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Abstract

We address the multi-period portfolio optimization problem with the constant rebalanc-
ing strategy. This problem is formulated as a polynomial optimization problem (POP) by
using a mean-variance criterion. In order to solve the POPs of high degree, we develop a
cutting-plane algorithm based on semidefinite programming. Our algorithm can solve prob-
lems that can not be handled by any of known polynomial optimization solvers.

Keywords: Multi-period portfolio optimization, Polynomial optimization problem, Con-
stant rebalancing, Semidefinite programming, Mean-variance criterion

JEL Classification System: C61, G11

1 Introduction

We consider the constant rebalancing strategy (also referred to as constant mix, fixed mix,

constant proportional portfolio and the like) in the multi-period portfolio selection. In this

strategy, we rebalance the portfolio at the beginning of every period so that the investment

proportion will be restored to the fixed constant one. This strategy is widely used in business.

Moreover, it is known that constant rebalancing achieves the optimal growth rate of wealth if

the asset prices in each period are independent and identically distributed (i.i.d.) (see e.g., [1]).

On the assumptions of i.i.d. and infinite horizon, the problem to be solved is a relatively easy

convex program (e.g., [3, 17]). However, the constant rebalancing strategy generally leads to

nonconvex optimization. Because of its difficulty, most studies (e.g., [5, 26]) have focused on

approximately solving the constant rebalanced portfolio optimization problem. To the best of
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our knowledge, only Maranas et al. [20] approached it through global optimization by developing

a specialized branch-and-bound algorithm.

In this paper, we use a mean-variance (M-V) criterion to formulate the constant rebalanced

portfolio optimization problem (see also [20]) as a polynomial optimization problem (POP).

Although solving POPs has been a challenging task for decades, recently it turned out that

small and medium size POPs can be efficiently solved by using semidefinite programming (SDP)

[10, 11, 15, 22]. In 2001, Lasserre [15] introduced a hierarchy of SDP relaxations and proved

that the sequence of obtained lower bounds monotonically converges to the global optimum

of the corresponding POP. However, it is difficult to solve the corresponding large-scale SDP

relaxations when a POP contains many decision variables and/or a polynomial of high degree.

Although some specific problem structures can be exploited to reduce the size of SDP relaxations

[6, 9, 12, 16, 27], our problem does not have any such special structure. As a result, when the

number of planning periods is large, our POP is intractable for mentioned approaches due to

monomials of high degree. In order to solve POPs of high degree, we develop a cutting-plane

algorithm that solves in each iteration a POP of reduced degree and converges to an optimum

of the original POP.

We conduct computational experiments, and assess the benefit of our cutting plane approach

in comparison with the global optimization solver over polynomials GloptiPoly [7], the global

optimization solver BARON [24], and the nonlinear programming (NLP) solver CONOPT [4].

GloptiPoly, which builds up a hierarchy of SDP relaxations (see [15]), successfully provides a

globally optimal solution of small-size problems. Solutions obtained by CONOPT do not have

a guarantee of global optimality whereas BARON seeks a globally optimal solution. By using

our cutting-plane algorithm we solve problems, which were too large to be directly solved by

GloptiPoly, faster than BARON. However, CONOPT reached a locally optimal solution of these

problems in very short time.

The rest of the paper is organized as follows. In Section 2, we present the constant rebalancing

strategy and formulate the M-V portfolio optimization problem. In Section 3, our cutting-plane

algorithm is established and its application to the M-V portfolio optimization is described. Here

we also prove a global convergence of the algorithm. The results of computational experiments

are given in Section 4. Concluding remarks are given in Section 5.
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2 Mean-Variance Portfolio Optimization with Constant Rebal-

ancing Strategy

In this section, we provide a mathematical description of a portfolio dynamics under the constant

rebalancing strategy (see also [20]). Further, we derive two equivalent formulations of the M-V

portfolio optimization with the constant rebalancing strategy.

2.1 Constant Rebalancing Strategy and Portfolio Dynamics

We define the terminology and notation as follows:

R
N : set of N -dimensional real vectors

Z
N
+ : set of N -dimensional nonnegative integer vectors

Index Sets

I := {1, 2, ..., I} : index set of investable financial assets

T := {1, 2, ..., T} : index set of planning periods

S := {1, 2, ..., S} : index set of given scenarios

Decision Variables

vs
t : portfolio value at the end of period t under scenario s (t ∈ T , s ∈ S)

wi : investment proportion in asset i (i ∈ I) (where w := (w1, w2, · · · , wI) ∈ R
I)

Given Constants

V : initial wealth for investment

Rs
i,t : total return of asset i at period t under scenario s (i ∈ I, t ∈ T , s ∈ S)

Ps : occurrence probability of scenario s (s ∈ S)

Li (Ui) : lower (upper) bound of the investment proportion in asset i (i ∈ I)

User-Defined Parameters

λ : trade-off parameter between return and risk (where λ ∈ (0, 1))

We consider a self-financing portfolio and assume that there are no transaction costs. Note

that

∑

s∈S

Ps = 1 and Ps > 0 for all s ∈ S. (1)

Figure 1 illustrates a portfolio dynamics under scenario s. Suppose that the amount of

money V is provided for investment, and that one starts investing V wi in each asset i at the

beginning of the planning horizon. Because of the return of each asset, the invested amount

V wi is changed to Rs
i,1V wi over the first period. Accordingly, the portfolio value at the end of

the first period under scenario s is given by

vs
1 =

∑

i∈I

Rs
i,1V wi = V

∑

i∈I

Rs
i,1wi. (2)
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Figure 1: Portfolio Dynamics under Scenario s

The constant rebalancing strategy enforces the rebalancing to the proportion w at the be-

ginning of each investment period. The amount Rs
i,1V wi is adjusted to vs

1wi at the beginning

of the second period. Because of the return of each asset, the invested amount vs
1wi is changed

to Rs
i,2v

s
1wi over the second period. Accordingly, the portfolio value at the end of the second

period under scenario s is given by

vs
2 =

∑

i∈I

Rs
i,2v

s
1wi = vs

1

∑

i∈I

Rs
i,2wi. (3)

Similarly to the first and second period, the investment proportion is adjusted according

to the constant rebalancing strategy, and the portfolio value changes due to the return of each

asset. Thus, the portfolio value at the end of the planning horizon of T periods under scenario

s is given by

vs
T = vs

T−1

∑

i∈I

Rs
i,Twi

= vs
T−2

(
∑

i∈I

Rs
i,T−1wi

)(
∑

i∈I

Rs
i,T wi

)

= · · · = V
∏

t∈T

(
∑

i∈I

Rs
i,twi

)

. (4)

2.2 Two Formulations of Constant Rebalanced Portfolio Optimization

We consider the following two performance measures:

Mean of the portfolio value:

∑

s∈S

Psv
s
T

(4)
=
∑

s∈S

PsV
∏

t∈T

(
∑

i∈I

Rs
i,twi

)

(5)
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Variance of the portfolio value:

Var(w) :=
∑

s∈S

Ps(v
s
T )2 −

(
∑

s∈S

Psv
s
T

)2

(4)
=
∑

s∈S

Ps

(

V
∏

t∈T

(
∑

i∈I

Rs
i,twi

))2

−

(
∑

s∈S

PsV
∏

t∈T

(
∑

i∈I

Rs
i,twi

))2 (6)

The former is the return measure and the latter is the risk measure. A framework of the M-V

optimization for single-period portfolio selection was initially constructed by Markowitz [19],

and this framework was also implemented in the multi-period portfolio selection, see [20].

We consider both, minimizing the variance of the portfolio value and maximizing the mean

of the portfolio value, at the same time by taking the weighted sum of them. The constant

rebalanced portfolio optimization problem is reduced to the following problem with I decision

variables and simple linear constraints (see [20]):

minimize
w∈R

I

(1− λ)




∑

s∈S

Ps

(

V
∏

t∈T

(
∑

i∈I

Rs
i,twi

))2

−

(
∑

s∈S

PsV
∏

t∈T

(
∑

i∈I

Rs
i,twi

))2




−λ

(
∑

s∈S

PsV
∏

t∈T

(
∑

i∈I

Rs
i,twi

))

subject to
∑

i∈I

wi = 1; Li ≤ wi ≤ Ui, i ∈ I.

(7)

We refer to (7) as the NLP formulation.

In the sequel, we reformulate the optimization problem (7) as a POP by using the following

notation:

α := (α1, α2, · · · , αI) ∈ Z
I
+ and wα :=

∏

i∈I

wαi

i .

Following the above notation, the mean and variance of the portfolio value are transformed into

polynomial forms as follows:

∑

s∈S

PsV
∏

t∈T

(
∑

i∈I

Rs
i,twi

)

=
∑

s∈S

Ps

∑

α:
P
i∈I

αi=T







V
∑

(i1,i2,··· ,iT ) :
|{t∈T | it=i}|=αi

∏

t∈T

Rs
it,t







︸ ︷︷ ︸

C1(α,s)

wα

=
∑

α:
P
i∈I

αi=T

(
∑

s∈S

PsC1(α, s)

)

︸ ︷︷ ︸

C2(α)

wα,

(8)
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and

∑

s∈S

Ps

(

V
∏

t∈T

(
∑

i∈I

Rs
i,twi

))2

−

(
∑

s∈S

PsV
∏

t∈T

(
∑

i∈I

Rs
i,twi

))2

(8)
=
∑

s∈S

Ps







∑

α:
P
i∈I

αi=T

C1(α, s)wα







2

−







∑

α:
P
i∈I

αi=T

C2(α)wα







2

=
∑

α:
P
i∈I

αi=2T










∑

α
′:α′≤αP

i∈I

α′
i
=T

∑

s∈S

PsC1(α
′, s)C1(α−α′, s)










︸ ︷︷ ︸

C3(α)

wα

−
∑

α:
P
i∈I

αi=2T










∑

α
′:α′≤αP

i∈I

α′
i
=T

C2(α
′)C2(α−α′)










︸ ︷︷ ︸

C4(α)

wα.

Now, (7) is reformulated as the following POP:

minimize
w∈R

I

OF(w) := (1− λ)
∑

α:
P
i∈I

αi=2T

C5(α)wα− λ
∑

α:
P
i∈I

αi=T

C2(α)wα

subject to
∑

i∈I

wi = 1; Li ≤ wi ≤ Ui, i ∈ I,

(9)

where C5(α) := C3(α)− C4(α). Note that the degree of monomials in OF(w) are T and 2T . In

the sequel, we refer to (9) as the POP formulation.

Remark 1 By using wI = 1−
I−1∑

i=1
wi, we can eliminate wI in (9). However, we do not implement

this elimination because we do not expect significant impact on computations.

3 Cutting-Plane Algorithm

If there is a polynomial of high degree in a POP, then the relaxation order, ω (for details see

[15]) is also high. Accordingly, the corresponding SDP relaxations are also large-scale, and

consequently, it is hard to solve them. In this section, we develop a cutting-plane algorithm

to approximately solve POPs of higher degree. The main idea of the algorithm is to exploit

the structure of the problem to obtain tractable subproblems that iteratively converge to the

original problem.
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3.1 General Form of the Algorithm

Let us consider the following optimization problem:

minimize
x∈R

N

r0(x)

subject to gj(h
j(x)) + rj(x) ≤ 0, j ∈ J1 := {1, 2, ..., J1}

rj(x) ≤ 0, j ∈ J2 := {J1 + 1, J1 + 2, ..., J2},

(10)

where gj : R
N ′
→ R, j ∈ J1 are continuously differentiable convex functions, and hj =

(hj
1, h

j
2, · · · , h

j
N ′)⊤ : R

N → R
N ′

, j ∈ J1 and rj : R
N → R, j = 0, 1, ..., J2 are polynomial

functions. Note that the functions gj do not need to be polynomials. A problem of minimiz-

ing g0(h
0(x)) + r0(x), where g0 is a continuously differentiable convex function and h0 is a

polynomial function, can be easily converted to the form (10) by rewriting the problem as

minimize
(x,z)∈R

N×R

z + r0(x)

subject to g0(h
0(x))− z ≤ 0; gj(h

j(x)) + rj(x) ≤ 0, j ∈ J1

rj(x) ≤ 0, j ∈ J2.

(11)

Let us assume that x̄ is an element of the following set:

{
x ∈ R

N | rj(x) ≤ 0, j ∈ J2

}
. (12)

From the convexity of gj , j ∈ J1, we have the following inequalities:

gj(h
j(x2)) ≥ gj(h

j(x1)) +∇gj(h
j(x1))⊤

(
hj(x2)− hj(x1)

)
for all x1,x2 ∈ R

N , (13)

where ∇gj is the gradient of gj(x
′) with respect to x′ ∈ R

N ′
. Now, it follows from (13) that for

each x̄ from (12) we have

gj(h
j(x)) + rj(x) ≥ gj(h

j(x̄)) + rj(x) +∇gj(h
j(x̄))⊤

(
hj(x)− hj(x̄)

)
for all x ∈ R

N .

This implies that every feasible point, x, of the problem (10) satisfies the following constraint:

gj(h
j(x̄)) + rj(x) +∇gj(h

j(x̄))⊤
(
hj(x)− hj(x̄)

)
≤ 0, (14)

for given x̄. Moreover, if x̄ from (12) is an infeasible point of the problem (10), that is,

gj(h
j(x̄)) + rj(x̄) > 0 for some j ∈ J1, then it is clear that x := x̄ does not satisfy the

constraint (14). Therefore, we can use (14) to separate an infeasible point x̄ from the feasible

region. Note that (14) is a polynomial inequality in x.
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The fundamental principle of our algorithm, which is regarded as a natural extension of

Kelley’s convex cutting-plane algorithm (see e.g., Section 14.8 of [18]), is to solve a sequence of

relaxed POPs and to approximate the feasible region of the original problem by cutting off the

current infeasible solution of the relaxed problem.

A general form of the algorithm is as follows:

Algorithm GCP: General Form of Cutting-Plane Algorithm for Solving Problem (10)

Step 0. (Initialization) Define X as (12). Set k ← 1.

Step 1. (Lower Bound Estimation) Solve the following POP (for instance, by using a hierarchy

of SDP relaxations of [15]):

minimize
x∈R

N

r0(x) subject to x ∈ X . (15)

Let x̄k be the solution.

Step 2. (Feasibility Check) Let J k := {j ∈ J1 | gj(h
j(x̄k)) + rj(x̄

k) > 0}. If J k = ∅,

terminate the algorithm with the solution x̄k.

Step 3. (Cut Generation) Set

X ← X ∩ {x | gj(h
j(x̄k)) + rj(x) +∇gj(h

j(x̄k))⊤
(
hj(x)− hj(x̄k)

)
≤ 0, j ∈ J k},

and k ← k + 1. Return to Step 1.

Let us suppose that the functions gj are convex polynomials. Then, in order to apply the

SDP approach of [15] to the problem (10), the relaxation order is

ω ≥ max
j∈J1

⌈deg(gj(h
j))/2⌉, and ω ≥ max

j=0,1,...,J2

⌈deg(rj)/2⌉,

from its definition (see [15]), where deg(f) is the degree of the polynomial f . To the contrary,

when we use the SDP approach of [15] in the above algorithm, ω has to satisfy the following

conditions:

ω ≥ max
j∈J1

ℓ=1,2,...,N ′

⌈deg(hj
ℓ)/2⌉, and ω ≥ max

j=0,1,...,J2

⌈deg(rj)/2⌉.

We can prove convergence to the global optimum similarly to Kelley’s convex cutting-plane

algorithm under strong assumptions.

Theorem 1 Suppose that the set (12) is compact, and that we always obtain a globally optimal

solution of the problem (15). Then, every accumulation point of the sequence of solutions {x̄k}

generated by Algorithm GCP is a globally optimal solution of the problem (10).
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Proof. Suppose that K ⊆ Z+, and the sequence {x̄k}k∈K converges to an accumulation point

x̄. Then, for k′ > k (k, k′ ∈ K) it follows from Step 3 of GCP algorithm:

gj(h
j(x̄k)) + rj(x̄

k′

) +∇gj(h
j(x̄k))⊤

(

hj(x̄k′

)− hj(x̄k)
)

≤ 0, j ∈ J k,

and from (13) and the definition of J k

gj(h
j(x̄k′

))+rj(x̄
k)+∇gj(h

j(x̄k′

))⊤
(

hj(x̄k)− hj(x̄k′

)
) (13)

≤ gj(h
j(x̄k))+rj(x̄

k) ≤ 0, j 6∈ J k.

By means of the Cauchy-Schwarz inequality, we have, for all j ∈ J1,

min
{

gj(h
j(x̄k)) + rj(x̄

k′
), gj(h

j(x̄k′
)) + rj(x̄

k)
}

≤ max

{
∣
∣∇gj(h

j(x̄k))
∣
∣⊤
∣
∣
∣

(

hj(x̄k′
)− hj(x̄k)

)∣
∣
∣ ,
∣
∣
∣∇gj(h

j(x̄k′
))
∣
∣
∣

⊤ ∣∣
∣

(

hj(x̄k)− hj(x̄k′
)
)∣
∣
∣

}

.

(16)

Since X is compact and gj is continuously differentiable,
∣
∣∇gj(h

j(x̄k))
∣
∣ and

∣
∣
∣∇gj(h

j(x̄k′
))
∣
∣
∣ are

bounded. So, the right-hand side of (16) goes to zero as k and k′ go to infinity. The left-hand

side of (16) goes to gj(h
j(x̄)) + rj(x̄) for the accumulation point x̄. Therefore, x̄ is a feasible

solution of the problem (10).

Let r∗ be the global optimum of the problem (10). Then, it follows that r0(x̄
k) ≤ r∗ for each

k ∈ K, and hence r0(x̄) ≤ r∗. Since x̄ is a feasible solution of the problem (10), r0(x̄) ≥ r∗.

Therefore, the accumulation point x̄ is a globally optimal solution of the problem (10). �

3.2 Application to Mean-Variance Portfolio Optimization

We develop here a cutting-plane algorithm that is specialized for the performance of the M-V

portfolio optimization. Similarly to (11), we rewrite the POP formulation (9) as follows:

minimize
(w,z)∈R

I×R

(1− λ)z − λ
∑

α:
P
i∈I

αi=T

C2(α)wα

subject to Var(w)− z ≤ 0;
∑

i∈I

wi = 1; Li ≤ wi ≤ Ui, i ∈ I; z ≥ 0.

(17)

Since Var(w) (see (6)) is always nonnegative, we impose the nonnegative constraint on z.

Let us suppose that (w̄, z̄) is an element of the following set:

{

(w, z)
∣
∣
∣

∑

i∈I

wi = 1; Li ≤ wi ≤ Ui, i ∈ I; z ≥ 0
}

. (18)
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The gradient of (6) with respect to vs
T is as follows:

Gs(w̄) :=
∂

∂vs
T




∑

s′∈S

Ps′(v
s′

T )2 −

(
∑

s′∈S

Ps′v
s′

T

)2




∣
∣
∣
∣
∣
∣
vs

T
=vs

T
(w̄), s∈S

= 2Psv
s
T (w̄)− 2Ps

∑

s′∈S

Ps′v
s′

T (w̄),

(19)

where

vs
T (w̄) := V

∏

t∈T

(
∑

i∈I

Rs
i,tw̄i

)

for all s ∈ S. (20)

Then, considering that

Var(w̄) +
∑

s∈S

Gs(w̄)(vs
T − vs

T (w̄))

(4), (8)
= Var(w̄) +

∑

s∈S

Gs(w̄)







∑

α:
P
i∈I

αi=T

C1(α, s)wα − vs
T (w̄)







(6), (19), (20)
=

∑

α:
P
i∈I

αi=T

(
∑

s∈S

Gs(w̄)C1(α, s)

)

wα−Var(w̄),

(21)

we can show the following property:

Lemma 1 (Underestimator of variance of portfolio value)

Var(w) ≥
∑

α:
P
i∈I

αi=T

(
∑

s∈S

Gs(w̄)C1(α, s)

)

wα−Var(w̄),

for all w ∈ R
I .

Proof. To complete the proof, it is only necessary to show that (6) is a convex function in

(vs
T )s∈S (see (13) and (21)). The following Hessian matrix of (6) with respect to (vs

T )s∈S is a

positive semidefinite matrix:

H :=











2P1(1− P1) −2P1P2 · · · −2P1PS

−2P1P2 2P2(1− P2)
...

...
. . . −2PS−1PS

−2P1PS · · · −2PS−1PS 2PS(1− PS)











,
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because

1
2x⊤Hx =

∑

s∈S

Ps(1− Ps)x
2
s −

∑

s∈S

∑

s′∈S
s′ 6=s

PsPs′xsxs′

(1)
=
∑

s∈S

Ps







∑

s′∈S
s′ 6=s

Ps′







x2
s −

∑

s∈S

∑

s′∈S
s′ 6=s

PsPs′xsxs′

=
∑

s∈S

∑

s′∈S
s′ 6=s

PsPs′(x
2
s − xsxs′)

=
∑

s∈S

∑

s′∈S
s′>s

PsPs′(x
2
s − 2xsxs′ + x2

s′)

=
∑

s∈S

∑

s′∈S
s′>s

PsPs′(xs − xs′)
2

(1)

≥ 0 for all x ∈ R
S.

Therefore, (6) is a convex function in (vs
T )s∈S . �

Thus, we derive the following inequality similarly to (14):

z ≥
∑

α:
P
i∈I

αi=T

(
∑

s∈S

Gs(w̄)C1(α, s)

)

wα−Var(w̄). (22)

If (w̄, z̄) is an infeasible solution of the problem (17), that is, z̄ < Var(w̄), then (w, z) :=

(w̄, z̄) does not satisfy the inequality (22). Moreover, the right-hand side of (22) is a global

underestimator of Var(w) (see Lemma 1).

The algorithm for the M-V portfolio optimization problem (9) is described as follows:

Algorithm CPMV: Cutting-Plane Algorithm for the M-V Portfolio Optimization Problem (9)

Step 0. (Initialization) Let ε ≥ 0 be a tolerance for optimality, K be the maximum number of

iterations, and ω ≥ ⌈T/2⌉ be the relaxation order. Define Z as (18). Set the initial lower

bound as LB0 := −∞, and the initial upper bound as UB0 :=∞. Set k ← 1.

Step 1. (Lower-Bound Estimation) Solve the the following POP by using the SDP approach

[15] with the relaxation order ω:

minimize
(w,z)∈R

I×R

(1− λ)z − λ
∑

α:
P
i∈I

αi=T

C2(α)wα subject to (w, z) ∈ Z.
(23)

Let LBk be the objective function value, and (w̄k, z̄k) be the solution of (23).
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Step 2. (Upper-Bound Update) If OF(w̄k) < UBk−1, then UBk := OF(w̄k) and ŵ ← w̄k.

Otherwise, UBk := UBk−1.

Step 3. (Termination Conditions) If one of the following conditions is satisfied, then terminate

the algorithm with the solution ŵ:

〈a〉 UBk − LBk ≤ ε, 〈b〉 z̄k ≥ Var(w̄k), 〈c〉 k = K.

Step 4. (Cut Generation) Set

Z ← Z ∩
{

(w, z)
∣
∣
∣ z ≥

∑

α:
P
i∈I

αi=T

(
∑

s∈S

Gs(w̄
k)C1(α, s)

)

wα−Var(w̄k)
}

,

and k ← k + 1. Return to Step 1.

It is clear from Lemma 1 that Z always contains the feasible region of the problem (17) in

the algorithm. Hence, it follows that for all k ≥ 1,

LBk ≤ the global optimum of (17) = the global optimum of (9) ≤ UBk ≤ OF(w̄k).

Moreover, if (w̄k, z̄k) satisfies the condition 〈b〉 in Step 3, then it is a feasible solution of the

problem (17), and we have

OF(w̄k) = (1− λ)Var(w̄k)− λ
∑

α:
P
i∈I

αi=T

C2(α)(w̄k)α

≤ (1− λ)z̄k − λ
∑

α:
P
i∈I

αi=T

C2(α)(w̄k)α = LBk.

Therefore, w̄k is an optimal solution of the problem (9). Although the condition 〈b〉 implies

the condition 〈a〉 in theory, the condition 〈b〉 can occur without satisfying the condition 〈a〉

because of numerical instability. For the same reason it might happen that our algorithm has

no improvement in the gap 〈a〉. However, this happens rarely and only when the gap is already

small (for more details see Section 4). Therefore, if there is no improvement in the gap for

several iterations of the algorithm, we stop the algorithm and call this case 〈d〉.

Note that the maximal degree of monomials in the problem (23) is T while in the POP (9)

is 2T . Moreover, the CPMV algorithm has an advantage that the associated cut (22) does not

contain a parameter λ. This means that even if we set λ to a different value, we can still use

the cuts constructed for the previous value of λ. In computational experiments, the number of

iterations has been reduced by taking advantage of this feature. Also, when (w̄k, z̄k) is not an

optimal solution of (23) at Step 1, we set ω ← ω + 1 and restart the algorithm.
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Other Risk Measures. We can implement risk measures other than variance (see e.g., [13])

in the cutting-plane algorithm. For instance, Conditional Value-at-Risk (CVaR, [23]) can be

represented as follows:

CVaR(w, a) := a+
1

1− β

∑

s∈S

PsΨ (vs
T − a)

(4)
= a+

1

1− β

∑

s∈S

PsΨ

(

V
∏

t∈T

(
∑

i∈I

Rs
i,twi

)

− a

)

,

where β ∈ [0, 1) is a threshold parameter, and Ψ : R→ R is a smoothing function of max{0, · }

(see e.g., [21]). The above function is convex in
(
v1
T , v2

T , · · · , vS
T , a
)

(see [21, 23]). Moreover, all

coherent risk measures [2] can be used in our cutting-plane algorithm because of their convexity.

4 Computational Experiments

In this section, we use the following parameter values: the number of assets I ∈ {4, 7, 10},

the number of periods T ∈ {2, 4, 6}, and the number of scenarios S ∈ {100, 1000}. We set

the initial wealth V = 1. The occurrence probability, Ps, is set to 1/|S| for all s ∈ S. The

lower bound, Li, and the upper bound, Ui, of the investment proportion are set to 0 and 0.5,

respectively for each i ∈ I. We choose for the trade-off parameter the following eight values

λ ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.99}. In the cutting-plane algorithm, we set the tolerance

for optimality ε = 10−5, and the maximum number of iterations K = 20. All computations were

performed on a PC with a Core2 Duo CPU (1.40 GHz) and 2GB memory. We used MATLAB

7.10.0 (R2010a) and a free MATLAB toolbox, GloptiPoly 3.6.1 [7], to formulate and solve POPs

via the SDP relaxations (see [15]). In this toolbox, SeDuMi 1.3 [25] was used to solve SDP

problems. We also used a global optimization solver BARON [24], and a NLP solver CONOPT

[4], via NEOS Server1. In BARON, a tolerance for optimality is set to the same value as in the

cutting-plane algorithm, i.e., to 10−5. In CONOPT, we do not set an initial solution, that is,

CONOPT seeks the starting point itself.

Numerical data and notations in Table 2, 3 and 4 are as follows:

(a) the total CPU time (in seconds),

(b) CPU time for solving SDP (in seconds),

(c) the number of variables of the corresponding SDP in dual standard form,

(d) the size of a semidefinite matrix in the corresponding SDP,

(e) the relaxation order ω,

1http://www-neos.mcs.anl.gov
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Table 1: Mean and Variance of Total Returns

MTR(i) :=
1

TS

∑

t∈T

∑

s∈S

Rs
i,t, VTR(i) :=

1

TS

∑

t∈T

∑

s∈S

(
Rs

i,t −MTR(i)
)2

.)**+, - . / 0 1 2 3 4 5 6 .789: .;7777 .;7723 .;7767 .;7..7 .;772/ .;7734 .;7../ .;770/ .;7.71 .;7./.<9: 7;7777 7;7776 7;77/2 7;7702 7;77.6 7;77.6 7;77/5 7;7772 7;77/7 7;770/
(f) CPU time for calculating C2(α) and C5(α) (in seconds),

(g) CPU time for calculating C1(α, s) and C2(α) (in seconds),

(h) the number of iterations (i.e., k) in the cutting-plane algorithm,

(i) the number of times each termination condition was satisfied (〈a〉, 〈b〉, 〈c〉, 〈d〉), see CPMV

algorithm and explanations therein,

(j) the optimality gap, i.e., (the best upper bound) − (the best lower bound),

(k) the occurrence number of memory shortage,

OMS: “Out of Memory in SeDuMi”, and OMG: “Out of Memory in GloptiPoly”.

For each pair of (I, T, S) we solve eight problems corresponding to different values of the

trade-off parameter, λ. In the tables we show the average value of the eight problems in (a), (b)

and (h), and the largest value of those in (j).

Scenario Generation. We have generated scenarios of total return, Rs
i,t, in a simple manner

similar to [8]. We have first collected historical data of asset price from the Yahoo finance

Japan2. Using these data, we estimated the mean vector µ ∈ R
IT and the variance-covariance

matrix Σ ∈ R
IT×IT of total returns of asset i ∈ I at period t ∈ T . Then, we generated scenarios

of total return by drawing samples from a multivariate normal distribution with the estimated

statistics (µ,Σ). For reference, Table 1 shows characteristics of the total return.

4.1 Numerical Results of POP Approaches

Numerical results of the POP formulation (9) and the cutting-plane algorithm are shown in Table

2 and 3, respectively. We use the software GloptiPoly to solve the POP formulation (9) and the

problem (23) in the cutting-plane algorithm. We have also tested the sum of squares optimization

toolbox SOSTOOLS3 to solve POPs. However, we omit those results because GloptiPoly solved

2http://finance.yahoo.co.jp
3http://www.cds.caltech.edu/sostools and http://www.mit.edu/~parrilo/sostools
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Table 2: Numerical Results of POP Formulation (9)=>? @AB =>? CAB =>? DEAF =>? @AF =>? CAB =>? C@AG=H? GAI =H? BAB =H? FJAG =H? GAJ =H? BAD =H? FIAD=K? LE =K? BFE =K? @MGGG =K? LE =K? BFE =K? @MGGG=N? CI =N? @C@ =N? FIE =N? CI =N? @C@ =N? FIE=O? F =O? F =O? F =O? F =O? F =O? F=P? GAG =P? GA@ =P? GAD =P? GAG =P? GAF =P? GAL=>? @LAC =>? QRS =>? QRT =>? @LAC =>? QRS =>? QRT=H? @DAD =H? =H? =H? @DAC =H? =H?=K? DED =K? LDBD =K? =K? DED =K? LDBD =K?=N? BCB =N? FG@B =N? =N? BCB =N? FG@B =N?=O? D =O? D =O? =O? D =O? D =O?=P? GAF =P? CAE =P? LEAI =P? GAB =P? IAF =P? @G@AF=>? QRS =>? QRT =>? =>? QRS =>? QRT =>?=H? =H? =H? =H? =H? =H?=K? @I@E =K? =K? =K? @I@E =K? =K?=N? @FF@ =N? =N? =N? @FF@ =N? =N?=O? L =O? =O? =O? L =O? =O?=P? @AI =P? @LJAE =P? =P? FAL =P? FDGAG =P?
FD
L

U U FD
L

J @G@GG D J @G @MGGG DS V W S V W

Table 3: Numerical Results of Algorithm CPMVXYZ [\]^ XYZ ^[_]` XYZ ^ab^c]\ XYZ de][ XYZ [[_]e XYZ ^a[e_]bXfZ [ XfZ [ XfZ [ XfZ [ XfZ [ XfZ [XgZ e]e XgZ e]e XgZ e]e XgZ e]e XgZ e]e XgZ e]eXhZ d]i XhZ `]^ XhZ _]\ XhZ d]d XhZ b]c XhZ b]iXjZ XcaeaeaeZ XjZ XcaeaeaeZ XjZ XcaeaeaeZ XjZ XcaeaeaeZ XjZ XcaeaeaeZ XjZ XcaeaeaeZXk Z c]clmeb Xk Z \]\lmeb Xk Z \]\lmeb Xk Z \]ilmeb Xk Z ^]elme` Xk Z \]`lmebXYZ ^[]c XYZ _c]i XYZ _[\]c XYZ [b]^ XYZ ^ee]` XYZ \ee]`XfZ [ XfZ [ XfZ [ XfZ [ XfZ [ XfZ [XgZ e]^ XgZ e]_ XgZ `]^ XgZ e]^ XgZ ^]e XgZ b]dXhZ []\ XhZ `]b XhZ b]i XhZ `]e XhZ _]d XhZ _]cXjZ Xbaeaea[Z XjZ X^aeaea_Z XjZ X`aeaeadZ XjZ X_a^aeaeZ XjZ Xda[aeadZ XjZ Xbaeaea[ZXk Z ^]ilmei Xk Z d]^lmei Xk Z ^][lmei Xk Z ]̂_lme` Xk Z ^]^lmei Xk Z d][lme`XYZ bi]` XYZ \a_^^]e XYZ nop XYZ ^e[]i XYZ _a``c]c XYZ nopXfZ d XfZ d XfZ XfZ d XfZ d XfZXgZ e]\ XgZ `c]e XgZ ^a\i`]d XgZ ^]i XgZ _d]_ XgZ [a^de]dXhZ i]e XhZ \]^ XhZ XhZ b]e XhZ b]c XhZXjZ XcaeaeaeZ XjZ X^aiaeadZ XjZ XjZ XcaeaeaeZ XjZ X[aiaea[Z XjZXk Z \]ilmeb Xk Z `]\lme` Xk Z Xk Z \]blmeb Xk Z ^]_lmei Xk Z

q r s q r s^ee i _ ^e ^aeee i _ ^e
t

[
t

[
i i
b b

our problems i.e., (9) and (23) faster than SOSTOOLS. Note that all solutions reported in Table

2 are globally optimal for the smallest relaxation order ω = T . It is clear that in the case of

the POP formulation the number of scenarios has little impact on a CPU time. There, most

of the total CPU time (see (a) in Table 2) was consumed on solving SDP (see (b) in Table 2),

while CPU time of calculating C2(α) and C5(α) (see (f) in Table 2) was much shorter than (a)
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Table 4: Numerical Results of BARON and CONOPTuvw xyz{| uvw }~y��{� uvw �~}��{x uvw y{} uvw y{x uvw �{�u� w �{z��y� u� w �{y��y} u� w �{|��y| u� w ��� u� w ��� u� w ���u�w z u�w y u�w } u�w y u�w y u�w y������� ��~yyy� z� z� ��~yyy ������z � �y �z � �y
and (b) (see in Table 2). However, only the problem involving four assets was solved when the

number of periods was four. Moreover, all problems caused memory shortage when the number

of periods was six.

To the contrary, all problems were solved by using the cutting-plane algorithm except when

(I, T ) = (10, 6) (see Table 3). Our algorithm did not work well with the smallest relaxation

order, ω = T/2, when the number of periods was two, and consequently, it was necessary to

increase ω. In other cases (i.e., when T = 4 or 6), a globally optimal solution of the problem

(23) was always provided by the SDP relaxation with the smallest relaxation order, ω = T/2.

Note that the termination condition 〈c〉 was never satisfied, i.e., the number of iteration in the

cutting-plane algorithm was always less than 20. Also, the algorithm has terminated several

times due to the numerical instability. For instance, the condition 〈b〉 was satisfied four times

when (I, T, S) = (7, 6, 1000); the algorithm has terminated seven times because of the numerical

issue when (I, T, S) = (7, 4, 100). Although it is possible that the attained solution is not very

good in such cases, the obtained optimality gap was sufficiently small (see worst-case optimality

gap, (j) in Table 3). In the cutting-plane algorithm, CPU time for calculating C1(α, s) and C2(α)

was much shorter than the total CPU time.

4.2 Comparison with BARON and CONOPT

Numerical results of BARON and CONOPT are shown in Table 4, where four periods and

1000 scenarios are considered. CPU times for solving problems by BARON were very long

in comparison to the cutting-plane algorithm. In some cases, BARON stopped due to the

memory shortage and returned a locally optimal solution (see the last row in Table 4). However,

CONOPT attained locally optimal solutions in very short time without leading to memory

shortage.

In Figure 2, 3 and 4, the optimal investment proportions provided by different approaches are
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Figure 3: Optimal Investment Proportion (I = 7, T = 4, S = 1,000)

shown. The difference between the investment proportions provided by BARON and those by

CONOPT was always less than 1.1 · 10−5 regardless of whether or not BARON caused memory

shortage. POP formulation (9) was solved only when I = 4 (T = 4, S = 1000), and in this

case, the maximum difference in the obtained investment proportions between POP formulation

and both BARON and CONOPT was 1.4 · 10−3. The solutions of the cutting-plane algorithm

were slightly different from others. For instance, the proportion in Asset 2 for λ = 0.6 was

larger than other approaches in Figure 2, and the proportions for λ = 0.2, 0.3 and 0.4 also

differed from other approaches in Figure 3. Note that these small differences appear also in
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Figure 5: Efficient Frontier

cases where the cutting-plane algorithm was not terminated due to the numerical instability.

It seems to be difficult for our algorithm to attain a high accuracy solution. This is probably

due to solving one POP at each iteration of the algorithm. We expect that using the SDPA-

GMP solver4 under GloptiPoly will improve the quality of our solution. However, high precision

computations provided by the mentioned solver result in high running times and therefore such

solver is not acceptable for our iterative algorithm.

In Figure 5, we show the efficient frontiers of the solutions provided by different approaches.

The horizontal axis and the vertical axis are mean and variance of the portfolio value, respec-

tively. Some solutions of the cutting-plane algorithm were slightly different from others; however,

it is also clear that solutions of the cutting-plane algorithm are not far from the frontiers of other

4Available at http://sdpa.indsys.chuo-u.ac.jp/sdpa/software.html
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approaches.

It was reported in [20] that an implemented NLP solver (for details see [20]) clearly failed to

find a globally optimal solution of the problem (7). Meanwhile, our numerical results indicate

that CONOPT reached a globally optimal solution. This observation is in common with Fleten

et al., [5]. In [5], the constant rebalance portfolio optimization problem, in which the second

order below-target risk is minimized, was solved using the NLP solver MINOS, and it was

reported that MINOS always reached the same solution for an instance regardless of starting

values.

5 Concluding remarks

We have developed the cutting-plane algorithm for solving the constant rebalanced portfolio

optimization problem. Our algorithm, which is regarded as an extension of Kelley’s convex

cutting-plane algorithm, iteratively solves POPs by combining the SDP approach of [15] and

valid cuts. The computational experiments show that the algorithm can solve large-size prob-

lems that can not be directly solved by global optimization solver over polynomials GloptiPoly

[7]. This success is due to implementation of the reduced degree polynomials in the iterative

algorithm. Our numerical results show that our algorithm provides solutions with adequate ac-

curacy for practical purposes. Moreover, our algorithm is comparable to state-of-the-art global

optimization solver BARON.

Furthermore, if there is an effective warm-starting approach for SDP, then our cutting-plane

algorithm might be even more efficient by starting a SDP solver from the solution attained in

the previous iteration.

A further direction of this study is to apply polynomial optimization approaches to other

portfolio optimization problems. For instance, by taking into account skewness of the portfolio

value as in [14], the problem can be formulated as a POP. Considering the current performance

of SDP solvers it is difficult to solve POPs of high degree via SDP relaxations. However, SDP

relaxation techniques and particularly large-scale SDPs are areas of active research, and thus,

various POPs arising from portfolio optimization might be handled in the future.
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