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Abstract

This paper proposes a robust forecasting method for non-stationary time series. The

time series is modelled using non-parametric heteroscedastic regression, and fitted by a local-

ized MM-estimator, combining high robustness and large efficiency. The proposed method is

shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedas-

ticity. In the absence of outliers, the forecasts are only slightly less precise than those based

on a localized Least Squares estimator. An additional advantage of the MM-estimator is that

it provides a robust estimate of the local variability of the time series.

Keywords: Heteroscedasticity, Non-parametric regression, Prediction, Outliers, Robustness

1 Introduction

This paper presents a flexible and robust forecasting technique for non-stationary and possibly

heteroscedastic time series. Real data sets impose a simultaneous need for flexibility, robustness

against outliers and the ability of coping with heteroscedasticity. Firstly, flexible modelling is

adequate for time series with an underlying trend which does not lie in a predetermined family of

parametric functions. Secondly, robustness should be involved to prevent outliers in the data from

having a strong adverse effect on the predictions. Finally, the ability to handle heteroscedasticity
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is of major importance, since restricting to homoscedasticity is too stringent for many real data

sets. The forecasting procedure proposed here combines these three advantageous characteristics.

Most forecasting techniques found in the literature lack at least one of the aforementioned

properties. Local polynomial regression (see e.g. Fan and Gijbels, 1996), for instance, is a flexible

technique but not robust; furthermore, like local polynomial M-regression (Grillenzoni, 2009) and

the weighted repeated median (Fried, Einbeck, and Gather, 2007), it does not explicitly take a

possible change of the variance over time into account.

A key problem of many robust regression techniques is the estimation of the scale of the error

term. Grillenzoni (2009) considered this scale to be estimated beforehand, whereas we estimate the

scale and the trend simultaneously, using an S-estimator. S-estimators are known to have a high

breakdown point but low efficiency. The efficiency of the procedure is then improved considerably

by applying an MM-type estimator, initialized by the S-estimator. Additionally, since we estimate

the error scale locally, pointwise prediction bounds can be constructed around the estimated trend,

allowing the scale to change over time.

The rest of this paper is organized as follows. The underlying model and the procedure for the

estimation of the trend are explained in Section 2. Section 3 describes an iterative procedure for

computing the estimates. The choice of the kernel function, the bandwidth and the degree of the

local polynomial approximating the trend are discussed in Section 4. In Section 5 a comparative

simulation study is carried out. The proposed technique is illustrated by a real data example in

Section 6. Some conclusions are stated in Section 7.

2 Model and estimation procedure

Consider the model

Yt = m(t) + σ(t)εt

for a given time series Yt, t = 1, . . . , T . The signal m, capturing the underlying trend, and the scale

σ are unknown functions of time. For simplicity, assume that the error terms εt are independent

and distributed as N(0, 1). To predict the value of YT+1 we estimate the corresponding signal

value m(T +1). Additionally, we want to estimate the error scale σ(T +1) at the same time point.

In general, one could estimate the signal m and the scale σ in any other time point t0, but we
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focus on forecasting and choose t0 = T + 1.

Let us approximate the signal m by a polynomial of degree p in a neighbourhood of t0:

m(t) ≈ m(t0) + β1(t− t0) + β2(t− t0)
2 + . . .+ βp(t− t0)

p.

Consider the polynomial
p
∑

j=0

βj(t− t0)
j = β′xt,t0 ,

with β = (β0, . . . , βp)
′ and xt,t0 = (1, (t − t0), (t − t0)

2, . . . , (t − t0)
p)′, for each t = 1, . . . , T . The

signal m(t0) at time point t0 is then estimated by

m̂(t0) = β̂0 = β̂
′
xt0,t0 .

Typically, the parameter β is estimated by Local Polynomial Regression (LPR), minimizing a

weighted Least Squares criterion, with weights decreasing as a function of the distance between t0

and t. The LPR method is, however, not robust to outliers. Therefore we propose to estimate β

by a local version of an MM-estimator (Yohai, 1987).

As a starting point for computing the MM-estimator we need an initial S-estimator for β and

σ at time point t0. The S-estimator β̂S for β is obtained by minimizing a scale function

β̂S = argmin
β

S(β), (1)

where the scale function S(β) is a localized M-scale defined as the solution of

1
∑T

t=1K
(

t−t0
h

)

T
∑

t=1

ρ0

(

Yt − β′xt,t0

S(β)

)

K

(

t− t0
h

)

= b0 . (2)

Here, ρ0(·) is a differentiable loss function controlling the influence of outliers, K(·) is a kernel

function for downweighting observations that are far away from the time of interest t0, and h > 0

is a bandwidth. The constant b0 on the right-hand side of (2) is chosen to guarantee consistency at

the normal distribution, i.e. b0 = E(ρ0(Z)) with Z ∼ N(0, 1). Using a uniform kernel will give an

equal positive weight to all observations in a time window around t0, where the width of the window

depends on the bandwidth h. The estimator β reduces then to a regular MM-estimator applied to

the observations in the window, and has a breakdown point of ε∗ = min(b0/ρ0(∞), 1− b0/ρ0(∞))

(Maronna et al., 2006). The breakdown point measures the fraction of contamination in the time
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Table 1: Asymptotic efficiencies at the normal distribution, of the MM-estimator for several values

of the tuning constant c1.

efficiency 80% 85% 90% 95%

c1 3.14 3.44 3.88 4.68

window needed to change the local estimate by any given amount. Finally, the scale estimate at

t0 is defined as

σ̂ = S(β̂S). (3)

Once the initial local S-estimates β̂S and σ̂ are obtained, we can improve the efficiency of β̂S,

while maintaining its breakdown point. This is done by applying an MM-step. For this purpose,

denote by ρ1(·) a second loss function satisfying ρ1 ≤ ρ0. The local MM-estimate β̂ minimizes

T
∑

t=1

ρ1

(

Yt − β′xt,t0

σ̂

)

K

(

t− t0
h

)

, (4)

with σ̂ given by the initial S-estimator (3).

The loss functions ρ0 and ρ1 need to fulfill some conditions: they should be even, symmetric

around 0, differentiable and nondecreasing in |x| with ρ0(0) = ρ1(0) = 0. In order to guarantee

robustness with a positive breakdown point, they need to be bounded. The biweight ρ-function

is frequently used in S- and MM-estimation and is defined as

ρc(x) =







(

1 −
(

1 − (x/c)2)3
)

if |x| ≤ c

1 otherwise.
(5)

The tuning constant c determines the robustness. We use the biweight ρ-function for both the

S- and the MM-estimator, taking ρ0 = ρc0 and ρ1 = ρc1 . To achieve high robustness of the S-

estimator we choose c0 = 1.5476, resulting in a 50% breakdown point in case of an uniform kernel

K. The larger c1, the more efficient is the MM-estimator at the normal. Common values of c1

corresponding to certain asymptotic efficiencies at the normal distribution are given in Table 1.

We take c1 = 3.88, corresponding to an efficiency of 90%. The selection of the kernel function K,

of the bandwidth h, and of the polynomial degree p will be discussed in Section 4.
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3 Computation

This section describes the practical computation of the proposed estimator. The procedure can

be divided into three main steps. Firstly, an initial estimate of β and σ is needed to start the

computation of the S-estimator. Secondly, the S-estimate of β and σ is computed. Finally, the

efficiency of the estimation of β is improved by means of an MM-estimate, while the S-estimate

of σ is kept constant.

Step 1: An initial estimate of β is obtained by local linear least absolute deviation (LAD) regres-

sion. It is particulary useful in this context, since it does not require an auxiliary scale estimate.

It is defined as

β̂0 = argmin
β

T
∑

t=1

|Yt − β′xt,t0 |K
h
t,t0
, (6)

where Kh
t,t0

= K
(

t−t0
h

)

, to shorten the notation. Computing (6) is easy, since it is equivalent to

an unweighted LAD regression on the data
(

xt,t0K
h
t,t0
, YtK

h
t,t0

)

, for t = 1, . . . , T.

As an initial estimate of σ we suggest the “weighted median absolute deviation from zero” of

the LAD regression residuals. More precisely, we compute the weighted median of the absolute

values of the residuals |Yt − β′xt,t0 |, with associated weights Kh
t,t0

, for t = 1, . . . , T . Computation

of a weighted median is standard, e.g. Fried et al. (2007). Denote the resulting initial estimate of

σ by S0(β̂0).

Step 2: The second step uses an iterative computation scheme for the S-estimates of β and σ,

starting from the initial estimates derived in the first step. Denote the derivative of ρ0(·) by ψ0(·).

Taking the derivative of (2) with respect to the vector β leads to the following set of estimation

equations:

T
∑

t=1

ψ0

(

Yt − β′xt,t0

S(β)

)

(

−S(β)xt,t0 − (Yt − β′xt,t0)
∂S(β)

∂β

S(β)2

)

Kh
t,t0

= 0.

Isolating ∂S(β)
∂β

and setting it to zero yields the set of first order conditions:

T
∑

t=1

ψ0

(

Yt − β′xt,t0

S(β)

)

Kh
t,t0

xt,t0 = 0,

which can be rewritten as
T
∑

t=1

wt(β)Kh
t,t0

(Yt − β′xt,t0)xt,t0 = 0, (7)
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where the weights wt(β) are defined as

wt(β) = ψ0

(

Yt − β′xt,t0

S(β)

)

/

(

Yt − β′xt,t0

S(β)

)

. (8)

The weights wt downweight observations with large residual values. Note that the weights are

equal to one if ψ0 is the identity function, corresponding to an ordinary least squares fit. If we

assume that the residual values are known, equation (7) is simply the first order equation of a

weighted least squares estimator, with weights equal to the product of the kernel weights Kh
t,t0

and the residual weights wt. Hence, we can express the solution of (7) as

β̂ = (X ′WβX)−1X ′WβY,

with Y = (Y1, . . . , YT )′ the vector of all observations, and where the design matrix X and the

weight matrix Wβ are given by

X =











1 (1 − t0) · · · (1 − t0)
p

...
...

. . .
...

1 (T − t0) · · · (T − t0)
p











, Wβ =











w1(β)Kh
1,t0

· · · 0
...

. . .
...

0 · · · wT (β)Kh
T,t0











.

Given the initial values β̂0 and S0(β̂0) from step one, one computes iteratively

β̂i = (X ′Wβ̂i−1

X)−1X ′Wβ̂i−1

Y, i = 1, 2, . . . . (9)

Note that in the i-th iteration, a scale S(β̂i−1) that fulfills (2) is needed for the computation of

the residual weights (8). This condition can be rewritten as

S(β̂i−1)

b0
∑T

t=1K
h
t,t0

T
∑

t=1

ρ0

(

Yt − β̂′
i−1xt,t0

S(β̂i−1)

)

Kh
t,t0

= S(β̂i−1),

and suggests the following iterative scheme for the scale:

Sk(β̂i−1) =
Sk−1(β̂i−1)

b0
∑T

t=1K
h
t,t0

T
∑

t=1

ρ0

(

Yt − β̂′
i−1xt,t0

Sk−1(β̂i−1)

)

Kh
t,t0
, k = 1, 2, . . . (10)

using an initial value S0(β̂i−1). For i > 1, we take the scale estimate obtained in iteration i − 1

for β̂ as the initial value S0(β̂i).

Schematically, the S-estimator is calculated as follows:
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1. Calculate β̂0 by local linear least absolute deviation regression and S0(β̂0) by weighted

median absolute deviation from zero.

2. Calculate S(β̂0) by iterating equation (10).

3. For i = 1, 2, . . .:

a) Calculate β̂i using equation (9) with initial values β̂i−1 and S(β̂i−1) for the scale.

b) Calculate S(β̂i) by iterating equation (10) with initial value S(β̂i−1) up to convergence.

After achieving convergence, say in step ℓ, we obtain the S-estimates β̂S = β̂ℓ and σ̂ = S(β̂ℓ).

Step 3: The MM-estimate is computed as the minimizer of (4). The corresponding first order

condition can be solved with an iterative scheme of the same form as (9), except for the scale,

which is held fixed and equal to the scale σ̂ obtained in the second step. More precisely, the final

MM-estimator of the regression coefficients is computed by iterating

β̂i = (X ′W̃β̂i−1

X)−1X ′W̃β̂i−1

Y, i = 1, 2, . . . . (11)

Here, the weight matrix W̃β is defined by

W̃β =











w̃1(β)Kh
1,t0

0
. . .

0 w̃T (β)Kh
T,t0











,

with w̃t(β) = ψ1

(

Yt−β′xt,t0

σ̂

)

/
(

Yt−β′xt,t0

σ̂

)

and ψ1 the derivative of ρ1. The starting value β̂0 for

the iterative scheme (11) is the S-estimator β̂S from step two. Extensive simulations indicated

that the algorithm converges in practically all cases we considered.

4 Kernel function, bandwidth and polynomial degree

Generally, kernel smoothing techniques use symmetric, unimodal kernel functions. Moving the

corresponding window one time point further into the future only has a small effect on the estimate

m̂(t0). Therefore, if a reasonable bandwidth is used, the sequence of fitted values gives a smooth

curve. In a forecasting context, however, only observations left of the target point t0, corresponding
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to past values, are available. Moreover, it is intuitive to put the largest weights on the observations

just before the time point at which we want to make a prediction. Hence, asymmetric kernel

functions should be used. For asymmetric kernels, the observation which has entered the time

window most recently gets the largest weight, so that the sequence of fitted values (the forecasts)

will be less smooth compared to the ones obtained using a symmetric kernel. The precise shape

of the kernel function K is of less importance. We use an asymmetric exponential kernel function

K(x) = exp(x)I{x<0} as in Gijbels et al. (1999), where local polynomial regression is linked to

Holt-Winters forecasting.

As opposed to the shape of the kernel function, the selection of the bandwidth h in local

polynomial regression is crucial and deserves particular attention. The trade-off between bias

and variance of the estimator m̂(t) is well-known: the bias increases with h, while the variance

decreases. In the context of forecasting, h determines the influence of past observations on the

prediction. Small values of h yield forecasts that mainly rely on the most recent observations.

Large values of h correspond to more slowly varying forecasts.

The optimal bandwidth can be chosen as the one minimizing the mean of the squared one-step

ahead forecast errors (MSFE). Given a bandwidth h, the method is applied to forecast Yt, using all

previous observations. This results in a one-step ahead forecast error et, for each t = tmin, . . . , T .

Here tmin is a small value, but at least larger than p + 2. In our application we take tmin = 21,

since we believe that at least 20 observations are needed to make a reliable forecast. To predict

the target value YT+1, one could use the bandwidth that minimizes the mean of the squared

forecast errors etmin
, . . . , eT . Note that bandwidth selection by minimizing MSFE is equivalent to

bandwidth selection by cross-validation (Heng-Yan Leung, 2005), since the value of the time series

at the time point of interest is not used in its prediction.

By using the MSFE, however, one implicitly assumes homoscedastic error terms that are free of

outliers. Our method, in contrast, is designed to cope with heteroscedasticity and outliers. Hence,

the approach for bandwidth selection should share these properties, and thus we need to adapt the

criterion. First, to remove the effect of the changing variance, we standardize each one-step ahead

forecast error by dividing it by a local scale estimate σ̂(t). This local scale estimate is obtained

as a byproduct of the proposed forecasting method. When predicting Yt+1, equation (3) provides

an estimate for σ(t). Second, to limit the effect of possible outliers, we apply a trimmed mean of
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the squared standardized one-step ahead forecast errors as the criterion for bandwidth selection.

The percentage of trimming α can be specified by the user, depending on the application. In this

paper, we set α = 0.2, trimming the largest 20% of the squared standardized forecast errors. To

summarize, for predicting YT+1 we select the bandwidth minimizing

1
⌊

(1 − α)T̄
⌋

⌊(1−α)T̄⌋
∑

i=1

(

et

σ̂(t)

)2

(i)

, (12)

with T̄ = T − tmin + 1 and where (et/σ̂(t))2
(i) is the i’th term in the ordered vector of squared

standardized forecast errors for time point tmin to T .

The selection of the degree of the polynomial used in the signal approximation is less important

than the selection of the bandwidth. Large values of the degree p yield a high variability, but have

an advantageous effect on the bias. Moreover, the larger p, the higher the computational cost.

We use polynomials of degree p = 1, i.e. the signal or trend is supposed to be locally linear. This

choice is often suggested in the literature (see for instance Fan and Gijbels, 1996).

5 Simulation study

In this section we carry out a simulation study in order to compare our new forecasting approach

to methods that already exist. The following four methods are included in this comparison: the

regular Local Polynomial Regression (LPR), the Weighted Repeated Median (WRM) technique

of Fried, Einbeck, and Gather (2007), the local polynomial M-smoother of Grillenzoni (2009), and

finally the local polynomial MM-estimator proposed in this paper. In each method, we use the

asymmetric exponential kernel, defined as K(x) = exp(x)I{x<0}. The M-procedure is implemented

as in Grillenzoni (2009), using the Huber ψ-function with tuning constant k = 1.345, and as

auxiliary scale estimator the weighted median absolute deviation from zero of the residuals.The

computation of the WRM is based on the R-package robfilter, developed by Fried et al. (2010).

All local polynomials are of degree p = 1, which is a fair choice with respect to the linear WRM.

The forecasting methods should be applicable to time series with non-linear trends m(t) and

time varying variance σ2(t). By adding patterns of outliers, the robustness of the procedures is

investigated. We generate time series from the model

Yt = m(t) + σ(t)εt, (13)
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for t = 1, . . . , T . The signal m(t) is a sinusoidal function defined as m(t) = 12.5 sin(tπ/200),

similar to Fried, Einbeck, and Gather (2007). We set σ(t) = m(t)/6 to bring in heteroscedasticity.

We consider three settings for the noise term εt:

1. clean: the noise term εt is an i.i.d. standard normal process.

2. cont5% : the noise term εt is the sum of an i.i.d. standard normal process and an outlier

generating process ηt. At every time point there is a 5% probability that the observation is

shifted upwards by an amount of 8σ(t), creating an additive outlier. The size of the outlier

is proportional to the scale of the series. Hence, P(ηt = 0) = 0.95 and P(ηt = 8σ(t)) = 0.05.

3. cont10% : same as cont5%, but with P(ηt = 0) = 0.9 and P(ηt = 8σ(t)) = 0.1 corresponding

to about 10% outliers.

In each of the settings, we consider time series of length 100. To take different levels of linearity

into account, we compute one-step ahead predictions from t = 50 to t = 100. Obviously, the signal

function m(t) is more linear at time point 50 than at time point 100.

A bandwidth needs to be selected for each prediction. For the proposed MM-estimator, this is

done as described in Section 4, by minimizing the trimmed mean squared standardized one-step

ahead forecast errors. For the other estimators, a similar bandwidth selection method is used. The

only difference is the scale, which is used to standardize the forecast errors. For LPR we estimate

σ(t) by a weighted standard deviation of the residuals of the local polynomial fit. For the WRM

and the local polynomial M-estimator we use a weighted median absolute deviation from zero,

where the weights are equal to the kernel weights used for prediction. The optimal bandwidth is

obtained by a grid search, where a suitable grid is found by preliminary experiments.

Forecast Performance

We generate 1000 time series from the model, for each of the three simulation settings. Note

that for each method, in each setting and for every time point for which a forecast is made, a

specific bandwidth is selected. In Figure 1 we plot one single series generated according to the

simulation scheme cont5%. We also add the one-step ahead predictions made by the LPR method

(squares) and the MM procedures (crosses). We see that the predictions made by the LPR method

are upwards biased at the time points right after the occurrence of the outliers, while the MM

10
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Figure 1: A simulated time series with 5% outliers, with one-step ahead predictions by LPR and

MM, from time point 50 up to 100.

remains more or less unaffected. As expected, the outliers themselves are not well predicted, by

neither of the methods.

By averaging over the 1000 simulation runs, we obtain a mean squared forecast error. Since

we do not want that outliers affect the performance criterion, we report a 20% trimmed mean

squared forecast error (TMSFE) instead. Alternatively, one could compute medians or choose

other trimming percentages (larger than the true level of outliers), but this is not affecting the

relative performance of the different procedures. Ignoring outliers in the evaluation of the forecast

performance is reasonable, since outliers are difficult to predict and should be treated differently.

Tables 2 and 3 present the TMSFE for prediction of Y50, respectively Y100, for the four different

methods we consider.

From Table 2, it can be seen that in the clean data setting, LPR and MM perform almost

equally well. The WRM is the least efficient in the absence of outliers. When the time series

contains outliers, as in the two other simulation schemes, LPR loses its accuracy, whereas the MM

is much less affected. The forecast performance of the MM, as measured by the TMSFE, is much

better than for the two other robust procedures, WRM and M. For small amounts of contamination
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Table 2: 20% right trimmed means of the squared one-step ahead forecast errors at time point 50,

from 1000 simulation runs.

LPR WRM M MM

clean 1.044 1.211 1.158 1.087

cont5% 2.202 1.713 1.598 1.370

cont10% 3.960 2.377 3.036 1.978

Table 3: 20% right trimmed means of the squared one-step ahead forecast errors at time point

100, from 1000 simulation runs.

LPR WRM M MM

clean 2.486 2.827 2.410 2.560

cont5% 4.648 3.905 3.476 3.320

cont10% 6.482 5.198 4.633 3.619

(5%), the M-procedure still works relatively well, whereas for the larger percentages of outliers, it

loses a lot of its robustness. The differences between the methods become more pronounced when

the percentage of outliers increases from 5% to 10%.

In Table 3, the prediction is made at t = 100, where the signal is more non-linear. This makes

the prediction exercise harder, as is witnessed by the larger values of the TMSFE in Table 3

compared to Table 2. The relative performance of the different methods is, however, still about

the same. The MM-procedure is close to the LPR in the absence of outliers, and outperforms all

other considered methods for the outlier generating simulation schemes.

6 Real data example

To demonstrate the practical relevance of the proposed forecasting method, we apply it to a real

time series example. It concerns 150 daily maximal temperature values in Dresden, Germany,

from 17 November 2006 to 15 April 2007. The data are plotted in Figure 2. At first sight, there
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Figure 2: Temperature data in Dresden, Germany.

are only a few not very large outliers around 25 January and 22 March 2007, but there might be

other smaller outliers in the series.

We proceed as in the simulation study. To predict the value yt, the first t − 1 observations

are used. Predictions are made from 25 February 2007 up to 15 April 2007, i.e. the last 50 days.

Each day a prediction is made, the bandwidth is selected according to the procedure described in

Section 4. We take a closer look at what happens on 25 March 2007, since outliers occurred on the

days before. The target functions for the bandwidth selection procedure for the prediction on 25

March are depicted in Figure 3. In the neighbourhood of the minimum, the curves are quite flat,

especially for the MM-method, indicating a kind of robustness against bandwidth misspecification.

The selected bandwidths for 25 March 2007 are listed in the following table.

LPR WRM M MM

h 12 17 12 22

The effect of the outliers appears through the smaller bandwidth that is selected for LPR and M.

To measure the forecast performance, we compute the 20% right trimmed means of the squared

forecast errors over the whole prediction period. As such, the performance criterion we use is also

robust with respect to outliers. Results are reported in Table 4, for the four different methods we
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Figure 3: Target functions for the selection of the bandwidth on 25 March 2007.

consider. We see that the forecast performance of the different methods is quite similar, with the

MM-procedure resulting in the smallest TMSFE for this particular data set.

Table 4: The trimmed mean squared forecast error (TMSFE) for the prediction of the daily

temperature data from 25 February 2007 to 15 April 2007.

LPR WRM M MM

TMSFE 7.37 8.31 7.03 6.88

7 Conclusions

While the practical relevance of robust forecasting methods is without doubt, they received little

attention in the robustness literature. Exceptions are Gelper et al. (2009) and Cipra (1992), who

robustified the simple Holt-Winters forecast procedure and obtained a computationally fast ad-

14



hoc procedure. Robust smoothing of time series received more attention. Recently, an M-based

smoothing approach was proposed by Grillenzoni (2009) and weighted repeated median smoothing

by Fried et al. (2007). We investigated the performance of these two smoothing methods in a

forecasting context, and included them in the simulation study as benchmark procedures.

In this paper we develop a new robust time series forecasting methodology for non-stationary

time series. It allows for heteroscedasticity in the data and remains reliable in the presence of

outliers. The technique is nonparametric and combines local polynomial regression and MM-

estimation. It provides a local scale estimate as a byproduct. Our simulation study indicates

that the new forecasting method outperforms other methods such as Local Polynomial regres-

sion, Weighted Repeated Median smoothing and local polynomial M-estimation in the presence

of outliers and heteroscedasticity, while it still achieves comparable performance results in an

uncontaminated setting.

Since the estimation procedure involves a local scale of the one-step ahead forecast errors, one

could use this scale estimate for the construction of prediction intervals. A drawback of these

scale estimates is that they suffer from a finite sample bias. Future research is needed to construct

correctly sized robust prediction intervals. Furthermore, while computing the forecasting with

the algorithm outlined in section 3 is fast, the selection of the optimal bandwidth is more time

consuming. The selection of the bandwidth is currently redone at every time point, since the

bandwidth may change over time. The alternative of updating the optimal bandwidth from the

previous time point would be an interesting topic for further research.
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