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Université libre de Bruxelles, ECARES, and Institut de Recherche en Statistique, CP-114,
Av. F.D. Roosevelt 50, B-1050 Brussels, Belgium
Tel.: +32-(0)2-650-3858
Fax: +32-(0)2-650-4012
E-mail: cdehon@ulb.ac.be
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1 Introduction

Let X = {X1, X2, ....., Xn} be a set of n multivariate observations, with each Xi a

vectors of dimension p. These observations are a random sample from a distribution F .

We assume that the distribution F is elliptically symmetric with center µ and scatter

matrix Σ. The density of F can then be written as

fµ,Σ(x) =
1

det(Σ)
g((x− µ)tΣ−1(x− µ)), (1)

with det(Σ) the determinant of Σ and g a function taking positive values and scaled

such that the density f integrates to one. If the second moment of F exists, then Σ is

a multiple of the covariance matrix. In this paper we focus on F = N(0, Σ), but the

obtained results extend to any elliptically symmetric distribution.

It is well known that the sample covariance matrix, while being the most efficient

at normal distributions, is very vulnerable in presence of outliers. A very simple robust

estimator of Σ is the Sign Covariance Matrix (SCM), defined as

Σ̂S(X) =
1

n

n∑

i=1

(Xi − µ̂n)(Xi − µ̂n)t

‖Xi − µ̂n‖2 . (2)

This estimator is nothing else but the usual covariance matrix computed from the

spatial signs of the observations, defined as

U(Xi) =
(Xi − µ̂n)

‖Xi − µ̂n‖ .

Since the spatial signs are bounded vectors, with unit norm, the SCM always remains

bounded, indicating its robustness. The SCM and its usefulness in different applications

are discussed in Locantore et al (1999), Visuri et al (2000), Sirkia et al (2009), Oja

(2010), among others. For the location estimator µ̂n in (2) we take the L1-median, also

called the spatial median, defined as

µ̂ = argmin
µ

1

n

n∑

i=1

‖Xi − µ‖. (3)

The L1-estimator is highly robust, and as solution of a convex optimization problem

very fast to compute.

A first contribution of this paper is that we formally show that the breakdown point

of the SCM is the highest possible, namely 50%. The breakdown point of an estimator

is a standard measure of robustness, and gives the highest fraction of outliers the

estimator can withstand. A formal definition is given in Section 2. At first sight one

may think that the breakdown point of the SCM should be 100%, since its norm is

always bounded by one. However, breakdown may also occur if the estimator implodes,

meaning that the smallest eigenvector of the SCM tends to zero. Implosion breakdown

is important, since one often inverts scatter matrices, and a full rank of the scatter

matrix estimator is desirable.

A major drawback of the SCM is that it is only orthogonally equivariant. This means

that Σ̂S(AX) = AΣ̂S(X)At for any orthogonal matrix A, but not for any non-singular

matrix A, which would imply affine equivariance. The lack of affine equivariance also

results in a severe loss of statistical power when the true distribution deviates strongly
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from sphericity, as was shown in Croux et al (2002). To increase the efficiency of the

SCM, we propose to perform a one-step update of the SCM,

Σ̂1(X) =
1

n

n∑

i=1

(Xi − µ̂n)(Xi − µ̂n)t

(Xi − µ̂n)tΣ̂−1
S (Xi − µ̂n)

. (4)

More generally, the k-step SCM estimator is defined by

Σ̂k(X) =
1

n

n∑

i=1

(Xi − µ̂n)(Xi − µ̂n)t

(Xi − µ̂n)tΣ̂−1
k−1(Xi − µ̂n)

, (5)

for k > 1. We will show that the k-step SCM estimator keeps the breakdown point of

the initial SCM, but achieves a higher efficiency at non-spherical distributions.

If k tends to infinity, then the k-step SCM estimator converges to Tyler’s M, an

affine equivariant estimator. In fact, Tyler (1987) proposed an iterative algorithm to

compute his estimator and proved its convergence. One has that Σ̂k corresponds to

the kth step approximation of Tyler’s M estimator. In this paper, we consider Σ̂k as

an estimator in its own right, being orthogonal equivariant and having good robust-

ness properties. While Tyler’s M-estimator has a breakdown point decreasing with the

dimension, this does not hold for Σ̂k. So keeping k fixed results in a high breakdown

point, a property one looses by running the iterative algorithm to infinity.

The paper is organized as follows. Section 2 shows that the SCM and its k-step

version have the maximal breakdown point property. Section 3 contains results on

statistical efficiency. We derive an analytical expression for the asymptotic efficiency in

the bivariate Gaussian case. Simulation results are presented in Section 4, and Section

5 contains the conclusions and limitations of this paper.

2 Breakdown point

In this section we compute the breakdown point of the SCM and the k-step version.

We prove that they attain the highest possible breakdown point of 50%. The location

estimator used in definitions (2) and (5) is the L1-median. The breakdown point of a

multivariate location estimator µ̂n at the sample X is defined as

ε∗(µ̂n, X) = min
1≤m≤n

{m

n
: sup

X′
‖µ̂n(X)− µ̂n(X ′)‖ = +∞}.

The supremum is taken over all possible corrupted collections X ′ that can be obtained

by replacing any m points X1, ..., Xm of X by arbitrary values X ′
1, ..., X ′

m. Lopuhaä

and Rousseeuw (1991) showed that the L1-median has the largest possible breakdown

point of any translation equivariant estimator:

ε∗(µ̂n, X) =
[n+1

2 ]

n
. (6)

The breakdown point of a multivariate scale estimator Σ̂ at a data set X is defined

as the smallest fraction of outliers that can either take the largest eigenvalue over

all bounds, or take the smallest eigenvalue arbitrarily close to 0. Denote the ordered
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eigenvalues of any matrix Σ by λ1(Σ) ≥ ... ≥ λp(Σ). This formal definition of the

breakdown point is then

ε∗(Σ̂, X) = min
1≤m≤n

{m

n
: sup

X′
max{λ1(Σ̂(X ′)), λp(Σ̂(X ′))−1} = +∞},

where the supremum is taken over the same collections X ′ as before. We first show

that the SCM estimator has the same breakdown point as the L1-median. A proof of

this proposition is given in the Appendix.

Proposition 1 Let X be a sample of size n such that no bn/2c+1 points are contained

in the same hyperplane. Then

ε∗(ΣS , X) = [
n + 1

2
]/n.

The k−step estimator keeps the breakdown point of the initial SCM estimator. The

proof relies on the following identity

Σ̂k(X) = Σ̂k−1(X)1/2Σ̂S

(
Σ̂
−1/2
k−1 (X)X

)
Σ̂k−1(X)1/2, (7)

for any k ≥ 1, and with Σ̂0 := Σ̂S . It is not difficult to show, combining (7) and

Proposition 1, that Σ̂k will inherit the breakdown point of Σ̂k−1. By induction we get

that

Proposition 2 Let X be a sample of size n such that no bn/2c+1 points are contained

in the same hyperplane. Then

ε∗(Σk, X) = [
n + 1

2
]/n, (8)

for every k ≤ 1.

The above result holds for every fixed value of k. When we let k tend to infinity, by

iterating formula (5) up to convergence, the breakdown point is not maximal anymore

and depends on the dimension. Dumbgen and Tyler (2005) showed that an upper bound

for Tyler’s M-estimator is given by 1/p, with p the dimension. This finding provides

some theoretical support for the results of Hettmansperger and Randles (2002), who

said that Tyler’s M-estimator has a ’practical’ breakdown point of 50%.

3 Asymptotic efficiencies

In this section we study some aspects of the limiting distribution of the k-step SCM

estimators. In particular we compute asymptotic efficiencies at the bivariate normal

distribution, but the obtained results can be easily extended to other elliptically sym-

metric distribution. Let us first define the population quantities that are estimated.

For a given distribution F , let

T (F ) = argmin
µ

EF [‖X − µ‖]

be the population version of the spatial median. The population counterpart of the

SCM is

ΣS(F ) := Σ0(F ) = EF

[
(X − T (F ))(X − T (F ))t

(X − T (F ))t(X − T (F ))

]
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and the functional k-step SCM is defined recursively as

Σk(F ) = EF

[
(X − T (F ))(X − T (F ))t

(X − T (F ))tΣ−1
k−1(F )(X − T (F ))

]
, (9)

for k ≥ 1. It is worth mentioning that also the SCM verifies (9), with Σ−1(F ) = Ip,

the identity matrix. In the limit, for k → ∞, we get the population version of Tyler’s

estimator, as solution of the equation

Σ∞(F ) = EF

[
(X − T (F ))(X − T (F ))t

(X − T (F ))tΣ−1∞ (F )(X − T (F ))

]
, (10)

where the constraint Trace(Σ∞(F )) = p is imposed to ensure a unique solution. Alter-

native, one could use the constraint det(Σ∞(F )) = 1, see Paindaveine (2008).

A scatter matrix Σ can always be decomposed as

Σ = λUDU t, (11)

where U contains the eigenvectors of Σ, D is a diagonal matrix containing the scaled

eigenvalues of Σ, and λ = det(Σ). The size of the scatter matrix is then determined

by λ, the matrix UDU t is the shape matrix while U determines the orientation of

the scatter matrix (Bensmail and Celeux, 1996). Since all estimators we consider are

at least orthogonal equivariant, we may assume without lost of generality that the

scatter matrix Σ of the distribution F is diagonal. Using symmetry arguments, it is

then immediate to check that Σk(F ) is also diagonal, for every k ≥ 0. We thus have

that the SCM and its k-step versions have the same orientation as the scatter matrix

Σ, but the shape and the size will be different.

To compare the precision of the different k-step estimators in a meaningful way, we

compare the asymptotic variances of their eigenvectors, who are all estimating the same

quantity at elliptical model distributions. We only present results for the bivariate case

(p = 2), to facilitate the exposition, and because it allows for an explicit expression of

the asymptotic variances. The model distribution is then denoted by Fγ , having scatter

matrix

Σ =

(
1 0

0 γ

)
, 0 < γ < 1. (12)

Since eigenvectors have norm one, and are orthogonal, it suffices to study the distribu-

tion of the first component of the first eigenvector of Σ̂k (for p = 2).

3.1 Asymptotic Variance

For p = 2, the asymptotic variance of the first component of the first eigenvector of

Σ̂k at Fγ equals

ASVk(Fγ) =
1

(λk,2 − λk,1)2
E[IF (X, Σk,12; Fγ)2], (13)

see Croux and Haesbroeck (2000). The computation of the influence function of the off-

diagonal element of Σ̂k is not difficult. Using standard influence function techniques, we
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get that the influence function of an off-diagonal element of the k-step SCM estimator

at x = (x1, x2)
t equals

IF (x, Σk,12; Fγ) =
x1x2

xtΣ−1
k−1(Fγ)x

+ ck−1IF (x, Σk−1,12; Fγ). (14)

We have that

cs = 2EFγ

[
X2

1X2
2

(XtΣs(Fγ)−1X)2

]
1

λs,1λs,2
,

and

Σs(Fγ) =

(
λs,1 0

0 λs,1

)
, (15)

for every s ≥ 0. Hence the influence function can be computed recursively from (14).

The IF for k = 0, corresponding to the SCM, is given by

IF (x, Σ0,12; Fγ) =
x1x2

‖x‖2 ,

and still verifies (14) if we set c−1 = 0, and λ−1,1 = λ−1,2 = 1, such that Σ−1(Fγ) = I.

Working out the recursive relation (14), combined with (13), results in

ASVk(Fγ) =
1

(λk,2 − λk,1)2
at

kBkak (16)

with ak = (1, ck−1, ck−1ck−2, . . . , ck−1ck−2 · · · c−1)
t a vector of length k + 1, and Bk

a square matrix of size k + 1, with elements

(Bk)j1,j2 = EFγ

[
X2

1X2
2

(XtΣk−j1(Fγ)−1X)(XtΣk−j2(Fγ)−1X)

]

for 1 ≤ j1, j2 ≤ k+1, and for every k ≥ 0. The vector ak, the matrix Bk and the scalar

ck all depend on γ.

For the SCM, so k = 0, the asymptotic variance was computed by Croux et al

(2002). At the normal distribution they obtain

ASV0(Fγ) =

√
γ

2(1−√γ)2
.

Below we show how analytic expressions for the asymptotic variance for k ≥ 1 can be

obtained.

3.2 Calculus

In this section we provide some lemmas allowing us to compute the ASVk in (16).

For computing the constant vector ak and the matrix Bk in (16), we need to evaluate

quantities of the form

Ψ(a, b) = E0

[
X2

1X2
2

(X2
1 + aX2

2 )(X2
1 + bX2

2 )

]
,

with a, b > 0. Furthermore, we also need the eigenvalues of Σk(Fγ). The first lemma

gives an expression for these eigenvalues. The second lemma gives two formulas allow-

ing to compute analytically the asymptotic variances at the normal distribution. The

results can be obtained by straightforward calculus, and details can be found in the

Ph.D. manuscript of Yadine (2006).
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Lemma 1 Let λk,1 and λk,2 be the eigenvalues of Σk(Fγ), wiht 0 < γ < 1. Then the

following recursion relations hold:

λk,1 = λk−1,1

(
1− γ

λk−1,1

λk−1,2
ϕ(γ

λk−1,1

λk−1,2
)

)

and

λk,2 = γλk−1,1ϕ(γ
λk−1,1

λk−1,2
),

with

ϕ(a) = EF1

[
X2

1

X2
1 + aX2

2

]
,

for any a > 0, and k ≥ 0. Recall that λ−1,1 = λ−1,2 = 1.

Lemma 2 For Fγ a normal distribution, we have

ϕ(a) =
1√

a(1 +
√

a)

and

Ψ(a, b) =
1

(
√

a +
√

b)(1 +
√

a)(1 +
√

b)
,

for all a, b > 0.

3.3 Efficiency of k-step estimators for bivariate Gaussian distributions

At the normal distribution, the most efficient estimator for Σ is the sample covariance

matrix, being the maximum likelihood estimator. It is not difficult to verify that

ASVML(Fγ) =
γ

(1− γ)2
.

We then define the efficiency of the k-step SCM as

Effk(Fγ) =
ASVML(Fγ)

ASVk(Fγ)
(17)

for k ≥ 0. Using the results of subsections 3.1 and 3.2 the efficiency can be computed

analytically at Gaussian distributions. For example, for the one-step SCM we have

Eff1(Fγ) =
2γ1/4(1−√γγ1/4)2(1 + γ1/4)2

(1− γ)2
[
(1 + γ1/4)2 + 5γ1/4

] .

In Figure 1 we plot the efficiencies of the k-step SCM estimator for different values

of k, as a function of γ, where γ is the ratio between the smallest and the largest

eigenvalue of the model covariance matrix. We see that the efficiencies converges very

quickly to the value 0.5, when k tends to infinity. This limiting value corresponds to the

efficiency of Tyler’s M-estimator, being p/(p+2) = 0.5 (Tyler 1987, Frahm 2009). This

values does not depend on the value of γ since Tyler’s M shape is an affine equivariant

estimator (see also Ollila et al 2002). For the k-step SCM we observe a loss of efficiency

if we deviate strongly from spherical distribution, i.e. when γ is close to zero and where

Σγ is close to non-singular The surprising finding is that already for small values of

k, say k = 3, there is almost no difference anymore between the efficiency of Tyler’s

M and the k-step SCM, over almost the complete range of possible values for γ. For

instance, for γ = 0.001, Eff3(Fγ) still equals 0.44. Hence the loss in efficiency of using

the k = 3 version instead of the fully iterated Tyler’s M-estimator is only important

for extremely small values of γ.



8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

γ

E
ffi

ci
en

cy

k=3
k=2
k=1
SCM

Fig. 1 Efficiencies of the SCM and its k-step version at the bivariate normal distribution, as a
function of γ, the ratio between the smallest and the largest eigenvalue of the model covariance
matrix. The efficiency of Tyler’s M-estimator is constant and equal to 0.5. We see that, for
increasing k, there is fast convergence to this value.

4 Simulations

In this section we perform a modest simulation study to confirm the asymptotic ef-

ficiencies obtained in the previous Section. We generate m = 10000 samples from a

bivariate normal distribution with covariance matrix Σγ , as in (12).

For every generated sample, we compute the first eigenvector v̂j
1 of the multivariate

scale estimator, and summarize the outcomes by the

MSE(v̂1) =
1

m

m∑

j=1

(
arccos{|vt

1v̂j
1|}

)2
,

with v1 = (1, 0)t the true eigenvector. This MSE converges to the asymptotic variance

(16) introduced in Section 3, see Croux et al (2002). Dividing the MSE obtained using

the sample covariance matrix by the MSE resulting from the k-step SCM yields the

finite sample counterpart of (17). Finite sample efficiencies are obtained for the SCM,

its k-step version, with k = 1, 2, 3, 4, and for the fully iterated version (k = ∞), i.e.

Tyler’s M-estimator. We consider sample sizes n = 20, 50, 100, 200. Furthermore, we
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Table 1 Finite sample efficiencies, over 10000 simulation runs, of the first eigenvector esti-
mates, for samples of size n = 20, 50, 100, 200, generated from a bivariate normal distribution
with mean 0 and covariance matrix Σ = diag(1, γ), for γ = 0.1 and γ = 0.7. We considered the
SCM, and its k − step version. The column with k = ∞ corresponds to Tyler’s M-estimator.

γ = 0.1

n SCM k = 1 k = 2 k = 3 k = 4 k = ∞
20 0.338 0.382 0.404 0.411 0.414 0.415
50 0.359 0.421 0.453 0.467 0.473 0.476
100 0.365 0.433 0.467 0.482 0.489 0.492
200 0.363 0.432 0.467 0.483 0.489 0.493
∞ 0.365 0.436 0.473 0.489 0.496 0.500

γ = 0.7

n SCM k = 1 k = 2 k = 3 k = 4 k = ∞
20 0.791 0.790 0.789 0.788 0.788 0.786
50 0.655 0.655 0.655 0.654 0.654 0.653
100 0.523 0.523 0.522 0.522 0.521 0.521
200 0.427 0.427 0.427 0.427 0.427 0.427
∞ 0.496 0.498 0.499 0.500 0.500 0.500

take γ = 0.1, where the deviation of sphericity is very strong, and γ = 0.7, where we

are closer to a spherical model distribution. The standard errors around the results

reported in Table 1 are at most 0.02.

We can see from Table 1 that the finite sample efficiencies converges to their asymp-

totic counterparts (n = ∞). Note that for γ = 0.7 and n = 20, 50 the finite sample

efficiencies are considerably higher than expected. When we are closer to the spherical

model distribution (γ = 0.7), there appears to be no significant difference between the

efficiency of the different k-step estimators and Tyler’s M.

5 Conclusion

The use of k-step estimators is widespread in the statistical literature (see Hallin et al,

2006 for a recent contribution). Starting from an initial estimate, one makes sequen-

tial updates of the estimator, resulting in a sequence of k-step estimators. The initial

estimator is consistent, and the k-step versions increase the efficiency. Most often, the

initial estimator is easy to compute, and the k-step updates come with almost no addi-

tional computational effort. As such, Taskinen et al (2009) use Tyler’s M-estimator, or

its symmetrized version, as a starting estimator, and increase its efficiency by carrying

out k-steps. However, since this starting estimator has a low breakdown point, the

same holds for the k-step improvement. Our approach is different, we start from a high

breakdown estimator and all further k-step SCM inherit this high breakdown point.

As we showed in Section 3, the efficiency of the k-step SCM estimator increases

quickly to p/(p + 2), the efficiency of Tyler’s M-estimator. To increase further the

efficiency, additional weights can be added, resulting in

Σ̂k(X) =
1

n

n∑

i=1

(Xi − µ̂n)(Xi − µ̂n)t

(Xi − µ̂n)tΣ̂−1
k−1(Xi − µ̂n)

w((Xi − µ̂n)tΣ̂−1
k−1(Xi − µ̂n))

for k ≥ 1. Kent and Tyler (1991) show that this sequence of estimators converges to an

M-estimator of shape if the weight function w is strictly increasing. Using a bounded

weight function will retain the breakdown point of the initial SCM. Assume that we

take a weight function w that is bounded, strictly increasing, and such that w(s) = s
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for s ≤ c. For c and k large enough, this results in a high breakdown point estimator

having a Gaussian efficiency arbitrarily close to 100%.

Our paper has several limitations. In this paper we keep the location estimator fixed.

One could consider to update the location estimator as well, as in Hettmansperger

and Randles (2002). We claim that the k-step spatial median retains the maximal

breakdown point of the L1-median, and that updating the location estimator will not

change the efficiency of the k-step SCM estimator, neither its breakdown point.

Another limitation is that the k-step SCM estimator is only consistently estimating

the orientation of the scatter matrix. However, this is the most crucial part, since the

eigenvalues of Σ can be estimated afterwards by applying an efficient and robust scale

estimator to the data projected on the respective eigenvectors. Finally, we only measure

robustness by means of the breakdown point. It would be of interest to consider also

the maxbias curve, as was done by Croux and Rousseeuw (1994) for univariate k-step

M-estimators.

Appendix

Proof of proposition 1. Denote Σ̂ = Σ̂S . We first show that ε∗(Σ̂, X) ≥ bn+1
2 c/n. Let

m < bn+1
2 c and replace m observations of X to get X ′ = {x1, . . . , xn−m, x′n−m+1, . . . , x′n}.

Without loss of generality, we assume that the first n−m values of X remain unchanged.

Let µ̂′ be the L1-median computed from X ′. We need to show that there are existing

constants δX , NX > 0 such that λmin(Σ̂(X ′)) > δX and λmax(Σ̂(X ′) < NX . We have

λmax(Σ̂(X ′)) = sup
‖u‖=1

utΣ̂(X ′)u

= sup
‖u‖=1

1

n

n∑

i=1

ut(x′i − µ̂′)(x′i − µ̂′)tu
‖x′i − µ̂′‖2

= sup
‖u‖=1

1

n

n∑

i=1

(ut(x′i − µ̂′))2

‖x′i − µ̂′‖2

≤ sup
‖u‖=1

1

n

n∑

i=1

‖u‖2‖x′i − µ̂′‖2
‖x′i − µ̂′‖2 = 1 = NX .

For every subset J of size n−m from {1, . . . , n}, define ηJ = maxi∈J
∑

i∈J d2(xi, HJ ),

where HJ is the hyperplane minimizing
∑

i∈J d2(xi, H) over all possible hyperplanes

H, and d(x, H) is the Euclidean distance between an observation x and a hyperplane H.

Define then ηX = minJ ηJ . Since n−m ≥ bn+1
2 c, and no bn+1

2 c original observations

are on the same hyperplane, we have that ηX > 0. Furthermore, since there is not

yet breakdown of the L1-median, there exists a constant M̄ such that ‖µ̂′‖ ≤ M̄X .

Finally, let MX = max1≤i≤n ‖xi‖, and δX = 0.5ηX/(n(MX + M̄X)2). Using all these
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notations, we obtain

λmin(Σ̂, X ′) = min
‖u‖=1

utΣ̂(X ′)u

= min
‖u‖=1

1

n

n∑

i=1

ut(x′i − µ̂′)(x′i − µ̂′)tu
‖x′i − µ̂′‖2

= min
‖u‖=1

1

n

n∑

i=1

[
ut(x′i − µ̂′)
‖x′i − µ̂′‖2

]2

≥ min
‖u‖=1

1

n

n−m∑

i=1

[
ut(xi − µ̂′)
‖x′i − µ̂′‖2

]2

≥ min
‖u‖=1

n−m∑

i=1

[
ut(x′i − µ̂′)

]2 1

n(MX + M̄X)2

≥
n−m∑

i=1

d2(xi, H{1,...,n−m})
1

n(MX + M̄X)2

≥ ηX
1

n(MX + M̄X)2
= δX .

Now we will show that ε∗(ΣS , X) ≤ [n+1
2 ]/n. We replace m = [n+1

2 ] observations

of X to a constant vector x̃. Since the L1-median has the multivariate exact fit property

(Martin, Maronna, Yohai, 2006), we have µ̂′ = x̃. We take x̃ > MX , such that ‖xi−x̃‖ ≥
‖x̃‖ − ‖xi‖ ≥ ‖x̃‖ −MX , for every index i. Let ũ a vector of norm one, orthogonal to

x̃, then

λinf(Σ̂(X ′)) = inf
‖u‖=1

1

n

n−m−1∑

i=1

[
ut(xi − x̃)

‖xi − x̃‖
]2

≤ 1

n

n−m∑

i=1

(ũtxi)
2

‖xi − x̃‖2

≤ 1

n

n−m∑

i=1

‖xi‖2
‖xi − x̃‖2

≤ M2
X

1

n

n−m∑

i=1

1

‖xi − x̃‖2

≤ n−m

n

M2
X

(‖x̃‖ −MX)2
,

which tends to 0 when ‖x̃‖ is tending to infinity. ¤
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