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Abstract

Generalized Linear Models are a widely used method to obtain parametric es-

timates for the mean function. They have been further extended to allow the re-

lationship between the mean function and the covariates to be more flexible via

Generalized Additive Models. However the fixed variance structure can in many

cases be too restrictive. The Extended Quasi-Likelihood (EQL) framework allows

for estimation of both the mean and the dispersion/variance as functions of covari-

ates. As for other maximum likelihood methods though, EQL estimates are not

resistant to outliers: we need methods to obtain robust estimates for both the mean

and the dispersion function. In this paper we obtain functional estimates for the

mean and the dispersion that are both robust and smooth. The performance of the

proposed method is illustrated via a simulation study and some real data examples.

Keywords: dispersion, generalized additive modelling, mean regression function, quasi-

likelihood, M-estimation, P-splines, robust estimation.

1 Introduction

Statistical modelling aims at describing how a phenomenon of interest changes with re-

spect to some other quantities. Generally most of the modelling efforts focus on studying

how the expected value of the dependent variable Y , denoted by µ, changes as a function

of the covariates Xd = (X1, . . . , Xd). Generalized Linear Models (GLM McCullagh and

Nelder (1989)) are one of the most popular techniques to model the mean of different

types of distributions belonging to the Exponential Family. Standard GLM though are
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not always most appropriate to model the data at hand; the assumption of a linear rela-

tionship between (a transformation of) µ and the covariates might be too restrictive. Also,

GLM estimates are maximum likelihood estimates, which can be severely influenced by

the presence of outliers. For both issues possible solutions have been proposed: we can al-

low the relationship between (a transformation of) µ and the covariates to be of a smooth

unknown shape via Generalized Additive Models (GAM Hastie and Tibshirani (1990))

and we can obtain estimates that are robust via the approach proposed for GLM’s by

Cantoni and Ronchetti (2001a). Recently Alimadad and Salibian-Barrera (2009) propose

a method for robust estimation of GAM.

In this paper we develop a statistical procedure to obtain smooth and robust estimates

for both the mean and the dispersion function in a multivariate covariates setting. We

thus allow for heteroscedasticity in the model. Estimating how the variance changes with

respect to Xd can be in some cases of interest by itself, or it can be pursuit to obtain a

more appropriate fit. From the distributional assumptions made in GLM follows a fixed

relationship between the shape of the variance and the mean, but the variance observed in

real data often deviates from the theoretical model. Common deviations from the usual

assumptions in GLM are heteroscedasticity in normal data and over- or under- dispersion

in count and proportion data. The estimation of the variance can indeed be a crucial point

and different approaches have been proposed to tackle this problem: see the introduction

in Gijbels et al. (2010) or Hinde and Demétrio (1998) for a review of possible methods.

In this work we use the Extended Quasi-likelihood approach (Nelder and Pregibon (1987)

and McCullagh and Nelder (1989)) to obtain estimates for the dispersion function. Just

as the standard Quasi-likelihood, Extended Quasi-likelihood estimators can be severely

affected by outliers, and we use the techniques proposed by Cantoni and Ronchetti (2001a)

to robustly estimate both the mean and the dispersion function in our setting. Moreover,

the methods presented here allow these estimates to be a flexible function of the covariates.

The remainder of the paper is organized as follows: in Sections 2 and 3 standard and ro-

bust estimation methods within the Extended Quasi-likelihood framework are presented.

In Section 4 we introduce the Generalized Additive Models framework to obtain smooth

and robust estimates of the mean and the dispersion function. In Section 5 we discuss

how to optimally choose the smoothing parameters for both the robust and the standard

Generalized Additive Models. We show the performance of the proposed methods via a

simulation study and real data examples in Sections 6 and 7 respectively.

2



2 Extended Quasi-likelihood

In order to write a likelihood function for a certain model, we need to make assumptions on

the distribution of the process of interest. In the Quasi-likelihood framework, rather than

making a full distributional assumption, one only specifies the relationship between the

mean and the variance of the process of interest. Estimates are obtained by maximizing

a Quasi-likelihood function, which shares key properties with a likelihood function, but

can be obtained with weaker assumptions (Wedderburn (1974)). We consider

E[Y |Xd = xd] = µ(xd) and Var[Y |Xd = xd] = φV (µ(xd)) ,

with V (·) a known function, and write the Quasi log-likelihood function as:

Q(y, µ(xd)) =

∫ µ(xd)

y

y − t

φV (t)
dt .

We also introduce a monotone and twice differentiable function η(·), which transforms

the expected value of (Y |Xd = xd) via a link function g(·), and is modelled as a linear

combination of some generic functions of the covariates: η(xd) = g(µ(xd)) = αµ,0 +

η1(x1) + . . .+ ηd(xd). Furthermore, the quasi-deviance function

d(y, µ(xd)) = −2Q(y, µ(xd)) = 2

∫ y

µ(xd)

y − t

φV (t)
dt , (2.1)

measures the discrepancy between the value of y and the expected value of the original

distribution.

In the Quasi-likelihood setting the relationship between the variance of (Y |Xd =

xd) and the covariates is totally governed by the functional form of V (µ(xd)). This

relationship might however be too restrictive, and one might be interested in adding

an extra dispersion parameter in the model which varies as a function of the covariates

(Nelder and Pregibon (1987)). We thus consider

E[Y |Xd = xd] = µ(xd) and Var[Y |Xd = xd] = φγ(xd)V (µ(xd)) , (2.2)

with γ(xd) an extra dispersion function. In order to model this dispersion function we

take:

E[d(Y, µ)|Xd = xd] = γ(xd) and Var[d(Y, µ)|Xd = xd] = 2γ2(xd) . (2.3)

The structure used to model the dispersion is a mirror image of the mean modelling: the

quasi-deviance is used as a ‘response’ variable with mean function γ(xd) and a suitable
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variance function is also assumed. Note how the chosen variance structure for the disper-

sion corresponds to assuming (d(Y, µ)|Xd = xd) ∼ γ(xd)χ
2
1. We introduce here a second

monotone and twice differentiable function ξ(·), which transforms the expected value of

(d(Y, µ)|Xd = xd) via a link function h−1(·), and is modelled as a linear combination of

some generic functions of the covariates: ξ(xd) = h−1(γ(xd)) = αγ,0+ξ1(x1)+ . . .+ξd(xd).

In the usual parametric approach one takes the relationship between the link functions

and the covariates Xd to be linear: η(xd) = αµ,0 + x1αµ,1 + . . . + xdαµ,d and ξ(xd) =

αγ,0 + x1αγ,1 + . . .+ xdαγ,d with αµ = (αµ,0, αµ,1, . . . , αµ,d) and αγ = (αγ,0, αγ,1, . . . , αγ,d)

the vectors of parameters which need to be estimated.

We propose to estimate the αµ and αγ in a two-steps procedures which alternates

between the estimation of αµ and αγ as in McCullagh and Nelder (1989). For a given

i.i.d. sample (x,y) = ((xd,1, y1)
T , . . . , (xd,n, yn)

T )T , we take the n × (d + 1) regression

matrix Bµ = [1n x] where we denote with 1n = (1, . . . , 1)T the unit vector of length n.

We model η(x) = Bµαµ. The Extended Quasi-likelihood estimator of αµ is then the

solution to

BT
µ

(

y − µ(x)

φγV (µ(x))

dµ

dη
(x)

)

= 0 , (2.4)

where 0 is the null vector, µ(x) = (µ(xd,1,αµ), . . . , µ(xd,n,αµ))
T is the vector of computed

µ(·) values for each data point and V (µ(x)) is the vector of values of the V (·) function

evaluated at each µ(x) point. The multiplication of the vectors within the brackets is

done element-wise. In the notation we drop the dependence of µ(x) on αµ to make the

formulas more readable. By γ(x) = (γ(xd,1,αγ), . . . , γ(xd,n,αγ))
T we denote the vector

of γ(·) values for each data point. While we estimate αµ we take αγ , and therefore γ,

to be fixed. Once that αµ, and consequently µ(x), is estimated by solving (2.4), we

compute the vector of deviances d = d(y,µ) = (d(y1, µ(xd,1))
T , . . . , d(yn, µ(xd,n))

T )T ,

where µ = µ(x) = (µ(xd,1), . . . , µ(xd,n)), is now taken to be a fixed vector. Taking

Bγ = [1n x] we model ξ(x) = Bγαγ and estimate αγ by solving:

BT
γ

(

d − γ(x)

2γ2(x)

dγ

dξ
(x)

)

= 0 .

3 Robust estimation of mean and dispersion

The Extended Quasi-likelihood (EQL) estimators proposed in Section 2 can been shown

to have an unbounded influence function. Outlying points, as well as bad leverage points,

can have a severe effect on the performance of the estimator. To mitigate the effect of
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outliers and to obtain bounded influence functions, an M-type estimation procedure is

followed similar as in Cantoni and Ronchetti (2001a).

The M-estimator for αµ is obtained as the solution of the equation:

Ψs(y, µ(x)) = BT
µ (sψ(y, µ(x))w(x)µ′ − a(αµ)) = 0 , (3.1)

with µ′ = dµ

dη
(x). Robustness against outlying points is obtained if Ψs(·, ·) is a bounded

function. For this, we take

sψ(y, µ(xd)) = ψc

(

y − µ(x)
√

φγV (µ(x))

)

1
√

φγV (µ(x))
,

with ψc the Huber function defined as

ψc(x) =

{

x if |x| ≤ c

c sign(x) if |x| > c .
(3.2)

Further w(·) in (3.1) is a weight function which controls the effect of leverage points on

the estimate.

The tuning constant c in (3.2) balances the robustness and the efficiency of the esti-

mate; if w(x) = 1n and c = ∞ (3.1) boils down to (2.4). Cantoni and Ronchetti (2001a)

discuss procedures to choose c. Unless otherwise stated, we take c = 1.345, the standard

value which ensures 95% efficiency for the normal model. Our experience shows that this

value gives reasonable results for other models as well. In (3.1) the constant

a(αµ) = Ēn[sψ(y, µ(x))|Xd = xd]w(x)µ′

ensures Fisher consistency. Here we used the shorthand notation Ēn[sψ(y, µ(x))|Xd = xd]

for n−1
∑n

i=1E [sψ(Y, µ(Xd))|Xd = xd,i]. This notation Ēn will also be used in the next

paragraph with a similar meaning involving a different quantity.

Similarly, a robust estimate for αγ is obtained as the solution to:

Ψt(d, γ(x)) = BT
γ (tψ(d, γ(x))w(x)γ ′ − b(αγ)) = 0 , (3.3)

with γ ′ = dγ

dξ
(x). The estimate is robust against outliers, provided that we take Ψt(d, γ(x))

to be a bounded function. As for the estimation of αµ we take

tψ(d, γ(x)) = ψc

(

d − γ(x)√
2γ(x)

)

1√
2γ(x)

,

with ψc the Huber function defined in (3.2). Again, the constant

b(αγ) = Ēn[tψ(d, γ(x))|Xd = xd]w(x)γ ′
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ensures Fisher consistency.

Both (3.1) and (3.3) cannot be solved analytically and iterative methods like the itera-

tively reweighted least squares algorithm (Hampel et al (1986)) are used. The estimation

procedure is done in two steps as in Section 2.

4 Robust Generalized Additive Models

In the models described in Sections 2 and 3 we have taken η(xd) and ξ(xd) to be linear

combinations of the covariates. This functional form can in many cases be too restrictive

and we would like to let the form of each ηj(·) and ξj(·) to be as unspecified as possible,

assuming only that these are smooth functions. To obtain such smooth estimates we use

Generalized Additive Models for both the mean and the dispersion function. GAMs were

originally introduced as an extension to GLM by Hastie and Tibshirani (1990) to obtain

flexible estimates for the mean estimation. Marx and Eilers (1998) have developed a

way to estimate the smooth components ηj(·) via penalized B-splines (P-splines). Gijbels

and Prosdocimi (2010) extended GAM to estimate both the mean and the dispersion as

smooth functions of the covariates. We intend to further develop these Extended GAM

in order to obtain estimates for both the mean and the dispersion which are both smooth

and robust. Before introducing a robust extended version of GAM, we briefly introduce

penalized splines and their use in GAM fitting.

4.1 P-splines and P-GAM

Penalized splines were introduced by Eilers and Marx (1996) and are a valid and widely

used smoothing technique. In their seminal work Eilers and Marx introduce P-splines in

the case of a univariate independent variable X, while in Marx and Eilers (1998) they

propose ways of using P-splines in the GAM framework. We give here a brief overview,

and refer to the above mentioned papers for a more extensive reading.

In Figure 4.1 we see a graphical representation of how P-splines work in practice.

The top panel depicts a large B-spline base of degree p = 3 based on the set of knots

(κ1, . . . , κk) represented by dots. B-splines of degree p are bell-shaped smooth curves,

(p − 1) times differentiable, joined together at each knot point. For a given point of the

X domain, (p + 1) B-splines have positive values and the B-spline base has a dimension

K = p+ k + 1.

For a given i.i.d. sample (x,y) we build a large B-spline base matrix Bµ and use this
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as regression matrix in a GLM, taking η(x) = Bµαµ. Each B-spline j (j = 1, . . . , K) is

then multiplied by a certain amplitude αµ,j, and the linear combination of these amplified

B-splines corresponds to the final estimate. In Figure 4.1 (b) the amplified B-splines are

drawn as dashed lines, while the estimate that is obtained as their linear combination can

be seen as a solid line. Clearly, since the regression matrix is so rich, the fit is too wiggly

and it overfits the data. In order to avoid this overfitting, we add a difference order type

of penalty which ensures that adjacent coefficients are not too different. Estimates for αµ

are obtained as the solution to:

BT
µ

(

y − µ(x)

φV (µ(x))
µ′

)

− λP µαµ = 0 , (4.1)

with P µ an appropriate matrix representation of the difference operator (as in Eilers

and Marx (1996)). The smoothing parameter λ > 0 governs the balance between the

overfitting and the smoothness of the fitted function. In Figure 4.1 (c) we see the effect

of the smoothing parameter: the solid line is obtained with a moderate value for λ while

the dashed-dotted line is obtained with a too large value for λ, leading to a too smooth

estimate. In Section 5 we discuss methods to optimally choose the smoothing parameter.

P-splines can be used also when we are interested in determining the relationship

between the expected value of Y and more than one covariate. We take η(xd) = αµ,0 +

η1(x1) + . . . + ηd(xd) and fit the generic component ηj(xj) via P-splines. For a given

i.i.d. sample (x,y) we build d large B-spline base matrices Bµ,1, . . . ,Bµ,d and model

η(x) as a linear combination of the B-splines matrices η(x) = αµ,0 + Bµ,1αµ,1 + . . . +

Bµ,dαµ,d = Bµαµ, with Bµ = [1n,Bµ,1, . . . ,Bµ,d] a unique design matrix and αµ =

(αµ,0,αµ,1, . . . ,αµ,d) the unique vector of parameters to be estimated. In order to avoid

overfitting for each of the d components we build d penalty matrices P µ,1, . . . ,P µ,d and

take λµ = (λµ,1, . . . , λµ,d) a vector of smoothing parameters governing the smoothness

of the components. Taking P µ = blockdiag[0, λµ,1P µ,1, . . . , λµ,dP µ,d] a blockdiagonal

penalty matrix, we obtain an estimate of αµ as the solution of

BT
µ

(

y − µ(x)

φV (µ(x))
µ′

)

− P µαµ = 0 .

Gijbels and Prosdocimi (2010) further extended P-GAMs and present Double Gener-

alized Additive Models to model both the mean and the dispersion function as flexible

functions of the covariates. In the next section we combine this extended P-GAM set-

ting with the robust EQL framework presented in Section 2 to obtain robust and smooth

estimates for both the mean and the dispersion function.
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Figure 4.1: P-splines in practice. (a) a B-spline base is shown; (b) the weighted B-splines

(dashed lines) and the final fit obtained when using a large B-spline base (solid line). The

effects of the smoothing parameter can be seen in (c).

4.2 Robust Extended P-GAM

We next allow the dispersion function to be a smooth function of the covariates, and we

propose estimators that are smooth as well as robust against outliers. Again we use the

EQL framework and make assumptions only on the first two moments of (Y |Xd = xd)

and (d(Y, µ)|Xd = xd) just as in (2.2) and (2.3). Once more, η(·) and ξ(·) are two link

functions for the mean and the dispersion respectively. These link functions are of the

form η(xd) = αµ,0 + η1(x1) + . . .+ ηd(xd) and ξ(xd) = αγ,0 + ξ1(x1) + . . .+ ξd(xd), where

the ηj(xj) and ξj(xj) components are modelled via P-splines.

As in Section 4.1 for a given i.i.d. sample (x,y) we build the unique regression matrix

Bµ and the blockdiagonal penalty matrix P µ. In the same way we build the regression

matrix Bγ and, given a set of smoothing parameters λγ = (λγ,1, . . . , λγ,d), the penalty

matrix P γ for the modelling of the dispersion function.
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Smooth and robust estimates for αµ and αγ are obtained as the solution to

Ψs(y, µ(x)) − P µαµ = BT
µ (sψ(y, µ(x))w(x)µ′ − a(αµ)) − P µαµ = 0 (4.2)

and

Ψt(d, γ(x)) − P γαγ = BT
γ (tψ(d, γ(x))w(x)γ ′ − b(αγ)) − P γαγ = 0 . (4.3)

These estimates can be shown to have a bounded influence function when Ψs(·, ·) and

Ψt(·, ·) are bounded, as in Section 3. Note how (4.2) and (4.3) differ from (3.1) and (3.3)

since now Bµ and Bγ represent a larger combination of matrices, and there is the penalty

term which ensures the smoothness of the fit.

Estimates for αµ and αγ are obtained via iterative procedures. In particular the rule

to update the current estimate α̃µ of αµ is:

αµ = (BT
µW̃ µBµ + P µ)

−1BT
µW̃ µz̃µ , (4.4)

where W̃ µ = diag
(

−E
[

d
dαµ

Ψs(Y, µ̃(Xd))|Xd = xd,i

])

i
, z̃µ = Bµα̃µ + W̃

−1

µ Ψs(y, µ̃(x))

and µ̃(·) is the vector of current estimates for µ(·) which depends on α̃µ. Similarly αγ is

updated with the following scheme:

αγ = (BT
γ W̃ γBγ + P γ)

−1BT
γ W̃ γ z̃γ , (4.5)

where W̃ γ = diag
(

−E
[

d
dαγ

Ψt(d(Y, µ), γ̃(Xd))|Xd = xd,i

])

i
, z̃γ = Bγα̃γ+W̃

−1

γ Ψt(d, γ̃(x))

and γ̃(x) is the vector of current estimates for γ(x) which depends on α̃γ.

Once convergence is reached we take η̂(x) = Hµ(λµ)z̃µ, with Hµ(λµ) = Bµ(B
T
µW̃ µBµ+

P µ)
−1BT

µW̃ µ the hat matrix for the mean model which depends on the values of λµ.

Similarly we have ξ̂(x) = Hγ(λγ)z̃γ with Hγ(λγ) = Bγ(B
T
γ W̃ γBγ + P γ)

−1BT
γ W̃ γ

the hat matrix for the dispersion model. Finally we take df(λµ) = tr(Hµ(λµ)) and

df(λγ) = tr(Hγ(λγ)) to be the equivalent number of degrees of freedom for the mean and

the dispersion model.

The general estimation procedure iterates between the two iterative estimation steps

for αµ and αγ, as in Gijbels and Prosdocimi (2010). The smoothing parameters λµ and

λγ strongly influence the final appearance of the fits and are chosen before each of the

iterative steps, using methods discussed in the next section.

5 Smoothing parameter selection

The solution to (4.4) and (4.5) can be found via iterative methods, although the smooth-

ness of the final estimate depends on the values of the smoothing parameters λµ and λγ.
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Different methods for choosing the smoothing parameters exist. A standard procedure is

to minimize the Generalized Cross Validation (GCV) criterion (Wahba (1990)):

GCV(λµ) = 1Tn
d(y, µ̂(x,λµ))

(n− df(λµ))2
, (5.1)

where with µ̂(x,λµ) we want to emphasize that the estimate of µ(x) depends on λµ.

The criterion above is widely used in standard GAMs to choose optimal values for λµ.

Nevertheless, the criterion needs to be slightly modified when the dispersion function is

considered to be no longer constant as in Gijbels and Prosdocimi (2010). Moreover, as

mentioned by Cantoni and Ronchetti (2001b), the choice of λµ via GCV will no longer

work well in presence of outliers, even when the estimation procedure is robust. Here we

propose to choose optimal values for λµ via a robust version of GCV:

RGCV(λµ) = 1Tn
ψq (d(y, µ̂(x,λµ))/γ)

(n− df(λµ))2
.

where γ once more denotes the vector of estimated γ(·) values which is kept fixed when

estimating the mean function.

The choice of smoothing parameters for the dispersion function is much less discussed

in the literature. Gijbels and Prosdocimi (2010) propose an appropriate form of GCV for

the choice of the λγ. Here, we propose to use a robustified version of this criterion:

RGCV(λγ) = 1Tn
ψq (dγ(d, γ̂(x,λγ)))

(n− df(λγ))2
.

where dγ(d, γ̂(x,λγ)) is the vector of deviance residuals for the dispersion model, with

dγ(·, ·) the deviance function defined as (see 2.1)

dγ(d, γ(xd)) = 2

∫ d

γ(xd)

d− t

2t2
dt . (5.2)

Akaike’s Information Criterion (AIC) is also often used to choose a smoothing parameter

value (among others in the original Eilers and Marx paper (1996)). Similarly to what

is done for GCV, AIC can also be appropriately modified for a robust selection of the

smoothing parameters for both the mean and the dispersion function estimation. The

two criteria to be minimized are then:

RAIC(λµ) = 1Tnψq

(

d(y, µ̂(x,λµ))

γ

)

+ 2 df(λµ) ,

and

RAIC(λγ) = 1Tnψq (dγ(d, γ̂(x,λγ))) + 2 df(λγ) .
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Simulation results not presented here show that in many cases the two criteria (AIC

and GCV; and RAIC and RGCV) perform comparably.

In all the RGCV(·) and RAIC(·) criteria we take ψq to be the Huber function defined

in (3.2) with tuning constant q. Taking q = ∞ corresponds to using the standard GCV

and AIC criteria. In our applications we take q to be equal to c, the value of the tuning

constant in the estimating procedure, but other choices could be done. Also, bounded

functions other than the Huber function could be employed both in the estimation and

in the smoothing parameters selection.

6 Simulation study

We investigate the performance of the proposed method through a simulation study.

We simulated 1000 datasets of size n = 250 coming from a Poisson-like distribution

with mean function µ(x) = exp(η0 + η1(x1) + η2(x2)) and dispersion function γ(x) =

exp(ξ0 + ξ1(x1) + ξ2(x2)) with:

η0 = 1, η1(x1) = 1.8 sin(3.4x2
1) , η2(x2) = 1.1 cos(8x2)

ξ0 = −.35, ξ1(x1) = 2.3 sin(2x1)x
2
1 , ξ2(x2) = −1.35(sin(x2) exp(1.5 − 0.8x2)) .

When summarizing the simulation results we present centered curves. This means that we

subtract from a curve its average over the values taken in all data points, i.e. for example

for η1(x1) we present η1(x1) − n−1
∑n

i=1 η1(x1,i). The covariates x1 and x2 are generated

from two independent U(0, 1) distributions. We simulated data in three different settings,

placing a growing percentage of outlying datapoints (0%, 3% and 5%) located in .1 < x1 <

.2 and .8 < x2 < .9. In this Poisson-type modelling we take V (µ) = µ, and logarithmic

link functions for both the mean and the dispersion: η(·) = log(µ(·)) and ξ(·) = log(γ(·)).
Also, we take w(·) = 1.

For each simulated dataset we estimated both the mean and the dispersion function

via the Robust Extended GAM procedure proposed in Section 4 choosing the smoothing

parameters both via the standard GCVs and the robust versions proposed in Section 5. We

compare the performance of the proposed methods with the non-robust Extended GAM

of Gijbels and Prosdocimi (2010) and the standard GAM with mean function estimation

only. In this way we are able to investigate the differences between both robust and non-

robust methods, and between models in which only the mean function is estimated and

the Double models in which both the mean and the dispersion functions are estimated.
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For a given dataset we evaluate the performance of the estimation procedure via the

approximate integrated square error:

AISE =

n
∑

i=1

(

f̂(xd,i) − ftrue(xd,i)
)2

n
∑

i=1

(ftrue(xd,i))
2

,

with f̂(·) the estimated function and ftrue(·) the true function. In Figures 6.1 and 6.2

we summarize the results for the 0% and the 3% contamination setting. The results for

the 5% contamination setting (not shown here) give results similar to these for the lower

contamination setting. In each plot we show the boxplots of the AISE values for the mean

and the dispersion function estimation for the different estimation procedures (boxplots

from left to right):

• RobDoubleRGCV: the proposed robust estimation of mean and dispersion function,

with smoothing parameter chosen via RGCV;

• RobDoubleGCV: the proposed robust estimation of mean and dispersion function,

with smoothing parameter chosen via standard GCV;

• DoubleGAM: the non-robust estimation of mean and dispersion function as in Gijbels

and Prosdocimi (2010), with smoothing parameter chosen via GCV;

• RobGAM: the robust GAM estimation of the mean function, with smoothing param-

eter chosen via GCV;

• GAM: the standard GAM estimation of the mean function, with smoothing parameter

chosen via GCV;

From Figure 6.1 it is seen that in case of no contamination the non-robust and the

robust methods have similar behavior, with non-robust methods performing slightly bet-

ter. We note that not taking into account the variability in the dispersion function can

have a bad influence on the mean estimation as well. From Figure 6.2 we can see that

as soon as outliers are present in the data, the non-robust methods perform worse and

worse: we even get lower AISE values for the dispersion when the dispersion function is

not estimated rather than estimated in a non-robust way. Note also that choosing the

smoothing parameters with a robust criterion plays a crucial role: when using robust

methods the optimal smoothing parameters need to be chosen with a robust criterion as

12
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Figure 6.1: The 0% contamination setting: boxplots of AISE values for the mean (left)

and dispersion (right) estimation.
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Figure 6.2: The 3% contamination setting: boxplots of AISE values for the mean (left)

and dispersion (right) estimation.

well. In general the proposed method seem to perform quite well: not only the median

AISE values are much lower than the ones of the other methods, but we also see little

variability.

In Figure 6.3 we show a dataset simulated under the 3% contamination setting, to-

gether with non-robust and robust estimates for the mean and dispersion functions. It is

clearly seen that the robust methods are less affected by the presence of outliers in the

data.
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Figure 6.3: A simulated dataset from the 3% contamination setting. Outliers are indicated

with crosses and estimates for both the mean (top panels) and the dispersion (lower panels)

functions are superimposed.

7 Real data examples

In all examples we use a logarithmic link for the dispersion function, i.e. ξ(·) = log(γ(·)),
and take w(·) = 1), i.e. no weighting function is employed to correct for leverage points.

7.1 Influenza-like Illness visits in the US

Alimadad and Salibian-Barrera (2009) study how the weekly counts of Influenza-like Ill-

ness (ILI) visits in the US change in the course of the influenza season (which lasts 33

weeks, from week 40 to the end of week 20 of the next year). They analyze data regarding

the influenza seasons of 2006/2007, 2007/2008 and 2008/2009. During the last weeks of

the 2008/2009 season the H1N1 flu started spreading, and this resulted in a higher num-

ber of visits. Therefore, they suggest to analyze the data using robust methods which
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are less affected by the presence of high numbers of visits. What they do not take into

account is that the variability of the data also seems to be changing over the weeks within

the season. We propose that, to analyze these data properly, not only the mean but also

the dispersion function should be estimated. The presence of extreme points in the data,

suggests indeed that we should apply robust methods. For the mean modelling we take

V (µ) = µ and a logarithmic link function η(·) = log(µ(·)), as we would do for a Poisson

regression.

In the right panel of Figure 7.1 we present the centered (log) data with a robust and

a non-robust fit of the mean, while the centered (log) deviance residuals with a fit for

the ξ(weeks) component are shown in the right panel. We see that the robust methods

are less affected by the presence of extreme values in the data, both for the mean and

the dispersion estimation. We claim that the dispersion of the model should indeed be

estimated as a function: in Figure 7.2 we see the standardized Pearson residuals we would

obtain from a robust model with a constant dispersion (rP = (y − µ)/(φµ)) and the ones

we obtain when modelling also the dispersion in a robust way (rP = (y − µ)/(φγµ)).

Clearly the shape present in the residuals in the left plot diminishes when estimating the

dispersion and we also notice how the outlying points at the extreme right of the plot

have now lower residuals.

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Weeks

lo
g(

IL
I v

is
its

)

Robust Double GAM
Double GAM

0 5 10 15 20 25 30

−
2

0
2

4
6

8
10

Weeks

lo
g(

D
ev

ia
nc

e)

Figure 7.1: ILI visits in the US (crosses indicate data of the 2008/2009 season): Ro-

bust Double GAM (solid) and standard Double GAM (dashed line) fits for the mean and

dispersion function.
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Figure 7.2: Standardized residuals for the fits to the ILI visits. On the left the residuals

obtained when taking the dispersion as a constant, on the right the ones obtained when

taking the dispersion to be a function of the covariate.

A consequence of estimating the dispersion is that points which correspond to ex-

tremely high ILI visit counts and that have very large residuals in the left plot are scaled

by the estimated dispersion function, which has higher values in the area where the more

extreme counts are observed. Indeed in the right panel of Figure 7.2 the points with

higher residuals are less sticking out, they appear to be less extreme. If we think that the

process under study is prone to have parts of larger variability we should estimate the

dispersion function and allow the process to be more variable in some parts, rather than

interpreting high counts automatically as outliers.

7.2 The ozone data

In Figure 7.3 (top panels) data on the ozone level in Upland, California in 1976 (see

Breiman and Friedman (1985)) are depicted. We are interested in modelling the ozone

level as a flexible function of the inversion base temperature, the inversion base height

and the daggett pressure gradient. To illustrate what the effect of outliers can be, we

replaced 5% of the data by outliers scattered uniformly around (55,58). The data points

to be substituted by outliers were selected among those with inversion base temperature

values between (70,80). We take V (µ) = 1 and the identity link η(·) = µ(·), the default
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Figure 7.3: The Ozone data with outliers: Robust Double GAM (solid) and non-robust

Double GAM (dashed line) fits for the mean and the dispersion (top and bottom panels

respectively). The dotted line represent the fit from a non-robust double estimation of the

mean and dispersion function on the original data.

choice in standard GAM for data assumed to be Normal.

In Figure 7.3 we see how the robust techniques are much less influenced by the pres-

ence of the outliers in the data. The robust estimates obtained for the mean and the

dispersion function resemble indeed much more the shape we would get when outliers are

not present in the data.

7.3 The Italian abortion data

In Figure 7.4 data on the induced abortion rate for each Italian province are shown. This

dataset was previously analyzed in Gijbels and Prosdocimi (2010). We are interested in

studying how the abortion rate in the 98 Italian provinces changes as a function of the

following socio-economical covariates:
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Figure 7.4: The abortion data: Robust Double GAM (solid lines) and standard Double

GAM (dashed lines) fits for the mean and dispersion function (top and bottom panels

respectively). Crosses indicate the provinces of Puglia.

• the average age at first marriage for women;

• the index of non-finished compulsory education for the female population between

15 and 52;

• the percentage of unipersonal families.

As Section in 7.1 we take V (µ) = µ and η(·) = log(µ(·)) in this example. Smoothing

parameters for the standard and the robust fit are selected respectively via AIC and

RAIC.

We know that the highest values present in the dataset are coming from the 5 provinces

in one region (Puglia) in which the health care system, specially concerning induced

abortion, is of higher quality than the one of the neighboring regions. It is suspected that

the high abortivity rates observed in this region are due more to women from outside who

travel to undergo the operation rather than from a real higher abortion rate among the

women of the region. By using a robust estimate for the mean and dispersion value we
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are assured that these outlying points will have less effect on the final estimates, as can

be seen in Figure 7.4: indeed the robust fits are less affected by the presence of extreme

points.
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