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Chapter 1

Introduction

Though its name suggests a more playful topic, game theory studies decision problems

featuring conflict and cooperation between the decision makers. The name is derived

from the paper `Zur Theorie der Gesellschaftsspiele' by von Neumann (1928). After

publication of this paper, game theory remained an obscure subject for 16 years, until

the publication in 1944 of the book `Theory of games and economic behavior' hy von

Neumann and Morgenstern kindled intensive game theoretic research.

Game theory is usually divided into two parts, cooperative and non-cooperative game

theory. Non-cooperative game theory analyzes which actions the decision makers will

take, if they cannot make binding agreements. Cooperative game theory, on the other

hand, assumes that before decisions take place, players can make binding agreements

about their decisions. Attention is then concentrated on the questions `which coalition

will emerge?' and `how should the profits derived from cooperation be distributed?'

Example 1.0.1 Consider Ann, Bart and Charley, whose homes are not yet connected

to running water. Each one wants her~his house to be connected via a water pipe to the

spring, in order to avoid carrying water every day. It is not necessary for each one to be

connected directly to the spring; being connected via others is sufficient. Assuming that

the pipes are large enough for three players, one pipe can serve more than one person. The

situation is sketched schematically in figure 1.1. The costs of the pipes are as indicated.

If everybody is directly connected to the spring, total costs are 40 f 50 f 60 - 150,

whereas if Ann is directly connected to the spring, Charley is connected via Ann, and

Bart via Charley and Ann, the total costs can be lowered to 40 f 26 f35 - 101. Lowering

the costs further is impossible. Hence, there is a profit of 49 if Ann, Bart and Charley

cooperate. Of course, if they do cooperate, they will bargain about how to share this

profit. A good allocation of the profit should take into account how much subgroups

can achieve. For example, Ann and Charley can argue that together they can achieve a

profit of 100 - 66 - 34 by connecting Charley via Ann instead of directly to the spring.

Similarly, Ann and Bart can achieve a profit of 90 - 85 - 5 and Bart and Charley can

achieve a profit of 110 - 85 - 25. Hence a good allocation should allocate the total profit

49 in such way that Ann and Charley together get at least 34, Ann and Bart jointly get

1
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Ann's house 45 Bart's house

60
40 50

the spring

Figure 1.1: A connection problem.

at least 5 and Bart and Charley jointly receive at least 25.

This example shows that the economic possibilities of a group of agents are determined
by a network. A second example highlights a situation in which producers exercising
joint control over resources can profit from cooperation.

Example 1.0.2 David, a farmer growing mainly hops, and Ed and Flora, a couple
jointly owning a farm that is good in growing barley, brew beer and decide to start a
beer brewing cooperative. The cooperative will work as follows. Ed and Flora have
a lager brewery, David has an ale brewery. In the cooperative, it is agreed that these
breweries can be used by any brewer. However, the resources (hops and barley) are
privately owned. Both hops and barley (as well as water and yeast, which are supposed
to be easy to get) are needed to brew beer. Hence, the farmers can by cooperating
in~rease their revenue.

Suppose Ed and Flora have 26 acres of barley and one acre of hops while David has
four acres of barley and 11 acres of hops and brewing 100 hogsheads of ale (lager) uses
five (four) acres of barley and two (three) acres of hops, respectively. Suppose both
ale and lager earn a profit of 5100 per hogshead, net of all costs. If David, Ed and
Flora cooperate, they optimally produce 300 hogsheads of lager and 450 hogsheads of
ale, obtaining a revenue of ~75,000. As in the previous example, an allocation of this
revenue to the players should take the outside options of each player into account. For
example, Ed by himself cannot produce anything-as he would need the fiat of Flora;
vice versa, Flora by herself cannot brew anything, either. Hence, each can guarantee a
zero profit and will not accept a negative payoff. Together, the couple can produce 50
hogsheads of ale (at David's farm), which earns them ~5, 000. Similarly David can brew
100 hogsheads of lager, earning himself ~10, 000.

In this monograph, which consists of two more or less independent parts, I use game
theory to analyze cooperation in economic situations involving network structures, of
which parts are controlled by the agents.

Part I explores situations related to example 1.0.1, in which a group of users has to
be connected as cheaply as possible to a supplier of a service. Because the cost of a
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network connecting all users to the supplier has to be borne by the users, the problem
of allocating this cost is addressed. In the literature the network construction problem
and the cost allocation problem are usually treated separately but as they are two facets
of one problem I will consider them together. I will mainly address the cost allocation
problem with methods from cooperative game theory and concentrate on the core of
associated games.

It will be shown that Bird's tree allocations are closely related to Prim-Dijkstra's
algorithin for constructing a minimum-cost network that connects all users to the sup-
plier. By considering the solution to such a connection problem to consist of a network
together with a cost allocation it is possible to axiomatically characterize the Bird tree
rule.

Associating Bird's tree allocations with Prim-Dijkstra's algorithm leads to the ques-
tion whether other allocation rules can be derived from the other algorithms that con-
struct minimum-cost networks, viz. Kruskal's algorithm and Boruvka's algorithm. I will
show that the irreducible core is closely related to Kruskal's algorithm and will propose
two other cost allocation rules associated with Kruskal's algorithm. Both these rules and
the irreducible core are then axiomatically characterized. A cost allocation associated
with Boruvka's algorithm will also be provided. All these cost allocations turn out to be
refinements of the core of the associated games.

Furthermore, the classical model is extended to model also those situations in which
an existing partial network has to be extended in order to connect every user to the
supplier.

Moreover, I will present a non-cooperative approach in which each player strategically
connects himself to the supplier and will prove that the Nash equilibria of these games
coincide with Bird's tree allocations.

Finally, I will present an overview of alternative network construction models, such
as a model in which users have to be connected to more than one source, a model in
which users can choose whether to get connected to the source or to use a local source
and a model in which the cost of a connection depends on the number of users of this
connection. These models provide ideas for future research.

Part II is concerned with the influence of control exercised by players over economic
resources on the division of the revenue generated by cooperation, as in example 1.0.2.
The problems consídered typically involve an economic situation that can generate profits
and of which players control the resources. These `resources' can take many forms, like
parts of a network, primary goods of a production economy, parcels of land, etc.

The question addressed is how to allocate the profits generated by cooperation among
the players in a way that takes account not only of the profits but also of the control
structure. As before, these situations are modeled by means of cooperative games,
and I am interested in allocations of the revenue accrued by cooperation, which are
derived from game-theoretic solutions, such as the Shapley value, the core or populatíon
monotonic allocation schemes.
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The control that players exercise over the resources is modeled by means of control
games. These are simple games in which the grand coalition is winning. In order to get
a better understanding of the influence of the control I will systematically investigate
properties of simple games. This investigation leads to alternative axiomatic character-
izations of the Shapley value on the class of control games, the class of simple games
and the class of all cooperative games. In a similar way, the Banzhaf value is also
axiomatically characterized on these classes of games.

Finally, I will provide a fast algorithm to compute the nucleolus and kernel of veto-
rich games, in which there is a player whose absence prevents the others from obtaining
a positive payoff. These games are generalizations of balanced simple games and occur,
for example, in markets with a monopolist or monopsonist.

Preliminaries and notations
A cooperative Transferable Utility game (TU-game) (N, v) consists of a(finite) set

N of players and a characterástic function v which assigns to each subgroup or coalition
S of players a real number that is to be interpreted as the maximal gains or minimal
cost this coalition can guarantee by cooperating, regardless of the actions of the other
players. It is assumed that v(~) - 0; i.e. the empty set cannot achieve anything. Often
a game (N, v) is identified with its characteristic function v. The power set of a set N
will be denoted by 2N.

The cardinality of a set S will be denoted by ~5~. If ~ E RN and S C N, the following
notation will be used : -

~(S) :- ~ ~;.
iES

I will recall some definitions to show the notational conventions of graph theory used
in this monograph. These can also be found in any elementary textbook on graph theory
(e.g. Wilson (1972)). An (undirected) graph (V, E) consists of a set V of vertices and
a set E of edges. Each edge connects two vertices, and is said to be incident with these
vertices. An edge e incident with vertices i and j is identified with {i, j}1. For a graph
(V, E) and a set W C V,

E(W):-{eEE~eCW}

is the set of edges linking two vertices in W. For a set E' C E,

V(E') :- {v E V ~ there exists an edge e E E' with v E e}

is the set of vertices incident with E'.
The complete graph on a vertex set V is the graph K~ -(V, Ey), where

Ey:-{{v,w} ~v,wEVandv~w}.

1 Because multigraphs are not considered : two vertices are connected by at most one edge.
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A path from i to j in a graph (V, E~ is a sequence ( i - io, al, . .., ik - j) of vertices
such that for all 1 C k, the edge {i1-1i i!} lies in E. A cycle is a path of which the begin
point coincides with the end point.

Two vertices i, j E V are connected in a graph (V, E~ if there is a path from i to j
in (V, E). A subset W of V is connected in (V, E) if every two vertices i, j E W are
connected in the subgraph (W, E(W)~. A connected set W is a (connectedJ co~rzponent
of the graph (V, E~ if no superset of W is connected. If W C V, the set of components
of the graph (W, E(W)~ is denoted W~E. A component of a graph will be denoted by
the letter C, and for a vertex v of the graph, the component containing v is denoted C,,.

A connected graph is a graph (V, E) with V connected in (V, E~. A tree is a connected
graph without cycles. A forest is a graph without cycles. A leaf of a graph is a vertex
that is incident to only one edge of the graph.



Part I

Network Construction
and

Cost Allocation

7



Introduction to part I 9

Consider a group of villages, each of which needs to be connected directly or via other

villages to a source. Such a connection needs costly links. Each village could connect

itself directly to the source, but by cooperating, each might reduce costs. This cost-

minimization problem is an old problem in Operations Research, and Boruvka (1926)

came up with algorithms to construct a tree connecting every village to the source with

minimal total cost. Later, Kruskal (1956), Prim (1957) and Dijkstra (1959) found similar
algorithms. A historic overview of this minimum-cost spanning tree problem can be found

in Graham and Hell (1985).

However, constructing a minimum-cost spanning tree (mcst) is only part of the prob-

lem : if the villages must bear the cost of this tree, then a cost-allocation problem

has to be addressed as well. Claus and Kleitman (1973) introduced this cost-allocation

problem, whereupon Bird (1976) treated this problem with game-theoretic methods and

proposed a cost-allocation rule that associates with each minimum-cost spanning tree a

cost allocation. These allocations are known as Bird's tree allocations. As more than

one mcst can exist for a given problem, Bird's rule can yield more than one allocation.

Generically, however, only one mcst exists and then this rule yields a unique allocation.

Granot and Huberman (1981) proved that Bird's tree allocations are extremal points

of the core of the associated minimum-cost spanning tree game. This game is defined

as follows : the players are the villages and the worth of a coalition is the minimal cost

of connecting this coalition to the source via links between members of this coalition.

Not being satisfied with only one extremal point of the core, Granot and Huberman

then provide the weak and strong demand operations, which yield more core elements

when applied to Bird's tree allocations. Granot and Huberman's reason for looking at

other core allocations than those obtained by Bird's rule, is that although core elements

are stable against defection by subcoalitions, an extremal point of the core discrimi-

nates against some players. For example, Bird's tree allocations discriminate against

the players closest to the root. Granot and Huberman's demand operations remedy this
problem by allowing a player to demand contributions from players that are connected

to the source via this player. Aarts (1992, 1994) found other extreme points of the core

in case the mcst problem has an mcst that is a chain, i.e. a tree with only two leaves.

Kuipers (1993, 1994) computed all extreme elements of the core of information graph

games. These are games arising from mcst situations in which the costs of links are

either one or zero. Furthermore, he provided an efficient algorithm for the nucleolus of

these information graph games.

Other related network construction games are Steiner tree games (Megiddo, 1978
and Skorin-Kapov, 1994), ,fixed-cost spanning forest games (Granot and Granot, 1992),
capacitated network design games (Skorin-Kapov and Beltran, 1993), spanning network
games (Granot and Maschler, 1991 and Van den Nouweland, Maschler and Tijs, 1993).
For an overview of network models in economics, see Sharkey (1993).

Chapter 2 provides alternative points of view of Bird's tree allocations : an axiomatic
characterization of the set of Bird's tree allocations, and a non-cooperative game, in
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which Bird's tree allocations correspond to Nash equilibria.
Moreover, the network construction problem and the cost allocation problem are

treated simultaneously. One reason is that they are two sides of the same problem, and
solving one side gives insight into the other side. For example, examining Bird's tree-
allocation rule for minimum-cost spanning tree problems, one sees that it is intimately
related to the algorithm for finding minimum-cost spanning trees that is described in
Prim (1957) and Dijkstra (1959). Here, Bird's tree-allocation rule is integrated into Prim
and Dijkstra's algorithm.

This suggests allocation rules that correspond to the other algorithms for findiiig
minimum-cost spanning trees, viz. the algorithm of Kruskal (1956), and the decentralized
algorithm that was first described in Boruvka (1926). Chapters 3 and 4 elaborate on
this approach.

Chapter 3 shows that the irreducible core, which was introduced in Bird (1976), can
be obtained by an allocation rule closely related to Kruskal's algorithm. It turns out that
all allocation rules mentioned in chapters 2, 3 and 4 are refinements of the irreducible
core.

Chapter 4 proposes two one-point allocation rules, viz. the proportional and the
decentralized rule, and axiomatically characterizes the proportional rule. This rule is
closely related to Kruskal's algorithm for finding minimum-cost spanning trees, while
the decentralized rule is related to Boruvka's algorithm.

Moreover, chapters 3 and 4 extend the class of problems to include problems in
which a network is initially present. These problems are called minimum-cost spanning
extension (mcse) problems. Thís extension of the class of problems is motivated by the
consideration that a minimum-cost spanning tree (or extension) problem that is half
solved can now be reconsidered as a minimum-cost spanning extension problem, after
which the solution given for the original problem and the continuation problem can be
compared.

Chapter 5 presents other network construction models. Rather than attempting to
provide an exhaustive treatment of these models, my aim is to provide suggestions for
future research. The first model assumes that players need not be connected to the
source, but would like to, if this improves their well-being. The second model assumes
that more than one source exists, but that the sources are unreliable; players must thus
be connected to more than one source. The third model assumes that the cost of a
connection depends on the number of players using it. The fourth section presents a
non-cooperative game associated with network construction problems.

First follow a few standard definitions.
With many economic situations in which costs have to be divided one can associate a

TU cost game (N, c) consisting of a finite set N of players, and a characteristic function
c: 2N --~ R, satisfying c(0) - 0. Here, c(S) represents the minimal-cost for coalition S if
it secedes, i.e. if people of S cooperate and cannot count on help from people outside S.

The core of a game consists of those allocations in which the worth of the grand
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coalition is distributed among the players in such a way that no coalition can improve
its situation by seceding. For cost games, this translates into

Core(c) - {x E RN ~ ~ x; - c(N) and ~~; C c(S) for all S C N}.
iEN iES -

A theorem by Bondareva (1963) and independently by Shapley (1967) states that a

game has a non-empty core if and only if it is balanced. As in part I the condition of

balancedness is never explicitly used, it will not be defined here. I will, however, call a

game with a non-empty core balanced.

The economic situations in part I involve a set N of users of a source denoted ~. For

a coalition S C N, denote S U{~} by S". Furthermore, for a vector x E RN and a

player i E N, denote by x-' the restriction of x to N`{i}.
For two vectors a E RS and y E RT, where S and T are two disjoint coalitions, denote

by (x,y) E RsuT the vector with coordinates

-~ xk ifkES,
(~' y)k ~- yk if k E T.

Furthermore, for S C T and a vector x E RT, denote by ~S the restriction of x to S. For
a coalition S C N, the symbol ls is used to denote the vector in RN with coordinates

~ 1 ifkES,
(IS)k ~- 0 if k E N`S.

For any coalition S, the simplex OS is defined by

os:-{~ER}I~~i-i}.
iES



Chapter 2

Minimum-cost spanning tree
problems

Bird (1976) was the first to give an allocation rule for minimum-cost spanning tree

problems, of which Granot and Huberman proved it generates core elements on the

associated minimum-cost spanning tree games, thereby proving that these games are
balanced. However, Bird's tree allocations have been criticized because they are extreme
elements of the core.

This chapter is based on Feltkamp, Tijs and Muto (1994a). Section 2.1 recalls a
few definitions and formally presents minimum-cost spanning tree problems and Bird's

tree-allocation rule. Section 2.2 axiomatically characterizes the set of minimum-cost

spanning trees together with the corresponding Bird tree allocations, using efficiency,
leaf consistency and converse leaf consistency. Section 2.3 presents a non-cooperative
game, in which a strategy of a player consists of choosing which (if any} edge to pay.
It is shown that if all costs are positive, Bird's tree allocations coincide with the Nash
equilibria of this game.

2.1 Bird's tree-allocation rule

A minimum-cost spanning tree (mcstJ problem (N, ~, w) consists of a finite group N of
agents, each of whom wants to be connected to a common source, denoted by ~. The non-
negative cost of constructing a link {i, j} between the vertices á and j in N' - NU {~} is
denoted by w(i, j). Because of these costs, agents have an incentive to cooperate, and to
construct a minimal cost graph that connects them all to the source. If a cycle appears
in such a minimum-cost spanníng gmph, at least one edge in this cycle can be eliminated,
which will yield a minimum-cost spanning graph with less cycles. Hence, minimum-cost
spanning graphs exist that contain no cycles at all, i.e. they are trees. This explains the
name of the problem.

Note that we implicitly assume that all edges can, in principle, be constructed, but

13



14 Minimum-cost spanning tree problems

it is possible to model a problem in which some edges cannot be constructed by making
the cost of these edges very large.

Prim (1957) and Dijkstra (1959) proposed the following algorithm to find a minimum-
cost spanning tree given an mcst problem.

Algorithm 2.1.1 (Prim and Dijkstra)
input : an mcst problem T- (N, ~, w)
output : the edge set T of a minimum-cost spanning tree

1. Choose a vertex v E N' as root.

2. Initialize T - ~.

3. Find a minimal cost edge e E EN. `T incident to {v} U N'(T) such that joining
e to T does not introduce a cycle. ( Remember EN. are the edges of the complete
graph on N' and N'(T) are the vertices incident with the edges in T.

4. Join e to T.

5. If not all vertices are connected to the root in the graph (N', T}, go back to stage 3.

Prim and Dijkstra prove that any graph resulting from the algorithm is an mcst and
that by varying between the possible edges in step 3, this algorithm can construct all
minimum-cost spanning trees of this mcst problem 7.

A closely related problem is how to allocate the cost of the edges of a minimum-cost
spanning tree among the agents (users of the source) in a reasonable way. Bird (1976)
proposed a cost-allocation rule for the mcst problem, which we call Bird's tree-allocation
rule, because it associates a cost allocation to every mcst of the mcst problem. Given
an mcst problem (N, ~, w) and a mcst (N',T) for the grand coalition, Bird's tree allo-
cation ~T is constructed by assigning to a player i E N the cost of the first edge on the
unique path in the tree (N`,T) from player i to the source ~. In fact, this allocation
is intimately linked with the Prim-Dijkstra algorithm : the tree (N',T) and the alloca-
tion ~3T can be constructed together by choosing the source as root and allocating the
cost of the edge added at a certain stage to the person that this edge newly connects to
the the source. More formally, the algorithm is the following.

Algorithm 2.1.2 (Bird's rule integrated into Prim-Dijkstra's algorithm)
input : an mcst problem (N, ~, w)
output : an edge set T of an mcst and an allocation ~(Bird's tree allocation QT )

1. Choose the source ~ as root.

2. Initialize T - 0.

3. Find a minimal cost edge e- {i, j} E En,. `T
joining e to T does not introduce a cycle.

incident to {~} U N'(T) such that
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4. One of i and j, say j, was previously connected to the source and the other vertex,

i, is a player that was not yet connected to the source. Assign the cost ~; :- w(e)

to agent i.

5. Join e to T.

6. If not all vertices are connected to the root in the graph (N', T), go back to stage 3.

As the set of all trees obtained by Prim and Dijkstra's algorithm is independent of

the root that is chosen, this algorithm yields the same trees as Prim and Dijkstra's algo-

rithm, and for each tree (N',T), it yields an allocation that is Bird's tree allocation ,QT

associated with this tree. This is easy to see : in step 4, the edge e is precisely the first

edge on the unique path from agent i to the source in the tree that will be constructed.

If the mcst problem contains two or more edges with the same weight, more than one

mcst might exist, and for a particular mcst (N',T), it could happen that there is more

than one order in which Prim-Dijkstra's algorithm can choose the edges in T. Obviously,

the order does not change the edge that a player has to pay according to Bird's tree allo-

cation rule; Bird's tree allocation ,(jT is thus independent of the order in which the edges

of the tree (N',T) are chosen. It does, however, depend on which tree is constructed.

See example 2.1.3.

` r
vi10 ` r ~10

Y
~

Two orderings, one mcst Two mcsts

Figure 2.1: Edges that are not indicated cost ~100.

Example 2.1.3 In the problem on the left-hand side of figure 2.1, it does not matter

whether Prim-Dijkstra's algorithm chooses the links in the unique mcst in the order

({~,1}, {~,2}, {2,3}) or ({~,2}, {~,1}, {2,3}); the link {~,1} is in both cases paid by

player 1 and the link {~, 2} is in both cases paid by player 2.

In the problem on the right-hand side of figure 2.1, only one of the two dashed links
will be constructed. If {~,1} is constructed, Bird's tree allocation is (10, 5, 6), and if
{~, 2} is constructed, Bird's tree allocation is (6,10, 5).
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Bird ( 1976) associated the following transferable utility mcst game (N,c7) to an
mcst problem T. The players are the agents and the worth c7(S) of a coalition S is the
minimal cost of a tree on S` :- S U{~}. In formula,

c7(S) - min{~ w(e) ~ T C ES and (S',T) is a tree}
eET -

for all S C N. Granot and Huberman (1981) proved that Bird's tree-allocation rule
yields extreme points of the core of the mcst game.

2.2 An axiomatic characterization of the Bird rule

This section characterizes the set of mcsts and their associated Bird allocations axiomat-
ically, using ef6ciency, leaf consistency and converse leaf consistency.

A solution of mcst problems is a function ~ which assigns the following set :

~i(T) C {((el, . . . , eT ), x) ~ (N', {e', . . . , e~}) is connected and ~ xi ~ ~ w(et)}
iEN t-1

of edge sets of graphs and associated cost allocations to every mcst problem T-
(N, ~, w). We mention a few properties of solutions of mcst problems.

Definition 2.2.1

NE A solution ~r~i is called non-empty if

~(T) ~ ~ for all mcst problems T.

Eff ~ is e,f,J~icient if for all mcst problems 7, all ((el, . .., eT ), x) E~(T) are e,~cient, that
is, for all ((e', .. ., eT ), x) E~(T), (N', {e', ..., eT }) is a minimal cost spanning tree
and

T

~ ~i - ~ w(e~).
iEN t-1

The next two properties, leaf consistency and converse leaf consistency, give relations
between solutions of a mcst problem and solutions of reduced mcst problems. A reduced
mcst problem is an mcst problem in which some players have been eliminated. The idea
is that solving reduced problems is easier than solving the original problem, and that
the solution of the original problem should be related to the solution of the reduced
problems. We only require this relation if one player that is a leaf in the graph of a
proposed solution element is deleted, however. (A leaf of a graph is a vertex that has at
most one incident edge.) The idea is that a leaf is not needed by any other player to get
connected to the source; if a leaf player is missing, thus, this should not affect the other
players.
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Definition 2.2.2 Given an mcst problem T-{N, ~, w) and a player i E N, define the
reduced mcst problem T-' by

T-' :- {N `{i},~,w-`),

where w-' equals the restriction of w to EN.`{;}.

Note that the reduced problem does not depend on any fixed solution. Note also that
it is indeed an mcst problem. Use reduced mcst problems to define leaf consistency and
converse leaf consistency as follows :

Definition 2.2.3

LCons A solution ~ of mcst problems is leaf consistent if for every mcst problem T,
for every ((e1, ..., eT ), x) E~i(T) and for every player i that is a leaf in the graph
{N', {el, . . . , eT}),

((e1,...,eT)-',x-') E ~(T-'),

where (e1, ..., eT )-' is obtained from (el, ..., eT ) by deleting the unique edge in-
cident to i and x-' ïs the vector obtained from x by deleting the coordinate of
player i.

CoLCons A solution ~ of mcst problems is converse leaf consistent if for any mcst
problem T and for any ((el, ..., e'), x) efTicient in T, the following is satisfied : if

((el, .. . , e')-'~ x-') E ~(T-t)

for all players í that are leaves of (N', {el,...,eT}), then

((el, . . . , e'), x) E ~(T).

The leaf-consistency property is motivated by the idea that an element of a solution,
when a leaf is eliminated, should be an element of the solution to the reduced problem.
The converse leaf-consistency property is motivated by the opposite idea, that no efficient
candidates for a solution should be excluded, unless the `reduced' solution is excluded
as solution of a reduced problem in which a leaf has been deleted.

We use the properties mentioned to axiomatically characterize the Bird rule.

Definition 2.2.4 The Bird rule of an mcst problem T is the set

Q(T) :- {((el,...,e'),QT(T)) ~ T- {el,...,e'} and (N',T) is an mcst of T}

of sequences of edges of minimum-cost spanning trees and the corresponding Bird tree
allocations.

Proposition 2.2.5 The Bird rule satisfies NE, Eff, LCons and CoLCons.
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Proof : Efficiency was proven by Bird, and non-emptiness is evident. In order to prove
LCons, assume ((e', ..., e~), QT ) E~(7) and let player i be a leaf in the tree (N', T),
where T- {el, .. ., eT }. Define e to be the first edge on the unique path in (N', T) from
i to the source. Then ( e', ..., eT )-` is obtained from (e', ..., eT) by deleting the edge e
and is a sequence obtained by applying the Prim-Dijkstra algorithm to the reduced mcst
problem T-`. Hence x-' - QT`{e}, and

((el, . . . , eT )-`, x-') E ,(j(T-').

In order to prove that the Bird rule satisfies CoLCons, assume that ((el, ..., e?), x)
is efficient in an mcst problem T and assume that player i is a leaf of (N', {e1, ..., eT })
such that

((e1, . . . , eT)-', x-') E (j(T-'). (2.2.1)

Define e; to be the unique edge incident to i in {el, ..., eT }. Then {e', ..., eT }-
{el, . . . , eT }-`U {e; } and (N'`{i}, {el, . . . , eT }-') is an mcst for the reduced mcst problem
T-`. Hence efficiency of ((el, ..., e'), x) and equation 2.2.1 imply

~ xk - ~ w(e) - ~ w(e) f w(et) - ~ xkt f w(ei),
kEN eE{el,...,e'} eE{e~,...,e'}-' kEN`{i}

which implies that x; - w(e;). So ((el, ... , e'), x) E Q(T ). ~

Lemma 2.2.6 If a solution ~ satisfies Eff and LCons, and a solution ~ satisfies NE, Eff
and CoLCons, then ~(T) C z(i(T) for all mcst problems T.

Proof : Proceed by induction on the cardinality of N. Let ~N~ - 1 and denote by e
the edge between the unique player and the source. By efficiency of both solutions and
non-emptiness of ~, obtain ~(T) C {((e),w(e))} - zli(T). Take an mcst problem T
with k 1 1 players, and suppose that for all mcst problems T' with less than k players,
~(T') C~(T'). Take ( (e', ..., eT ), x) E~(T) and choose a leaf i ~~ of the tree T
induced by ( e', . . . , eT ). Then by leaf consistency of ~, ((el, . . . , eT )-', x-') E ~(7-') C
~(T-`). Now, because ((el, ... , eT ), x) is efficient, converse leaf consistency of ~i implies
((el, . . . , eT )~ x) E ~(7). O

Theorem 2.2.7 The unique solution that satisfies NE, Eff, LCons, and CoLCons is the
Bird rule.

Proof : The Bird rule has the properties, and if anot.her solution has the properties, by
lemma 2.2.6, it coincides with the Bird rule. o

The properties used to characterize the Bird rule are logically independent. We show
this by giving examples of solutions that satisfy three of the four properties.

Example 2.2.8 If we leave out the non-emptiness property, the empty solution that
assigns the empty set to every mcst problem satisfies Eff, LCons and CoLCons.
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Example 2.2.9 If we leave out the efficiency property, the solution that assigns
((e)eEE~,., (a, ..., a)) to every mcst problem, satisfies the other three properties. Here

(e)eEEN. denotes the sequence of all edges of the complete graph on N' ordered by non-
decreasing cost, and a- ~eEEN. w(e). Notice that there are no leaves in the complete
graph, except if there is only one player; the leaf consistency property is thus trivially
satisfied.

Example 2.2.10 If leaf consistency is left out, the solution that assigns to an mcst
problem (N, ~, w) the set of all efficient outcomes

T

{((e', . . . , eT ), x) ~ (N', {el, . . . , e'}) is an mcst, x E RN and x(N) - ~ w(et) }
t-i

satisfies the three other properties.

For the last example, we will use a total ordering C on the universe of all possible

players. This is possible : usually, names of players are finite strings in some finite al-
phabet, that can be alphabetically ordered. Define the lexicographical order on elements
of a solution to an mcst problem (N, ~, w) by ((el, ..., e'), x) -GL ((él, . .., éT ), y) if there

existsakENsuchthatx;-y;foriGkandxkCyk.

Example 2.2.11 If converse leaf consistency is left out, the solution that assigns to
every mcst problem the set of lexicographically smallest elements of the Bird rule satisfies
the three other properties, but does not coincide with the Bird rule on all mcst problems;
it does not, thus, satisfy converse leaf consistency.

2.3 Sustaining the Bird rule by Nash equilibria

The previous sections studied mcst problems by means of cooperative games. This
section analyzes the problems using associated strategic mcst games, suggested by Jose
Zarzuelo. An action of a player in the strategic mcst game consists of a specification of
the edge that this player will construct, if any.

Definition 2.3.1 To a minimum-cost spanning tree problem ( N, ~, w}, Zarzuelo ( private
communication) associates the strategic rrzcst game (N, (A')iEN, (u;)iEN) in normal form
with player set N, and in which an action a' E A' - EN. U {~} specifies which edge
(if any at all) player i is willing to construct. The utility that player i derives from a
strategy profile a - ( a`);EN is determined in the following way. We assume that players
dislike constructing edges, but they absolutely have to be connected to the source. The
utility function is thus linear in the cost of the edge constructed ( if any), and a big
penalty is subtracted if the player is not connected to the source in the graph (N`,Ca).
Here, for a strategy profile a, the set Ca -{a' ~ i E N and a' E EN.} is the set of edges
that have been constructed and that will be constructed.
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Formally, the utility of player i is defined as

( 1 n) .- r-w(a') if i is connected to the source in (N',Ca)u; a,..., a Sl -w(a`) - P otherwise

where P is a large number (P 1~ w(e)). For convenience, define ~t;(~) - 0.
eEEr,,.

We will proceed to establish a relationship between the Bird rule presented in sec-
tion 2.2 and the Nash equilibria of the above strategic mcst game.

Theorem 2.3.2 Each element (( e', ..., eT ) , x) of the Bird rule of an mcst problem cor-
responds to a Nash equilibrium of the associated strategic mcst game, in which the
strategy of a player i is to construct the first edge on the unique path from i to the
source in the tree (N', {e', ..., eT }) and in which his payoff equals -x;.

Proof : Let 7- ( N, ~, w) be an mcst problem and let ((el, ..., eT ), x) be an element of
the Bird rule Q(7). The corresponding strategy a' for a player i is the first edge e; that
lies on the unique path from i to the source in the tree (N', {er, ..., eT }). If every player
plays this strategy, the resulting set Ca of constructed edges is precisely {el, ..., eT},
which implies that all players are connected to the source. So the payoff to player i
equals -w(e;). Hence u;(a) - -w(e;) - -x;.

To prove that a is a Nash equilibrium, suppose that a player i deviates from a. Now
player i wants to avoid the penalty, which is larger than w(e;), so if i does not choose
a' - e;, then it has to choose another edge e' that connects the component of i in the
graph (N',Ca ` {e;}) to the component of the source. Because (N',{e1,...,eT}) is an
mcst, such an edge e' has to be at least as costly as the edge e;. Hence i is not better
off. O

If the costs of all edges are positive, it can be proved that every Nash equilibrium
of the strategic game, together with its payoff vector, corresponds to an element of the
Bird rule.

Theorem 2.3.3 In an mcst problem in which the costs of every edge are positive, each
Nash equilibrium a of the strategic mcst game specifies a minimum-cost spanning tree
(N', Ca) for the mcst problem, and the payoff vector equals -Q~a.

Proof : Let (N, ~, w) be an mcst problem in which the costs of all edges is positive
and let ( N, (A')iEN~ ( u;);EN) be the associated strategic mcst game. Let a-(a' a")
be a Nash equilibrium and consider the set Ca of edges that have been constructed. If
a player i is not connected to the source in the graph ( N', Ca), then by deviating and
using the strategy d; -{i, ~}, player i is connected to the source, thereby avoiding the
penalty and improving his payoff. So in a Nash equilibrium, every player is connected
to the source. Furthermore, if a cycle were present in the graph (N',Ca), some player
is not connected to the source : there are at most ~N~ edges constructed.
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Hence, these strategies do not constitute a Nash equilibrium. (N', CQ) is thus a
spanning tree.

This means that ~N~ edges are constructed; every player thus constructs an edge.
Furthermore, because all edges have a positive cost, every player i pays an edge only if
it lies on the path in the tree from i to the source. If this were not true, some player
could deviate by choosing to construct no edge, and would thus not incur the penalty.
Hence, this player would profit from this deviation.

By induction on the number of players on the path between a player and the source,
one deduces that every player i pays the edge incident to i, on the path from i to the

source in the tree (N', Ca). Hence, the payoff vector equals -,l3ca
To prove that (N', Ca) is a minimum-cost spanning tree, compare it with the mcst

(N", F) that is constructed using Prim and Dijkstra's algorithm (see section 2.1), by

choosing, whenever possible, an edge in Ca. Look at the first edge e E F chosen by
Prim and Dijkstra's algorithm, which does not lie in Ca. If this edge exists, it connects
a player i with the component of the source and is strictly cheaper than a;, the edge

that this player i constructs. (If the edge e had the same cost as a;, it would have been
chosen by Prim-Dijkstra's algorithm.) If i constructs e instead of at; player i would still

be connected to the source, and thus pay less. This contradicts the fact that a is a Nash
equilibrium, hence the edge e cannot be found. This implies that F- Ca, which means

that (N`, CQ) is a mcst. ~

If there is an edge that costs nothing, the graph constructed in a Nash equilibrium is
still a mcst, but the costs do not have to be divided according to Bird's tree-allocation
rule.

Figure 2.2: a Nash equilibrium unrelated to Bird's tree allocations.

Example 2.3.4 Consider the problem drawn in figure 2.2. The strategy pair in which
player 1 pays the edge {1,2} and player 2 pays {1,~} is a Nash equilibrium in the
associated strategic game, but the associated payoff vector (0, -2) does not correspond
to Bird's unique tree allocation (2, 0).



Chapter 3

Minimum-cost spanning extension
problems

This chapter, which is based on Feltkamp, Tijs and Muto (1994b), generalizes minimum-

cost spanning tree problems to minimum-cost spanning extension problems. These are
network construction problems in which some network can be present initially; which

has to be extended to a network connecting every player to the source.

Mathematically, this generalization has the advantage that a half-solved mcst or mcse
problem is again an mcse problem, which allows a recursive solution and from an applied
point of view the advantage is that more problems can be treated. If the original problem
was suggested by electrification of Moravia at the beginning of the century, the problem
by now is how to extend a network already present and allocate the cost of the extension.

As before, finding a minimum-cost spanning extension is only part of the problem :
if the villages must bear the cost of thís extension, a cost-allocation problem has to be
addressed as well.

As in chapter 2, we integrate the problem of constructing an optimal network and
the problem of allocating the costs. Whereas in chapter 2 Prim-Dijkstra's algorithm for
constructing an mcst appeared to be closely linked to Bird's tree allocations, here we
show that the irreducible core and Kruskal's (1956) algorithm for constructing an mcst
are related and also provide a one-point refinement, the equal-remaining-obligations
solution. Moreover, we provide axiomatic characterizations of the irreducible core and
the equal-remaining-obligations solution.

The outline of this chapter is as follows.
Section 3.1 presents a formal model of the minimum-cost spanning extension (mese)

problem in which an existing network has to be extended to a minimum-cost spanning
network, i.e. a network that connects every village to the source and that offers min-
imum cost among all such networks. An algorithm to find a minimum-cost spanning
extension and an associated set of cost allocations is presented. This algorithm is similar
to Kruskal's (1956) algorithm. We prove that the set of allocations generated is a subset
of the core of the associated mcse game and that it is independent of the extension that

23
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is constructed.
Section 3.2 generalizes the definition of the irreducible core, as proposed in Bird (1976)

for minimum-cost spanning tree problems, to minimum-cost spanning extension problems
and proves that the set of allocations generated by the algorithm in section 3.1 coincides
with the irreducible core. A corollary is that Bird's tree allocations (see Bird (1976)) for
minimum-cost spanning tree problems are also generated by our algorithm.

Section 3.3 introduces the equal-remaining-obligations (ERO) rule, a one-point re-
finement of the irreducible core. It is obtained by an algorithm similar to the algorithm
for the irreducible core presented in section 3.1. Like the irreducible core, the ERO rule
is independent of the extension constructed. This contrasts with Bird's tree-allocation
rule, which depends on the tree constructed.

Section 3.4 axiomatically characterizes the irreducible core and the equal-remaining-
obligations rule. Efficiency, consistency and converse consistency are among the axioms
we use.

The rather lengthy proofs of the main theorems of section 3.1 are provided in an
appendix, section 3.5.

3.1 Mcse problems : a solution

This section formally presents minimum-cost spanning extension problems, mcse games
and an algorithm that computes for any mcse problem a minimum-cost spanning exten-
sion and an associated set of allocations, which turns out to be contained in the core of
the mcse game.

A mánimvm-cost spanning extension problem consists of a set N of users who have to
extend an existing network in order to be connected to a source, denoted by ~. The links
are costly and the users have to pay for the extension. Such a problem is represented by
a complete graph (N`, EN.} on the set N` containing all users and the source, together
with a set E C EN. of already constructed links and a weight function w: EN. -~ Rf.
The cost of constructing an edge e is given by the positive weight w(e) 1 0 of this edge.
The edges in E can be costlessly used. Because the graph of possible edges is always
the complete graph, we denote an mcse problem with set of users N, source ~, weight
function w and existing edge set E by (N, ~, w, E). If the set of existing edges E is
empty, the mcse problem becomes the classical minimum-cost spanning tree problem
and instead of writing (N, ~, w, 0), we will write (N, ~, w).

Mcse problems can be split up into two subproblems, an Operations Research problem
of connecting all users to the source by means of an extended graph (N`, E U E') such
that the cost of the extension E' is minimal, and a cost-allocation problem of allocating
this cost to the users in a reasonable way.

In the special case of mcst problems, an mcst can be constructed by Kruskal's algo-
rithm.
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Algorithm 3.1.1 ( Kruskal 1956)
input : an mcst problem (N, ~, w)
output : an edge set E' of a minimum-cost spanning tree

1. start with the empty set E' - 0.

2. Find an edge e ~ E' of minimum cost such that the graph (N', E' U{e}) does not
contain a cycle.

3. Join this edge to the set E' (E' :- E' U{e}).

4. If the graph (N', E') is not connected, go back to step 2.

5. E' is the required edge set.

For mcse problems, a generalization of Kruskal's algorithm is demonstrated in exam-
ple 3.1.2.

2

~~

The weights of links.

4

{4, 5} is already constructed.

Figure 3.1: A simple mcse problem

Example 3.1.2 Let N-{ 1, 2, 3, 4, 5} and let the weights of the edges and the graph
which is already constructed be as in figure 3.1. The costs of edges that are not indicated
are ~200. First construct the edge {1, 2}; it is the cheapest one that introduces no cycle.

The same reasoning picks {2,3} as second edge, as third edge {3,4} and finally as last
edge, {2, ~}.

The algorithm demonstrated is the following :

Algorithm 3.1.3 (Kruskal generalized to mcse problems)
input : an mcse problem ,M
output : an mcse
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1. Given ~1~1 -(N, ~, w, E), define

t - 0 the initial stage,
T- ~N`~E~ - 1 the number of stages,

Eo -~ the initial edge set.

2. While t c T, do steps 3 to 5.

3. t:-t~1.

4. At stage t, given Et-1, choose a cheapest edge e~ ~ E U Et-' such that the graph
(N`, E U Et-1 U{et}) contains no more cycles than the graph (N', E U E`-')

5. Define E~ :- Et-1 U{et}.

6. ET is the extension we were seeking. Denote the sequence of edges constructed by
- ( 1 T)~ e ,...,e

Lemma 3.5.1 proves that the extension constructed is indeed an mcse. Note the
algorithm constructs the edges of a minimum-cost spanning extension in the order of
non-decreasing costs. It is easy to see that any sequence ~-(el, ..., eT) that consists
of the edges of a minimum-cost spanning extension ordered by non-decreasing costs can
be constructed with algorithm 3.1.3 by a suitable choice of the edges chosen in step 4.

Bird (1976) associates a tree allocation with every minimum-cost spanning tree in an
mcst problem. Chapter 2 proved that this tree allocation can be associated with the
sequence of edges that Prim and Dijkstra's algorithm generates when generating this
mcst. This suggests looking for allocations associated with the sequences generated by
Kruskal's algorithm.

For an mcse problem 11~f -(N, ~, w, E), the minimum-cost spanning extensions E'
have one edge less than the number of components ~N`~E~ (if more edges were built,
a cycle would be introduced, which cannot be minimal in cost, as the weights of the
edges are positive). Hence, defining r:- ~N`~E~ - 1, associate an allocation with every
sequence E' - (el, ..., eT ) of edges that introduces no new cycle in the mcse problem Nf.
Note that any such sequence connects all players to the source. The idea behind the
allocation is that at each successive stage t, the cost of the edge et that is constructed at
stage t is shared among the players in N according to a fraction vector f` E ~N. Three
rules have to be observed when allocating the cost of e`:

~ At stage t, edge e` connects two components of the graph (N', E U {el, ..., ef-1 }),
creating a component C~ of the graph (N`, E U{el, ..., et}). Only players in Ct
contribute to the cost of et.

~ The players in the component C;-1 of the source in the graph (N`, E U
{ e1, ..., et-1 }) constructed before stage t do not contribute to the cost of et.
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~ Furthermore, summing over all edges in the sequence, every component of the
original graph (N', E) that does not contain the source pays fractions of edges to
a total of one.

Hence, define the set V~(~1~1) of sequences of fraction vectors valid for the sequence E in
~1~1 by

~
kEC'

vE(~t) :- (

T

,..., f') E R.T~N~
~ jJ fk
kEC s-1

fk

- 1 for all t

and

- 1 b'CEN'~Ewith~~C

and
- 0 for all t, k s.t. k E C,-1

For a sequence .~ - ( f l, ..., fT ) valid for E' in ~1, define the allocation

T
yE,.~(.M) :- ~ ftw(et) E RN

and define the set DE(Nt) by

DE(M) .- {~E,~ ~ .~ E VE}. (3.1.2)

If no confusion can occur, we drop the argument .M.

Lemma 3.1.4 For all mcse problems ~I~l, for all sequences E' - (e', .. ., eT ) such that

ET :- {el, .. ., e?} is an mcse of ,Nl and all .~ valid for E, the allocation ~:- ~~~~(Nl)
is efficient : ~;En, x; - cM (N).

Proof : Validity of .~ implies every edge e` E E' is paid for by the component C` it
constructs. Secondly, ET is a minimal-cost spanning extension of (N', E). Hence,

~ x; - ~ w(e) - c~ (N).
~EN eEE'

O

Note that because the set of valid sequences of fraction vectors V~ is convex and the
map

x~ : .~ ~--f xE,.~

is linear, the set D~ is also convex, for any sequence E.
Instead of first constructing the edges and later allocating their cost, one could allocate

the cost of the edge et immediately, because the validity of a sequence of fraction vectors
can be checked stage by stage : a sequence f', ..., fT is valid for e', ..., eT in A~1 if and

only if at every stage t it satisfies
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~ the component Ct constructed at stage t pays the cost of the edge et,

~ for every component in the original graph (N', E), the total of the fractions paid
up to stage t does not exceed 1,

~ the people outside Ct pay nothing,

~ the people in the component C;'' of the source pay nothing.

In formula, this gives

(3.1.3)

for every stage t.

Example 3.1.5 For an mcst problem T-(N, ~, w), Prim and Dijkstra's algorithm (see
chapter 2) constructs a sequence i- ( el, ..., e~N~) of edges leading to an mcst (N',T)
as follows : at every stage t, et is an edge that connects a player with the component of
the source in the graph (N', {el, ..., et-' }) and which has minimal cost among all such
edges. Without loss of generality, we number the players in N such that for every t, the
edge et connects player t with the component of the source, {~,1,...,t - 1}. Hence,
the edge e' connects player 1 to the source, and under the system (3.1.3), player 1 has
to pay the cost of el and the other players do not contribute. In the second stage,
player 2 is connected to the component of the source, which now equals {~,1}. The first
equation in system ( 3.1.3) implies players 1 and 2 pay the cost of edge e2. The fourth
implies that player 1, who is in the component of the source, does not contribute, hence,
player 2 is assigned the cost of edge e2. The third equation implies the other players do
not contribute. The inequality is satisfied, because up to now, every component in the
original graph ( i.e. every player) paid either one edge or no edges. By induction, we see
that at every stage, the component Ct consists of the component C;-' and the newly
connected player t. Because the component of the source does not contribute to the cost
of e`, the unique valid allocation of the cost of this edge is to allocate it completely to
player t. Hence, D~(7) consists of one allocation, in which each player i is allocated the
cost of the edge incident to i on the unique path in the tree from i to the source. This
allocation is precisely Bird's tree allocation QT associated with the mcst (N`,T}.

kEC~
t

~~fk C i forallCEN'~E,
kEC s-1

fk - 0 if k~ Ct,
f~ - 0 ifkEC;-'

Example 3.1.6 Computing the extreme points of the set of valid fraction vectors for
the sequence E constructed in example 3.1.2 shows that in this case DE(~1~1) is the convex
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hull of the vectors

(10,20,40,100,0), (10,20,40,0,100), (10,20,100,40,0), (10,20,100,0,40),
(10,40,20,100,0), (10,40,20,0,100), (10,100,20,40,0), (10,100,20,0,40),
(20,10, 40,100, 0), (20,10, 40, 0,100), (20,10,100, 40, 0), (20,10,100, 0, 40),
(40,10,20,100,0), (40,10,20,0,100), (100,10,20,40,0), (100,10,20,0,40).

Inspired by Bird's mcst game ( see chapter 2), we associate a minimum-cost spanning
extension game (N, cM ) with an mcse problem M-(N, ~, w, E) as follows. Each
coalition S C N, if it cannot count on the players in its complement, has to solve a

problem similar to the problem of the grand coalition, namely, extending the existing

graph to a graph connecting all users in S to the source. The cost of this extension is

the worth cM(S) of coalition S in the mcse game.
When computing the cost of a coalition S, several questions arise. Can the coalition

use all or some of the edges that are already present? Is it allowed to use vertices outside

S? We opt for the following answers : a coalition S is allowed to use all edges that are

initially present, but can only use those vertices that lie in a component of (N', E) that

contains members of S or the source. Now, consider an example to clarify all this.

1 ~1~' Ii
~ --~- ~4
` I ~á3
~3` ~ ~~1

Figure 3.2: {1,2} is allowed to use the edge {2,3}, but {1} is not.

Example 3.1.7 In the problem depicted in figure 3.2, edge {2, 3} is already constructed.

Coalition {1,2} is allowed to use the edge {2,3} and can connect itself by building the

edges {1,2} and {3,~}; so, c({1,2}) - 1 4- 1- 2. Coalition {1} is not allowed to use
the edge {2,3} because the component {2,3} has no vertices in common with {1} or the

source, hence c({1}) - 3. The other worths are c({2}) - c({3}) - 1(connect player 2
via player 3), and finally c({1, 3}) - c(N) - 2.

In general, the formula becomes

S C CE~ and E' contains onl ed es between
c~(S) :- min e~ w(e) ~ components of N'~E contain ng members of S'
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for all S C N, where CE~ is the component of the source ~ in the graph (N', E U E').
The next theorem states that an allocation which is associated with a sequence of

edges generated by algorithm 3.1.3 is a core element of the mcse game.

Theorem 3.1.8 For any mcse problem ~1~f, for any sequence of choices E- (el, ..., eT )
in the algorithm 3.1.3 applied to J1~f and any sequence of fraction vectors ,~ valid for
E' the allocation ~E.~, as defined in equation (3.1.1), is a core-allocation of the mcse
game (N, cM ) associated with Nf.

The proof of this theorem is lengthy and technical, and can be found in the appendix.
An immediate consequence is

Corollary 3.1.9 For any sequence E leading to a minimum-cost spanning extension for
an mcse problem Nl with associated mcse game (N,c~),

DE(A~1) C Core(N,c~).

Another way to generate mcse games is to define the cost of a coalition S as the
minimal cost of an extension connecting S to the source, without any restriction on the
vertices of the extension. This approach yields a monotonic game, with the same cost
for the grand coalition, but smaller costs for the other coalitions, because these now have
more opportunities to save costs. Hence, the core of this variant is in general contained in
the core of the mcse game already defined. However, such a monotonic game associated
with an mcse problem (N, ~, w, E) can be considered as an mcse game according to our
definition associated to the mcse problem (N, ~, w', E}, in which the weights of links have
been (iteratively) reduced to satisfy the triangle inequality

w'({i, j}) C w'({i, k}) ~ vi ({k, j}) for all i, j, k E N'.

Thus, this introduces no new games. Moreover, core elements of the monotonic game
can be computed by applying algorithm 3.1.3 to the problem with reduced weights.

In computing the cost of a coalition in an mcse game, we allow this coalition to use
the vertices in its complement to which it is connected via edges in E. A second possible
variation is not to allow a coalition to use any players in its complement when connecting
to the source. This would yield a game with the same cost for the grand coalition, but
larger costs for the other coalitions, as these are now restricted in their possibilities.
Hence, the core of this variant contains the core of our mcse game, which implies all
algorithms presented in this paper yield core elements of the variant.

A question that arises is the following. How does the set DE depend on the sequence
ï? It is answered in the next proposition.

Proposition 3.1.10 For any mcse problem Nl, for all sequences E and E constructed
by the algorithm 3.1.3 applied to ~l~l,

DE(Nl) - DS(.M).
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A proof can be found in the appendix.
Because DE is independent of the sequence E of edges, as long as this sequence is

constructed by the algorithm 3.1.3, we define for an mcse problem .M :

D~K(~) .- D~(~)

for any sequence ~ obtained by the algorithm 3.1.3 applied to ~1~1. (The superscript GK
stands for generalized Kruskal).

3.2 The irreducible core of mcse problems

This section will generalize the irreducible core from mcst problems to mcse problems
and prove that the set D~k~ coincides with this irreducible core.

Definition 3.2.1 Given an mcse problem (N, ~, w, E), we define the associated mcst
problem ( NE, ~E, wE) as follows : NE consists of the components of (N', E) that do not
contain the source ~; the new source ~E is the component of (N', E) which contains the
original source ~, and wE is defined by

wE(C, D) :- min{w(i, j) ~ i E C,j E D}

for all components C and D of the graph (N',E). Furthermore, for an edge e-{i, j} E
En,., define

eE :- {C;,C~} (3.2.1)

and for a set of edges F C EN., define

FE :- {{C;,C~} ~ {i, j} E F}, (3.2.2)

where C; and C~ are the components of (N`, E) containing players i and j, respectively.

The intuitive idea is to contract each component not containing the source into a single
player and to contract the component of the source into a new source. Note that if i
and j lie in the same component of the graph (N',E), then the edge {i, j}~E has two
identical end points, i.e. it is a loop.

It is easy to see that if F is an mcse of the mcse problem (N, ~, w, E), then the tree
(N~, FE) is an mcst of the associated mcst problem (NE, ~E, wE). Conversely, if (NÉ,T)
is an mcst of the associated mcst problem, then there exists an mcse F with FE - T.
This correspondence, though possibly associating several mcses with one mcst, transfers
the well-known structure of the collection of mcs trees of an mcst problem onto the set
of mcs extensions of an mcse problem.

Example 3.2.2 Consider the mcse problem ( N, ~, w, E) depicted in figure 3.3, in which
all edges cost ~1 and edge {1, 2} is already constructed. There are two mcses in this
mcse problem. In the associated mcst problem, there is only one player, so the unique
mcst consists of the edge connecting this player to the source. In the mcse problem,
both the edge {~,1} and the edge {~, 2} correspond to this edge of the mcst problem.
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Figure 3.3: A simple mcse problem with two mcses.

More about the structure of the set of mcses will be said in the appendix, in the proof
of proposition 3.1.10.

We now define the irreducible core of an mcse problem. It is a straightforward gener-
alization of the definition of the irreducible core of an mcst game provided in Bird (1976).
Apparently, it depends on an mcse. However, this is not the case, as will be proved later.

Definition 3.2.3 Given an mcse problem ~1d -(N, ~, w, E) and an mcse E', define
the irreducible core IC(,M, E') of ~1~1 with respect to E' as follows : consider the set
Var(Jl~t, E') of all mcse problems that have E' as mcse and that are obtained from ,M
by varying the weights w(e) of edges e~ E' which connect two components of (N', E).
Now IC(JVt, E') is the intersection of the cores of all mcse games associated with an mcse
problem in Var(Nt, E'), i.e.

IC(Nt, E') :- n{Core(N, cM ) ~.M' E Var(.M, E')}

If the set E of initially present edges is empty, the present definition coincides with the
definition of irreducible core of an mcst problem in Bird (1976). For mcst problems, it
is already known that the irreducible core is independent of the mcst used to define it.

Equivalently, the irreducible core could be defined as follows : given an mcse problem
J1~1 -(N, ~, w, E) and an mcse E', for any two players i, j E N, let P;~ be a path in the
graph (N', E U E') from i to j. It is possible that this path is not unique, but the part
of the path in E' is. Define a new cost function

max{w(e')~e'EP;~f1E'} ifC;~C„
w(i, j) :- w({i, j}) if C; - C„ (3.2.3)

where C; and C~ are the components of (N', E) containing i and j, respectively. Note
that if {i, j} E E' then P;~ consists only of the edge {i, j}, hence w({i, j}) - w({i, j}).

Then the following holds :

Theorem 3.2.4 The irreducible core IC(M, E') of an mcse problem ~1~1 -(N, ~, w, E)
coincides with the core of the game (N,c) -(N,c~N.'.~E~)

Proof : First, E' is an mcse of the problem (N, ~, w, E). This can be seen as follows.
Suppose there is a spanning extension E, which is cheaper than E'. Order the edges
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in E by increasing weight and take the first edge {i, j}- e E E` E'. Adding e to

(N', E U E') creates a cycle formed by e and the edges in P;;. Hence, there exists an

edge e' E P;; n E' ` E, such that substituting e with e' in E yields another spanning
extension of the problem (N, ~, w, E). Now e connects two components of (N', E);
hence w(e) 1 w(é ) for all edges e' E P;; n E'. This spanning extension is thus an mcse,

which, moreover, has one more edge in common with E'. Repeat this argument enough

times to see that E' is indeed an mcse of the problem (N, ~, w, E), which implies that

(N, ~, w, E) E Var(M, E'). Hence, the irreducible core of ~t~l is included in the core of

the game (N, c).

On the other hand, note that for an edge e- {i, j} ~ E' connecting two components

C; and C;, max{w(e') ~ é E P;;nE'} is a lower bound on the weight that can be assigned

to this edge e in an mcse problem M' E Var(Nl, E') : if a lower weight is assigned to e,

then there is an edge e' E Pe n E' with higher weight than e and replacing é by e would

yield a spanning extension E' `{e'} U{e} which has lower cost than E'. Hence, w(e) G

w'(e) for all edges e E E,v., for every problem (N, ~, w', E) E Var(~t~l, E'). This implies

that c(S) C cM (S) for all coalitions S and for all mcse problems ~1i1' in Var(~1~f, E').

Because E' is an mcse of (N, ~, u~, E), it also follows that c(1V) -~eEE' w(e) - cM (Rr).

Hence, Core(c) C Core(eM ) for all Nt' E Var(M, E), which implies that the core of c

is included in the irreducible core of Nt. Together with the first part of the proof, this

proves the theorem. ~

Example 3.2.5 Computing the reduced weights in the mcse problem of example 3.1.2,
we obtain w({1,5}) - w({1,4}) -~40, w({1,3}) -~20, w({1,2}) -~10, w({2,5}) -
w({2,4}) - ~40, w({2,3}) - ~20, w({3,5}) - w({3,4}) - ~40, w({4,5}) - ~70 and
w({i, ~}) -~100 for each player i.

In order to analyze the structure of the irreducible core of an mcse problem, we relate

its structure with the structure of the irreducible core of the associated mcst problem of

definition 3.2.1, using the concept of marionettes. Zumsteg (1992) defined two players

zi? in a game (N, c) to be marionettes if

c(S U{i}) - c(S U{j}) - c(S U {i, j})

for all S C N. Considering players to be marionettes of themselves turns being mar-
ionettes into an equivalence relation; we denote it by ~. For any player i, the set of
marionettes of i is denoted by S;.

Definition 3.2.6 For a game (N, c), the marionette-reduced game (N', c') is the game

in which N' -{S; ~ i E N} and which satisfies c'(C) - c(~JsEC S) for all C E N'. Hence
a player in the marionette-reduced game consists of all marionettes of one player in the
original game.
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Equivalently, one could obtain the marionette-reduced game as a subgame of the original
game : for each player U E N', take one representative player jU E U and define
T-{ jU ~ U E N'}. Define the subgame (T, cT ) by

cT(U) - c(U)

for all U C T. For every player i in T, there exists a unique player S; in N' satisfying
js; - i and for every player U in N', there exists a unique player jU in T satisfying
S~~ - U. Furthermore this bijection between the players of T and N' turns out to be
an isomorphism between the games (N', c) and (T, cT ):

c'(C)

cT(U)

SEC

- c(U)

~( U s)
- c'({S; ~ i E U})

- c({jS~SEC}) - cT({jS~SEC})

c( U 5'i )
iEU

for all coalitions C C N' and U C T.

Lemma 3.2.7 If ( N, c) is a game and (N', c') is its marionette-reduced game, their cores
are related as follows :

1. if ~ E Core(N, c), then y E Core(N', c'), where y E RN~ is defined by ys -~;ES ~;
for all S E N'.

2. if y E Core(N', c') n R~~, then x E Core(N, c), for all x E R~ satisfying ys -

~;ES ~; for all S E N'. Moreover, such an x exists.

Proof : The proof of part 1 is trivial. To prove part 2, take y E Core(N', c'). We
first prove that an x that satisfies the requirements exists. For all S E N', choose a
representative player is E S and assign

ys if i - is for an S E N',
~i .- .

0 otherwise.

Because y is non-negative, so is x. Now s(N) - x({is ~ S E N'}) - y(N') - c'(N') -
c(N) and for any coalition T C N, there exists a subset T' of T, such that ~J;ET S; -

~J;ET' S;, where the right-hand side is a disjoint union. Hence,

C(T) - C(~ S{) - C( ~ Si) - c({S; ~ i E T'})

iET iET' I I

? ~ ys~ - ~ ~(si) - x( ~J Si)
iET' iET' iET'

) x(T),

which implies x satisfies the requirements.
Now take any ~ E R} satisfying ys -~;ES x; for all S E N'. Then

~(N) - ~ ~(S) - ~ ys - y(N~) - ~(N~) - c(lv)
SEN' SEN'
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and for any coalition T, take again the subset T' such that U;ET S; - UiET' S;, where the
right-hand side is a disjoint union. Then because ~ is non-negative and y E Core(N', c'),

~(T) ~ ~ ~ ~; - ~ ~(S;) - ~ ys,
iET' jES, iET' iET'

G c'({S; ~ i E T'}) - c(T')

- ~(T)
Hence, x E Core(N, c). ~

Theorem 3.2.8 For a given mcse problem M-(N, ~, w, E) with associated minimum-

cost spanning tree problem T- (NE, ~E, wE), the mcst game (NE, c7) associated with

T coincides with the marionette-reduction (N', c') of the mcse game (N, cM ).

Proof : We first prove that the sets NE and N' coincide. Two players that are in the

same component of (N", E} are marionettes in the mcse game : if either one is connected

to the source, so is the other, so that the cost of connecting one is the cost of connecting

both. Hence, a. pla.yer in NE; being a component of (N", E), is a coalition of marionettes

of the mcse game.
On the other hand, if two players are marionettes in the mcse game, it means that

connecting one of them to the source is as costly as connecting the other player or

connecting both players. Because the cost of all edges is positive, it follows that both
players must lie in the same component.

Hence the set of players NE in the mcst game coincides with the set of players N' in

the marionette-reduction of the mcse game.

Consider a coalition C C N'. By definition of the associated mcst problem,

c7(C) - cM( U s).
SEC

As for all S E C, all players in S are marionettes in the mcse game, it follows that

cM ( U S) - c'(C).
SEC

Hence e7(C) - c'(C), which concludes the proof. 0

The next proposition states the relation between the irreducible core of an mcse

problem and the associated mcst problem.

Proposition 3.2.9 For an mcse problem ~1~1 - (N, ~, w, E) and an mcse E', the irre-

ducible core IC(,M, E') satisfies

IC(~1~t, E') - {x E R~ ~ y E IC((NE, ~E, wE)) where ys :- ~ x; b~S E NE}
iES
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Proof : This follows easily from lemma 3.2.7 and theorem 3.2.8 and the fact that an
mcse is transformed into an mcst by the transition from mcse problem to associated
mcst problem. O

Because the associated mcst problem does not depend on an mcse and the irreducible
core of an mcst problem does not depend on an mcst, the following corollary holds.

Corollary 3.2.10 The irreducible core of an mcse problem is independent of the mcse
used to define it.

Accordingly, the irreducible core of an mcse problem M will be denoted by IC(JVl).

Next follows the proof that the irreducible core of an mcse problem coincides with
the set of allocations generated by algorithm 3.1.3.

Lemma 3.2.11 Let .M be an mcse problem. Then D~K(~1i1) C IC(M).

Proof : Section 3.1 stated that for an mcse problem .M, the set D~K(~1d) is a subset of
the core of the associated game (N, c~ ). The proof in the appendix 3.5 depends only
on the weights of the edges in an mcse E'. Since E' is an mcse in all mcse problems
J1~1' E Var(~1~t, E'), it follows that D~K(,M) C Core(cM ) for all mcse problems ~1~1' E
Var(~1~t,E'). Hence, D~K(~1~1) C n - Core(cM )- IC(.M). o

- .M'EVar1.M,E')

In order to prove the reverse inclusion, use the following lemma.

Lemma 3.2.12 Let T -(N,~,w) be an mcst problem and let (N",T) be an mcst for
T. Then Bird's tree allocation ~3T lies in the set Dcx(T)

Proof : The number of edges in T equals n:- ~N~. Consider any sequence E' -
(e', ..., en) of edges obtained by ordering the edges of T by non-decreasing cost. Define
~ - (f', . . . , Ín) bY

ft -~ 1 if et is the first edge on the path in (N", T) from i to the source,
' ~- 0 otherwise.

It follows that .~ E VE(T) and that QT - x~~~ E D~ - Dcti (T) o

Theorem 3.2.13 Let T be an mcst problem. Then D~K(T) - IC(T).

Proof : It follows from lemma 3.2.11 that we only have to prove IC(T) C DcK(T).
Bird (1976) proved IC(T) is the convex hull of the set of all Bird tree allocations of
the mcst problem T, with reduced weight function defined by equation (3.2.3). By
proposition 3.2.12, these Bird tree allocations lie in Dcx(T)

Aarts and Driessen ( 1993) proved that the edges in an mcst of T have the same weight
in T as in Tand that an mcst of Tis an mcst of T. Because the set D~h~ is obtained
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by considering only the weights of edges in an mcst, it follows that Dch' (T)- Dcti (T)

Hence, all Bird tree allocations lie in Dch (7)

Moreover DcK(T) is convex, hence

IC(7) - conv hull{QT ~ T is an mcst of 7} C Dck~(7) - Dch.(7)

which concludes the proof. o

Corollary 3.2.14 Let ~t~l -(N, ~, w, E) be an mcse problem. Then

Dch~(M) - IC(.M).

Proof : By lemma 3.2.11, we have only to prove that Dc~`(.M) ~ IC(.M). Suppose
x E IC(.M) and let 7- (NE, ~E, wE) be the mcst problem associated with ,M. Propo-
sition 3.2.9 states that the vector y E RNE, defined by ys -~;ES ~; for all S E NE,
lies in IC(7), which by theorem 3.2.13 equals Dck~(T). Hence, there exists a sequence
E-(e', .. ., eT) of edges leading to an mcst of 7 and a sequence .~ - ( f', ..., f T) of

fraction vectors valid for E', such that y- xE~~. Now for each edge et -{C;, C~ }, there
exists an edge ét with same weight in the weighted graph (N', EN., w), which connects
the components C; and C~. Hence, E' -(él, ..., éT) is a sequence leading to an mcse of
M. Define .~ - (.Í~', . . . , fT ) bY

.fc; y if yc; , 0

0 ifyc,-0.

for all t and all i E N, where C; is the component containing i. Then .~ is valid for E.

Moreover, for any player i, xE'~ - 0 if yc; - 0, but then also x; - 0, and if yc; ~ 0,
then

5,.~ T s~t ~~ r e yc;
~ti -~fc;---~fc;-~~--~:~

t-i yc; yc; t-1 yc;

Hence, x- xE'~ E DcK(~1~1), which completes the proof.

A method has been provided (algorithm 3.1.3 together with equation 3.1.2) to com-
pute the irreducible core of mcse problems. In order to obtain the whole core of the
corresponding games, one needs usually to use weights of edges that are not used in any
minimum-cost spanning extension. In general, it is still an open problem to compute the
whole core of an mcse game directly from the weights of the edges, even if the attention
is restricted to mcst games. Aarts (1992) and (1994) computed the core of mcst games
for the case in which there is an mcst which is a chain-i.e. a tree with only two leaves.
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3.3 The equal-remaining-obligations rule

In most cases, the irreducible core of an mcse problem M contains a continuum of
allocations. If the objective is to choose a division of the cost, a one-point solution
might be a better option.

I'he equal-remaining-obligations rule (henceforth ERO rule), suggested by Jos Potters,
is a one-point refinement of the irreducible core and can be constructed according to the
following idea.

In an mcse problem .M -(N, ~, w, E), if player i is connected to the source, i has no
need to construct anything and hence is unwilling to participate in the costs of edges.
On the other hand, if he is not in the component of the source, i needs to be connected
to the source. Because every component that is not connected to the source needs at
least one edge to get connected to the source and constructing one edge per component
not yet connected to the source is sufficient to connect every player to the source, we
assume a component C that is not connected to the source has to pay one edge, or
more precisely, fractions of edges summing up to 1. Moreover, the initial obligation of a
component is shared equally by the players in this component. This leads to the initial
obligation o; of a player i, defined by

IcI lf~~C~o; : -
0 if~ECt

(3.3.1)

where C; is the component of (N', E) containing player i.
For a sequence .~ - ( f', .. ., fT ) of fraction vectors, after a stage t C T a player i E N

has paid fractions of edges to a total of ~s~t f,g, while i's initial obligation was o;. Hence
player i's remaining obligation o; satisfies

oe - o, s- oe-i t. , - f, , - Í, .
s~t

(3.3.2)

Now allocate the next edge et in such a way that the remaining obligations of the players
are constant over components of the graph constructed by adding e`.

Formally, one gets the following extension of algorithm 3.1.3.

Algorithm 3.3.1 ( Equal-remaining-obligations rule)
input : an mcse problem M
output : an mcse and the allocation )JRO(Nt)

1. Given ~I~l -(N, ~, w, E), define

t - 0 the initial stage,
r - ~N'~E~ - 1 the number of stages,

Eo - 0 the initial edge set.

2. While t c T, do steps 3 to 6
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3. t:-tf1.

4. At stage t, given E`-', choose an edge e` ~ E U E`-' such that the graph
(N`, E U E`-' U{e`}) contains no more cycles than the graph (N`, E U E`-'), and
which is the cheapest edge with this property.

5. If C` - C;-1 U C~-1 is the connected component just formed by connecting the

components C;-1 and C~-' of the graph (N', E U Et-1) with the edge e` - {i, j},

define the fraction vector f`-( fk)kEN bY

i i
~c;~ - I~`I

I~,`-I - ~~`~

I~`-'I

I~~I

0

if k E C;-1 and ~~ C`,

ifkEC~-'and~~C`,

ifkEC;-' and~EC~-',

ifkEC~-land~EC;-1,

otherwise.

6. Define E` :- Et-1 U{e`}.

7. ET is the mcse we sought. As before, denote E- (ei, ..., e~) the sequence of edges

constructed.

8. Define EROE(Nl) :- ~ f`w(e`).

Example 3.3.2 Applied to the mcse problem of example 3.1.2, this algorithm generates
successively

~ edge {1,2}, of which players 1 and 2 each pay 1- 2- 2,

~ edge {2, 3}, of which player 3 pays 1- 3- 3 and players 1 and 2 each pay 2- 3- 6,

~ edge {3, 4}, of which players 1, 2 and 3 each pay 3- s- ls, while players 4 and 5
a i i s

p y2-s-io

~ and, finally, edge {2, ~}, to which each player contributes 5.

This yields the allocation 3(101,101,116, 96, 96).

Generically, the choice of edge in step 4 is unique, but even in the case that the

sequence E is not uniquely defined, this algorithm yields only one allocation, independent
of the choice of edges made. This contrasts with Bird's tree-allocation rule, which may
associate a different allocation with each mcst of an mcst problem.
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Proposition 3.3.3 For any two sequences of edges E and E chosen by the algo-
rithm 3.3.1 applied to an mcse problem ~I~í,

EROE(~1~1) - EROE(Nt).

Since the proof is similar to the proof of proposition 3.1.10, it will not be given here.
This proposition allows us to define

ERO(Ni) :- EROE(~1~1)

for any sequence E constructed by algorithm 3.3.1. Clearly, the fraction vectors con-
structed are valid for the edges constructed; the ERO rule is thus a refinement of the
irreducible core.

The ERO rule got its name from the following theorem.
Theorem 3.3.4 The algorithm 3.3.1 has the property that after each stage t, in each
component C of the graph (N', E U Et), every player k in the component C has the
same remaining obligation

: C if~~C,ok - ÍI
0 if~EC.

Proof : The proof goes by induction on the stage t.

1. After stage zero, for k in a component C of (N', E),

t ~ if~~C,

ok-ok-0-{ OI if~EC.

(3.3.3)

2. Suppose equation ( 3.3.3) holds after stage t- 1. Let C` - C;-~ U C~-1 be the
connected component formed at stage t by connecting the components C;-1 and
C~-' of the graph (N`, E U Et-' ) with the edge e` - {i, j}. Let C,`E and Ck ~ be
the components of player k in (N', E U E`) and (N', E U E`-'). Then

t t-~ - fk~k - ~k

- ( IC~ - fk

SI O-0
ifk~C;-1

ifkEC;-'

~~~r-( ~~~'r- ~c~~ )

0

ifkEC;-1and~~Ct

if k E C~-1 and ~~ Ct

ifkEC,-'and~EC~-'

ifkEC~-1and~EC;-'

ifk~C:UC;-1

if k E C;-'
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ifkECt~~

ifkEC;-land~EC~-I

ifkEC~-Iand~EC;-'

ifk~CtUC,-'

if~ECk 1

~~ if ~ ~ Ck

0 if~ECk.

Hence equation (3.3.3) holds after stage t as well. This completes the proof. ~

3.4 Axiomatic characterizations

Sections 3.2 and 3.3 iniroduceá the irreducible core and the equal-remaining-obligations
rule for mcse problems. We will axiomatically characterize these rules in this section.

In contrast with the characterizations in chapters 2 and 4, a solution here consists
only of a set of allocations. This is the case because both the irreducible core and the
ERO rule are independent of the set of edges constructed.

An allocation of an mcse problem .M - (N, ~, w, E) is a vector z E Rf that satisfies

~;E~, ~; ) cM (N). In effect, an allocation is a vector that allocates at least the cost of

a minimum-cost spanning extension to the players.

Properties that an allocation x of an mcse problem ~1d -(N, ~, w, E) can satisfy are

Definition 3.4.1

Eff x is ef~icient if

~ ~; - cM(N).
iEN

MC x has the minimal contrióution property if every component that does not contain
the source contributes at least the cost of a minimum-cost edge that connects two
components. In formula : for each component C E N'~E that does not contain
the source,

~ x; 1 min{w(e) ~ e connects two components of (N', E)}.
;EC -

FSC x has the free-for-source-com,ponent property if x; - 0 for all i in the component
of the source in the graph (N', E).
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The minimal contribution property and the free-for-source-component property are mo-
tivated as follows: every component that has to be connected to the source has to
contribute at least the cost of an edge, and the component of the source should not
contribute, because ít is already connected.

A solution of mcse problems is a map ~ assigning to every mcse problem a set of
allocations.

Definition 3.4.2

NE A solution y~ is said to be non-empty if

~(Nl) ~~ for all mcse problems ~1~1.

A solution z[i can be said to be efficíent and satisfies the minimal contribution property
or the free-for-source-component property if for all .M all elements of the solution ~(JVt)
satisfy the corresponding property.

Definition 3.4.3 Gíven an mcse problem Nt -(N, ~, w, E) and an edge e ~ E that
connects two components of (N`, E), define the edge-reduced mcse problem

Nle - (N, ~, w, E U {e}).

The next three properties use edge-reduced mcse problems, with as extra edge an edge
which constructs a new component if it is adjoined to the graph (N`, E), and which has
minimum cost among all edges with this property.

Definition 3.4.4

Loc ~i is local if for all ~1~f, for all ~ E~(Nl), for each minimum-cost edge e that when
added to (N', E) constructs a new component C, there exists an i E R~ such that

(~, ~"~~) E ~(~t`).

In effect, this axiom requires that when a minimum-cost edge is added, this does not
influence the allocation to players that are not in the component constructed by adding
this edge.

ECons ~ is minimum-cost-edge consistent if for all Nl -(N, ~, w, E), for all allocations
~ E~(Nt), for each minimum-cost edge e that when added to (N`, E) constructs
a new component C, for each cr E ~~ satisfying c~w(e) C x~, it holds that

x - xe'a E ~G(M`) ,

where xe~~ :- (aw(e),ON`c)
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This axiom means that when a minimum-cost edge is added, the savings obtained by
not having to construct this edge can be allocated arbitrarily over the players that are
in the component constructed by adding this edge. Obviously, edge consistency implies
locality.

CECons ~ is converse minimum-cost-edge consistent if for all ~1~1 -(N, ~, w, E), for ev-
ery minimum-cost edge e that when added to (N', E) constructs a new component
C, for every x E RN that satisfies

a MC,
b FSC,
c aw(e) C a~ implies ~-~`~a E~(Nt`) for all a E

it holds that
x E ~(N1).

This axiom requires that if adding an allocation to the solution does not destroy the MC,
FSC and ECons properties, then it should be part of the solution. In effect, it requires
the solution to be the largest solution that satisfies the other properties.

Proposition 3.4.5 The irreducible core satisfies the properties NE, MC, Eff, FSC,
ECons and CECons.

Proof : Because of the coincidence of the irreducible core with the set D~k~, the irre-
ducible core is non-empty for any mcse problem : there are always valid sequences of
fraction vectors for any sequence of edges constructed by the algorithm 3.1.3. It satisfies
the minimum contribution property because every component that does not contain the
source has to pay for fractions of edges that total one, so it contributes at least the
minimum cost of an edge that connects two components. That it is efficient has been
proved in lemma 3.1.4. By construction, it is clear that D~~ satisfies FSC.

To prove edge consistency, take an mcse problem Nl and suppose x E IC(~1~t) -
DGK(~1). For each minimum-cost edge e that when added to (N`, E) constructs a new
component C, there exists a sequence E- (e', e2, . .., e') starting with the edge e' - e,
that is constructed by the algorithm 3.1.3. Because the set D~K(N() is independent of
the sequence of edges constructed, there exists a sequence .~ - (f', ..., fT) E VE such
that x- x~~~. For any a E 0~ satisfying aw(e) C x~, define a' E 0~ by ~i :- f;l for
all i E C. Then

~(a; - a;) - 0,
iEC

r

(a - ~1)w(el) C ~ f~w(et),
e-s

ftw(et) ) 0 for t) 2.



44 Minimum-cost spanning extension problems

Hence there exist vectors a2, ..., aT E Rc satisfying

C ft fort~2andforalliEC,
~ a; - 0 for t~ 2,
iEC

T

(a - al)w(el) - ~ atw(e~).
t-s

(3.4.1)

E.g. take at the projection of ft on the hyperplane with coordinates zero, along the line
through the points ~s-2 f'w(es) and (a - al)w(el), i.e.

a` - ft -
~tEC f~ (~ fsw(e') - (a - a1)w(el))

~~EC ~s-z f~ w(e') s-z

for all t) 2. Rewriting the last equation of system ( 3.4.1), we obtain

T

aw(e) - ~ atw(et).
a-i

It follows that x-~e'" -~t 2(ft - at)w(et). The first two equations of system ( 3.4.1)
imply that the sequence ( f 2- a2, ..., fT - a?) is valid for ( e2, ..., eT ) . Hence, 2- 2e'" E
Me

Because edge consistency implies locality, the irreducible core satisfies locality as well.
To prove that the irreducible core satisfies CECons, take an mcse problem ~1~1, take a

minimum-cost edge e that when added to (N', E} constructs a new component C, take
an x E RN that satisfies

a MC,

b FSC,

c aw(e) G xC implies x-~e'" E IC(Me) for all a E Oc.

We have to prove that x E IC(~1~1).
Denote by Cl and C2 the two components that are joined by e. The allocation .~

satisfies FSC; hence if one of these components (say Cl) contains the source, ~; - 0
for i E C1 and an a E Oc with a G ~c satisfies a; - 0 for i E Cl. For such an a
(which exists), there exists a sequence (e2, ..., e') constructed by the algorithm 3.1.3
applied to the problem Nte and a sequence ( f 2, ..., fT ) E Vle'""'e`1 such that a- xe'" -
~le~,...,e'1,1f2,...,fT) So with f defined by

~ ak ifkEC
fk ~- 0 otherwise

for all k E N, it holds that ( f, f2, ..., fT ) is valid for the sequence (e, e2, . .. , eT ) and

y - y(e,ea~ . .,e'),(f,f2, ..,fr) E ~(~,().
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If neither of the two components contain the source, then by the minimal contribution
property, both components contribute at least w(e) in the allocation x. On the other
hand, both together contribute x(C), so there exists an al E[0,1], such that

~ x(Cl) - a'w(e) ~ (1 - a1)(x(C) - w(e))
x(CZ) - (1 - al)TO(e) -~ al(x(C) - w(e))

Define a E ~~, by
alx;~x(Cl) if i E Cl,

a` - (1 - al)x;~x(Cz) if i E Cz.

Then, aw(e) G xC. Hence, there exists an mcse {ez, . .., eT} and a sequence
(fz fT) E VIeZ'~"eT)(N1) such that x- xe~~ -~T ftw(et). Define az a' b,..., t-z i,..., i Y

ai -(1 - al) ~:EC f;t and a2, ... , az bY az - al ~tEC f,t. Then

ai -}- a2 - ~ f; for all t~ 2
iEC

T T

al-h~ai - al-}-(1-al)~~f;
t-2 t-2 iEC

-al~-~a2 - 1-
t-2

Defining gl - (a, ON~C) and

'~~f~
t-2 ;EC

t aix,~x(Ct) if i E Cl
g' - ázx;~x(Cz) if i E Cz

we see that ( g~,...,gT) E V~e,e~,...,eT )(M), Furthermore,

x(Cl) - alw(e) - ( 1 - al)(x(C) - w(e))
T

- (1 -al)~~ f;w(et)
t-2 iEC

T

-
~atw(et)-
t-2

This implies that for i E Cl,

x; - x(G)x(c,)

T

- x(Ci)
(alw(e) f ~ aiw(et))

T

- 9: w(e) f ~9;w(et).
t-z

Similarly for i E Cz. Hence, x - xle'e2""'eT)'~9''~~"9`) is in the irreducible core of Nt. This
implies that the irreducible core satisfies converse edge consistency. o
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Lemma 3.4.6 If a solution of mcse problems ~ satisfies MC, FSC and ECons, and a
solution of mcse problems ~ satisfies NE, FSC and CECons, then ~(~I~t) C~i(~I~O for
each mcse problem ~1~1. -

Proof : We prove the lemma for any mcse problem ~1~i by induction on the num-
ber of components of the graph (N',E). First, consider first an mcse problem
Nl -(N, ~, w, E), where the graph (N`, E) is connected. Then by FSC, x - 0 for
any ~ E~(Nl) and for any ~ E~(~1~1). By NE, there has to be an x E~(M), hence

~(~.t) c {o} - ~(~.t).

Now suppose the lemma holds for every mcse problem ~l~l with P- 1 components
in the graph (N', E). Take an mcse problem M such that (N', E) has p components
and take x E~(Nl). By ECons of ~, for any minimum-cost edge that constructs a new
component C when added to (N', E), for each a E 0~ satisfying aw(e) C~~, it holds
that

x - xe'~ E ~(Me) C ~(Me)i

where the inclusion holds by the induction hypothesis. Because x satisfies MC, it holds
that x E zli(~1~1) by CECons of z~. Hence ~(,M) C~(,M). o

Theorem 3.4.7 The unique solution of mcse problems that satisfies NE, MC, FSC,
ECons and CECons is the irreducible core.

Proof : By proposition 3.4.5, the irreducible core has these properties. By lemma 3.4.6,
if two solutions satisfy these properties, they contain each other and hence they have to
coincide. ~

To characterize the ERO rule, we introduce two other properties.

Definition 3.4.8

ET a solution ~ satisfies equal treatrrcent if for every mcse problem ~1~1, for all ~ E~(Nt),
for each component C of the original graph (N', E), and for all players i, j E C,

IPCons A solution z~ is inversely proportional consástent if for every mcse problem
~1~1 -(N, ~, w, E), for every minimum-cost edge e that when added to (N', E)
connects two components Cl and C2, neither of which contains the source, for all
x E~i(M), there exists an i E~(Nle) such that

ICl l ~ (~i - ~i) - IC2I ~ (~; - ~i).
iEC, iEC2
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Equal treatment is motivated by the idea that players in the same component need the
same connections, hence should be allocated the same amount. Inversely proportíonal
consistency means that if two components are connected by a minimum-cost edge, they
contribute amounts to the cost of this edge which are inversely proportional to their
number of elements. This is motivated by the idea that a bigger component has ap-
parently already constructed more edges in E, so should pay less for the edge under
consideration.

Theorem 3.4.9 The unique solution of mcse problems that satisfies NE, FSC, Loc, Eff,
ET and IPCons is the ERO rule. Here, the ERO rule is identified with the solution that
assigns the singleton {ERO(M)} to mcse problem ~1.

Proof : First we prove that the ERO rule satisfies the required properties. That the
ERO rule satisfies the properties NE, MC, FSC, Loc and Eff is a consequence of its
being a refinement of the irreducible core. That is satisfies equal treatment is also easy
to see. To prove it satisfies IPCons, take an mcse problem ~1~1, and a minimum-cost edge
el connecting the components Cl and Cz, neither of which contains the source, into a
component C. Then there exists a sequence of edges E' -(e.~ ,..., eT) starting with e~ and
a sequence of fraction vectors .~ - ( f', ..., fT ) constructed by the algorithm 3.3.1 such
that ERO(~1~1) - x~~~. Moreover, by definition of the algorithm, xl`2""'e'1,1~',...,f'1 -

ERO(.Me). Because e connects two components that do not contain the source,

E..~ (e~, .., er),ei', --.irl -
~k - ~k -

w(e)(~~1~ - ~~~) if k E Cl,

w(e)(~~~~ - ~~~) if k E Cz,

0 ifk~C.

~ (ERO(~1) - ERO(~1~1`)) - 1 - ~C'~ - ~Cz~
kEC, ICI ICI

~ (ERO(.M) - ERO(~1~1`)) - ~I~,'I~.
kECZ

~CiI ~ (EROk(M) - EROk(~1`)) -
~Ci~~Cz~

- ~C2I ~ (EROk(Nt) - EROk(~t`)).
kEC, ICI kEC~

To prove uniqueness, suppose a solution ~i satisfies these six properties. We prove
~(Nt) -{ERO(~t)} by induction on the number of components of the graph (N`, E).

Let (N', E) have one component. By FSC, ~;(~1~1) - 0- ERO;(Nl) for all i E N and
all x E ~(M).

Suppose ~(~1~1) -{ERO(~1~t)} for all mcse problems ~1~1 such that (N',E) has less
than p components. Consider an mcse problem Nl such that (N', E) has p components.
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Take a minimum-cost spanning edge e that connects two components Cl and Cz into a
new component C in (N', E). By ET of ~ applied to M and .Me, for all x E~(M), for
all i E~(.Me), for all i, j E Cl we have

~; - ~i - ai - ~i - ól (~i ~)

and for all i, j E Cz we have

x~ - i~ - a; - i; -: óz(x, i).

Moreover, by FSC of zli, if Cl contains the source, then ól(x,~) - 0 and by locality and
efficiency, there exists an i E ~(Nle) such that óz(x, x) - ~C2~ . If Cz contains the source,
then similarly one proves that ól(x,i) and bz(x,~) are uniquely determined. If neither
of Cl and Cz contain the source, then by IPCons, there exists an i E~(Nle) such that

~Cl~ ~ ó~(~,~) - ~Cz~ ~ óz(~,
kEC~ kEC2

and by locality and efFiciency,

)~

~ ói(x,i) -F ~ óz(x,i) - ~(x; - ~;) - w(e).
iEC, iECq iEC

Hence,

bl(x,~) - I~ I~ and óz(~,i) - I~I~.

So whether Cl or Cz contain the source or not, the numbers ó1(~,i) and óz(~,i) are
uniquely determined and independent of x and i. Now the ERO rule also satisfies the six
properties and so has these same numbers ól(x, i), óz(~, i) characterizing the difference
between ERO(Nt) and ERO(Me). The induction hypothesis then implies

x- ó,(x, i)1C, - bz(x,i)lCZ - ï- ERO(~1~1e) - ERO(~1) - ól(~, i)1~, - óz(x, ~)1C2

and so x- ERO(Nf). o

It is still an open problem whether the properties used to characterize the irreducible
core in theorem 3.4.7 and the equal-remaining-obligations value in theorem 3.4.9 are
logically independent, but we conjecture that they are.

3.5 Appendix

In this appendix, we prove theorem 3.1.8 and proposition 3.1.10. First, we need a few
lemmas.

Lemma 3.5.1 For all sequences ~ chosen by algorithm 3.1.3 the constructed extension
ET is an mcse for the problem ~1~1 -(N, ~, w, E).
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Proof : There are T~ 1- ~N'~E~ components in (N', E), at each stage two com-
ponents are connected, so after stage r, the resulting graph is connected and no new
cycles have been introduced. Assume that the extension (N`, E U ET ) constructed is not
minimal in cost, i.e. there exists a set of edges E such that ~E~ - T and (N', E U E) is
a connected graph, and

~ w(e) G ~ w(e). (3.5.1)
eEE eEEr

Let the sequence E-(ël,...,ëT) consist of the edges in E ordered by non-decreasing
weight. Equation ( 3.5.1) implies there exists a smallest t G r such that e~~ - ë~~ for
1 G t' G t and et ~ ët. Because e~ is a minimum-cost edge that does not introduce a

cycle in (N`, E U Et-1) - ( N`, E U {él, .. ., ët-1 }) and ët does not introduce a cycle in

(N`, E U Et-1), it follows that w(et) G w(ët). Consider the end points i and j of e`. They
have to be connected in (N', E U E), hence there exists a path from i to j in (N', E U E).
But not all edges in this path can be present in the graph (N', E U Et-1), otherwise e~

would introduce a cycle. Hence there is an edge e E E in this path that comes later in

~ than ët, so e costs at least w(ët), which is at least w(et). Now E' :- (E `{e}) U{et}
is a spanning extension of (N`, E) such that E' does not cost more than E, and E' has

one edge more in common with ET. Repeating this process enough times shows that

ET does not cost more than E. This is a contradiction, hence the assumption that the
algorithm 3.1.3 does not lead to an mcse is wrong. ~

In order to prove that DE is a subset of the core of the associated mcse game if ~ is
constructed by algorithm 3.1.3, we need to compare the outcome of the algorithm 3.1.3
applied to related mcse problems.

Suppose we have an mcse problem .M -( N, ~, w, E) and an edge e- {i, j} con-

necting the component C. of the source with the component C~ of some player j in the

graph ( N`, E). Define E :- E U {e}. Consider the mcse problem Nl -(N, ~, w, E).
Distinguish the graphs, components, edges and allocations used in algorithm 3.1.3 ap-
plied to the problems ~t~l and ~1~1 by gíving those in the latter problem a tilde. With this
setup, we prove two lemmata and a corollary, which we need to prove theorem 3.1.8.

Lemma 3.5.2 For every sequence of choices E' - (el, ..., eT ) in the algorithm 3.1.3
applied to ~1~1, one can find an s G T such that the sequence ~-(ë', ..., ëT-1) :-
(e', ..., es-', es}1, .. ., eT ), obtained by deleting the edge es from E, is a sequence of
edges that can be obtained by algorithm 3.1.3 applied to Nl and that satisfies

1. (N'~(E U Et)) `{C„C~} -(N`~(E U Et)) ` {C; } and C; U C~ - C,~ for all t G s,
that is, as long as t G s, the graphs (N`, E U Et) and ( N", E U Et) have the
same components, except for the components of i and j in (N', E U Et), which are

connected to each other in ( N', E U Et).

2. N'~(E U Et) - N`~(Ë U Ët-1) for all t E {s, ...,T},
that is, after stage s, the components of (N', E U E`) coincide with the components
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of (N', Ë U Ët-1 j at the previous stage.

Proof : We prove the statements by induction on t. For t- 0: EU Eo - E- EU {e} -
E U Eo U{e}, hence C; - C; U C~ and (N'~(E U E`)) `{C;, C~} -(N`~(Ë U Ëz)) `{C; }.
Hence case 1 holds.

If case 1 holds at stage t- 1, look at the effect of adding e` to Et-1. Two cases can
occur.

a ez ~ e and adding the edge e` does not introduce a cycle in the graph
(N', Ë U Ëz-'). Now ez is a cheapest edge which does not introduce a cycle in
(N', E U Ez-') and any edge which does not introduce a cycle in (N', E U Et-1)
does not introduce a cycle in (N', E U Ez-1). Hence e` is also a cheapest edge that
does not introduce a cycle in (N', E U E`-'). This means e` is a legitimate choice
for é`. Consequently, case 1 still holds at stage t.

b ez - e or adding the edge ez does introduce a cycle in the graph (N', EUEz-')
Because ez does not add any cycle in (N', E U Et-1), this means ez connects the
components C,-' and C,-1 of (N', E U Et-1). Then C; - C,-I U C~-1 - C;-' and
the other components are unchanged, so

(N'~(E U Ez)) `{C;} - (N`~(E U Et-1)) `{C;-',C~-'}

- (N~I(ËUËz-'))`{C;-'}.

Hence N'~(E U E`) - N'~(Ë U Ët-1)), and case 2 holds for stage t.

Suppose case 2 holds for stage t- 1. Then the edge ez is a legitimate choice for éz-'
(it does not introduce a cycle, and has minimal cost among the edges satisfying this).
Suppose e` - {k, l}. Hence, Ck - Ck 1 U Ci-1 - Ck 2 U C~-2 - Ck 1, which implies
N'~(E U Ez) - N'~(Ë U Ët-1), and case 2 holds for stage t as well.

So if the first stage at which case 2 holds is called s, we see that case 1 holds for t G s
and case 2 holds for t~ s.

Note that N'~(E U ET) -{N'} - N '~(Ë U Ët-1 ), hence case 2 holds at stage T, so
sGT. p

Lemma 3.5.3 Let ~1~1 and M be as above, let ~ be a sequence of choices made by
algorithm 3.1.3 applied to Nt, and let .~ be valid for E. Let the sequence E and the stage s
be as defined in lemma 3.5.2. Then there exist (t'k)kEN, such that the sequence .~ -
( fl fT-' ) defined by,.. ~

fk if t G min{tk, s}
T

z~
~ fk ]ft-tk GS

~~-tk

f~}1 if tk 1 t 1 s

0 ift)tk

foralltE{1,...,r-1}andallkEN



3.5 Appendix 51

is valid for E. In formula :.f~ E V~(Nt).

Proof : For all k E N, define

tk :- min{t ~ there exists a path from k to ~ in (N`, E U Et)},

where Et is the edge set constructed up to stage t in the algorithm 3.1.3 applied to M.

Note that tk - 0 for all k E C~, the component of (N", E) connected to C" by the edge e.

Hence fk - 0 for all stages t if k E C~. This means the players in C,~ do not contribute

to any edge. We now prove the lemma in three stieps.

1. For t G r- 1, let éf -{k, l} and let Ct - Ck ' U C!-1 be the component in the

graph (N', E U Ef) formed by the addition of ét. Then ~mEC~ f,fn - 1. To prove

this, we distinguish several cases :

~ Suppose éf is not incident to C;-', the component of ~ in (N', E U Et). Then

t,,, - tk ~ t for all m E Ct, hence

- if t G s then fm - fm for m E Cf. Moreover, Ct - Cf, the component in
the graph (N", E U Et) formed by the addition of ét - ef. Hence,

~ f„~- ~ f~-1
mEC~ mEC~

by the assumption on .~.

- if t 7 s then fm - fk}1 for m E Cf. Moreover, ëf - eftl and Ct - Cff',

the component in the graph (N", E U Eftt) formed by the addition of

eftl Hence,
~ ff - ~ fffl - 1m m

mEC' mEC~}1

by the assumption on .~.

~ Suppose that éf is incident to C;-'. Then one of k and l, say k, lies in C;-1.

This means tm - t~ - t for all m E Cj -I and f,,, G t for all m E C~ 1. Hence,

- if t G s, then f,t„ -~i-f fm for m E C~-' and f,f„ - 0 for m E Ck 1. This

implies

jJ !m - [~ fm

mEC~ mECi-~
r

mEC~-f t'-t
i

r t-1

~ (~ lm - ~ fm)'

mEC~-~ t'-1 f'-1
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Now C~-' - Ct-' is a union of a number, say p, of components CL, ..., Cp
of the graph (N', E}. Remember that for all q E { 1, ..., p} :

T

~ ~f~-1~
mECy t'-1

hence
T J~ T

~ ~ fm - ~ ~ ~ fm - p (3.5.2)
mECi -~ t'-1 q-1 mECq t'-1

and as Cl-1 -~-~ Cq contains exactly those players that contributed
to the p - 1 edges in {e', ..., et-' } that connect the components (CQ)q-1
into C~-1,

t-i

~ ~fm-P-1.
mEC~-~ t'-1

Equations (3.5.2) and (3.5.3) imply

~ .fm-P-(P-1)-1.
mEC'

(3.5.3)

- if t ~ s, then f~ - fm 1, ét - et}' and Ct - Ct}l, the component in the
graph (N', E U Ett') formed by the addition of et}' Hence,

~ ft - ~ fit~ -1
m m

mEC~ mEC'fl

by the assumption on .~.

2. For each component C E(N'~E) that does not contain the source : C is also a
component of the graph ( N', E) (because (N', E) and (N', E) differ only in the
component of the source). Moreover, tk - t't for all k, l E C and

~ if tk G s for all k E C, then

T-1 tk

~ L. fk - ~ L fk
kEC 2-1 kEC t-1

tk-1

- [-,(~fk~fkk)
kEC t-1

ek-1 T

~ ( [~, fk ~ [~, fk)
kEC t-1 t-ik

T

~ [~ fk
kEC t-1

- 1.

The first equality follows because f~ - 0 for t~ tk, the third equality because
of the definition of fkk, and the fifth by the assumptions on .~.



3.5 Appendix 53

. if tk 1 s for k E C, then C is not connected to ~ in ( N',E U Es-1) -
(N', E U E'). Hence, according to .~, nobody in C contributes to e', which

is an edge incident to C;. This implies fk - 0 for all k E C. But then

T tk

L~ L fk - ~ ~ fk
kEC t-1 kEC t-1

s-1 tk

- L.(jJfk}~fk}1)
kEC t-1 i-s

tk}1

- J~ ~ fk
kEC t-1

- 1.

3. Furthermore, tk C t if t C r-1 and k E C,-1, the component of ~ in (N', EUE{-1).

Hence, fk - 0 by definition.

Steps 1, 2 and 3 imply .~ E V~(.M). ~

Corollary 3.5.4 Let Nt and .M be as above, let ~ be a sequence of choices made by

algorithm 3.1.3 applied to M, and let .~ be valid for E. Then

xk '~(Nt ) 1 xk '~(.M ) for all k E N,

where E is as defined in lemma 3.5.2 and .~ in lemma 3.5.3.

Proof : Knowing x~'~(~1) -~tk 1 fk w(ét), we distinguish three cases.

. If tk - 0 then

~ fkw(ét) - 0 G ~~'.~(~1~1)
t-1

. If 0 G tk c s(with s as defined in lemma 3.5.2) then

tk

~ f~w(et)
{-1

t-1
~~,.~(M).

The second equation follows from the definition of ,~ and the inequality

because E is ordered by non-decreasing weights.

tk-1

- ~ .Ïkw(et) } fkkw(etk)
t-1

{k-1 T

~ fkw(et) ~ (~ f,`~)w(
t-1 t-tk

tk-1 T

C ~ fkw(et) ~ ~ fkw(et)
{-1 t-tk

T

- ~ fkw(et)

holds
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If tk ~ s then k is not contained in C;-i - C;, so k is not allowed to contribute to
e', i.e. fk - 0. Hence,

tk

~ fkw(et)
i-1

s-1 tk

~ fkw(et) t ~ fk}r,w(ettl)
t-1 t-s
s-1 r

~ fkw(et) f ~ fkw(et)
t-i t-sfi

T

~ fkw(et)
f-1

xE,.~(M).k

As is all three cases the required inequality holds, the lemma is proven. 0

This now enables us to prove theorem 3.1.8.

Theorem 3.1.8 For any mcse problem ~l~t, for any sequence of choices S-(el, ..., eT )
in the algorithm 3.1.3 applied to ~i~l and any sequence of fraction vectors .~ that is valid
for. E the allocation xE~~, as defined in equation (3.1.1), is a core-allocation of the mcse
game (N, cM ) associated with ~1~1.

Proof : Take any coalition S C N. We have to prove ~tES ~; G c(S). Construct
for coalition S a minimum-cost extension ES containing only edges between compo-
nents of (N`, E) containing members of S', such that S is connected to the source in
(N`, E U ES). Define MS :- (N, ~, w, E U ES). Let p be one less than the number of
components of (N`, E) containing members of S`. Then ~ES~ - p and the only difference
between (N', E) and (N`, EUES) is that the component C; of the source in (N', EUES)
is a union of the component C, of the source and other components of (N', E}. Con-
struct the nested sequence E- Eo C ... C EP - E U ES such that Eq `EQ-1 consists of
exactly one edge which connects the component of the source ~ in (N`, Eq-1) to another
component of (N`, EQ-1). Consider the mcse problems N19 - (N`, ~, w, Eq), where q
varies from 0 to p, and note that for any q ~ 0, lemmata 3.5.2 and 3.5.3 and corol-
lary 3.5.4 are applicable to the pair .Mq-1 and ~1~19 - Mq-1. Define ~o - E, ~o -.~
and for 1 G q G p, define Eq - Eq-1 and .~q -.~9-I recursively given Eq-1 and .~q-1, as
in lemmata 3.5.2 and 3.5.3. Then by corollary 3.5.4,

~~q.~q(M9) C 2k9-l,.~q-]('"'4-1)

for all k E N and all 1 G q G p. Summing over q E { 1, ... , p} and noticing that
~1ilP - ~tds and ~t~lo - ~t~t, we obtain

~,Epr~p(~S) - ~Gp,~p(~P)
~

~kOr.~ 0( ,IAO) - ~C.~~( ,~A)

for all k E N. Summing over k E N`S yields
J~l

JVl

[~ ~kP~~p( A AS) G [~ ~G,~(~
).

kELN`S Jvl kELN`S
(3.5.4)
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Denoting ( ep, ..., ep-P) :- Ep, we see that the graph {N', E U ES U {ep, . .., ep-p}) is a

spanning extension for Nl. On the other hand, (N', E U{e~, ..., eT }) is a minimum-cost

spanning extension for Nl, hence

~ w(e) ~ ~ w(e) - c(N) - ~ ~~'~(Nl). (3.5.5)

eEEsU{ep,...,e'p-p} eE{e~,...,er} kEN

Now by definition of ES,
~ w(e) - c(S)

eEEs

and by efficiency of xSp~~p(Nls) ( cf. lemma 3.1.4),

(3.5.6)

~ ,w(e) - ~ ~k,,.~p(Ms) (3.5.7)

eE{ey,...,ep-p} kEN`S

Plugging equations ( 3.5.6) and ( 3.5.7) into inequality 3.5.5 and using inequality 3.5.4,

we obtain

C(~) ~ ~ ~Lp,~p(~S) ' [~ ~G~~(~)

k L k
kEN`S kEN

- ~ ~E',.~(~) ~ ~ ~~,.~(~).
k k

kES kEN`S
~ ~` ~~,.~(M) ~ ~` ~~p.~p(MS)~

L. k L. k
kES kEN`S

which is equivalent to

(3.5.8)

~(S) , ~ ~E,.~(,~f).
kES

As we proved in lemma 3.1.4 that xE.f(~1) is efficient, it is a core element of (N, c~ ).

We now give a proof of proposition 3.1.10.

Proposition 3.1.10 For any mcse problem Nt, for any E and E constructed by the

algorithm 3.1.3 applied to ~1~1,

D~(Nt) - DE(Nt).

Proof : First we prove that DE is independent of the order in which a particular mcse

is constructed. Suppose that E and E are two sequences constructed in algorithm 3.1.3

applied to M, both leading to the same mcse E', i.e. E and E differ only in their order.

Because in algorithm 3.1.3, the edges in E' and E are ordered by non-decreasing cost,

this means that E equals E except for edges of the same cost that are swapped. If more

than two edges are swapped, it is possible to construct a series E - i, ..., Ep - E of
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sequences al] leading to the same mcse E', with for any q G p, ~9 equal to Eq-1 except
for exactly two subsequent edges with the same cost that are swapped.

So it suffices to prove DE - D~ with E equal to the sequence ( el, ..., e`, e`}l, ..., eT)
and ~ equal to the sequence ( el, . .., e`fl, e`, ..., eT ), for some t C r with w(et) - w(e`tl )
Two cases will be distinguished :

1. the components C` and C`tl formed by adjoining the edges e` and e`tl to (N`, EU
{e', . . . , e`-' }} and (N', E U {el, . . . , e`}), respectively are disjoint. For .~ E V~,
define .~ - (f 1, . . . ~ fT ) bY

f' - f' if s ~{t, t-F 1},
{'i - ft}1
J ift}1 - ft

Obviously, .~ E VE and xE~f(.M) - x~~~(Nl).

2. the components C` and C`}' are not disjoint. Then we are in the situation drawn
in figure 3.4 : C` consists of two components Cl and C2, connected by et, and Ctfl

is formed by connecting C3 to C` via et}1. Without loss of generality, we suppose
et}1 is incident to CZ.

Figure 3.4: e` links Cl to C2 and ett' links Ct U C2 to C3.

Now let .~ -(f l, ..., fT ) E VE be a valid sequence of fraction vectors, and define
S T~ - (f )s-~ bY

fk - fk

fk - 1 fk}1 ~ gk

f`}'
Jk ~ fk}1

fk}1 - fk - gk

1fS~{t,t~l}ork~C1UC2UC3i

ifkECl,
ifkEC2,
ifkEC3,
ifkECl,
ifkEC2i
ifkEC3,

where g E R~~ is a vector such that

~ gk - ~ fk}i

0

kECa kECl (3.5.9)

fk1gk10forallkEC2.
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The system of equations (3.5.9) are feasible, beca,use ,F E V~ implies

~ fk - 1 - ~ fk ~ ~ fk}~ - ~ 9k.
kEC2 kECl kECI kECz

One easily sees that .~ is valid for E' and that

~k,.~
- ~` fkw(et) - jJ fkw(e~) - ~k~~~

~-Li ~-i

Hence DE is independent of the order of E, so we define

DE' :- DE'

for any sequence E constructed by the algorithm 3.1.3 that leads to E'.
We still have to prove that DE~ - DE for all mcses E' and E of ,M. First, we need

to know more about the structure of the set of all mcses of Nl. Now constructing an

mcse for the mcse problem ~1~1 is equivalent to constructing an mcst on the associated

mcst problem (NE, ~E, wE) (cf. definition 3.2.1). It is well known that for any two

mcsts (N',T) and (N",T) of an mcst problem (N, ~, w}, for every edge e E T`T, there

exists an edge ê E T`T such that (N`,T U{ê} `{e}) is again a minimum-cost spanning

tree.
Suppose that (N', E U E') and (N', E U E) are two mcses for Nl. Then with EÉ

and EE as defined in equation (3.2.2), note that (NÉ, EÉ) and (NÉ, EE) are mcsts

of (NE, ~`E, wE)-
Now for every e' E E' `E and e'E defined as in equation (3.2.1), it holds that either

eÉ E EÉ`EE or eÉ E EEf1EE. In the former case, there exists an edge {C, D} E EE`EÉ

such that
(NE,EÉ U liC,D}} `IéEI}

is also a minimum-cost spanning tree. By definition of EE there exists an edge ê E E`E'
with êE -{C, D} and w(ê) - wE(e) - wE(eÉ) - w(e'). In the latter case, there exists
an edge ê E E` E' with êE - eÉ, so ê connects the same components as e'. Because

both E and E' are mcses, w(ê) - w(é ). So in both cases, we obtain that

E U E' U {êE} `{éE}

is a minimum-cost spanning extension of ~1~1, which differs one edge less from E than E'
does.

Hence, to prove that DE~ is independent of the mcse E', it sufTices to prove that

DE~ - DE for two mcses E' and E of Nl with ~E' `Ë~ - 1.

Because E' and E are minimum-cost extensions, the edge e' E E' `E and the edge
ê E E` E' have to have the same cost. Now order E' and E by non-decreasing cost
into sequences ~-(el ... e'-1 e' e'}1 ... eT ) and E' -( el e'-1 ê e'{' eT )~ , , , , , ,..., , , ,...,
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where s equals the number of edges in E' with cost not greater than w(e') - w(ë).
Then w(e`) ~ w(e') for all t 1 s, and moreover E and ~ are two sequences that can be
constructed by algorithm 3.1.3 applied to M.

Consider the graph (N', E U{el, . .., es-1, e'}). As the next edge e'fl has greater
cost than ë, it has to be the case that adding ë would introduce a cycle. But adding

Figure 3.5: e' and ë both link CI to C2.

ë to (N', E U {el, ..., es-1 }) does not introduce a cycle. This means that e' and ë
connect the same two components of (N', E U{el, ..., es-1 }) (see figure 3.5). Hence the
components of the graphs (N', E U E`) and (N', E U E`) coincide for all t, which implies

that VE - VE. Together with w(e') - w(ë), this implies DE~ - DE - DE - DE. ~



Chapter 4

More on mcse problems

This chapter, which is based on Feltkamp, Tijs and Muto (1994c), proposes two cost-

allocation rules for minimum-cost spanning extension problems : the proportional rule

and the decentralized rule. Both rules specify not only allocations of the cost of an mcse,

but also which extension of the network should he constructed. It is shown that the cost

of an edge can be allocated as soon as this edge is constructed. Section 4.3 characterizes

the proportional rule axiomatically, using among other things, efficiency and maximality.

Section 3.3 showed that if an mcse is constructed according to algorithm 3.1.3 and the

cost of every edge is shared among the players such that at every stage the remaining

obligations of the players in one component are equal, the resulting allocation is the

equal-remaining-obligations allocation of the mcse problem ~1~1.

This chapter will assume instead that at every stage, the cost of an edge is shared

proportionally to the remaining obligations of the players in the components constructing

this edge. This yields the proportional allocation if the mcse is constructed according to

the generalized Kruskal algorithm (algorithm 3.1.3) and the decentralized allocation if a

decentralized algorithm is used.

4.1 The proportional rule

The proportional rule is constructed by the following algorithm : construct the edges
of a minimum-cost spanning extension as in Kruskal's algorithm. Each time an edge is
constructed, its cost is divided proportionally to the (remaining) obligations, among the
players in the components being linked. More precisely :

Algorithm 4.1.1 ( the proportional rule)
input : an mcse problem ~1~1

output : a sequence E of edges leading to an mcse and a cost allocation PROE(Nt)

59
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1. Given M-(N, ~, w, E), define

More on mcse problems

t - 0 the initial stage,
T- ~N`~E~ - 1 the number of stages,.

Eo - E the initial edge set,
00 - o; the initial obligation (cf. equation 3.3.1) for all i E N.

2. While t C r, do steps 3 to 7.

3. t:-tf1.

4. At stage t, given Et-1, choose one edge et E EN. `Ei-1 among the cheapest edges
such that the graph (N', Et-1 U{e~}) does not contain more cycles than (N`, E:-1)

5. If Ct is the connected component just formed by adding the edge e` to the graph
(N', Et-1), define the vector f t-(ft);E~, of fractions the players contribute by

0 if i ~ Ct.

if i E Ct,

6. Define the re~naining obligation after stage t by ok :- ok1- fk for all k E N.

7. Define Et :- Et-1 U{et}.

8. Define E - (el, . . . , e').

9. Define PRO~(~1i1) :- ~ fiw(et).
c- i

Note that at every stage, the sum of the obligations of the players in a component that
does not contain the source equals 1, and the obligation of any player in the component
of the source equals 0. Hence, in step 5, the denominator equals 1 or 2, depending on
whether Ct contains the source or not. Note that it is never zero.

As the allocation generated by this algorithm depends on the choices of edges made,
define the proportional rule (or solution) by

PRO(Nl) :- {(E, PROE(Nl)) ~ E is obtained by the algorithm 4.1.1}.

Note that this algorithm constructs exactly one sequence of fraction vectors per se-
quence of edges chosen. As only finitely many minimum-cost spanning extensions exist,
PRO(~1~1) is finite for any mcse problem Nl.
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i
~

Figure 4.1: The edge { 1, 2} is initially present.

Example 4.1.2 In the mcse game associated with the graph depicted in figure 4.1,

coalition { 1} can link itself to the root using player 2, but { 1} cannot use player 3.

Hence, c({1}) - 3. Similarly, the costs for other coalitions are : c({2}) - 3, c({3}) - 1,

c({1,2}) - 3, c({1,3}) - c({2,3}) - c({1,2,3}) - 2.

Applying the algorithm to this problem, note that oo -(0.5, 0.5, 1). A possible first

edge is edge {~,3}. Then f' -(0,0,1) and the remaining obligation of player three is

zero, while the obligations of the others remain unchanged. The next edge has to be

{ 1, 3}, which implies f2-(0.5, 0.5, 0). Hence, the (final) allocation equals

1(0.5, 0.5, 0) -1- 1(0, 0,1) -(0.5, 0.5,1).

The only other possible first edge is {1,3}, yielding fl -(0.5,0.5,1)~2 and o2 -

(0.5, 0.5, 1) -(0.5, 0.5,1)~2 -(0.25, 0.25, 0.5). Then {~, 3} is the second edge, yielding
f2 -(0.25, 0.25, 0.5)~1. Hence, the allocation is 1(0.25, 0.25, 0.5) -F 1(0.25, 0.25, 0.5) -
(0.5, 0.5,1). The two sequences thus yield the same allocation.

1

~4 ~` ~4
~ `

2~ ~3

~8`

~
~

Figure 4.2: No edge is initially present and edges not drawn cost ~100.

The following example shows that the proportional rule can yield more than one

allocation.
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Example 4.1.3 In the problem depicted in figure 4.2, if the edge { 1, 2} is constructed
first, then the proportional allocation is (5, 5, 6); if the edge { 1, 3} is constructed first,
the allocation is (5, 6, 5).

Chapter 3 defined the irreducible core IC(Nl) of an mcse problem ,M and generated
it by associating with every sequence of edges constructed as in algorithm 4.1.1, a set of
valid sequences of fraction vectors. For a sequence ( el, ..., e') of edges, valid sequences
of fraction vectors are those sequences (f',... , f') that satisfy the following :

~ Each component of the original graph that does not contain the source has to pay
fractions of edges that total 1.

~ At each stage, the players in the component that contains the source do not con-
tribute to the cost of the edge constructed.

~ At each stage, the cost of the edge that is constructed is shared by the players in
the two components that it joins.

Moreover, by proposition 3.2.13, if E- (el, ..., e') is a sequence of edges of an mcse
of the mcse problem ~1~1 generated by algorithm 3.1.3 and .~ -( fl, ..., f' ) is valid for
E,then the vector

T
~E,.~ :- ~ftw(e~)

s-1

lies in IC(JVl). It is straightforward to see that for an mcse problem A~l, the proportional
algorithm generates the same sequence of edges ~ as algorithm 3.1.3 and a valid sequence
.~ of fraction vectors. Hence, PROE(Nl) - x~~~ E IC(Nl). The set of allocations
generated by the proportional rule is thus a refinement of the irreducible core, which is
a subset of the core. In particular, the allocations generated by the proportional rule
are all core elements of the mcse game. This proves (once more) that mcse games are
balanced.

4.2 The decentralized rule

Prim and Dijkstra's algorithm, algorithm 3.1.3, the ERO algorithm, and the proportional
algorithm, are centralized algorithms, in the sense that one edge is constructed per stage.
(Note that the last three algorithms construct the same sequences of edges.) However, a
situation might occur in which at each stage in the construction, every component which
does not contain the source greedily starts to build the cheapest edge that links it to
another component.

The idea of building a minimum-cost spanning tree in this way dates back in its first
documented full formulation to Boruvka (1926a, 1926b). He considered minimum-cost
spanning tree problems, but the distinction is minimal if the only goal is to construct
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a network. It is only if one wants to allocate costs that the difference is essential. This
so-called decentralized algorithm builds a network in fewer stages than all previously
described (centralized) algorithms, though the stages themselves are larger.

We associate a cost allocation with this algorithm that is similar to the proportional

rule : at every stage, each component that builds an edge has to pay for it, unless two

components want to build the same edge, in which case each pays half.

Algorithm 4.2.1 (the decentralized rule)
input : an mcse problem JVf
output : an extension E' and a cost allocation DEC(Nt)

1. Given Nf -(N, ~, w, E}, define

t - 0 the initial stage,
Eo - E the initial edge set.
00 - o; the initial obligation for all i E ~~~.

2. While the graph (N', E`) is not yet connected, do steps 3 to 7.

3. t:-tf1.

4. At stage t, each component C of (N', Et-1} that does not contain the source
chooses a cheapest edge e~ linking C to another component of (N', Et-t)

5. Define the vector ft -(fk)kEN E ~N of fractions by

o~ 1 if only Ck 1 chooses et~,-,
k

fk - Ok 1~2 if another component also chooses eC,-,
k

0 ifkEC„

for all k E N. As usual, Ck ~ denotes the component containing k in the graph

(N', Et-'} constructed at stage t- 1.

6. Define the remaining obligation after stage t by ok :- Ok'- fk for all k E N.

7. Define Et :- E`-' U{e~ ~ C E N`~Et-' and ~~ C}.

8. Denote the number of stages needed by s.

9. Define the extension E' :- E` `E.

10. Define the decentralized allocation DEC(Nl) by

DECk(M) :- ~ fkw(é~k ~ )
a- i

for all k E N.
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Example 4.2.2 Consider the mcse problem of figure 4.1 and modify the cost of edge
{1,3} to ~1.5. Applying algorithm 4.2.1 to this mcse problem yields in the first stage :
component {1,2} constructs edge {1,3} and component {3} constructs edge {~,3}. The
cost of edge {1, 3} is shared by players 1 and 2 proportionally to their initial obligations
(see example 4.1.2), and player 3 pays the edge he chose, hence f1-(0.5, 0.5,1). Now
after the construction of these edges, every player is connected to the source, hence s:- 1
and the decentralized allocation DEC(JVl) -(0.75,0.75,1).

Algorithm 4.2.1 can generate a network (N`, E') containing cycles when applied to an
arbitrary mcse problem, but on generic mcse problems, where all weights are different,
it does not.

Definition 4.2.3 An mcse problem (N, ~, w, E) is called generic if for every pair e~ ê
of edges,

w(e) ~ w(ê).

Note that on the class of generic mcse problems, for each component C E N'~Et, only
one edge ec exists that can be chosen in step 4; the decentralized rule thus constructs a
unique mcse and allocation on this class of problems.

Theorem 4.2.4 If the mcse problem (N, ~, w, E) is generic, the decentralized algorithm
generates an mcse.

Proof : Let (N, ~, w, E) be a generic mcse problem. Clearly, algorithm 4.2.1 leads to
a connected graph. The only way that a cycle can be introduced in this graph is that
after a stage t- 1, there are p) 3 components Cl, ..., Cp, such that at stage t, for each
1 C q G p, component C9 constructs an edge eq connecting it to component Cq~l, while
component Cp constructs an edge ep connecting it to component Cl. Now because CQ
prefers eq to eq-1 for all 1 G q c p and Cl prefers el to ep, it follows that

w(el) 1 w(e2) 1... 1 w(ep) ) w(el), (4.2.1)

But this can only hold if all inequalities in 4.2.1 are equalities, which is impossible in a
generic mcse problem.

Suppose the network (N', E') constructed by algorithm 4.2.1 is not an mcse of
(N`, E). Then there exists a minimum-cost spanning extension (N', E) that satisfies

~ w(e) G ~ w(e).

eEE eEE'

Now consider the earliest stage t featuring a component C of (N', Et-1) that con-
structs an edge e~ that is not present in E. This means that all edges in (N', Et-1) are
part of E. Adding e~ to E introduces a cycle, which has to include another edge ê linking
C to another component of (N', Et-1) because e~ has only one end-point in C. Now e~
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was the cheapest edge linking C to another component of (N', Et-1), so w(é) 1 w(eC),
and deleting é from E U{e~} produces a spanning extension that has smaller cost than
(N', E). This is a contradiction; the algorithm hence produces an mcse. ~

The next theorem states that applied to a generic mcse problem, the decentralized
algorithm constructs core elements of the associated mcse game.

Theorem 4.2.5 On the class of generic mcse problems, the allocations generated by
the decentralized algorit.hm are elements of the irreducible core.

Proof : To prove this, we only need to prove that the allocations generated by the
decentralized algorithm can also be generated by a sequence of edges that can be gener-

ated by algorithm 4.1.1, together with fraction vectors that are valid for this sequence,

as defined in section 4.1.
Let Nl -(N, ~, w, E) be a generic mcse problem. Construct the sequence ~ of edges

as follows : at each stage t, order the edges constructed at stage t by the decentralized

algorithm by increasing cost into a sequence ~`. Then concatenate these sequences,
obtaining a sequence

i 7E - (é ,...,é )

where T- ~N'~E~ - 1 is the number of edges in an mcse.

Construct the sequence .~ - ( f', ..., fT ) of fraction vectors by

fk :- ~ .fk if éu - é~~-~,
k

0 otherwise.

One easily sees that .~ is valid for E and that

DEC(M) - xE~~. (4.2.2)

If the sequence ~ were ordered by increasing cost, we could conclude that the decen-
tralized rule generates an element of the irreducible core by invoking theorem 3.2.13.

Because in general E' will not be ordered by increasing cost, we will first investigate the
structure of E' and then construct an ordered sequence.

In any component C` of (N', E`) that does not contain the source and that is con-
structed at stage t by the decentralized algorithm, there is exactly one edge e` that is
constructed by two components (call these Co and CI) of (N', Et-1), all other edges are
constructed by only one of the two components which they connect. Now this edge e`
is cheaper than any other edge é`~ that is constructed at stage t by any component C
of (N',E`-') that is a subset of C`. To see this, consider the `path' formed at stage t
by the edge constructed by C, the edge constructed by the component that C connects
itself to, the edge constructed by the component that that component connects itself to,
and so on until finally the edge e` is reached. (If the edge e` is not reached, the last
component in the sequence chooses another edge than the preceding ones, and the path
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can be prolonged.) We denote the number of edges in this path by p and number the
components and edges in this path, starting with el - et which links components Co
and CI ( see figure 4.3).

e3 e
Cz 2 Ci

et-ci

Figure 4.3: The `path' between Cp and Co.

For all 0 G q G p, the component CQ prefers edge e9 to edge e9fl. Hence,

w(et) - w(el) G w(e2) G .. . G w(ep) - w(ét). ( 4.2.3)

We now prove that the edge e~,l chosen by Ct at stage t-}. 1 is more expensive than
all.edges between et~' and et. For any edge e that can be chosen by C~ in stage t~ 1, e
could have been chosen at stage t by one of the components Ct-' of (N', Et-1) that is
a subset of C`. Hence, because e was not chosen by Ct-1, it must have higher cost than
e~~-,, the edge that Ct-' chose. Using equation 4.2.3, we obtain

w(e) 1 w(e~~-,) 1 w(et).

As this holds for all edges e that can be chosen by Ct, it also holds for the edge eC~l
chosen by Ct at stage t f 1. Hence an edge that is chosen by a component C at a
stage t is more expensive than the edge chosen in the previous stage by two comporcents
of (N", Et-1) that are subsets of the component C. Furthermore, all edges on the path
from Ct-1 to et are less expensive than et~,' and hence all edges between e`~~l and et are
cheaper than et~,l. This implies that in the sequence E', obtained by sorting E' according
to increasing cost, the edges between e`~~' and et appear before e~~l, just like they did
in the sequence E.

According to the algorithm 4.2.1, a player only contributes to the cost of an edge if
his remaining obligation is positive, which implies that all previous edges he paid were
chosen by two components. Hence, the edges to which a player contributes according to
the algorithm 4.2.1 are ordered by increasing cost in the sequence ~ and their relative
order is the same in the sequence ~'.

Defining .~' accordingly by

f'r - f u for the unique u such that e'r - ëu

for r E{1,...,T}, we see that
~E,~ - ~E ,~ . (4.2.4)

Furthermore, that .~ is valid for E implies ,~' is valid for E' :
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~ Each component in the original graph which does not contain the source pays

fractions of edges that total one, because the fractions have only been reordered.

~ At each stage, the players in the component of the source do not contribute to the

cost of the edge constructed, because in the sequence .~, a player can only pay for
an edge if all previous edges to which this player contributed were paid by the two

components that they connect. As in the sequence ,~ the component of the source

never pays for an edge, no player that joins the original component of the source

can later on contribute to other edges : the edge paid when connecting to the

component of the source was necessarily chosen by only one component. Players

in the original component of the source do not pay for any edges according to E,

hence they do not pay for any edge according to E" either.

~ Whenever a player k pays an edge er and later pays an edge e~`, the edges that

connect these edges in the mcse appear in E' before eu is constructed. Hence, if k

lies in the component incident to e', k also lies in the component incident to e~`.

Using induction, we see that at each stage, the cost of the constructed edge is paid

by players in the components it connects.

So, E' is a sec~uence of edges of an mcse ordered by increasing cost and .~' is valid
for E', hence xE .~ E IC(Nf). Using equations 4.2.2 and 4.2.4 we conclude that the

decentralized value lies in the irreducible core of ~1~1. ~

4.3 An axiomatic characterization of the propor-
tional rule

In sections 4.1 and 4.2, we introduced two rules for mcse problems. We axiomatically

characterize the proportional rule in this section.
We define a solution of mcse problems as a function ~ assigning to every mcse problem

(N, ~, w, E), a set

~((N,~ ~E~) C ((el,...,eT),x)

(N', E U{el, ... , eT}} is a connected
graph,the edges e1,...,eT are ordered
by non-decreasing weight and x E R~

satisfies ~iE1V x~ ~ ~i1 w(et). )
Note that in contrast with solutions of chapter 3, a solution here contains information

about which sequence of edges is constructed. This is because the proportional rule

depends on the sequence of edges constructed, unlike the ERO rule or the irreducible
core. We enumerate desirable properties of a solution ~ of mcse problems. Some of these

already appeared in chapter 3 in a slightly different form, due to the different definition

of solution in that chapter.
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Definition 4.3.1

Eff ~~ is egicient if for all ((el,. .., eT ), a) E~(i(~1~1), for all ~1~1, E U {el, ..., e'} is a
minimum-cost spanning extension and

~ ~; - ~ w(et).
iEN t-1

MC ~ has the minimal contribution property if in every mcse problem, every component
that does not contain the source contributes at least the cost of a minimum-cost
edge that connects two components of the graph (N', E). In formula : for all
JVt -(N, ~,w, E), for all (~,x) E z[i(Nt), for each component C E N'~E that does
not contain the source,

~~; ~ min{w(e) ~ e connects two components of (N', E)}.
~EC -

FSC ~ has the free-for-source-component property if for all ~1~1, for all (E,x) E~(,M),
we have

x; - 0

for all i in the component of the source in the graph (N', E).

ET ~ satisfies equal treatment if for all ~1, for all (E,x) E~(Nt), for all components
C E N'~E, and for all players i and j E C,

Recall that the edge-reduced mcse problem Nt` of an mcse problem Nt -(N, ~, w, E)
and an edge e that connects two components of (N`, E), is defined by

~le - (N, ~, w, E U {e}).

The next three properties of a solution zli relate the solution of an mcse problem and the
solutions of its edge-reduced mcse problems.

Definition 4.3.2

ES ~ satisfies equal share if for any N1, for all all ((el, . .. , eT ), x) E~(Nt) with el
connecting two components Cl and CZ, there exists a (E, i) E~(.M`t ) such that

~(x;-i;)- ~(~;-á;).
~EC, iECy

In effect, this property requires that the two components connected in the first step of a
solution participate in equal amounts in the cost of the edge which connects them.
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Loc y'~ is local if for all ~1i1, for all ((el, ..., e'), ~) E~(.M), where el connects the

components Cl and C2 into a component C, there exists an ï E RC such that

((e2, . . . , e'), (~, ~N`~)) E ~(Me~ ).

This property requires that if the first edge of a solution of an mcse problem is added

to the initial graph, the solution to the reduced problem should include the remaining

sequence together with an allocation which coincides with the original allocation for the

players outside the component formed by adding this edge.

Max ~ satisfies maximality if for all 11~1, for all (~,x) E ( Enr.)T x RN such that the

solution ~' defined by

~,(M,) - ~(~1~1) U {(E, x)} if Nl' - ~1~f

- { ~(~1i(') if Nl' ~ .M
(4.3.1)

satisfies Eff, MC, FSC, ET, ES and Loc, it holds that

(~,~) E ~(M)-

The upshot of this last property is that one should not be able to enlarge a solution

without losing at least one of the previous properties.

Proposition 4.3.3 The proportional rule satisfies Eff, MC, FSC, ET, ES, Loc and Max.

Proof : The proportional rule satisfies Eff, FSC and MC because the set of allocations

generated by the proportional algorithm is a refinement of the irreducible core and all

allocations in the irreducible core satisfy these properties (cf. chapter 3). ET is a direct

consequence of the definition of the proportional rule.

To prove that the proportional rule satisfies the equal share property, take an mcse

problem ~1~1 and take a component C of (N', E). Any two players i and j E C have

the same initial obligations. For any sequence E constructed by the algorithm, the

remaining obligations at a stage t are only dependent on the remaining obligations in the

previous stage, so by an induction argument, i and j have the same remaining obligations

throughout all stages. Since in the unique sequence of fractions .~ corresponding to E' in

the proportional algorithm, the fractions of edges that i and j pay are proportional to

the remaining obligations, it follows that f; - f~ for all t and hence xE'~ -~~'~. So

the proportional rule has the equal share property.

The proportional rule is local : take ((el, ..., eT ), x) E PRO(M). Let el connect

two components Cl and CZ into a component C. Then E- (e2, ..., e') leads to a

minimum-cost spanning extension of Nle~. Let .~ be the unique sequence of fractions

that corresponds to E in the algorithm 4.1.1 and define i- x~~-~. Then xk -~k for

k~ C. Hence the proportional rule is local.
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To prove the proportional rule satisfies Max, take an mcse problem ~1~1 and take

((el, . . . , e'), x) E (EN. )T x RN

such that the solution PRO' as defined in equation 4.3.1 satisfies Eff, MC, FSC, ET, ES
and Loc. Suppose cl connects the two components Cl and Cz into C. By locality, there
exists an i E R~ such that

((e2, . . . , e'), (~, xN~~)) E PRO(Nle' ).

Hence, there exist fractions vectors ( f2, ..., fT) that are constructed by the proportional
algorithm together with the sequence (e2, ..., eT ) , such that

(~' ~N`C) - ~(eZ,...,e'1~(Í2,...,J'1

By efficiency of the proportional rule on ~1~1 and ~t~le3,

L~(~k - ~k) - w(el)~
kEC

We now distinguish two cases :

(4.3.2)

(4.3.3)

1. If either of Cl or Cz (say Cl ) contains the source, by FSC and equal treatment, we
obtain

J 0 ifkECl,xk - xk - l w(el)~~C2~ if k E Cz.

In this case, define f' by

fk-JO ifk~Czi
l 1~~Cz~ if k E Cz.

~
Then x - x(e ~

2.

~er)~(i~, ~tTl and ((e1,...,eT),~) E PRO(J1~1).

If neither of C~ or C2 contain the source, by ET we obtain

.T. ~ -

for some zl and z2 satisfying

~ zl ifkECl
'fkECzz i 2

T

zilCll ~ z2lCzl - ~ ~k - w(el) ~ ~ ~k - w(e) ~ L ~fkwlet)~
kEC kEC kEC t-2

by equations 4.3.3 and 4.3.2. Furthermore, by ES,

zi~Ci~ - zz~C2~.
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w~e)t~kEC ~~-2 fkw~e`) w~e)t~kEC ~~-z ~kw~e~)Hence, zl - z~~~ ~- and zz - 2~~2~ , so defining .~ by

~-
fk -

21~11

fk ift)landk~C,
0 ift-landk~C,
~kEC fk if t) 1 and k E Cl,21~~ I
~kEC ~k if t~ 1 and k E Cz,Zlczl

1 ift-landkEC1,

1 ift-landkECzizÍ~zl

we obtain x- xle'~ ~~ef)~~. As .~ is the sequence of fraction vectors corresponding
to (e', .. ., eT ) in the proportional algorithm applied to .M,

((el, .. . , e?), x) E PRO(.M).

This concludes the proof. ~

Lemma 4.3.4 If a solution ~ satisfies Eff, MC, FSC, ET, E5 and Loc, and a solution ?li

satisfies all these properties as well as Max, then ~(Nl) C~(,M) for all mcse problems

M.

Proof : Suppose not. Then there exists an mcse problem Nl -(N, ~, w, E) and

(E,x) E~(,M) ~~(Nl). Including ( E,x) in ~(~1~1) yields a solution that still has the

properties Eff, MC, FSC, ET. Without loss of generality we assume that (N', E) has the

least number of components of all problems with the property that ~(N1) `~(IVí) ~ Ql.

Then including (E,x) in ~(.M) does not violate ES nor Loc, so by maximality it follows

that (E',x) E ~(.M). o

The next theorem implies the proportional rule is also the unique solution which
satisfies all mentioned properties.

Theorem 4.3.5 The unique solution of mcse problems that satisfies Eff, MC, FSC, ET,
ES, Loc and Max is the proportional rule.

Proof : We know that the proportional rule has the properties, and by lemma 4.3.4, if

there are two solutions having them, they coincide. ~

The decentralized rule has up to now not been characterized axiomatically, but it can

be shown that it satisfies the properties Eff, MC, FSC, ET and ES. It does not satisfy

Loc nor Max.
It remains an open problem to prove or disprove that the properties used to charac-

terize the proportional rule are logically independent.



Chapter 5

Other network construction models

This chapter surveys four alternative models of the network construction problem. Our

purpose her is not to give an exhaustive treatment of these models, but rather to make

an open-ended presentation that will provide suggestions for further research.

Section 5.1 presents voluntary connection problems, in which the players want to be

connected to the source only if this costs less than the value they assign to the service.

Section 5.2 presents situations in which the source is unreliable; players will want to be

connected to more sources, in order to be assured of the service. Section 5.3 discusses

the case in which the cost of an edge between two nodes depends on the number of users

that use this edge. Section 5.4 presents a noncooperative model of network construction.

5.1 Voluntary-connection games

The previous chapters used the assumption that the players want to get connected to

the source at any cost. It might be, however, that an upper bound exists on the amount

players are willing to pay for a connection with the source. This can be described by

means of a model in which players can voluntarily connect to the source, in which case

they obtain a reward.

This section, based upon a term paper by Marco van Bokhoven, presents such

voluntary-connection problems. Consider an mcst situation (N, ~, w), in which each

player i E N has the extra possibility to use a local, private supplier (e.g. a well) instead

of the central source. He prefers, however, to use the central source and has a positive

benefit b; from doing so. With this situation, associate a payoff game (N, u) in which the

value of a coalition is the sum of the benefits of the players in this coalition, minus the

cost of a minimum-cost tree connecting this coalition with the central source, in formula,

u(S) :- ~ b. - c(S),
iES

for all S C N, where (N, c) is the usual mcst game associated with (N, ~, w). This game

73
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is a payoff game, of which the core is given by

Core(N,u) :- {x E RN ~ ~ x; - u(N) and x(S) ? u(S) for all S C N}.
iEN -

There is a bijection between the core of u and the core of c:

x E Core(c) q b- x E Core(u),

so the game u has a non-empty core.
However, for a coalition S it is sometimes better to connect only part of its members

to the central supplier. Hence, the voluntary connection game (N, v) is defined by

v(S) :- m~s u(T).

It is a monotoníc game : v(T) G v(S) if T C S.
The game ( N, u) is referred to as the compulsory connection game, to distinguish

it from the voluntary-connection game. An obvious question is whether voluntary-
connection games are balanced.

The following results are known.

Theorem 5.1.1 A voluntary-connection game associated with an mcst problem with
at most three players is balanced and there is a marginal allocation in the core.

Proof : Here follows a sketch of the proof. Let (N, ~, wf be an mcst situation with at
most three players, and let (b;);E~, be the benefits derived by the players if connected to
the source. Choose a coalition S with maximal worth v(S) and a minimum-cost spanning
tree (S', E) for S. Take an order v of the players in N which preserves the order induced
by the tree, i.e. if a player j is connected via player i to the source in the tree (S', E),
then a; G~~. Furthermore, order the non-connected players last. Define the marginal
allocation mo by

m; - v(P,a U {i}) - v(P;'),

where P,o :- {j ~ v(j) G a(i)} consists of the players who come before i in the order v.
Now the theorem follows from the following claim.

Claim 5.1.2 mo lies in the core of the game v.

For a proof of this claim, see Van Bokhoven (1994), who distinguishes several cases,
depending on which tree the grand coalition N builds. O

For voluntary-connection games with four or five players it is unknown whether they
are always balanced or not, but voluntary-connection games do exist with six players or
more, which are not balanced.
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2, ~5 4, ~1 3, ~5
Figure 5.1: A voluntary-connection problem. The amounts in ~ are the benefits.

Example 5.1.3 Consider the voluntary-connection game (N,v) associated with the

mcst problem sketched in figure 5.1. The cost of the edges drawn is ~2, the cost of

edges not drawn is ~100. Benefits are bl - b2 - 63 -~5 and 69 - bs - bs -~1. It

satisfies v(N) - 7(connect all players except player 4), v(126) - v(234) - v(135) - 5

and v(4) - v(5) - v(6) - 0, hence the core is empty.

Note that in this example players can be added and placed at distance zero to player

1, to provide examples of non-balanced voluntary connection games with more than six

players. Although the grand coalition does not connect itself fully in this example, it

is not true that if the grand coalition connects itself, the voluntary-connection game

is necessarily balanced. Jeroen Kuipers (private communication) constructed a seven-

player voluntary-connection game with empty core, in which the grand coalition connects

itself completely to the source.

5.2 Minimum-cost connecting forest problems

In a classical minimum-cost spanning tree problem, all users of a facility have to be

connected to a unique source of the facility. In order to be supplied with a continuous

service of the source, it is crucial that the source be reliable. Up to now, it was implicitly

assumed that the source is perfect and not subject to failure.

This section, inspired by Van de Leensel (1994), drops this assumption and looks at

the situation in which the source may fail. The reliability of the service can be improved

by having more sources and building a network in which each player is connected to at

least k sources, where k is an exogenously given natural number greater than or equal

to 1. To such a situation, one can associate a cooperative cost game. We are interested

in whether these games are balanced.
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Let N be a set of users of a facility provided by sources in a set P, let k) 1
be an exogenously given natural number, and let w: ENeP -~ R~ be a weight function
specifying for every edge e the positive cost of constructing this edge. The minimum-cost
connecting forest (mccf ) problem (N, P, w, k) is to construct a minimum-cost network
that connects every player i E N with at least k sources in P and to allocate the cost of
this network to the users of the facility. We will show that the optimal network is indeed
a forest.

Denoting ~N~ - n and ~P~ - p it follows that a mccf problem makes sense only if
k G p. Note that in the mcst problem p- k- 1.

5.2.1 Construction of an mccf

For an mccf problem (N, P, w, k), we call a vertex k-source connected in a graph (N U
P, F) if it is connected to (at least) k sources.

First of all it is easy to see that an optimal graph for an mccf problem will never
contain a cycle, so the problem deserves its name.

Lemma 5.2.1 An optimal graph for an mccf problem is a forest.

Proof : Suppose that we are given a graph in which all players are k-source connected
and which contains a cycle. If we delete one of the edges in this cycle, we do not decrease
the source connectivity of any of the vertices in the component of the solution containing
the cycle. However, since we assumed that every edge has positive costs, we have reduced
the total costs. Therefore, the original graph can not have been optimal. ~

Kruskal's or Prim-Dijkstra's mcst algorithms can be applied if ~P~ - 1, which is
the standard mcst problem. In order to generalize to the case of any given number
of sources p (but k- 1), the algorithms need only minor modifications. We give an
algorithm similar to Kruskal's algorithm.

Algorithm 5.2.2 (Van de Leensel, 1994)
input : an mccf problem (N, P, w, l)
output : an mccf (N U P, F)

1. Set F - ~.

2. Order the set Enr~P of all edges in a list according to non-decreasing cost. Delete
the edges connecting two sources. Take the first edge e from this list.

3. If adding e to F does not introduce a cycle, and e does not connect two components
formed in (N U P, F) which both contain a source, then let F:- FU{e}.

4. If not every vertex in N is 1-source connected in (N U P, F), take the next edge e
on the list and go to step 3.
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5. (~~' U P, F) is the required mccf.

In a similar way, one can generalize Prim-Dijkstra's algorithm and prove that these
algorithms generate mccfs. A third way to construct an mccf for an mccf problem

(N, P, w, 1} is based on the following idea : add an extra vertex, ~, and define the weights

w({~,p}) - 0 for p E P, while w({~,i}) - M, with M a large number (M 1 w(e) for

all e E EN~P). Now apply Kruskal's algorithm (algorithm 3.1.1) to the mcst problem

(N U P, ~, w). Delete ~ and all edges of the form {~, p} with p E P from the obtained

mcst. This yields an mccf for the mccf problem.

Note that every player is connected to at most one source in an mccf for an mccf

problem (N, P, w, l), because the cost of all edges is supposed to be positive.
So far we have considered problems requiring 1-source connectedness. One could also

imagine a situation where each source has some unique capability or supplies a unique

good. Then we might want to connect every vertex with every source. The following

theorem states that the optimal solution for this case is a minimum-cost spanning tree.

Theorem 5.2.3 An mccf of an mccf problem (IV, P, w, ~P~} is a minimuiii-corl~anning

tree of the mcst problem of the weighted graph (N U P, EN~P, w}.

Proof : Every vertex in N has to be connected to every source. Thus it is iminediately
clear that the mccf consists of one connected component. Lemma 5.2.1 tells us that the
mccf is a forest. Now a connected forest is a spanning tree. ~

For mccf problems which are not of the type k- 1 or k- ~P~, a greedy algorithm

obtaining mccfs like the ones above is as yet unknown. Van de Leensel (1994) does
however give an integer program which constructs mccfs.

5.2.2 Allocation of the cost of an mccf

In this section, we will address the question of how to allocate the cost of an mccf to the

players.
Inspired by Bird (1976), one can propose the following allocation rule p for mccf

problems in which every player has to be connected to one source only. Given an mccf
problem (N, P, w, 1), take an mccf (N U P, F) and define pF E RN as the allocation

which assigns to every player i the cost of the edge incident with i on the unique path

in the forest (N U P, F) from i to a source.

This allocation is a core element of the associated mccf game, which we now define.

Definition 5.2.4 For an mccf problem (N, P, w, k), the associated mccf game (N, c) is

defined by setting the cost of a coalition S C N equal to the cost of an mccf of the mccf

problem (S, P, w, k). -
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Theorem 5.2.5 For an mccf (N U P, F) of the mccf problem (N, P, w, l), pF is in the
core of the mccf game associated with this mccf problem.

Proof : That pF is efficient is trivial since each edge in the forest is allocated to a player.
It remains to show that no coalition can protest. Consider the optimal solution for an
arbitrary coalition S. This is a forest in which each component contains one source and
a number of players (possibly zero) in S. Add the players (vertices) of N` S to this
graph as well as the edges that are allocated to the players in N` S by pF. Since the
edges allocated to N`S do not form a cycle, there is an edge from one of the players in
N`S that is connected with either a player in S or a source. Thus we already have found
that after adding this edge to the optimal solution for S, all players in S and one player
in N` S are 1-source connected. Repeating this argument for the remaining players in
N`S implies that the resulting graph is a forest in which each player of N is 1-source
connected. Since the forest created in this way does not have to be optimal for N, we
have that

c(N) G c(S) ~- ~ pF - c(S) -F pF(]V `S).
. iEN`S

Efficiency of p gives us that c(N) - pF(S) ~ pF(N ` S). Combining this with the
above inequality implies pF(S) G c(S). o

For an mccf problem (N, P, w, ~P~) in which every player has to be connected to every
source, Van de Leensel provides core elements ( ~P9)pEP,~E~, of the associated mccf game
in the following way. Choose a player g E N, who will be responsible for edges of which it
is not immediately clear who should pay them. Choose an arbitrary source p. Note that
in this mccf problem, an mccf is an mcst. Construct an mcst following Prim-Dijkstra's
algorithm, starting at source p. At every step, if the edge added connects a player to the
component of source p, this player is held responsible for the cost of this edge; if instead
the edge added connects another source to the component of p, then g has to pay the
cost of this edge. It will be clear that this allocation aP9 is very discriminating towards
player g. Let us now show that the suggested allocations are located in the core of the
mccf game.

Theorem 5.2.6 For every player g E N, for every source p E P, ~P9 is a core element
of the mccf game (N, c) associated with the mccf problem (N, P, w, ~P~).

Proof : It is immediately clear that ~P9 is efficient, since every edge that is added during
the algorithm is immediately allocated to some player. Consider the mccf for the mccf
problem of an arbitrary coalition S. This is a tree containing all the players in S and
all the sources. Add the players ( vertices) of N` S to this graph as well as the set H
of those edges which connect a player in N`S to the component of p when constructed
by Prim-Dijkstra's algorithm. ( Do not add the edges which are allocated to player g
because they connect a source with the component of p). Since the edges in H do not
form a cycle, there is an edge in H that is incident with either a player of S or a source.



5.2 Minimum-cost connecting forest problems 79

Hence, after adding this edge to the mcst for S, all players in S and one player in N`S
are ~P~-source connected. Repeating this argument for the remaining players in N`S
(and the remaining edges in H) implies the graph is a spanning tree, in which each player
is ~P~-source connected.

Since the tree created in this way does not have to be optimal for N, we have that

c(N) C c(S) f ~ w(e).
eEH

Now we have to consider two cases. If g E N` S then ~eEy w(e) G,~(N ` S). If
on the other hand g E S then ~eEH w(e) -~(N ` S). Hence we can conclude that

~eEH w(e) G~(N `S). Together with the efiiciency of .~ this then gives us

a(S) ~ ~(N `S) c c(s) ~- ,1(N `S),

which implies ~(S) C c(S). o

It follows that mccf games associated to mccf problems in which all players have to

be connected to all sources are balanced.

In the preceding it has become clear that for two cases the core of a mccf game
associated with an mccf problem (N, P; w, k) is non empty:

. ~P~ 1 1, k- 1,

. ~P~ - k.

A third case in which the core is non-empty is the case

. ~P~ 7 k, ~N~ C 2,

because an mccf game (N, c) is a subadditive game, i.e. c(S) fc(T) G c(SUT) for disjoint

coalitions S and T. For the remaining cases, it turns out that the core of the associated

games may be empty.
The smallest problem not belonging to one of the types above has three sources, three

users and every user has to be connected with at least 2 sources.

Example 5.2.7 Consider the mccf problem with three players, three sources and in
which every player has to be connected with two sources, of which the graph is sketched
in figure 5.2. Sources are indicated by squares, players by disks. It follows that c({i, j}) -
12 for every pair {i, j} and c(N) - 23. This game is not balanced. Suppose there was a
core element x. Then

1 1 1
23 - c(N) - al f~2 f xs - 2(~i f~a) f 2(xr -F ~s) } 2(~a f x3) G 18,

which is a contradiction. Therefore the core is empty.

This example can be modified to show that for more players and~or more sources the
core can also be empty if 1 G k G ~P~.
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1~
~1 ~ ~10 ~ ~1

Figure 5.2: Edges not indicated are expensíve.

5.3 Connections with variable costs

Up to now, we assumed that the cost of a connection is independent of the number of
users of this conection. In this section, which is based upon a term paper of Van der
Leeden (1994) we relax this assumption and assume the cost of constructing an edge
varies with the number of users of the edge.

This yields the following situation. A set N of agents wants to be connected to
a facility, of which the source is denoted ~. There is a vector valued weight function
w: EN. ~ R~N~, which determines for an edge e the cost vector w(e) -(wk(e))kN~l.
Here, wk(e) is interpreted as the cost of constructing a link along edge e which can
provide service to k users. We call such a situation a minimum cost connecting graph
problem.

A solution to the minimum-cost connecting graph (mccg) problem has to specify
which edges are constructed, as well as for each edge, which agents use this edge, in
order to be able to tell what the cost of the graph is.

Without further restrictions a minimal cost connecting graph for an mccg problem
can have cycles, see example 5.3.1.

Example 5.3.1 Consider the mccg problem, with set of agents N-{ 1, 2, 3}, of which
the costs of edges are given in table 5.1. A solution for this problem is given in figure 5.3.

r~~i~~1 r T1
Table 5.1: An mccg problem

The numbers next to an edge indicate how many players use the edge. In fact, two solu-
tions are compatible with this figure. In the first solution, player 3 is directly connected
to the source, player 2 is connected via player 3, and player 1 is connected via player 2.
In the second solution, both players 2 and 3 are directly connected to the source, and
player 1 is connected via players 2 and 3.

e

w(e)

{~,1}
(4,5,6)

{~,2}
(2.5,5,6)

{~,3}
(1,1,3)

{1,2}
(1,2,3)

{1,3}
(4,5,7)

{2,3}
(2,3,5)



5.3 Connections with variable costs 81

Figure 5.3: An mccg with a cycle.

With an mccg problem (N, ~, w), we associate an mccg game (N, c), defined by as-
signing to a coalition S the cost c(S) of an mccg of the problem (S, ~, w).

In the special case where the cost of an edge is independent of the number of users,
the mccg problem becomes an mcst problem, and Bird (1976) proved that the core of the

mccg game is not empty. In the general case, the core of an mccg game can be empty.

Table 5.2: Costs of edges in an mccg problem.

Example 5.3.2 Consider the mccg problem, with set of agents N-{ 1, 2, 3}, of which
the costs of edges are given in table 5.2. The mccg game is given in table 5.3 and has
an empty core.

Hence we are interested in properties of the weight function which guarantee the
mccg games to be balanced. One property that guarantees balancedness is linearity of
the weight function. Here, a weight function w is said to be linear if wk(e) - kwl(e) for
all edges e and all k C ~N~.

Theorem 5.3.3 An mccg game ( N, c) associated with an mccg problem ( N, ~, w) with
linear weights is balanced.

Proof : For every player i E N, find the minimum-cost graph (N', E;) connecting this
player to the source, possibly via other players. Here, the cost of a graph (N', E) equals
the sum ~eEE wl (e), because only player i uses the connections. Define c; to be the cost
of this minimum-cost graph.

e
w(e) (10,11,100)

S {1}
c(S) 10

{~,2}
(10,11,100)

{2}
10

{3}
10

{~,3}
(10,11,100)

12 12

(1,2,3)

12

(1,2,3)

{1,2,3}
22

{2,3}
(1,2,3)

Table 5.3: An mccg game with empty core.
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Define the additive game (N, c), by putting for every coalition S

~(S) ~- ~~; - ~ ~ w1(e).
;ES iES eEE~

Note that the graph (N",~J;ESE;) is a graph that connects every player in S to the
source, but that maybe vertices outside S are used.

Now a soJution to the mccg problem for S specifies for every edge who uses it. This
implies it specifies for every user i E S a graph (S", F;S) representing the path connecting
i via players in S to the source. Hence,

c(S) - ~ ~ wl (e)
iES eEFs

because the weights of links are linear. Because the graph ( N`, E;) was a minimal cost
graph connecting i to the source, it follows that c(S) ~ c(S) for every coalition S. Finally,
because the path F;N can use all players in N, it follows that ~eEF;Y wi (e) -~eEE, wl (e),
which implies c(N) - c(N). Hence, the core of c is included in the core of c. Now the
allbcation x, defined by x; - c; for every player i E N, is a core element of c and hence
it is a core element of the mccg game. o

It is still an open question to find more general conditions which guarantee the mccg
game to be balanced.

5.4 A non-cooperative approach

Except in section 2.3, all network construction games presented up to now were coop-
erative games. We here present another non-cooperative network construction model,
suggested by Jose Zarzuelo.

With an mcst situation (N, ~, w), associate a strategic path game (N, (A')iEN, (ut)tEw}
in which an action a` of a player i is to choose a graph (N', E;) connecting i (via other
players) to the source, and given the actions a-(a~)~EN of the players, the payoff to
player i equals

w(e)
u~(Q) -- - ~

eEE~ I{~ E N ~ e E E~ } ~~

The name path game is motivated by the fact that in a Nash equilibrium of a path game,
a player will choose a graph that contains only edges that lie on a specific path from i
to the source, and edges with cost zero.

One can show that these path games have pure Nash equilibría, by showing that they
are congestion games.

Defitiition 5.4.1 (Rosenthal, 1973)) A congestion sátuation (N, M, (O;);E~v, C), consists
of a set N of users and a set of primary factors M, which the users can use to attain their
objective. The objective of a player i is represented by the set O; C 2M of collections of
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primary factors with which i's objective can be attained. The function c: N x M--~ Rt

specifies that the cost of k users using a primary factor m is c(k, m).

The congestion game (N, (X;);EN, (u;);EN) associated with a congestion situation, is

defined as follows. An action of a player i is a collection M; E O; of primary factors that

attains i's objective, while the payoff to player i at strategy profile x-(M~)~EN equals

u;(x) :- -~ c(~{j E N ~ m E M~}~,m).
mEM,

Rosenthal ( 1973) proved that congestion games have a pure Nash equilibrium. In

fact, they are potential games ( see Monderer and Shapley, 1993).
For an mcst situation (N, ~, w), we define an associated congestion situation

(N, M, ( O;);E~v, c), by

. M - E,v., the set of all edges in the complete graph on N.

. For each player i, the set O; equals the set of all graphs in which i is connected to

the source.

. C(k, e) - wke .

It is clear that the congestion game associated with this congestion situation coincides

with the path game. Of course, in a congestion game, one would expect the cost of a

primary factor to go up if it is used by more players, but this is not essential.

Corollary 5.4.2 A path game has pure Nash equilibria.

It is not true, though, that these Nash equilibria always correspond to minimum-cost

spanning trees.

Example 5.4.3 Reconsider the mcst problem of example 1.0.1, drawn in figure 1.1.

The minimum cost spanning tree consists of the edges {Spring, Ann}, {Ann, Charley}

and {Charley, Bart}. Now this graph is not a Nash equilibrium, because if this is the

resulting graph, then Ann has chosen the edge {Spring, Ann}, Charley has chosen the

edges {Spring, Ann} and {Ann, Charley}, and Bart has chosen the edges {Spring, Ann},

{Ann, Charley} and {Charley, Bart}. This implies Bart has a payoff of -40~3-26~2-35,
which is less than the -50 he would get if he deviated and connected himself directly to

the source.

Other types of strategic network construction games can be associated with the

voluntary-connection games of section 5.1, or the games associated to network con-

struction games with variable costs of edges of section 5.3.



Part II

Veto Control and Cooperation
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Part II treats economic situations in which revenue can be generated using resources
that are controlled by agents, and asks how the revenue accrued will be allocated to the

agents. These situations are analyzed by means of cooperative payoff games. Chapter 6

presents a linear production economy with transportation possibilities, in which the

primary goods are the controlled resources. Chapter 7 presents a situation in which
a network can generate revenue and the vertices and edges of this network are the

controlled resources. Chapter 8 presents controlled economic situations that generalize

the two previous models.
The control involved is modeled by means of control games, introduced by Curiel,

Derks, and Tijs (1989). A control game is a TU-game in which every coalition has

a worth of either zero or one, and the grand coalition has worth one. These games

generalize monotonic simple games, defined by von Neuman and Morgenstern (1944)

and used by Shapley (1962). Dubey (1975) defines a simple game (N, v) as a TU-game

in which the range of the characteristic function v is {0,1}. A monotonic simple game

is a simple game (N, v) such that v(S) C v(T) for all S C T C N. Note that a non-zero

monotonic simple game is automatically a control game and that a simple game v is

completely determined by the set

W(v):-{SCN~v(S)-1}

of winning coalitions.
This study of control games leads to an axiomatic characterization of the Shapley

value and the Banzhaf value on the class of control games, on the class of simple games
and on the class of all TU-games. This is presented in chapter 9.

Finally, chapter 10 presents a simple and efficient algorithm that computes the nucle-

olus and the kernel of games with veto players. A veto player of a non-negative TU-game

is a player whose absence prevents a coalition from obtaining a non-zero payoff. Veto

players appear in various economic situations, such as markets with a monopolist.

We will now include a few standard notations and definitions. The class of TU-games
with player set N will be denoted by GN, the class of simple games with player set N by
SGN, the class of control games with player set N by CGN and the class of monotonic
simple games with player set N by MSGN.

Examples of control games are the unanimity games. For each S E 2N `{~}, the
unanimity game (N, us) is defined by

us(7,) -~ 1 if S C T,
0 ifS~T,

for all T C N.
It is well known that the collection {(N,us) ~ S E 2N `{~}} of all unanimity games

forms a basis of the vector space GN of all TU-games.
A game is non-negative if the worth of each coalition is non-negative. It is a positive

game if the worth of each non-empty coalition is positive.
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A player i E N is called a veto player of a TU-game (N, v), denoted by i E veto(v), if
i can block a non-zero outcome, i.e. v(S) - 0 for all coalitions S not containing player i.
A TU-game (N, v) is a veto-rich game if it has at least one veto player i.

A TU-game is N-monotonic if v(N) ) v(S) for all S.
A superadditive game (N,v) satisfies v(S) f v(T) ~ v(S U T) for any two disjoint

coalitions S and T. A subadditive game (N, v) satisfies v(S) f v(T) C v(S U T) for any
two disjoint coalitions S and T. An additive game is a game that is both superadditive
and subadditive.

Often, it is assumed the grand coalition N of a TU-game forms and its worth has
to be divided among the players. If each individual player i is rational, i will refuses
allocations which assign less to i than i can obtain alone, the remaining allocations form
the set of imputations 1(N, v) of a TU-game (N, v), defined as

I(N, v) :- {.r E RN ~.v(N) - v(N) and x; 1 v({i}) for all í E N}.

Nate that the imputation set of an arbitrary game can be empty. An inessential
game (N, v) is a game with exactly one imputation, i.e. v(N) -~iEN v({i}), any
other game is called essential. An example of an inessential game is a zero game (N, v),
defined by v(S) - 0 for all coalitions S.

If in addition we assume coalitional rationality, i.e. a coalition S will reject an allo-
cation in which S does worse than S could do by seceding, one obtains the core of the
game, which is for a payoff game (N, v) translates into

Core(N, v) :- {x E I(N, v) ~ x(S) ? v(S) for all S C N}.

A theorem by Bondareva (1963) and independently by Shapley (1967) states that a
game has a non-empty core if and only if it is balanced. As in part II we never explicitly
use the condition of balancedness, we do not define it. We do, however, call a game with
a non-empty core balanced.

If not only the game (N, v) but also all its subgames (T, vT )(T C N) are balanced,
then the game (N, v) is said to be a totally balanced game. Here, a subgame (T, vT ) is
defined by vT (S) - v(S) for all S C T.

Sprumont (1990) argued that providing a core element is not enough and that a
solution should also determine what happens if a subcoalition forms instead of the
grand coalition. For this reason, he introduced a population monotonic allocation scheme
(PMAS) of a game. A PMAS of a game (N,v) is a collection x-{x~s ~ j E S C N}
which satisfies the following two conditions -

'~s(S) :- ~.iES ~is - v(S) for all S C N.

~ x~sCx~TifjESCT.
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Sprumont (1990) proves that a TU-game (N, v) which has a PMAS x is totally bal-
anced. For example, (x;s)ies is a core element of the subgame (S, vs) for every coalition

S.
The Shapley value ~ (cf. Shapley ( 1953)) of a game v E GN is defined by

~t(v) - ~ ~N `S~! ~S ` {i}~!
~v(S) - v(S ` {i})]

S:iES I NI !

for all i E N. As before, ~S~ denotes the cardinality of the set S. The Shapley value is a
linear map that satisfies

1 ifiES
~i(us) - 0 if i ~ S

foralliENandallSCN.

A directed graph or digraph D on a set of vertices V is a subset of V x V. An arc is an
ordered pair (v, w) E V xV. For a vertex v E V, we denote D(v) :- {w E V ~(v, w) E D}

and D-I(v) :- {u E V ~(u, v) E D}. A digraph D on V is refleaive if (v, v) E D for all
v E V. A digraph D on V is transitive if (u, v) E D and (v, w) E D imply (u, w) E D.

For two vectors ~, y E RA, with A an arbitrary finite set, we denote by (x, y) the
inner product ~QEA ~QyQ of the two vectors.



Chapter 6

Controlled linear production with
transportation possibilities

Owen (1975b), Granot (1986) and Curiel, Derks, and Tijs (1989) analyzed linear pro-
duction (LP) games. These are transferable utility games associated with the following
type of situation. There is one facility at wl~iich a linear production technology is avail-
able. A finite number of agents control the resources needed for production. Prices
of the products are fixed exogenously. In the corresponding LP-game, the worth of a

coalition of agents is the maximal value of a bundle it can produce with the resources it
controls. Sufficient conditions were given for the LP-game to be balanced, i.e. to have
a non-empty core. Moreover, it was shown that if these conditions are satisfied, there is

a core element of the LP-game which can be computed by solving only the dual of the
linear program which determines the worth of the grand coalition.

Koster (1990) analyzed a similar type of situation involving two facilities and transport
of products, resources and technology from one facility to the other. The same conditions
as in the one-facility case ensure the corresponding LP-game to be balanced.

This chapter, which is based on Feltkamp, Van den Nouweland, Borm, Tijs and
Koster (1993), generalizes Koster's model. We consider situations with a finite number
of facilities, each with its own linear production technology and exogenously fixed prices
on products. We assume the markets are insatiable : every product manufactured or
imported at a facility can be sold at its price at that facility. Furthermore, there are
no capacity restraints, but at each facility only a finite amount of resources is available,
which is controlled by the players. The facilities are public goods : use of a facility by a
coalition does not inhibit its use by another coalition. A linear cost is associated to the
use of the technology of a facility.

If these production sites were isolated, nothing new would be obtained. However,
we allow transport of products, resources and technology between the facilities, along
exogenously given routes. The possible transport routes for products, resources and
technologies are represented by ares of directed graphs. Successive transportation via
two ares is not allowed. This is not a loss of generality : it is possible to take transitive

91
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transport graphs, i.e. transport graphs such that if transport from f to g and from g to
h is possible then also transport from f to h is possible.

Finally, we assume there are linear transport costs and linear losses of goods during
transport. In the corresponding LPT-game, each coalition of players tries to produce a
bundle of maximal worth with the resources it controls, possibly transporting resources,
products and technologies to take advantage of opportunities at every site.

This chapter is organised as follows. Section 6.1 presents Owen's (1975b) model. In
section 6.2 an example of a linear production situation with transportation possibilities
is presented. In section 6.3 LPT situations are formally presented. It is shown that under

certain conditions on the control over resources, the associated LPT-game is balanced,

and that a core element can be found by solving only the dual of the linear program of
the grand coalition.

6.1 Linear production situations

Owen (1975b) introduced linear production situations (LP situations for concision). A
linear production situation consists of a set N of players, who can exploit a facility to
produce a collection P of products using a collection R of resources. Production is linear,
i.e. there are numbers (arp)pEp,,ER ? 0 specifying that arp units of resource r are needed
for production of one unit of good p. The numbers (a,p)pEp,,.ER form a technology matrix
A. It is assumed that in every column of A there is at least one positive entry, which is
interpreted as : no product can be produced without using at least one resource. Each
player i E N owns a bundle b; E RR. There is a price vector c E RP specifying the
prices of products.

With such an LP situation, Owen associated a linear production game (N, v), in
which the worth of a coalition S equals the maximal value of a production plan using

the pooled resources of the players in S, in formula,

v(S) :- max{ ~ xpcp ~ Ax G~ 6;}.
pEP iES

The following holds.

Theorem 6.1.1 (Owen, 1975a) A linear production game is balanced and a core element
can be generated by solving only one linear program, viz. the dual program of the linear
program which gives the worth of the grand coalition.

Granot (1986) and Curiel, Derks, and Tijs (1989) generalize the linear production
situations by allowing a more general control of the players over the resources. bVe will
not go into detail here.
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6.2 An example

In this section, we present an example of a linear production situation with transport.
Consider three facilities, f, g and h, which together allow linear production of five
products pl, ..., ps, using two resources rl and r2.

At facility f only products p1 and p2 can be manufactured. Producing one unit of
pl requires one unit of rl and three units of r2, while manufacturing one unit of p2
requires no units of rl and two units of r2. We represent these technology constraints
by a technology matria A~ of which the first column corresponds to product pl, the
second column to p2 and the rows correspond in a similar way to the resources rl and
rZ, respectively. So,

Af - 1 0
3 2 '

and production of a bundle q-( ql Q2 )T of the products pl and p2 at facility f requires
the resource bundle Afq -( Q1 3Q1 f 2Qz )T. Here, with MT we denote the transpose
of a rnatrix M.

At facility g products p3 and p; can be manufactured, so the technology matrix .99 has
columns corresponding to p3 and p4 and rows corresponding to rl and r2. At facility h
product p5 can be manufactured, so the column of Ah corresponds to ps and the rows
correspond to rl and r2. The technology coefficients in these matrices are as follows.

A9- ~ 3 ~ I, Ah- ~ i I.

At each facility there is an exogenously given vector of prices at which products can
be sold at that facility. The price vector at facility f is cf -(4,1, 4,1, 4), which means
that at f a bundle q-( ql ... qs )T of products has worth 4Q1 -~ q2 ~- 4q3 -}- q4 f 4q5,
which we denote by (cf, q). Implicitly we assume the markets are insatiable : everything
produced can be sold. Similarly, the price vectors at g and h are cs -(1, 3,1, 3,1) and
ch -(2, l, 2,1, 2) respectively. Note that a price is specified for each product at each
facility. The structure of the price vectors and the similarity of the production matrices
at f and g can be thought of as due to products pl, p3 and ps being close substitutes
produced at different facilities. A similar argument explains the equality in prices for
products p2 and p4. Slightly abusing notation, if P' C P-{pl, ..., p5}, q E Rp~ and
c E Rp is a price vector, we will write (c, q) instead of ~rEp~ cpqP.

There are two players, called 1 and 2, each of whom owns a bundle of resources at each
facility. Player 1 owns the bundles 6t(1) -(0,5)T, l~(1) -(3,0)T and bh(1) -(2,0)T at
f, g and h respectively, while player 2 owns the bundles b~(2) -(0,3)T, b9(2) -(1,2)T
and bh(2) -(0,3)T at f, g and h respectively. The players can cooperate by pooling
their resources.

Players can transport products, resources and technologies according to the following
rules. Transport costs are zero. Resource transport is possible from g to f and h, and
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from f to h. Product transport is possible from f to h and vice versa and technology
transport is possible from f to h. These transport possibilities are modeled by means of
transport graphs (see figure 6.1).

.9

f h f.. --h f h

Resource transport Product transport Technology transport

Figure 6.1: The transport graphs

We will first analyze the situation in which no transport is possible, and then gradually
include transport possibilities. With such a LP situation a cooperative transferable
utility (TU) game (N, v) is associated in the following way. The player set is N- {1, 2},
and a coalition S C N has value v(S) equal to the maximal revenue it can obtain through
the sale of goods produced with resources the members of S own.

First, suppose there is no transport at all. In order to know what player 1 can obtain
from production at facility f, we have to solve the linear program

max{(c~,q') I A'q' ~ b '(1), qJ 1 0, q~ E R{ni,vs}}.

The value of this program is 2.5. Similarly, at g she can obtain

maX{(~,99i I A999 ~~(1), 49 ~ ~, q9 E R.{P3~P.}} -
~,

and at h,
max{(ch,4h) I A"q" ~ bh(1), 4~` 1 0, qf E R{ns}} - 0.

As there is no interaction between the three facilities, we can total these three revenues
to obtain v({1}) - 2.5. Similarly, we compute v({2}) - 4.5, and v({1,2}) - 9. Because
the feasible regions of the linear programs vary from coalition to coalition and the prices
are constant, it may be easier to compute the value of the dual programs, which have
the same feasible region for all coalitions.

If players can transport technology along the routes depicted in figure 6.1, they can
manufacture products at h using either the production techniques represented in the
technology matrix A~ or the techniques represented in technology matrix A~. Accord-
ingly, we replace the technology matrix Ah by the matrix Ah -(A~, Ati). The other
technology matrices are unchanged : A~ - A~, A9 - A9. We are again in the same sort
of situation as when there was no transport at all, except that now

9 9

qh E R{P''m'ps} and Áh 1 0 2
- 32 1)~
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Denoting the corresponding characteristic function by vT, we see that

vT({1}) - 2.5, vT({2}) - s, vT({1,2}) -10.
Now, suppose players can also transport products along the routes depicted in fig-

ure 6.1. Then a good produced at facility h can be sold at either facility f or facility h,
hence it can be sold for the maximum of the price at f and the price at h. The same
goes for products manufactured at f, hence we replace the price vectors c1 and ch with
the (coordinatewise) maximum of cf and ch. Denote these new price vectors by ch - cf .
The only change from the previous situation is that now éh -(4,1, 4,1, 4). Denote the
corresponding characteristic function by vTP. Computing the worths of the coalitions
yields

vTP({1}) - 2.5, vzP({2}) - 6, vTP({1,2}) - 12.6.

Finally, suppose transport of resources is also possible. In contrast to the previous
cases, this program cannot be solved by three separate linear programs. We assume that
successive transportation along two ares is not possible. For example, from facility f only
resources present at f can be transported to h. Denoting tf'fZ the bundle of resources
transported from a facility f' to a facility f 2, one can see that the optimization problem
player 1 now faces is

max (cf~4f) ~ (~~4g) f (ch~4h)

s. t. ÁrqJ G N(1) f tgJ - tfh,
Agqg G h9(1) - tgJ - tgh,

,4hqh G 6h(1) f tfh ~- tgh,
q', qg, ~ih ~ o,

tlh tgf tgh ~ oe v ,
tgJ ~ tgh

tJh
c l~(1),
G bf(1),

which has the value 12. Hence, denoting the characteristic function corresponding to
this situation by vTPR, we see vTPR(1) - 12. The last equation is due to the condition
that no transportation of resources from g via f to h is possible. Player 2 faces a similar
linear program with value vTpR(2) - 8.5 and coalition {1,2} has to solve

max (cf ~ 4f)~(~, 4g) f(ch, qh)

s. t. Áfqf G bJ(1) f bf (2) f tgJ - tfh,
Agqg G b9(1) -~ IT9(2) - tgJ - tgh,

Ahqh G bh(1) ~ Óh(2) ~ t1h ~- tgh,

qf,qg,qh i o,

tfh,tgJ,tgh i o,
tgf -{- tg" G IT~(1) -}- U9(2),

tJh c bf (1) ~ W(2),
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which yields vTPR({1,2}) - 21.4.

6.3 LPT-games

Consider a finite set N- { 1, ..., n} of players, who can make use of a finite set F of
facilities to manufacture products. The (finite) set of resources is denoted by R, the
(finite) set of all products by P and the subset of those products which a facility f E F

can manufacture by P~. For convenience, assume the sets P~ are disjoint. This harmless
assumption can be satisfied by adding an index to every product, which varies according
to the facility where the product is produced. Production is linear, i.e. there exist
nonnegative numbers (a,~.p)TER,pEP~ for each facility f, such that production of qP units
of product p E P~ at facility f, requires aTpqP units of resource r as input. Hence,

production of a bundle q E R}~ of products at facility f requires the bundle of resources

Afq, where Af -(a;p)rER,pE1'1 is the technology matrix at f. Assume that for each

facility f, and for each product p E Pf, there is at least one resource r with afP 1 0.

This means that no product can be created out of nothing.
At every facility f, there is an exogenously given price vector c~ E RP. We assume the

markets in which the products are sold to be insatiable, i.e. every product p produced

at (or transported to) a facility f can be sold at f for the price cp. Hence, with some

abuse of notation, a bundle q E RP~ is worth

(cf ~ q) - j~ cpqP
pEP~

at facility f .
The resources available are controlled by the players in the following way. For each

coalition S E 2N `{(~} and each facility f, there is a bundle 6~(S) E RR of resources

S can use to produce at facility f. These resource bundles constitute a resource game

(N, bT ) for each facility f and each resource r. Grouping the resources, one gets the

function bf . In the example presented in section 6.2, the resource games were additive :

b;(S) -~;ES bT(i) for all coalitions S.
The facilities are connected by three transport networks. These are represented by

reflexive directed graphs, one for product transport denoted by Dp, one for resource

transport denoted by DR, and one for technology transport, denoted by DT. We interpret

these graphs as follows : ( f, f') E DR, ( f, f') E DP or ( f, f') E DT) denote that resources,

products, or technology, respectively, can be transported from facility f to facility f'.

We denote the set of all facilities to which a facility f can export resources, products or
technology by DR( f), DP(f) or DT( f)) , respectively, and the set of all facilities from

which a facility f can import resources, products or technology by DR' ( f) DP'( f)

DT1( f), respectively. The digraphs are assumed to be reflexive because at a facility f, the
technology and resources of facility f itself are always available and products produced
at f can always be sold at f.
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In the example, there were neither transport costs nor license costs. In the general
model, linear costs are associated to transport of resources and products. For (f, f') E
DR, denote by GTJ~ the cost of transporting one unit of resource r from f to f'. Similarly,
for ( f, f') E DP and p E PJ the cost of transporting one unit of product p from f to f'
is denoted by EpJ~. In addition, assume that per unit of product p E P9 produced at
facility f E DT(g), a license fee Lpf has to be paid by the producer.

Finally, suppose not everything sent arrives, and denote by prJ~ and apJ~ the fraction
which arrives after transport of resource r and product p from f to f', respectively.

A controlled linearproduction situation with transport, in short, an LPT, is a collection

(N, F, R, P, (Pf ~ AJ, cf ~ bf)fEF, D12, DP, DT, (EI9 ,r1s)(J,9)EDp, (GIg p1g)(!,9)EDR,
(LJ9)(J,9)EDT~ as described above.

With an LPT, we associate a transferable utility LPT-game (N, v) in the following way :
N is the set of agents and the worth v(S) of a coalition S E 2N is the maximal value
of a production plan using the resources S controls. More precisely, a production plan

specifies which products are to be made where, according to which technology and with
which resources. A production plan for coalition S has to satisfy the condition that at

no facility more resources are used than the resources available after resource transport.
After transport of the manufactured products to markets where they are most profitable,
they are sold. The revenue obtained by this sale minus the costs generated by transport,
is the value of the production plan.

Taking technology transport possibilities into account, one can see that at a facility f,

every product p in
p1:- U pg

gEDT1( J)

can be produced. Again, successive transportation along more than one edge is not

allowed. Hence we replace PJ with Pf and AJ with the matrix A formed by juxtaposition
of the matrices in {A9 ~ g E DT1(f)}.

Moreover, suppose (h, f) E DT. Then each unit of product p E Ph C Pf produced at
facility f requires a license fee of Lpf to be paid and generates p~rp9 - Ep9 when sold at
a facility g E DP( f). Denoting y~ z the vector with coordinates

(y ~` z)k - ykzk

for two vectors y and z of the same size, we see that we can replace cf with

cf :- max (c9 ~ ~rJ9 - EJ9) - ~ LhJePh,
9EDp(I)

hEDTl(f)

where ePh is the vector defined by

pn 1 if p E Ph,
ep - 0 if p~ Ph.
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Hence, production of a bundle q~ E RP~ at a facility f requires the resource bundle A~qf
and yields a net payoff of

(Cf ~Qf ) - ~ Epqp'
pEPf

If we denote by th~ the resource bundle transported from h to f, we see that the cost of
this transport is (Gh~, thf ) and that only the bundle thf ~ ph~ arrives at f.

Hence, the worth of a coalition S is

v(S) - max ~ I (c~, 4f ) - ~ (Ghf~ thf ) I
IEF L hEDR~(1) J

Átq~ G b~(S) ~~(thf ~ ph~) -~ t~9 for all f E F,
hEDRl(I) 9EDR(1)

~ tf9 c 6~(S) for all f E F,
sEDR(1)

qf ? 0 for all f E F,
t1s ~ 0 for all ( f, g) E DR.

Theorem 6.3.1 If all resource games (N, br ) in a controlled linear production situation
with transport are balanced, then the associated game (N, v) is also balanced and a core
element can be computed by solving only one linear program, viz. the program which
determines the worth of the grand coalition.

Proof : The linear program is bounded for each coalition S. This is ensured by the
assumption that no product can be manufactured without using resources. Moreover,
producing nothing is feasible for all S, so the programs are all feasible. Hence the dual
programs are bounded and feasible, and the values of the primal and dual program
coincide for each S. The dual program for coalition S is

min ~ ((yJ, bf (S)) f (zf, bf(S)))
)EF

S. t.

yf A~ ~ c~ for all f E F,
y~ - y9 ~ pf9 ~- zJ ~-G~9 for all (f,g) E DR,

yf , z~ ) 0 for all f E F.

Note that yf, z~ E RR for all f E F and that the feasible region of the dual program
is independent of S. For each facility f and each resource r, (N, bf ) is balanced, hence
take uT E RN a core element of (N, bT ). Let (yf ) fEF, (z~)ZEF be an optimal vector of
the dual program of the grand coalition N. This vector is a feasible vector for the dual
programs for all coalitions. Define x E RN by

~ - ~ ~(y; f zr )ur'
JEF rER

S. t.
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Then for each coalition S,

~~i - ~ ~(y~ } z~)~ur,i
iES JEFrER iES

? ~ ~(yT ~zT )b~(S)
JEF rER

- ~ ((TJJ, bJ(S)) ~ (zJ, bJ(S)))
1EF

) v(S).

The first inequality holds because uT is a core element of (N, b~), the second one because

(yJ)JEF,(zJ):EF is a feasible vector for the dual program of S. If S- N then these
inequalities are equalities. Hence ~ is a core element of (N, v) and (N, v) is balanced. ~

The optimal vector (yJ) JEF, (zJ)ZEF can be given an economic interpretation as fol-

lows. y,J. is a shadow price for resource r when used at facility f. The constraints of the

dual programs imply that y; f z~ ) y9pT9 -GT9 for each ( f, g) E DR and each resource r.

The right hand side can be seen as the shadow price for resource r when transported

from facility f to facility g. By complementary slackness, yr ~-z,J. - y9Pr9 -GT9 if t;9 1 0.

So, if any amount of resource r is exported from facility f, then yr ~- zT is the maximal

shadow price for resource r among the facilities g E DR( f) to which resources can be

transported from facility f. Hence zr is the extra value of resource r when resource

transport is allowed.

The converse of the theorem is not true in general, but for any LPT in which there exist

a facility f E F and a resource r E R such that the resource game (N, b~) is not balanced,
alternative production matrices (AJ) JEF and cost vectors (cJ)JEF can be constructed such

that the LPT-game associated to the modified LPT with these alternative production

matrices and cost vectors is not balanced.
The players control the resources by means of the resource games. In theorem 6.3.1,

these are required to be balanced and they are naturally non-negative. In Derks (1987)

and Derks (1991), it is proved that this is equivalent to veto control.

Theorem 6.3.2 (Derks (1991), Theorem 2.8) A non-negative game is balanced if and

only if it can be written as a non-negative linear combination of veto-rich control gacnes.

Hence, the resource games ( b~)JEF,rER are balanced if and only if the resources are
veto-controlled, i.e. for each facility f, there exist a number kJ of bundles of resources
xi ,...,~k~ E RR and veto-rich control games wi ,..., wkJ such that

k~
bJ(S) -~wi ( S)x~ for all coalitions S.

t-i

This implies that theorem 6.3.1 can be restated as
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Theorem 6.3.3 The LPT-game associated to a controlled linear production situation
with transport with veto-controlled resource bundles is balanced and a core element can

be computed by solving just one linear program, viz. the program which determines the
worth of the grand coalition.



Chapter 7

Controlled communication
networks

In cooperative game theory, it is generally assumed that each subgroup of players can
form and cooperate to obtain its value and that the grand coalition forms. Aumann and

Dreze (1974) varied this assumption and introduced cooperative games with coalition
structures in which a partition is assumed to form and within a partition element players
cooperate.

However, this approach fails to take into account communication restrictions that
may cause deficiencies in cooperation in some coalitions. Myerson (1977) introduced
communication graphs to model non-transitive communication restrictions. In such a
graph the vertices are the players and an edge between two players represents the fact that
these players can communicate directly. The general procedure is the following : given
a TU-game (N, v) and a communication graph (N, E), one defines a reward function
r on collections of vertices and edges which takes the communication restrictions into
account, and then new games are extracted.

This model was elaborated further by Owen (1986), Borm, Owen, and Tijs (1992),
Van den Nouweland, Borm, Owen, and Tijs (1993), Van den Nouweland and Borm (1991)
and Van den Nouweland (1993). A survey on this subject is given in Borm, Van den
Nouweland, and Tijs (1994).

In this chapter, which is based on Feltkamp and Van den Nouweland (1993), we
generalize communication situations by allowing the vertex set of the graph to differ from
the set of players N, and by starting out with a reward function r, instead of deriving
it. We assume that the players control the vertices and edges of the graph through
so-called control games. In section 7.1 we provide the formal definition of controlled
communication networks and we introduce three solution concepts for these networks,
the Myerson value, the position value and the mixed value. These solution concepts are
characterized axiomatically in section 7.2. Finally, in section 7.3 we present an method
of constructing a TU-game corresponding to a controlled communication network, and
we show that all TU-games can be obtained as such a network game.

101
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7.1 One model, three solutions

Loosely speaking, a controlled communication network is a situation in which connected
parts of a network produce revenue. Let us give an example.

Example 7.1.1 A sequencing situation (N, (a;, s;)iEN) consists of a set N-{1, ..., n}
of players, who are waiting to be served by a counter in a specific order. Without loss
of generality this order is assumed to be the standard order sigmao - (1, ..., n). Each
player places linear value on his time, i.e. if he has to wait for time t, his cost is a;t. We
assume each player i has a serving time s;.

With a sequencing situation (N,(a;,s;);EN), Curiel, Pederzoli, and Tijs (1989) as-
sociate a sequencing game (N, v), in which the worth v(S) of a coalition S equals the
maximal savings S can obtain by rearranging the members of S without exchanging the
positions of players in S who have a player outside S between them.

Define a connected coadition to be a coalition of the form {k, k-{- 1, ..., l}. For a
connected coalition T, a T-permutation is a permutation ~ of N which only permutes
the members of T. The set of all T permutations is denoted II(T). For a permutation
a, denote the set {j E N ~ o(j) C v(i)} of predecessors of a player i under permutation
o by P(i, o). Then

v(T) - max ~ a; ~ sk -~ a; ~ sk
oE17(T) iET kEP(i,o) iET kEP(i,sigmap)

for all connected coalitions T and defining for an arbitrary coalition S, 1~ to be the
coarsest partition of S into connected coalitions, we see that

v(S) - ~ v(T). (7.1.1)
' TEP

With a sequencing situation, one can define a graph (V, E) as follows. The set of
vertices is defined by V- N and the set of edges E consists of edges of the form
{i, i~-1 }, with i C n. Then we see that the value of a coalition S is due to its connected
components in the graph.

This way of presenting sequencing situations allows one to easily generalize the model,
for example by dropping the assumption every person waiting to be served is an inde-
pendent player. It could be that these persons are agents for companies, some agents
being employed by the same company. In this case, the companies would be the players
and the waiting costs of the agents of a company should be added, yielding the cost of
waiting of the company.

We now formally introduce controlled communication networks. Consider a finite
undirected graph (V, E) without loops or parallel edges. We assume that for each vertex
v E V a veto-rich control game (N, c„) is given and, similarly, for each edge e E E a
veto-rich control game (N, ce) is given. If c„ is the control game for vertex v E V, then
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a coalition S C N is allowed to use vertex v if and only if c„(S) - 1. The control games
(N, ce) for edges have a similar interpretation.

Furthermore, we assume that there is a reward function r on subsets of vertices and

edges r: 2v x 2E --~ R, measuring the economic value of subnetworks. Keeping in

mind that edges are to model communication channels, it seems reasonable to assume

that an edge is useless without both its end points, i.e. for all W C V and F C E

it holds that r(W, F) - r(W, F`{{vl, vz}}) if {vi, v2} E F is such that {vl, v2} is

not a subset of W. So, the reward of a network (W, F) does not depend on the edges

not in F(W) :- {{v,w} E F ~ v E W,w E W}. Moreover, in a network (W,F),

W is partitioned into communication components in the following way : C C W is a

component within (W, F) if and only if (C, F(C)) is a connected subgraph of (W, F(W))

and is maximal with respect to this property. The resulting partition of W is denoted

W~F. Correspondingly, we assume that the reward function is additive with respect to

these components, i.e.

r(W, F) - ~ r(C, F(C))
C EW~F

forallWCVandallFCE.
For simplicity, we assume that r is zero-normalized, i.e. r({v}, (~) - 0 for all v E V.

A controlled communication network is a 6-tuple (N, V, E, (c„)„EV, (ce)eEE, r) as de-

scribed above. The set of all controlled communication networks with player set N will

be denoted CCNN.

Myerson (1977) and Borm, Owen, and Tijs (1992) consider reward functions of the

special form
rv(W,F) :- ~ v(C)

CEW~F

generated by a zero-normalized TU-game (N, v) and a graph (N, E), and present solu-
tions of what they call the communication situation (N, v, E).

Here we present and axiomatically characterize solutions to the problem of distribut-

ing the reward r(V, E) among the players in N. Formally, a solution concept on CCNN is

a function ry : CCNN -~ RN assigning ry;(C) to player i in the controlled communication

network C E CCNN. One way to obtain solution concepts on CCNN is to construct

for each controlled communication network a TU-game corresponding to this network

in which the players are the edges and~or vertices of the graph. To this game one can

apply a solution concept from cooperative game theory, for example the Shapley value

~. This yields a value for edges and~or vertices and this value can be distributed among

the players according to veto control. Concentrating on vertices this procedure yields

the Myerson value (cf. Myerson, 1977) and concentrating on edges it yields the position

value (cf. Borm, Owen, and Tijs, 1992). If no such distinction between vertices and

edges is made, one obtains the mixed value.
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Let C-(N, V, E, ( c„)„EV, (ce)eEE, r) be a controlled communication network. The
Myerson value p(C) E RN is defined by

Fli(C) .- ~ ~v(VirE)

vEV:iEveto(c„) ~ VetO(Cv)~

for all i E N, where the vertex ga~nce (V, rE) is a game in which the vertices are the players,
defined by rE(W) - r(W, E) for all W C V. Further, the position value ~r(C) E RN is
defined by -

~t(C) ;- ~ ~e(E,rv)

eEE:iEveto(ce) I VetO(Ce)I

for all i E N, where the edge garae ( E,rv) is a game in which the edges are the players,
defined by rv(F) - r(V, F) for all F C E. Finally, the mixed value p(C) E RN is defined
by -

lba(V U E,T)

p`(C) ~- ~ ~veto(ca)~aEVUE:iEveto(ce)

for all i E N, where the game (V U E, r) is defined by T(J) - r(J fl V, J fl E) for all
JCVUE.

7.2 Axiomatic characterizations

In this section we provide axiomatic characterizations of the three solution concepts
introduced in section 7.1. It will turn out that all three concepts can be characterized
by four axioms, three of which are identical for all solution concepts.

For convenience's sake, if C is a controlled communication network and F C E a set
of edges we will use C-F to denote the network where the edges in F have been omitted
and where the reward function has been restricted accordingly. We now introduce a few
properties.

A solution concept ry on CCNN is called e„~icient if for each controlled communication
network C, ry distributes exactly r(V, E) among the players. In formula :

~ y;(C) - r(V, E).
iEN

A solution concept 7 on CCNN is called additive if it is additive with respect to the
reward function ( ceteris paribus).

A solution concept y on CCNN is said to have the superfluous edge property if for all
C E CCNN and all edges e E E that are superfluous for C it holds that

7(C) - 7(C-{e}).
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Here, an edge e E E is called superfluous for C if for all F C E,

r(V, F) - r(V, F ` {e}).

Note that for an edge e to be superfluous, we only consider the set V of all vertices; we

do not demand r(LV, F) - r(W, F`{e}) for all W C V and F C E. However, this turns

out to be an equivalent requirement.

Lemma 7.2.1 Let C E CCNN. Then an edge e E E is superfluous for C if and only if

r(W, F) - r(W, F ` {e})

for all W C V and all F C E.

Proof : The "if" part is straightforward. For the "only if" part, note that

r(W, F) - ~ r(C, F(C))
CEW~F

- ~ r(C, F(C))
CEW~F(W)

(w) ~ r(C, F(C)) - r(V, F(W))
CEV~F(W)

forallFCEandWCV.
Here, equality ( ~) follows from the fact that r is zero-normalized.
Hence, for a superfluous edge e

r(W, F ` {e}) - r(V, (F `{e})(W))

- r(V,F(W) `{e})

- r(V, F(W))
- r(W, F)

for all F C E and W C V. This competes the proof. ~

In a graph ( V, E), we denote by D(V, E) the set of vertices that have degree at least
1, i.e. they have at least one neighbor in the graph, and we will shorten this notation to
D whenever this does not lead to confusion.

The fourth property of solution concepts on CCNN we introduce is anonymity. A
controlled communication network is said to be anonymous if the reward function only
depends on the number of edges and non-isolated vertices, i.e. there exists a function
f:{0, ... , ~D U E~} -~ R such that

r(W,F) - f(~(W fl D) U F~)

for all W C V and F C E. A solution concept y on CCNN satisfies anonymity if for
all anonymous C E CCNN, the solution is proportional to the veto power of the players
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over the edges and non-isolated vertices or, in formula : there exists an a E R such that
foralliEN

y;(C) - a . ~ ~ veto(ca)~aEDUE:iEveto(ca)

The mixed value p satisfies the four properties mentioned. This is shown in

Lemma 7.2.2 The mixed value
perfluous edge property.

P satisfies efficiency, additivity, anonymity and the su-

Proof : Let C be a controlled communication network. Then

~ Pi(C) - ~ ~ ~a(V U E, r)

iEN iENaEVUE:iEveto(ca) I VetO(Ca)I

- ~ ~a(V U E, r) . ~ 1

aEVUE iEveto(ca) I VetO(Ca)~

- ~~a(V U E, r) (-) r(V, E),
aE VuE

where equality (~) follows from efficiency of the Shapley value ~. Hence, p is efficient.
Additivity of p follows straightforwardly from additivity of ~.
In order to prove the superfluous edge property, take C E CCNN and e E E that

is superfluous for C. It clearly suffices to prove that ~e(V U E,r) - 0 and ~a(V U
E, r) -~a(V U E` {e}, r) for all a E V U E` {e}. Using Lemma 7.2.1 we easily obtain

r(J) - r(J`{e}) for any J C V UE. Hence, e is a zero player in the game (V UE, r"), and

consequently ~e(VUE,r") - 0 and ~a(VUE,r") -~a(VUE`{e},T) for alla E VUE`{e}.
We conclude that p satisfies the superfluous edge property.
Now let C E CCNN be anonymous and let f: {0,...,~D U E~} -~ R be such that

r(W, F) - f(~(D (1 W) U F~) for all F C E and W C V. Then all vertices v E V`D are

zero players in the game (V U E, r) and all a E D U E are symmetric in this game. By

symmetry, efficiency, and the dummy property of ~ this implies

-~ J DuE
if a E D U E

Cba(V U E, r')
~DUE~

0 ifaE V`D.

Hence, pa(C) - a~ ~ ~veto(~o)~, where a:- J~DuE~ . O
aEDUE:iEveto(ca)

Before we prove that p is characterized by the four properties, we introduce two more
definitions. Let (V, E) be a graph. Then we denote by R(V, E) the set of (V, E}-
admissible reward functions, i.e.

1Z(V, E) :- ( r: 2v x 2E -~ jI I r is additive w.r.t. components 1
l and zero-normalized 1
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Moreover we denote the basic (V,E)-admissible reward functions by

Ci(V, E) :- ( uyy,F : 2V x 2E -, R I (W, F) is a connected subgraph
l of ( V, E) and ~ W ~? 2

where uyy,F is defined by

-~ 1 ifWCW'andFCF'u~,y'F(W'' F') .
0 otherwise.

One can now prove the following result.

Lemma 7.2.3 Let (V, E) be a fixed graph. Then L3(V, E) forms a basis of the vector

space R(V, E).

This lemma is a straightforward corollary of the fact that the set {(N, us) ~ S E 2N `{~} }

of unanimity games forms a basis of the class GN of all TU-games and that the reward

functions are zero-normalized. Though straightforward, the proof is rather technical and

we therefore omit it.

Theorem 7.2.4 '1'he mixed value p is the unique solution concept on CCN~~`~ satisfying

efficiency, additivity, anonymity, and the superfluous edge property.

Proof : According to Lemma 7.2.2 the mixed value p satisfies the four properties.

Hence, we only have to show that there is at most one solution concept satisfying these

properties. Suppose 7 is a solution concept on CCNN that satisfies the four properties.

Using lemma 7.2.3 and additivity of y and p, we see that it suffices to prove y- p for

situations in which r - ,Quyy,F for some ~3 E R and some connected subgraph (W, F)

with ~ W ~ 1 2. Hence, let C C CCNN be a controlled communication network with

r-~3uyy,F for some ,Q E R and some connected subgraph (W, F) with ~W~ 1 2. Since

every edge e in E ` F is superfluous for C, the superfluous edge property implies that

-y(C) - y(C-E~F). Furthermore,

r(W'~ F~) - Quw,F(W~, F~) -~ a0
ifWCW'andF'-F
otherwise

for all W' C V and F' C F. Since ( W, F) is a connected graph, it holds that D(V, F) -
W. So, defining f : {0,-.. , ~D U E~} -~ R by

f(k) - J~3 if k- ~W U F~
l 0 otherwise

we see that the controlled communication network C-E`F is anonymous. Now, by ano-

nymity of ry we know that there exists an a E R such that

(C-E`F) - a . ~ 1

aE W UF:iE~eto(ca)
~ veto(ca)~
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for all i E N. Using efficiency, we obtain

Q- r(V, F) -~ ryi(C-E~F) -~ o. ~ 1 - a. ~ W U F~.
iEN iEN aEWUF:iE~eto(ca) I VCtO(Ca)I

Hence, a-~i . ~ W U F~-1 and recalling y(C) - ry(C-E~F), we see

IÏ,(C) - I W~ FI aEwuF~~veta(c,l I veto(ca)I - Pi(C)~

0

We proceed by providing axiomatic characterizations of both the Myerson value and the

position value. Both values can be characterized by efficiency, additivity, the superfluous
edge property and an anonymity axiom. The anonymity axioms we need are vertex
anonymity and edge anonymity.

A solution concept 7 on CCNN is saíd to be vertea anonymous if for every
controlled communication network C E CCNN such that there exists a function
f:{0, ..., ~D(V, E)~} -~ R with r(W, E) - f(~D fl W~) for all W C V, there is an
a E R such that for all i E N

?'i(C) - a! . ~ ~ veto(cv)~-I-
vED:iE~eto(c~ )

A solution concept 7 on CCNN is called edge anonymous if for every C E CCNN such
that there exists a function f: {0,..., ~E~} -~ R with r(V,F) - f(~F~) for all F C E,
there is an c~ E R such that for all i in N

ry;(C) - a . ~ ~ veto(ce)~-'.
eEE:iEveto(c~)

Theorem 7.2.5

i) The Myerson value y is the unique solution concept on CCNN that satisfies efFi-
ciency, additivity, the superfluous edge property and vertex anonymity.

ii) The position value ~r is the unique solution concept on CCNN that satisfies effi-
ciency, additivity, the superfluous edge property and edge anonymity.

The proof of theorem 7.2.5 runs along the same lines as the proof of lemma 7.2.2 and
theorem 7.2.4 and therefore it is left to the reader.

Remark. The axiomatic characterizations of the Myerson value and the position value
provided in theorem 7.2.5 are similar to axiomatic characterizations provided in Borm,
Owen, and Tijs (1992) for communication situations. However, the reader should note
that our characterizations hold for all controlled communication networks whereas Borm,
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Owen, and Tijs (1992) had to restrict to cycle-free communication graphs. The reason
is that they were concerned with communication situations, in which a reward function
is constructed from a game and a graph, and whereas they in fact used properties of the
reward function, they defined the properties of a solution in function of properties of the
game involved. Now some of these properties are not necessarily inherited by the reward
function if the graph is not cycle-free.

7.3 Network games

In the previous sections we approached the problem dividing the reward r(V, E) of a
controlled communication network amongst the players in an indirect way, by first de-
termining the value of vertices and edges and then distributing these values among the
veto players in the corresponding control games. In this section we describe a direct way
of dealing with the problem.

Let C be a controlled communication network. We define an associated game with
player set N in the following way : for a coalition S C N, V(S) :- {v E V ~ c„(S) - 1}
is the set of all vertices that coalition S can control and E(S) :- {e E E ~ ce(S) - 1} is
the set of all edges that coalition S can control. Correspondingly, coalition S can obtain

vc(S) :- r(V(S), E(S)).

Hence, we associate with C E CCNN the network game (N, vc) defined above. Subse-
quently, some solution concept for TU-games could be applied to the game (N, vc). We
will pursue this line of research in the next chapter.

This approach seems interesting, because a number of games associated with economic
situations can be seen to be network games in a more or less natural way. Some examples
are sequencing games (Curiel, Pederzoli, and Tijs, 1989), permutation games ( Tijs et al.,
1984), and assignment games ( 5hapley and Shubik, 1972).

Example 7.3.1 With a sequencing situation (N, (a;, s;);EN), associate a CCN situation
C-(N,V,E,(c„)„EV,(ee)eEEvr) bydefining V- N, E- {{i,i-F1} ~ i E{1,...,n-1}},

G- ut, c{t,~} - u{c,~} and
r(V, E) - ~ v(T).

TEV~E

Then the network game vc coincides with the sequencing game v, defined in equa-
tion 7.1.1.

However, some scepticism is in place here, because every TU-game is a network game
in a trivial way : Let (N, v) be an arbitrary TU-game. Define a controlled communication
network corresponding to (N, v) as follows. Let V:- N and E:- {{i, j} ~ i, j E N, i~
j}. Hence, (V, E) is the complete graph with vertex set N. The control game for
each vertex i E N is (N,u{;}) and the control game for each edge {i, j} is (N,u{ti,~}).
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Hence, every player is a dictator for his own vertex and an edge between two vertices
is controlled by the two players it connects. Finally, the reward function r assigns v(S)
to the subgraph (S, E(S)) for all S C N, and is extended in some feasible way to all
subsets of vertices and edges. It is easily seen that the network game associated with
the controlled communication network described above is the game (N, v).

Note that in the above discussion we did not restrict to zero-normalized games. How-
ever, the restrictions to zero-normalized reward functions was only made for simplicity
and is not essential.



Chapter 8

Controlled economic situations

Both chapters 6 and 7 treated situations in which resources with which revenue can be

generated are controlled by the players by means of control games. In this chapter, we
present a unifying model of controlled economic situations. Associating a reward game

to a controlled economic situation, we then study which properties of the reward function

and the control games are inheríted by the reward game.

In the preliminary section 8.1, we survey properties of control games and other simple

games. Among other results it is shown that the only convex (resp. concave) control

games are unanimity (resp. dual unanimity) games. Moreover, totally balanced simple

games are shown to be precisely those simple games which have a population monotonic
allocation scheme.

In section 8.2, we present controlled economic situations and use the results of sec-
tion 8.1 to investigate the inheritance of properties of both the control games and the
reward function by the reward game.

In section 8.3, a few examples of economic situations treated in the literature, such

as flow situations and linear production situations will be reconsidered as controlled

economic situations.

Finally, in section 8.4, we analyze controlled economic situations in which the set of

resources ís infinite and reconsider economies with land (Legut, Potters, and Tijs, 1994)

as infinite controlled reward situations.

8.1 Simple games

In politicology and sociology, TU-games have been used to study various kinds of voting
situations. There, typically, the worths of the coalitions are restricted to {0,1}. The
interpretation is that the coalitions S with worth 1 can decide collectively on the issue
under consideration without the help of players outside S. Therefore, these coalitions
are called winning. TU-games of this kind are called simple games and were considered
first in von Neumann and Morgenstern (1944). Further studies on simple games are e.g.

111



112 Controlled economic situations

Shapley-Shubik (1954), Shapley ( 1962), Banzhaf ( 1965), Shapley (1967), Dubey (1975),
Dubey-Shapley ( 1979), Peleg (1981), Shapley(1981), Lehrer (1988) and Einy ( 1988).

In the literature, the discussion of simple games is mainly concentrated on monotonic
simple games, based on the voting interpretation sketched above. However, if simple
games are used to model not only theoretical power but also actual power, monotonicity
may be lost. For example in parliament, a coalition which has the majority but which is
composed of people with opposing interests might theoretically form a government, but
internal conflict will prevent any bill being passed, while a subcoalition might succeed
in passing bills.

In this section we survey properties of control games and simple games. Remember
a control gam,e ( N, v) is a simple game which satisfies v(N) - 1. As a simple game v is
completely determined by the set W(v) :- {S C N ~ v(S) - 1} of winning coalitions we
will sometimes define a game by giving W(v). -

In this section, N will denote an arbitrary but fixed set of players and all games will
have N as player set, unless specified otherwise. We often identify thP game (N, v) with
its characteristic function v. We denote the class of TU-games with player set N by GN,
thé class of simple games with player set N by SGN, and the class of control games with
player set N by CGN. For real numbers a and b, we denote a V b:- max{a, b}, and
a n b:- min{a, b}.

We first give some alternative formulations of monotonicity:

Lemma 8.1.1 Let v E GN be a TU-game. The following four assertions are equivalent :

a. v is monotonic, i.e. v(S) C v(T) if S C T.

b. v(SUT)~v(S)Vv(T) forall S,TCN.

c. v(S U T) ~ v(S) V v(T) for all disjoint S, T C N.

d. v(S n T) C v(S) n v(T) for all S, T C N.

Proof : a implies b because S U T contains both S and T.
c is a special case of b, so b implies c.
c~ d: Take S, T C N. Write S- (S n T) U (S `T), which is a disjoint union, and
apply c: v(S) ) v(S n T) V v(S `T) ~ v(S n T). Similarly, v(T) 1 v(S n T), hence
v(S n T) ~ v(S) n v(T). -
d~ a: for any S C T, we have S- SnT, hence v(S) - v(SnT) C v(S)nv(T) C v(T).0

We now recall some further properties of simple games which have been used in the
literature.

Definition 8.1.2 A simple game v E SGN is N-proper if v(S) n v(N `S) - 0 for all
S C N. It is proper if v(S) n v(T) - 0 for all disjoint S, T C N. A simple game v E SGN
is strongly proper if v(S) n v(T) G v(S n T) for all S, T C N.
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Note that simple proper games are N-proper, and simple monotonic N-proper games

are proper. Recall that a game v E GN is a superadditàve game if v(SUT) ~ v(S) f v(T)

for all disjoint S, T C N.

Lemma 8.1.3 Let v E SGN be a simple game. Then
v is superadditive t~ v is N-proper and monotonic

Proof : Let v be a superadditive simple game. As v is non-negative ( i.e. v(S) ? 0 for

all S C N), we have v(S) 1 v(T) -~ v(S `T) ~ v(T) for all T C S C N. Hence v is

monotonic. Also, 1~ v(S U T) 1 v(S) ~ v(T) for any disjoint S and T C N, so at most

one of v(S) and v(T) can equal 1. This yields v(S) n v(T) - 0. Hence v is proper and

so it is N-proper.
Conversely, suppose v is monotonic and N-proper. Then it is also proper, so for all

disjoint S, T C N, we have 0 - v(S) n v(T). Hence at least one of v(S) and v(T) equals

zero, v(S U T) ~ v(S) V v(T) - v(S) f v(T) and v is superadditive. ~

A well-known result is that a control game v is balanced if and only if it is a veto-rich

game, i.e. there is a player i such that i~ S implies v(S) - 0. Such a player is called a

veto player. For a proof, we refer to Curiel ( 1988).

Theorem 8.1.4 (Curiel, 1988) A control game is balanced if and only if it has at least

one veto player.

Corollary 8.1.5 A simple game is balanced if and only if it has a veto player and it is

N-monotonic, i.e. if it is the zero game or it is a veto-rich control game.

Proof : If a simple game (N, v) is balanced, it is N-monotonic : for x E Core(v),

v(S) C x(S) c x(N) - v(N).

Now either v(N) - 0, in which case v is the zero game and every player is a veto player,
or v(N)-1, and then it is a balanced control game and Curiel's theorem implies there is
a veto player. Hence, in any case v has a veto player.

The converse implication is evident. ~

Lemma 8.1.6 For a control game v E CGN the following implications hold :
v is strongly proper ~ v is balanced ~ v is proper.

Proof : Let v be strongly proper. It is balanced if and only if the set veto(v) -(~sew(v) S
of veto players is non-empty. Let S, T E W. Then v(S fl T) ~ v(S) n v(T) - 1, hence

S fl T E W. This means W is stable for finite intersection, and as W is finite, veto(v) is

winning. As the empty set is losing, veto(v) is not empty, and v is balanced.

For the second implication, assume v to be balanced. A coalition S can only be

winning if veto(v) C S, and for disjoint S, T C N, either veto(v) ~ S or veto(v) ~ T,
so either v(S) - 0 or v(T) - 0, hence v(S) n v(T) - 0, and v is proper. ~
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Counterexamples for the converse implications in lemma 8.1.6 are given by the control
games ({1, 2, 3}, vi ) and ({ 1, 2, 3}, vz), defined by

W(vl) - {{1,2},{1,3},{2,3},{1,2,3}},

W(v2) - {{1,2},{1,3},{1,2,3}}.

The game vl is (monotonic and) proper, but not balanced, and vz is (totally) balanced,
but not strongly proper : veto(vZ) -{1}, and

o- v2({1,2} n{1,3}) ~ v2(1,2) n v2(1,3) -1.
Furthermore, the first implication in lemma 8.1.6 does not hold for arbitrary simple

games. This is shown by the simple game (N, v), defined by N- {1, 2, 3} and W(v) -
{{1,2}}. This game is strongly proper, but not a control game, nor balanced.

Lemma 8.1.7 For simple games, totally balancedness is equivalent to balancedness and
monotonicity.

Proof : Let v E SGN be a totally balanced. Obviously, v is balanced. Take S C T C N.
We have to prove v(S) C v(T). Because the game (T, vT) is balanced, there exists a core
element ~ E Core(vT). So in particular, x(T) - v(T), x(S) 1 v(S), and x; ~ v(i) 1 0
for all i E T` S. This implies

v(T) - x(S) f~(T `S) ~ v(S) f 0- v(S).

Hence, v is monotonic.
For the reverse implication, suppose v E SGN is balanced and monotonic, and let

T C N. If v(T) - 0 then by monotonicity vT is the zero game, which is balanced. If
v(T) - 1, then any core element x of v satisfies ~; 1 0 for all i E N`T, x(T) 1 v(T) - 1
and x(N) - 1. Hence, ~(T) - 1. Also x(S) ~ v(S) - vT(S) for all S C T. Hence x
restricted to T yields a core element of vT, so vT is balanced. - O

Tijs (1981) introduced the r-value. It is a one-point solution concept on the class of
quasi-balanced games, which is larger than the class of balanced games.

Definition 8.1.8 (Tijs, 1981) For a TU-game v E GN, define the upper vector M E RN
by M; - v(N) - v(N ` i) for all i E N, and the lower vector m E RN by m; -

max (v(S) - M(S `{i})) for all i E N. The game v is quasi-balanced if
SCN:iES

m C M and m(N) C v(N) G M(N).

Note that for simple games both the lower and upper vector have only coordinates
that are zero or one. This is easy to see for the upper vector, and for the lower vector it
follows from the inequality m; 1 v(i).
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Lemma 8.1.9 A simple monotonic quasi-balanced game is balanced.

Proof : Let v be monotonic, quasi-balanced and simple. If v(N) - 0, then v is the zero
game, which is balanced. Otherwise, M(N) ~ v(N) - 1, hence there exists an i E N
with M; - 1, so with v(N `i) - 0. By monotonicity, for all S C N`i we have v(S) - 0.
Define x by x~ - 0 if j ~ i and x; - 1. Then x(S) ? v(S) for all coalitions S, and
x(N) - v(N). Hence v is balanced. o

A related solution concept was introduced by Sprumont (1990). He defined a
population monotonic allocation scheme (PMAS) of a game (N, v) as a collection
x-{x~s ~ j E S C N} which satisfies the following two conditions

~ xs(S) :- ~~ES x~s - v(S) for all S C N.

~x~sGx~TifjESCT.

Sprumont then proves that a TU-game (N, v) that has a PMAS x is totally balanced.
For example, if x is a PMAS, then xs -(xts)ies is a core element of the subgame (S, vs)
for every coalition S.

The following theorem of Sprumont facilitates the task of identifying simple games
which have a population monotonic allocation scheme.

Theorem 8.1.10 (Sprumont, 1990) A game v E GN has a PMAS if and only if it is
the sum of a positive linear combination of monotonic, balanced simple games and an
additive game va given by va(S) - a~S~ for all S C N, where a is an arbitrary real
number.

We now identify which simple games have a PMAS.

Theorem 8.1.11 For a simple game v E SGN the following properties are equivalent :

~ v has a PMAS.

~ v is totally balanced,

~ v is monotonic and balanced,

~ v is monotonic and quasi-balanced,

Proof : Tijs (1981) proved balanced games are quasi-balanced. In view of the
lemmas 8.1.7 and 8.1.9, this proves equivalence of the last three assertions. Equivalence
of the first assertion with the second is a consequence of Sprumont's characterization of
games having a PMAS : if a simple game is the sum of a positive linear combination of
monotonic, balanced simple games and an additive game va, a E R, then the additive
game is the zero game, and the positive linear combination of monotonic, balanced simple
games is obviously monotonic and balanced. ~
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VVithout the monotonicity condition, the three varieties of balancedness are not equiva-
lent.

Example 8.1.12 Consider v E SGN with N- {1,2,3} and W(v) -{{1},{1,2,3}}.
This game is balanced but not totally balanced.

Example 8.1.13 Consider v E CGN with N- { 1, 2, 3, 4} and W(v) -{S C N I ISI -
2 or ~S~ - 4}. This game is quasi-balanced : M; - 1 for all i E N, m; - 0 for all i E N.
However, it is not proper since v(12) n v(34) - 1~ 0. Hence using lemma 8.1.6, it is not
balanced.

One could wonder whether properness of a simple game implies quasi-balancedness.
That this is not the case is shown in the following example.

Example 8.1.14 Consider v E SGN with N- { 1, 2, 3} and v(S) - 1 if ~S~ 1 2. This
proper and monotonic simple game is not quasi-balanced.

Furthermore, a quasi-balanced and proper control game is not necessarily balanced
as is shown in the next example :

Example 8.1.15 Consider the control game v E CGN defined by N- { 1, 2, 3, 4} and
W(v) -{{1, 2}, {1, 3}, {2, 3}, N}. Here M; - 1 for all i E N, m; - 0 for all i E N
and hence v is quasi-balanced. It is also proper, but it is not balanced. Suppose there
existed an x in the core of v. Then xl -~ x2 ~ 1, xl -b x3 ~ 1, x2 -~ x3 ~ 1, ~4 ~ 0,
adding these inequalities yields 2(~1 ~- ~2 -F x3 -F ~4) ) 3, a contradiction with efficiency :

~1 ~~2 ~23~24 - 1.

Definition 8.1.16 A TU-game v E GN is convea if v(S fl T) } v(S U T) 1 v(S) ~- v(T)
for all S, T C N.

Examples of convex games are the unanimity games us. In fact unanimity games are
the only convex control games, as the following theorem shows.

Theorem 8.1.17 The following four assertions are equivalent for a game v E CGN :

a. v is convex

b. v is monotonic and strongly proper

c. v(S fl T) - v(S) n v(T) for all S, T C N.

d. v is a unanimity game.

Proof : Using lemma 8.1.1 we see b and c are equivalent. We now prove that a implies
b, b implies d and d implies a.
a~ b: a convex game v is superadditive, and a superadditive non-negative game
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is monotonic. In order to prove that v is strongly proper, take S, T C N. Now the
inequality v(S fl T) ~ v(S) n v(T) can only fail if v(S) - v(T) - 1- But then by
convexity, v(SUT)-~v(S(1T) ~ v(S)~v(T) - 2, and as all terms areeither 0 or 1, both
terms on the left-hand side have to equal 1, and in particular v(Sf1 T) - 1~ v(S) n v(T).
Hence v is strongly proper. -
b~ d: the proof of lemma 8.1.6 yields that the set veto(v) of veto players is winning. By
monotonicity, any coalition S containing veto(v) is winning. By definition, any winning
coalition S contains veto(v). Hence, v- u„eco~„l.
d~ a: any unanimity game is convex. O

Definition 8.1.18 A TU-game v is subadditive if v(S) fv(T) 1 v(SUT) for all disjoint
S, T C N, and v is concave if v(S) -}- v(T) 1 v(S U T) -f- v(S fl T) for all S, T C N.

Shapley ( 1981) introduces strong monotonic simple games. We here call it N-strong.
For monotonic simple games strongness and N-strongness coincide.

Definition 8.1.19 A simple game v is N-strong ( cf. Shapley (1962)) if v(S)Vv(N`S) 1
v(N) for all S C N. It is strong if v(S) V v(T) ) v(S U T) for all disjoint S, T C N.

The idea is that if one partitions a winning coalition of a strong game, at least one of
the coalitions in the partition is winning.

Lemma 8.1.20 A simple game is strong if and only if it is subadditive.

Proof : Let v be a strong simple game, and let S, T be two disjoint subsets of N. Then
v(S) -I- v(T) ~ v(S) V v(T) because v is non-negative. Also v(S) V v(T) ) v(S U T).
Combining the two inequalities we see v is subadditive. -

Conversely let v be a subadditive simple game and let S, T be two disjoint subsets
of N. Now v(S) V v(T) ~ v(S U T) can fail only if v(S) V v(T) - 0. But this implies
0- v(S) ~- v(T) 1 v(S U T), so the inequality holds after all. O

The study of strong, subadditive and concave simple games can be simplified by
looking at the dual of a game :

Definition 8.1.21 The dual v" E GN of a TU-game v E GN is defined by

v"(S) - v(N) - v(N `S) for all S C N.

Clearly v" - v for all games v E GN. Some relations between a control game and its
dual are given in

Lemma 8.1.22 For a control game v the following hold :

a. v" is a control game,

b. v is monotonic iff v" is monotonic,
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c. v is N-proper iff v' is N-strong,

d. v is convex iff v" is concave.

The proofs are left to the reader.

Because unanimity games are convex, their duals us are concave. Note that us(T) - 1
if and only if S and T have a nonempty intersection. In fact, these games us are
the only concave control games, as shown by the next corollary of theorem 8.1.17 and
lemma 8.1.22.

Corollary 8.1.23 For a control game v the following are equivalent :

a. v is concave.

b. v is monotonic and subadditive.

c. v(S U T) - v(S) V v(T) for all S, T C N.

d. v is the dual of a unanimity game.

For each i E N, the dictator gam.e u{;} is both a unanimity game and the dual of a
unanimity game. In fact, we have
Corollary 8.1.24 Any of the following are equivalent for a control game v E CGN :

a. v is a dictator game.

b. v is convex and concave.

c. v is superadditive and subadditive.

d. v is proper and strong.

Proof : That a~ b~ c~ d is evident in view of the previous lemmata. It remains
to be shown that d~ a: suppose v is a strong and proper game. Then strongness implies

1 - v(N)

C v(N `{1}) V v({1})

G maNxv({i}).

Hence there exists an i E N with v({i}) - 1. For distinct i and j E N, properness
implies 0~ v(i) n v(j). Hence there exists exactly one i E N such that v(i) - 1. By
properness, v(S) n v(i) - 0 for S C N`{í}, so any coalition not containing i has worth
zero. On the other hand, if a coalition S contains i, then its complement N`S does not
and has worth zero. Then strongness implies 1- v(N) C v(S) V v(N `S) - v(S) and S
has to be a winning coalition. So i is the dictator, and v- u{r}. ~
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8.2 Reward games

In this section, we present controlled economic situations, which unify the economic
situations presented in chapters 6 and 7.

Consider a finite set A of resources and a reward function r: 2A -~ R~, which assigns
to each collection of resources, the reward that can be attained by using these resources.
Assume these resources are controlled by agents in N, a finite set of agents, by means
of control games, i.e. for each resource a E A, there is a control game (N, ca), which
determines which coalitions may use the resource a as follows : S can use a if and only
if ca(S) - 1. With such a controlled economic situation (N, A, (ca)aEA, rj , one can
associate a reward game (N,v~), as follows :

v~(S) :- r(A(S)) for all S C N

where for a coalition S,
A(S):-{aEA~ca(S)-1}

is the set of resources that coalition S can use. Note that v~(N) - r(A) because a control
game c satisfies c(N) - 1. We will write v instead of v~ if this does not lead to confusion.

Note that (A, r) can be regarded as a game also, and when we require that the reward
function r have a specific game-theoretic property, we mean that the game (A, r) should
have this property.

In this section, we are interested in properties of the reward function and the control
games that are inherited by the reward game. Hence, consider a fixed controlled economic
situation (N, A, (ca)aEA, r~.

Theorem 8.2.1 If x E Core(r) (1 R~ and ya E Core(ca) for all a E A, then the vector

z :- ~ xaya
aLLE~~A

is an element of the core of the reward game v.

Proof : The vector z is efficient :

~ zi - ~ ~ xaya
iEN iEN aEA

~ xa
aEA
r(A)

v(N)

and z is coalitionally rational :

~ ~i - ~ ~ xayt
iES iES aEA
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aEA

Hence, z lies in the core of v. o

For a collection (ya)aEA with ya E Core(ca) for all a E A, denote by Y the matrix
with columns (ya)aEA. Then the vector z of theorem 8.2.1 satisfies

Denoting jjaEA Core(ca) the set of all matrices Y as defined above, enables to restate
theorem 8.2.1 as

Core(v) ~ ~ ~ Core(ca) I . Core(r).
`aEA J

Here and in the rest of this section, all vectors are column vectors.
The converse inclusion is not true in general :

Example 8.2.2 Consider the situation ({1, 2}, {a, b, c}, ( ca, cy, c~), r) where N- {1, 2},
ca - un,, cb - c~ - uN, and r is given by

r(B) - j 0 if ~B~ C 1,
l 1 if~B~~2.

Then Core(ca) -~- Core(r), but v- uN, and hence its core is not empty.

Example 8.2.3 Consider the situation ({ 1, 2}, {a, b, c}, (ca, cb, ca), r) where N- { 1, 2},

ca - u{i}, cb - ca - u{a}, and r is given by

0 if ~B~ L 1 or B-{b, c},
r(B) -

1 if ~B~ 1 2 and B~{b,c}.

Denoting by MT the transpose of a matrix M, we see Core(ca) -{( 1 0)T}, Core(r) -

{( 1 0 0)T}, Core(cb) - Core(ca) -{( 0 1)T}, hence the only vector in the core of
v we can compute using theorem 8.2.1 is ( 1 0)T, which is not the only element of the
core of v - uN.

A corollary of theorem 8.2.1 is

Corollary 8.2.4 If r is non-negative and balanced and all control games ca are balanced,
then the reward game is balanced.
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Proposition 8.2.5 Let r and ca be monotonic for all a E A. Then v is monotonic.

Proof : ca monotonic for all a implies that A(S) C A('l) if S C T. Hence, v(S) -
r(A(S)) C r(A(T)) - r(T) if S C T. - - o

Proposition 8.2.6 If r is superadditive, and the control games (ca)QEq are all dictator
games, then v is superadditive.

Proof : Take two disjoint coalitions S and T. For any a E A, there is a player ia E N,
such that ca - ó;a. This ia does not belong to the intersection of S and T, which is
empty. So, A(S) fl A(T) -(~. Furthermore, max(ó;a(S), ó;,(T)) - ó;a(S U T) for all
a E A, which ímplies that A(S U T) - A(S) U A(T). Then

v(S U T) - r(A(S U T))

- r(A(S) U A(T))

1 r(A(S)) -I- r(A(T))

- v(S) -b v(T),

so v is superadditive. ~

The requirements on the control games in proposition 8.2.6 are very strict but they
can be relaxed if the reward function is rnonotonic.

Proposition 8.2.7 If the reward function r is superadditive and monotonic, and the
control games are all superadditive, then the reward game v is superadditive.

Proof : The control games are all superadditive and nonnegative, so they are monotonic.
Hence, c(S U T) 1 c(S) V c(T) for all a E A and each disjoint pair of coalitions S and T.
This implies A(S U T) ~ A(S) U A(T).

Furthermore, superadditivity of the control games implies properness by lemma 8.1.3,
so ca(T) n ca(S) - 0 for each disjoint pair S and T and for each resource a. Hence,
A(S) fl A(T) - 0 for each disjoint pair S and T. This implies

v(S) f v(T) - r(A(S)) ~ r(A(T))

C r(A(S) U A(T))

C r(A(S U T))

- v(S U T),

so v is superadditive. O

We give an example to show that the assumptions of proposition 8.2.6 and 8.2.7
cannot be dropped.

Example 8.2.8 Let N- {1,2}, A-{a}, cQ - uN, r(A) --10. Then the reward
function and the control game are superadditive, but v- -lOuN is not superadditive.
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The necessity of superadditivity of (a part of) the reward function is obvious, but
replacing the superadditivity of the control functions by the weaker assumption of mono-
tonicity does not guarantee superadditivity.

Example 8.2.9 Let N- {1, 2}, A-{a}, ca - un,, r(A) - 1. Then the reward function
is superadditive and the control game is monotonic, but v- uN is not superadditive.

Subadditivity of the reward function in a controlled economic situation carries over
to the reward game under similar circumstances as superadditivity.

Proposition 8.2.10 If the reward function is subadditive, and the control games are
all dictator games, then the reward game is subadditive.

The proof being similar to the proof of proposition 8.2.6 we omit it.

Proposition 8.2.11 If the reward function is subadditive and monotonic and the con-
trol games are all subadditive and monotonic (and hence concave) games, then the reward
game is subadditive (and monotonic).

The proof uses lemma 8.1.20 and runs along the lines of the proof of proposition 8.2.7
so it is left to the reader.

Proposition 8.2.12 If the reward function is convex and all control games are dictator
games, then the reward game is convex.

Proof : Because the control games are dictator games, it follows that A(S) U A(T) -
A(S U T) and A(S) fl A(T) - A(S n T) for all coalitions S and T. Hence,

v(s u T) f v(s n T) - r(A(s u T)) ~ r(A(s n T))
- r(A(S) U A(T)) f r(A(S) n A(T))

~ r(A(S)) f r(A(T))

- v(S) -F v(T),

hence v is convex. 0

As before, the assumptions on the control games can be relaxed if the assumptions
on the reward game are strengthened.

Proposition 8.2.13 If the reward function is convex and monotonic and the control
games are convex, then the reward game is convex (and monotonic).

Proof : According to theorem 8.1.17, convex control games are monotonic. This explains
why the reward game is monotonic. From lemma 8.1.1, we know that a monotonic
control game c satisfies c(S U T) ~ c(S) V c(T), and from theorem 8.1.17 we know that
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c(s fl T) - c(S) n c(T) for all pairs S, T of coalitions. Hence,

v(S U T) ~- v(S f1 T) - r(A(S U T)) f r(A(S fl T))

1 r(A(S) U A(T)) f r(A(S) fl A(T))

1 r(A(S)) -~ r(A(T))

- v(S) -{- v(T ),

so v is convex. ~

In order to prove that the assumption of monotonicity is needed, consider exam-
ple 8.2.8 again. It satisfies all assumptions except monotonicity of the reward function,
and the resulting reward game is not convex.

We now state inheritance results for concavity which are similar to those obtained
with convexity.

Proposition 8.2.14 If the reward function is concave and all control games are dictator
games, then the resulting reward game is concave.

The proof is analogous to the proof of proposition 8.2.12.

Proposition 8.2.15 If the reward function is concave and monotonic and the control
games are concave, then the reward game is concave (and monotonic).

Proof : A concave control game c satisfies c(S U T) - c(S) V c(T) for all S and T by
corollary 8.1.23. Furthermore, it is monotonic, so by lemma 8.1.1, c(Sf1T) G c(S)nc(T).
Hence, A(S U T) - A(S) U A(T) and A(S fl T) C A(S) f1 A(T). It follows that

v(S U T) ~ v(S fl T) - r(A(S U T)) -I- r(A(S fl T))

G r(A(S) U A(T)) -f r(A(S) f1 A(T))

G r(A(S)) f r(A(T))

- v(S) -h v(T),

hence v is concave. ~

Population monotonic allocation schemes carry over to the reward game also.

Theorem 8.2.16 Let r have a PMAS ~ of which all entries are non-negative, let each

control game ca have a PMAS ya and assume all control games are monotonic. Then
z - (z;,s);,s, defined by

a
zi,s - yi,S~a,A(S)

aEA(S)

is a PMAS of the reward game.
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Proof :
a

zi,s - y;,S~a,A(s)
iES iES nEA(S)

- ~ Ca(S)~a,A(S)
aEA(S)

- r(A(S))
- v(S).

Furthermore, for i E T C S,

[~ a
L yi,s~a,A(S)

aEA(S)iES

~ ~a,A(S)
aEA(S)

L yaT~n.A(T) C L. yaS~a.A(T)
aEA(T) aEA(T)

G ~ yis~a,A(s) C ~ yis~a A(s)
aEA(T) aEA(S)

zi,S~

The first inequality follows because y is a PMAS and ~ is non-negative, the second
because y is non-negative and ~ is a PMAS, and the third because the control games are
monotonic, hence A(T) C A(S). O

8.3 Examples of controlled economic situations

In this section, we reformulate economic situations that have been studied in the litera-
ture and with which games have been associated. Theorems from section 8.2 can then
be invoked to prove properties of these games.

Example 8.3.1 Kalai and Zemel (1982) considered flow situations, introduced flow
games and proved using a theorem of Ford and Fulkerson (1954) that these are bal-
anced. In these flow situations, vertices of a graph were (owned by) players. Curiel,
Derks and Tijs (1989) generalized flow situations to flow situations with committee con-
trol and introduced associated flow games with committee control. A flow situation with
cornmittee control consists of a set V of nodes, among which a source s and a sink t, a
directed graph D C V x V, a set of users N, for each arc a in the graph a control game
ca with player set N and a non-negative capacity ka. With each coalition S C N, we
associate the graph D(S) -{a E D ~ ca(S) - 1} controlled by S. Now the worth of a
coalition S is defined as the maximal flow from the source to the sink through the graph
D(S). Curiel, Derks and Tijs then prove that a flow game with committee control is
balanced if all control games are balanced.

Now define a reward function r: D-~ Rt by putting r(B) equal to the maximal
flow through the graph B from source to sink, for all B C D. Considering (D, r) as a
game, we see that it is is exactly a flow game as defined by Kalai and Zemel, hence the
game (D, r) is balanced. Hence, using theorem 8.2.1, we see that the associated reward
game is balanced. But the reward game assigns to every coalition S the maximal flow
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from source to sink through the graph controlled by S, and hence coincides with the flow
game with committee control.

Example 8.3.2 Linear production situations with transport possibilities as described
in chapter 6 can be modeled as controlled economic situations. Consider an LPT, and
assume the resource games (N, bT ) are balanced. Using the remark after theorem 6.3.2,
we see that for each facility f, there exist a number k~ of non-negative bundles of
resources xi ,..., xk~ E R} and veto-rich control games wi ,..., wk~ such that

k~

6f (S) -~ wi (S)x~ for all coalitions S.
t-i

Now define a controlled economic situation as follows. The set of resources equals
A:- {~~ ~ f E F and l- 1, ... , kf}, the reward function r assigns to every collection
B C A of bundles the maximal value of a production plan using the bundle of resources

~zEa ~. The control game of a bundle x~ is the game w~ . Now (A, r) is a linear
production game as modeled in Owen (1975b). Hence, it is balanced.

The associated reward game assigns to every coalition S the maximal value of a
production plan using the resources which S controls. Hence, it coincides with the LPT-
game. Using the fact that the control games are balanced and invoking theorem 8.2.1,
we see that the LPT-game is balanced.

Other situations can be modeled as linear production situations. For example, pooling
games (Potters and Tijs, 1987) are linear production games (Tijs, 1992) and hence are
balanced.

Example 8.3.3 A controlled communication network (N, V, E, (c„)„EV, (ce)eEE, r~ de-
scribed in chapter 7 can be considered as a controlled economic situation by defining
A- V U E and taking r", defined by r"(B) - r(B fl V, B fl E) for all B C A as reward
function. The associated reward game coincides with the network game described in
section 7.3.

Moreover, in a controlled communication network the control games are balanced and
the reward function is assumed zero-normalized. Hence, the conditions of theorem 8.2.7
are partly satisfied and we have the following corollaries :

Corollary 8.3.4 If in a controlled communication situation the reward function is su-
peradditive and the control games are monotonic then the network game is superadditive.

Proof : If the reward function is superadditive and zero-normalized it is monotonic.
Furthermore, it follows from lemma 8.1.6 that a balanced and monotonic control game
is superadditive. Hence, by theorem 8.2.7, the network game is superadditive. ~

Corollary 8.3.5 If in a controlled communication network the reward function is bal-
anced then the network game is balanced as well.
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8.4 Infinite controlled economic situations

In this section, we turn our attention to infinite controlled economic situations. These
are situations in which the set of resources is an infinite set.

Definition 8.4.1 An infinite controlled economic situation (N, A, A, c, r) consists of the
following. ( A, A) is a measure space, r: A--~ R~ is a set function satisfying r(~) - 0.
As before, r is the reward function. N is a finite set of players and c: A -~ CGN is a
measurable function with respect to the measure spaces (A, A) and (CGN, 2~GN). The
mapping c assigns to each element a E A, a control game, denoted ca, which specifies
which coalitions can use a.

The associated reward game ( N, v) is defined by putting A(S) :- {a E A ~ ca(S) - 1}
for all S C N. Note that A(S) - c'({v E CGN ~ v(S) - 1}) is measurable. Now define
v(S) - r(A(S)).

(A, A, r) is an infinite game. Under similar conditions as in the finite case, a core

element or a PMAS of the reward game and the control games induce a core element or

a PMAS of the associated reward game. Fix an infinite controlled economic situation

(N, A, A, c, r).

Theorem 8.4.2 Suppose there exists a measure ~, : A--~ Rt with ~(B) ~ r(B) for all
B E A and p,(A) - r(A). Suppose the control games ( N, ca) are balanced for almost all
a E A and there exists a measurable function d: A~ RN satisfying

{ ~iES di(a) ? Ca(s)

~;En, d;(a) - ca(N)
for all S C N and almost everywhere,
almost everywhere.

Then the reward game (N, v) is balanced.

Proof : Define x:- fA d(a)d{c(a) E RN. Then for any coalition S C N,

~iES ~i - ~ f di(a)d~(a) -
iES A J ~ d;(a)d~(a)

A ~ES

? Ja ca(S)d~(a) - Jatsl ldf~(a)

- ~(A(S)) ? r(A(S))
- v(S).

For S- N, the two inequalities are equalities, hence s is a core-element of the reward
game. ~

Definition 8.4.3 A PMAS of an infinite game (A, A, r) is a collection ({cB )sEA of inea-
sures satisfying

~ pB is a measure on the measure space (B, {D fl B ~ D E A}).
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~ pB(B) - r(B) for all B E A.

~~cB(D) C~~(D) for all measurable D C B C C.

With this definition, one can prove a theorem similar to theorem 8.2.16.

Theorem 8.4.4 If the reward function has a non-negative PMAS ~ -(~B)BEA, if there
exists a function f that assigns to every a E A a PMAS fa and if the control games
are monotonic for almost every a E A(w.r.t ~), then the reward game has a PMAS ~,
defined by

~i,s - JA(S) Í,asd~a(s)(a).

The proof is similar to the proof of theorem 8.2.16 and it is left to the reader.
Examples of infinite controlled economic situations are the economies with land, as

presented by Legut, Potters and Tijs.

Example 8.4.5 Legut, Potters and Tijs (1994) introduced land games associated with
economies with land. These are defined as follows : there is an area of land A, to be
divided among a set N of players. It is assumed there is a Q-algebra (A, A) and the
worth to a player i of parcels of land B E A is given by a non-negative measure ~;. Since
the measures are absolutely continuous with respect to the measure v-~;EN p;, we can
write (by the theorem of Radon-Nikodym)

p'(B) - JB f'dv'

where ( f;)iEN are bounded v-measurable functions on A. The function f; is called the
utility density of agent i. Each agent i is endowed with an initial measurable parcel of
land A;, such that the collection (A;)iEN forms an A-(measurable) partition of A. An
economy with land is a triple

~ :- {N, {A;, fi}iEN}

with N, A; and f; described above. The corresponding transferable utility land game is
defined as follows : every measure pi is assumed to measure the monetary value of land
for player i. The worth of a coalition S is given by

vE(S) - sup{~ f f;dv ~ (Y);ES is an A-partition of A(S) :- U A;}
iES Y iES

for all S C N. Legut, Potters and Tijs prove that vE(S) - fA(S) V;ES f; dv.
With an economy with land, we associate an infinite controlled economic situation

with player set N and set of resources A. The measurable control function is given by
ca - u; if a E A;. The reward function r is defined by

r(B) - f U .ii dv~
B iEN(B)
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where N(B) :- {i E N ~ B fl A; ~ 0} contains all players owning a parcel of B.
Computing the associated reward game, we obtain

v~(S) - r(A(S))

v f; dv
- A(S) iEN(A(S))

V fi dv
~ A(S) {ES

- ve(S)

for all S C N. Hence, we can apply theorems 8.4.2 or 8.4.4 to verify whether the land
game has a core element or a PMAS.



Chapter 9

TU-games, simple games and
control games

Because traditionally simple games are used to model voting situations, a solution con-

cept on the class of simple games is also called a power index : it measures the power
of a voter. 5hapley and 5hubik (1954) introduced the Shapley-Shubik index, which is

the Shapley value restricted to simple games. Dubey (1975) characterized this index ax-

iomatically on the class of monotonic simple games. Another power index is the Banzhaf

index, which was introduced by Banzhaf (1965) and which was characterized axiomat-

ically by Dubey and Shapley (1979), again on the class of monotonic simple games.

Einy (1988) extended these axiomatic characterizations to several classes of monotonic

TU-games. The proofs of the characterizations on the class of monotonic simple games

use m,inim,al winning coalitions, i.e. winning coalitions such that every subcoalition is
losing. While this concept is natural for monotonic simple games, it is not for non-

monotonic simple games.
In this chapter, which is based on Feltkamp (1995), a different line of proof shows

that with axioms similar to those of Dubey (1975), one can characterize the Shapley
value on the class of control games, the class of all simple games, and also on the class
of all TU-games. With a different efficiency axiom, we also extend the characterization
of the Banzhaf value tc these classes.

9.1 Axiomatic characterizations of the Shapley and

Banzhaf values

We start out by recalling some definitions and notations used in this chapter.
In the sequel, N will denote an arbitrary but fixed set of players and all games will

have N as player set, unless specified otherwise. As before, we denote the class of TU-

games with player set N by GN, the class of simple games with player set N by SGN,
and the class of control games with player set N by CGN.

129
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For real numbers a and b, we denote a V b:- max{a, b}, and a n b :- min{a, b}. For
TU-games v, w E GN, v V w and v A w denote the games defined by

(v V w)(S) - v(S) V w(S) for all S C N

(v n w)(S) :- v(S) n w(S) for all S C N.

For each of the classes of simple games, control games and monotonic simple games it
holds that if v and w are in the class, so are v V w and v n w.

A solution concept or value on a class CN C GN of TU-games is a vector valued
function zli : CN -~ RN, assigning the real number ~;(v) to each player i in the game
v E CN.

We proceed by providing some properties of a solution concept on a class CN.

~ A solution ~ is ef,Jicient if ~;EN ~;(v) - v(N) for all games v E CN.

~ A solution ~ is anonymous if for all v E CN and for all permutations v of N such
that vv E Cl`',

~ol;l(v) -~;(QV) for all i E N,

where the game ov is defined by

av(S) - v(Q(S)) for all S C N.

~ A null player in a game v E CN is a player i E N such that v(S) - v(S `{i}) for
all S C N containing i.

A solution zli has the null player property if ~i;(v) - 0 for all games v E CN with
null player i.

~ A carrier of a game v E CN is a coalition T C N such that v(S) - v(S fl T) for all
SCN. -

A solution v has the carrier property if ~;ET ~r~i;(v) - v(T) for all games v E CN
and each carrier T of v.

~ A solution zli has the transfer property if

~i(v V w) f~(v n w) - z~i(v) }~i(w)

for all games v, w E CN such that v V w, v n w E CN.

~ A solution is additive if
rli(v -F w) - zli(v) ~- ~i(w)

for all games v, w E CN such that v-}- w E CN.
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The following should be noted : if Cl`' C Cz and a solution a~i satisfies any of the
properties described above on CZ , it satisfies the property on the class Ci as well. On
the class of control games, the additivity property is useless : all control games have a
winning grand coalition, hence the sum of two control games is not a control game.

Furthermore, a value which is additive on the class GN of all TU-games satisfies the
transfer property on GN and hence also on any subclass. To prove this, take v, w E GN.
Then, using additivity,

~(vVw)-1-z~i(vnw) - z,i(vVwfvnw)
- ~i(v ~- w)

- ~(v) f ~(w).

Finally, we note that the carrier property is equivalent to the efficiency and null player
properties together.

A widely studied solution concept is the Shapley value ~ of a TU-game v E GN,
defined by

~t(v) - ~ I INI~
s:.es

N `S~! ~S ` {i}~!
(v(S) - v(S ` {i}))

foralliEN.
It is well known that the Shapley value is efficient, anonymous, additive and satisfies

the null player property on GN and hence on any subclass of GN. The remark above
shows that it satisfies the transfer property on any class of TU-games.

The following theorem is analogous to Theorem II in Dubey (1975).

Theorem 9.1.1 The unique value on the class CGN of control games satisfying effi-
ciency, anonymity, the null player property and the transfer property is the Shapley
value.

Proof : It is clear that the Shapley value satisfies the four properties mentioned in the
theorem. Suppose a solution concept ~ satisfies these four properties as well. We prove
~ coincides with the Shapley value ~.

First, Dubey (1975) proved that the Shapley value is the unique value on the class
of monotonic simple games satisfying anonymity and the carrier and transfer properties.
The carrier property is equivalent to efficiency and the null player property combined,
hence ~ coincides with the Shapley value on this class.

In order to extend this result to the class of all control games, we introduce the Dirac
games bs defined by

ós(7,) 1 if T- S,
- 0 ifT~S,

for all S C N. For S C N, let the control games bs be defined by ó's - bs - }- bN. Note
that (us - ês) V bs - us and (us - bs) ~ bs - 6N - uN for all S C N. Using the transfer
property and the fact that us - ós is a control game we obtain

~G(uN) } ~(us) - ~G(us - bs) f ~G(bs).
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Hence ~(ss) - ~(uN) } ~(us) - ~(us - bs)

(-') ~(uN) -~ ~(uS) - ~(~S - bS)
(z) ~(bs),

where (1) follows from the monotonicity of uN, us, us - bs and coincidence of ~c~i and ~

on the class of monotonic simple games, and (2) because the Shapley value ~ satisfies

the transfer property.

Note that any arbitrary control game v can be written

v- V ~T.
TEw(v)

We prove ~(v) -~(v) for all v E CGN by induction on ~W(v)~ :

~ if ~W(v)~ - 1, then v - uN which is monotonic, hence ~(v) -~(v).

~ if ~W(v)~ - 2, then v- bT for some T C N, hence ~(v) -~(v).

~ Choose k 1 2 and suppóse ~(v) coincides with ~(v) on all games v E CGN with

~W(v)~ G k. Take a game v with ~W(v)~ - k~ 1, and choose a T E W(v) `{N}.

Then 71 - (21 - bT) V bT, (21 - bT) n b'~. - 7d]`r and W(v - bT) - W(v) `{T}, SO

~W(v - bT)~ - k. Hence by the transfer property and the induction hypothesis

4'lv) - ~(v - bT) ~ ~(óT) - w(~N)

- ~(v - bT) i- (G(óT) - ~G(uN)

- ~(v).

This proves the uniqueness of a solution satisfying the four properties on CGN.

Along the same lines one can prove

Theorem 9.1.2 The unique value on the class SGN of simple games satisfying efficiency,

anonymity, the null player property and the transfer property is the Shapley value.

In order to characterize the Shapley value on the class of all TU-games, we first need

some lemmata. The zero game in GN is denoted by 0.

Lemma 9.1.3 Let ~ be a solution on GN satisfying the transfer property, with ~(0) - 0.

Then for all games v E GN,
~(v) - ~ ~(v(S)bs). (9.1.1)

SC N

Proof : We prove in three steps that equation ( 9.1.1) holds.

1. For the class of all non-negative games v the proof is by induction on

k(v) :- ~{S C N ~ v(S) ) 0}~.

(A game v is non-negative if v(S) ? 0 for all S C N.)
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~ If k(v) - 0 then v- 0 and so ~(v) - 0 -~scN ~(v(S)ós).

~ Take k) 0 and suppose equation ( 9.1.1) holds for all non-negative games v
with k(v) G k. For a non-negative game v with k(v) - k, choose a coalition
T C N such that v(T) ~ 0. Then k(v - v(T)ST) - k- 1, (v - v(T)óT) V
(v(T)ST) - v and (v - v(T)óT) n (v(T)óT) - 0, hence using the induction
hypothesis and the transfer property, we obtain

Y'(v) - Y'(21 - v(T)óT] }~G~v(T)aT] -~G~(v - v(T)aT) n v(T)aT]
- ~ ~~(v - v(T )óT)(S) ós] ~ ~~v(T )óT] - ~G(~)

SCN

- ~ ~(v(S)ós) f ~G(v(T )óT)
SE 21`' `{T }

- ~ ~(v(S)ós).
SCN

2. For non-positive games one proves analogously (interchanging the operations n
and V) that equation (9.1.1) holds.

3. For an arbitrary game v, split the game into its non-negative part v V 0 and its
non-positive part v n 0. The transfer property and parts 1 and 2 imply

~(v) - ~(v) } ~(~)
-~t~i(v V 0) ~ z,i(v n 0)

- ~ ~~G((v v 0)(S)ós) } ~G((v n 0)(S)ós)]
SCN

- ~ ~(v(S)ós).
SCN

Hence equation (9.1.1) holds for all TU-games. ~

Remark. The converse is also true : If a solution concept ~i on the class GN of TU-games
satisfies equation (9.1.1) for all games v E G`v then ~ satisfies the transfer property and
~(0) - 0.

While lemma 9.1.3 shows that a solution concept satisfying the transfer property is
determined by its values on multiples of Dirac games, the next lemma shows it is also
determined by its values on multiples of unanimity games.

Lemma 9.1.4 Let N be fixed. Suppose for each S E 2N `{~} and for each real number
a, a vector ~a,s E RN is given, satisfying ~o,s - 0 for all S E 2N `{m}. Then there
exists a unique solution concept on GN satisfying the transfer property, such that

~(aus) -~tr,s for all a E R, and all S E 2N `{~}. (9.I.2)
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Proof : First we prove unicity. Suppose there exists a solution zli satisfying equa-
tion (9.1.2) and the transfer property. Then ~(i(0) -~(OuN) -~io,N - 0. Hence
according to lemma 9.1.3, equation (9.1.1) holds, and applying it to the game aus, we
obtain

~~,,5 -~(aus) -~~(aóT) for all a E R, for all S E 2N ` {(~}. (9.1.3)
T:T~S

For each fixed a this finite system of linear equations (with variables ~jiá,s and ~(abs),
S E 2N `{0}) is easily inversed, yielding

~(abT) - L (-1)~S`T~ w~,S
S:S~T

for all a E R and all T E 2N `{Ql}. (9.1.4)

Hence by equation (9.1.1),

Y'(v) - ~ L (-1)~S`T~ 7~7v~T~ S

TCN S:SJT
for all TU-games v, (9.1.5)

which implies z,i is unique.
This construction of ~ proves existence as well : given the numbers ~ia,s for all a E R

and S E 2N `{(~}, construct a solution ~ first on Dirac games, using equation (9.1.4)
and then on all TU-games using equation (9.1.1). This solution ~ will then satisfy
equation (9.1.1), hence it satisfies the transfer axiom. It also satisfies equation (9.1.2),
so it is the solution concept asked for. O

Using this lemma, we now prove

Theorem 9.1.5 The Shapley value is the unique value on the class GN of TU-games
satisfying efficiency, anonymity, the null player property and the transfer property.

Proof : We already noted that the 5hapley value satisfies the four properties. To prove
uniqueness, let ~ be a value that satisfies the four properties mentioned. Consider a
game of the form aus. By the null player property, ~; (aus) - 0 if i is not a member of
S, and by anonymity, all players in S obtain the same payoff. Hence,

-{ 0 ifi~S
~'(aus) y if i E S

for some real number a. Efficiency then yields ~5~~ - aus(N) - a and x- anS~.
Hence a~i is determined on multiples of unanimity games, ~i(Ous) - 0 for all non-empty
coalitions S, and lemma 9.1.4 implies uniqueness. 0

Another solution concept is the Banzhaf value ~(cf. Banzhaf (1965), Owen (1975a)),
defined on GN by

~:(v) - ~ [v(S) - v(S ` {i})1
S:;ES
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for all i E N. It is easily seen that the Banzhaf value satisfies anonymity, additivity and

the null player property. Being additive, it satisfies the transfer property as well. Note
that it does not satisfy efiiciency. Define ~(v) :- ~;EN r~;(v). Now the characterization
by Dubey and Shapley (1979) of the Banzhaf value on the class of monotonic simple

games can be extended to characterizations on the class of all simple games and the
class of all TU-games. Along similar lines as theorems 9.1.1, 9.1.2 and 9.1.5 one can
show

Theorem 9.1.6

1. The Banzhaf value is the uníque value z(i on the class CGN of control games satis-

fying anonymity, the null player property and the transfer property such that

~ ~ji;(v) - ~(v) for all v. (9.1.6)
~EN

2. The Banzhaf value is the unique value zli on the class SGN of simple games satisfy-
ing anonymity, the null player property, the transfer property and equation (9.1.6).

3. The Banzhaf value is the unique value ~ji on the class GN of TU-games satisfying

anonymity, the null player property, the transfer property and equation (9.1.6).

Other authors have tried to remove the additivity axiom from the axiomatic charac-

terization of the Shapley value; a well-known work in this respect is Young ( 1985) on

monotonic solutions of cooperative games. The precise relation between his notion of
strong monotonicity and Dubeys transfer axiom is a possible object of further study.

A different view of power indices is taken in Quint (1993), where powerlessness is

measured instead of power. Quint axiomatically characterizes his measures on the class

of monotonic simple games, and perhaps this can be generalized to the class of all TU-
games.



Chapter 10

Veto-rich TU-games

The aim of this chapter, which is based on Arin and Feltkamp (1994), is the study of
veto-rich TU-games. A TU-game (N, v) is a veto-rich game if it has at least one veto

player. Recall a veto playerl is a player i such that i~ S implies v(S) - 0.

Clearly, a game (N, v) with veto player i has imputations if and only if v(N) 1 v({i}).

As in this chapter we are interested in the nucleolus, which is an imputation, wc will
assume all games have imputations.

The class VGN of veto-rich games with fixed player set N and a fixed veto player i
which have imputations is a convex cone in the class of all TU-games, that is, if v and w

are (veto-rich) games with veto player i, then so is av-~,Qw for all non-negative numbers

a and Q.
Subclasses of the class of veto-rich TU-games have been studied by different authors :

big boss games by Muto, Nakayama, Potters, and Tijs (1988) and clan games by Potters,
Poos, Tijs, and Muto (1989). In these papers several economic illustrations are presented.
One important difference between these classes and the class of veto-rich games is that

veto-rich games do not have to be monotonic, which permits to model more economic
situations.

Other economic illustrations of veto agents are the following. A market with in-
creasing returns to scale, where the agents are one monopolist and n- 1 consumers
has been studied by Sorenson, Tschirhart, and Whinston (1978). An information mar-
ket with one possessor of information and many demanders has been studied by Muto,
Potters, and Tijs (1989). A variant of this market, where demanders compete, which
destroys the monotonicity of the games of Muto, Potters, and Tijs (1989), is considered
in Arin (1992). Different types of auctions have been modeled as a veto-rich game, see

Schotter (1974) and Graham, Marshall, and Richard (1990). Also, production economies
with a landowner and landless peasants (cf. Shapley and Shubik (1967)) can be modeled

~ Note that we do not require a veto-rich game to be non-negative. However, the name `veto player'
seems to imply a veto player occupies a strong position, which is not true if some coalitions containing
the veto players have negative worth while all coalitions which do not contain all veto players have zero

worth.

137
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as games with a veto player. Chetty, Dasgupta, and Raghavan (1976) computed the
nucleolus of these games.

In the present paper we exploit the special properties of veto-rich games to compute
the nucleolus, introduced by Schmeidler (1969) and the kernel, introduced by Davis
and Maschler (1965). The nucleolus was introduced as the unique imputation that
lexicographically minimizes the vector of non-increasingly ordered excesses over the set
of imputations. Peleg [see Kopelowitz (1967)] suggested a"translation" of the definition
of the nucleolus into a sequence of linear programs. Theoretically, this sequence could
have length 2~, but usually, it terminates long before that. Kohlberg (1972) developed
another method to locate the nucleolus. His approach involves a single, but extremely
large linear program (O(n) variables and 2n! constraints for a n-person game). Moreover,
the coefficients appearing in the constraints have a very wide range, causing serious
numerical difl~iculties even for four players. In Owen's (1974) improved version one has
to solve a single linear program with O(2n) variables and 4n constraints. Maschler,
Peleg, and Shapley (1979) gave a constructive definition of the nucleolus, in which the
set of imputations under consideration is iteratively reduced until only one imputation
remains. This approach leads to O(4n) linear programs, each with O(n) variables and
O(2n) constraints including only coefficients of -1,0 or 1. Sankaran (1991) proposed a
similar procedure, with only O(2n) iterations. These formulations are numerically more
stable than the approach of Kohlberg and Owen, but the number of linear programs is
enormous.

On special classes of games, it may be possible to take advantage of the specific
structure of the games to compute the nucleolus using a more efficient algorithm. For
example, Solymosi and Raghavan (1994) propose an algorithm for computing the nucle-
olus of assignment games. In these games, there are two types of players. If there are m
players of the first type, n players of the second type, and m - min{m, n}, then Solymosi
and Raghavan's algorithm computes the nucleolus in at most m(m ~- 3)~2 steps, each
requiring at most O(m.n) elementary operations. They apply graph-related techniques
instead of linear programming.

Granot and Huberman (1984) proved that for minimum cost spanning tree games
the size of the linear programs in the algorithm of Maschler, Peleg, and Shapley can
be reduced : the coalitions whose complement is not connected in the tree constructed
for the grand coalition are not relevant for the computation of the nucleolus. Moreover
they provide a geometric characterization of the nucleolus, which they exploit to give a
sequence of vectors that converges to the nucleolus.

Granot, Maschler, Owen, and Zhu (1994) study the kernel and nucleolus of standard
tree games. These games are convex, so the kernel and nucleolus coincide. They give an
algorithm that gives the nucleolus in n steps in a standard tree game with n players.

Rosenmuller and Sudh5lter (1994) compute the nucleolus of homogeneous games with
steps.

Huberman (1980) proved that the nucleolus of an arbitrary game only depends on
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so-called essential coalitions if the core is non-empty. In minimum cost spanning tree
games, these are exactly the coalitions that are used by Granot and Huberman. Derks

and Kuipers (1992) use this to find an O(ncz) algorithm for computing the nucleolus of

a game with a particular connectedness property that has a non-empty core. Here, c
is the number of connected coalitions. A veto-rich game can be viewed as having 2n-'
connected coalitions, so their algorithm is O(n4"-') on the class of veto-rich games.

An extensive overview of the research on the nucleolus is given in Maschler (1992).
Recently, Potters, Reijnierse, and Ansing (1994) presented a a`prolonged' simplex

algorithm to compute the nucleolus, that is very fast. For a five person example of

Sankaran (1991), it uses only 11 pivot operations, about 2100 elementary steps, and 0.07

seconds CPU time on a SPARC~SUN~10~41 station.

This chapter is organized as follows : we introduce the nucleolus and the kernel of
a TU-game in section 10.1. Section 10.2 contains the proof that the kernel of a veto-

rich game only contains the nucleolus. In section 10.3 we use this result to present an

algorithm that computes the nucleolus of an n-player veto-rich game in at most rz stages,
each stage requiring taking the minimum of not more than 2n-1 real numbers obtained

by n additions, 2 subtractions and one division. In each stage at least one coordinate of
the nucleolus is computed. Section 10.4 concludes with a short study of other solution
concepts on veto-rich games : we show that for arbitrary veto-rich games the nucleolus

is not a population monotonic allocation scheme in the sense of Sprumont (1990), nor

do the Shapley value, r-value or nucleolus coincide. As shown in Potters, Muto, and
Tijs (1990), the bargaining set and the core of a veto-rich game coincide if the core is
non-empty.

10.1 Basic definitions

Let (N, v) be a TU-game. For an imputation x E I(N, v), define the excess of a coalition
S C N at x as E(S, x) - v(S) - x(S) and let B(x) be the vector of all excesses at x

arranged in non-increasing order of magnitude. The lexicographic order ~~ between two

vectors ~ and y is defined by ~ ~L y if there exists an index k such that x~ - y~ for all
I C k and ~k G yk, and the weak lexicographic order -~L by x~L y if x ~~ y or x- y.

Schmeidler (1969) introduced the nucleolus of a TU-game as the unique imputation
that lexicographically minimizes the vector of non-increasingly ordered excesses over the
set of imputations I(N, v). In formula :

{v(N, v)} -{~ E r(N, v) I e(~) ~~ e(y) for all y E r(N, v)}.

It is well known that the nucleolus v(N,v) lies in the core of the game (N,v), provided
that this core is nonempty.

For two players i, j of a TU-game (N, v) and an allocation x, define the complaint of
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i against j at allocation x by

s;~(x)-max{E(S,x)~iES~j}.

It is the maximal excess of a coalition that contains i but not j. The idea captured
by the kernel is that if at an imputation x, the complaint of a player against any other
player is less than the complaint of this other player against the first player, then the
first player should get less. Oí course, the players cannot get less than their individual
worths if x is an imputation, so the kernel is defined as

IC(N,v) -{x E I(N,v) ~ tli, j E N: s;~(x) 1 s~;(x) or x; - v({i})}.

The kernel of a game (N, v) always contains the nucleolus v(N, v).
We denote the complement N`S of a coalition S by S`.

10.2 The kernel

In .this section, we concentrate on the kernel of a veto-rich game and prove it consists
of only one imputation, which then has to be the nucleolus. The proof is based on the
crucial fact that if i is a veto player and j another player in a veto-rich game (N, v),
then E(S,x) --~kESxk C-xj - E({J},x) for all imputations x and all coalitions S
containing player j but not the veto player i. Hence s~;(x) --xJ.

Lemma 10.2.1 Let x lie in the kernel of the veto-rich game (N, v). Then

x; - v({i}) 1 x~

for any veto player i and any player j.

Proof : Suppose an inputation x satisfies x;-v({i}) G x~. Then s;~(x) ~ v({i})-x; 7
-x~ - s~;(x) and x~ 1 x; - v({i}) ~ 0, because x is an imputation. So x does not lie in
the kernel. O

Recall a game ( N, v) is essential if v(N) ~ ~;EN v({í}). Note that in an essential
veto-rich game, any veto player i is allocated strictly more than his individual worth
v({i}) in a kernel element x. This is easily seen : by lemma 10.2.1, x; - v({i}) is larger
than or equal to x~ for any other player j and if i gets a payoff of v({i}), then all other
players get 0. But then v(N) - x(N) - v({i}) -~~EN v({ j}), so the game is inessential.
Hence, it holds that s;~(x) ~ s~;(x) for all other players j.

Second, if v({i}) 1 0 in a veto-rich game ( N,v) with veto player i, then this veto
player gets strictly more than any other player in a kernel element.

Third, if there are two or more veto players, their payoffs are equal in a kernel element.
Obviously, in this case, the individual worths of the veto players are zero. It can also
happen that though there is only one veto player, there is another player who gets the
same payoff as the veto player, as is shown by the following example :
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Example 10.2.2 Let N-{0,1,2}, let 0 be a veto player, and let v({0}) - 0,
v({0,1}) - 1- v({0,2}), v(N) - 3. Then the unique kernel element is the equal
split ( 1,1,1).

The next lemma determines the unique kernel payoff of a certain kind of players.

Lemma 10.2.3 If x lies in the kernel of the veto-rich game (N, v) and v(S) ~ v(N) for
a coalition S containing a veto player i, then E(S, x) ) 0 and x; - 0 for all players j in
the complement of S.

Proof : Let j lie in the complement of S. Because S contains a veto player i,

s;;(x) ~ E(S, x) - v(S) - x(S) ~ v(N) - x(S). (10.2.1)

Because xk 1 v({k}) - 0 for k~ i, it follows that v(N) - x(S) ~ v(N) - x(N) - 0.
Combining this with equation 10.2.1, we obtain -

s;;(x) ) 0 ~ -x; - s;;(x). (10.2.2)

If x lies in the kernel, either inequality 10.2.2 is an equality, or x; - v({j}) - 0. But if
inequality 10.2.2 is an equality, then x; - 0 as well. O

Lemma 10.2.4 If x lies in the kernel of the veto-rich game ( N, v) with veto player i,
and v(S) G v(N) for a coalition S containing veto player i, then E(S, x) G 0.

Proof : Suppose that E(S,x) ~ 0. For any j E N`S, coalition S can be used by the
veto player to complain against j. Now s;;(x) --x; G 0, so either x; - v({j}) - 0,
or 0 1 s;;(x) ) s;;(x) ) 0, in which case s;;(x) - 0. But then x; - 0 as well.
So all players outside S are allocated 0. Then the excess of S equals v(S) - x(S) -
v(S) - v(N) -~ x(N `S) - v(S) - v(N) G 0. This is a contradiction. ~

The next corollary asserts that in an essential veto-rich game with veto player i the
players other than veto player i whose payoffs were not determined in lemma 10.2.3 get
positive payoffs in any kernel element.

Corollary 10.2.5 If x lies in the kernel of the game ( N, v) with veto player i, and if for
another player j, there is no coalition S C N`{ j} with i E S and v(S) 1 v(N), then
x; 1 0. -

Proof : By lemma 10.2.1, if x; - v({i}) for a kernel element x, then the game has to be
inessential, so v({i}) - v(N), contradicting the hypothesis. Hence, x; 1 v({i}), which
implies s;;(x) ) s;;(x) --x;. Now s;;(x) - E(S,x) for some coalition S containing
player i but not player j. By assumption, v(S) G v(N), so by lemma 10.2.4, the excess
of S is strictly negative and hence x; 1 0. O

The importance of this result lies in the fact that for a player j that has a positive
payoff in a kernel element, the complaint of j against a veto player i has to equal the
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complaint of i against j. So the inequalities in the definition of the kernel can be replaced
by equalities, which makes the process of determining the kernel easier.

Before we give the main theorem of this section, we compute the kernel of a veto-rich
game that arises from an auction with an auctioneer who sells an indivisible object in
an auction with many bidders.

Example 10.2.6 Let N-{0, ..., n} and let the auctioneer (player 0) valuate the object
at ao - 0, while this value is a~ 1 0 to the other players j E N. The worth v(S) of a
coalition S is zero if this coalition does not contain the auctioneer, and v(S) - max{a~ ~
j E S} otherwise.

Let a player with the highest valuation be called h and let a player with the highest
remaining valuation after h has been eliminated be called s. Suppose ah ~ a, ) 0 and
ah ~ 0. Now v({O,h}) - v(N), so lemma 10.2.3 implies that a kernel element x has to
satisfy x~ - 0 if j~{0, h}. If a, - ah, then also xh - 0, and the seller gets all, i.e.
xo - ah. On the other hand, if a, G ah, then there is no coalition S not containing
player h with v(S) 1 v(N), so by corollary 10.2.5, xh 1 0. R.emembering the remark
after the corollary, we obtain -xh - sho(x) - soh(x). Any coalition S containing the
auctioneer but not player h has excess E(S, x) - v(S) - xo, which is highest if player s
is an element of S. Hence soh(x) - E({0, s}, x) - a, - xo, which implies

xh - x0 - aa.

Together with efl'iciency (xo ~- xh - v(N) - ah), this implies xo -(ah -~ a,)~2 and
xh - (ah - a,),2.

So according to the kernel, the object is sold to the bidder with highest valuation and
the price is the average of the highest and second highest valuation.

In the example, the kernel is a singleton. That this is not a coincidence is shown in
the following theorem.

Theorem 10.2.7 The kernel of a veto-rich game consists of a unique element.

Proof : Let x be a kernel element of the veto-rich game (N, v) with veto player i.
By lemma 10.2.3, we know that x~ - 0 for players j other than veto player i such that
there exists a coalition S C N`{j} with i E S and v(S) ~ v(N). Denote the set of
players whose payoffs are determined in this way by Do. -

Suppose that there are still players other than veto player i whose payoffs have not
yet been determined (if not, go to the last paragraph of this proof). Then from the
remark after corollary 10.2.5, we know s;~(x) - s~;(x) --x~ for all players j~ i whose
payoffs are not yet determined. We now iteratively, in at most ~N~ stages, determine
more and more coordinates of x, until all coordinates are determined. As x was chosen
arbitrarily in the kernel, this proves that the kernel contains only one element, x.

Consider a stage t 1 1. Let the set Dt-1 consist of the players whose payoffs have
been uniquely determined before stage t. If there are still players other than the veto
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player i whose payoffs remain to be determined, consider the set of coalitions admissible

at stage t

A~ -{S c N ~ i E S and there exists a player j E DL-1 `S} (10.2.3)

and the subset of coalitions with maximal excess

,M: :- argmax{E(S,x) ~ S is admissible at stage t} ( 10.2.4)

and the coalition
sc -n{s ~ SE Mt}.

Furthermore, denote pt :- -E(S, x) for an S E.Mc.
By construction, for a player j E Di-1, there exists no coalition containing player i

but not player j with excess higher than -pt. Furthermore, if j E DL-1 ` St, there exists

a coalition S E Nlt not containing player j. Hence, E(S,x) - s;~(x) --pi. Vice versa,

for a coalition S E ~1~tc, there exists a player in S` that has not yet been allocated, and
for any such player j, there exists no coalition containing player i but not player j, with

excess higher than E(S, x), so s;;(x) - E(S, x). Hence by using the coalitions S E.Mc,
we can exactly determine the complaints of player i against the players j E Di-1 `St.

Now take S E .Me. Then - x~ - s~;(x) - s;~(x) - E(S, x) --pt for any j E Di-1 `S.
So all players outside Sc whose payoffs were not yet determined have the same payoff pc.

We still have to prove that this payoff pc is independent of the allocation x. Now for
S E .Mt,

-pa - E(S, x)

- v(S) - x(S)

- v(S) - v(N) f x(N `S)

- v(S) - v(N) ~ x(Dc-1 `S) 4- x(Dé-i `S)

- v(S) - v(N) f x(Dc-i `S) ~ ~Di-i `S~ ' Pe,

where - follows because all players in Dí-1 `S are allocated pt. Hence,

v(N) - v(S) - x(Dc-, `S) -
Pc - ID~-I `SI } 1 - 4c(S) (10.2.5)

for all S E Mc, where qt(T) is defined by

v(N) - v(T) - x(Dt-, `T)
9e(T) --

~Di-i `T~ -~ 1
(10.2.6)

for all T E,A:. We will prove that pc - min{qt(T) ~ T E Ae}, which is independent
of the choice of kernel element x, because x; was uniquely determined by the previous
stages for i E Dt-1 and the set ,At is likewise determined by Dt-1.
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For j E Df-1 it holds that -.r~ - s~;(x) - s;~(a) G-pt by definition of pt. Hence,
~~ ) pt for all j E D2-1. So for T admissible -

-pt ) E(T ~)

- v(T) - x(T)
- v(T) - v(N) f x(Dt-1 `T) f x(D~ ,`T)
~ v(T) - v(N) f x(Dt-1 `T) -~ pt~Di-i `T ~,

which implies that pi G qt(T) and hence that pt - min{qi(T) ~ T E,At}.
Note that for S E .Mt it holds that pt - -E(S, ~) ) p~-1i because if S is admissible

at stage t then S was admissible at stage t- 1 but did not have maximal excess.
When the payoffs of all players other than veto player i have been uniquely determined

efficiency implies x; - v(N) -~(N ` {i}), so the payoff of player i is then also uniquely
determined. p

Corollary 10.2.8 Let (N,v) be a veto-rich game. Then 1C(N,v) -{v(N,v)}.

Proof : The nucleolus lies in the kernel, which consists of a unique element. 0

It has to be noted that although we have singled out a veto player in the proof of
theorem 10.2.7, the kernel is independent of which veto player has been singled out.

10.3 The nucleolus

The proof of theorern 10.2.7 gives insight in the structure of the kernel~nucleolus, and
suggests an algorithm to compute the nucleolus of a veto-rich game with a veto player i.

The idea is as follows : begin by assigning zero to those players j such that there is
a coalition S containing i but not j, that satisfies v(S) ~ v(N). Call the set of these
players Ao.

Then iteratively, at each step t, look for the coalitions S containing i, that still have
players in their complement whose payoffs have not yet been assigned. Among these
admissible coalitions, select those coalitions that minimize the amount

v(N) - v(S) - x(Ae-1 `S)

~Aé-i~ ~ 1

The idea is that for any such minimizing coalition S, the amount v(N)-v(S)-x(At-I `S)
remains to be divided, and dividing it equally between the not yet allocated players
outside S and the coalition S itself, will equate the complaints of the veto player i against
the players outside S that have just been allocated and the complaints of those players
against player i. Let At equal the set of players whose payoffs have been determined in
step t or earlier.
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When all other players have been assigned payoffs in this way, the veto player i obtains
the rest. We now give a more formal description.

Algorithm 10.3.1 (Nucleolus for veto-rich games)
inpvt : a veto-rich game (N, v) with a veto player i
output : an allocation x(the nucleolus of the game)

0. Start with the stage t- 0. Define the set of people whose payoff is allocated in
stage 0 :

Ao:-{jEN`{i}~~SCN`{j}:iESandv(S)~v(N)}.

Put qo - 0 and allocate x~ - qo - 0 for all j E Ao.

1. While there is a player that is not the veto player i and whose payoff has not been
allocated, do steps la to ld

(a) Put t:- t f 1.

(b) Given the set .9t-1 of players whose payoffs have been allocated before stage t,
call a coalition S admissible at stage t if S contains the veto player i and there
remain players in N`S to be allocated. For all admissible coalitions S, recall

v(N) - v(S) - x(At-, `S)

qt(S) - ~Ai-i `S~ -1- 1

(c) Define the payoff obtained by players whose payoff is allocated at stage t

qi :- min{qt(S) ~ S admissible at stage t},

the set of players who are not going to be allocated during this stage

Si :- nargmin{qi(S) ~ S admissible at stage t}

and the set of players allocated at or before stage t

At :- At-1 U Sé - Ac-1 U(Ai-i `St).

(d) Allocate x~ - qt for all j E A~ `A~-1 - Ai-1 `Ss.

2. Allocate x; - v(N) - x(N ` {i}) to veto player i.

3. Define x - x(N,v) as the vector with coordinates (x~)jEN.

In each stage (except maybe in stage 0), at least one player is allocated, so at the
latest after stage ~N~, each player has been allocated a payoff. Before we prove that the
algorithm yields the nucleolus, we need a lemma.
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Lemma 10.3.2 If the algorithm allocated a payoff to player k before player j, then
~k C x„ unless2 j- i and v({i}) G 0.

Proof : Let (N, v) be a veto-rich game with veto player i. If j (and hence k) do not
coincide with player i, then it is sufficient to prove q~ ) q~-1 for all stages t~ 0. Let
t- 1 and let S be a coalition. If v(S) ~ v(N), then all players outside S were allocated
0 in stage 0, so coalition S is not admissible at stage 1. So any coalition S admissible at
stage 1 satisfies v(S) G v(N), which implies

v(N) - v(S)
4i(S) - IAó `SI } 1 ~ 0.

Hence

41 - min ql(S) ~ min ql(S) ) 0- 40.SEAi - S:v(S)-v(N)GO

Let t) 1 and suppose there remain players to be allocated at stage t. Let S be an
admissible coalition. Then at stage t- 1, coalítion S was admissible too, but was not
used to determine qt-1, so

v(N) - v(S) - a(At-2 `S)
9t-i C 4t-i(S) -

~Ai-s `S~ } I ~
hence

v(N) - v(S) - x(At-2 `S) ~ (~At-~ `S~ f I) ' 9t-~

- (IA~-~ `sl } I(At-1 `At-2) `SI -~ 1) ' qt-1.
Now xk - qe-I for k E (At-1 ` At-2) `S, so transferring (~(At-i `At-z) `S~) ' 9t-i -
x((At-, `At-2) `S) to the left-hand side, we obtain

v(N) - v(S) - x(At-, `S) - v(N) - v(S) - x(At-z `s) - y((At-i `At-2) `S)

~ (~Ai-i `S~ f I)qt-~,

which implies that

qt(S) - v(N) - v(S) - s(At-1 `S)
~~At-i `S~ f 1 ~ 4t-i-

Hence also qi ~ qt-1i as q~ is the minimum of qt(S) over all admissible coalitions S.
Finally, we prove that veto player i has a payoff larger than or equal to that of the

other players if v({i}) ) 0. If all other players are allocated payoffs at stage 0, then they
all get the same payoff zero. Hence, x; - v(N), which because we assumed that there
are imputations, has to be at least equal to v({i}), which is assumed to be non-negative.
Hence i's payoff is larger than or equal to that of the other players. If not all other

ZThis lemma will only be needed for j~ i.
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players are allocated zero, then in the stage t where the payoff oí the last player j othcr

than i is allocated, coalition {i} is admissible. Then

~~ - 4~ G 4~({i}) - v(N) -cv({i}) - x(A~-,) ~ v(N) -cx(A,-t).
(10.3.1)

- - ~A~-i `{i}~ f 1 - ~Ar-i~

The last fraction is what the not yet allocated players (including veto player i) would

get if v(N) - x(At-,) were divided equally. The not yet allocated players other than i

get at most this amount from the algorithm, so player i must get at least this amount

from the algorithm, hence x; ? x~. By the first part of this proof, j gets as least as much

as the other players (except i), so i gets more than any other player. Together with the

first part of the proof, this proves the lemma. ~

Note that if there are two or more veto players in a game, the veto players that are

not singled out by the algorithm get the same payoff as the veto player i that is singled

out, so their payoff is allocated in the last iteration of step 1: any players allocated at

a later iteration would have to get strictly more by the proof of lemma 10.3.2, which is

impossible by lemma 10.2.1.

Theorem 10.3.3 The allocation x defined in the algorithm is the nucleolus.

Proof : This theorem can be proved directly using Kohlberg's (1971) characterization

of the nucleolus, but we prove the theorem by proving that the allocation is the unique

kernel element. Let i be a veto player of the game (N, v) and apply the algorithm to

(N, v), with i as the special veto player.

First, the algorithm allocates a zero payoff to any player j~ i such that there exists

a coalition S which contains i but not j and that satisfies v(S) ? v(N). So the set of

players Ao that are allocated a payoff of zero in the first stage of the algorithm, coincides

with the set of people Do whose payoffis determined to be zero in the first step of

theorem 10.2.7.
Suppose that up to stage t-1, exactly those players have been allocated whose payoffs

are determined in theorem 10.2.7 and that these players have exactly been allocated their

kernel payoffs. Then a coalition is admissible in stage t of the algorithm if and only if it

is admissible in the same stage of theorem 10.2.7.
Because At-1 - D~-1i equation 10.2.5 implies that p~ - qi(S) - qe for all coalitions

S E~ti. It remains to be proved that if T is admissible at stage t and E(T, v) C-pt -

max{E(U,v) ~ U admissible at stage t}, then qt(T) 1 pt. For this, take a coalition T

admissible at stage t such that E(T, v) C-pt. Rewriting the excess of T, we obtain

-pt 1 v(T) - v(N) ~- x(A,-, `T) f x(Af-~ `T). By lemma 10.3.2, we know that all

players j~ i who have not yet been allocated will be allocated payoffs that are larger

than or equal to qi - p, by the algorithm. Hence because i E T, -pt ~ v(T) - v(N) ~

x(At-1 `T) f Pt ' IAi-i `T ~, which implies

Pa G
v(T) - v(N) f x(At-i `T) - 9c(T)-

~Ai-i `T~ ~ 1 -
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So qt(T) attains its minimum qt - p~ only at those admissible coalitions that have
maximal excess amongst the admissible coalitions. F3ut then exactly those players whose
payoffs were determined in this stage in theorem 10.2.7 will be allocated in this stage
of the algorithm and furthermore, they are allocated their kernel payoff pt, which is
positive.

So the players other than the veto player i are allocated their kernel payoffs. And in
step 2, player i is allocated the remainder, which is exactly player i's kernel payoff. ~

Example 10.3.4 Consider the five person game shown in the first two rows of table 10.1,
in which player 0 is a veto player. We compute its nucleolus in the three last rows. The

S 0 0,1 0,2 0,3 0,4 0,1,2 0,1,3 0,1,4 0,2,3
v(S) 0 3 2 1 1 5 5 4 4
ql(S) 2 7~4 2 9~4 9~4 5~3 5~3 2 2
q2(S) 9~4 2 7~3 8~3 9~4 2 2 2 5~2
43(S) 5~2 - 5~2 3 5~2 - - - 5~2

S 0,2,4 0,3,4 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 N
v(S) 3 2 8 0 0 0 10
ql(S) 7~3 8~3 1 5 5 5 -
q2(S) 7~3 8~3 - 5 5 5 -
93(S) 5~2 3 - - - 5 -

Table 10.1: The algorithm applied to a five person game.

minimum in each row is printed in boldface. In the first stage, the minimum ql - 1 is
attained at coalition {0,1,2,3}, hence player 4(the unique player in the complement)
is assigned x4 - 1. At stage 2, only coalitions which do not contain { 1, 2, 3} are taken
into consideration. The minimum q2 - 2 is attained at coalitions {0,1}, {0,1,2}, and
{0,1,3}, so all players outside the intersection of these coalitions, i.e. players 2 and 3,
are assigned x2 -~3 - 2. In stage 3 only the coalitions which do not contain player 1 are
taken into account to compute xl - Q3 - 2.5. Finally, the veto player 0 gets the rest, so
ao - 10 -1 - 2- 2- 2.5 - 2.5. Hence, the nucleolus of this game equals (2.5, 2.5, 2, 2, 1).

10.4 Other solution concepts

We now turn our attention to other solution concepts.

Proposition 10.4.1 For a veto-rich game (N, v) with veto player i, the following are
equivalent :

1. Core(v) ~ 0.
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2. v satisfies v(S) C v(N) for all S C N with i E S.

Proof : As v({j}) - 0 for all players j E N`{i}, it is clear that `v(S) C v(N) for all
coalitions S containing the veto player' is a necessary condition for the game to have a
non-empty core. That it is also sufficient is shown by the next allocation x: let x~ - 0
for j~ i and let x; - v(N). Then x(S) - v(N) ) v(S) if i E S and x(S) - 0- v(S) if
i~ S. Hence x E Core(v). ~

Furthermore, if the core of a veto-rich game is not empty, it coincides with the bargaining
set Mi({N}), as defined in Aumann and Maschler (1964). Maschler's proof of coinci-
dence of core and bargaining set for non-negative veto-rich games (see Potters, Muto,
and Tijs (1990)) can easily be extended to the class of all veto-rich games.

Note that our algorithm computes the nucleolus of a veto-rich game even if the core
of the game is empty. When the core of a game is non-empty, it is known that the
nucleolus coincides with the prenucleolus. It would seem that a slight modification
of our algorithm could yield the prekernel and prenucleolus of a non-balanced game,
but the obvious modification of eliminating step 0 of the algorithm does not yield tlie
prenucleolus. The problem is that if the core is empty, some players get a negative
payoff in the prekernel. Hence, non-veto players will use all players (not equal to i) with

negative payoff to complain against a veto player i. This implies that the prekernel is

not determinated by the complaints between a veto player and a non-veto player alone,
one will also have to know complaints between the players who get negative payoffs. It
is not even clear that the set of players who get negative payoffs or even the total payoff

to this set is constant in the prekernel, which can contain other allocations than the
prenucleolus, as is shown by the next example.

Example 10.4.2 Let N- {0,1,2,3,4}, let 0 be the veto player, and define the char-
acteristic function v by v({0,1,2}) - v({0,2,3}) - v({0,3,4}) - v({0,4,1}) - 18 and
v(N) - 12. The core of this game3 is empty and its prekernel contains the set

{(16, -1 - a, -1 ~- a, -1 - a, -1 ~- a) ~ a E [-1,1]}.

Indeed, for any allocation x of this form

E({1,2,3,4},x) - 4 - E({0,1,2},x)
- E({0,2,3},x)
- E({0,3,4},x)
- E({0,4,1},x)

so s;~(x) - 4 for all players i and j. The prenucleolus equals (16, -1, -1, -1, -1).

3This game was suggested by Gooni Orshan.
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We conjecture that once the negative coordinates of the prenucleolus have been de-
termined, the other coordinates ca,n be determined by using algorithm 10.3.1 (leaving
out the first step).

For general veto-rich games, the nucleolus does not have to coincide with the r-value,
nor with the Shapley value. This can be seen in the following games.

Example 10.4.3 Let N-{0,1}, let v({0}) - 10, v({1}) - 0 and v({0, 1}) - 5. Here
v(N, v} -(5, 0), the Shapley value is ~(N, v) - (7.5, -2.5) and the r-value does not
even exist, because the game is not quasi-balanced.

Even if we restrict ourselves to convex veto-rich games the r-value, Shapley value and

nucleolus need not coincide.

Example 10.4.4 Let N-{0,1,2}, let v({0}) - 1, v({0,1}) - 2- v({0,2}),
v({0,1,2}) - 6 and let the values of the other coalitions equal zero. Then v(N,v) -
(8, 5, 5)~3, T(N, v) -(38, 20, 20)~13 and ~(N, v) -(3,1.5,1.5).

This in contrast with the result in Muto, Nakayama, Potters, and Tijs (1988) that on
the subclass of big boss games, the nucleolus coincides with the T-value and moreover
that if the game is a convex big boss game, then the Shapley value coincides with the
nucleolus as well.

Recall that a population monotonic allocation scheme of a game ( N, v) is a collection
~-{x~s ~ j E S C N} which satisfies the following two conditions.

~~s(S) :- ~~ES ~is - v(S) for all S C N.

~~~s C~~T if j E S C T.

Sprumont (1990) proves that a TU-game (N, v) that has a PMAS ~ is totally balanced.
Proposition 10.4.1 implies that for a game (N, v) with veto player i total balancedness
is equivalent to

v(T)Cv(S) if iETCS. (10.4.1)

Moreover, a game with veto player i satisfying the inequalities 10.4.1 has a PMA5 :
define x;s :- v(S) if S contains i and x~s :- 0 for all other players j and all coalitions S
containing j. Hence, we have the following theorem.

Theorem 10.4.5 The following are equivalent for a game (N, v) with veto player i:

~ (N, v) has a PMAS.

~ (N, v) is totally balanced.

~(N, v) satisfies the inequalities 10.4.1.
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The (extended) nucleolus of a game (N,v) is a PMAS if the set {ujs ~ j E S C N}
forms a PMAS, where v~s - v~(S, vs) is the coordinate of player j in the nucleolus of the
subgame (S, vs). The next example shows that there exist veto-rich games which have
a PMAS, in which the extended nucleolus is not a PMAS.

Example 10.4.6 Consider the game ({0,1,2},v), defined by v({0,1}) - v({0,2}) -
v(N) - 2, and v(S) - 0 for all other coalitions S. This game is monotonic, so it has
a PMAS, but the extended nucleolus is not a PMAS, because it violates the second
condition for a PMAS : v{o,i} -(1,1, -), v{o,z} -(1, -,1), while vN -(2, 0, 0).

Two solutions that are related to the nucleolus and the kernel are the per capita
nucleolus and the per capita kernel. They are based on the per capita excesses of coali-
tions instead of the usual excesses. The per capita excess of a coalition is defined as the
quotient of the excess of the coalition and the number of elements of the coalition. Up
to now, no algorithm generating the per capita nucleolus has been found.
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Samenvatting

Dit proefschrift, getiteld coàperatie in gecontroleerde netwerkstrukturen, bestudeert met

behulp van speltheoretische aanpak samenwerkingsvraagstukken in economische situaties

met een netwerkstruktuur, waarvan onderdelen worden gecontroleerd door economische

agenten. Het bestaat uit twee delen die onafhankelijk van elkaar gelezen kunnen worden.

Deel I behandelt situaties waarin een groep gebruikers van een voorziening op zo goed-

koop mogelijke wijze moet (wil) verbonden worden met de leverancier van die voorzie-

ning. Als de kosten van een netwerk dat iedere gebruiker met de leverancier verbindt

gedrager. moet worden door de gebruikers, is het logisch niet alleen het netwerkcon-

structieprobleem te beschouwen, maar ook het bijbehorende kostentoewijzingsprobleem.

In de literatuur worden de constructie van een netwerk met minimum kosten en het

kostentoewijzingsprobleem meestal apart behandeld, maar omdat het twee facetten van

één probleem zijn, beschouwen we ze tegelijkertijd. Het kostentoewijzingsprobleem wordt

met speltheoretische methoden behandeld, en we concentreren ons vooral op de core van

geassociëerde spelen.
Hoofdstuk 2 behandelt minimum kosten opspannende boomproblemen en Bird's

boomvektoren, die Bird in 1976 voorstelde als oplossing voor de corresponderende

kostentoewijzingsproblemen. Er worden twee nieuwe visies op Bird's boomvektoren

geintroduceerd : eerst worden deze boomvektoren axiomatisch gekarakteriseerd en ver-

volgens wordt er een niet-coàperatief spel gedefinieerd, waarvan de Nash evenwichten

corresponderen met de boomvektoren. Voorts worden de boomvektoren geïntegreerd in

het algoritme van Prim (1957) en Dijkstra (1959) dat een minimum kosten opspannende

boom construeert : zoàra een kant geconstrueerd wordt door het algoritme, worden ook

de kosten ervan toegewezen.
Deze aanpak suggereert een methode om toewijzingsregels te definiëren die correspon-

deren met andere algoritmen voor het construeren van minimum kosten opspannende

bomen, zoals de algoritmen van Kruskal (1956) en Boruvka (1926).

In hoofdstuk 3 bewijzen we dat de niet-reduceerbare core nauw verwant is met

Kruskal's algoritme. Het blijkt dat alle toewijzingsregels uit de hoofdstukken 2, 3 en 4

verfijningen zijn van deze niet-reduceerbare core. Onder andere introduceren we vanuit

Kruskal's algoritme de gelijke-verplichtingen regel. Zowel de niet-reduceerbare core als

de gelijke-verplichtingen regel worden axiomatisch gekarakteriseerd. Voor deze karak-

teriseringen is het handig niet slechts minimum kosten opspannende boomproblemen

163



164 Samenvatting

te behandelen, maar ook problemen waarin er al een partieel netwerk ligt, dat uitge-
breid moet worden tot een netwerk waarin alle gebruikers met de bron verbonden zijn.
Deze problemen noemen we minimum kosten opspannende uitbreidingsproblemen. Het
bestuderen van minimum kosten opspannende uitbreidingsproblemen staat toe de oploss-
ing van een probleem te vergelijken met de oplossing van het partiële probleem verkregen
door het algoritme halverwege af te breken.

Hoofdstuk 4 introduceert de proportionele toewijzingsregel, die met Kruskal's algo-
ritme samenhangt, en de gedecentraliseerde regel, die met Boruvka's algoritme samen-
hangt. Beide regels hebben gemeen dat ze bij iedere kant die geconstrueerd wordt bepalen
welke gebruikers verplichtingen hebben met betrekking tot de aanleg van deze kant en
dat de kosten van de kant proportioneel met deze verplichtingen verdeeld worden. De
proportionele regel wordt axiomatisch gekarakteriseerd.

Hoofdstuk 5 presenteert andere netwerkconstruktiemodellen met vooral suggesties
voor verder onderzoek. Het eerste model veronderstelt dat gebruikers niet noodzakelijk
met de bron verbonden hoeven te zijn, maar het wel willen als dat hun welzijn bevordert.
Het tweede model veronderstelt dat er meerdere (onbetrouwbare) bronnen zijn, en dat
een gebruiker met een aantal bronnen verbonden moet zijn. Het derde model veronder-
stelt dat de kosten van een verbinding afhankelijk zijn van het aantal mensen dat deze
verbinding gebruikt. De vierde paragraaf introduceert een alternatief niet-co5peratief
spel geassociëerd met netwerk constructie problemen.

Deel II bestudeert de invloed van controle uitgeoefend door spelers over economische
hulpbronnen op de verdeling van de opbrengst die door samenwerking en gebruik van
die hulpbronnen te bereiken is. De hulpbronnen kunnen verschillende vormen aannemen,
zoals delen van een netwerk, grondstoffen van een produktie-economie, stukken land, enz.

De vraag is hoe men de opbrengst moet verdelen als men niet alleen met de economi-
sche mogelijkheden maar ook met de controlestruktuur rekening wil houden. Net zoals
in deel I worden deze situaties geanalyseerd met behulp van codperatieve spelen.

In hoofdstuk 6 is de onderliggende economische situatie een lineaire produktie-
economie, met transport van grondstoffen, afgewerkte produkten en technologieën tussen
de verschillende produktieplaatsen. Hier zijn de gecontroleerde hulpbronnen de grond-
stoffen. Er wordt aangetoond dat de geassocieerde spelen gebalanceerd zijn, en dat op
een efficiënte wijze een core-element te berekenen is.

Hoofdstuk 7 behandelt een situatie waar delen van een netwerk opbrengst kunnen
genereren, en waar de knooppunten en verbindingen van het netwerk gecontroleerd wor-
den door de spelers. Drie verschillende toewijzingsregels van de opbrengst, verwant met
de Shapley-waarde, worden gedefinieerd en axiomatisch gekarakteriseerd.

Hoofdstuk 8 generaliseert de opzet van de twee voorgaande hoofdstukken, door
een abstracte situatie te beschouwen, waarin spelers controle uitoefenen op hulpbron-
nen, waarmee opbrengst gegenereerd kan worden. Eigenschappen van een geassociëerd
coëperatief spel worden geanalyseerd.

De controle in de hoofdstukken 6, 7, en 8 wordt uitgeoefend door middel van zo-
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genaamde simpele spelen. De studie naar de overerving van eigenschappen van de
economische situaties door de geassocieerde spelen leidde tot een studie van simpele

spelen. Uit die studie kwamen nieuwe axiomatische karakteriseringen van de Shapley

waarde en de Banzhaf waarde voort. Deze worden gepresenteerd in hoofdstuk 9.

Tenslotte presenteert hoofdstuk 10 een simpel maar efí'iciënt algoritme om de kernel

en nucleolus van spelen met vetospelers te berekenen. Een vetospeler van een spel is een

speler wiens afwezigheid uit een coalitie impliceert dat die coalitie opbrengst nul heeft.

Zulke spelers duiken op in vele economische situaties, bijvoorbeeld in een markt met een

monopolist.
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