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Abstract

In this paper we maximize the efficiency of a multivariate S-estimator

under a constraint on the breakdown point. In the linear regression model,

it is known that the highest possible efficiency of a maximum breakdown

S-estimator is bounded above by 33% for Gaussian errors. We prove the

surprising result that in dimensions larger than one, the efficiency of a maxi-

mum breakdown S-estimator of location and scatter can get arbitrarily close

to 100%, by an appropriate selection of the loss function.

Keywords: Breakdown point, Multivariate Location and Scatter, Robust-

ness, S-estimator.
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1 Introduction

Multivariate S-estimators are estimating the center and the scatter matrix of a mul-

tivariate data cloud. They have excellent robustness properties. Their breakdown

point, which is the maximal fraction of outliers that an estimator can resist, can

go up to 50%. S-estimators are fast to compute (Salibian-Barrera and Yohai 2006),

and they were shown to be useful in robust multivariate analysis, e.g. for principal

components analysis (Croux and Haesbroeck 2000) and for discriminant analysis

(Bashir and Carter 2005). The limiting distribution of these estimators is multivari-

ate normal, and a formula for their asymptotic variances has been given by Lopuhaä

(1989). In this paper we want to study the maximal efficiency an S-estimator can

attain under a constraint on the breakdown point.

For a given p-dimensional sample x1, x2, . . . , xn, multivariate S-estimators for

location and scatter are defined as the vector tn and the positive definite symmetric

matrix Cn that minimize the determinant det(C), subject to

1

n

n
∑

i=1

ρ
(

√

(xi − t)tC−1(xi − t)
)

= b, (1.1)

over all positive definite symmetric matrices C and p dimensional vectors t. The

function ρ is a loss function, and b is constant selected to have consistency.

The standard choice for ρ is the Biweight loss function, given by

ρc(u) = min(u2/2 − u4/(2c2) + u6/(6c4), c2/6). (1.2)

By appropriately selecting c, the corresponding Biweight S-estimator attains a 50%

breakdown point. For smaller values of the dimension p, the Gaussian efficiency of

the location Biweight S-estimator is fairly low: 25%, for p = 1, 57%, for p = 2, and

72% for p = 3. The question we want to address is whether we can improve the

efficiency of the Biweight S-estimator by using other loss function than the Biweight.

More precisely, given a certain value of the desired breakdown point 0 < ε ≤ 0.5,

find the ρ-function yielding the maximal efficiency, under the constraint that the

breakdown point is at least ε.
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This problem was solved by Hössjer (1992) for the regression case, which cor-

responds to p = 1. He obtained that the efficiency of S-estimators of regression is

bounded above. The highest possible Gaussian efficiency a 50% breakdown point re-

gression S-estimator can attain is about 33%. This finding motivated researchers in

robust statistics to construct new types of regression estimators, like MM-estimators

(Yohai and Zamar 1988), to combine robustness with high efficiency. Multivariate

S-estimators for location and scatter were proposed by Davies (1987). Also for

multivariate S-estimators, alternative estimators aiming at higher efficiencies were

proposed, like multivariate MM-estimators (Tatsuoka and Tyler 2000), and several

others. We refer to (Maronna et al. 2006) for a review on robust multivariate esti-

mation of location and scatter.

The result we obtain is surprising: it turns out to be possible to construct loss

functions yielding multivariate S-estimators with efficiency arbitrarily close to 100%,

while still keeping the desired level for the breakdown point. In the multivariate

case, for p ≥ 2, combining a high breakdown point and arbitrarily high efficiency is

possible for an S-estimator .

The paper is organized as follows. Section 2 sets the notations and contains the

preliminary results. Section 3 presents the main theorem of the paper. Numerical

illustrations are given in Section 4. The last section discusses the estimation of the

scatter matrix by multivariate S-estimators, for which it also holds that the efficiency

can get arbitrarily close to 1.

2 Notations and preliminary results

Let X be a p-variate random variable having an elliptically symmetric distribution

H with density

fH(x) = g((x− µ)tΣ−1(x− µ)), (2.1)

with g a positive real valued function. Since S-estimators are affine equivariant, we

assume in the remainder of this article that µ = 0 and Σ = Ip. Let G(t) be the
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distribution function of the Mahalanobis distances , so

G(t) = PH(‖X‖ ≤ t)], for all t ≥ 0,

and define for any 0 < α < 1

Gα(t) = G(t) − (1 − α), for all t ≥ 0. (2.2)

We first restate the results on the breakdown point and the asymptotic vari-

ance of S-estimators, obtained in Davies (1987) and Lopuhaä (1989). We need the

following standard condition on the loss function

(A) ρ(0) = 0, ρ is non decreasing on (0,+∞) and absolutely continuous with

bounded derivative ψ. Furthermore, there exists a constant c > 0 such that ρ(c) =

ρ(∞).

To ensure consistency of the S-estimator defined in (1.1) it is required that EG[ρ(Y )] =

b. The breakdown point of an S-estimator is then given by

ε∗(ρ) = min(
EG[ρ(Y )]

ρ(∞)
, 1 −

EG[ρ(Y )]

ρ(∞)
). (2.3)

The asymptotic variance of the location S-estimator is characterized by the number

ASV (ψ) =
p

4cp

A(ψ,H)

(B(ψ,H))2
, (2.4)

where the constant cp = (
∫ ∞

0
g(z2)zp−1dz)−1 = 2π

p

2 /Γ(p
2
), and

A(ψ,H) =

∫ +∞

0

g(z2)ψ2(z)zp−1dz (2.5)

B(ψ,H) =

∫ +∞

0

g′(z2)ψ(z)zpdz. (2.6)

We want to select ρ, or equivalently ψ, such that the asymptotic variance is

minimal, under the condition that the breakdown point is at least equal to ε, the

desired level for the breakdown point, with 0 < ε ≤ 0.5. As was noticed by Hössjer

(1992), it is possible to express the condition on the breakdown point in terms of

the ψ function. Using partial integration, one can rewrite EG[ρ(Y )] = αρ(∞) as
∫ +∞

0

Gα(t)ψ(t)dt = 0, (2.7)
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with Gα defined in (2.2), for any 0 < α < 1. Since ASV (ψ) is independent of scalar

multiplication of ψ, we may set B(ψ,H) = C, with C a fixed constant. The problem

we want to solve is

Problem Pε . For a given breakdown point ε, minimize A(ψ,H) with respect to ψ

under the constraints that B(ψ,H) = C and (2.7) is satisfied for some ε ≤ α ≤ 1−ε.

The function ψ needs to satisfy the regularity condition (A).

This problem was solved by (Hössjer 1992) for p = 1, but it turns out that no

solution of the above problem exists for the multivariate case, as will be discussed

further in Section 2. An additional restriction is required; we ask that the loss

function remains zero in a neighborhood of ρ(0) = 0. This means that observations

with a very small Mahalanobis distance, the “inliers”, receive a zero weight. Let a

be a fixed number. Problem Pε with the additional constraint that the ψ-function

equals zero between 0 and a is abbreviated as Pε,a .

Solving problem Pε,a goes along the same lines as Hössjer (1992). The method

of Lagrange multipliers suggests that the solution to problem Pε,a is given by

ψε,a(x) =







ψε(x) if x ≥ a

0 if 0 < x < a,
(2.8)

with

ψε(x) = (Λg(x) − k
Gε(x)

g(x2)xp−1
)+, (2.9)

where k = k(ε, a) depends on ε and a, (u)+ = max(0, u) takes the positive part of

any number u. The function Λg is the score function of the maximum likelihood

estimator, given by

Λg(x) = −
2g′(x2)x

g(x2)
. (2.10)

In a similar way as in Hössjer (1992), a formal proof of the optimality of the

score function (2.8) for problem Pε,a can be given. The proof builds on two lemmas

and requires three conditions (B1)-(B3) on the model distribution H . They are

listed in the Appendix, and are the direct multivariate extensions of the lemmas

and conditions in Hössjer (1992).
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Theorem 1 Assume that condition (A) on the loss function ρ, and conditions (B1),

(B2) and (B3) on the model distribution hold. Take any 0 < ε < 0.5 and any

0 < a < G−1(1 − ε). The score functions {δψε,a}, with δ > 0 arbitrary, solve the

optimization problem Pε,a uniquely (almost surely).

Full details of the proofs are given in the technical note (Croux et al. 2009), where

it is also shown that the multivariate normal, the multivariate t and multivariate

power-distributions verify conditions (B1)-(B3).

3 Optimal Multivariate S-estimators of Location

In this section we present the main result of the paper: the efficiency of a multivariate

S-estimator can get arbitrarily close to 100%. We will first show that the score

function ψε,a, solving Pε,a tends to Λg for a tending to zero. The score function

Λg corresponds to the Maximum Likelihood estimator, and provides the smallest

possible asymptotic variance. For many models, including the Gaussian, Λg will not

be bounded, and correspond to an estimator with a zero breakdown point.

Having a closer look at the expression for ψε,a in (2.8), reveals that ψε,a and Λg

will coincide when the constant k = k(ε, a) vanishes. The following proposition,

proven in the Appendix, shows that this indeed happens.

Proposition 1 For any 0 < ε ≤ 0.5 we have that:

(i) lima↓0 k(ε, a) := k(ε) exists

(ii) If p ≥ 2, then k(ε) = 0.

We conclude from the previous proposition that there is pointwise convergence of

ψε,a(x) to Λg(x), for every x > 0. If the convergence would have been uniform, then

convergence of ASV (ψε,a) to ASV (Λg), the smallest possible variance, is immediate.

However, the function values of ψε,a(x) for x close to 0, tend to infinity for a tending

to zero. This is caused by the factor xp−1 in the denominator of (2.9), tending to
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infinity for x converging to zero (if p ≥ 2). Before stating the final result, we need

two additional conditions

(C1) lim
x→+∞

xpg′(x2) ln(g(x2)) = 0

(C2) EH [ln(g(‖X‖2))] exists.

It can be verified, see Croux et al. (2009) for details, that the multivariate normal,

the multivariate t and multivariate power-distributions all verify conditions (C1)-

(C2).

Theorem 2 For p ≥ 2, and 0 < ε ≤ 0.5, we have

ASV (ψε,a) −→ ASV (Λg) for a→ 0.

In the next section we will compute asymptotic efficiencies, defined as

Eff(ψε,a) =
ASV (Λg)

ASV (ψε,a)
, (3.1)

for several values of ε and a. As Theorem 2 shows, we have that Eff(ψε,a) converges

to 100%, for a tending to zero, and this at any model distribution satisfying the

conditions (B1)-(B3), and (C1)-(C2).

4 Numerical Illustrations

In this section we compute asymptotic efficiencies at the multivariate normal distri-

bution, where g(y) = exp(−u)/(2π)(p/2). Hence G(x) = Fχ2
p
(x2), with Fχ2

p
(·) the cdf

of a chi-square distribution with p degrees of freedom, and Λg(x) = x. The constant

k = k(a, ε) is selected such that the breakdown point condition (2.7) is verified.

The constant k is the root of a strictly decreasing real valued function, see equation

(A.1), and computing it poses no numerical difficulties.

In Figure 4 we plot the loss function solving problem Pε,a , together with the

Biweight loss and the quadratic loss (corresponding to the Maximum Likelihood

estimator). We see that the optimal loss functions (solid lines; left panel) are con-

tinuous and bounded, as the Biweight. There are two differences (i) their curvature
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Table 1: Gaussian efficiency of the optimal location S-estimator for different values

of a and p. The breakdown point ε is 0.5 or 0.25. The first row corresponds to the

Biweight S-estimator.

p = 2 p = 3 p = 4 p = 5

Biweight 0.5796 0.7224 0.7998 0.8463

ε = 0.5 a = 0.1 0.6469 0.8463 0.9558 0.9925

a = 0.01 0.7111 0.9504 0.9980 1.0000

a = 0.001 0.7470 0.9887 1.0000 1.0000

Biweight 0.9118 0.9514 0.9676 0.9760

ε = 0.25 a = 0.1 0.9452 0.9855 0.9970 0.9996

a = 0.01 0.9559 0.9952 0.9998 1.0000

a = 0.001 0.9618 0.9989 1.0000 1.0000

is more quadratic (ii) they increases sharply in a neighborhood of zero. These two

differences are reflected in the ψε,a functions (solid lines; right panel); they (i) are

close to Λg(x) = x (ii) attain high, but bounded, values if the argument is close to

zero.

In Table 1, we give the efficiency of the location S-estimator with score function

ψε,a for different values of p and a. We see that it is indeed possible to improve

substantially the efficiency of the Biweight S-estimators using other loss functions.

Table 1 confirms that there is convergence towards 100% efficiency, for a tending to

zero. This convergence, however, is rather slow, in particular for p = 2. For larger

values of p, the efficiency of the Biweight S-estimator is higher, and convergence

towards the maximal efficiency is faster.
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Figure 1: The loss functions solving problem Pε,a , for ε = 0.5 and p = 3, together

with the Biweight loss (dashed line) and the quadratic loss (dotted line). The ρ

functions are given in the left panel, the score functions ψ in the right panel. Two

values of a are considered: a = 0.1 and a = 0.01.
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5 Discussion

In section 3 we proved that a location S-estimator with a given breakdown point

can attain an efficiency arbitrarily close to 100%. For the scatter matrix estimator

one can follow exactly the same approach. We characterize the precision of a scat-

ter matrix estimator by the asymptotic variance of an off-diagonal element, as it

determines the limiting variance of the standardized scatter matrix (i.e. the shape

matrix), e.g. Frahm (2009). Its formula resembles (2.4), but with

A(ψ,H) =

∫ +∞

0

g(z2)ψ2(z)zp+1dz (5.1)

B(ψ,H) =

∫ +∞

0

g′(z2)ψ(z)zp+2dz. (5.2)

The difference with (2.5) and (2.6) is that the exponent p for the location problem

needs to be replaced by the exponent p + 2 for the scatter problem, but all proofs

still carry through. Under the same conditions on the model distribution, it then

follows that also S-estimators of scatter can attain an efficiency arbitrarily close to

100%. A difference with the location case is that we do not need the condition p ≥ 2

anymore; optimal efficiency can also be attained for univariate scale estimators, as

was already shown in Croux (1994)

In Table 2 we give the efficiency of the optimal scatter matrix S-estimator for

different values of the breakdown point, a and p. Convergence towards 100% effi-

ciency for a tending to zero is faster than for the location case. Note that for p = 4,

the biweight estimator already has a high efficiency; see Maronna et al. (2006) for a

discussion on the behavior of S-estimators in high dimensions.

To conclude, let us restate the main result of this paper. While regression S-

estimators have limited efficiency, this is not true for S-estimators of multivariate

location/scatter. The optimal S-estimators we discussed combine high efficiency and

high breakdown point. In this paper, robustness is only measured by means of the

breakdown point. While the breakdown point is the most well-known measure of

robustness, it is not the only one. For example, the local shift sensitivity of the

9



Table 2: Gaussian efficiency of the optimal scatter matrix S-estimator for different

values of a and p. The breakdown point ε is 0.5 or 0.25. The first row corresponds

to the Biweight S-estimator.

p = 2 p = 3 p = 4 p = 5

Biweight 0.3765 0.5794 0.7025 0.7784

ε = 0.5 a = 0.1 0.9144 0.9884 0.9989 0.9999

a = 0.01 0.9972 1.0000 1.0000 1.0000

Biweight 0.8498 0.9243 0.9528 0.9669

ε = 0.25 a = 0.1 0.9882 0.9988 0.9999 1.0000

a = 0.01 0.9992 1.0000 1.0000 1.0000

S-estimators based on ψε,a will be infinite. A topic for future research is to compare

the maxbias of several highly efficient high breakdown estimators for multivariate

location and scatter, including multivariate S-estimators.
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A Appendix

The following conditions on the model distribution H are the multivariate versions

of the conditions in Hössjer (1992).

(B1) The function g is strictly positive and bounded, with derivative g′ < 0 .

(B2) For every k > 0 and 0 < α < 1, the function hα,k(x) = 2g′(x2)xp + kGα(x) is

continuous, has a unique zero c(α, k), such that hα,k(x) > 0 for x > c(α, k), and

hα,k(x) < 0 for x < c(α, k).

(B3) Let Λg(x) = −2g
′

(x2)x/g(x2) be the likelihood score function. We require that
∫ +∞

0
Λg(x)dx = ∞.

Using these conditions, one can proof the following two lemmas

Lemma 1 Under assumptions (B1),(B2) and (B3), there exists for each k > 0 and

0 < α < 1 a unique c = c(α, k) such that Λg(x)−k
Gα(x)

g(x2)xp−1

<
=
>

0, whenever x > 0 and

x
>
=
<
c(α, k). Moreover, with α fixed, c(α, k) is a continuous and strictly decreasing

function of k, with c(α, k) −→ +∞ as k −→ 0+ and c(α, k) −→ c+α as k −→ +∞.

The next step is to find for each α and a a corresponding k = k(α, a) such that

(2.7) is satisfied. For this purpose we introduce the following function

Jα,a(k) =

∫ c(α,k)

a

ψα,a,k(x)Gα(x)dx. (A.1)

Lemma 2 Let 0 < α < 1, and take 0 < a < cα. Assume that (B1) − (B3) hold.

Then Jα,a(k) is a continuous, strictly decreasing function of k with a unique zero

k(α, a).

The proofs are almost identical to those in Hössjer (1992). Full details are given in

the technical note (Croux et al. 2009).
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B Appendix

In this Appendix we proof the proposition and the Theorem of Section 3.

Proof of Propositon 1. To prove (i) and since k(ε, a) is positive, it is sufficient to show

that k(ε, a) is increasing for 0 < a < G−1(1−ε) = cε. For this, take 0 < a < b < cε,.

and let us show that k(ε, a) < k(ε, b). By definition, k(ε, a) solves Jε,a(k) = 0 and

k(ε, b) solves Jε,b(k) = 0, see Lemma 2 . From (A.1) it follows that

Jε,a(k) =

∫ b

a

ψε,a,k(x)Gε(x)dx+ Jε,b(k), (B.1)

for every k. Since b < cε, the first term of (B.1) is strictly positive, implying that

Jε,a(k(ε, b)) < Jε,b(k(ε, b)) = 0 = Jε,a(k(ε, a)). Since Jε,b(k) is strictly decreasing in

k, see Lemma 2, we must have k(ε, a) < k(ε, b).

Now we proof (ii) by contradiction. Assume that k(ε) > 0. Then we also have

that c(ε, k(ε)) is finite. By definition of k(ε, a) and c(ε, k(ε, a)), we have for every

a > 0
∫ c(ε,k(ε,a))

a

Λg(x)Gε(x)dx = k(ε, a)

∫ c(ε,k(ε,a))

a

G2
ε(x)

g(x2)xp−1
dx.

Taking the limit to a = 0, yields

∫ c(ε,k(ε))

0

Λg(x)Gε(x)dx = k(ε)

∫ c(ε,k(ε))

0

G2
ε(x)

g(x2)xp−1
(x)dx. (B.2)

The first term of the above equality is finite, using condition (B3) and the second is

not, since p ≥ 2. Hence we obtain a contradiction and must conclude that k(ε) = 0.

�

Proof of Proposition 2. Denote ψa = ψε,a,k(ε,a), c = c(ε, k(ε, a)), and k = k(ε, a).

Recall that if a ↓ 0 then k ↓ 0, and c ↑ ∞. Using the definition of ψa, we get

A(ψa) =

∫ c

a

g(r2)[Λg(r) − k
Gε(r)

g(r2)rp−1
]2rp−1dr

=

∫ c

a

g(r2)Λ2
g(r)r

p−1dr − k

∫ c

a

Λg(r)Gε(r)dr + k

∫ c

a

Gε(r)(
kGε(r)

g(r2)rp−1
) − Λg(r))dr.
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The last integral is equal to 0, by definition of ψa and k, see Lemma 2. We can write

A(ψa) =

∫ c

a

Λ2
g(r)g(r

2)rp−1dr − k

∫ c

a

Λg(r)Gε(r)rdr. (B.3)

Furthermore,

B(ψa) =

∫ c

a

ψa(r)g
′(r2)rpdr

= −
1

2

∫ c

a

(Λg(r) − k
Gε(r)

g(r2)rp−1
)Λg(r)g(r

2)rp−1dr

=
−A(ψa)

2

which implies that ASVp(ψa) = p/(cpA(ψa)). To show that ASV (ψa) −→ ASV (Λg)

for a→ 0+, we thus need to show that

A(ψa) −→ A(Λg) =

∫ +∞

0

Λg(r)g(r
2)rp−1dr.

Since c(ε, k(ε, a)) tends to infinity (see Lemma 1 and Proposition 1), it follows from

(B.3) that it is sufficient to show

k

∫ c

a

g′(r2)

g(r2)
Gε(r)rdr −→ 0, a→ 0.

We can develop this last expression as follows,

k

∫ c

a

g′(r2)

g(r2)
Gε(r)rdr (B.4)

= −(1 − ε)k

∫ c

a

g′(r2)

g(r2)
rdr + k

∫ c

a

g′(r2)

g(r2)
G(r)rdr (B.5)

= −
(1 − ε)

2
k(ln g(c2) − ln g(a2)) + k

∫ c

a

g′(r2)

g(r2)
G(r)rdr (B.6)

For a→ 0, we have g(a2) → g(0) > 0, such that ln(g(a2)) → 0, a→ 0. So it remains

to show that

k ln(g(c2)) −→ 0, a→ 0, (B.7)

and

k

∫ c

a

g′(r2)

g(r2)
G(r)rdr −→ 0, a→ 0. (B.8)
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First note that c satisfies the equality ψa(c) = 0, or

−
g′(c2)

g(c2)
c = k

Gε(c)

g(c2)cp−1
,

then

k ln g(c2) = −
g′(c2)

g(c2)

g(c2)cp ln(g(c2))

Gε(c)

= −
g′(c2)cp ln(g(c2))

Gε(c)
.

We have that Gε(c) −→ ε, since c → ∞. Using condition (C1) results in (B.7).

Finally, using partial integration, we get

k

∫ c

a

g′(r2)

g(r2)
G(r)rdr =

k

2
ln g(c2)G(c)−

k

2
ln g(a2)G(a)−

k

2

∫ c

a

cpr
p−1g(r2) ln g(r2)dr.

(B.9)

The first 2 terms in the above equation are tending again to zero; for the last term

we have

k

∫ c

a

rp−1g(r2) ln g(r2)dr → 0 ×E[ln g(‖X‖2)], for a→ 0.

Using (C2), (B.8) follows.

�
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