

Tilburg University

Root-cause analysis of design-time compliance violations on the basis of property
patterns
El Gammal, A.; Turetken, O.; van den Heuvel, W.J.A.M.; Papazoglou, M.

Published in:
Proceedings of the 8th International Conference on Service-Oriented Computing (ICSOC 2010) USA, San
Francisco

Publication date:
2010

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
El Gammal, A., Turetken, O., van den Heuvel, W. J. A. M., & Papazoglou, M. (2010). Root-cause analysis of
design-time compliance violations on the basis of property patterns. In P. Maglio (Ed.), Proceedings of the 8th
International Conference on Service-Oriented Computing (ICSOC 2010) USA, San Francisco (Vol. 6470, pp. 17-
31). Springer Verlag. http://www.springerlink.com/content/57364652475556k1/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420809179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/c3c81885-1432-416e-ae7f-70d6fa7ec79a
http://www.springerlink.com/content/57364652475556k1/

Root-Cause Analysis of Design-time Compliance

Violations on the basis of Property Patterns

Amal Elgammal1 , Oktay Turetken, Willem-Jan van den Heuvel, Mike Papazoglou

European Research Institute in Service Science (ERISS), Tilburg University,

Tilburg, the Netherlands

{a.f.s.a.elgammal, o.turetken, w.j.a.m.vdnheuvel, m.p.papazoglou}@uvt.nl

Abstract. Today’s business environment demands a high degree of compliance

of business processes with business rules, policies, regulations and laws.

Compliance regulations, such Sarbanes-Oxley force enterprises to continuously

review their business processes and service-enabled applications and ensure that

they satisfy the set of relevant compliance constraints. Compliance management

should be considered from the very early stages of the business process design.

In this paper, a taxonomy of compliance constraints for business processes is

introduced based on property specification patterns, where patterns can be used

to facilitate the formal specification of compliance constraints. This taxonomy

serves as the backbone of the root-cause analysis, which is conducted to reason

about and eventually resolve design-time compliance violations. Based on the

root-cause analysis, appropriate guidelines and instructions can be provided as

remedies to alleviate design-time compliance deviations in service-enabled

business processes.

Keywords: Regulatory compliance, Compliance constraint detection and

prevention, Design-time compliance management, Formal compliance model,

Compliance patterns, root-cause analysis.

1 Introduction

SOA is an integration framework for connecting loosely coupled software modules

into on-demand business processes. Business processes form the foundation for SOAs

and require that multiple steps occur between physically independent yet logically

dependent software services [1]. Where business processes stretch across many

cooperating and coordinated systems, possibly crossing organizational boundaries,

technologies like XML and Web services are making system-to-system interactions

commonplace.

1 This work is a part of the research project “COMPAS: Compliance-driven Models, Languages

and Architectures for Services”, which is funded by the European commission, funding

reference FP7-215175.

Business processes form the foundation for all organizations, and as such, are

impacted by industry regulations. Without explicit business process definitions,

flexible rule frameworks, and audit trails that provide for non-repudiation,

organizations face litigation risks and even criminal penalties. Compliance

regulations, such as HIPAA, Basel II, Sarbanes-Oxley (SOX) and others require all

organizations to review their business processes and ensure that they meet the

compliance standards set forth in the legislation. In all cases, these new control and

disclosure requirements create auditing demands for SOAs.

SOAs should play a crucial role in compliance, allowing management to ascertain

that internal control measures that govern their key business processes can be

checked, tested, and potentially certified with their underlying web-services.

Compliance is about ensuring that business processes, operations and practices are

in accordance with a prescribed and/or agreed on set of norms [2] . A compliance

constraint (requirement) refers to any explicitly stated rule or regulation that

prescribes any aspect of an internal or cross-organizational business process.

Compliance constraints may emerge from different sources and can take various

forms. They may originate from legislation and regulatory bodies (such as Sarbanes-

Oxley and Basel II), standards and code of practices (such as: ISO 9001) and/or

business partner contracts.

Not only the large and ever-increasing number of compliance constraints but also

the diversity and complexity of these constraints, complicate the compliance

management process [3]. Consequently, a comprehensive compliance management

solution is of utmost importance to support compliance throughout all the stages of

the complete business process lifecycle. A major requirement of a generic

compliance management approach is that it should be sustainable [2]. A preventive

focus is fundamentally required in order to achieve the sustainability requirement.

Compliance should be considered at the very early stages of business process design,

thus enforcing compliance by design.

Compliance constraints should be based on a formal foundation of a logical

language to facilitate the application of future automatic reasoning techniques for

verifying and ensuring business process compliance. However, formal specifications

in general are difficult to write and understand by users. The notion of property

specification patterns (Dwyer’s property patterns) was introduced in [4] as high-level

abstractions of frequently used logical formulas. Property patterns assist users in

understanding and defining formal specifications, which significantly facilitates the

work of the user, as she doesn’t need to go into the lower-level and complex details of

the adapted formal language.

By applying the automated verification tools that are associated with the utilized

logical language (e.g. NuSMV2 model-checker [5]), compliance between

specifications and the applicable set of compliance constraints can be automatically

checked. However, the verification results are usually a list of which compliance rules

have been violated and which have been satisfied. Clearly, existing practices and

approaches are by far insufficient to effectively assist business process/service

designers in resolving potential conflicts or violations between service-enabled

processes and associated rules, laws and regulations. A structured approach is critical

to allow designers –many of which are non-experts in formal languages- to formally

capture compliance rules and policies, and then semi-automatically detect the root-

cause of compliance anomalies and provide heuristics to create corrective actions to

resolve them. The main focus of this paper is on design-time compliance management

and analysis.

In this paper, we use Dwyer’s property specification patterns [4] and Linear

Temporal Logic (LTL) [6] to formally represent compliance constraints. Furthermore,

we present pattern extensions and we introduce new patterns that are frequently used

to specify compliance constraints. Then, a compliance constraint taxonomy is built up

on top of these patterns, which represents the backbone of the root-cause analysis

conducted in this paper. Finally, the root-cause analysis approach is presented to

reason about design-time compliance violations. The Current Reality Tree (CRT) of

Goldratt’s Theory of Constraints (TOC) [7], [8] is adapted as the root-cause analysis

technique. By traversing the CRTs, appropriate remedies are provided as

guidelines/suggestions that help the user/expert to resolve the compliance deviations.

The rest of this paper is organized as follows: a design-time compliance

management approach is briefly discussed in Section 2. Section 3 presents a scenario

used as the running example throughout this paper. Section 4 presents the proposed

root-cause analysis approach to reason about design-time compliance violations.

Related work is summarized in Section 5. Finally, conclusions and outlook are

highlighted in Section 6.

2 Design-time Compliance Management

To provide a brief overview of the compliance management approach maintained in

this paper, this section briefly discusses important aspects of a comprehensive

compliance management framework, underlining the features that deal with managing

compliance during the design-time. Fig. 1 depicts an overview of the key practices

and components of this approach, and highlights the parts that outline the scope of

this paper. There are two primary roles involved in this approach: (i) a business

expert, who is responsible for defining and managing service-enabled business

processes in an organization while taking compliance constraints into account, and (ii)

a compliance expert, who is responsible for the internalization, specification and

management of compliance requirements stemming from external and internal

sources in close collaboration with the business expert.

The approach encompasses two logical repositories; the business process

repository and the compliance requirements repository, which are semantically

aligned and may reside in a shared environment. Process models including service

descriptions are defined and maintained in the business process repository, while the

compliance requirements and all relevant concepts are defined, maintained and

organized in the compliance requirements repository. These repositories foster the

reusability of business and compliance specifications. We assume that these two

specifications (business processes and compliance requirements) use the same

constructs through the usage of a shared domain-specific ontology.

The approach assumes the overall process to start either from the business process

side (the right-hand side of Fig. 1) or from the compliance requirements side (left part

of Fig. 1). Process models can be specified in Business Process Execution Language

(BPEL 2) de facto standard; However, as BPEL is not grounded on a formal model,

any BPEL specification should be transformed into a formal representation (e.g. a

finite state automaton, such as Buchi automata [9]) to enable the verification of these

formal definitions against formally specified compliance rules.

On the other hand, the internalization of compliance constraints originating from

regulations, policies, standards and other compliance sources into a set of

organization-specific compliance requirements involves not only compliance but also

business process domain knowledge. It may require compliance expert to work in

collaboration with the business expert to define and iterate an effective set of

requirements to address these constraints.

Fig. 1. Design-time compliance management approach

A compliance expert may apply patterns to render compliance constraints, which

represents an intermediate step between internalized compliance requirements and

formal statements (as LTL formulas for our case). These pattern-based expressions

are then automatically transformed into LTL formulas, based on the mapping rules

between patterns and LTL. As shown in Fig. 1, the inputs to the ‘automatic

verification’ component of the approach are; the formally specified end-to-end

business process models; and the LTL rules capturing compliance requirements.

Then, automatic verification is supported by ‘model-checkers’ [10].

Analysis of the verification results and their root-causes should be assisted by a

component of the approach, which also directs the business expert in modifying the

business process model so she may resolve any compliance violation. The counter-

example tracing facility, typically provided by the model-checkers, can also aid user

by highlighting the fragments in the business process model that are the sources of

non-compliance. The business process models are updated based on the compliance

verification and analysis results and re-mapped to their formal forms and re-verified

2 BPEL: Business Process Execution Language, http://en.wikipedia.org/wiki/BPEL

Design-time Compliance Management

End-to-end BP
Models

Formal
Representation of

the BP Models (in

FSA)

Business
Process

Repository

Compliance
Requirements

Repository

Define/Modify

Business

Process Models

Analyzing design-
time compliance

violations and root
causes

Automatic generation

of formally
represented BP

models (from BPEL

to FSA)

Automatic generation
of Compliance Rules

(from pattern-based

expressions to LTL
formulas)

Specify

Compliance

Requirements as
patterns

Pattern-based
representation

of compliance

requirements

Automatic

Verification of BP

models against
formally specified

Compliance Rules

Formally specified

Compliance Rules

(as LTL Formulas)

Internalize abstract
compliance

constraints originating

from laws,
regulations, etc.

Verified

BP models

Business

Execution

Internalized

compliance

requirements

Verification results

(of compliance
checking)

Compliance
Expert

Root-causes of

design-time
compliance

violations

Business
Expert

Compliance
Sources

(Regulations, laws,
standards, etc.)

Scope of this paper

against the set of applicable compliance requirements. This process iterates until no

violations are detected.

This paper focuses on the parts in Fig. 1 that are enclosed (with dotted lines),

which are: the pattern-based specification of compliance requirements and analyses of

design-time violations and root-causes. Our work on the other components of the

approach are kept outside the scope of this paper.

3 Running Scenario

The Internet reseller scenario, which is used as the running example throughout this

paper, is one of the industry scenarios explored within the EU funded COMPAS

research project [12]. The scenario is set in an e-business application domain, and

more particularly, online product selling systems.

The scenario starts with the customer checking product information on a website.

Next, if the customer chooses a specific item, she submits an order along with her

customer data. Next, the sales department validates the order by contacting the credit

bureau to check the credit worthiness of the customer. Afterwards, the financial

department creates the invoice and checks for payments. Finally, a delivery request is

sent to the supplier.

Table 1 shows excerpts of the compliance requirements relevant to this scenario.

Each compliance requirement is described in terms of: (i) an ID (ii) internalized

compliance requirement (iii) its representation as patterns (as discussed in Section 2),

and (iv) an explanation of its pattern representation.

Table 1. An excerpt of the relevant compliance requirements.

ID Compliance Requirement Pattern Representation Description

R1 Computer-generated sales order

confirmations or cancelations are

sent to customers after validating

the order.

ValidateOrder(x,y) LeadsTo

(SendConfirm(x)

MutexChoice SendCancel(x))

ValidateOrder for sales order y

and customer x is followed by
either sending a confirmation or

cancelation to customer x.

R2 Sales orders over a set threshold

require approval by management

before acceptance by the system.

(SalesOrder(y,threshold)

exists) Imply (Approve(y,

manager) Precedes
Accept(y))

If there is a salesOrder y that

exceeds a threshold threshold then

Approve action performed by

manager should precedes Accept

of order y.

R3 Appropriate segregation of duties

is maintained between credit

checking and cashing functions.

CreditChecking(x)

SegregatedFrom Cashing(x)
CreditChecking function for
customer x should be segregated

from the Cashing function for the

same customer

4 Compliance Patterns and Compliance Constraints Taxonomy

This section presents a taxonomy of pattern-based compliance constraints for business

processes. As shown in Fig. 2, the compliance pattern is the core element of the

taxonomy, and each pattern is a sub-type of it. The compliance pattern is sub-divided

in two main classes of patterns; namely atomic and composite. The lower part of Fig.

2 presents the atomic patterns, which are adapted from Dwyer’s property specification

pattern system [4].

Fig. 2. Compliance constraints taxonomy based on patterns.

Atomic patterns introduce two main sub-classes: Occurrence and Order pattern

classes. Their properties can be described as follows:

Occurrence patterns are:

• Absent: Indicates that a given state3 P does not occur within the system.

• Universal: Indicates that P occurs throughout the system.

• Exists: Indicates that P must occur within the system.

• Bounded exists: Indicates that P must occur at least/exactly/at most k times

within the system.

Order patterns are:

• Precedes: A given state P must always be preceded by a given state Q.

• LeadsTo: P must always be followed by Q.

• Chain precedes: A sequence of states P1, … Pn must always be preceded by a

sequence of states Q1, … Qm.

• ChainLeadsTo: A sequence of states P1, … Pn must always be followed by a

sequence of states Q1, … Qm.

As shown in the upper part of Fig. 2, compliance patterns can be nested using

Boolean logic operators including Not, And, Or, Xor and Imply to help the definition

of complex requirements in terms of other compliance patterns (composite patterns).

For instance, the PLeadsTo pattern introduced in [11] is an ‘And’ composition of the

two atomic patterns (P Precedes Q) And (P LeadsTo Q).

In addition to the patterns described above, this paper introduces seven new

compliance patterns, namely: Exclusive, Substitute, Corequiste, Inclusive,

3 State represents a node in finite state automata (used for formal representation of a BP

model as discussed in Section 2). In our context, it indicates a certain BP activity or a condition

on any related artifact. ‘ValidateOrder’ activity and ‘OrderAmount > 500’ branching condition

are examples of states.

Prerequiste, MutexChoice, and SegregatedFrom. Although these patterns commonly

occur within the domain of business process compliance, they are also applicable for

the specification of properties in different domains and context.

The SegregatedFrom pattern captures the typical separation-of-duties security

principle, which mandates that two specific activities should be performed by two

different roles. Table 2 presents the mapping from the newly introduced compliance

patterns to atomic patterns together with their meaning and their formal representation

as LTL formulae

Table 2. Mapping of new compliance patterns.

Composite

Compliance

Pattern

Description Atomic Pattern

Equivalence

LTL Representation

P Segregated-

From Q

(Activities) P and Q should

be assigned to different

roles

(P PLeads Q) Λ (P.Role1) ≠
(Q.Role2)

G(¬ Q W P)) Λ G(P �

F(Q)) Λ G((P.Role(Role1)

�G(¬(Q.Role(Role1))

P Inclusive Q The presence of P

mandates that Q is also
present

(P exists) � (Q exists) =

¬ (P exists) ˅ (Q exists)

¬ F(P) ˅F(Q)

P Prerequisite Q The absence of P mandates

that Q is also absent

(P isabsent) � (Q isabsent)

= ¬ (Pisabsent)˅(Q isabsent)

¬ G (¬P) ˅G (¬(Q))

P Exclusive Q The presence of P

mandates the absence of

Q. And presence of Q
mandates the absence of P

 (¬(P exists) ˅ (Q isabsent)

Λ (¬(Q exists) ˅ (P isabsent)

(¬ (F(P))˅ G(¬Q)) Λ (¬

(F(Q))˅ G (¬P))

Q Substitute P Q substitutes the absence

of P

(P isabsent) � (Q exists) =

¬(P isabsent) ˅ (Q exists)

¬ G(¬(P)) ˅ F(Q)

P Corequisite Q Either activities P and Q

should exist together or to

be absent together

(P exists) iff (Q exists) = ((P

exists) Λ (Q exists)) ˅ ((P

isabsent) Λ (Q isabsent))

(F(P) Λ F(Q)) ˅(G(¬P) Λ

G(¬Q))

P MutexChoice Q Either P or Q exists but not

any of them or both of

them

(P exists) Xor (Q exists) =

((P exists) Λ (Q isabsent)) ˅

((Q exists) Λ (P isabsent))

(F(P) Λ G(¬(Q))) ˅(F(Q)

Λ G(¬(P)))

In LTL [6], [10]; G, F and U correspond to the temporal operators ‘always’,

‘eventually’ and ‘until’ respectively. ‘G’ denotes that formula f must be true in all the

states of the business process model. ‘F’ indicates that formula f will be true at some

state in the future. ‘U’ means that if at some state in the future the second formula g

will be true, then, the first formula f must be true in all the subsequent states.

5 Root-Cause Analysis of Design-time Compliance Violations

A compliance violation in a business process definition may occur due to a variety of

reasons and it is of upmost importance to provide the compliance expert intelligent

feedback that reveals the root-causes of these violations and aids their resolution. This

feedback should contain a set of rationale explaining the underlying reasons why the

violation occurred and what strategies can be used as remedies. Based on the

compliance constraint taxonomy proposed in Section 2, we have further analyzed and

formalized root-causes for each pattern in the taxonomy. Particularly, we investigated

and reported all possible causes of a violation of a compliance constraint represented

by a specific pattern. However, based on the root-cause analysis, only the exact

deduced cause(s) of the violation(s) is communicated to the user (as explained in

Section 5.5).

For this purpose, we have adapted the Current Reality Tree (CRT) technique from

Goldratt’s Theory of Constraints (TOC) [7]. A current reality tree is a statement of a

core problem and the symptoms that arise from it. It maps a sequence of causes and

effects from the core problem to the symptoms arising from one core problem or a

core conflict. If the core problem is removed, each of the symptoms may be removed.

Operationally the process works backwards from the apparent undesirable effects or

symptoms to uncover or discover the underlying core causes [7]. The CRT has been

chosen due to its simplicity and the visual representation of the causes and effects.

A CRT usually starts with a list of problems called Undesirable Effects (UDEs),

which represent negative or bad conditions. They are also ‘effects’ because for most

part they are caused by something else [8]. The key question begins with ‘why a

violation occurs?’ (the root of the tree). The answer to this question will generate

child-(eren) of the UDE under consideration. For each child, which might be a UDE,

the same “why” question is applied, and the answer is depicted as a deeper level in the

tree. This process continues iteratively until the UDE under consideration is the root-

cause(s) of the problem (in the leaf level of the tree). Incoming connections to an

UDE from its children are connected via logical ‘or’ operator; unless otherwise

specified. Due to space limitation, we do not present all the current reality trees

corresponding to each pattern given in the taxonomy (in Fig. 2).

5.1 Current Reality Trees for Atomic Patterns

One of the main advantages of using the Current Reality Tree technique (CRT) is that

it is self-explanatory. Fig. 3 presents the CRTs for Exists, Precedes, LeadsTo,

PleadsTo, Absence and Universal patterns. The root of each CRT represents an

undesirable effect (UDEs). For our purpose, an UDE is a violation of a specific

pattern. Hence, the root of each tree represents a violation to a specific pattern. For

example, as shown in Fig. 3, the violation to ‘(P Precedes Q) pattern’ is considered as

the UDE of the Precedes CRT.

Deeper levels in the tree are guided by answering the same ‘why’ question. For

example, the question that should be addressed here is: why (P Precedes Q) is

violated. The answer to this question is: because (Q Exists is satisfied) and (P exists is

violated) before it. This is depicted as the second level of the tree. The same ‘why’

question is applied to the UDE under consideration and analysis continues until the

root-causes of the problem, i.e. the leaves of the tree are reached. For each leaf, the

user is provided with guidelines as remedies to compliance violations. These

guidelines are depicted in the CRTs as squared brackets linked to the leaves, e.g.

‘Swap the occurrence of P and Q’, where P and Q are business process activities that

will be parameterized with the actual activity names. In case the leaf is a composite

pattern, it will be replaced by its corresponding CRT. This process iterates

continuously until all the leaves of the tree are atomic patterns.

Fig. 3. CRT for Exists, Precedes, LeadsTo and PLeadsTo patterns

5.2 Current Reality Trees for Composite Patterns

Fig. 4 presents the CRTs for the composite patterns that comprise one or more

compliance patterns connected with a Boolean operator. An example output from the

analysis process could be the UDE ‘(PropertyPattern1 and PropertyPattern2) is

violated’. Let this UDE be UDE1. According to the truth table of the ‘and’ operator,

the ‘and’ statement is only true if its two operands are evaluated to true, otherwise the

statement is evaluated to false. By applying the same ‘Why’ question to UDE1, the

answer is either:

i. UDE1.2: PropertyPattern1 is violated, or

ii. UDE1.2: PropertyPattern2 is violated, or

iii. UDE1.3: PropertyPattern1 is violated and PropertyPattern2 is violated.

UDE1.1, UDE1.2 and UDE1.3 correspond to the violation of other compliance

patterns. Hence, each UDE corresponds to a compliance pattern will be replaced with

its corresponding CRT.

Fig. 4. CRT for composite patterns.

(P Precedes Q) is

violated

(Q Exists is

satisfied) and (P

Exists is

violated) before it

(P exists is

violated)

(P Exists) is

violated

(P LeadsTo Q) is

violated

(P Exists is

satisfied) and (Q

Exists is

violated) after it

Q appears

first then P

Q appears

first then P

(Q exists is

violated)

(P PLeadsTo Q)

is violated

Swap the

occurrence

of P and Q

Swap the

occurrence

of P and Q

Else, Add

activity P

to the

model

Else, Add

activity Q

to the

model

If composite,

Replace with

corresponding

CRT

If composite,

Replace with

corresponding

CRT

(P Isabsent) is

violated

(P IsTrue) is

violated

(P exists) is

violated in one or

more states.

(P exists) is

violated in

state S1

If composite,

Replace with

correspondi

ng CRT

Else,

remove

activity Q to

the model

(P exists) is

violated in

state S2

(P exists) is

violated in

states Sn
...

Else, Add

activity P to

state S1

If composite,

Replace with

corresponding

CRT

Else, Add

activity P to

state S1

If composite,

Replace with

corresponding

CRT

Else, Add

activity P to

state S1

If composite,

Replace with

corresponding

CRT

Notably, for the negation operator, ‘(Not PropertyPattern1) is violated’, the

undesirable effect in this case is ‘(PropertyPattern1) is satisfied’, which semantically

represents the opposite of the CRTs analyzed above. For this purpose, each

compliance pattern is re-analyzed the same way, with the undesirable effect (UDE)

being ‘property pattern is satisfied’ (e.g. the lower levels of MutexChoice CRT in Fig.

5).

5.3 Current Reality Trees for the New Compliance Patterns

The CRTs of the newly introduced compliance patterns (e.g. SegregatedFrom,

Inclusive, etc.) are instances from the CRTs of composite patterns given in Fig. 4.

Two examples of the CRTs of these compliance patterns are presented in Fig. 5;

namely: Exclusive and Mutexchoice.

Fig. 5. CRTs for Exclusive and MutexChoice Composite Patterns

As shown in Fig. 5, the MutexChoice composite pattern is an ‘Xor’ composition

between two atomic patterns: (P Exists) and (Q Exists). Hence, for the MutexChoice

composite pattern, the CRT of the ‘Xor’ composite pattern is instantiated. The

instantiation process starts from the outermost pattern to the innermost pattern.

Similarly, the CRT of the Exclusive pattern is built based on the CRTs of ‘And’,

‘Imply’ composite patterns and isabsent atomic pattern.

5.4 Current Reality Trees of the Internet Reseller Scenario

This section presents briefly due to space limitations the application of the pattern

based representation approach and relevant CRTs of the second and third compliance

constraints (R2 & R3) given in Table 1 from the Internet reseller scenario.

In case violations are detected to R2 and R3 (e.g. the model-checker detects the

violations), the CRTs to reason about violations are automatically constructed and

traversed. Fig. 6 presents the CRTs of the violations to R2 and R3. The CRT of the

violation to R2 is an ‘Imply’ composition between two atomic patterns; exists and

precedes. The CRT of the violation to the segregation-of-duty compliance constraints

(R3) is shown in the right-hand side of Fig. 6.

Fig. 6. CRTs for the violation to R2 and R3

5.5 Implementation of the Root Cause Analysis Approach

An effective and scalable implementation of the concepts discussed above is a

challenging yet necessary step to help to ascertain the soundness of the approach

proposed in this paper. We are currently implementing an environment as a part of a

comprehensive tool-suite for business process compliance management, based on the

concepts described in above sections. The prototype is a web-based environment4,

which also incorporates standalone tools for building graphical representation of

requirements using patterns. The web-based environment is implemented using

‘PHP’5 as the main scripting language and Oracle database (ver.8i)6 as the repository

for compliance data and meta-data. The integration with Reo toolkit [13], which is

used for process verification, is ongoing. The integration is achieved through a group

4 http://eriss.uvt.nl/compas
5 http://en.wikipedia.org/wiki/PHP
6 http://en.wikipedia.org/wiki/Oracle_Database

of asynchronous web services, which mainly forwards BPEL representation and

relevant formal compliance rules specified in LTL as input to Reo toolkit and retrieve

back the verification result listing the rules that have been checked and whether they

are satisfied or not.

Fig. 7 presents one of the user interfaces from the implementation reflecting how

the results of the root cause analysis are communicated to experts. Only relevant

remedies extracted from traversing the appropriate CRTs are displayed in the last

column of the table in the user interface (‘Result Description/Remedy’ column). The

user interface exemplifies the case of Internet reseller scenario, where R1 is satisfied,

while, R2 and R3 are violated.

Fig. 7. A user interface implementation for the running scenario.

6 Related Work

Deontic logic and temporal logic families have been successfully utilized in the

literature as the formal foundation of compliance constraints. Key work examples

utilizing languages based on Deontic logic are: [2], [14], [15], [16], [17], [18], [19]

and [20]. On the other hand, major works built on top of temporal logic are: [5], [11],

[21], [22], [23], [24], and [25]. Due to space limitation, we are listing here key works

grounded on temporal logic.

Authors in [5] proposed a static-compliance checking framework that includes

various model transformations. Compliance constraints are modeled using the

graphical Business Property Specification Language (BPSL) tool. Next, NuSMV2

model checker is used to check the compliance. The study in [21] utilized π-Logic to

formally represent compliance constraints. On the other hand, business process

models are abstractly represented using BP-Calculus. Using HAL toolkit, a BPEL

program equivalent to the abstract representation can be automatically generated if the

two specifications are compliant. The study in [23] utilized past LTL (PLTL), where

properties about the past can be represented. However sequential compliance

constraints are just considered. On the other hand, the study in [24] utilizes the

original pattern-based system, however, it considers aspects relevant to monitoring

compliance during runtime. Furthermore, authors in [25] have extended Dwyer’s

property pattern to capture time-related property specifications. E.g. activity A must

always be followed by activity B within k time units. Integrating real-time dimension

to the proposed approach entails an ongoing research direction. The study in [11] has

utilized Dwyer’s patterns for the verification of service compositions. In [22], real-

time temporal object logic was proposed for the formal specification of compliance

requirements based on a pre-defined domain ontology. Real-time temporal object

logic is an expressive logic, however it is excessively difficult to be used.

Assisting the user to resolve non-compliance during design-time has been

addressed in [26], [27] and [23]. The notion of proximity relation has been introduced

in [26] that quantitatively compare how much a modified business process model

deviated from the original one. The goal is to resolve non-compliance violations by

identifying minimally different process models. They also introduced heuristic

guidance for detecting and resolving compliance violations. A major distinction to our

work is that we provide concrete guidelines and our work is based on a compliance

constraint taxonomy based on extended patterns. The notion of compliance distance

has been introduced in [20, 27], as a quantification of the effort required to transform

a non-compliant business process model to a compliant one, which can take the

values between 0 and 1. A visualization of compliance violations has been introduced

in [23] by utilizing Temporal Logic Querying (TLQ). To the best of our knowledge,

this is the first study that considers an exhaustive analysis of root-causes of

compliance violations, and providing the user with only relevant

guidelines/suggestions as remedies to resolve the compliance deviations based on

high-level patterns.

7 Conclusions and Outlook

Business processes –many of which are implemented as a SOA these days - form the

foundation for all organizations, and as such, are impacted by laws, policies and

industry regulations. Without an explicit auditing SOA framework to ensure

compliance of service-enabled processes, organizations face litigation risks and even

criminal penalties. One of the significant provisions towards business process

compliance is a framework that would enable service engineers to define compliance

constraints and weave them into service-enabled processes. Compliance management

should be considered from the very early stages of the business process design, such

that compliance constraints are designed into service-enabled processes. To enable

automatic reasoning techniques for verifying and ensuring compliance, these

compliance constraints should be grounded on a formal language. Using property

specification patterns to specify compliance constraints and automatically generate

formal specifications significantly facilitate the work of the compliance expert.

Moreover, recovering from compliance violations in service-enabled processes is

an important issue that has not paid much attention by the research community. The

compliance expert should be provided with intelligent feedback that reveals the root-

causes of these violations and aids their resolution; not merely an indication whether

the constraint is violated. To address this problem, we have proposed a taxonomy of

compliance constraints based on Dwyer’s property patterns and extended this

taxonomy with patterns that are frequently used to specify compliance constraints.

Next, we have introduced a root-cause analysis approach to automatically reason

about design-time compliance violations rooted on the proposed taxonomy. Based on

the root-cause analysis, the compliance expert is provided with only relevant

guidelines/suggestions.

The root-cause analysis approach including its compliance constraint taxonomy is

validated in three ways. Firstly, the internal and construct validity are verified by

formalizing the taxonomy, and particularly, the atomic and composite patterns in

LTL. Secondly, the implementability of our approach is ascertained with an

experimental prototype. Lastly, we have explored and tested our approach with

several case studies drawn from industrial partners in the COMPAS EU project in

which we participate. Furthermore, the validation of the proposed approach will

further be intensified by its application on various empirical experiments and/or case

studies on prospective users of the developed prototype toolset.

Design-time and runtime compliance management are complementary and

indispensable phases for ensuring and enforcing the compliance. The main focus of

this work is on design-time verification and analysis. Addressing compliance

verification and analysis during runtime, based on the proposed compliance pattern

taxonomy, and integrating it to the proposed design-time verification and analysis

approach entails another important ongoing research direction. This course of

research will pave the way for a comprehensive compliance management solution that

verifies, analyses and ensures the compliance of business processes on both design-

time and runtime dimensions. Future work will concentrate on extending the

compliance constraints taxonomy with additional domain-specific compliance

patterns. This requires intensive involvement in the specification of various industrial

large-scale use case scenarios.

References

1. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State

of the Art and Research Challenges. Computer 40, 38-45 (2007)

2. Sadiq, S., Governatori, G., Naimiri, K.: Modeling Control Objectives for Business Process

Compliance. 10th International Conference on BPM, pp. 149-164, Australia (2007),

3. ITIL: Information Technology Infrastructure Library. (2010)

4. Dwyer, M., Avrunin, G., Corbett, J.: Property Specification Patterns for Finite-State

Verification. Workshop on Formal Methods on Software Practice, pp. 7-15, USA (1998),

5. Liu, Y., Muller, S., Xu, K.: A Static Compliance-Checking Framework for Business Process

Models. IBM Systems Journal 46, (2007)

6. Pnueli, A.: The Temporal Logic of Programs. In: 18th IEEE Symposium on Foundations of

Computer Science, pp. 46–57. (1977)

7. Dettmer, H.: Goldratt’s Theory of Constraints: a systems approach to continuous

improvement. ASQC Quality Press 62-119 (1997)

8. Mosely, H.: Current Reality Trees: An Action Learning Tool for Root Cause Analysis.

(2006), www.jhuccp.org/training/scope/starguide/toc/rootcauseanalysis.ppt

9. Buchi, K.: On a Decision Method in Restricted Second Order Arithmetic. International

Congress on Logic, Method, Philosophy of Science, pp. 1-11, Stanford (1960),

10. Clarke, E., Grumberg, J., Peled, D.: Model Checking. MIT Press, Cambridge (2000)

11. Yu, J., Manh, T., Han, J., Jin, Y.: Pattern-Based Property Specification and Verification for

Service Composition. WISE06, pp. 156-168, China (2006),

12. COMPAS official web site – Project description, http://www.compas-ict.eu/project.php

13. Arbab, F., Kokash, N., Meng, S.: Towards Using Reo for Compliance-Aware Business

Process Modeling. ISOLA08, pp. 108-123, Greece (2008),

14. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance Checking Between Business

Processes and Business Contracts. EDOC 2006, pp. 221-232, Hong Kong (2006),

15. Governatori, G., Milosevic, Z.: Dealing with Contract Violations: Formalism and Domain-

Specific Language. EDOC 2005, pp. 46-57. (2005)

16. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations

and Permissions. the International BPM Workshops, pp. 5-14, Austria (2006),

17. Governatori, G., Rotolo, A.: Logic of Violations: A Gentzen System for Reasoning with

Contrary-to-duty Obligations. Australasian Journal of Logic (2006)

18. Governatori, G.: Representing Business Contracts in RuleML. International Journal of

Cooperative Information Systems (2005)

19. Milosevic, Z., Sadiq, S., Orlowska, M.: Translating business contract into compliant

business processes. EDOC 2006, pp. 211-220. (2006)

20. Lu, R., Sadiq, S., Governatori, G.: Compliance Aware Business Process Design. 5th

International Conference on BPM, pp. 120-131, Brisbane (2007),

21. Abouzaid, F., Mullins, J.: A Calculus for Generation, Verification, and Refinement of BPEL

Specifications. WWV'07, pp. 43-68. (2007)

22. Giblin, C., Liu, A., Muller, S., B., P., Zhou, X.: Regulations Expressed As Logical Models.

18th Conference of legal knowledge and information systems, pp. 37-48, Belgium (2005),

23. Awad, A., Weidlich, M., Weske, M.: Specification, Verification and Explanation of

Violation for Data Aware Compliance Rules. ICSOC'09, pp. 500-515. Springer, (2009)

24. Namiri, K., Stojanovic, N.: Pattern-based Design and Validation of Business Process

Compliance. Lecture Notes in Computer Science 59-76 (2007)

25. Gruhn, V., Laue, R.: Specification Patterns for Time-Related Properties. In: 12th Int’l

Symposium on Temporal Representation and Reasoning, pp. 198-191. (2005)

26. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Service-Oriented

Computing – ICSOC'07, pp. 169-180. (2007)

27. Lu, R., Sadiq, S., Governatori, G.: Measurement of Compliance Distance in Business

Processes. Information Systems Management 25, 344-355 (2008)

