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Abstract. Today’s business environment demands a high degree of compliance 

of business processes with business rules, policies, regulations and laws. 

Compliance regulations, such Sarbanes-Oxley force enterprises to continuously 

review their business processes and service-enabled applications and ensure that 

they satisfy the set of relevant compliance constraints. Compliance management 

should be considered from the very early stages of the business process design. 

In this paper, a taxonomy of compliance constraints for business processes is 

introduced based on property specification patterns, where patterns can be used 

to facilitate the formal specification of compliance constraints. This taxonomy 

serves as the backbone of the root-cause analysis, which is conducted to reason 

about and eventually resolve design-time compliance violations. Based on the 

root-cause analysis, appropriate guidelines and instructions can be provided as 

remedies to alleviate design-time compliance deviations in service-enabled 

business processes.  

 

Keywords: Regulatory compliance, Compliance constraint detection and 

prevention, Design-time compliance management, Formal compliance model, 

Compliance patterns, root-cause analysis. 

 

1 Introduction 

SOA is an integration framework for connecting loosely coupled software modules 

into on-demand business processes. Business processes form the foundation for SOAs 

and require that multiple steps occur between physically independent yet logically 

dependent software services [1]. Where business processes stretch across many 

cooperating and coordinated systems, possibly crossing organizational boundaries, 

technologies like XML and Web services are making system-to-system interactions 

commonplace.  

                                                           
1 This work is a part of the research project “COMPAS: Compliance-driven Models, Languages 

and Architectures for Services”, which is funded by the European commission, funding 

reference FP7-215175. 



Business processes form the foundation for all organizations, and as such, are 

impacted by industry regulations. Without explicit business process definitions, 

flexible rule frameworks, and audit trails that provide for non-repudiation, 

organizations face litigation risks and even criminal penalties. Compliance 

regulations, such as HIPAA, Basel II, Sarbanes-Oxley (SOX) and others require all 

organizations to review their business processes and ensure that they meet the 

compliance standards set forth in the legislation. In all cases, these new control and 

disclosure requirements create auditing demands for SOAs.  

SOAs should play a crucial role in compliance, allowing management to ascertain 

that internal control measures that govern their key business processes can be 

checked, tested, and potentially certified with their underlying web-services. 

Compliance is about ensuring that business processes, operations and practices are 

in accordance with a prescribed and/or agreed on set of norms [2] . A compliance 

constraint (requirement) refers to any explicitly stated rule or regulation that 

prescribes any aspect of an internal or cross-organizational business process. 

Compliance constraints may emerge from different sources and can take various 

forms. They may originate from legislation and regulatory bodies (such as Sarbanes-

Oxley and Basel II), standards and code of practices (such as: ISO 9001) and/or 

business partner contracts.  

Not only the large and ever-increasing number of compliance constraints but also 

the diversity and complexity of these constraints, complicate the compliance 

management process [3]. Consequently, a comprehensive compliance management 

solution is of utmost importance to support compliance throughout all the stages of 

the complete business process lifecycle.  A major requirement of a generic 

compliance management approach is that it should be sustainable [2]. A preventive 

focus is fundamentally required in order to achieve the sustainability requirement. 

Compliance should be considered at the very early stages of business process design, 

thus enforcing compliance by design.  

Compliance constraints should be based on a formal foundation of a logical 

language to facilitate the application of future automatic reasoning techniques for 

verifying and ensuring business process compliance. However, formal specifications 

in general are difficult to write and understand by users. The notion of property 

specification patterns (Dwyer’s property patterns) was introduced in [4] as high-level 

abstractions of frequently used logical formulas. Property patterns assist users in 

understanding and defining formal specifications, which significantly facilitates the 

work of the user, as she doesn’t need to go into the lower-level and complex details of 

the adapted formal language.  

By applying the automated verification tools that are associated with the utilized 

logical language (e.g. NuSMV2 model-checker [5]), compliance between 

specifications and the applicable set of compliance constraints can be automatically 

checked. However, the verification results are usually a list of which compliance rules 

have been violated and which have been satisfied. Clearly, existing practices and 

approaches are by far insufficient to effectively assist business process/service 

designers in resolving potential conflicts or violations between service-enabled 

processes and associated rules, laws and regulations. A structured approach is critical 



to allow designers –many of which are non-experts in formal languages- to formally 

capture compliance rules and policies, and then semi-automatically detect the root-

cause of compliance anomalies and provide heuristics to create corrective actions to 

resolve them. The main focus of this paper is on design-time compliance management 

and analysis. 

In this paper, we use Dwyer’s property specification patterns [4] and Linear 

Temporal Logic (LTL) [6] to formally represent compliance constraints. Furthermore, 

we present pattern extensions and we introduce new patterns that are frequently used 

to specify compliance constraints. Then, a compliance constraint taxonomy is built up 

on top of these patterns, which represents the backbone of the root-cause analysis 

conducted in this paper. Finally, the root-cause analysis approach is presented to 

reason about design-time compliance violations. The Current Reality Tree (CRT) of 

Goldratt’s Theory of Constraints (TOC) [7], [8] is adapted as the root-cause analysis 

technique. By traversing the CRTs, appropriate remedies are provided as 

guidelines/suggestions that help the user/expert to resolve the compliance deviations. 

The rest of this paper is organized as follows: a design-time compliance 

management approach is briefly discussed in Section 2. Section 3 presents a scenario 

used as the running example throughout this paper. Section 4 presents the proposed 

root-cause analysis approach to reason about design-time compliance violations. 

Related work is summarized in Section 5. Finally, conclusions and outlook are 

highlighted in Section 6.  

2 Design-time Compliance Management 

To provide a brief overview of the compliance management approach maintained in 

this paper, this section briefly discusses important aspects of a comprehensive 

compliance management framework, underlining the features that deal with managing 

compliance during the design-time. Fig. 1 depicts an overview of the key practices 

and components of this approach, and highlights the parts that outline the scope of 

this paper. There are two primary roles involved in this approach: (i) a business 

expert, who is responsible for defining and managing service-enabled business 

processes in an organization while taking compliance constraints into account, and (ii) 

a compliance expert, who is responsible for the internalization, specification and 

management of compliance requirements stemming from external and internal 

sources in close collaboration with the business expert.  

The approach encompasses two logical repositories; the business process 

repository and the compliance requirements repository, which are semantically 

aligned and may reside in a shared environment. Process models including service 

descriptions are defined and maintained in the business process repository, while the 

compliance requirements and all relevant concepts are defined, maintained and 

organized in the compliance requirements repository. These repositories foster the 

reusability of business and compliance specifications. We assume that these two 

specifications (business processes and compliance requirements) use the same 

constructs through the usage of a shared domain-specific ontology.  



The approach assumes the overall process to start either from the business process 

side (the right-hand side of Fig. 1) or from the compliance requirements side (left part 

of Fig. 1). Process models can be specified in Business Process Execution Language 

(BPEL 2) de facto standard; However, as BPEL is not grounded on a formal model, 

any BPEL specification should be transformed into a formal representation (e.g. a 

finite state automaton, such as Buchi automata [9]) to enable the verification of these 

formal definitions against formally specified compliance rules. 

On the other hand, the internalization of compliance constraints originating from 

regulations, policies, standards and other compliance sources into a set of 

organization-specific compliance requirements involves not only compliance but also 

business process domain knowledge. It may require compliance expert to work in 

collaboration with the business expert to define and iterate an effective set of 

requirements to address these constraints.  

 

Fig. 1. Design-time compliance management approach 

A compliance expert may apply patterns to render compliance constraints, which 

represents an intermediate step between internalized compliance requirements and 

formal statements (as LTL formulas for our case). These pattern-based expressions 

are then automatically transformed into LTL formulas, based on the mapping rules 

between patterns and LTL. As shown in Fig. 1, the inputs to the ‘automatic 

verification’ component of the approach are; the formally specified end-to-end 

business process models; and the LTL rules capturing compliance requirements. 

Then, automatic verification is supported by ‘model-checkers’ [10].  

Analysis of the verification results and their root-causes should be assisted by a 

component of the approach, which also directs the business expert in modifying the 

business process model so she may resolve any compliance violation. The counter-

example tracing facility, typically provided by the model-checkers, can also aid user 

by highlighting the fragments in the business process model that are the sources of 

non-compliance. The business process models are updated based on the compliance 

verification and analysis results and re-mapped to their formal forms and re-verified 

                                                           
2 BPEL: Business Process Execution Language, http://en.wikipedia.org/wiki/BPEL 
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against the set of applicable compliance requirements. This process iterates until no 

violations are detected.  

This paper focuses on the parts in Fig. 1 that are enclosed (with dotted lines), 

which are: the pattern-based specification of compliance requirements and analyses of 

design-time violations and root-causes. Our work on the other components of the 

approach are kept outside the scope of this paper.  

3 Running Scenario 

The Internet reseller scenario, which is used as the running example throughout this 

paper, is one of the industry scenarios explored within the EU funded COMPAS 

research project [12]. The scenario is set in an e-business application domain, and 

more particularly, online product selling systems. 

The scenario starts with the customer checking product information on a website. 

Next, if the customer chooses a specific item, she submits an order along with her 

customer data. Next, the sales department validates the order by contacting the credit 

bureau to check the credit worthiness of the customer. Afterwards, the financial 

department creates the invoice and checks for payments. Finally, a delivery request is 

sent to the supplier. 

Table 1 shows excerpts of the compliance requirements relevant to this scenario. 

Each compliance requirement is described in terms of: (i) an ID (ii) internalized 

compliance requirement (iii) its representation as patterns (as discussed in Section  2), 

and (iv) an explanation of its pattern representation.  

Table 1. An excerpt of the relevant compliance requirements. 

ID Compliance Requirement Pattern Representation Description 

R1 Computer-generated sales order 

confirmations or cancelations are 

sent to customers after validating 

the order. 

ValidateOrder(x,y) LeadsTo 

(SendConfirm(x) 

MutexChoice SendCancel(x)) 

ValidateOrder for sales order y 

and customer x is followed by 
either sending a confirmation or 

cancelation to customer x. 

R2 Sales orders over a set threshold 

require approval by management 

before acceptance by the system.   

(SalesOrder(y,threshold) 

exists) Imply (Approve(y, 

manager) Precedes 
Accept(y)) 

If there is a salesOrder y that 

exceeds a threshold threshold then 

Approve action performed by 

manager  should precedes Accept  

of order y. 

R3 Appropriate segregation of duties 

is maintained between credit 

checking and cashing functions. 

CreditChecking(x) 

SegregatedFrom Cashing(x) 
CreditChecking function for 
customer x should be segregated 

from the Cashing function for the 

same customer 

4 Compliance Patterns and Compliance Constraints Taxonomy 

This section presents a taxonomy of pattern-based compliance constraints for business 

processes. As shown in Fig. 2, the compliance pattern is the core element of the 

taxonomy, and each pattern is a sub-type of it. The compliance pattern is sub-divided 



in two main classes of patterns; namely atomic and composite. The lower part of Fig. 

2 presents the atomic patterns, which are adapted from Dwyer’s property specification 

pattern system [4].  

 
Fig. 2. Compliance constraints taxonomy based on patterns. 

Atomic patterns introduce two main sub-classes: Occurrence and Order pattern 

classes. Their properties can be described as follows:   

Occurrence patterns are: 

• Absent: Indicates that a given state3 P does not occur within the system. 

• Universal: Indicates that P occurs throughout the system. 

• Exists: Indicates that P must occur within the system.  

• Bounded exists: Indicates that P must occur at least/exactly/at most k times 

within the system.  

Order patterns are:  

• Precedes: A given state P must always be preceded by a given state Q. 

• LeadsTo: P must always be followed by Q. 

• Chain precedes: A sequence of states P1, … Pn must always be preceded by a 

sequence of states Q1, … Qm.  

• ChainLeadsTo: A sequence of states P1, … Pn must always be followed by a 

sequence of states Q1, … Qm.  

As shown in the upper part of Fig. 2, compliance patterns can be nested using 

Boolean logic operators including Not, And, Or, Xor and Imply to help the definition 

of complex requirements in terms of other compliance patterns (composite patterns). 

For instance, the PLeadsTo pattern introduced in [11] is an ‘And’ composition of the 

two atomic patterns (P Precedes Q) And (P LeadsTo Q).  

In addition to the patterns described above, this paper introduces seven new 

compliance patterns, namely: Exclusive, Substitute, Corequiste, Inclusive, 

                                                           
3  State represents a node in finite state automata (used for formal representation of a BP 

model as discussed in Section  2). In our context, it indicates a certain BP activity or a condition 

on any related artifact. ‘ValidateOrder’ activity and ‘OrderAmount > 500’ branching condition 

are examples of states. 



Prerequiste, MutexChoice, and SegregatedFrom. Although these patterns commonly 

occur within the domain of business process compliance, they are also applicable for 

the specification of properties in different domains and context.  

The SegregatedFrom pattern captures the typical separation-of-duties security 

principle, which mandates that two specific activities should be performed by two 

different roles. Table 2 presents the mapping from the newly introduced compliance 

patterns to atomic patterns together with their meaning and their formal representation 

as LTL formulae  

Table 2.  Mapping of new compliance patterns. 

Composite 

Compliance 

Pattern 

Description Atomic Pattern 

Equivalence 

LTL Representation 

P Segregated-

From Q 

(Activities) P and Q should 

be assigned to different 

roles 

(P PLeads Q) Λ (P.Role1) ≠ 
(Q.Role2) 

G(¬ Q W P)) Λ G(P � 

F(Q)) Λ G((P.Role(Role1) 

�G(¬(Q.Role(Role1)) 

P Inclusive Q The presence of P 

mandates that Q is also 
present 

(P exists) � (Q exists) =   

¬ (P exists) ˅ (Q exists) 

¬ F(P) ˅F(Q) 

P Prerequisite Q The absence of P mandates 

that Q is also absent 

(P isabsent) � (Q isabsent) 

= ¬ (Pisabsent)˅(Q isabsent) 

¬ G (¬P) ˅G (¬(Q))  

P Exclusive Q The presence of P 

mandates the absence of 

Q. And presence of Q 
mandates the absence of P 

 (¬(P exists) ˅ (Q isabsent)  

Λ (¬(Q exists) ˅ (P isabsent)  

(¬ (F(P))˅ G(¬Q)) Λ (¬ 

(F(Q))˅ G (¬P))  

Q Substitute P Q substitutes the absence 

of P 

(P isabsent) � (Q exists) = 

¬(P isabsent) ˅ (Q exists) 

¬ G(¬(P)) ˅ F(Q) 

P Corequisite Q Either activities P and Q 

should exist together or to 

be absent together 

(P exists) iff (Q exists) = ((P 

exists) Λ (Q exists)) ˅ ((P 

isabsent) Λ (Q isabsent)) 

(F(P) Λ F(Q)) ˅(G(¬P) Λ 

G(¬Q))  

P MutexChoice Q Either P or Q exists but not 

any of them or both of 

them 

(P exists) Xor (Q exists) = 

((P exists) Λ (Q isabsent)) ˅ 

((Q exists) Λ (P isabsent)) 

(F(P) Λ G(¬(Q))) ˅( F(Q) 

Λ G(¬(P))) 

 

In LTL [6], [10]; G, F and U correspond to the temporal operators ‘always’, 

‘eventually’ and ‘until’ respectively. ‘G’ denotes that formula f must be true in all the 

states of the business process model. ‘F’ indicates that formula f will be true at some 

state in the future. ‘U’ means that if at some state in the future the second formula g 

will be true, then, the first formula f must be true in all the subsequent states.  

5 Root-Cause Analysis of Design-time Compliance Violations 

A compliance violation in a business process definition may occur due to a variety of 

reasons and it is of upmost importance to provide the compliance expert intelligent 

feedback that reveals the root-causes of these violations and aids their resolution. This 

feedback should contain a set of rationale explaining the underlying reasons why the 

violation occurred and what strategies can be used as remedies.  Based on the 

compliance constraint taxonomy proposed in Section  2, we have further analyzed and 

formalized root-causes for each pattern in the taxonomy. Particularly, we investigated 

and reported all possible causes of a violation of a compliance constraint represented 



by a specific pattern. However, based on the root-cause analysis, only the exact 

deduced cause(s) of the violation(s) is communicated to the user (as explained in 

Section  5.5).  

For this purpose, we have adapted the Current Reality Tree (CRT) technique from 

Goldratt’s Theory of Constraints (TOC) [7]. A current reality tree is a statement of a 

core problem and the symptoms that arise from it. It maps a sequence of causes and 

effects from the core problem to the symptoms arising from one core problem or a 

core conflict. If the core problem is removed, each of the symptoms may be removed. 

Operationally the process works backwards from the apparent undesirable effects or 

symptoms to uncover or discover the underlying core causes [7]. The CRT has been 

chosen due to its simplicity and the visual representation of the causes and effects. 

A CRT usually starts with a list of problems called Undesirable Effects (UDEs), 

which represent negative or bad conditions. They are also ‘effects’ because for most 

part they are caused by something else [8]. The key question begins with ‘why a 

violation occurs?’ (the root of the tree). The answer to this question will generate 

child-(eren) of the UDE under consideration. For each child, which might be a UDE, 

the same “why” question is applied, and the answer is depicted as a deeper level in the 

tree. This process continues iteratively until the UDE under consideration is the root-

cause(s) of the problem (in the leaf level of the tree). Incoming connections to an 

UDE from its children are connected via logical ‘or’ operator; unless otherwise 

specified. Due to space limitation, we do not present all the current reality trees 

corresponding to each pattern given in the taxonomy (in Fig. 2).  

5.1 Current Reality Trees for Atomic Patterns 

One of the main advantages of using the Current Reality Tree technique (CRT) is that 

it is self-explanatory. Fig. 3 presents the CRTs for Exists, Precedes, LeadsTo, 

PleadsTo, Absence and Universal patterns. The root of each CRT represents an 

undesirable effect (UDEs). For our purpose, an UDE is a violation of a specific 

pattern. Hence, the root of each tree represents a violation to a specific pattern. For 

example, as shown in Fig. 3, the violation to ‘(P Precedes Q) pattern’ is considered as 

the UDE of the Precedes CRT. 

Deeper levels in the tree are guided by answering the same ‘why’ question. For 

example, the question that should be addressed here is: why (P Precedes Q) is 

violated. The answer to this question is: because (Q Exists is satisfied) and (P exists is 

violated) before it. This is depicted as the second level of the tree. The same ‘why’ 

question is applied to the UDE under consideration and analysis continues until the 

root-causes of the problem, i.e. the leaves of the tree are reached. For each leaf, the 

user is provided with guidelines as remedies to compliance violations. These 

guidelines are depicted in the CRTs as squared brackets linked to the leaves, e.g. 

‘Swap the occurrence of P and Q’, where P and Q are business process activities that 

will be parameterized with the actual activity names. In case the leaf is a composite 

pattern, it will be replaced by its corresponding CRT. This process iterates 

continuously until all the leaves of the tree are atomic patterns.  



 
Fig. 3. CRT for Exists, Precedes, LeadsTo and PLeadsTo patterns 

5.2 Current Reality Trees for Composite Patterns 

Fig. 4 presents the CRTs for the composite patterns that comprise one or more 

compliance patterns connected with a Boolean operator. An example output from the 

analysis process could be the UDE ‘(PropertyPattern1 and PropertyPattern2) is 

violated’. Let this UDE be UDE1. According to the truth table of the ‘and’ operator, 

the ‘and’ statement is only true if its two operands are evaluated to true, otherwise the 

statement is evaluated to false. By applying the same ‘Why’ question to UDE1, the 

answer is either:  

i. UDE1.2: PropertyPattern1 is violated, or  

ii. UDE1.2: PropertyPattern2 is violated, or 

iii. UDE1.3: PropertyPattern1 is violated and PropertyPattern2 is violated.  

UDE1.1, UDE1.2 and UDE1.3 correspond to the violation of other compliance 

patterns. Hence, each UDE corresponds to a compliance pattern will be replaced with 

its corresponding CRT.  

 
Fig. 4. CRT for composite patterns.  
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Notably, for the negation operator, ‘(Not PropertyPattern1) is violated’, the 

undesirable effect in this case is ‘(PropertyPattern1) is satisfied’, which semantically 

represents the opposite of the CRTs analyzed above. For this purpose, each 

compliance pattern is re-analyzed the same way, with the undesirable effect (UDE) 

being ‘property pattern is satisfied’ (e.g. the lower levels of MutexChoice CRT in Fig. 

5).  

5.3 Current Reality Trees for the New Compliance Patterns 

The CRTs of the newly introduced compliance patterns (e.g. SegregatedFrom, 

Inclusive, etc.) are instances from the CRTs of composite patterns given in Fig. 4. 

Two examples of the CRTs of these compliance patterns are presented in Fig. 5; 

namely: Exclusive and Mutexchoice. 

 

Fig. 5. CRTs for Exclusive and MutexChoice Composite Patterns 

As shown in Fig. 5, the MutexChoice composite pattern is an ‘Xor’ composition 

between two atomic patterns: (P Exists) and (Q Exists). Hence, for the MutexChoice 

composite pattern, the CRT of the ‘Xor’ composite pattern is instantiated. The 

instantiation process starts from the outermost pattern to the innermost pattern. 

Similarly, the CRT of the Exclusive pattern is built based on the CRTs of ‘And’, 

‘Imply’ composite patterns and isabsent atomic pattern. 

5.4 Current Reality Trees of the Internet Reseller Scenario 

This section presents briefly due to space limitations the application of the pattern 

based representation approach and relevant CRTs of the second and third compliance 

constraints (R2 & R3) given in Table 1 from the Internet reseller scenario.  

In case violations are detected to R2 and R3 (e.g. the model-checker detects the 

violations), the CRTs to reason about violations are automatically constructed and 



traversed.  Fig. 6 presents the CRTs of the violations to R2 and R3. The CRT of the 

violation to R2 is an ‘Imply’ composition between two atomic patterns; exists and 

precedes. The CRT of the violation to the segregation-of-duty compliance constraints 

(R3) is shown in the right-hand side of Fig. 6.  

 

Fig. 6. CRTs for the violation to R2 and R3 

5.5 Implementation of the Root Cause Analysis Approach 

An effective and scalable implementation of the concepts discussed above is a 

challenging yet necessary step to help to ascertain the soundness of the approach 

proposed in this paper. We are currently implementing an environment as a part of a 

comprehensive tool-suite for business process compliance management, based on the 

concepts described in above sections. The prototype is a web-based environment4, 

which also incorporates standalone tools for building graphical representation of 

requirements using patterns. The web-based environment is implemented using 

‘PHP’5 as the main scripting language and Oracle database (ver.8i)6 as the repository 

for compliance data and meta-data. The integration with Reo toolkit [13], which is 

used for process verification, is ongoing. The integration is achieved through a group 

                                                           
4 http://eriss.uvt.nl/compas 
5 http://en.wikipedia.org/wiki/PHP 
6 http://en.wikipedia.org/wiki/Oracle_Database 



of asynchronous web services, which mainly forwards BPEL representation and 

relevant formal compliance rules specified in LTL as input to Reo toolkit and retrieve 

back the verification result listing the rules that have been checked and whether they 

are satisfied or not.  

Fig. 7 presents one of the user interfaces from the implementation reflecting how 

the results of the root cause analysis are communicated to experts. Only relevant 

remedies extracted from traversing the appropriate CRTs are displayed in the last 

column of the table in the user interface (‘Result Description/Remedy’ column). The 

user interface exemplifies the case of Internet reseller scenario, where R1 is satisfied, 

while, R2 and R3 are violated.  

 
Fig. 7. A user interface implementation for the running scenario.  

6 Related Work 

Deontic logic and temporal logic families have been successfully utilized in the 

literature as the formal foundation of compliance constraints. Key work examples 

utilizing languages based on Deontic logic are: [2], [14], [15], [16], [17], [18], [19] 

and [20]. On the other hand, major works built on top of temporal logic are: [5], [11], 

[21], [22], [23], [24], and [25]. Due to space limitation, we are listing here key works 

grounded on temporal logic. 

Authors in [5] proposed a static-compliance checking framework that includes 

various model transformations. Compliance constraints are modeled using the 

graphical Business Property Specification Language (BPSL) tool. Next, NuSMV2 

model checker is used to check the compliance. The study in [21] utilized π-Logic to 

formally represent compliance constraints. On the other hand, business process 

models are abstractly represented using BP-Calculus. Using HAL toolkit, a BPEL 

program equivalent to the abstract representation can be automatically generated if the 

two specifications are compliant. The study in [23] utilized past LTL (PLTL), where 



properties about the past can be represented. However sequential compliance 

constraints are just considered. On the other hand, the study in [24] utilizes the 

original pattern-based system, however, it considers aspects relevant to monitoring 

compliance during runtime. Furthermore, authors in [25] have extended Dwyer’s  

property pattern to capture time-related property specifications. E.g. activity A must 

always be followed by activity B within k time units. Integrating real-time dimension 

to the proposed approach entails an ongoing research direction. The study in [11] has 

utilized Dwyer’s patterns for the verification of service compositions. In [22], real-

time temporal object logic was proposed for the formal specification of compliance 

requirements based on a pre-defined domain ontology. Real-time temporal object 

logic is an expressive logic, however it is excessively difficult to be used.  

Assisting the user to resolve non-compliance during design-time has been 

addressed in [26], [27] and [23]. The notion of proximity relation has been introduced 

in [26] that quantitatively compare how much a modified business process model 

deviated from the original one. The goal is to resolve non-compliance violations by 

identifying minimally different process models. They also introduced heuristic 

guidance for detecting and resolving compliance violations. A major distinction to our 

work is that we provide concrete guidelines and our work is based on a compliance 

constraint taxonomy based on extended patterns. The notion of compliance distance 

has been introduced in [20, 27], as a quantification of the effort required to transform 

a non-compliant business process model to a compliant one, which can take the 

values between 0 and 1. A visualization of compliance violations has been introduced 

in [23] by utilizing Temporal Logic Querying (TLQ). To the best of our knowledge, 

this is the first study that considers an exhaustive analysis of root-causes of 

compliance violations, and providing the user with only relevant 

guidelines/suggestions as remedies to resolve the compliance deviations based on 

high-level patterns. 

7 Conclusions and Outlook 

Business processes –many of which are implemented as a SOA these days - form the 

foundation for all organizations, and as such, are impacted by laws, policies and 

industry regulations. Without an explicit auditing SOA framework to ensure 

compliance of service-enabled processes, organizations face litigation risks and even 

criminal penalties. One of the significant provisions towards business process 

compliance is a framework that would enable service engineers to define compliance 

constraints and weave them into service-enabled processes. Compliance management 

should be considered from the very early stages of the business process design, such 

that compliance constraints are designed into service-enabled processes. To enable 

automatic reasoning techniques for verifying and ensuring compliance, these 

compliance constraints should be grounded on a formal language. Using property 

specification patterns to specify compliance constraints and automatically generate 

formal specifications significantly facilitate the work of the compliance expert. 



Moreover, recovering from compliance violations in service-enabled processes is 

an important issue that has not paid much attention by the research community. The 

compliance expert should be provided with intelligent feedback that reveals the root-

causes of these violations and aids their resolution; not merely an indication whether 

the constraint is violated. To address this problem, we have proposed a taxonomy of 

compliance constraints based on Dwyer’s property patterns and extended this 

taxonomy with patterns that are frequently used to specify compliance constraints. 

Next, we have introduced a root-cause analysis approach to automatically reason 

about design-time compliance violations rooted on the proposed taxonomy. Based on 

the root-cause analysis, the compliance expert is provided with only relevant 

guidelines/suggestions.  

The root-cause analysis approach including its compliance constraint taxonomy is 

validated in three ways. Firstly, the internal and construct validity are verified by 

formalizing the taxonomy, and particularly, the atomic and composite patterns in 

LTL. Secondly, the implementability of our approach is ascertained with an 

experimental prototype. Lastly, we have explored and tested our approach with 

several case studies drawn from industrial partners in the COMPAS EU project in 

which we participate. Furthermore, the validation of the proposed approach will 

further be intensified by its application on various empirical experiments and/or case 

studies on prospective users of the developed prototype toolset. 

Design-time and runtime compliance management are complementary and 

indispensable phases for ensuring and enforcing the compliance. The main focus of 

this work is on design-time verification and analysis. Addressing compliance 

verification and analysis during runtime, based on the proposed compliance pattern 

taxonomy, and integrating it to the proposed design-time verification and analysis 

approach entails another important ongoing research direction. This course of 

research will pave the way for a comprehensive compliance management solution that 

verifies, analyses and ensures the compliance of business processes on both design-

time and runtime dimensions. Future work will concentrate on extending the 

compliance constraints taxonomy with additional domain-specific compliance 

patterns. This requires intensive involvement in the specification of various industrial 

large-scale use case scenarios.  
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