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Abstract

The panel-data regression models are frequently applied to micro-level data,

which often suffer from data contamination, erroneous observations, or unobserved

heterogeneity. Despite the adverse effects of outliers on classical estimation meth-

ods, there are only a few robust estimation methods available for fixed-effect panel

data. Aiming at estimation under weak moment conditions, a new estimation

approach based on two different data transformation is proposed. Considering

several robust estimation methods applied on the transformed data, we derive

the finite-sample, robust, and asymptotic properties of the proposed estimators

including their breakdown points and asymptotic distribution. The finite-sample

performance of the existing and proposed methods is compared by means of Monte

Carlo simulations.
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1 Introduction

The panel-data regression models are increasingly popular in applications because each

individual cross-sectional unit is observed over time, and consequently, the individual-

specific heterogeneity can be accounted for. The majority of the regression methods

used in linear panel-data models are based on linear estimators such as least squares

(LS), and having unbounded normal equations, are very sensitive to data contamination

and outliers (Ronchetti and Trojani, 2001). This sensitivity can be characterized by

various measures of robustness such as the breakdown point, which measures the small-

est contaminated fraction of a sample that can arbitrarily change the estimates (Genton

and Lucas, 2003; Davies and Gather, 2005). Because the breakdown point of the linear

estimators such as LS is asymptotically zero, many authors stressed the importance

of robust and positive breakdown-point methods (e.g., Hampel et al., 1986; Simpson

et al., 1992; Ronchetti and Trojani, 2001; Gervini and Yohai, 2002; Wagenvoort and

Waldmann, 2002; Maronna et al., 2006; Čížek, 2008). This is even more important in

the case of large panels, which can contain individuals with erroneous observations that

are masked by the complex structure of the data.

Despite its relevance, the study of robust techniques for panel data seems to be

rather limited. The works of Wagenvoort and Waldmann (2002) and Lucas et al.

(2007) concentrate on the bounded-influence estimation of static and dynamic panel

data models, respectively. Along with related quantile-regression estimation by Koenker

(2004), these methods are generally locally robust, that is, their breakdown point can be

arbitrarily close to zero for some kinds of data contamination. The positive breakdown-

point methods were proposed only by Bramati and Croux (2007) and Dhaene and Zhu

(2009), where the first concentrates on the static panel models and the latter on the

dynamic panel models. Being interested in the static panel-data models here, Dhaene

and Zhu (2009) aiming at dynamic models is not suitable, especially since it strictly
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relies on additional distributional assumptions (e.g., errors being normal or independent

and identically distributed), which rule out heteroscedasticity and serial correlation

of errors. On the other hand, the methods proposed by Bramati and Croux (2007)

either are not equivariant with respect to various data transformations, for example

rescaling of data, or have to explicitly estimate the fixed effects, causing bias due to

the nonlinearity of the procedure if the number of periods is fixed (see Sections 2.2 and

4 for details). In both cases, the methods are consistent only if the number of time

periods increases to infinity, which makes them unsuitable for short panels.

In this paper, we propose an alternative robust estimation approach for linear fixed-

effect panel-data models that is equivariant with respect to standard data transforma-

tions, that is consistent for data observed in a (small) fixed number of time periods, and

that, besides the standard identification assumptions, does not require any particular

distributional assumptions (with the exception of the errors having a unimodal distri-

bution). To achieve this, we employ two different data transformations and show that

it is possible to apply standard robust estimators of linear regression to the transformed

data. Because of the data transformations, the equivariance, robust, and asymptotic

properties of the proposed estimators have to be established. All methods are shown to

have a positive breakdown point equal to or converging to 1/4 and to have asymptoti-

cally a normal distribution. At the same time, Monte Carlo experiments indicate that

the finite-sample performance of the proposed methods matches the standard within-

group LS estimator and the robust properties thus do not adversely affect the precision

of estimation.

The paper is organized as follows. After a survey of the existing fixed-effect panel-

data estimators in Section 2, two data transformations and the corresponding robust

estimators are proposed in Section 3, where their robust and asymptotic properties are

also examined. The finite-sample properties are studied in Section 4. The proofs are
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given in the Appendix.

2 Panel data models

In this section, a brief account of some classical panel-data estimators is offered (Sec-

tion 2.1), followed by the discussion of existing robust methods suitable for panel data

(Section 2.2).

2.1 The fixed-effects model

A static linear fixed-effect panel-data model can be described by

yit = x>
itβ + αi + εit, i = 1, . . . , n, t = 1, . . . , T, (1)

where yit denotes the dependent variable, xit ∈ Rp contains observable covariates, and

the vector β ∈ Rp represents the parameters of interest. The subscript i could refer

to individuals, households, firms, or countries, whereas t indicates the periodicity. The

unobservable terms consist of an unobservable individual-specific effect αi and of the

error term εit, which is assumed to have a zero mean, E (εit|xi1, . . . ,xiT ) = 0, and to

be independent across individuals; see Wooldridge (2002).

Without additional assumptions about the individial effects αi and given a fixed

number of observed time periods T , the estimation of β is straightforward only if αi’s

are eliminated from the model equation. A standard procedure, based on the so-called

within-group transformation, rules out the fixed effects by computing the time averages

for each individual,

ȳi· =
1

T

T∑
t=1

yit, x̄i· =
1

T

T∑
t=1

xit, (2)
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and then subtracting them from the original values: ỹit = yit − ȳi· and x̃it = xit −
x̄i·. Model (1) then implies the linear relationship ỹit = x̃>

itβ + ε̃it, which permits

estimating the parameter vector β by the LS estimate β̂(LS,mean)
nT . The within-group LS

estimator is linear, which implies that it is equivariant with respect to scale, regression,

and affine transformations: denoting the estimator explicitly as a function of data

T LS({xit, yit}, the scale, regression, and affine equivariance mean that T LS({xit, cyit}) =
cT LS({xit, yit}), T LS({xit, yit + x>

itv}) = T LS({xit, yit}) + v, and T LS({x>
itA, yit}) =

A−1T LS({xit, yit}), respectively, for any c ∈ R,v ∈ Rp, and A ∈ Rp×p.

Unfortunately, the within-group LS estimator is very sensitive to erroneous obser-

vations and outliers as any linear regression LS method. To document this, let us

introduce one of the global measures of robustness – the breakdown point. Informally,

an estimator is said to break down when the procedure no longer conveys useful informa-

tion on the data-generating mechanism (Genton and Lucas, 2003). In linear regression

models, this general statement is equivalent to saying that the estimates can increase

above any bound in the presence of data contamination. More formally, suppose we

observe a random sample Z = {xit, yit}n, T
i=1,t=1 and let T be an estimator of the regres-

sion parameters estimating β by T (Z). The finite-sample breakdown point of T at the

sample Z could be then be defined as the smallest fraction of data that can be modified

so that the estimate increases above any bound (Rousseeuw and Leroy, 1987):

ε∗nT (T ;Z) =
1

nT
max
m≥0

{
m | sup

Zm

‖T (Z)− T (Zm)‖ < ∞
}
, (3)

where the supremum is over all choices of Zm consisting of (nT −m) points from Z and

m arbitrary points. The asymptotic breakdown point of T can be defined as the limit

ε∗(T ) = limn→∞ ε∗nT (T ;Z), provided that this sample-independent limit exists. It can

be at most 1/2 for regression equivariant estimators (cf. Davies and Gather, 2005). For
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the within-group LS estimator, which is scale, regression, and affine equivariant, the

finite-sample breakdown point however does not exceed 1/nT and it converges to zero

asymptotically.

2.2 Robust estimators for panel data

To the best of our knowledge, there are very few studies proposing robust estimators for

panel data. Two of these, Koenker (2004) and Lucas et al. (2007), suggest estimators

which are only locally robust, meaning that their breakdown points can be arbitrarily

small for some data designs. Considering the globally robust estimators (i.e., having a

positive breakdown point), the two existing contributions are Dhaene and Zhu (2009)

and Bramati and Croux (2007). The first one proposes median-based estimators for

dynamic fixed-effects models, which strictly require additional distributional assump-

tions such as errors being independent and identically distributed across all individuals

and time periods and does not allow for heteroscedasticity and serial autocorrelation

often encountered in static panel-data models. Thus, the only proposal generally ap-

plicable in static fixed-effect panel-data models stems from Bramati and Croux (2007),

who adapt two existing high-breakdown point procedures and reach asymptotically a

positive breakdown 1/4. We focus here on their within-group generalized M-estimator

(WGM), since the other proposal – the MS-estimator of Maronna and Yohai (2000) –

estimates the fixed-effects, and due to its two-step non-linear structure, would require

a (non-existant) bias correction if the number of periods T is small.

The WGM estimator applies two robust estimators to centered data. As the mean

used in the within-group transformation (2) is a non-robust location estimator, Bramati

and Croux (2007) apply a robust regression estimator to data, where the individual fixed

effects are eliminated by means of the median. Instead of transformation (2), variables
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are thus centered using the within-group medians:

ỹit = yit −med
t

yit, x̃it = xit −med
t

xit. (4)

After centering, a natural approach is to regress ỹit on x̃it using a robust regression

estimator. Bramati and Croux (2007) suggest to use first the least trimmed squares

(LTS) estimator (Rousseeuw, 1984), which minimizes the sum of hnT smallest residuals:

β̂
(LTS,med,hnT )
nT = argmin

β∈Rp

hnT∑
j=1

r
2,(med)
(j) (β), (5)

where hnT is the trimming constant, nT/2 < hnT ≤ nT , and r
2,(med)
(j) (β) is the jth

smallest order statistics of squared residuals r2,(med)
it (β) = (ỹit− x̃>

itβ)
2, i = 1, . . . , n and

t = 1, . . . , T . The trimming constant determines the number nT − hnT of observations,

which are excluded from the objective function (5) and thus cannot directly influence

the estimates. The LTS estimator attains maximum breakdown point when hnT =

[nT/2]+ [(p+ 1)/2] (Rousseeuw and Leroy, 1987), where [x] denotes the integer part of

x. The main disadvantage of this most robust choice of hnT is the low relative efficiency

of 8% for normal data.

Next, to improve this lack of efficiency, Bramati and Croux (2007) adopt the

reweighted LS strategy using weights designed so that the breakdown point of the

initial LTS estimator is preserved (Rousseeuw and Leroy, 1987). Let β̂0
nT and σ̂0

nT be

the regression and scale estimates obtained in the first estimation step using LTS (i.e.,

(σ̂0
nT )

2 is defined as a multiple of the LTS objective function at β̂0
nT ). The weight-

ing scheme relies on two different kinds of weights. First, observations having large

standardized residuals rit(β̂
0
nT )/σ̂

0
nT are downweighted using residual weights ŵr

it =

wc{rit(β̂0
nT )/σ̂

0
nT}, where Bramati and Croux (2007) use wc(u) = {1−(u/c)2}2I(|u| ≤ c)
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Table 1: The mean squared errors of the within-group LS and WGM estimates based
on the mean and median transformations.

M 0 1 10

# parameters 1 5 1 5 1 5

mean LS 0.001 0.022 0.001 0.021 0.001 0.021

med LS 0.001 0.017 0.003 0.065 0.002 4.272
WGM 0.001 0.005 0.146 0.809 0.046 51.88

and c = 4.685. A further protection against observations with a high leverage is

provided by the location weights indirectly proportional to the values of covariates:

ŵx
it = min{1,

√
χ2
p,0.975/RDit}, where χ2

p,0.975 is the 97.5% quantile of the chi-square

distribution with p degrees of freedom, RDit = [(x̃it − µ̂)>V̂ −1(x̃it − µ̂)]1/2 is a robust

version of the Mahalanobis distance (Rousseeuw and Zomeren, 1990), and µ̂ and V̂ are

robust estimates of the location and variance matrix of x̃it. The WGM estimator is

then defined as the weighted LS (WLS) estimator for the median-transformed data

β̂
(WGM,med)
nT = argmin

β∈Rp

n∑
i=1

T∑
t=1

ŵr
itŵ

x
itr

2,(med)
it (β). (6)

The complete WGM procedure can asymptotically achieve the breakdown point

1/4. On the other hand, WGM is neither regression nor affine equivariant and its

asymptotic distribution (even for T → ∞) has not been derived yet. The lack of

equivariance properties comes from the nonlinearity of the median transformation and

complicates the use of WGM in applications as we now demonstrate, at least if T is

small. Consider the following linear panel-data model (i = 1, . . . , 100; t = 1, 2, 3)

yit = x>
itβ + αi + εit, (7)

where xit ∼ N(0, 1), εit ∼ N(0, 1), αi ∼ U(0, 10), and β = −M ∈ R or β =
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(−M, 0,M, 0,−M)> ∈ R5. Simulating the data 1000 times and estimating the model

for M = 0, 1, and 10 by LS and WGM results in the mean squared errors in Table 1.

Obviously, various levels of the multiplier M do not have any impact on the precision

of the within-group LS estimator. Using LS and WGM after removing the individ-

ual effects by the median centering however leads to completely different results: the

mean squared errors are substantially increasing with the magnitude of the regression

coefficients, especially for the model with 5 variables.

3 New robust estimators for panel data

Because using the within-group transformation with LS is non-robust and using the

(robust) median in place of the mean (Bramati and Croux, 2007) introduces incon-

sistency when the time dimension T is small and fixed, we now propose alternative

robust estimators of β in (1) that do not rely on estimating the central tendency of

fixed effects. This will be done in two steps. First, the elimination of unobserved in-

dividual effects will be addressed by considering other data transformations than the

mean or median centering (Section 3.1). Second, in the light of recent contributions in

robust statistical theory, LTS (Section 3.2) will be followed by new robust and efficient

estimators adapted to the panel data setting (Section 3.3).

3.1 Data transformations

Since applying a robust estimate of location to centered data does not lead to a us-

able estimator (see Section 2.2), we focus on the first-difference and pairwise-difference

transformations instead. The first-difference transformation is already well known in

the literature (Wooldridge, 2002). Denoting the first-difference operator by ∆, the
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model (1) can be transformed to

∆yit = yit − yit−1 = x>
itβ + εit − x>

it−1β − εit−1 = ∆x>
itβ +∆εit, (8)

where i = 1, . . . , n and t = 2, . . . , T and where no fixed effects αi appear. Under the

strict-exogeneity assumption, β is consistently estimated by LS applied to (8). This

alternative to the within-group estimator, which is the best linear unbiased estima-

tor when error terms εit are uncorrelated, is preferable if error terms εit are serially

correlated (see Wooldridge, 2002, for details).

Alternatively, one could try to obtain more accurate estimates than from (8) by

eliminating individual effects by taking all pairwise differences within each individual.

Inspired by Stromberg et al. (2000) and Honoré and Powell (2005), let us define the

pairwise-difference transformation as ∆szit = zit − zit−s, where s = 1, . . . , t − 1, for

any t ∈ {2, . . . , T} and i ∈ {1, . . . , n}. Applied to model (1), the pairwise-difference

transformation yields

∆syit = yit − yit−s = (xit − xit−s)
>β + εit − εit−s = ∆sx>

itβ +∆sεit, (9)

which removes the individual-specific variable αi similarly to (8), but generates a larger

sample size nT (T−1)/2 instead of n(T−1) in (8) since differences for all s = 1, . . . , t−1

are considered.

To handle all transformations in a unified way, let us now introduce a more general

notation. Given the original data set {xit, yit}n, T
i=1,t=1, let {x̃it, ỹit}n, T (T)

i=1,t=1 be the data set

created by one of the considered data transformations T, T ∈ {med, 1∆, P∆}, where
med, 1∆, and P∆ are shorthand symbols for the median-centering, first-difference, and

pairwise-difference transformation and T (T) = T, T − 1, and T (T − 1)/2, respectively.
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3.2 Initial robust estimator

Once the individual effects have been eliminated, it is of interest to find a proper robust

estimator for β in (1). Similarly to Bramati and Croux (2007), we use initially the LTS

estimator, which may be generally defined for the T-transformed data as

β̂
(LTS,T,hnT )
nT = argmin

β∈Rp

hnT∑
j=1

r
2,(T)
(j) (β), (10)

where r
2,(T)
(j) (β) is the jth smallest order statistics of squared residuals, the (i, t)th

residual equals r
(T)
it (β) = ỹit − x̃>

itβ, and hnT is the trimming constant, nT (T)/2 <

hnT ≤ nT (T). We assume that the trimming constant is defined so that hnT/nT
(T) →

λ ∈ 〈1/2, 1〉, and thus asymptotically, the 1 − λ fraction of observations is eliminated

from the objective function (10). To study the breakdown properties of the proposed

LTS estimation under different transformations, let us make the following assumptions.

Assumption D

D1 Let {xit, yit}n, T
i=1,t=1 be a random sample generated according to model (1).

D2 The transformed data {x̃it, ỹit}n, T (T)

i=1,t=1 are almost surely in a general position for

nT (T) > 3(p+1), that is, any p+1 data points do not lie on the same hyperplane

almost surely.

Contrary to the median centering, both the first-difference and pairwise-difference

transformations are linear transformations of the data. Therefore, the LTS estimator

applied to such transformed data does not lose its equivariance properties contrary to

LTS applied to the median-transformed data in Bramati and Croux (2007).

Lemma 1 Suppose that Assumption D1 holds. If T ∈ {1∆, P∆}, then the LTS esti-

mator β̂
(LTS,T,hnT )
nT defined in (10) is scale, affine, and regression equivariant.
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Further, let now look at the breakdown properties of the LTS estimator.

Theorem 1 Suppose that Assumption D hold. Let β̂(LTS,T,hnT )
nT be the LTS estimator

defined in (10) for hnT/(nT
(T)) → λ as nT (T) → ∞. If hnT ≥ hT

(T)

nT = [nT (T)/2] + [(p+

1)/2] + 1, then it holds that

ε∗nT
(
β̂

(LTS,T,hnT )
nT ; {xit, yit}n, T

i=1,t=1

)
≥ nT (T) − hnT

2nT (T)
· κ(T)(T ), (11)

where κ(1∆) = [2(T − 1)]/[min{2, T − 1}T ] and κ(P∆) = 1. The breakdown point of LTS

tends asymptotically to κ(T)(T )(1−λ)/2, and in particular, to κ(T)(T )/4 for hnT = hT
(T)

nT .

From the breakdown point of view, both proposed data transformations are asymp-

totically equivalent for T = 2 and for T → ∞ as they yield the same maximum

breakdown point 1/4 analogously to Bramati and Croux (2007). Whereas the pairwise

differencing reaches this breakdown point for any number of time periods T , the first

differencing has a smaller breakdown point equal to (T − 1)/(4T ) for T ≥ 3. Let us

note that this disadvantage of the first differencing could be eliminated by considering

only differences at even time periods (e.g., ∆y2,∆y4, . . .): the breakdown point would

asymptotically equal 1/4 irrespective of T , but the precision of estimation would suffer.

3.3 Robust and efficient estimation

Since the LTS estimator with the maximum breakdown point achieves only 8% relative

efficiency for normally distributed data, one-step estimators are often employed to im-

prove the precision of estimation without substantially affecting the robust properties

of estimation (see also Section 2.2).

To introduce the efficient one-step methods, suppose we have the transformed data

{x̃it, ỹit} obtained by transformation T ∈ {med, 1∆, P∆} and a pair of initial robust
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estimators of the regression parameters β̂0
nT and residual scale σ̂0

nT (e.g., the median

absolute deviation). A classical example of a one-step augmentation procedure is the

iteratively reweighted LS (IRLS) estimator proposed by Rousseeuw and Leroy (1987),

which removes the observations having large absolute residuals according to some initial

robust fit and then applies LS. Denoting the initial residuals r(T)it (β̂0
nT ) = ỹit − x̃>

itβ̂
0
nT ,

one can thus define weights

ŵit

(
β̂0
nT , σ̂

0
nT ; v

)
= I

(
|r(T)it (β̂0

nT )/σ̂
0
nT | < v

)
(12)

for a constant v > 0 (e.g., Gervini and Yohai (2002) suggest v = 2.5). The IRLS

estimator then reads as follows:

β̂
(IRLS,T)
nT = argmin

β∈Rp

n∑
i=1

T (T)∑
t=1

ŵit

(
β̂0
nT , σ̂

0
nT ; v

)
r
2,(T)
it (β). (13)

A data-adaptive version of (13) designed to achieve efficiency for normally dis-

tributed data, the robust and efficient weighted least squares (REWLS) estimator, has

been proposed by Gervini and Yohai (2002). A data-dependent cut-off point v̂nT to

define weights (12) is now determined by comparing two distribution functions, F+ and

F+
0 , where the former relates to the standardized absolute residuals |r(T)it (β̂0

nT )/σ̂
0
nT | and

the latter is the distribution function assumed for these standardized absolute residuals

in the model (1). Since F+ is usually unknown, it is estimated by the empirical distri-

bution function F+
nT of |r(T)it (β̂0

nT )/σ̂
0
nT |. The maximum discrepancy d̂nT between F+

nT

and F+
0 in the tail of the distributions can be then measured by

d̂nT = sup
v≥η

{[
F+
0 (v)− F+

nT (v)
] · I (F+

0 (v)− F+
nT (v) ≥ 0

)}
, (14)

where η is a large quantile of F+
0 , for example, η = 2.5 for Gaussian errors with
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F0 ≡ N(0, 1) (see Gervini and Yohai, 2002). The cutoff point v̂nT is then defined as the

(1− d̂nT )th quantile of the distribution F+
nT : v̂nT = min

{
v | F+

nT (v) ≥ 1− d0
}
. Finally,

the REWLS estimator is obtained from (13) for v = v̂nT ≥ η:

β̂
(REWLS,T)
nT = argmin

β∈Rp

n∑
i=1

T (T)∑
t=1

ŵit

(
β̂0
nT , σ̂

0
nT ; v̂nT

)
r
2,(T)
it (β). (15)

This method is proved to preserve the breakdown-point properties of the initial robust

estimator and achieve the asymptotic efficiency for Gaussian errors.

An alternative to the traditional one-step estimators is the reweighted least trimmed

squares (RLTS) estimator (Čížek, 2010). Similarly to Gervini and Yohai (2002), weights

(12) are constructed using the data-dependent cutoff point v̂nT . The resulting weights

are however used within the LTS estimator rather than LS. Since LTS requires only the

total number hnT of observations to be included in the objective function, the number

of observations with non-zeros weights ŵit(·, ·; v̂nT ) has to be counted:

ĥnT =
n∑

i=1

T (T)∑
t=1

I
(∣∣∣r(T)it

(
β̂0
nT

)
/σ̂0

nT

∣∣∣ < v̂nT

)
=

n∑
i=1

T (T)∑
t=1

ŵit

(
β̂0
nT , σ̂

0
nT ; v̂nT

)
(16)

The RLTS estimator is then simply defined as LTS using the data-dependent amount

of trimming ĥnT applied to the T-transformed panel data:

β̂
(RLTS,T)
nT = argmin

β∈Rp

ĥnT∑
j=1

r
2,(T)
(j) (β). (17)

Similarly to REWLS, RLTS preserves the breakdown-point properties of the initial

robust estimator. Additionally, RLTS is asymptotically independent of the initial esti-

mator and achieves asymptotic efficiency when errors are normally distributed.

Let us now formally state the breakdown properties of these one-step estimators.
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Theorem 2 Assume that Assumption D holds and that the data have been transformed

according to one of the T-transformations, T ∈ {1∆, P∆}. Further, let ε0∗nT be the finite-

sample breakdown point of the initial estimator β̂0
nT of the regression parameters with

limit ε0∗ = limn→∞ ε0∗nT . Additionally, suppose σ̂0
nT = MADi,trit(β̂

0
nT )/Φ

−1(3/4) is the

standardized median absolute deviation estimator and F0 has a finite variance. Then it

holds that ε∗nT (β̂
(IRLS,T)
nT ) ≥ ε0∗nT , ε∗nT (β̂

(REWLS,T)
nT ) ≥ ε0∗nT , and ε∗nT (β̂

(RLTS,T)
nT ) ≥ ε0∗nT .

Thus, we see that all one-step methods – WGM, REWLS and RLTS – have the same

breakdown properties. Note that this holds even though IRLS does not use weights ŵx
it

in constrast to WGM. The different methods could differ though by the bias caused by

outliers and in their finite-sample and asymptotical variances.

3.4 Asymptotic properties

The estimators introduced in the previous sections are applied to model (1) after the

first-difference or pairwise-difference transformations, which lead to the serial correla-

tion of the errors in (8) or (9), respectively. Almost all robust regression estimators are

however asymptotically studied under the assumption of independent (and often iden-

tically distributed) errors, be it in the context of cross-sectional (Gervini and Yohai,

2002) or panel data (Lucas et al., 2007), or there are no asymptotic results available

(Bramati and Croux, 2007; Dhaene and Zhu, 2009). This limits also the extent to

which we can characterize the asymptotic distribution of the proposed estimators. In

particular, the asymptotic distribution under the first- and pairwise-differences can be

easily derived only for the initial LTS estimator and its reweighted form RLTS (with

the notable exception of the estimation based only on the first differences taken at even

time periods as mentioned in Section 3.2, which produces independent errors).

Now, the assumptions necessary to derive the asymptotic distribution of LTS and

RLTS are presented. To this end, let Xi = (xi1, . . . ,xiT )
>, yi = (yi1, . . . , yiT )

>, X̃i =

15



(x̃i1, . . . , x̃iT (T))>, ỹi = (ỹi1, . . . , ỹiT (T))>, and ε̃it = ỹit − x̃itβ
0 for all i ∈ N and t =

1, . . . , T (T), where β0 is the true parameter value in model (1). Further, let us recall that,

in this context, λ ∈ 〈1/2, 1〉 refers to the limits limn→∞ hnT/nT
(T) or limn→∞ ĥnT/nT

(T),

see (16), and that T ≥ 2 is a fixed integer. The assumptions and the asymptotic

distribution will be stated for symmetrically distributed errors for the sake of simplicity.

A more general result can be found in Čížek (2010), where a detailed discussion of these

assumptions can be found.

Assumption A

A1 Random vectors yi and matrices Xi are independent and identically distributed

for all i ∈ N and have finite second moments.

A2 Let {εit}i∈N be a sequence of random variables with finite second moments and

E(εit|Xi) = 0 for all i ∈ N and t = 1, . . . , T . Further, the unconditional dis-

tribution function F of εit is assumed to be unimodal, absolutely continuous,

and symmetrically distributed condionally on Xi. Its density function has to be

bounded and continuously differentiable.

A3 Let Q(λ) = E[X̃>
i diag({I[|F (ε̃it)− F (−ε̃it − 2C)| ≤ λ]}T (T)

t=1 )X̃i] be a nonsingular

matrix for any fixed C ∈ R.

A4 Denoting Gβ and gβ the unconditional cumulative distribution and density func-

tions of (ỹit − x̃>
itβ)

2, let supβ∈Rp supz>α gβ(z) < ∞ for any α > 0, and if λ < 1,

that infβ∈Rp infz∈(−δ,δ) gβ
(
G−1

β (λ) + z
)
> 0 for some δ > 0.

Assumption A1 formulates standard conditions of the (uniform) central limit the-

orem: observed variables are independent across cross-sectional units and have finite

second moments. Assumption A2 presents the assumptions on the error term εit, which

is independent of explanatory variables and continuously distributed. Note that, in
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the most general case, only the second moments of the trimmed errors ei(qλ) defined

below have to be finite (see Čížek, 2011). Next, Assumption A3 formulates an analog

of the standard full-rank condition, and is actually equivalent to E(X̃iX̃
>
i ) > 0 if ε̃it

is independent of Xi. Finally, Assumption A4 formalizes the fact that the distribution

of squared residuals should be absolutely continuous: its density should not approach

∞ at any point, which would correspond to the distribution becoming discontinuous at

some point. If ε̃it is independent of x̃it, Assumption A4 is usually implied by F being

absolutely continuous with a density function f positive, bounded and differentiable

(Čížek, 2006).

Under Assumption A, Čížek (2010) derived the below stated result regarding the

asymptotic distribution of LTS and RLTS. To formulate this result, the notation qλ =
√

G−1(λ) is used, where G ≡ G0
β and G−1 represents the unconditional quantile

function of ε̃2it. Additionally, one diagonal matrix and two vectors depending on qλ

are needed: Ii(qλ) = diag[{I(ε̃it ≤ qλ)}T (T)

t=1 ], ei(qλ) = Ii(qλ)(ε̃i1, . . . , ε̃iT (T))>, and

fi(qλ) = (fi1(qλ), . . . , fiT (T)(qλ))
>, where fit is the conditional distribution of ε̃it|X̃i.

Theorem 3 Let Assumption A hold. Next, let Σ(λ) = E[X̃>
i {ei(qλ)ei(qλ)

>}X̃i],

Q(λ) = E[X̃>
i Ii(qλ)X̃i], J(λ) = −E[qλX̃

>
i diag{fi(−qλ)+fi(qλ)}X̃i], and Q(λ)+J(λ)

be a non-singular matrix. Then the (reweighted) LTS estimator β̂
(RLTS,T)
nT defined by

trimming ĥnT such that limn→∞ ĥnT/nT → λ for some λ ∈ 〈1/2, 1〉 is a
√
n-consistent

and asymptotically normal,
√
n(β̂

(RLTS,T)
nT − β0)

L→ N(0, V (λ)) as n → ∞, where the

asymptotic covariance matrix equals V (λ) = {Q(λ) + J(λ)}−1Σ(λ){Q(λ) + J(λ)}−1.

The theorem covers not only the reweighted, but also the initial LTS estimator

for ĥnT = hnT = const. Consequently, the initial and reweighted LTS estimators are

asymptotically normal. The estimation of their covariance matrix V (λ) is discussed in

detail by Čížek (2011).
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4 Simulation study

This section contains a simulation study of the finite-sample properties of some pro-

posed and existing panel-data estimators. The following simulations are meant to in-

vestigate the behavior of estimators when the sample dimensions vary (Section 4.1),

when errors come from various error distributions (Section 4.2), and when different

kinds of outlying observations are present (Section 4.3). The reference estimator is the

within-group estimator β̂
(LS,mean)
nT . Other estimators under consideration are the LS,

LTS with the maximum amount of trimming (see Theorem 1), WGM of Bramati and

Croux (2007), IRLS, REWLS, and RLTS estimators subject to three data transforma-

tions T ∈ {med, 1∆, P∆}. Let us recall that WGM and IRLS are both based on the

same reweighted LS method, but differ by employed weights: WGM uses a continous

weighting function and downweights observations with large covariates, whereas IRLS

uses 0–1 weights determined only by absolute residuals similarly to REWLS and RLTS.

The data generating process is given by a static fixed-effect panel-data model

yit = x>
itβ + αi + εit,

αi =
T∑
t=1

x>
itγ/

√
T + ηi,

i = 1, · · · , n, t = 1, · · · , T, (18)

where the εit’s are independent and identically distributed according to some distri-

bution H. The parameters of interest are chosen β = (1, 0,−1)>. The unobserv-

able individual effects αi depend on ηi ∼ U(0, 12) and on the covariates xit through

γ = (2, 2, 2)>. Observable covariates xit’s are generated according to

xitk ∼





χ2
2 − 2 if k = 1,

N(0, 1) if k ≥ 2,

(19)
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Table 2: The mean squared errors of all estimators for normally distributed errors and
various sample sizes.

n 50 100 200 400 50

T 3 4 6 12 24

mean LS 0.023 0.011 0.006 0.003 0.015 0.009 0.004 0.002

LS 0.044 0.032 0.026 0.022 0.018 0.012 0.006 0.002
LTS 1.423 1.540 1.579 1.605 0.185 0.140 0.061 0.028

med WGM 0.511 0.465 0.441 0.433 0.045 0.032 0.014 0.006
IRLS 0.612 0.572 0.549 0.541 0.050 0.031 0.012 0.006
REWLS 0.581 0.530 0.502 0.493 0.044 0.025 0.008 0.003
RLTS 0.309 0.252 0.221 0.211 0.033 0.019 0.007 0.003

LS 0.029 0.014 0.007 0.004 0.020 0.013 0.006 0.003
LTS 0.173 0.098 0.056 0.030 0.122 0.084 0.045 0.024

1∆ WGM 0.042 0.019 0.009 0.005 0.028 0.017 0.008 0.004
IRLS 0.043 0.018 0.008 0.004 0.027 0.016 0.008 0.003
REWLS 0.042 0.017 0.008 0.004 0.026 0.015 0.007 0.003
RLTS 0.038 0.016 0.007 0.004 0.024 0.014 0.007 0.003

LS 0.023 0.011 0.006 0.003 0.015 0.009 0.004 0.002
LTS 0.139 0.076 0.042 0.023 0.084 0.043 0.014 0.005

P∆ WGM 0.032 0.015 0.007 0.004 0.019 0.011 0.005 0.002
IRLS 0.032 0.014 0.006 0.003 0.018 0.010 0.005 0.002
REWLS 0.031 0.013 0.006 0.003 0.017 0.009 0.005 0.002
RLTS 0.028 0.013 0.006 0.003 0.016 0.009 0.005 0.002

where xitk denotes the kth component of xit, k = 1, 2, 3, χ2
2 denotes the chi-squared

distribution with 2 degrees of freedom, and N(0, 1) represents the standard normal

distribution.

Simulation experiments are conducted across different sample sizes nT , aiming at

both short micro-panels and long macro-panels, with n and T ranging from (n, T ) =

(100, 3) to (n, T ) = (50, 24). The performance of each estimator is evaluated using

S = 1000 simulated samples and is measured by the mean squared error (MSE):MSE =

1/S
∑S

s=1‖β̂s
nT − β‖2, where β̂s

nT , s = 1, . . . , S, are the estimates for S simulated

samples.
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4.1 Sample sizes

The performance of the estimators is first evaluated for normal errors, H ≡ N(0, 1),

at different sample sizes: for T fixed and n increasing and for T increasing while n is

fixed. The simulation results are summarized in Table 2. The results for the median

transformation confirm that the robust estimators based on this transformation are not

consistent for a fixed number of time periods T , but are consistent if T → ∞. Next,

LTS performs much worse than LS for all transformations, while all one-step estimators

(WGM, IRLS, REWLS, and RLTS) exhibit much smaller MSEs and can match the

performance of LS if the sample size is sufficiently large. Finally, it is interesting to

note that – while the within-group LS estimator outperforms the LS applied to first-

differenced data (errors are iid) – the LS and one-step robust estimators applied to

pairwise-differenced data can actually match the performance of the within-group LS

estimator.

4.2 Different error distributions

In this subsection, three different distributions H of the error term εit in (18) are

considered: the standard normal N(0, 1), the double exponential distribution DExp(1)

with rate 1, and the Student distribution t3 with 3 degrees of freedom, see Table 3.

The LS estimator is no longer optimal and is slightly outperformed by one-step robust

estimators in the case of the double-exponential errors and more substantially in the

case of the Student errors (the differences among WGM, IRLS, REWLS, and RLTS are

practically negligible). Regarding the data transformations, the pairwise-differencing

leads uniformly to the best results, and in combination with REWLS, is preferable to

the within-group LS estimator.
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Table 3: The mean squared errors of all estimators for errors from the standard normal,
double exponential, and Student distributions.

Errors distr. DExp(1) N(0, 1) t3

n 200 75 30 200 75 30 200 75 30
T 3 8 20 3 8 20 3 8 20

mean LS 0.011 0.009 0.008 0.006 0.004 0.004 0.017 0.012 0.012

LS 0.032 0.011 0.009 0.026 0.007 0.005 0.039 0.014 0.013
LTS 1.641 0.078 0.032 1.582 0.083 0.048 1.650 0.089 0.045

med WGM 0.506 0.023 0.012 0.441 0.018 0.010 0.514 0.025 0.013
IRLS 0.630 0.023 0.012 0.551 0.016 0.009 0.636 0.024 0.013
REWLS 0.580 0.018 0.009 0.504 0.011 0.006 0.586 0.018 0.010
RLTS 0.233 0.014 0.009 0.222 0.009 0.005 0.241 0.014 0.009

LS 0.014 0.013 0.012 0.007 0.006 0.006 0.022 0.018 0.018
LTS 0.048 0.036 0.034 0.056 0.046 0.039 0.059 0.047 0.044

1∆ WGM 0.013 0.011 0.010 0.010 0.008 0.007 0.015 0.012 0.012
IRLS 0.014 0.012 0.011 0.009 0.007 0.006 0.016 0.012 0.013
REWLS 0.013 0.012 0.010 0.008 0.007 0.006 0.015 0.012 0.012
RLTS 0.014 0.012 0.011 0.008 0.007 0.006 0.015 0.012 0.012

LS 0.011 0.009 0.008 0.006 0.004 0.004 0.017 0.012 0.012
LTS 0.035 0.014 0.008 0.042 0.018 0.010 0.044 0.018 0.011

P∆ WGM 0.010 0.007 0.006 0.007 0.005 0.004 0.012 0.007 0.007
IRLS 0.011 0.007 0.006 0.007 0.005 0.004 0.012 0.007 0.007
REWLS 0.010 0.007 0.006 0.006 0.004 0.004 0.011 0.007 0.007
RLTS 0.011 0.008 0.007 0.006 0.004 0.004 0.012 0.008 0.007
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4.3 Outliers

The robust properties are now evaluated by including outliers in the data. Let m

be the number of outliers and let Im be the index set of contaminated observations.

Contaminated values of the dependent variable y̌rit ∼ U(−10, 30) or y̌cit ∼ U(29, 30) and

independent variables x̌itk ∼ N(6, 2), (i, t) ∈ Im, k = 1, 2, 3, result in the following

contamination schemes defined by the actual values of (xit, yit) for (i, t) ∈ Im. If

yit = y̌rit or yit = x>
itβ + αi + y̌cit for (i, t) ∈ Im, we talk about the non-clustered and

clustered outliers, respectively. On the other hand, if xit is left unmodified or xit = x̌it,

the contamination schemes is said to contain vertical outliers (VO) or leverage points

(LP), respectively. All non-contaminated data (i, t) 6∈ Im follow model (18)–(19) with

H ≡ N(0, 1). The sample size is fixed to n = 70 and T = 3 now and the number of

outliers is set to m = 10 (5% contamination) and m = 42 (20% contamination).

The results summarized in Table 4 document that, even if only 5% observations

are contaminated, LS can get extremely biased (actually more that the inconsistent

estimators based on the median transformation). On the contrary, the proposed robust

estimators are not substantially affected by any type of contamination. Similarly to

experiments discussed in previous sections, there are no substantial differences among

the one-step robust estimators, while the data transformation matters: the pairwise-

differencing again outperforms the first-differencing.

5 Concluding remarks

The present study examines the parameter estimation in fixed-effects panel data mod-

els with a fixed number of time periods from the point of view of robust statistical

procedures. To achieve consistent estimators, we privilege first-difference and propose

pairwise-difference data transformations and then apply robust estimators: LTS fol-
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Table 4: The mean squared errors of all estimators in the presence of 5% or 20%
scattered and clustered outliers.

Non-clustered outliers Clustered outliers

VO LP VO LP

5% 20% 5% 20% 5% 20% 5% 20%

mean LS 0.164 0.673 2.627 5.146 0.703 2.317 6.069 8.010

LS 0.176 0.639 3.150 5.668 0.596 1.938 6.342 8.253
LTS 1.519 1.613 1.476 1.382 1.507 1.558 1.557 1.510

med WGM 0.485 0.556 0.480 0.487 0.477 0.432 0.451 0.449
IRLS 0.606 0.681 0.598 0.594 0.575 0.518 0.585 0.558
REWLS 0.566 0.639 0.552 0.551 0.538 0.481 0.547 0.513
RLTS 0.251 0.258 0.287 0.317 0.268 0.214 0.209 0.316

LS 0.203 0.807 2.646 5.255 0.907 2.835 6.087 8.024
LTS 0.137 0.098 0.128 0.117 0.124 0.068 0.120 0.059

1∆ WGM 0.033 0.053 0.033 0.070 0.027 0.028 0.027 0.027
IRLS 0.031 0.052 0.039 0.086 0.026 0.027 0.026 0.027
REWLS 0.030 0.055 0.038 0.090 0.025 0.028 0.025 0.028
RLTS 0.028 0.064 0.037 0.170 0.024 0.028 0.024 0.028

LS 0.165 0.673 2.625 5.149 0.705 2.332 6.068 8.009
LTS 0.101 0.076 0.100 0.091 0.090 0.051 0.090 0.043

P∆ WGM 0.024 0.042 0.025 0.058 0.021 0.021 0.021 0.021
IRLS 0.022 0.041 0.031 0.074 0.019 0.021 0.020 0.021
REWLS 0.021 0.044 0.031 0.078 0.019 0.022 0.019 0.021
RLTS 0.020 0.050 0.030 0.156 0.018 0.022 0.019 0.021

lowed by various reweighted LS and LTS methods. For a given data transformation,

all methods achieve the same breakdown point and have similar finite-sample perfor-

mance; the asymptotic distribution could be however provided only in the case of LTS

and RLTS. Comparing the two data transformations, the best robust properties (i.e.,

the breakdown point 1/4 irrespective of the number of time periods T ) and the best

estimation results have been obtained for the new pairwise-difference transformation,

which could motivate its further study in the context of panel data models.
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APPENDIX: PROOFS

Proof of Lemma 1: Since the LTS estimator is regression, affine, and scale equiv-

ariant (Rousseeuw and Leroy, 1987, Lemma 3 in Chapter 3), we only have to verify

that the data-transformations – the first- and pairwise-differencing – do not affect the

regression, affine, and scale transformations. For any s ∈ N , this directly follows from

∆s(cyit) = c∆syit, ∆s(yit + x>
itv) = ∆syit + (∆sxit)

>v, and ∆s(x>
itA) = (∆sxit)

>A. ¤

Proof of Theorem 1: Before applying the LTS estimator, data are subject to the

differencing transformations (8) or (9), which generate T (T) = n(T−1) or T (T) = nT (T−
1)/2 transformed observations, respectively. With these transformations, the worst

case scenario occurs when aberrant observations are located so that each single outlier

contaminates always min{2, T − 1} (first-differencing) or T − 1 (pairwise-differencing)

differentiated observations. Hence given m outliers in the original sample, the number

of outliers after the first- and pairwise-differencing will be at most min{2, T − 1}m and

(T − 1)m, respectively.

At the same time, the breakdown point of LTS with the trimming constant hnT

equals (nT (T) − hnT )/[nT
(T)] if hnT ≥ (nT (T) + p + 1)/2 (Vandev and Neykov, 1998).

LTS thus breaks down only if the number of outliers exceeds nT (T)−hnT . In the case of

the first differences, this means that LTS breaks down if min{2, T −1}m > nT (T)−hnT ,

implying that the breakdown point of the proposed panel-data LTS estimator equals

(nT (T) − hnT )/[min{2, T − 1}nT ] = {(nT (T) − hnT )/[2nT
(T)]} · {(2(T − 1))/(min{2, T −

1}T )}. In the case of the pairwise differences, LTS breaks down if (T − 1)m >

nT (T) − hnT , implying that the breakdown point equals (T (T) − hT
n)/[nT (T − 1)] =

(nT (T) − hnT )/(2nT
(T)). The last claim of the theorem follows from limn→∞(nT (T) −

hnT )/(2nT
(T)) = (1− λ)/2. ¤

Proof of Theorem 2: The claim of the theorem is proved for REWLS by Gervini

and Yohai (2002, Theorem 3.3) and for RLTS by Čížek (2010, Theorem 2). The result
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for the IRLS estimator also directly follows from Gervini and Yohai (2002, Theorem

3.3), since vnT determined by REWLS is by definition always greater or equal to v = η

used in (12), see equation (14). ¤
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