competing brands, and hard discounters to gain share in the

product category. However, the focus of that study is on short term sales effects. An im-

portant, yet unaddressed question is whether and how NB introductions – so directly

at odds with the core positioning of the hard-discounter format – affect consumers’ long

lasting perceptions of these chains. If carrying more NBs changes the hard discounters’

price or quality image, this is likely to affect their performance in the long run. Indeed,

consumer perceptions are enduring (Gijsbrechts 1993), and are shown to be key drivers

of store choice and spending (e.g. Cox and Cox 1990, Srivastava and Lurie 2004, van

Heerde et al. 2008). Moreover, our findings in Chapter 3 suggest that this is partic-

ularly true for hard-discounter shoppers. If, as advocated in a recent Nielsen report,

“Good Value is a Matter of the Mind” (Nielsen 2008, p.6), then hard discounters have

an interest in tracing the effect of higher NB presence, on their price and quality image.

This paper aims to address that issue. Since national brands (i) are typically re-

garded by consumers as having higher quality than their private label counterparts, but

(ii) are, on average, more expensive (Kumar and Steenkamp 2007, Ailawadi et al. 2008,

Geyskens et al. 2010), the shift in the discounter stores’ assortment strategy is expected

to improve their quality image, to the detriment of their price image. We empirically

test for the presence and size of these effects, using a unique data set that combines lon-

gitudinal information on a hard discounter’s price and quality perceptions, with that

chain’s assortment composition over time. In so doing, we control for the potential

correlation between the two types of perceptions.

The remainder of the paper is organized as follows. In the next section, we briefly

review the relevant literature, and develop the conceptual framework. Section 3 de-
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scribes the methodology. Data and variable operationalizations are discussed in Sec-

tion 4, while the empirical results are presented in Section 5. Section 6 discusses the

findings and limitations, together with suggestions for future research.

4.2 Conceptual framework

4.2.1 Literature background

Store image plays a pivotal role in retailers’ strategies. Since at least Martineau’s (1958)

seminal work, a plethora of studies has demonstrated the importance of store image for

retailer segmentation (Steenkamp and Wedel 1991) and positioning (Pessemier 1980),

as well as its influence on consumer store choice and spending (e.g. Nielsen 2008, van

Heerde et al. 2008).

Defined as the way the store is perceived in the shopper’s mind (Martineau 1958),

the conceptualization of store image rests upon three important aspects (see Ailawadi

and Keller 2004, for a recent review of retailer image research). First, store image is typ-

ically seen as a multidimensional construct, with price and quality (of the assortment)

as its core dimensions (Mazursky and Jacoby 1986, Hildebrandt 1988). Second, the for-

mation of a retailer’s (price and quality) image is commonly described as an evolving,

dynamic process (Mazursky and Jacoby 1986, Büyükkurt 1986, Nyström et al. 1975) –

perceptions being updated as new information comes in. Finally, given the complex-

ity of the store offer, consumers have only incomplete information and are uncertain

about retail stores, thus resorting to available (intrinsic or extrinsic) perceptual cues

when inferring the retailer’s overall price and quality (Feichtinger et al. 1988, Mägi and

Julander 2005).

In this regard, manufacturer brands are seen as particularly important extrinsic

cues for retailers (Ailawadi and Keller 2004). Compared to intrinsic cues (e.g. smell,

taste and texture), extrinsic product cues, namely brands and prices, have repeatedly

been found to explain a larger variance in perceptions of consumer packaged goods

(Grewal, Krishnan, Baker, and Borin (1998), Dawar and Parker (1994), Allison and Uhl

(1964); c.f. Collins-Dodd and Lindley (2003)). Brands are often referred to as one of

the most important cues for consumers in contexts of uncertainty (e.g. Erdem, Swait,

and Valenzuela 2006, Erdem and Swait 1998), as they communicate an array of com-

plex information generated by their characteristics and by advertising and word-of-

mouth (Stokes 1985).

Brands are usually deemed informative about quality, as quality is often per-

ceived with uncertainty (Zeithaml 1988, Richardson et al. 1994). In a store context,

however, where prices vary over time and across products and price information is

therefore complex and ambiguous, consumers may be uncertain about a store’s overall
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expensiveness too (Alba et al. 1994). In such a setting, the presence of known brands

may also prove helpful in the formation of price perceptions (Monroe et al. 1991, Biswas

et al. 1993). Consistent with these insights from cue utilization theory and rooted in in-

formation economics (Arrow 1963, Akerlof 1970, Spence 1973), (national) brands and

the products they identify may be used to inform consumers about the overall price

and quality of a discounter.1

4.2.2 Conceptual framework

Having more national brands in its assortment influences the hard discounter’s price

and quality perceptions in several ways, as schematically outlined in Figure 1. First,

unless they simply replace previously offered own labels, national brand introductions

may enlarge the hard discounter’s assortment – adding more SKUs to the retailer’s

offer. Such an increase in assortment size could enhance the consumer’s overall per-

ception of quality offered by the store (Oppewala and Koelemeijer 2005)(’+’ effect in

Figure 4.1). It could also influence its perceived cost of operation, leading to higher

expected prices (or: a less favorable price image and hence a ’–’ effect in Figure 4.1).

Figure 4.1: Conceptual framework and hypothesized effects of NB introduc-
tions on Hard Discounters.

Second, national brands are typically more expensive than private labels, with

price premiums in U.S. supermarkets of approximately 25-30% (Ailawadi et al. 2001,

Hoch and Lodish 2001). Hence, these NB introductions will lead to an increase in

the store’s average actual price. This, in turn, will negatively affect its overall price im-

1Aldi’s US website features a set of questions – “Does ALDI carry brand names?” and “If you don’t
have the brands I know, how can I be sure of the quality?,” – that reflects precisely these issues of uncer-
tainty and consumer perceptions and the use of national brands’ names as informative cues (Aldi 2010).



4.2. CONCEPTUAL FRAMEWORK 77

age (Mägi and Julander 2005)(’–’ impact in Figure 4.1), and may act as a quality signal

(’+’ impact on quality image in Figure 1). Thus, adding national brands may entail

changes in the hard discounter’s assortment size and average price level that lead con-

sumers to update their quality and price perceptions of the store. However, we expect

a greater presence of NBs on the hard discounter’s shelves to affect its quality and price

image over and above these two mechanisms.

Third, NBs – in contrast with the own labels carried by hard discounters – invest

heavily in their ’aura of uniqueness and high quality’ (Geyskens et al. 2010), and are

typically perceived to have higher quality than private labels (Kumar and Steenkamp

2007). Being such ’beacons of quality’, they are likely to enhance the perceived qual-

ity of the hard discounter’s offer, over and above the mere effect of assortment size.

Hence, we expect that as the number of NBs in the assortment goes up, so will the hard

discounter’s quality image (’+’ effect in Figure 4.1). At the same time, consumers are

aware that NBs come at a price premium. Hence, even shoppers who do not inspect

actual store prices, and whose store price image is thus not affected by the increase in

the average price of the store, may use the stronger presence of national brands as a

cue for higher expensiveness (’–’ impact on price image, in Figure 4.1).

Fourth, while a stronger presence of NBs in the hard discounter’s assortment may

produce an enduring shift in its quality and price perceptions, extra – yet temporary

– shifts may come about at the time of the NB introduction. Such ’pulse’ effects may

arise because the introduction shakes consumers out of their inertia, leading them to

revise their quality and price images of the store. At the same time, the impact may be

temporary either because consumers over-react to the NB introduction initially – read-

justing their beliefs as more information comes in – or because, after taking in the new

brand information at first, ’forget’ about their signaling value, and partly revert to their

previous quality and price perceptions (see e.g. Mehta, Rajiv, and Srinivasan 2004, for

evidence of consumer learning and forgetting). Such (temporary) shocks are expected

to be particularly likely if the NB introduction is more ’disruptive’ (van Heerde, Mela,

and Manchanda 2004), i.e. if it is the first NB in its category. Hence, we expect NB intro-

ductions that increase the number of categories with NB presence, to have a more positive

(negative) effect on store quality (price) image, at the time of introduction (’+’ and ’–’

arrows in Figure 4.1, respectively).

Finally, the size of the quality and price perception adjustment may further de-

pend on the magnitude of the price premium charged by the NB (Deleersnyder et al. 2007).

Consumers’ response to price changes may be nonlinear (Monroe 1973, Pauwels et al.

2007), in that large price differentials may generate disproportionate reactions. Large

price premiums are more likely to be spotted, and – hence – may further enhance the

signal of quality and expensiveness (’+’ impact on quality image, ’–’ impact of price

image, in Figure 4.1). The latter impact may be dampened, however, by a contrast
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effect (see e.g. Pauwels et al. 2007): to the extent that the price premium of newly in-

troduced NBs over their category PL counterparts becomes higher, this may shift the

hard discounter shoppers’ reference price upward and make private label prices ap-

pear even lower than before. Especially for shoppers with a primary interest in private

labels, this may offset the negative effect of NB price premiums on the overall store

price image.

Figure 4.1 summarizes the hypothesized effects of these explanatory factors. It

also indicates that store price and quality perceptions may be correlated directly, over

and above the joint effect of these factors. On the one hand, more expensive (less favor-

able) price image perceptions may trigger perceptions of high quality at the store (in

our framework, this would result in negatively correlated price and quality images).

Evidence of such correlations has been found in the (cross-sectional) store image stud-

ies of e.g. Baker et al. (2002), Grewal et al. (1998). On the other hand, favorable attitudes

towards a store may result in a ‘halo’ effect (Thorndike 1920, Holbrook 1983). Based on

that mechanism, a positive correlation could result: consumers holding a high quality

image of the HD chain, also associating it with a favorable (low) price image (in our

framework, this would result in positively correlated price and quality images). In the

methodology outlined below, we will acknowledge such possible price-quality image

correlations.

4.3 Methodology

To investigate the effects of NB introductions on a discounter’s price and quality im-

ages simultaneously, we use a bivariate ordered probit (BIOPROBIT) model, which

naturally accommodates a possible correlation between two dependent variables. The

model is particularly suited for our purposes, as it allows for the simultaneous analysis

of two discrete and ordered dependent variables, like the price and quality perception

ratings obtained from our surveys. Before applying this model to our data, we explain

its features and estimation below.2

2Alternatively, we could consider a structural learning model, in which consumers use national brand
signals for store price and quality image formation. However, such a model would be quite complicated.
For one, it would involve simultaneous updating for two ordinal, correlated, dependent variables. In
addition, next to the observed price signals, there would be a multitude of brand signals related with
the introduction and/or the consumption of NBs and private labels. Given the nature of our data, it is
unlikely that we would be able to obtain stable estimates for such a complex dynamic model. Hence, we
opt for a more exploratory approach, based on aggregate store price and assortment characteristics over
time.
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4.3.1 Model specification

Let MSPIist denote consumer i’s self-reported overall price image about store s in period

t, which can take on values j = 1, . . . , J, and MSQIist denote the same consumer’s self-

reported overall quality image about the same store and in the same period, which

can take on values k = 1, . . . , K.3 We assume that self-reported images are the result

of latent, unobserved price and quality perceptions in consumers’ minds. We denote

these, respectively, by SP̃Iist and SQ̃Iist. The latent variables get mapped onto the self-

reported overall perceptions according to the following scheme

MSPIist =





1 if SP̃Iist ≤ αp,1

2 if αp,1 < SP̃Iist ≤ αp,2
...

J if αp,J−1 < SP̃Iist

(4.1)

and

MSQIist =





1 if SQ̃Iist ≤ αq,1

2 if αq,1 < SQ̃Iist ≤ αq,2
...

K if αq,K−1 < SQ̃Iist

(4.2)

where αp,j and αq,k are unknown cutoff or threshold parameters for the price and quality

perceptions, respectively (for all j and k), that satisfy the conditions αp,1 < αp,2 < . . . <

αp,J−1 and αq,1 < αq,2 < . . . < αq,K−1. For identification, purposes αp,0 = αq,0 = −∞ and

αp,J = αq,K = ∞. We specify the equations of the unobserved store price and quality

perceptions as follows

SP̃Iist = βpxp,ist + ǫp,ist

SQ̃Iist = βqxq,ist + ǫq,ist

, (4.3)

where βp and βq are the vectors of parameters governing the effect of the explanatory

variables in the vectors xp,ist and xq,ist on SP̃Iist and SQ̃Iist, and ǫp,it and ǫq,ist are the er-

ror terms of the price and quality equations, respectively. The error terms are supposed

to be independent of the vectors of exogenous explanatory variables and are assumed

to follow a standard bivariate normal distribution, i.e. (with variances set to one for

identification):
(

ǫp,ist

ǫq,ist

)
∼ N

[(
0
0

)
,
(

1 ρ

ρ 1

)]
. (4.4)

The correlation ρ between ǫp,ist and ǫq,ist is unknown and is therefore a parameter to

be estimated. The different combinations of the perceptual values are determined by

3Note that the response values of both measures need not to be the same. In our case, however, both
price and quality perceptions were measured with a Likert scale from 1 to 9.
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using the threshold values that define the areas of the bivariate normal density associ-

ated with each particular combination (Selezneva 2008). Given that the thresholds are

not fixed a priori, such ’discrete’ distribution is thus able to accommodate a variety of

shapes, skewed or multi-modal, commonly found in discrete ordinal data.4 The prob-

ability of a combination of perceptual levels {j, k}(j = 1, 1, . . . , J; k = 1, 2, . . . , K) for a

particular consumer i and store s in period t is then (see e.g. Greene and Hensher 2009):

Pr(MSPIist = j, MSQIist = k) = Pr(αp,j−1 < SP̃Iist ≤ αp,j, αq,k−1 < SQ̃Iist ≤ αq,k)

= Pr(SP̃Iist ≤ αp,j, SQ̃Iist ≤ αq,k)

− Pr(SP̃Iist ≤ αp,j−1, SQ̃Iist ≤ αq,k)

− Pr(SP̃Iist ≤ αp,j, SQ̃Iist ≤ αq,k−1)

+ Pr(SP̃Iist ≤ αp,j−1, SQ̃Iist ≤ αq,k−1). (4.5)

In terms of the standard bivariate normal probability density φ2(·) and cumulative

Φ2(·) distribution functions, and using the specified perceptual equations in (4.3), the

joint probability can be written as follows (see e.g. Greene and Hensher 2009):

Pr(MSPIist = j, MSQIist = k) = Pr(αp,j−1 < SP̃Iist ≤ αp,j, αq,k−1 < SQ̃Iist ≤ αq,k)

=
∫ αq,k−βqxq,ist

αq,k−1−βqxq,ist

∫ αp,j−βpxp,ist

αp,j−1−βpxp,ist

φ2(ǫp,ist, ǫq,ist, ρ)dǫp,istdǫq,ist

= Φ2(αp,j − βpxp,ist, αq,k − βqxq,ist, ρ)

− Φ2(αp,j−1 − βpxp,ist, αq,k − βqxq,ist, ρ)

− Φ2(αp,j − βpxp,ist, αq,k−1 − βqxq,ist, ρ)

+ Φ2(αp,j−1 − βpxp,ist, αq,k−1 − βqxq,ist, ρ). (4.6)

Hence, the log-likelihood function to be maximized is given by:

ln L =
Ti

∑
t=1

N

∑
i=1

J−1

∑
j=1

K−1

∑
k

I(MSPIist = j, MSQIist = k) ln Pr(MSPIist = j, MSQIist = k), (4.7)

where I(·, ·) is an indicator function, N is the number of consumers, and Ti is the num-

ber of observations for consumer i. The parameters to be estimated are the J + K − 2

cutoffs α, the β’s of both equations in (4.3), and the correlation ρ. In our empirical anal-

ysis, the vectors xp,ist and xq,ist include the same set of variables – as discussed next.

4.3.2 Data and operationalizations

Our empirical analysis focuses on one of the most successful hard discounters in the

world, the German-based Lidl, part of the Schwarz Group. Lidl’s group is the fifth

4In our case, the distribution of quality perceptions is bi-modal.
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largest food retailer worldwide after Carrefour, Metro Group (Germany), Tesco and

Wal-Mart, and ranks second on the chart of discounters (Planet Retail 2010). A family-

run business, Lidl opened its first discount store in 1973, copying the concept of its main

competitor, Aldi, also born in Germany. Lidl has been growing ever since and, in the

last 15 years, opened new stores at the rate of one per day (Nielsen 2008). Operating

approximately 8000 stores in over 20 countries worldwide, Lidl reached more than

$U.S. 69 billion dollars in sales in 2007 (Delloite 2009) and is expected to soon hit the

$U.S. 100 billion mark (Planet Retail 2010). Industry experts forecast the entry of Lidl

stores in the U.S. and/or Canada in 2012.

We use data from Lidl’s operations in The Netherlands, which despite its small

size, is the country with the fifth most Lidl stores. With a consistent growth over the

last few years, Lidl’s share in the Dutch market has reached about 4%. Especially after

the long price war among Dutch retail chains that started in 2003, discounters have

occupied a space traditionally reserved for mainstream retailers, and consumers have

adjusted their overall perceptions of incumbent supermarkets (van Heerde et al. 2008).

Against this backdrop, it seems particularly relevant to explore how (if at all) carrying

national brands affects consumers’ price and quality perceptions about the discounter.

Dependent variables: Price and quality perceptions

We have information on consumer perceptions of store price and quality, measured

on an ordinal scale from 1 (= least favorable) to 9 (= most favorable).5 These survey

data refer to a GfK panel of 4400 households that represent a stratified sample of The

Netherlands. The data cover a period of five years, from January 2002 to December

2006. They were collected semiannually by GfK, based on store intercept interviews.

Each of the 11 survey waves was conducted during one week, allowing households to

judge the overall price level and perceived quality of more than one store and more

than once – depending on how many stores were visited in that week, and how often.

Except for the wave that took place in week 5 in 2004, surveys were conducted in weeks

16 and 40 of every year.

Table 4.1 (see the first four inner columns) and Figure 4.2 show the evolution of

the price and quality perceptions about Lidl (PriceImageist , QualityImageist), averaged

across households . Although more heterogeneous, average price perceptions are more

favorable than their quality counterpart over the entire period of analysis – consistent

with the prevalent perceived positioning of hard discounters. The price-quality gap

was smallest in the beginning of 2003, when the actual overall price was at its highest

but, also, many NB introductions were taking place, increasing both the number of

NB SKUs and product categories with NB presence (see columns labeled NBCum and

5Note that the SPI scale was reversed in the previous chapters.
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Table 4.1: Descriptive statistics

Price image Quality image NBCum NewNBCat NBPremium Assortment ActualPrice
mean s.d. mean s.d. mean mean mean

wave 1 (2002:16) 6.69 1.26 6.28 1.22 49 38 0.09 8.62 0.99
wave 2 (2002:40) 6.78 1.16 6.44 1.09 89 17 0.06 11.10 1.20
wave 3 (2003:05) 6.62 1.24 6.32 1.14 127 11 0.00 11.21 1.80
wave 4 (2003:16) 6.82 1.22 6.36 1.10 157 6 0.24 11.40 0.64
wave 5 (2003:40) 6.82 1.13 6.37 1.11 170 2 0.38 11.34 0.76
wave 6 (2004:16) 6.75 1.27 6.28 1.18 180 0 0.24 10.20 0.84
wave 7 (2004:40) 6.69 1.19 6.39 1.07 191 3 0.20 11.59 0.76
wave 8 (2005:16) 6.70 1.17 6.29 1.08 204 4 0.24 12.11 0.72
wave 9 (2005:40) 6.75 1.11 6.35 1.03 213 1 0.26 14.34 0.76
wave 10 (2006:16) 6.75 1.18 6.42 1.10 216 1 0.16 15.24 0.68
wave 11 (2006:40) 6.77 1.11 6.44 1.05 222 2 0.15 15.42 0.84
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NewNBCat of Table 4.1 and Figure 4.3).

Operationalization of explanatory variables

For the same individual panel members and the same time period, we have scanner

data on individual shopping trips and purchase histories at all Dutch grocery retailers.

We use data at Lidl stores to compute our set of independent variables. The observa-

tions are recorded at the level of the household, noting the time of the day the shopping

trip took place (morning, afternoon, evening), and which (and how many) SKUs were

purchased. For each SKU, we know its brand name and price, as well as the product

category it belongs to (out of a set of 59 product categories defined by GfK).

We use these data to operationalize our explanatory variables as follows. The

large and representative sample allows us to operationalize assortment size at time t

(Assortmentst) by judging which SKUs were available (i.e. for which at least one pur-

chase was recorded in the entire panel) at Lidl between two subsequent survey periods

(including the SKUs in the current period). The chain’s actual overall price level at

time t (ActualPricest) is computed as a weighted average of all SKU unit prices in that

period, where the weights represent the SKUs’ relative contribution to the retailer’s rev-

enue. To allow for meaningful comparison across categories, we first transform SKU

unit prices within a category into indices. We do so by dividing the SKU’s observed

price per volume unit (e.g. liter, kilogram), by the average unit price in the category,

across all stores in an initialization period (see van Heerde et al. 2008, for a similar

procedure).
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Figure 4.2: Evolution of aggregate SPI (top solid line) and SQI (bottom dotted
line) in Lidl stores from 2002 week 16 to 2006 week 40.

To operationalize the variables related with NB introductions, we first classify

the SKUs sold at Lidl into national brands and private labels. Given the large num-

ber of differently-named private labels at that chain, this is not an obvious task. We

therefore use data across all mainstream supermarket chains to identify ’leading’ NBs
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in each product category, i.e. the top 5 selling brands in that product category, after ex-

cluding the own brands of the mainstream supermarket chains. Next, we record which

of the NBs are available at Lidl, in which categories, and since when. Given that NBs

accepted by hard discounters are typically among the leading brands in their category

(Aggarwal (2003); c.f. Deleersnyder et al. (2007)), this procedure is likely to capture all

NB introductions at Lidl.

To quantify the total number of NBs in Lidl’s assortment at a given point in time

(NBCumst), we first identify the introduction week of each brand, as the week in which

an SKU purchase of that brand was first recorded in the panel. The number of NBs in

each (survey) week, then equals the number of all NB SKUs available in (introduced

no later than) that week. Similarly, we identify, in each product category, the first week

a NB was available. We then use this information to operationalize the number of

product categories where a NB is introduced for the first time since the last survey

week (NewNBCatst). Finally, the NB price premium (NBPremiumst) is obtained by (i)

calculating, in each category where a NB is available, the percentage price difference

between NBs and PLs (i.e. difference in average unit price between NB SKUs and PL

SKUs in the category, divided by the average unit price of PL SKUs in the category),

and then (ii) calculating a weighted average across categories – using category share of

wallet at the chain as weights.
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Figure 4.3: Evolution of NB introductions at Lidl stores from 2002 week 16 to
2006 week 40.

Table 4.1 provides descriptive statistics for the key explanatory variables (see five

rightmost columns). The number of SKUs has increased over time, and although a

great deal of the activity concerning NB introductions takes place in the beginning of

our data period, NB introductions were observed up to the end of 2006. Despite the

lower overall price levels by the time the last waves were conducted, the price gap

between NBs and PLs reached its highest values in these periods.
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Household characteristics

The impact of NB introductions on the HD’s quality and price image may well dif-

fer across households. Moreover, since our data stem from store-intercept surveys,

we need to account for possible selection bias: households visiting the HD chain as

more NBs become available, possibly differing from those patronizing it early on. To

accommodate household differences, and avoid confounding changes in HD price im-

age with changes in the composition of the sample, we add household characteristics

deemed to affect HD image and response to NB availability as controls (see Ailawadi

et al. 2008, for a similar approach). In so doing, we allow not only for main effects of

these household features, but also explore possible interactions with our focal variables

– those related with the discounter’s NBs.

Specifically, we expect consumers’ HD image, and their response to increased

NB availability, to be linked to two important shopping characteristics. First, different

consumers sample (i.e. purchase and consume) different proportions of store brands

and national brands (Tellis and Wernerfelt 1987) – according to their preferences. This

may affect not only their reference prices and quality (Gijsbrechts 1993), but also their

pre-disposition towards HD stores, and towards availability of NBs at these stores. Sec-

ond, consumers patronizing relatively more discounters than mainstream supermar-

kets may be more acquainted with the discounters’ format, and/or exhibit a different

attitude towards this format. Again, these households’ price and quality perceptions

of the discounter store may be differently influenced by increases in the availability of

NBs. We operationalize a household’s private label propensity (PLPropensityi) as the

household’s expenditure on private labels divided by the household’s total expendi-

tures, in an initialization period. Similarly, a household’s discounter share (DiscPropensityi )

is given by the its number of trips to discounters (Aldi and Lidl in our data set) divided

by its total number of shopping trips. For ease of interpretation, we mean-center these

variables prior to inclusion in the models. In total, we have 3510 observations for model

estimation (corresponding to 1583 different households), over a period of five years.

4.4 Empirical results

We estimate our models in Stata, using the bivariate ordered probit module – bioprobit

– by Sajaia (2008). The standard errors are adjusted to account for repeated observa-

tions by household. Table 4.2 provides information on the model fit and the estimated

correlation between the price and quality image random components, for five models:

(i) model M1, including the assortment, actual store price and NB-related variables,

but without household-controls, (ii) model M2, adding main effects for the household

characteristics, (iii-iv) models M3 and M4, adding interactions with households’ PL
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propensity and discounter propensity, respectively, and (v) a full model, M5, which

includes interactions between the NB-related variables and both household-controls.6

The likelihood-ratio test of independence of equations (ρ = 0) is strongly rejected

in all models, supporting the adequacy of a bivariate specification instead of a uni-

variate one. The correlation between the two error terms is positive in all models, and

approximately equal to 0.73 – capturing a halo effect. Comparing M2 with M1, we ob-

serve that adding main effects for the household characteristics substantially increases

the likelihood, and leads to an improvement (lower values) of both the AIC and the

BIC measures. Including interactions between Discounter proneness and NB presence

(as in model M4); or especially between Private Label proneness and NB presence (as

in model M3) entails an additional likelihood increase, and a further improvement in

AIC. However, having both types of household interactions in the model (model M5)

creates collinearity problems, and deteriorates the AIC and BIC measures. Based on

these fit measures, and given its richer specification, model M3 appears to be the best

choice (the lowest AIC value is that of M3). Below, we present the parameter estimates

of this model, along with those of the simpler benchmarks M1 and M2 (the lowest BIC

value is that of M2). We discuss the Price Image and Quality Image effects in turn.

4.4.1 Effects on price images

The parameter estimates in Table 4.3 reveal that while total assortment size does not

significantly affect Lidl’s price image (p > .10), higher actual store prices – as expected

– do lead to a less favorable price perception of the store (Model M3: βActualPrice =

−0.1265; p < .1; one-tailed). Shoppers with a higher propensity to visit hard discoun-

ters in general, do not hold more favorable price perceptions of Lidl (p > .10). This

suggests that differences in the preference for low prices, rather than household het-

erogeneity in HD price perceptions, drives discounter patronage. Similarly, households

with a strong focus on PLs do not perceive Lidl as more or less expensive than those

with a NB orientation (p > .10).

Our key interest, however, is in the variables explicitly reflecting NB availabil-

ity. The results clearly reveal that stronger NB presence affects Lidl’s price image over

and above its impact through objective price changes. For the average household, a

higher number of NBs in the Lidl assortment, goes along with a more expensive store

image (βNBCum = −0.0022; p < .05; one-tailed). Thus, the more NBs are added to the

discounter’s assortment, the more negatively consumers will judge the discounter’s

overall price level. Note that, like the actual store price effect, this finding is consistent

across the three specifications (M1, M2 and M3). Moreover, as can be seen from the in-

6The limited number of time observations per household precluded us from estimating random coef-
ficients and hence incorporating unobserved heterogeneity in the model.
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Table 4.2: Summary results BIOPROBIT modelsa

M1 M2 M3 M4 M5

Log likelihood -9334.4 -9310.0 -9302.3 -9307.6 -9302.2

Wald p > χ2(d.f.) 7.2 7.5 18.8 9.5 21.2
d.f. 5 7.00 9 9.00 11

AIC 18678.9 18634.0 18624.5 18633.1 18626.4
BIC 18709.7 18677.1 18680.0 18688.6 18694.2

ρ 0.727 0.730 0.730 0.731 0.731

Intercept 0.922*** 0.930*** 0.930*** 0.931*** 0.930***
s.e. 0.032 0.032 0.032 0.032 0.032
a In all models: observations = 3510 per equation, households = 1583.

M1 is the baseline model without household-level variables. M2 is
the baseline model with main household effects but without
interactions. M3 includes interactions between the household’s
propensity to buy PLs, on the one hand, and NBCum and NewNBCats
on the other. M4 includes interactions between the household’s
propensity to shop at a hard discounter on the one hand, and NBCum
and NewNBCats on the other. M5 includes interactions between both
household characteristics (propensity to buy PLs, and propensity to
shop at a hard discounter) on the one hand, and NBCum and
NewNBCats on the other.

significant interaction parameters in model M3, this effect is no different for shoppers

who spend larger portions of their wallet on PLs.

Based on model M3, NBs with higher-than-average price premiums over private

labels do not result in a more unfavorable price image – suggesting that the price effect

is properly accounted for through the actual price variable. National brand introduc-

tions in categories where the discounter did not have any before, do not yield any ad-

ditional effects on store price image for the average household either (p > .10). We do,

however, find a significant interaction between household private label focus, and first

NB entrants in a Lidl category. The effect is positive (βNewNBCatxPLPropensity = .0784; p <

.05), suggesting that NB entry in a category that exclusively held PLs so far, makes the

store temporarily appear less expensive to PL prone consumers. As indicated above,

this may be due to a contrast effect. Combining the (negative) main and (positive) in-

teraction effects as in Jaccard and Turrisi (2003) shows, however, that the (net) impact

of first NB entrants in a category is significantly positive only for households with a PL

purchase share above 42%.

In sum, our results suggest that adding NBs to the discounter’s assortment leads

to a less favorable price image, over and above the effect of the actual store price in-

crease. First NB entrants in a category may temporarily enhance the discounter’s price
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Table 4.3: Parameter estimates price imagea

M1 M2 M3 M4 M5

Main effects

NBCumb −0.0026∗ ∗ −0.0026∗ ∗ −0.0022∗ ∗ −0.0026∗ ∗ −0.0021
(0.0013) (0.0013) (0.0013) (0.0013) (0.0018)

NewNBCatb −0.0072 −0.0073 −0.0031 −0.0079 −0.0020
(0.0055) (0.0055) (0.0057) (0.0056) (0.0060)

Assortmentb 0.0266 0.0271 0.0265 0.0276 0.0250
(0.0165) (0.0165) (0.0164) (0.0165) (0.0165)

ActualPriceb −0.1203∗ −0.1212∗ −0.1265∗ −0.1208∗ −0.1267∗
(0.0931) (0.0933) (0.0934) (0.0932) (0.0933)

NBPremiumb 0.1813 0.1753 0.2068 0.1684 0.2288
(0.3058) (0.3063) (0.3071) (0.3065) (0.3076)

PLPropensity −0.1177 −1.8269 −0.1019 −3.0149∗
(0.2851) (1.2260) (0.2847) (1.6740)

DiscPropensity 0.0081 0.0262 0.0933 1.3486
(0.2315) (0.2325) (0.8828) (1.1922)

Interactions
NBCumxPLPropensity 0.0070 0.0128

(0.0056) (0.0079)
NewNBCatxPLPropensity 0.0784∗ ∗ 0.1072∗ ∗∗

(0.0307) (0.0394)
NBCumxDiscPropensity −0.0009 −0.0064

(0.0040) (0.0056)
NewNBCatxDiscPropensity 0.0109 0.0334

(0.0222) (0.0278)

a *p< 0.1; **p< 0.05; ***p< 0.01. Standard errors in parenthesis.
b Given our directional hypothesis, we use one-tailed sign tests.
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image, but this only holds for households with a large share of wallet spent on PLs.

4.4.2 Effects on quality images

Table 4.4 summarizes the results for the quality image equation. As expected, having

more SKUs in the assortment enhances the store’s quality image (model M3: βAssortment =

.0328; p < .05; one-tailed). In contrast, the discounter’s actual price level has no signifi-

cant effect on consumer perceptions of his merchandize quality (p > .10). The national

brand price premium also fails to reach statistical significance (p > .10). Hence, prices

do not seem to be directly informative for the formation of store quality perceptions of

the discounter.

As for the main effects of household characteristics, we find that consumers with

a high share of trips to discounters have significantly higher perceptions of Lidl’s over-

all merchandize quality (βDiscPropensity = .4343; p < .10). Private label propensity,

though, is not significantly linked to Lidl’s quality image (p > .10), possibly because

PL-prone consumers focus more on price, and can also purchase PLs at mainstream

supermarkets.

Focusing on the effect of increased NB presence, we obtain some interesting find-

ings. First, against expectations, an increased number of NBs does not enhance Lidl’s

quality image. The negative but insignificant (p > .10) main effect is moderated by

consumers’ PL propensity, the interaction parameter being positive and marginally sig-

nificant (βNBCumxPLPropensity = .0091; p = 0.12). Applying Jaccard and Turrisi’s (2003)

approach to evaluate the joint influence of these parameters, we obtain a marginally

significant negative impact only for households with zero PL shares (which are not ob-

served in our sample), and insignificant effects elsewhere. Thus, a higher number of

NBs in the discounter’s assortment does not enhance its quality image.

A similar pattern is observed for the number of new product categories in which

NBs are introduced. Except for PL shares lower than 8% (less than 10 households in our

sample), the negative (but insignificant, p > .10) main effect is nullified by the positive

and significant interaction with households’ PL propensity (βNewNBCatxPLPropensity =

.0604; p < 0.1). Hence, making NBs available in more categories does not make a

difference in terms of quality image, even in the introduction period.

4.4.3 Robustness checks

To ensure the validity of our findings, we conduct several robustness checks. First, we

re-estimate the models using the number of new NB introductions, instead of number

of new categories where a NB is introduced, as an explanatory (pulse) variable. Again,

we find no significant effect for this variable. Alternatively, we replace the number of

NBs in the assortment, by the total number of categories with a NB present. Again,
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Table 4.4: Parameter estimates quality imagea

M1 M2 M3 M4 M5

Main effects

NBCumb −0.0021 −0.0022 −0.0020 −0.0023 −0.0019∗
(0.0013) (0.0013) (0.0013) (0.0013) (0.0013)

NewNBCatb −0.0063 −0.0073 −0.0051 −0.0076 −0.0044
(0.0056) (0.0057) (0.0062) (0.0056) (0.0062)

Assortmentb 0.0367∗ ∗∗ 0.0346∗ ∗∗ 0.0328∗ ∗ 0.0346∗ ∗∗ 0.0325∗ ∗
(0.0166) (0.0167) (0.0166) (0.0167) (0.0167)

ActualPriceb −0.0865 −0.0927 −0.0925 −0.0917 −0.0934
(0.0951) (0.0952) (0.0953) (0.0953) (0.0953)

NBPremiumb −0.1653 −0.1690 −0.1408 −0.1733 −0.1340
(0.3098) (0.3105) (0.3124) (0.3105) (0.3131)

PLPropensity 0.0189 −1.9637 0.0135 −2.1772
(0.2865) (1.3203) (0.2865) (1.8264)

DiscPropensity 0.4264∗ 0.4343∗ −0.2944 0.6960
(0.2325) (0.2344) (0.9327) (1.2952)

Interactions
NBCumxPLPropensity 0.0091 0.0101

(0.0059) (0.0084)
NewNBCatxPLPropensity 0.0604∗ 0.0686

(0.0366) (0.0438)
NBCumxDiscPropensity 0.0035 −0.0011

(0.0042) (0.0060)
NewNBCatxDiscPropensity 0.0191 −0.0106

(0.0250) (0.0302)

a *p< 0.1; **p< 0.05; ***p< 0.01. Standard errors in parenthesis.
b Given our directional hypothesis, we use one-tailed sign tests.

while this variable exerts a negative effect on Lidl’s price image, we find no positive

quality impact. Third, to further alleviate concerns about changes in sample compo-

sition, we re-estimate the model including only households that have patronized Lidl

before the last two survey waves (i.e. before 2006). We find the results to remain sub-

stantively the same. Finally, we examined an inverted U-shape effect for number of

NBs, by adding its square as an explanatory variable. This added variable did not

increase model fit.

Overall, our results suggest that introducing NBs only affects the discounter’s

quality image to the extent that it widens the assortment. However, it does not generate

a more positive effect than adding PLs to the line. This observation, combined with the

result that NB presence deteriorates the discounter’s overall price image beyond the

actual price increase, constitutes a surprising finding that entails strong implications

for hard discounter chains. We discuss these implications next.
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4.5 Discussion

Being positioned as lean, cheap and strongly private-label focused originally, hard dis-

counters have started to accept more NBs in their assortment, and are expected to con-

tinue going down that road (Planet Retail 2010). In so doing, they count on getting

even better inroads into the mainstream supermarkets’ customer segments. The re-

sults of our study, however, cast some doubt on the appeal of such an approach. Even

though offering NBs may increase the discounter’s category sales share in the short

run (Deleersnyder et al. 2007), the long run implications appear less rosy. On the one

hand, increased NB presence on the hard discounter’s shelves deteriorates its favorable

price image – cutting into its core competitive advantage. On the other hand, unfortu-

nately, having more NBs does not seem to enhance the overall quality perception of its

offer. Because of this asymmetric influence, the net outcome in terms of positioning in

the consumers’ mind does not seem all that favorable. We discuss some academic and

managerial implications below.

4.5.1 Academic implications

Our study offers empirical evidence for the effect of assortment composition, i.e. the

share of national brands in the hard discounter’s offer, on two key dimensions of store

image: price and quality. While the fact that price image is hurt makes intuitive sense,

an intriguing question is why quality perceptions are not enhanced by having more

NBs. As indicated by Jacoby and Mazursky, common wisdom suggests that “a retailer

with a relatively low image might be able to improve this image by associating it with a

more favorably evaluated brand or manufacturer image” (Jacoby and Mazursky 1984,

p.121). Why, then, do we not observe such an effect? We see three possible reasons why

increased NB presence does not enhance the HD’s quality image.

A first explanation is that, by placing increased focus on NBs, hard discoun-

ters start to ‘play in a different league’. Given that their reference set becomes that

of mainstream retailers and soft discounters, they now need to measure up against

different standards (Haans 2007). A somewhat related explanation comes from social

psychology consistency theories (Heider 1944, 1946, 1958, Osgood, Suci, and Tannen-

baum 1957). Encountering more (and higher priced) NBs may confuse consumers, and

disrupt the discounter’s perception of having a lean and cheap assortment, where qual-

ity is based on intrinsic product characteristics, rather than on costly, advertising-based

brand image. Differently stated, a (more dominant) NB presence may be incongruent

with the hard discounter’s original selling point, and therefore fail to produce the ex-

pected positive perception changes among its customers.

A second explanation is that the perceived quality superiority of the NBs is sim-

ply too small to induce a meaningful shift in the HD’s quality image. Like many
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Western-European countries, the Dutch market is a ‘PL-mature’ country, and consumers

in such countries (because they do not strongly believe that some categories are diffi-

cult to produce, or because they think PLs are often produced by NB manufacturers)

attribute smaller quality gaps to NBs (Steenkamp, van Heerde, and Geyskens 2010).

Brand-level perception data would be needed to verify whether such small perceived

quality differences also apply to the hard discounter’s private label compared to the

specific NBs introduced on its shelves – thereby accounting for the lack of store image

improvement.

A third reason may be that, given the limited size and space of hard discounter

stores, having NBs on the shelves – the intrinsic features of which overlap with those of

the PL brands – prevents the hard discounter from offering a deeper assortment, with

variety in terms of product flavors and types rather than brands. Previous studies have

shown, indeed, that assortment variety along attributes other than brand may strongly

influence consumer perceptions and liking (van Herpen and Pieters 2002, Boatwright

and Nunes 2001). Unfortunately, our data set did not contain SKU attribute information

other than brand name. Future research could net out the effect of NB introductions

from those of changes in assortment composition along other dimensions.

4.5.2 Managerial implications

If, as suggested by Nielsen (2008), “It’s all in the mind”, then hard discounters have an

interest in revisiting the appropriateness of becoming more NB-oriented, and weigh the

immediate sales effects against a possible deterioration of their positioning. Our study

documents that NB introductions exert an unfavorable price image effect that is non-

negligible. For instance, given our estimated coefficients, an increase of NB share from

14.4% to 17.8%, would — ceteris paribus – entail a one point change in the current mode

of price image ratings. This is an important effect in view of the observed distribution

of price image ratings, and given that these ratings have been shown to influence store

patronage (van Heerde et al. 2008).

Given that enhanced NB presence does not seem to produce the desired image

effects, hard discounters need to be careful not to jeopardize long term profit for short

term gains. Rather than reducing their PL focus, they may need to opt for other strate-

gies more in line with their core positioning. For one, our study underscores that

changes in assortment size do have the potential to favorably affect the HD’s quality

image. Even though there are limits to this approach (given the small size of the HD

store, and their need to keep the cost of their operations low), HDs may investigate pos-

sibilities to enhance the variety of their offer within the limits of available shelf space.

They could do so by reducing the number of facings per SKU, adopting different packs,

or use more ‘efficient’ ways of displaying the products. Alternatively, they could opt
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for higher SKU rotation – an option successfully adopted by some retail firms (Mantrala

et al. 2009) that may also prove beneficial for hard discounters.

At the same time, if hard discounters feel that NB introductions are the way to

go, they could strive to contain or eliminate the negative price image implications.

Like Deleersnyder et al. (2007), we observe that the NB prices charged by the HD in our

study are very close to those of the mainstream retailers, especially after the third sur-

vey wave. We find that, for first category introductions, this triggers a positive contrast

effect on the HD price image, among consumers with a high PL propensity. However,

this effect is temporary, and appears among shoppers that are not the primary target

of the NB introductions in the first place – the remaining households holding more

negative price perceptions after the NB introductions. A more appealing strategy may

be to offer these NBs at lower prices than mainstream supermarkets. This will entail a

dual effect. For one, it will entail a smaller increase in actual store price and, hence,

a smaller decline in price image. Moreover, for NB shoppers focusing on cross-store

NB price comparisons, this may strengthen the belief that these lean hard discounter

stores can afford to be cheaper (which may actually improve their price image), with-

out giving in on quality. Hence, our findings corroborate Deleersnyder et al.’s (2007)

observation that “discounters may be missing an opportunity here” (p.315).

Clearly, this study has a number of limitations that trigger the need for further

research. First, in exploring the impact of NB introductions on household perceptions,

we are limited by the nature of our data. The fact that we do not observe positive

quality image effects, does not prove those effects are not there – only that they are

not apparent from our survey data. It is possible, for instance, that the impact of NB

presence on quality image follows a nonlinear shape (e.g. an S-shape), and that our

data cover a range where this curve is flat. Still, the fact that we do find significant

price image effects, and that there is quite some (over time) variation in the quality

image ratings as well as the NB presence, adds weight to our findings, and makes

them warrant retailer attention.

Second, while we did have individual-level data, we typically had only few sub-

sequent survey observations on store price and quality image per household. Even

though we controlled for key household differences, this made it difficult to reliably

account for unobserved heterogeneity between households. Future studies using lon-

gitudinal and more frequent price and quality image ratings by household could try to

better tease out reaction heterogeneity.

Third, we used simple measures of NB presence, based on SKU counts, and ig-

noring category differences. As indicated by Steenkamp et al. (2010), the quality per-

ception of NB versus PLs, and consumers’ willingness to pay for NBs, differs across

categories. Moreover, categories differ in their signaling value for store image. Fu-

ture research may tap into the type of categories where NB introductions enhance the
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overall quality perception of the HD offer. In a similar vein, we did not look into the

effects of specific NBs. As indicated by Deleersnyder et al. (2007), the success of NBs

at hard discounters depends on brand characteristics such as their innovativeness, in-

trinsic strength, and outer-case design. Our data did not allow to investigate the store

image effects of NB introductions differing on these dimensions – something we leave

for future study.
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4.A Cutoff estimates

Table 4.5: Cutoff estimates for price and quality images

M1 M2 M3 M4 M5

Price Image
αp,1 −3.6598 −3.6980 −3.6028 −3.7035 −3.6318

(0.354) (0.3561) (0.3642) (0.3672) (0.3557)
αp,2 −3.1308 −3.1644 −3.0665 −3.1668 −3.0941

(0.3074) (0.3109) (0.319) (0.323) (0.3091)
αp,3 −2.7621 −2.7958 −2.6967 −2.7971 −2.7244

(0.302) (0.3061) (0.3134) (0.3189) (0.3036)
αp,4 −1.4705 −1.5049 −1.4057 −1.5060 −1.4331

(0.3015) (0.3056) (0.3115) (0.3202) (0.3037)
αp,5 −0.8850 −0.9184 −0.8185 −0.9198 −0.8460

(0.3017) (0.3056) (0.3118) (0.3201) (0.3039)
αp,6 0.0162 −0.0163 0.0849 −0.0175 0.0577

(0.3011) (0.305) (0.3113) (0.3196) (0.3035)
αp,7 1.1262 1.0911 1.1954 1.0913 1.1687

(0.3043) (0.3087) (0.3135) (0.3238) (0.3065)
Quality Image
αq,1 −2.8931 −2.8071 −2.8016 −2.9478 −2.9494

(0.3432) (0.3511) (0.3474) (0.3658) (0.3426)
αq,2 −2.6463 −2.5650 −2.5575 −2.7043 −2.7051

(0.32) (0.3295) (0.3265) (0.3461) (0.322)
αq,3 −2.0612 −1.9810 −1.9719 −2.1195 −2.1195

(0.3095) (0.3181) (0.3183) (0.3333) (0.3112)
αq,4 −0.4296 −0.3445 −0.3332 −0.4829 −0.4812

(0.3097) (0.3195) (0.3169) (0.3359) (0.3113)
αq,5 0.1145 0.2007 0.2122 0.0626 0.0644

(0.31) (0.3196) (0.3174) (0.336) (0.3117)
αq,6 1.1952 1.2855 1.2974 1.1475 1.1497

(0.31) (0.3196) (0.3173) (0.3361) (0.3117)
αq,7 2.4550 2.5529 2.5658 2.4142 2.4174

(0.3213) (0.3304) (0.3307) (0.3444) (0.3233)
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Chapter 5

Concluding Remarks and Future

Research Agenda

Where to shop is a key buying decision that arguably precedes and certainly is in-

volved in decisions about whether, what and how much to buy. Evaluation of store

alternatives, however, is far from trivial for consumers. Apart perhaps from unequiv-

ocal attributes like distance, judging and building a perception of other store dimen-

sions, such as the store’s overall price level or ’store price image (SPI)’, involves many

informational cues. Compared to the SKU- and brand-level, store-level prices vary not

only over time. They also pertain to widely different product categories, from meat to

personal care or from cereals to paper towels – categories that differ widely in aspects

that are relevant to characterize buying behavior, and the prices of which are not likely

to be processed by consumers in the same way. An important question in this regard is,

therefore, which product categories are more important in the formation of store price

images, and why – issues that remained largely unaddressed in the literature to date.

Knowledge of how category prices shape SPIs, while of great interest in itself to

retail managers, raises additional, compelling questions. For one, if the retailer man-

ages to steer consumers’ price perceptions of his store, how will this translate into in-

creased store traffic? And, if store price images are so closely related to actual prices,

what is the relative importance of both types of price information in consumers’ deci-

sions about where to shop? Despite the recent work of Bell and colleagues (1998, 2001)

that has renewed the interest in store patronage research within academia (e.g. Vroe-

grijk et al. 2010, Briesch et al. 2008, Gijsbrechts et al. 2008, Ailawadi et al. 2008, Dellaert

et al. 1998), an enthusiasm shared by the retailing industry (e.g. Nielsen 2008), no prior

study explicitly takes into account both actual and perceived store-level prices as well

as their interrelationship.

In addition to product categories and prices, changes in the assortment composi-

tion of retail stores may also ’cue’ consumers, not only about the overall expensiveness

97
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of stores, but also about their overall quality. In a setting where the power balance be-

tween retailers and manufacturers continues to shift, changes in the relative presence

of national brands vs. private labels on the retailer shelves are bound to occur, the

question remaining how they will influence consumers’ store perceptions.

In this thesis, we presented three essays that aimed at addressing some of these

questions. In the present chapter, we summarize our findings, discuss their main impli-

cations for managers and marketing scholars, and offer suggestions for future research.

5.1 Summary of main findings

In the first essay of this thesis, we proposed a framework where actual prices of dif-

ferent product categories are integrated in a process of store price image formation.

We argued that a product category’s ability to signal SPI is determined not only by its

share-of-wallet but also, and more importantly, by a number of category characteris-

tics that drive the diagnosticity and accessibility of its category prices. Building on this

framework, we developed a model of SPI formation over time, in which category prices

act as unbiased, noisy signals about stores’ cheapness or expensiveness, and in which

consumers update their overall price beliefs according to Bayesian updating rules.

In the second essay, we advocated that actual store prices may affect store patron-

age in two main ways: directly, by making consumers shop in stores with low prices in

that particular week, and indirectly, by affecting the overall image of expensiveness of

the visited stores and, hence, their propensity to be visited on future trips. To empir-

ically test this dual price effect, we considered an individual-level store choice model

including both week-to-week basket prices and overall store price images. To account

for the fact that store price images themselves are affected by basket prices, we comple-

mented this choice model with a model of SPI formation over time, using a Bayesian

learning framework. We used this specification to illustrate how a price change may

affect store traffic not only through a direct, same-week effect of basket prices but also

in subsequent weeks, due to the mediating role of store price perceptions updated by

consumers.

In the final essay, we empirically tested for the presence and size of the effects

of NB introductions on a hard discounter’s price and quality image. Since national

brands are typically regarded by consumers as having higher quality than their private

label counterparts, but are, on average, more expensive (Kumar and Steenkamp 2007,

Ailawadi et al. 2008, Geyskens et al. 2010), the shift in the discounter stores’ assortment

strategy was expected to improve their quality image, to the detriment of their price

image. Using a bivariate ordered probit model, we simultaneously assessed the effect

of stronger NB presence – along with a number of control variables – on the hard dis-

counter’s quality and price image, thereby accounting for the link between both image



5.1. SUMMARY OF MAIN FINDINGS 99

dimensions.

In the three essays, we made use of a large and unique data set, combining

weekly store visits and purchase data (and chains’ prices and assortment composition

over time), with semiannual store price and quality perceptions for a representative

panel of households. We summarize our findings under two main overarching sub-

headings: those regarding store price (and quality) perception formation and the role

of different product categories and brand types in that process, and those regarding the

effects of store price perception on store choice and consumer dual price sensitivity.

5.1.1 Store price (and quality) perception formation and the role of different

product categories and brand types

In this regard, we found that:

• Various product categories carried by the retailer play a substantially different

role in the SPI formation process, with average price signal precisions ranging

between 1.016 for Personal care to 0.411 for Vinegar.

• Higher share-of-wallet categories have a higher impact on SPI formation. How-

ever, the link is not very tight, as suggested by the low elasticity of share-of-wallet

(compared to those of most product category characteristics).

• Product categories such as Bread or Cheese, for instance, are to be avoided when

managing SPIs, as these categories have a high share-of-wallet (meaning that

price reductions are bound to hurt revenue) yet a low signaling ability. Alcoholic

drinks or Meat, in contrast, have a high ability to signal SPI, but they still entail

a high risk of subsidization, as they represent almost a fifth of consumers’ shop-

ping budget. SPI management is best achieved by adjusting prices in lighthouse

categories, i.e. categories that constitute only a small portion of sales and yet ex-

ert a strong impact on the store’s overall price beliefs. We find these categories to

be predominantly related with Personal care and Cleaning.

• SPI learning is enhanced by category characteristics that increase the attention to

prices, or for which consumers have strong (monetary) incentives to track prices –

share of wallet, expensiveness, display activity, storability, promotion depth, and

price spread. While characteristics generating simpler price distributions – inter-

purchase time and brand loyalty – also increase SPI learning, characteristics likely

to generate more complex distributions of category prices – promotion frequency,

number of SKUs, and market concentration – decrease SPI learning.

• There is an asymmetric influence of NB introductions on a hard discounter’s as-

sortment. On the one hand, increased NB presence deteriorates the hard dis-
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counter’s favorable price image, over and above the actual price increase from

having more NBs – cutting into its core competitive advantage. On the other

hand, unfortunately, having more NBs does not seem to enhance the overall qual-

ity perception of the HD offer.

5.1.2 Effects of store price perception on store choice, and consumers’ dual

price sensitivity

In this regard, we found that:

• Accounting for the effect mediated by SPI learning increases the over-time im-

pact of actual price changes by approximately 15%, enhancing the importance

of pricing as a strategic instrument for retailers. While Fox et al. (2009) already

documented the presence of lagged price effects in the context of store traffic, we

offer a structural explanation for these effects through SPI formation.

• Approximately one third of consumers use some type of price information (vis-à-

vis two thirds using only non-price or convenience cues) to guide their over-time

store selection.

• Only half of the price-sensitive consumers keep track of actual weekly prices and

use those to adjust their weekly store patronage. The other half tailor their store

selection to overall beliefs about the store’s expensiveness.

• The majority of consumers attend to only one type of price cue, very few house-

holds adjusting their store patronage to both weekly price changes and store price

images. The two subgroups of households differ in the timing of their reactions:

while consumers sensitive to weekly actual prices exhibit an immediate traffic

change, SPI-sensitive consumers respond with a delay, as they learn about over-

all price changes.

• Eye-for-detail consumers, i.e. who are more sensitive to weekly prices, report us-

ing store price information to direct specific brand purchases, are tenants rather

than home owners, exhibit lower education levels, and belong to lower social

classes. In addition, they are less store or brand loyal, buy more private labels,

and have smaller purchase baskets – corresponding to the profile of cherry pick-

ing consumers.

• Big picture consumers, i.e. who are more responsive to stores’ overall price im-

ages, report paying a ‘general’ attention to prices. In line with this price focus

but, also, a desire for efficient shopping, they are less inclined to try new brands.

SPI-sensitivity is also more prevalent among tenants rather than house owners,
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and is found in all social classes and education levels. Larger households exhibit

stronger SPI updating.

• The type of price response is linked to actual store patronage and journal reader-

ship: consumers adjusting their store choice to weekly prices, self-selecting dif-

ferent stores and reading different magazines than those sensitive to overall store

price beliefs.

While many of our expectations are confirmed, we note that a number of our findings

bring surprising new insights to the table. We find that, against conventional wisdom,

the categories with a higher ability to signal a favorable SPI are in general not food and

staples, but are instead linked to home and personal care. In addition, we find that

when choosing where to shop, one third of consumers is sensitive to price information,

either in the form of actual prices, store price perceptions, or both, thus challenging

the monopolized attention given to distance. Finally, and against expectations, we find

that the introduction of national brands on the shelves of a hard discounter does not

improve its perceived overall quality, while hurting one of its main competitive advan-

tages, i.e. its favorable (cheap) price image.

5.2 Implications

Apart from generating new substantive insights, our findings have a number of impli-

cations for marketing practice that we discuss next in the form of managerial guide-

lines.

5.2.1 To signal or not to signal: Rely on lighthouse categories to ‘sail’ your

SPI

We found in Chapter 2 that after accounting for their share in the shopping budget of

a typical consumer, the categories better suited to signal a favorable SPI are linked to

home and personal care. Managers have typically put a lot of emphasis on food and

staples,1 possibly because these categories rank high in the consumer share-of-wallet

and consumers have therefore a high incentive to pay attention to their prices. But, as

we showed, the link between SPI learning and SOW is not as strong as with other prod-

uct characteristics, demonstrating that retailers have the possibility to select categories

that contribute favorably to SPI, yet in which price cuts do not overly hurt revenue.

Retailers can thus use these insights to re-consider their pricing approaches across cat-

egories – reaping higher margins in these low signaling categories, while emitting a

1With the goal of "polishing its discount image" (Wall Street Journal 2010), the giant Wal-Mart an-
nounced recently a cut in the prices of 10,000 items, mostly food and other staples (CNBC 2010).
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message of cheapness through low prices in others. This finding corroborates earlier

results by Nijs, Srinivasan, and Pauwels (2007) that retailers who pay more attention to

category management in setting prices, achieve higher levels of profitability.

5.2.2 It takes two to tango: Mind actual and perceived prices when stimu-

lating store traffic

Considering a comprehensive dual price effect as we did in Chapter 3, underscores

the importance of pricing strategies in the context of consumers’ store selection, often

overshadowed by the ’location, location, location’ mantra prevailing in the retailing

industry. The economic relevance of one-third of consumers who are price- and/or

SPI-sensitive is clearly demonstrated by the fact that their grocery shopping trips com-

prise nearly fifty percent of the total spending in the market. Moreover, visits from

SPI-sensitive consumers are also expected to be economically more important, as these

consumers typically shift their entire shopping basket when changing stores.

Our findings also offer a better understanding of who are the price-sensitive con-

sumers, thus enabling effective segmentation and targeting strategies. Due to their

distinct characteristics, retailers may wish to think of separately target consumers iden-

tified to have an ‘eye-for-detail’ as opposed to a ‘big picture’ of store prices.

For marketing researchers, our findings also emphasize the need to link ‘hard’

outcomes to mindset metrics, and the need to explicitly specify, to some extent at least,

the dynamics of such ‘soft’ metrics. As indicated by Srinivasan et al. (2010), mind

metrics have larger ’wear-in’ periods than most ’hard’ marketing mix instruments, that

is, it takes longer for their effect to fully materialize in the firms’ outcome measures.

As such, they can serve as early warning signals or ’lead indicators’ of problems to

come. While Srinivasan et al. (2010) studied awareness, consideration, and liking, the

mindset metrics adopted in our studies pertained to stores’ price and quality images.

Consistent with Srinivasan et al. (2010), our findings in Chapter 3 underscore that some

of the actual price effect translates into store traffic only with a delay, through changes

in consumers’ adjusted price beliefs. Hence, store price images can act as a warning

signal, and monitoring these SPIs can help retailers anticipate future changes in store

traffic.

5.2.3 You don’t change a winning team: How national brand introductions

leave quality images untouched and hurt price images of hard dis-

counters

The asymmetric influence of introducing NBs on the price and quality images of a

hard discounter found in Chapter 4, cast some doubt on the appeal of this strategy to

get into customer segments of mainstream supermarkets. If, as suggested by Nielsen
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(2008), ’It’s all in the mind’, then hard discounters have an interest in revisiting the

appropriateness of becoming more NB-oriented, and weigh the immediate sales effects

against a possible deterioration of their positioning.

Given that enhanced NB presence does not seem to produce the desired image

effects, hard discounters should be careful not to jeopardize long term profit for short

term gains. Rather than reducing their PL focus, they may need to opt for other strate-

gies more in line with their core positioning. For one, our study underscores that

changes in assortment size do have the potential to favorably affect the HD’s quality

image. Even though there are limits to this approach (given the small size of the HD

store, and their need to keep the cost of their operations low), HDs may investigate pos-

sibilities to enhance the variety of their offer within the limits of available shelf space.

They could do so by reducing the number of facings per SKU, adopting different packs,

or using more ’efficient’ ways of displaying the products. Or, they could opt for higher

SKU rotation – an approach successfully adopted by some retail firms (Mantrala et al.

2009) that may also prove beneficial for hard discounters.

Overall, our findings and their implications meet Levy et al.’s (2004) assertion

that "being able to take price image into consideration is a significant improvement

over traditional pricing techniques, because price image explicitly incorporates the re-

lationship between actual price and perceived prices, as well as external competitive

factors (p. xviii)."

5.3 Future research agenda

5.3.1 Cues intervening in and the dynamics of SPI formation

Although actual prices, encountered inside a store upon a store visit, are expected to

be the main drivers of SPI, other price-related cues may intervene in the process. For

instance, prices and price cues are usually accompanied by supporting advertising,

such as out-of-store features and/or in-store displays. Hence, it would be interesting

to assess the relative value of these informational cues on the formation of overall price

perceptions, vis-à-vis that of actual prices. Conceptually, this is similar to the typical

learning models used in marketing (see e.g. Erdem and Keane 1996, Narayanan and

Manchanda 2009), where experience with and advertising of a brand (feedback and

detailing in the context of pharmaceutical drugs) inform consumers about unobserved

quality. Knowing which sources of price information are better able to signal the overall

expensiveness of the store – features, displays, or shelf prices – is important for the

development of effective pricing strategies – something we leave for future study.

Also, we found that promotion frequency and promotion depth are the two most

important product category characteristics associated with consumer SPI learning, a
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result consistent with previous findings of Alba et al. (1994, 1999). A remaining ques-

tion, then, is whether different promotion types or framing will affect SPI in the same

way. Specifically, does a quantity discount of the same monetary value as a nominal

price cut lead to the same store price perception? To the extent that quantity discounts

are less directly linked with the concept of price, their impact on beliefs about store

expensiveness is expected to be less prominent – making them less appropriate tools

for SPI management. Future research, however, should test this proposition. A related

question would be: does it make a difference whether the promoted price is presented

in isolation or as a reduction off the reference price? And: should the discount be ex-

pressed in absolute terms or as a percentage price cut? An extensive body of literature

on brand promotion effectiveness, has shown promotion framing to affect consumers’

valuation of and response to the brand deal (Chen, Monroe, and Lou 1998, DelVecchio,

Krishnan, and Smith 2007, Della Bitta, Monroe, and McGinnis 1981, Gupta and Cooper

1992). Using similar arguments, one might expect such framing to also influence the

role of promotional price cuts for store price image formation – an issue worth further

investigation.

In Chapter 2, we identified lighthouse categories as products that better signal

SPI and yet have a low share-of-wallet. This conceptualization allowed us to group

categories, and provided an intuitive way to approximate the likely ’subsidization’ of

consumers if prices are dropped in the ’wrong’ categories. However, changes in prices

not only change SPI. They also have a more direct effect on category sales inside the

store, which is not to be overlooked (see e.g. Bolton 1989, Hoch et al. 1995, Bell et al.

1999). For instance, while we find storability to be associated with enhanced SPI learn-

ing from prices, Bell et al. (1999) found it to be associated with increased elasticity of

category demand. Hence, lowering prices in storable categories would lead to both

higher demand increases and favorable SPIs. The same authors, however, found size

of the assortment and market concentration to be associated with higher demand elas-

ticities, while we find the two product characteristics to be detrimental to SPI learning.

Similarly, purchase frequency is associated with increased SPI learning, yet goes along

with lower elasticity of demand (Bell et al. 1999). Hence, for these category characteris-

tics, it seems that retailers face a trade-off between higher immediate demand increases,

yet lower SPI signaling value when dropping prices. Future studies should further

document the net outcomes of price changes in different categories, by including the

impact of category prices on both store traffic (through SPI) and category spending.

In our study, building on previous literature describing the SPI formation pro-

cess, we modeled consumers as ‘Bayesian updaters’ of SPI. However, we did not test

whether, and cannot rule out that, consumers use other mental accounting or heuris-

tic rules when judging store price levels. While Bayesian updating is considered to

be the optimal updating rule, it has been shown that consumers often fail to behave
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as pure Bayesians (e.g. Camacho, Donkers, and Stremersch 2010, Boulding, Kalra, and

Staelin 1999, Mehta, Chen, and Narasimhan 2008, Mehta et al. 2004). In the context

of SPI formation, the question thus remains: do consumers use other rules, such as

the well-known peak-end rule (Fredrickson and Kahneman 1993), when evaluating

store prices? That is, do they combine only the last and the highest prices paid when

forming an overall impression of the expensiveness of the store? Similarly, we used

weighted averages of brand prices within a category to operationalize category price

signals. However, building on the previous reasoning, do consumers not consider only

the most expensive brand within a product category; or only the most expensive and

the cheapest one, as category price signals for the formation of store price images?

These questions are highly relevant for retailers aiming to fine tune their SPI manage-

ment, and are in need of further investigation.

Regarding brands, in Chapter 4 we looked at the effect of introductions of na-

tional brands on the price and quality perceptions of a hard discounter. A similar

and fascinating question pertains to the effects of different private-label tiers. Main-

stream supermarkets have recently introduced elaborate private-label tier programs,

with a very different price and quality positioning, and targeting different customer

segments (see e.g. Geyskens et al. 2010). Do these private labels different in their abil-

ity to signal SPI and SQI? If so, which ones are more effective, and for which image

dimension? Does their signaling value differ across customers, in particular, among

those they are supposed to target? Or do these complex private-label programs con-

fuse consumers, and jeopardize the formation of favorable price and quality images?

For retailers interested in assessing the long-term consequences of their multi-tiered

private label programs, these are important issues to be addressed.

Other non-price variables may also have an impact on the formation of SPIs. For

instance, press or advertising messages (see e.g. Shin 2005, Simester 1995, Srivastava

and Lurie 2004), may signal the overall price level of stores and contribute to the for-

mation of price beliefs in the mind of consumers. Also, other store characteristics such

as atmospherics, lighting, or shelf arrangements and the use of outer-packs may gener-

ate an image of cheapness for the store. For lack of information, we could not analyze

the effect of (changes in) such cues in our study. A fascinating question is whether the

categories that contribute to a favorable price image through low prices, are also those

where non-price cues need to signal cheapness – and vice versa. Future research could

pursue this issue.

5.3.2 Store choice and store perceptions

Regarding the research topic conducted in Chapter 3, it would be interesting to verify

the presence of a dual price effect, but also the size and profile of the Eye-for-detail
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vs Big-Picture vs Combined Segments, in countries other than the Netherlands, and

in other settings. While we considered the grocery setting, the dual price impact may

also appear in other categories such as apparel or consumer durables – an issue that we

leave for future study.

Moreover, while our focus was on traffic, it would be interesting to analyze the

dual price effect on consumers’ in-store purchase behavior and spending. An intrigu-

ing question is whether households who select stores based on their SPI (rather than

low weekly prices) are also less responsive to in-store promotion announcements or, in

contrast, make up for their lower responsiveness in store choice by selecting items on

deal within the store. While we expect the former to be true, future research should

verify this.

Perceptions about store dimensions other than price, may also be helpful to en-

rich store choice models. For instance, Popkowski-Leszczyc, Sinha, and Sahgal (2004)

use perceived metrics to measure intrinsic store preferences or store equity, through a

‘factor analytic ’ choice model of multi-purpose shopping. Another possibility involves

the conceptualization of store patronage decisions as a two-step process, where store

consideration and choice are modeled as subsequent stages, with different variables in-

tervening in both stages (e.g. Fotheringham 1988, Finn and Louviere 1990, 1996). Our

expectation is that while actual marketing mix instruments or ’hard’ attributes, such

as prices and assortment size/composition, will drive the selection of a store given the

consideration set, perceived attributes or mind metrics are more likely to govern the

initial screening or consideration-set formation stage. To our knowledge, this hypothe-

sis has not been subject to empirical validation, perhaps because the operationalization

and estimation of a choice model with a consideration set stage poses serious chal-

lenges. However, considerable progress in the area of consideration-set modeling (e.g.

Bronnenberg and Vanhonacker 1996, Wu and Rangaswamy 2003, van Nierop et al.

2010, Vroomen, Franses, and van Nierop 2004, Chiang, Chib, and Narasimhan 1999,

Paap et al. 2005), combined with the availability of richer data sets including hard and

soft metrics, make this a promising area for future study.
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Breve sumário em português§

O tema central da presente dissertação parte da observação de que os indivíduos não

decidem exclusivamente com base em informação objectiva. Em particular, e no con-

texto de escolhas quanto ao retalhista onde adquirir as categorias de produtos tipi-

camente encontradas num cabaz de bens de consumo não-duradouros, o facto de os

consumidores tomarem em linha de conta não apenas aspectos objectivos como o nível

de preços ou a distância, mas também, por exemplo, a percepção que detêm sobre os

preços (e a qualidade) do retalhista – isto é, a imagem-preço (e imagem-qualidade)

detida. Uma das razões principais pela qual os consumidores consideram as suas per-

cepções relativamente aos preços e à qualidade de um retalhista nas suas escolhas, é a

dificuldade em comparar objectivamente diferentes retalhistas. Por exemplo, as lojas

de retalho oferecem tipicamente uma vasta selecção de produtos em múltiplas cate-

gorias, e o preço de cada produto varia ao longo do tempo, frequentemente devido a

promoções.

Não constitui portanto uma surpresa que estas percepções holísticas detidas pe-

los consumidores em relação às lojas onde adquirem os seus bens, sejam vistas pelos re-

talhistas como um dos factores mais importantes a influenciar as decisões dos consum-

idores (Bell et al. 1998, Simester 1995). Reconhecendo este papel pivôt das imagens-

preço e -qualidade no processo de tomada de decisão do consumidor, a batalha en-

tre os retalhistas extendeu-se além das prateleiras das superfícies comerciais para a

mente dos consumidores. A título de exemplo, a cadeia de hipermercados francesa

Carrefour (a maior do mundo), investiu só em 2009 mais de mil milhões de dólares na

sua imagem-preço (MarketWatch 2009). Na Holanda, o líder de mercado Albert Heijn,

iniciou uma guerra de preços com vista a melhorar, entre outros aspectos, a imagem-

preço desfavorável que detinha junto da maior parte dos consumidores (van Heerde et

al. 2008). E em Abril de 2010, o gigante Wal-Mart reduziu o preço de 10,000 produtos,

na sua maioria produtos alimentares e outros de consumo frequente, no mercado norte

americano (CNBC 2010), com o objectivo de “polir a sua imagem-preço” (Wall Street

Journal 2010)

Ainda assim, apesar da importância das imagens-preço e das avultadas quantias

§Não conforme o Acordo Ortográfico de 2009, por opção livre do autor.
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envolvidas na sua gestão, a investigação sobre o tema é escassa e, até agora, deixou

os retalhistas com poucas orientações em relação a como definir as suas estratégias de

preço e de imagem-preço (e -qualidade). O presente trabalho pretende contribuir para

colmatar esta falta na literatura económica.

No primeiro estudo, propomos um quadro de análise no qual os preços de difer-

entes categorias de produtos são integrados no processo de formação de imagens-

preço. Argumentamos que a habilidade de uma categoria de produtos de sinalizar

a imagem-preço da loja (IPL) é determinada não só pelo seu peso no orçamento do

consumidor, mas também, e sobretudo, por um número de características que guiam a

diagnosticidade e acessibilidade dos seus preços. Com base nesta perspectiva, desen-

volvemos um modelo de formação da IPL ao longo do tempo, no qual os preços das

categorias de produtos actuam como sinais imperfeitos, mas não enviesados, do nível

geral de preços de um determinado retalhista. A formação de IPLs é definida como um

processo de aprendizagem Bayesiano, o qual, em conjunto com a restante especificação

do modelo para dar resposta à questão relativa às características de produtos mais rel-

evantes nesse processo de formação, coloca sérios desafios de estimação econométrica.

No segundo estudo, defendemos que os preços podem afectar o número de visi-

tas a um retalhista por duas vias: directamente, ao incentivar os consumidores a comprar

nas lojas com preços mais baixos numa dada semana, e indirectamente, ao afectarem a

percepção do nível geral de preços das lojas visitadas, e, assim, a propensão de estas

serem visitadas novamente em futuras deslocações de compra por parte dos consum-

idores. Para testar empiricamente este efeito dual dos preços, especificámos um mod-

elo de escolha de loja ao nível individual, que inclui quer os preços semanais quer as

imagens-preço da loja. Para acomodar o facto de que as imagens-preço são afectadas

pelos preços do cabaz de compras, complementamos este modelo de escolha com um

modelo de formação das imagens-preço ao longo do tempo, usando uma perspectiva

de aprendizagem Bayesiana, à semelhança do primeiro estudo. Usamos este modelo

dual para ilustrar como uma alteração do nível de preços numa determinada semana

pode afectar o tráfego de uma loja, não só através de um efeito directo contemporâneo

dos preços, mas também nas semanas seguintes, devido ao efeito das imagens-preço

revistas pelos consumidores ao longo do tempo.

No estudo final, testamos empiricamente a presença e a magnitude do efeito de

introdução de marcas A na imagem-preço e na imagem-qualidade de um retalhista

‘discount’. Como as marcas A são tipicamente consideradas pelos consumidores como

tendo maior qualidade que as marcas brancas equivalentes, mas são, em média, mais

caras (Kumar e Steenkamp 2007, Ailawadi et al. 2008, Geyskens et al. 2010), espera-se

que a alteração na estratégia do retalhista quanto à selecção de produtos oferecidos,

melhore a imagem-qualidade e deteriore a imagem-preço. Usando um modelo bivari-

ado ‘ordered probit’, analisamos o efeito de uma maior presença de marcas A – con-
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trolando para diversas outras variáveis –, simultaneamente, na imagem-qualidade e na

imagem-preço do retalhista, tendo assim em linha de conta a ligação existente entre as

duas percepções.

Nos três estudos, fazemos uso de bases de dados únicas e de grande dimen-

são, que combinam dados de visitas semanais e de compra (e preços dos retalhistas e

composição da selecção de produtos ao longo do tempo), com percepções sobre a qual-

idade e o nível geral de preços dos mesmos retalhistas, para um painel representativo

de famílias na Holanda. Em termos de metodologia, notamos o uso de métodos de

estimação econométrica Bayesianos avançados (nos dois primeiros estudos). Em cada

estudo, discutimos os resultados encontrados e a sua relevância em termos teóricos,

bem como as suas implicações para a gestão de unidades de retalho.
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