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PREFACE AND SUMMARY

In decision theories the assumption is usually made that a
decision maker maximizes some quantitative goal function. Depending on
the context, such a function may be called a profit function, utility

function, representing function (this will be our term), etc., and is
usually assumed to possess certain desirable properties, such as con-

tinuity, concavity, etc.

The purpose of this monograph is to show a way to make the above-
mentioned assumption operational. To this end, choice behaviour of the

decision maker is taken as observable primitive. In Chapter I we shall
give the conditions under which choice behaviour can be represented by

a preference relation. This preference relation then will be taken as
primitive in the following chapters, in the formulation of the so-called
"representation theorems" given there.

After specification of the presupposed context, these represen-

tation theorems will show equivalence of (usually) two statements. The
first statement, numbered (i), says that a representing function, with
certain desirable properties, exists. The second statement, numbered
(ii), characterizes statement (i), i.e. gives the properties of the
preference relation, necessary and sufficient for the truth of (i).
Thus statement (ii) gives the criteria for verification/justification,
or falsification/criticism, of the assumption that the desired represen-

-          ting function  in (i) exists. At the end of the representation theorems

usually so-called "uniqueness results" are listed, i.e. results which

describe in how far a representing function in (i) is uniquely deter-
mined.

We have as much as possible formulated the representation theorems

in such a way that the reader can understand them without consulting
other parts of the text. The proofs of these representation theorems

not only show the existence of representing functions, but they also
indicate how to construct the (quantitative) representing functions
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from the (qualitative) information that is reflected by the preference

relation.

The main subject of study in this monograph is subjective expected

utility maximization, in the context of decision making under uncer-

tainty. Subjective expected utility maximization is notorious for the

many vivid discussions about its appropriateness. The first well-known

representation theorems for (subjective) expected utility maximization,

in von Neumann and Morgenstern (1944), and Savage (1954), have had

great influence in economic literature, and have shocked the statisti-

cal literature because of their profound implications for the foun-

dations of statistics. It should be emphasized that representation

theorems as such are not only useful for advocates of the use of some

special kind of representing function, but just as well give the

operational tools for Criticisms.The independence condition   o f   von

Neumann and Morgenstern, and the sure-thing principle of Savage, gave

valuable tools to critics, see for instance Allais (1953, 1979).

The  theorems of Savage, and von Neumann and Morgenstern,    (and

Anscombe and Aumann, 1963,) apply to special circumstances, where the

state space is well structured, or where many lotteries are available.

Such special circumstances are usually not present in economic contexts.

The main purpose of this monograph is to provide representation

theorems for subjective expected utility maximization, under special

circumstances that are usually present in economic contexts.

First, in Chapter 0, we give some elementary definitions.

In Chapter I we relate preference relations to choice behaviour

by means of the "revealed preference" approach, which has originated

from consumer demand theory. In order to achieve maximal operationality,

we define our "revealed preference" relations slightly differently from

the way most usual in literature; and we derive the characterizations

with the aid of these. For intuitive purposes, choice behaviour in

our   view  is  a more appropriate primitive for decision theory,   than   a

preference relation. Hence we discuss the "paradigm" of decision theory

in terms of choice behaviour, in Chapter I.

In Chapter I we do not assume any structure (other than set-

theoretic) on the set of alternatives. In the following chapters, more

and more structure will be introduced on the set of alternatives. Then
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not only the preference relation, but also this structure on the set of

alternatives, will be considered observable. No structure will ever be

introduced which is not present in our main intended application: the
one where the set of alternatives is a Euclidean space.

One reason to consider spaces, more general than Euclidean spaces,

is to increase applicability. With the exception of section VII.6, all
of our work is applicable to decision situations where no (physical)
quantification of the alternatives is available. A second reason to
consider general spaces is that, even if the only ultimate purpose is
to obtain theorems for Euclidean spaces, then theorems   for more general
spaces may still have value as intermediate means. For example, if we

would have formulated the main result of Chapter VI, Theorem VI.5.1,
for Euclidean spaces only, then in its proof (Proposition VI.7.4, and

subsection VI.7.2), we would still have needed the results of Chapter
III for more general topological spaces.

In Chapter II the structure is introduced which will be the central

subject of study of this monograph: the set of alternatives is assumed
to be a cartesian product. Each coordinate of an alternative describes

a relevant aspect. For making his decisions, the decision maker is to
weigh  the advantages and disadvantages of the several aspects against
each other. The cartesian product structure plays a central role, and
our work may find application, in very many fields of science. Section
II.1 gives six economic examples, amongst them decision making under
uncertainty.

In sections II.2 to II.5 we study monotonicity properties. An
alternative which is best in each aspect, should be the best alternative,
by monotonicity. In section II.6 we take up the approach, followed in
the remainder of this monograph: the only preference relation, taken

as observable, is the one on the set of alternatives. In section II.6
we then show that the only observable implication of the monotonicity

properties is "coordinate independence".
Sections II.2 to II.6 are included, firstly because they contain

new material that unifies the many versions of monotonicity occurring

in literature; and secondly, because we think these sections give the

most appropriate way to gain comprehension of coordinate independence,
a property central for all of the remainder of this monograph.
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In Chapter III topological structure is introduced. We assume

that the set of alternatives is endowed with a connected product topo-

logy. From then on, in all our main theorems, the preference relation

will be continuous and complete (, either as a presupposition, or as

a consequence of other suppositions). Section III.1 gives some comments

on the fact that the properties of continuity and completeness are of

a technical nature, and are not fully operational.

In sections III.3 and III.4 we characterize the existence of

continuous additively decomposable representing functions. Our results

generalize some well-known theorems from literature.

In Chapter IV, a further structural assumption is added. It is

assumed that all coordinate sets are identical. (This assumption will

be dropped in sections VII.1 to VII.4 only.) Theorem IV.3.3 gives a

main result of this monograph: a characterization of subjective ex-

pected utility maximization by means of a new property for preference

relations: cardinal coordinate independence. Let us, for the moment,

take for granted the, in economic contexts common, assumptions of

continuity of the utility function, and continuity, completeness, and

transitivity of the preference relation. Then Theorem IV.3.3 shows

that subjective expected utility maximization can be justified (; or

verified; or criticized; or falsified) if and only if cardinal coor-

dinate independence of the preference relation can be. This is all

done under the assumption that the state space is finite. The adap-

tation to infinite state spaces will be given in Chapter V.

In the remainder of Chapter IV, and in Chapters V and VI, many

generalizations of Theorem IV.3.3 are obtained. Also applications to

contexts other than decision making under uncertainty are given. For

instance we give, for dynamic contexts, alternative characterizations

of a representation, characterized before by Koopmans (1972).

The main result of Chapter V, Theorem V.6.1, adapts the results

of Chapter IV to infinite state spaces. Thus it provides the most

general characterization of subjective expected utility maximization

with continuous utility, presently available in literature. This is

done both for finitely additive, and for countably additive, proba-

bility measures.

Chapter VI extends Theorem IV.3.3 to "capacities", i.e. "non-
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additive probability measures". The use of nonadditive measures has

been initiated by Schmeidler (1984 a,b), where motivations concerning
decision making under uncertainty are also given. Further the applica-

bility to welfare theory has given motivation. Our contribution to
Schmeidler's work is like the contribution of our Theorem IV.3.3 to a
theorem of Anscombe and Aumann (1963): we replace the restrictive
assumption that many lotteries are available, by the restrictive
assumption that utility is continuous. Section VI.11 characterizes

strong sub- or superadditivity of the involved capacities.
In Chapter VII a further structure on the set of alternatives is

added: a mixture-space-structure. Again, the most well-known examples

are convex subsets of linear spaces. We use this structure to define,

and characterize, concave additively decomposable representing functions,
by means of the "concavity assumption". Such (representing) functions
are frequently used in mathematical programming, consumer and producers
theory, and decision making under uncertainty (to characterize risk

aversion). Still no characterization of them was yet available in

literature.

In section VII.6 we assume that the coordinate sets are convex
subsets of the set of real numbers. Thus here the alternative sets of
this monograph, endowed with most structure, are dealt with. In section
VII.6 it is then shown that assumptions on (nonincreasing) risk aversion,
current in economic literature, simplify in a surprising way the cha-
racterization of subjective expected utility maximization.

Finally, Chapter VIII gives some mathematical results on functions
on intervals, used, and referred to, at many places in this monograph.

For the most part, for the understanding of chapters, consultation

of elementary definitions in previous chapters is sufficient. Only
Sections III.2, III.3, IV.2, IV.3, and perhaps II.1, are needed for

understanding of the sequel.



7

CHAPTER 0

ELEMENTARY DEFINITIONS AND NOTATIOIIS

In this chapter we give elementary definitions and notations. The

reader familiar with them may wish to skip this chapter, or only look

at the standard notations at the end, and may in case of doubt consult

this chapter by way of the subject index.

A binary reiation on a set x is a subset of X x X. For a binary
relation >o n X w e usually write x>y instead  of   (x,y)   € > . One binary
relation > extends another binary relation >', if > 3 >'.

A binary relation > on X is:

(a) transitive if  [x > y and y > z] - [x > z]  for all x,y,z E X.

(b) compZete if x>y o r y>x for all x,y € X.

(c) refzexive if X>X for all x € X.

(d) irrefZexive if  not [x > x] for all x € X.

(e) symmetric if  [x > y] - [y > x] for all x,y € x.

(f) asymmetric if  [x > y] - not [y > x] for all x,y € X.

(g) ant€symmetric if [x > y and y > x] - [x = y]  for all x,y E X.

Throughout this monograph > denotes the asymmetric part of >

(i.e. x>y iff x > y and not y > x) and Al is the symmetric part of1)

> (i.e.x   Al yiffx>yandy>x). Further notations   are   x   <   y   for

y>x, and x<y for y>x.I f a binary relation >i s endowed with
---

1) Iff: if and only if.
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indexes, then without further mention  >,   m,   <,   and  <, when endowed

with the same indexes, are defined analogously.

A weak order > is transitive and complete. Hence it is also

reflexive, its symmetric part is an equivaience relation (i.e. is

transitive, reflexive, and symmetric), its asymmetric part is

transitive, irreflexive, asymmetric, and we have x > y iff not y > x.

Some further terminology: >i s triviat if x>y for all x,y, it

is the identity (re Zation)   if  x  > y **  x  =  y. The identity  can of course

also be considered as a function. A pair of elements x,y of X is

incomparabZe (w.r.t. >) if neither x>y nor y>x.

In Chapter I we shall deal with choice functions. A choice

function C is a function from a collection D of subsets of a set X, to
2 , such that 0 0 C(D) c D for all D € D. Of course this implies 0 e D.

An intervaZ v i s a subset of IR that is convex (11,v €V,O i l i t,
then Xy + (1-A)v € V), and that may be open, closed, or half-open, and

bounded or unbounded, both from the left and the right. By [P,v] we

denote the interval {A € IR: w i A i v}, by ]p,\1[ the interval

{A € R: p < X < v}. A nondegenerate intervaZ is an interval with more

than one (so infinitely many) elements. IR = {11 € IR: 11 1 0}, ]R++ =
{V ER: 11 > 0}.

Now let V b e an arbitrary subset of  R,  and  let  $  :V+IR.  Then

0 i s strictZy increaaing if, for all # >v i n V, 4(w) > $(v); it is
strietZy decreaBing if, for all P>v i n v, 0(0) < 0(v). Furthermore

0 i s nondecreasing if, for all U>v i n v, 0(0) 1 $(v); 0 i s non-

inereaBing if, for all U>v i n V, 0(P) i $(v).

The function $ as above is convex if, for all O l A 1 1, and V,v,

and Xy + (1-A)v in V, $(AW + (1-X)v) < A$(W) + (1-A)$(v); 0 is concave

if -0 is convex; and $ is affine if it is both convex and concave.

The function 0 i s affine iff there exist real c,T such that $ :v»

cy + T. Note that we also allow c = 0. Further 0 is positive affine if

c above is positive. The function + is quasiconvex if, for all

O f A l l, and 0, v, and AP + (1-A)v in V, $(AP + (1-X)v) <

max{$(P), 0(v)}; 0 is quas€concave if -0 is quasiconvex. A convex

function is quasiconvex, a concave function is quasiconcave.
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Let (x,T) be a topological space. x is (topoZogicaZZy) separal,Ze
if there exists a countable dense subset of X. For E c X, int(E) is

the topological interior of E. x is connected if there do not exist

open nonempty subsets V, W o f X such that V A W=0,V U W=X. This

is iff no closed nonempty subsets V, W o f X exist such that V A W=0,

V U W=X, i.e. iff the only subsets of x, which are both open and

closed, are 0 and X. If X is connected, and g is a continuous function

from X to another topological space, then g(X) is connected too. X is
arewise connected, or areconnected as we shall usually write, if, for

every x,y € X, there exists an arc from x toy, i.e. a continuous

function 0 : [0,1] + X with $(01 = x, 0(1) = y. If X is arcconnected,

then it is connected.

If X is a cartesian product Xi€Ici' where every Ci is endowed

with a topology Ti' then the product topoZogy on X is the smallest

topology containing all subsets of X of the form Ei x (Xj0iC ) with

i € I, Ei € Ti, An elementary result for this:

LEMMA 0.1. Let E C X=X
i€Ici be

open [respective Zy cZosed] with

respect to the product topoZogy on X. Let ACI, z EX. hien

v: = {x  E x   C  :E contains the e Zement v o f x which has vi -x iA    i€A i

for aZZ i € A, vi = zi for aZZ i E A}
is open [respective Zy c Zosed] with respect to the product topo Zogy on

Xi€Aci'

PROOF. Let xA € V. There must exist open Ei, for all i € I, with

Ei 0 Ci for only finite many i, such that the v, as defined above, is

in Xi€IEi' and such that the latter is a subset of E. We see that

xA € Xi€AEi c V. Only finite many Ei's being different from Ci, Xi€AEi

is an open neighbourhood of xA within V.

0

Next we give some measure-theoretic definitions. A collection A

of subsets of a set I is an algebra if I € A, and for all A,B € A also

f and A U B€A.T h e n 0€A,and for all A1'-.'Am €Aalso U  A  andj=1 j
n =1Aj are in A. A is a a-aZgebra if furthermore, for all (A )i=1 € A,
Uj=tAj is in A. A function P on an algebra A is a probab€Zity measure
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if P(I) = 1, and if furthermore P is finite Zy additive, i.e. for all

disjoint A, B € A, P(A U B) = P(A) + P(B). Note that we do not assume

"0-additivity". p is a-additive (, or countab Zy additive,) if, for
00

any (A.)-   € A with Am+1 c Am for all m and nm=1Am = 0, we have] j-1
lim P(A ) = 0. If I is finite, say I = {1,...,n}, then we usually

m
m=                                                                                         Iassume, without further mention, that A=2. Note that then the pro-

bability measure P is completely determined by (pj)  = 1 ' with p  : =
P({j}) for all j. Finally, a partition P = (Al'...'Am) of a set I is
a sequence of disjoint subsets of I, with union I. We do not exclude

A. = 0 for some j's.
j

In  a cartesian product Xi€Ici'   I is called  the  index  set,   and  the

Ci's
are coordinate sets. For an element (xi)i€I

of such a cartesian

product, xi is the i-th coordinate of x. Other indexes than those

referring to coordinates are usually indicated by superscripts.

Some standard notations in this monograph are the following. X is

a nonempty set, elements of which are called a Zternatives, and are

usually denoted by x, y, v, w, s, t, z, and sometimes by a, b, c, d.

Usually a binary relation >, called preference re Zation, is present on

X. Then x>y i s pronounced as: "x is weakly preferred to y", or: "x is

at  least  as  good  as  y" ;  x>y:  "x is strictly preferred  to y",  or:

"x   is strictly better   than  y".   And  X  ew  y:   "x is equivalent  to  y"    (even

though in general  Al  does  not  have  to  be an equivalence relation),   or:

"x  and  y are equally  good. " In Chapters  II  to  VII,  X  is a cartesian

product X C . and with the exception of Chapter V, I is the finitei€I i'
set {1,...,n}, for some n € :IN. Often all Ci's equal a set C; then we
also write a, B, y, 6, and sometimes v, 9, 0, T, for elements of C.

Subsets of I are usually denoted by A, B, C, D. By E, F, G, H we

usually denote subsets of C, or X. Real numbers are usually denoted

by Greek characters 0, v, A, a, T, or sometimes by a, b, c, d.



11

CHAPTER I

FROM CHOICE FUNCTIONS

TO BINARY RELATIONS

I.1. CHOICE FUNCTIONS, THEIR USE, AND INTERPRETATIONAL COMPLICATIONS

The following simple example of a choice problem will illustrate

several questions to be addressed in the sequel.

I.1.1. EXAMPLE

Suppose a consumer T is in a fruit-store, and has to decide

whether to buy nothing (n), an apple (a), or a pear (p). It is his

custom to buy an apple if only apples are available (so to choose a

from {a,n}), because he thinks apples look nice. Furthermore T prefers
buying a pear to buying an apple (so he chooses p from {p,a}), because
pears are more juicy than apples. Hence his first inclination is to

buy a pear (so to choose p from {n,a,p}).

However, not sure about his true motives, T strongly imagines
what his choice would be from {n,p}. There is no doubt: it would be

n, T would not buy the pear, he does not like pears enough. T's point

of view is: if from {n,a,p} I actually choose p, then from {n,p} I

should also choose pl (I.e., T wants to satisfy IIA, see Definition
I.2.8.) An introspection follows, and the conclusion is that the

choice of a from {a,n} was not truly motivated. T rather chooses n

from {a,n}. Hence finally n is chosen from {a,p,n}.
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I.1.2. ELEMENTARY FORMALIZATIONS AND SOME ASSUMPTIONS

By T we denote a decision maker, T is usually assumed to be a

single person. But also T may stand for an animal, a computer, an

extraterrestrial being, a firm, a society, etc. In the example of

subsection I.1.1, T was a consumer.

We study models for situations where from some nonempty set D

of (ava€Zab Ze) aZternatives, T chooses exactly one element. (This is

modified in subsection I.1.4, to simplify work.) It is intended that

T is completely free to choose the alternative which he wants. In

the example D was {n,a,p}. In several special contexts there are

special terms for alternatives, such as: options, prospects, acts,

securities, allocations, strategies, commodity bundles, tests,

estimators, responses, etc. If there is a possibility "choosing

nothing", then we just represent this by an element of D, such as n

above.

We shall not use sequential models. If analogous, or other,

choice situations will (repeatedly) occur, and have significance for

the one choice situation presently considered, then this significance

should appear in the appropriate places, such as in descriptions and

valuations of the alternatives. We neither assume, nor exclude,

repetitions; it is only that they are not central in our study.

I.1.3. THOUGHT EXPERIMENTS

Although our work is intended to be applicable if decision maker

T one time has to choose one element from one set D, this one choice

is not enough to build a meaningful theory. To show the meaning of

entities such as preference relations and utility functions , more

decision situations must be considered, at least as thought

experiments, and comparisons between them must be made. This is in

fact what we do by working with choice functions, (and by considering

binary relations as representations for choice functions).

It is very useful to imagine what would have happened if some

actual problem at hand would have been different in this or that

respect, to compare it to other analogous problems, and to base a
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model on this. This is a common practice in many sciences, it teaches
one what the essential parameters of the problem are.

In the example of subsection I.1.1, not only the actual decision
situation, with available alternatives {n,a,p}, is considered, but

also situations with available alternatives {a,n}, {p,a}, {n,p}, and
comparisons between these are made. If n is chosen from {n,p}, and p
from {p,a}, then n should be chosen from {n,a,p}, so was supposed
there. From the reasoning used here, and Corollary I.2.12, one may

conclude that the preference relation of T, a weak order, is an
essential parameter.

In this chapter we shall concentrate on decision situations that

differ from the actual one with respect to the set of available
alternatives. Usually in the hypothetical decision situations the set
of available alternatives, D', is a subset of D, the one for the
actual situation.

As usual in science, a "ceteris paribus" assumption must be made.
We assume that the (hypothetical) cause, restricting D to D', does

not change other relevant exogeneous aspects of the situation. For
instance in subsection I.1.1 the restriction of {n,a,p} to {n,a}

(say often the fruit-store has no pears in store) should not change
the person that T is, his desires, his knowledge, etc. We consider
IIA (see Definition I.2.8) and monotonicity (Chapter II) as concrete
expressions of the ceteris paribus condition.

As usual, the supposed changes are described accurately, but the

relevant things that should not be changed remain, at least for a

part, unspecified. The more science proceeds, the more can be said
about the "relevant things" to be controlled for the ceteris paribus
condition.

Let us compare the above to classical mechanics. The formula of

Newton, F = m.a (F force, m mass, a accelleration) is intended to be

applicable in every single situation. Essential for its significance
are comparisons to (hypothetical) analogous situations such as: if

some (hypothetical) cause would make F twice as big, then also

accelleration a should become twice as big. The ceteris paribus
condition should anyway entail that m is kept constant.

Not always does the above doubling of F have to be only a

hypothetical experiment. Sometimes it really can be achieved in an
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experiment. Such an experiment is a different event, happening at

another time and/or place. Not only is F doubled, and a too; there

is an infinity of other differences. These must then be assumed to

concern irrelevant matters.

Also, for our work the other considered choice situations are

not always only thought experiments. Also here they may have really

occurred, or have been achieved in experiments. Still we use the term

"thought experiment". A reason for this is to avoid confusion with

repetitions of choice situations. The difference between thought

experiments and repetitions is exposed in section I.3.

For the derivation of mathematical results it is often convenient

to use infinite alternative sets (usually endowed with a topology)

such as Rn Continuity assumptions can then be made to simplify the

technical work and to give convenient uniqueness results. Thus some-

times hypothetical alternatives which were not present in the actual

D, but which have informative properties, are introduced. Then the set

X of all considered alternatives contains more elements than only

those alternatives that are actually available in D.

Also it will sometimes be of use to assume that other exogeneous

aspects of the choice situation can be varied. For instance for the

binary relations  A' to be introduced in Chapter II, it is useful to

imagine that certain coordinates of the alternatives can be ignored.

This may be because a consumer is completely satisfied with respect to

the "commodities" corresponding to these coordinates; or because the

extra information is obtained that the "states of nature", corresponding

to these coordinates, are untrue.

I.1.4. THE PRELIMINARY-CHOICE-PROBLEM

For theoretical purposes it is convenient to consider the case

where T may choose a nonempty subset from D, instead of just one

element.   Such a choice is called a pre Ziminary choice, or just choice

if no confusion arises. Thus for a choice function C, the C(D)'s may

contain more than one element. C(D) is interpreted as the set of all

elements from D, which T would be willing to choose. His finally

chosen alternative is one arbitrary element from D, say Cf(D). Cf is

called a "selection function" in Basu (1980, p.50). See also Richter
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(1971, page 31, third paragraph).

We shall be interested in C(D), and shall represent this, in the

sequel. This meets the, admitted, problem, that not C(D), but only

Cf(D), is observable.

In normative applications of representation results, the

consequences of the preliminary-choice-problem are not serious. A

representation yielding the prescription to choose an alternative

from C(D), without specifying which one, is not seriously deficient

in this, because it does not matter which element is chosen. All
elements of C(D) are equally good.

Far more serious are the consequences of the preliminary-choice-

problem for descriptive applications. Here it can never be falsified

from observed choice making, that T was completely indifferent

(C(D) = D for all D € D) and made all his choices arbitrarily. Here

is a subject for further investigation, to derive "sensible" preference

relations from observed choices Cf(D), and to find out in how far
the choices must have been arbitrary. Work like Cooke and Draaisma

(1984), comparing numbers of arbitrary preference relations to numbers

of preference relations with "nice" properties, can be useful for
this. For predictive applications it is a disadvantage to obtain only

the prediction that T will choose an element from C(D), and not the

prediction which element that will be.

A way to circumvent the problem of preliminary choice is to

simply communicate with T, and ask him what his C(D)'s are. This
approach falls outside the scope of this monograph. We shall base our

representations solely on choice behaviour.

I.2. FROM CHOICE FUNCTIONS TO BINARY RELATIONS

In this section we indicate how to represent choice functions by

binary ("preference") relations.
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I.2.1. THE CONGRUENCY PROPERTY

Let X be the nonempty set of all considered a Zternatives,

D c 2X\{0} the nonempty collection of all considered choice situations.

For D E D, elements of D are ava€Zab Ze aZternatives (with reapect to D) .
X

We assume that C:D+2 is a choice function, (see Chapter 0). C(D),

the choice set for D, contains exactly those elements of D that T is

willing to choose from D. Elements of C(D) are called chosen

a Zternatives (from D).

An example of this can be found in consumer demand theory. There

T  is  a consumer,  X  = :R , alternatives are commodity bundles, choice

situations are budget sets, the choice function is the demand multi-

function, and the choice set is the demand set.

DEFINITION I.2.1. A binary relation > on X represents C if C(D) =

{xED:x>y forally€D} for all DEV.

We have chosen the term "represent" instead of the more

customary term "rationalize" for the sake of unity of terminology in

this monograph.

In the following chapters binary relations will be assumed to

represent choice functions, and will be called preference reZations.

They may be interpreted to stand for T's opinion about alternatives.

In literature it is custom to let a choice function stand for choice

behaviour of T, more or less intended to actually take place, and

to consider the possibility that T's preference relation does not

represent his choice behaviour. If then the preference relation

(notation >) d6es represent T's choice behaviour, (x, >, D) can be

called a "rationalization" of T's choice behaviour. In Ruys (1981)

rationalizability is proposed as criterion for calling choice

behaviour "rational". In von Wright (1963), preference relations are

placed between the "anthropological" (acting) level and the

"axiological" (assessing) level.

The following definition shows a way to derive binary relations

from choice functions. Such relations are called "revealed preference

relations".
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DEFINITION I.2.2. We write xRy if there is a D€0 such that x€ C(D),

y€D,o r i f x=y;w e write xPy if there is a D€D such that x€ C(D),

y€ D\C(D); we write xIy if there is a D€D such that x and y€ C(D),

or if x = y.

The above definition does not forbid occurrence of both xRy and

yPx. In example I.1.1,T originally considered C{a,n} = {a}, C{p,a} = p,

C{p,a,n} = p, and C{n,p} = n. The last two choices give pPn, and nRp

(even nPp).

There are many other ways to derive binary relations from C, see

Sen (1971). Often first a relation analogous to R above is defined,

and then P and I are defined as the asymmetric, respectively symmetric,

part of R, see for instance Weddepohl (1970). We have chosen the above

definitions to achieve maximal operationality. As soon as we observe

x  €  C (D),  y  €  D\C (D)   for  some  D  €  D,  we  can now conclude  xPy.  Had  we

defined xPy by "xRy and not yRx", then for verification of "not yRx"

we would have had to observe the choices from aZZ D € D, containing

both x and y. This may be an impossible task if most of the choice

situations, involved, are hypothetical (see subsection I.1.3). In the

sequel we adapt the results of literature to our deviating definitions.

Theorem I.2.5 (vi ** i there, and iv *• i ) shows that one way to

characterize the desired representation in (i) there, is to require

that our deviating definition of P leads to the same P as in

Weddepohl (1970), where P is defined to be the asymmetric part of R.

DEFINITION I.2.3. We write xRy if there exists a finite sequence

(xl,xl'...,xn) such that xl = x, xn = y, x R x +1 for all O S j I n-1.
We write xPy if a sequence (xj) =0 as above exists, with furthermore

x Px +1 for at least one O -l j f n-1. Finally, we write xIy if xRy

and yiix.

So R is the smallest transitive extension of R, P and T are

transitive extensions of P, respectively I, but usually not the

smallest.
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DEFINITION I.2.4. The choice function C is congruent if, for all

x,y €x: [xRy - not ypx].

The congruency property, and the main result (i) ** (iii) below,

were first obtained by Richter (1966, Theorem 1).

THEOREM   I.2.5.   For   the   choice   function   C   the   foZZowing   six   Btatements

are equivaZent:

(i) There exists a weak order >, representing C.

(ii) There  exists  a   transitive  >',   representing  C.

(iii) C 18 congruent.

(iv)      R  repreBents   C,   P   is   the   asymmetric,   I   the   symmetric  part   of  R.

(V) R represent8 C.

(vi)  P is the aaymmetric part of R.

Furthermore, >of (i), and the smaZZest rej'Zexive extension of >, of
(ii), are exteneions of R. their asymmetric parts are extensions of

F,   and  their  symmetric  parts  of  i.

PROOF. First the furthermore-statement. By the definition of R, > of

(i) and the reflexive extension of >' of (ii) are extensions of R. By

transitivity they are of R. So their symmetric parts extend i, the

symmetric part of R.

Now suppose xPy. To prove x>y and x> 'y.
Let x = xORxl  . . .  Rxjpxj+IR  . . .  Rxn =y. We write >Bboth for >o f  (i)
and   for the reflexive extension   of  >'   of    ( ii) .      x    >* x +1 follows   for
all 03.j<n-1, and x  >rxt forall 0<k<lin.Were nowy >1'x,
then by transitivity x  m*x  for all O l k<g l n, contradicting

x Px +1. So x >*y, and >'must extend P.

The equivalence of (i), (ii), (iii) and (v) is derived in Richter

(1971, Theorems 5 and 8). For (vi) - (iii), suppose xPy. Then xPy, so

by (vi) not yRx. So (iii) follows.

For  (i) - (vi), first note that by  (i), xPy implies,  by the

furthermore-statement, x > y, so not y > x. Hence, again by the

furthermore-statement, not yRx. Since xPy - xRy is always true,
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xPy  4  xRy   and   not yRx follows.   And   if   xRy  and  not   yRx,   then  x    =   x
Rxl ... Rxn = y can be arranged. Now to prevent y = xn Rxn-1 ... Rxl = x,

there must be j such that x1Px +1. So xPy. So (vi) is derived, (vi) is

equivalent to  (i),  (ii),  (iii),  (v) .

Of course (iv) - (v) is direct. For (v) 4 (iv), note that I by
definition is the symmetric part of R, and that (v) implies (vi).

0

I.2.2. OTHER PROPERTIES OF CHOICE FUNCTIONS

The characterization by means of congruency, obtained in Theorem

I.2.5, was completely general. In this subsection we consider properties

for choice functions, simpler than congruency. We show that, under

certain restrictions, they imply the existence of a representing weak

order; by relating them to congruency.

DEFINITIONS.

I.2.6. C satisfies the Btrong axiom of reveaZed preference (SARP) if

no  sequence (x )n exists  such that x Px +1  for  all  0 1 1 1 n-1,  andj=0n 0x Px .

I.2.7.   C   satisfies  the  weak  axiom  of  revea Zed  preference   (WARP)   if
xRy - not yPx.

I.2.8. C satisfies independence of irreZevant aZternatives (IIA) if

for all Dl'02 € D with Dl c 02' C(02)   Dl - 0 or ((02) n Dl = ((Di)

WARP has been introduced in Samuelson (1938), and SARP in

Houthakker (1950) and Ville (1951-1952, earlier 1946). These authors

studied the special context of consumer demand theory, the origin of

revealed preference theory. There the assumption was often made that

C(D) contains exactly one element, for every D € D. Then indeed SARP

implies WARP. The extension of these notions to choice functions C

with not always   | |C (D)  I  1    =   1,   is not unique,   and  has  been   done   in

several ways in literature. In the above way SARP does not imply WARP

anymore. To the author's knowledge, Arrow (1948) was the first to

introduce IIA; see C4 in Arrow (1959). (Arrow himself uses the term

IIA for another property, in his impossibility theorem in Arrow, 1978.)
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Other early references are Nash (1950a, 1950b), and Luce (1959,

section I.C.1.c.).

LEMMA I.2.9. The congruency property in:pZies SARP, WARP, and IIA.

WARP  implies  IIA.

PROOF. Congruency forbids the existence  of   (x )  =O   ,    (D )1=0   ,   such
that x1 € C(D +1), xj+1 € Dj+1 for all 0 1 j 1 n-1, and
xn € C (DO), xl € DI\C (DO) . SARP forbids this only for the special

j+1 j+1 j+1
case that x €D \C(D ) for all Oljln-1. WARP forbids it

only for the special case that n = 1. IIA can be seen to forbid it
0     1

only for the special case that n=1 and furthermore D C D  or

Dl c DO·

0

LEMMA   I.2.10.   If C(D) contains   exact Zy   one   eZement   for   aZZ   D  €   D,

then   SARP  impZies   congruency.

PROOF. Assume   SARP,   and   let  C (D) contain exactly one element,   for   all

D € D. Let xlRxl ... Rxnpx . We derive a contradiction. Let jl,...,jk

be such that xl = x   = xl = ... = xjl-1 0 xjl = xjl+1 =
= x12-1 0 x]2 ... = xjk-1 0 x]k = ... = xn. We now simply leave

jo jl jk  jO
out subsequent identical alternatives, to obtain x  nx   ... Rx  Px

Since C(D) contains only one element for all DE D, we must now in

jo jl Jk  Jo
fact have x  Px   ... Px  Px  . This contradicts SARP.

0

LEMMA I.2.11. If 0 containa aZZ two- and three-point subsets of x, or

if v is union-eZosed, then IIA impZies congruenty.

PROOF. Assume IIA, and let x Rxl ... Rxn. We prove that not xn pxO.

As  in the above Lpmma,  we may assume  x   0  x1+1  for  all  0  1  j  i n-1

(otherwise take again (xjl)1=0 instead of (xj)j..0) I Hence  Dl,...,Dn
exist such that x  € C(D +1), xj+1 € Dj+1 for all O i j l n-1. If
n 0 n 0 n 0
x  =x,o r not x  Rx , then also not x  Px .S o let us suppose
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0     0xn 0 x  and xn Rxl, i.e. DO exists with xn € C(D ), x  €D.T o prove
00

is that x  E C(D ).

First for the case that D contains all two- and three-point

subsets of X. Since {x1, x +1} c D +1, by IIA : x  € C{x ,x +1} for

all O l j i n-1. In particular x  € C{xl,xl}, xl € C{xl,x2}. Consider

C{xl,xl,x2} 0 0. If x2 is in it, then by IIA and {xl,x2} c {xl,xl,x2},
also xl € C{xl,xl,x2}. If xl € C{Xl,Xl,x2}, then by IIA and

0 1 0 1 2 0 1 2{x ,x } c <Xl,Xl,x 2}, also xO € C{x ,x ,x }. So always x  € C{x ,x ,x }.

By IIA, xl € C{xl,x2}. Analogously we obtain xl € C{x0,x1} for

j = 3,4,...,n. Since {xl,xn} c DO, IIA and xn € C(DO) imply xl € C(DO).

Next for the case that D is union-closed. Consider C(DlUD2) 0 0.
If there is y2 € D2 such that y2 € C(Dl UD2), then by IIA and

D2 c Dl U D2, xl € C(DlUD2). So always there is yl € Dl such that

yl € C(DlUD2) . By IIA and Dl c Dl U 02, hence always xl € C(Dl UD2) .

1          j-1 for Dl, Dj for D2, x j-1      1Analogously (substitute D  U ... U D for x

above, etc.) we obtain xO € C((DlUD2U...UD -1) U D ) for j = 2,3,...,n,

and xl € C((DlU...UDn) U DO). Since DO c (Dl U...UDnUDI), by IIA :
00

x  € CCD ).

0

COROLLARY I.2.12.  If D contains aZZ two- and three-point subsets of

x. or if V is union-closed, then the foZZowing four statements are

equivaZent:

(i) There ex€Bts a representing weak order for c.

(ii)  C is congruent.

(iii) C satisfies WARP.

(iv)  C satisfies IIA.

If  C (D)   contains  exact Zy  one  e Zement  for  every  D  €  D,   then  the
fozZowing three statements are equivaZent:

(V) There exists a repreBenting weak order for c.

(vi)  C is congruent.

(Vii) C satisfies SARP.
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PROOF. By the previous theorems, lemmas and propositions in this

section.
0

For the case where D contains all two- and three-point subsets

of X, the equivalence of (i) and (iv) above can also be obtained

from the proof in Arrow (1959), which was meant only for the case

where D contains all finite subsets of X. Sen (1971, bottom of page

312), noted that this proof remains valid in our case. For the case

where D is union-closed, the equivalence of (i) and (iv) above is

given in Theorem 15.4 in Fishburn (1973), or Hansson (1968), or

Weddepohl (1970, Theorem 3.9.6, without KS and K7).

In the following chapters we shall work with binary relations,

intended to represent C, and called "preference relations". Note that

binary relations do not specify the domain of C. Also note that

representing weak orders, as in (i) of Theorem I.2.5, do not have to

be uniquely determined. Hence properties, characteristic for such a

weak order, do not have to be characteristic for C, see page 48 of

Richter (1971). If D is rich enough, for instance contains all

2-point subsets of X, then > of (i) of Theorem I.2.5 equals R (even

R) of (v) there, and is uniquely determined.

I.3. COMPARISON WITH OTHER SET-UPS

In Luce and Suppes (1965) a distinction is made between

"probabilistic" (= "stochastic") and "algebraic" approaches.   In  the

first approach there is randomness in the choices of T, for example

it is considered that T chooses C(D) = Dl c D from D with

probability ·  and  C (D)   =  D2 c D  from D with probability 23.  Our

approach is algebraic, T's choices do not involve random mechanisms.

Also there is no randomness or uncertainty in the alternatives

that result from T's choices. T can choose any available alternative
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he wants, and then be sure to obtain this alternative. We d6 consider

uncertainty in the sequel, in fact that will be the major subject

of this monograph. The uncertainty, made explicit and studied by us in
the  sequel, will concern what "consequence" will result  from  an

alternative, see Example  I I.1.1.  There  may be further, "implicit",

uncertainty in such consequences. We neither assume, nor exclude, the

existence of such uncertainty, only we do not study it. As an

illustration, suppose a person T can choose a bet in a boxing-match,

such that he gains $3 if boxer 1 wins, and he gains $-7 (i.e. looses

$7) if boxer 2 wins or the match is a tie. Then other approaches may

call the amounts of money $3 and $-7 alternatives, and say T is

uncertain about which alternative will result from his choice. For

the set-up of this monograph it is more convenient to call the bet

alternative , the amounts of money $3 and $-7 "consequence" (or
coordinate, see section II.1 and Example II.1.1). We do not exclude

or assume the existence of uncertainty about what will result from a

consequence  "gain  $3";  only such uncertainty will  not be central  in

our study.

Our set-up is ordinal in the sense that everything in the sequel

will be derived solely from the preference relation of T on the set

of alternatives (where the preference relation again is derived from

the choice function), and structure of the set of alternatives. Nothing

cardinal-like has been introduced "from outside". No strength of

preference relation is presupposed. Also no addition-like operation

on alternatives is used. For example we do not use repetitions.

A typical thought experiment for the repetitions approach, as

for instance in Shapiro (1979) or Camacho (1980; see also Wakker,

1985 c) is as follows. Let Dl = {a,p}, 02 =  P'n}, D3 - {a,n}. It is
now assumed that T has to deal with aZZ three of these choice

situations,  and for instance  he must choose between two "possibilities".

The first is that he obtains a from Dl ' n from 02' and a from D 3; the

second that he obtains p from Dl' p from D2' a from D3. The first

possibility could then be denoted as a e n e a,o r(2 e a)e n,t h e

second as p e p e a,o r(2 e p) *a. Here e and e are formal operations.

One sees that here not in each one of the choice situations Dl' D2' D3'
T is free to choose. If T wants a from Dl' then he  must take n from D2.
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In our set-up T in each single situation chooses what he thinks

best there. For instance, if in the transitivity assumption we assume

that choices a from Dl and p from D2 should imply the choice a from

D), then all these choices are intended to agree with T's freedom of

choice in each single choice situation.

Also we do not use lotteries on alternatives. For the approach

with lotteries see for instance Fishburn (1970, 1982).
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CHAPTER II

CARTESIAN PRODUCT STRUCTURE,

MONOTONICITY, AND INDEPENDENCE

II.1. CARTESIAN PRODUCT STRUCTURE

In this section we introduce on X, the set of alternatives, the

main structure of interest in this monograph. We shall assume

throughout the sequel that X is a cartesian product X
i€Ici, with I an

index set. We shall nearly always, with Chapter V excepted, assume
that I is a finite set {1,...,n}, n € N. Many definitions and results

of this chapter are directly applicable to infinite I's.

The idea is that every alternative is described by a list of

properties, indexed by I. For instance alternative x = (xl'x2'x 3'x4)

may describe a car, where x 1 is the maximum speed, x2 the price,

x3 a description of what the car looks like, x4 the fuel consumption;

x > y means that x is thought at least as good as y. Let us emphasize

that no physical quantification of the coordinates is needed for our

work. What the car looks like may be described in non-quantitative
terms.

In applications, one of the central matters is to find an

appropriate list of properties, to be indexed by I. The list should

be large enough to contain all relevant aspects of the alternatives;

and small enough to be tractable. Also, in our set-up, each property

should have a meaning on its own. If in the above example it were

impossible to give a meaningful description of x3' what the car looks

like, independent of maximum speed, price, and fuel consumption,
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then the list of indexed properties used above would not be well-

suited for our set-up. Throughout this monograph we shall assume that

the cartesian product structure has already been obtained.

In the sequel of this chapter, we shall study monotonicity

properties. These may be considered formal reflections of the

requirements mentioned in the above paragraph.

For many fields of (economic) science the cartesian product

structure is a central matter of study. Examples:

EXAMPLE II.1.1. Decision making under uncertainty (DMUU).

Here x i s a n act, I a state space,i€Ia (possibZe) state (Of

nature). Exactly one state is the true state, the others are untrue.

Act x yields coneequence xi if i is the true state. T, the decision

maker, is uncertain about which of the states is true. Usually in this

context Ci = (1 =: C for all i. As an example one may think of a

horse race. Of n participating horses exactly one will win. Here i

indicates the "possible state of nature" that horse i will win.

Ci = R for all i, and x = (xl'.,.'xn) is a gamble (= act) that will

leave T with $x. if the j-th horse wins. See Savage (1954).
J

EXAMPLE II.1.2. Consumer Theory.

Here x is a commodity bundZe, i indicates a kind of commodity,

x. € R the amount of commodity i i n x;x>y: consumer T thinks
1+

x at least as good as y. See Katzner (1970).

EXAMPLE II.1.3. Producera Theory.

Here x is an input vector, i indicates a production factor, xi is the

input (rate) of production factor i (also xi may refer to output).

v:X+ R isa production function, assigning to every x the

(maximally attainable, one-dimensional) output V(x). x > y: x gives

at least as much output as y. See Shepard (1970).

EXAMPLE     II.1.4. Dynamic AppZ€cations.

Here x is a consumption/production path, stream of income, etc. Every

i indicates a point of time, xi is the consumption/production/income

at point of time i. See Koopmans (1972).
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EXAMPLE II.1.5. We Zfare Theory.

Here x is an aZZocation or social situation, I is a society or group

of agents/players, every i€I i s a n agent/player, and xi indicates

the wealth or utility for agent i under x. See Harsanyi (1955).

EXAMPLE II.1.6. Pr€ee Indexes.

Here every i indicates a good or service, xi is the price of good or

service i at the time, or in the place, described by x. Here a price
index v, assigning to every  x a measure   for the level of prices,   is
usually the primitive. x > y: the level of prices in time or place x

is at least as high as that in y. See Fisher (1927 b).

Of course, numerous other examples can be thought of. The

modelling of uncertainty, as in Example II.1.1, has been introduced

in economic literature by Savage (1953) and Arrow (1953). Note that

in Examples II.1.3 and II.1.6, it is custom to take a quantitative

(representing; see Definition  IIL 2.2)   v as primitive, instead  of  >.
The relation between such quantitative representations, and > , is

the central topic of this monograph.

II.2. ALTERNATIVES, SUBALTERNATIVES, CONSEQUENCES, AND PREFERENCES

BETWEEN THEM

The remainder of this chapter, with the exception of the

definition and notations of this section, and Definitions II.6.2,

II.6.3, and Theorem II.6.4, is not needed for understanding of the

follow chapters.

NOTATION II.2.1. For x € Xi€Ici' and A c I, xA is the element of

Xi€Aci with i-th coordinate xi' for all i € A. We call xA a
suba Zternative.

If one considers x as a map from I to Ui€Ici ' assigning xi to
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every i€I , then one can consider xA as the restriction of x to A.

Of course x{i} = Xi' XI = x; coordinates and alternatives are special

forms of subalternatives. We assume throughout this section, as well as

in sections II.3, II.4, and II.5:

ASSUMPTION II.2.2. For every A c I a reflexive transitive binary

relation >A on Xi€ACi is given. These > 's are called subpreference

relations. We often write >i instead  of  ><:     ,  and  also call these

binary relations coordinate   preference   re Zations; further we also write

> instead of  I' this is the
usual

preference   re Zation .    A,    <A,    <1,    xA

are as usual (see Chapter 0). For all these binary relations, we often

leave out index A if no confusion is likely to arise.

Note that, for the time being, we do not assume any connection

between different  > 's.   They   do   not   have   to be derived   from  >I   in   any
way. The monotonicity properties, considered in the sequel, will enable

such a derivation, see Proposition II.6.1. Also note that we

emphatically do not assume completeness for the >Q's. (Recall that

in (v) of Theorem I.2.5, we found a representing R, that was transitive,

reflexive, but not necessarily complete.) Thus, the assumption of the

presence of all these > 's does not have to be considered a serious

restriction: some of them may simply be the identity relation.

The assumption that all these > 's are given, deviates from the

main strategy in this monograph, to consider only > on X as given. One

reason for this deviation  is that the work under this assumption

serves as a preparation for the work in section II.6, where we again

assume that only > is given. But we also hope that our work under this

assumption has interest on its own.

The interpretation of xA  A yA is something like: for as far as

only the coordinates with indices from A are concerned, alternative x

is weakly preferred to alternative y. In consumer theory, one may

imagine that attention can indeed be restricted to the coordinates
C

with indices from A, if the coordinates with indices from A (say in a

thought experiment) are fixed at some standard level, for example a

level of total satisfaction. In DMUU, coordinates with indices from AC

can be left out of consideration if AC is untrue (i.e. every state of

nature in AC is untrue) and furthermore this has become known to T by
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the acquisition of extra information. The ceteris paribus assumption

should entail that the fixation at AC, or the extra information that
C

A  is untrue, does not affect other essential matters.

DEFINITION II.2.3. Let Al' ...' Ak be mutually disjoint subsets of  I,

xl , ..., x  subalternatives . The
subalternative, compounded of

1

1                   ]C
, notation

414  . . .  4]C  ,  is
the subalternativeXA , ..., X

1

assigning x1 to i € A , j = 1, ..., k.

NOTATION II.2.4. Let Al' ...' Ak be mutually disjoint subsets of I,

x an alternative, x;l , ..., x 
subalternatives. Then we write

1
1kx           for x , and x           x  , ..., x   for the

-Al'...,Ak (Alu...UAk)c -Al'...,Ak  Al        Ak
alternative x

(A,U...UA ) C XA, ... XA .

If necessary, we add parentheses in the above notations. And as

often, we write i instead of {i}. Thus for instance:

X-ivi is (x with xi replaced by vi)· (II.2.1)

and, for i 0 j,

(x   .    ,  v. ,w. )   is   (x  with xi replaced  by  vi '  x.  by w. ) . (II.2.2)
-1,1  1 J J        J

I I.3.  TERMINOLOGY FOR MONOTONICITY

Throughout literature one finds very many forms of monotonicity

properties, and properties closely related to them, with widely

varying terminologies and meanings. We think it would be useful if a

unifying terminology for these would be developed, and if the several

logical relations for them would be mapped out.

The terminology, developed below, should be considered only as

a first indication that such a unification may be possible. We would

welcome alternative approaches from other authors. In special contexts

one may adhere to (small) deviations from a unified terminology, to
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increase tractability. For instance in a context where never any form

of monotonicity occurs other than cA monotonocity (see (II.3.1), and

Definitions II.3.7 and II.3.8) one may for convenience leave out "cA"

from terminology.

Let us first give the most simple and well-known example of

monotonicity:

If xi > Yi  for all i, then x > y. (II.3.1)

We shall vary this monotonicity in three aspects. Firstly, the

involved preferences can be varied. We can have strict preferences

instead of weak preferences, etc. Secondly, we can replace coordinates

and/or alternatives by subalternatives. Thirdly, we can vary what may

be called the "direction of aggregation". We can for instance assume

that [x. > y. for all i > 2, and x < y] implies [xl < yll. Then the11

preference concerning x and y (or, more generally, the "longest",

"most aggregated", subalternatives)   is  not   in the conclusion,   but   in

the premise.

The abbreviations that will be used in the terminologies, are:

ABBREVIATIONS: c stands for coordinate, A for alternative, s for

(" short") subalternative,   and  S   for ("long") subalternative;   mon

stands for monotonicity.

We also use capital A to denote subsets of I; this is unlikely

to give confusion. The general form of the terms, introduced in

subsection II.3.1 below, is

(9El)mon (II.3.2)

Here   is the generic variable for "direction of aggregation".

This is either aggregated, or disaggregated. Further 2 is the generic

variable for the kind(s) of involved preferences, weak, strict, or

equivalence;  2  may also stand for "strong". Finally 1 refers to the
2

Length of subalternatives, and stands for sS, cS, sA, cA, or s S.

In the aggregated monotonicities we often leave out the term

aggregate. Also we often leave out the term disaggregate, and then

show this by replacing cA by Ac, sA by As, and sS by Ss.
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Further we often use symbols instead of words for 2 above; then

disaggregated monotonicities are distinguished from the aggregated

ones by a dash through a symbol.

II.3.1. DEFINITIONS

First we give the strongest monotonicities, with sS for 1. We

start with aggregated for   in (II.3.2).

DEFINITIONS II.3.1. (Aggregated) 8 (ubatternative)  8 (uba Zternative)

monotonicities. Add after every definition below:

for all B C I, partitions (Bl'...'B ) of B, (II.3.3)m

alternatives x,y.

We say {>A :A c I} satisfies:

(a) (> 82) mon (or strict BS mon) if:

xB   > yB   for all k - x    yB
kk

(b) (> sS) mon (or Weak BS mon) if:
xB  > yB  for all k - xB   yB
kk

(C) (= sS) mon (or  equivaZence   BS  mon)   if:

XB  =  yB  for all k 4 xB - YB
kk

(d)  (>> BS) mon (or strong ES mon) if:

xB]   b  yBk   for  all  k,   xB]      yBIC   for   some  k  =D  xB     YB

(e) totaZ sS mon if:

(a), ..., (d) above are all satisfied

One  may add "aggregated"  be fore every definition above.   Next  we
will  let  d  in   (II. 3.2) be disaggregated. Each disaggregated
monotonicity property is closely related to the corresponding

aggregated monotonicity property. The only difference between the two

can be caused by incomparability, as will be demonstrated in

Proposition II.4.1. This may have been a reason that the disaggregated
monotonicities, to the author's knowledge, have not yet appeared in
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literature. Still, they will be an indispensable tool for our work in

the sequel (as we shall see in the comment after Theorem II.6.5).

DEFINITIONS II.3.2. Disaggregated 8 (ubaZternative) 8 (ubaZternative)

monotonicities. Add after every definition below:

for all B CI, partitions (Bl'...'Bm) of B (II.3.4)

, 1 L jim, and alternatives x,y.

We   say   {>A :Acl} satisfies:

Ca)   (* Ss)  mon    Cor  strict  Ss  mon,  or disaggregated  strict  sS  mon)   if:

XB   yB  for all k 0 j, xB < yB - xB. 4 yB
kk J         j

(b)   9  Ss)  mon     (or  weak  Ss  mon,  or  disaggregated  weak  sS  mon)   if:

*B   1 y B   for  all k  0  1,  XB <y B-x B.  <   B.
kk J        J

(c)    (-  Ss)   mon      (or  equivaZenee  Ss  mon,   or  disaggregated  equiva Zence
SS mon) if:

x     .y_  for  all  k  0  j,  [xB 2-yBor  xB < YBl  A  [xB,-YB.  or  xB .< yB .l
Bk Bk j J J      J

(d)  (> * Ss) mon (or strong Ss mon, or disaggregated strong BS mon) if:

x31<   YB]c  for all k 0  j,  xB <y B- xB   < yB 

(e) totaZ Ss mon (or disaggregated totaZ BS mon) if:

(a), ..., (d) above are all satisfied

Pronounciation does not distinguish between sS and Ss, hence we

think for spoken language the second terms in (a) and (d), and the

first term in (e), are less suited.

The following, weaker, versions of monotonicity are straight-

forward variations on the previous ones, so are not written out. The

idea is, to replace in the (dp(sS)) monotonicities above s by c, and /

or S by A.

DEFINITIONS II.3.3,(a) to (e). (Aggregated) c Coordinate) 8 (ubalternative)

monotonicities. Obtained from Definitions II.3.1 by substitution every-

where  of  c  for  s,  and by restriction  to  B c 's with   B k l l   =  1,   so  to
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coordinates KB ' YBk'

DEFINITIONS II.3.4, (a) to (e). Disaggregated c(oordinate)

8(ubaZternative) monotonicities. Obtained from Definitions II.3.2 in

the same way as Definitions II.3.3 have been obtained from Definitions

II.3.1.

DEFINITIONS II.3.5,  (a)  to  (e) . (Aggregated) 8(ubalternative)

a(Zternative) monotonicities. Obtained from Definitions II.3.1 by

substitution everywhere of A for S, and by restriction to B equal I,

so to aZternatives xB = x, YB = Y•

DEFINITIONS II.3.6, (a) to (e). Dieaggregated 8(ubalternative)

a(Zternative) monotonicities. Obtained from Definitions II.3.2 in the

same way as Definitions II.3.5 have been obtained from Definitions

II.3.1.

Since the monotonicities, introduced in the following two

definitions, only involve the >i's, and > , we sometimes ascribe them

to {>.: i€I}U {>}, instead of to all of {>A :A C I}. Definition1

II.3.7.b equals (II.3.1).

DEFINITIONS II.3.7, (a) to (e). (Aggregated)   c (oordinate)a(Zternative)

monotonicities. Obtained from Definitions II.3.1 by substitution

everywhere of c for s, A for S, and by restriction to B equal I,

m = n, and Bk = {k} for all k; i.e. by restriction to coordinates

XBk = xk' YB  = yk, and alternatives xB=x, YB= Y

DEFINITIONS II.3.8, (a) to (e). Disaggregated   c Coordinate)a(lternative )

monotonicities. Obtained from Definitions II.3.2 in the same way as

Definitions II.3.7 have been obtained from Definitions II.3.1.

We shall show in Proposition II.4.3 that the (dp(sS))

monotonicities are implied by those that are restricted to m = 2. So

we define:
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DEFINITIONS II.3.9, (a) to (e). (Aggregated)    twofold   8 (ubalternative)

s (uba Zternative ) monotonicities. Obtained from Definitions II.3.1 by

restriction to m = 2, and with this indicated by an index 2 above the
2

small s, so (> s S) mon, etc.

DEFINITIONS II.3.10. (a) to (e). Disaggregated twofoZd 8(ubaZternative)
8(ubaZternative) montonicities. Obtained from Definitions II.3.2 in

the same way as Definitions II.3.9 have been obtained from
2Definitions II.3.1; this gives (94 Ss ) mon, etc.

In following chapters we shall deal with cases where all

monotonicity properties, introduced so far, are satisfied. Hence we

define:

DEFINITION II.3.11.  {>A: A C I}
satisfies totaZ monotonicity if

Definitions II.3.1 to II.3.10 are all satisfied.

II.4. ELEMENTARY CONNECrIONS BETWEEN MONOTONICITIES

In this section some elementary logical relations between the

several monotonicity properties are given. It is not our plan to

elaborate this extensively. We mainly aim at minimal assumptions

to guarantee total monotonicity. Let us repreat that throughout we

make Assumption II. 2.2, i.e. every >A is transitive, refZexive, not
neeessar€Zy compZete. First we relate aggregated monotonicities   to

disaggregated monotonicities.

PROPOSITION II.4.1. Let every   >A  be   compZete.   Then    (aggregated  21)   mon

hoZds if and onZy if (disaggregated 21) mon hoZds.

Here one can substitute strict, weak, equivalence, strong, or
2

total for £; and for 1 one can substitute sS, cS, sA, cA, or s S.

PROOF. We only give the proof for 2: strong, and 1: cA. The other cases
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are similar. In the definition of (> 2 Ac)mon, let xi > Yi for all
i  0  j.  Now  [x  <  y  *  x   4 y ]

is
equivalent  to   [not  x   K  y   "  not

x < y]. By completeness this is equivalent to [x > y  ] - Ix > y].
This gives (> > cA)mon.

0

Since every coordinate and alternative is a subalternative, we

immediately have:

PROPOSITION II.4.2. (42(es))mon impjies (421) mon,    for   every

Z    €    {sS,    cS,    BA,    eA}.

Here one can substitute aggregated or disaggregated for d, and

for 2 one can substitute  > , > ,0, >>,or total .

0

PROPOSITION II.4.3. ( 2 82S)mon   hoZb   €f  and  on Zy   if   (6  sS)mon   ho Zds.

Here one can substitute aggregated or disaggregated for  , and

for  2  one can substitute  >  ,  >  ,  st: ,>>,or total .

2
PROOF.  That an sS mon implies the corresponding s S mon, is direct.

9
So we assume (dps-S)mon, and derive (dpsS)mon. We do it for two cases
only:   d is aggregated  and  2 is strong ;   or  d is disaggregated,   and  2  is

equivalence. In either case, let (Bl'...'B ) be a partition of B c I.

Now assume first  that   (> > s2S) holds, and
assume  xB      YB   for

all k, xB  > yB  for some k, say k = l. To prove is, for (> > sS)mon,
kk

that xB > yB. By (> > s2S)mon, xBixB    yBly32 follows. If now for

i < m we have proved that x81 "' XBi   Y81 YB , then we take
i

( (B U . . . UB ) - B   ) as partition in two parts of Bl U . . . UB1        i ' i+1 i+1'
apply (>> s2S)mon, and

obtain that xB    ...  xB      > YB   "'  YBi-+11       i+1

We end up with xB > YB' which is what (> > sS)mon requires.

For the second case we first give a new notation, for this proof

only. For any s,t € X, C C I, we write scatc if [sc > tc or sc < tcl
2

We now assume   that    (86  s   S) mon holds,   and  want to derive    (26  sS) mon.
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So  let  xB   w yB    for  all  k  0  j,and  x  B. To prove  is  xB SYB ' Suppose
kk j     j

j = l. Since B = (BlU ... UBm-1) U Bm ' xB Al YB  ' and xB9B '
m

(m S2S)mon gives that  #8   . . -  xB     )2(YB m...  YB     ) .  If  now for
1                  m-1 1 m-1

i > 1 we have proved that xB   ,  xB VB  -" Y . then we write

1       i   l      Bi'
 BlU ... UBi) = (BlU ... UBi-1) U Bi; xB x YB ' and (4 s2S)mon give

ii
that x ... XB       Bi- 13181 "' YBi-1' We end up with xBis'Bl,

which is
1

what (4 sS)mon requires.

0

We now turn to the logical relations between the  21 monotonicities

that differ with respect to 2 , and have d and 1 the same.

PROPOSITION II.4.4.

(a) (/ strong 1)mon «pliee  (d strict 1)mon.

(b)   (  weak  1)mon  implies   (  equivalence  Pmon.

(c)  (d strong 1)mon and (d equivaZence i)mon together impZY (d weak i)
mon.

Here one can substitute aggregated or disaggregated for  , and
2

for 1: sS, cS, sA, cA, or s S.

PROOF. (a) is trivial. For (b), we consider first (aggregated) weak

cA mon, and derive equivalence cA mon. If now xk x yk for all k then

[xk > Yk and Yk > xk] for all k so, by twofold application of weak

cA mon, [x>y andy > x], i.e. X x y. This is what equivalence cA

mon requires.

The second, and final, version of (b) that we derive, is the

version where   stands for disaggregated, and 1 again for cA. Let

disaggregated  weak  cA  mon be satisfied.   Let  xk  w  Yk  for  all  k  0   j,
[x > y or x < y]. Say x > y. Then by disaggregated weak cA mon

x  > y  follows.
So

certainly [x  > yj or yj > xj],
which is all that

disaggregated equivalence monotonicity requires.

For (c), we again consider two cases, again both with 1 = cA.

First we assume (aggregated) strong cA mon and equivalence cA mon.

To derive is weak cA mon. So let xk   yk for all k. If xi > Yi for
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some i, then by strong cA mon x > y. So certainly then x > y, which

is  what  weak  cA mon requires.   If  xi  >  Yi  for  no  i,  then  xi  X yi  for
all  i.   Here we apply equivalence  cA  mon, to obtain  x  x  y. So certainly
X > Y, which is what weak cA mon requires.

Finally,  as a second  case  of (c), we assume disaggregated strong
cA mon and disaggregated equivalence cA mon, and derive

diseogregated' weak  cA  mon.   So  let  xk     yk  for  all  k  0  j,  x  <  y.   Of
course x<y,s o disaggregated strong   cA mon gives  x   < .y  .I f  now
xk  x yk  for  all  k  0  j, then disaggregated equivalence mon (since
x   > y   cannot hold) gives x  < y , which  is what disaggregated weak
cA mon requires. So suppose xi > Yi for some i. Now x  st; y  cannot

hold: then we would have xk >Y k for all k t i (also for k= j), which

together with x<y b y disaggregated strong cA mon would imply

xi  4  Yi , This contradicts  xi  >  Yi .   Apparently  x   sti  y    does  not  hold,
and x  < y  follows. This is what disaggregated weak cA mon requires.

0

II.5. TOTAL MONOTONICITY

In this section we give sets of monotonicity properties,

sufficient to imply total monotonicity (i.e. all other monotonicity

properties). Again, throughout we make Assumption II.2.2. First one

preparatory result, less elementary than those of the previous
section.

PROPOSITION II.5.1.

(a)  (> BA)mon and (> 0 As)mon together imply   (>  EIS)mon  and  (>*  Ss)mon.

(b)  (> > sA)mon and (4 As)mon together in;pZy (> > eS)mon and (PA Ss)mon.

PROOF. Throughout let (Bl'  - 'Bm)  be a partition of B c I. We write

B  := BC. Always z is an arbitrary fixed alternative. In the proof we

shall often change subalternatives into alternatives by compounding

them with pieces of z.
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For   (a) , we first derive   (>  sS) mon   from the assumptions there.

So let x81   YBl' "" XB > YB .m m

By  (> sA)mon, (zBOXBl  '  '  xBm)     (zBOXI3l      '  xBm 
* Now, since

ZBO < zBO,  (>
DA As)mon implies  (xB  . . .  xB )     CYB   '  ' YB ), which

1                                            m

is what (> sS)mon required.

Next,   for   (a), we derive   (>  44  Ss)   from the assumptions there.   So

let x
82   y82' "" XBm   YI'In' and x3 < 78

This latter, and

ZBO  <  zBO,   by    (>  sA)
mon implies

zBOXB  <   zBOYB     This,   and   xBk     yBk

for k = 2,...,m, implies by (> 7 As)mon
zBOXBl < zB YB1  From this,

ZB < zB  for all k 12, and (> sA)mon, follows
ZBOXB 1282 "  ZB <kk         n

ZB YB ZB
...

ZB . Finally, this, zBk > zBk for all k 0 1, and012  n
(> 7 As)mon, give xBl < y81 . This is what  (> 4 Ss) required.

The proof of (b) is analogous, and left to the reader.
0

THEOREM    I I.  5.2. The fozzowing four (sets of) conditions for {,A : A c I}

are equiva Zent:

(i) totaZ monotonicity.

CiR   (>> sZS) -,  (>+ SBZ) _,  (0 BZS) -, and (6 Ss )mon.

(iii)  (> aA) -,  (4 AB) -,  (> > BA) -, and (>   As)mon.

(iv) (- sA)  -,  (0 As)  -,  (> > BA) -, and (> P As)mon.

PROOF. (iv) 4 (iii) is by Proposition II.4.4.c. (iii) - (ii) (even

the stronger version of (ii) without indices 2) is by Propositions

II.5.1, and II.4.4.b.

For (ii) - (i), first we see that by Proposition II.4.3, (ii)

implies its stronger version without indices 2. That this implies aZZ

sS monotonicities, is by Proposition II.4.4. This of course

(Proposition II.4.2) implies (i).

Of course, (i) - (iv) is by definition.
0
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Under special circumstances it may be possible to weaken the

properties in (ii), (iii), (iv) above, such that (i) is still implied.

For instance, if all > 's are known to be complete, then Proposition

II.4.1 enables us to leave out the disaggregated monotonicities. We

give a result, useful for the case of antisymmetry:

PROPOSITION II.5.3. If every  A €8 antiaymmetrie, then (ft Strong 1)mon
impZ€es d weak 1 mon.

Here one can substitute aggregated or disaggregated for 9, and
2

for 1: sS, sA, CS, CA, s S.

PROOF. We consider only the case where 1 = cA. First we assume

aggregated strong cA mon. To derive is aggregated weak cA mon. So

assume xk >Y k for all k. If xk =y k for all k, then x=y, and x>y

follows. If xk 0 Yk for some k, then by antisymmetry of >k we have

in fact xk > Yk. By aggregated strong cA mon then x > y, so certainly

again x > y. x > y, as required by aggregated weak cA mon, always

follows.

Next we assume disaggregated strong cA mon. To derive is

disaggregated weak cA mon. So assume xk   yk for all k 0 j, x < y.

Then x < y, and by disaggregated strong cA mon x. < y. follows. The
J       j

proof is completed if we derive contradiction from the assumption that

not x. < y.. If not x. < y., then x. 0 y., i.e. x. = y.. Further then
J ] ] J J J 1       J

for  any   i,   from  x  <y,   x      yk  for  all  k  0   i   (also  k  =   j)   and
disaggregated strong cA mon, xi < Yi follows. So xi > Yi and xi < Yi

for all i. Then apparently xi = Yi for all i, so x = y, in contra-

diction with x < y.

0

The above proposition shows that antisymmetry enables one to leave

out, in Theorem II.5.2, the weak and equivalent monotonicities in (ii),

(iii) and (iv).

Note that it depends on the involved cartesian product, whether

a subalternative can be called consequence or not. Suppose that

(Bl, ..., Bm) is a partition of I. We can write Xi€Ici as

X =1(Xi€Bkci), and consider only the cartesian product over k. Then
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XBk is considered a consequence, whereas originally it was not if

Bk 1 1>1.I n contexts, where any cartesian product structure

X =l (Xi€B  Ci)   is as natural  as the original Xi€Ici' the subalternative
k

alternative monotonicity properties may be considered to be as natural

as the consequence alternative monotonicities. For those contexts (iii)

and (iv) of Theorem II.5.2 are useful characterizations of total

monotonicity. This is the more so in view of the main strategy in

this monograph, to formulate as much as possible all conditions in
terms of the preference relation > on the alternatives: (iii) and (iv)

at least partly involve > .

II.6. COORDINATE INDEPENDENCE AS THE OBSERVABLE CONTENT OF TOTAL

MONOTONICITY

In this section we want to return to the main strategy of this

monograph, to consider only the preference relation > on the set of

alternatives X as observable, together with structure of X. Then the

 A's, for ACI, are not directly given. The most we can do is derive

0
them from >  , under the assumption of total monotonicity (, see

Proposition II.6.1). And the most we can do about verification or

falsification of total monotonicity, is to find properties of > that

enable a verification or falsification  of the existence  of  > ' s.   for
all A   I, such that {>A: A c I} satisfies total monotonicity. The
necessary and sufficient property  of  >  for the existence  of   such  >A' s,
is "coordinate independence", see Definition   I I.6.3, and Theorem

II.6.5. The following proposition shows that, under total monotonicity,

all > 's can be derived from >.

PROPOSITION II.6.1. Let { A: A C I} satisfy totaZ monotonicity. Let z

be an arbitrar€Zy fixed eZement of x. 19:en xA , yA if and onZy if

XAZAc ) YAZAC .

PROOF. Since  z c>z c'  IxA > YA]  by  (> s2S)mon implies [xAZAc , yAz  c]
A A
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For the converse implication, since z >z [y < x] by (> 4 Ss2)

Ac    Ac '
mon implies [yA < xAl'

0

Since >A is independent of the particular z c that we fixed in
Athe above proposition, we see that the following property of > is

necessary for total monotonicity:

DEFINITION II.6.2.  > satisfies independence of equat subaZternatives

if:

[„Al«    >   YAYA«    „   „A"Ac        yA"A« 1
for all x, y, v, w € X, A c I.

For the idea of the above definition let s := xAv c' t := YAv cA           A
Then, as soon as we know that s and t are identical in AC, we do not

have to consider the particular common value s c=t c=v c i n A C any
A     A    A

further. It does not matter if this is v or  w     , or whatever.  The
Ac     Acepreference between 8 and t i a independent of the A  c I where a and t

are identicaZ.

For finite cartesian products, there is a simpler, equivalent,

formulation for independence of equal subalternatives.

DEFINITION II.6.3.  > satisfies independence of equaZ coordinates, or

shortly coordinate independence (CI), if:

[X-ivi > y-ivi w x-iwi > Y-iwil
for all x, y € X, vi' wi € Ci' i € I. Also we then say that > is

coordinate independent (CI).

THEOREM II.6.4. > satisfies independence of equaZ subaZternativeB if

and on Zy if it sat€8fies CI.

PROOF. Since any coordinate is a subalternative, independence of

equal subalternatives implies CI. For the converse implication,

assume > is CI. Let x, y, v, w, A be as in Definition II.6.2. Let
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 |Acll =m i n. For m=1 the result is direct. Now suppose m 1 2, and

for   m- 1 the result is proved.   Let   j€A.   Then    [xAVAc      YAvAc ] * *

[((xAw c)-jvj) > ((YAw c)-jv )]. Now by CI the latter preference holds

if andAonly if xAwAc >AYAWAG.
0

The above two properties are central in our work and will nearly

always hold in following chapters, Chapter VI excepted. A related

property was introduced in Sono (1945, 1961) and Leontief (1947 a,

1947 b) in terms of derivatives of a (presupposed, representing (see

Definition III.2.2)) function. See also Samuelson (1947, pp 174-180).

Already Fleming (1952), for the context of welfare theory, formulated

essentially the independence of equal subalternatives of length n-2

in terms of a (presupposed, representing) function, but without using

derivatives. In Debreu (1960) CI was formulated in its present , more

appealing, form, in terms of the preference relation, thus again

without differentiability assumptions. Before, Savage (1954) had

introduced the "sure-thing principle" for DMUU. This principle is in

fact identical to independence of equal subalternatives, as is well

known nowadays.   It  can  be   seen to underly the "likelihood principle"

in statistics, which is central in the discussion about Bayesian

statistics. See Berger and Wolpert (1984). Debreu, and some other

authors, have used the term independence. A further usual term is

(strong/strict) separability. Katzner (1970) uses the term additivity.

For an extensive study of generalizations, and many applications of

CI, see Blackorby, Primont, and Russell (1978). See also Mak (1984,

1985). Gorman (1976, p. 212, 224) argues for the importance of CI in

economic theory. Krantz  et  al. (1971) mention Fisher   ( 1927  a,   p. 175  ff)

as an early place where the basic idea of CI can be recognized.

THEOREM   I I.6.5. Let >o n x b e transitive   and  refLexive. Then there ex€3t

transitive refZezive  >A' 8
On

Xi€A(i (A c I) such that {>A: A c I}
satisfieB totaZ monotonicity, if and on Zy if > is CI.

PROOF. The only-if part is by Proposition II.6.1, Theorem II.6.4,

and the remark above Definition II.6.2. So, we next assume that > is
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CI, and we derive existence of > 's as in the theorem. Let z be an
arbitrarily fixed element of X. We define xA >A  A whenever

xAZAc > yAZAc. Note that >I thus coincides with >. Reflexivity and

transitivity of > imply the same for any >A. Finally we must derive

total monotonicity. By Theorem II.6.4 we have independence of equal

subalternatives.

First  note  that  xA :1 YA  iff  xAZAc   YAZA :,  xA RiA yA  iff

xAZAc X YAZAC
. By Theorem II.5.2,  (ii) 4 (i), it is sufficient to

2                             2                    9                                  2derive (> > s S) -,  (> 76 Ss ) -,  (- s"S)  -, and (,6 ss )mon. So let
Bl n 8 2=0'B l U 8 2=B c I.W e write B  = Bc.

For (> > s2S)mon, suppose that x   >  y  ,x   n  y  •T o prove:
Bl  Bl  Bl   B2 D2  B2

xB xB   B UB  yB YB   We have xB  B  YB -zB xB zB >zB yB zB "
1 2 1 2 1 2 111 012 012

(by independence of equal subalternatives):

zB xB xB > zB yB xB ' (II.6.1)
012 012

Further ,w e have xB   B  YB -z  z  x   >z  z  y_  =* (by independence
2   2   2    BO 81 82    BO 81 82

of equal subalternatives)

zB YB xB > ZB  B  B' (II.6.2)
0 1 2 0 1 2

(II.6.1) and (II-6.2) imply zB xBlx82 > z80YBly82' i.e'

x81x82 >81UB2 Y81YB2'
, as desired.

(0 s2S)mon is analogous, and not elaborated.

For (> y Ss2)mon, suppose x81 >Bl Y81, x81X82 <#lU82  81 82'  ' 

prove is x82  2 y82' We have yBi  1 xB 1 - ZB0 1 82 <  80 81 82  
(by independence of equal subalternatives)

ZB yB VB  < zB XB yB '

(II.6.3)012 012

Further,  we have
x81' 82 <Bl"BQ YBly82 -  280xBlx82 <  Z80YBly82'

This and (II.6.3) imply zBOXBlx82 < ZBOXBly82 . By independence of

equal subalternatives, ZBOZBlx82  <  zBOZBly82  results'   i.e '   x82  <B2  y82'
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as desired.
2

(0  Ss   ) mon is analogous,   and not elaborated.
0

Observe in the above theorem that the disaggregated monotonicity
-

properties are essential. For any arbitrary binary relation > on X

that is reflexive, there exist >A's to make {>A :A C I} satisfy all

aggregated monctonicity properties, with >  = > : simply let for any

A 0 I, xA >A YA if and only if xA = YA'

Of course, should all > 's be complete, then matters are

different. By Proposition II.4.1 the disaggregated monotonicity

properties can then be left out. That independence of equal

subalternatives   then is sufficient   for the existence  of  > ' s to fulfil
aggregated monotonicities,    (and that independence of equal

subalternatives for finite cartesian products is then equivalent to

CI,) is known, see Krantz et al. (1971, Lemma 6.1.4.1, (iv) there

resembles   (>  /  cA  mon) ),   or,   when a representing function (Definition

IIIZ.2) is presupposed, see Blackorby, Primont and Russell (1978,

section 3.3).
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CHAPTER III

ADDITIVE VALUE FUNCTIONS

III.1. INTRODUCTION

This chapter, and following chapters, can be read independently

of the previous two chapters. Only some definitions of the previous

two chapters are used. When needed, we shall mention these.

In the first three sections of this chapter we give some well-

known results from literature. In section III.4 new results will be

presented.

As before X, the set of alternatives, is a cartesian product

Xi€Ici. With the exception of Chapter V, I will be a finite set

{1,...,n}. By> , a binary relation on X, we express the "preference

relation" of decision maker T on X. As before, > shall always, in our

main results, be transitive, and from now on always complete, either

as an assumption, or as consequence of other assumptions.

Furthermore, we shall from now on assume that every Ci is a

connected topological space. E.g. Ci is a convex subset of a Euclidean
mi

space, such as R , or R. X is always endowed with the product+

topology, hence is connected too (see Kelley, 1955, Chapter 3, problem 0).

In our main results > will be continuous (Definition III.2.1), either

as explicit assumption, or as consequence of other assumptions.

In section I.1.3 we indicated that the set X would sometimes

contain hypothetical alternatives, not present in actual situations.

In the set-up of Chapters I and II it was not harmful to let X be "too"

large. We could then simply let the preference relation ignore the

redundant part of X, by letting every redundant alternative of X be

incomparable to every other alternative, or by adding only those
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preferences, involving redundant alternatives, that are necessary to

maintain monotonicity and transitivity. Since we, from now on,

usually deal with complete preference relations, "ignoring by

incomparability"   is no longer possible.

A consequence of our topological assumptions is that, if not all

of the alternatives are equivalent, then X must be uncountable. This

will   follow  from the remark after Theorem  nL 3.1    (,combined  with  the

fact that the y chere is separable, if countable).

The above two paragraphs indicate that the combination of

completeness and continuity of > can be a serious restriction. In

Schmeidler (1971) it is shown that transitivity of > , and continuity

(defined appropriately) with respect to a connected topology imply

completeness or symmetry of >. Sonnenschein (1965) gives conditions

under which completeness and continuity imply transitivity. A further

indication of the restrictiveness of completeness and continuity of >

may be the implication (ii) 4 (i) in Theorem III.3.7 in the sequel;

this usually is conceived as a surprisingly strong result.

In Krantz et al. (1971), instead of topological assumptions two

other assumptions  are  made, the so-called "Archimedean" and "restricted

solvability" (see Definition III.2.12) assumptions. These are less

restrictive than our topological assumptions, but still allow the

derivation of the results in the sequel of this monograph. We have

chosen to use the topological assumptions because they are more

customary in literature. Our Proposition III.2.15 will enable the

application of the theorems of Krantz et al. (1971) in our topological

set-up.

III.2. ELEMENTARY DEFINITIONS AND RESULTS

In this section we give elementary definitions and results from

literature. Since we will sometimes use them for other binary relations

than just the preference relation > on X, we formulate some of them

for a general binary relation >' on a general set Y.
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DEFINITION  III- 2.1.A weak order  >'   on a topological space  Y i s
continuous if {x €Y:x> 'y} and {x €Y:x< 'y} are open for all
y CY.

A weak order >' is, of course, continuous if and only if

{x €Y:x< 'y} and {x €Y:x> 'y} are closed for all y€Y; this
follows by taking complements.

DEFINITION  III. 2.2.   A  function  V   :   Y  + R represents a binary relation
>'  on Y if,  for all x,  y € Y,  [x >'  y ** V(x)  1 V(y)].

For the above function V, the term utility function is most usual
in literature. We shall however reserve this term for a somewhat

different notion in decision making under uncertainty. (See Definition
IV.2.2.) Throughout the sequel of this monograph we shall study

preference relations for which (special kinds of) representing functions
exist. Obviously these preference relatiors must  be weak orders.

We shall almost exclusively study representing functions of the
following kind:

DEFINITION III.2.3. A function V : Xi=lci + m is additive Zy decomposab Ze
if there exist Vi : Ci + R, i = 1,...,n, such that V(x) = Ii=lvi(xi)
for all x € X =lci. If this V represents > , then (Vi) =1 are called
additive vaTue functions (for  >)  ,

Usually we are not only interested in the existence  of  a (n array
of) function(s) having certain properties, (such as being representing,
continuous, additively decomposable, or whatever a context requires),
but we are also interested in uniqueness results.

TERMINOLOGY III.2.4. A function V is ordina Z [respectively continuousZy
ordinaZ]    (with  respect   to some properties)   if the class  of all functions
having these properties, consists of all strictly increasing
[respectively continuous, strictly increasing] transformations of V.

TERMINOLOGY III.2.5. A function v is cardinaZ (with respect to some
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properties)   .:   ..,a  c.._s  of all functions having these properties,

consists of ali _Dv:1.-4: affine transformations of V.

An ariai ci  -.....iw.0 41 ) =1 is aimuZtaneous Zy cardinaZ (with
respect to :sme  · cM·e. les; if the class of all arrays of functions

(Wj)1-1 havi,ig La.e _Lop:Icies, consists of those (W ) =1 , for
which real T., 1 =  ,.. ,n, and positive a exist such that W  = T +CV J

for all j.

To give e..aa,ile., we define v : R2 + IR by V : (xl'x2) 4* xl+x2'
and we let ) or, 7- 03 represented by V. We shall refer in these

examples tc, their».ts: given in the next section. V is ordinal with

respect to the propercy of being representing, as is easily derived

from the observaL.ons Vix) 1 V(y) u x>y, and x>y# W(x) 1 W(y),

for any representing W. V is continuously ordinal with respect to

the  properties  Of  ve ing continuous and representing, as follows  from

Theorem III.3.1. 9 is -ardinal with respect to the properties of being

continuous, repi essicing,  and  additively  decomposable,  as  can  easily

be derived from Thecrem III.3.6. Finally, with Vt' V2 : IR + IR being

identity, (Vl'V2) is simultaneously cardinal with respect to the

properties cf bel g continuous and being additive value functions,

again by Theorem  iii . 3.6.

In the sequel we shall use Notations II.2.1 (subalternative xA'

for A c I), and I..2.4  (x-AYA ' etc., and lines below this Notation) ;

Definitions II.2.3 (xAlyA2 is compounded of xAl and y  ). II.6.2A2
(independence   of   e Tual subalternatives)  ,   II.6.3   (CI) ; and Theorem

II.6.4 (equivaien-s of last two notions). With these we define, deviating

in a harmless way from Chapter II, some binary relations on Xi€Aci

DEFINITION III 2.,- Scr every A C I, and xA' YA in Xi€Aci ' we write

XA  >A  YA I respect -vely  KA  >A   YA   '   or   xA  <A  yA   '   or   xA     YA   '   or

XA NA YA] if there axists a zAG such
that

ZAZAc > yAZAC [respectively

XAZA 
>

YAZAG  ,
0- XAZAG < YAZAc  ' or xAzAC 4 yA2 C  '  or xAzAc w YAzAC 

If  >  is  CI,   the  main  case of interest  in this monograph,   then  the

binary relations defined above coincide with those in Chapter II,

denoted in the same way (by Theorem II.6.5 and Proposition II.6.1).
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Furthermore,  >A    is  then the asymmetric,  and  -A the symmetric,  part

of >A, as usual. As always, >, = >r., , and > => .
1    ill        I

LEMMA III.2.7. Let > be CI. If > is a weak order, then 80 is any ,A

If further > is continuous, then 80 €s any ,A.

PROOF. Let A c I,z€X i s arbitrarily fixed. Let >b e CI. By CI,

xA >A yA iff xAZAc   yAZAC. If > is complete, then xAZ c   YAz c or
A A

 Az c > xAZAc  ,  so xA  A YA or yA )A xA'  for all  xA,  yA.  Completeness
of >A follows.

If > is transitive, then xA  A YA and yA  A vA (i.e. xAz c )  Az c
A       A

and   yAZAc  >  vAZAc ) together imply
xAZAc     "Az c '    i.e.   "A   A  vA '

Transitivity of >A follows.

The above observations about completeness and transivity show

that > being a weak order implies that any >A is a weak order.

Next suppose that > is continuous. We derive continuity of  A.

{xA  :   xA  A  yA   =  {xA :

xAZAc     YAZAc }  =  {xA   : xAzAc
€ C}, with C the

closed set {w :w> YAZAC}

By Lemma 0.1 the set {xA : xA  A YA} must be closed too.

Analogously  {xA   :  XA  <A  YA} is closed. Continuity  of >A follows.
0

The following definition of inessentiality of i expresses the

idea that a coordinate has no influence on the "desirability" of any

alternative, so that this coordinate may just as well be ignored for

the preference relation.

DEFINITION III.2.8. Coordinate (or index) i is inessentiaZ (with

respect to >) if
X-ivi - x .w. for all x € X, v., w. € C.. Otherwise-1 1                 1   1    1

i is essentiaZ (with respect to >).

For a weak order > ,i i s essential if and only if v. >. w.
111

for some vi' wi
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LEMMA  III.2.9. Let -be an equival ence Ailation. L.'t· x. = y. for aLZ
J        J

essential   j .   Then   x  w  y.

PROOF. Let there be k inessential coordinates, say {1,...,k}. Then

x e, (x-1Yl) RS (x-1,2yl' 2) Ri ... m (x-1....,kYl '...f  k  = Y· Apply
transitivity of *1.

0

The above Lemma shows that the inessential coordinates may just

as well be suppressed from notation. That we shall sometimes do.

LEMMA III.2.10. Let m be an equivaZence reZation. ghen > is triviaZ if
and onZy if no coordinate is essentiaZ.

PROOF. If no coordinate is essential, then Lemma III.2.9 gives

triviality  of  >.   If >i s trivial,   then  x-ivi  x  x-iwi  for  all  x,i,v i'
w. : no i is essential.
1

0

We now formulate the topological assumption that we shall mostly

use in the sequel.

ASSUMPTION III.2.11. (TopOLOgicaL Assumption.)

Every Ci is a connected topological space.

X = X =lci is endowed with the product topology.

If exactly one coordinate i is essential, then furthermore C. is
1

topologically separable.

DEFINITION III.2.12.  > satisfies restricted soZvab€Zity if, for every

x-isi >Y> x-iti' there exists zi such that x-izi x Y.

LEMMA III.2.13. Let the topo Zogica Z assumption III. 2.11 hoZd. Let >be

a continuous weak order. Then > satisfies restricted so Zvab€Zity.

PROOF. Let x-isi >y> x-iti. Let V: = {v. €C. :x .v, > y}, and1    1    -1 1

W := {wi € Ci : x-iwi < y · Then si € V and ti € W, so V and W are
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nonempty. By Lemma 0.1 they are closed. Their union is Ci. By

connectedness of Ci' v n W 0 0. Let z. €v n w.1
0

LEMMA III.2.14. Let the topoZogicaZ assumption III.2.11 hoZd. Let >

be a continuoua weak order. Let x-ASA >Y> x-AtA. Then zA ex€Bts With

x-AzA  - Y

PROOF. Apply Lemma III.2.13 to the cartesian product

(Xj€Acj) x (Xi€Aci)

0

The following proposition will be used as a supplement to results

of Krantz et al. (1971, Chapter 6), so that we can use their results

in our topological set-up, where we need continuity.

PROPOSITION III.2.15. Let the topoZogicaZ assumption III.2.11 hoZd.

Let > be continuouB, and Zet at Zeast two coordinates be essent€aZ.

Let   (v.)         be  additive  vaZue  functions.   Then  aZZ  vj '8  are  continuous.J J=1

PROOF. Suppose Vl is not continuous. Contradiction will follow. Say

v 11(]U, 00[) is not open; then neither it is empty, nor does it equal
i .0

in ]w. =[Cl. Also there  can  be no sequence   (Vl (xi) ) j= 1
, converging

to w. because then Vil(]11, -[) would equal Uj{zi : zl >1 xl} and so
be open by the easily verified CI, and Lemma III.2.7. So

inf (41(Cl) fl ]11, -I) =: v € m must be greater than u. We now show:

0< V (x ) - V (y ) <v- 11 for no j 0 1, x , y . (III.2.1)

If, to the contrary, j 0 1 and 0< V.(x.) - V.(y.) < 9-u, then,
J J J   J

with z€X arbitrarily fixed, and al such that V.(x.)-V.(y ) >

Vl(al)-v 1 0, cl such that Vl(cl) i v, we obtain:

(z-1'jcl'xj) < (z-1,jal'Yj) < (z-1,jal'xj),

by substitutions of inequalities in terms of the V 's. By restricted
solvability (Lemma III.2.13), (z-1,jbl'x ) 0 (z-1,jal'yj) for some bl

This would imply v > Vt (bl) > 11'in contradiction with the definition
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of v. (III.2.1) is derived.

Now j 0 1 exists that is essential, so has V  not constant. Say

V.(x ) > V (y ). There must, as a consequence of (III.2.1), be a z.J

such that V (x ) > V (z ), and V (x ) > V (v ) > V (z ) for no v  € C .
This finally gives a partition ({v. : v. <. z }, {v  : v  >  x }) ofJ       ]J

C., consisting of two nonempty closed sets. This contradicts
J

connectedness of C..
J

0

III.3. BASIC RESULTS ON ADDITIVE DECOMPOSABILITY

The representation theorems from literature, given in this

section, underly all results in the sequel.

III.3.1. LESS THAN TWO ESSENTIAL COORDINATES

The following theorem, proved in Debreu (1954, 1964) does not

consider cartesian product structure.

THEOREM III.3.1. (Debreu). Let Y be a connected separabZe topoZogicaZ

Bpace. For a binary reZation >' on Y the foZZ·owing two statements are

equivaZent:

(i) : There   exiats   a   continuous   representing   junction   0    :   Y  +   R.

(ii) : >' is a continuous weak order.

Fwrthermore, 0 in (i) ia cont€nuousZy ordinaZ.
0

From this one sees that, if 0 is not constant, then $(Y) is a

nondegenerate interval, and Y must be uncountable. That the connected-

ness condition above cannot be dispensed with, is indicated in

Fleischer   ( 1961) and Wakker ( 1985a). We shall  use the following small

variation of the above Theorem.
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COROLLARY III.3.2. Let at moBt one coordinate be essentiaZ. Let the
topoZogicaZ   assumption   III. 2.11   hoZd.   For   the   binary   relation  >  on

Xi=lci , the foZZowing   two   statements   are   equivaZent:

(i)      There   exist   continuous   additive   vaZue   functions    (vj)  =t   for  >.

(ii) > is a continuous weak order.

Furthermore, the v  9 in (i) are continuousZy ordinaZ, and > in (ii)

satisfies CI·

PROOF. (i) - (ii) is straightforward. So we assume (ii), and derive (i)

and the Furthermore-statement. If no coordinate is essential, then >

is trivial by Lemma III.2.10. Then we can, and must, let all V 's be
arbitrary constant functions, and everything follows.

So suppose one coordinate i is essential. By Lemma III.2.7, >. is
1

a continuous weak order. By Theorem III.3.1 there exists a continuous,

end continuously ordinal, function   $   :   Ci  +  IR that represents  >i ·   We

can let Vi = *°0 for any continuous strictly increasing * : $ (Ci) + ]R ;

and for all j t i let V  be any constant function. Then, for any
x, y € X. In  V (x ) > In  V (y.) iff Vi(xi) 1 Vi(yi)' which is iffj=1 j  j  - j=1 j  J
xi >i Yi. The latter is iff there exists z such that z-ixi > z-iyi-

Inessentially of all j 0 i, by Lemma III.2.9, gives z-ixi z x and
Z-iyi -Y·W e conclude that In  V(x) >I n V(y) #x>y. Indeed,

j=1 j  j  - j=1 j  j
(v )n are additive value functions. They are continuous too, and (i)j j=1
follows.

For the Furthermore-statement, note that any V  must represent

> . Hence for all j 0 i, V  must be constant; and Vi must be a strictly
increasing, by Lemma VIII.5 continuous, transformation of 0. Finally,

that > in (ii) satisfies CI, follows from (i), and the observation

that x_ia >. Y-:La *• Ij0iVj (xj)  1 Ej0ivj (yj)  *• x-iB > y-iB.
0

III.3.2. EXACTLY TWO ESSENTIAL COORDINATES

The previous subsection, with at most one essential coordinate,

hardly dealt with the cartesian product structure. In essence, we only
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had to deal with the essential coordinate. In this subsection we con-

sider the case of two essential coordinates. It turns out, as in Krantz

et  al.    ( 1971) ,   that  then the requirement of topological separability  can

be dropped. In this section we give the, completely straightforward,

adaptation of results in literature for the case of exactly two

coordinates, both essential, to the case of n coordinates, two of them

essential. The following property is illustrated in Figure III.3.1.

DEFINITION III.3.3. If > has exactly two essential coordinates i,j,

then > satisfies the Thomsen condition if (x-i,jai'tj) 0 (x-i,jbi'Sj)

& Cx-i, jbi,vj) w (x-i,jci'tj) together imply (X-i,jai'Vj) m (X-i,jci'sj) ;
for every x € X; ai' bi' ci € Ci; s , tj, vj E Cj.

\
\

\
\

V i-    N    .4
\

.[510,131.
\
\.

t 2-    =       
(1)/ 0, (4)

[5]
\\

52                            [6],      .    [6],   0.
(2) 00 0 0 0

1 1        1        ...

at    bl       (1

FIGURE   I I I.3.1.   The  Thomsen  condition   for  n  =   2,   i   =   1,   j   = 2. Curves
indicate equivalence classes. The solid curves through 0-points are
presumed; the broken curve through O-points is implied. One can inter-
pret (al't2) w (bl's2) to mean: substitution (1) of t2 for s2 is as
good as substitution (2) of bl for al. And (bl'v ) N  (cl,9  :substitution   ( 3)   of  v:2  for  t2   is  as  good as subs itution   (4)   of  c 1   for
bl. The conclusion   (al'v2)  .  (cl's.,)   : the "concatenated" substitution
[5]   of  v2   for   s2'   is  as  good  as th& "concatenated" substitution  [ 6]   of
Cl for al
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At first sight the above definition may seem asymmetric  for  i and j .

Interchanging i and j, and interchanging the first two equivalences x,

shows that symmetry for i and j does hold.

LEMMA   III.3.4.   If  >  has   exactly   two   essential  coordinates   i  and   j,   and

if  additive   vaZue   functions    (v   ) n        erist   for  >,   then   >  satisfies   thek k=1
Thomsen condition.

PROOF. Ik#i,jvk(xk) + Vi(ai) + Vj(tj) = Ik*i,jvk(Xk) + Vi(bi)

+ V,(s ) and I V(x) +V(b) + V.(v.)=Sk#i,jvk(xk) + Vi(ci) +J j k#i,j k  k     i  i     J  j
V.(t.) together imply

Vi(ai) + Vj(tj) = Vi(bi) + Vj(sj) and Vi(bi) + vj(vj) = vi(ci) + vj(tj).

Summing and cancelling gives:

Vi(ai) + Vj(vj) = Vi(ci) + Vj(sj), or :

Ik#i,jvk(xk) + Vi(ai) + Vj(vj) = Ik0i,jvk(xk) + Vi(Ci) + Vj(sj),
0

The following property is a preparation for cardinal coordinate

independence (Definition IV.2.4) and is illustrated in Figure III.3.2.

DEFINITION III.3.5. If > has exactly two essential coordinates i, j,

then > satisfies tripZe eanceZZation if (s . .a .x ) < (s b .Y ) &
-1, J i j -i,j i  j

13-i,jci'xj) > (s-i,jdi,Yj) & (s-i':lai,vj) > (s_i,jbi,wj) together
imply (s-i, jci'vj) > (s-i, jdi'wj).

Again, the property can be seen to be symmetric in i and j, by

interchanging second and third preference.
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1                                                  1

al   bl          (1      dl

FIGURE III.3.2. TbipZe cance ZZation for n = 2, i = 1, j = 2. Curves

indicate equivalence classes. A point above or on an equivalence class

is at least as good, a point below or on it at least as bad, as the

points on the equivalence class. The solid curves through and above/

below 0-points are presumed, the broken one through and above 0-points

is implied. One can interpret (al'v,) > (b ,w,) to mean: substitut
ion

(1)o f v 2   for  w     is at least  as  gooa  as su] stitution (2)o f b l   for  a i·
And  Cal'x:2)  <  (   'Y2)   substitution   (2')  of  b,  for  a    is at least  as
good as substitu ion  3  of  x2  for Y2  Further tct,x2) 1>   (dl'Yn)   :
substitution (3') of x  for y  is at least as good as substitution (4)

of dl for cl- The conc usion  cl,v2) > (d ,w2) : substitution [1'] of

v2  for  w2   is at least  as  good as substitu ion   [4']   of  dl   for  c t·

Again it can easily be demonstrated that existence of additive

value functions implies triple cancellation. The term "triple

cancellation" comes from Krantz et al. (1971). In Keeney and Raiffa

( 1975)   the term "corresponding tradeoffs condition"   is  used  for  the

same property with X instead of > or < everywhere. This is closely

related to the "Reidemeister condition" in Blaschke and Bol (1938).
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THEOREM III.3.6. Let the topoZogica Z assumption III.2.11 hoZd. Let

exact Zy   two   coordinates   be   essentiaZ.   For  the   binary   re Zation   >  on

Xi=lci,
the foZZowing three statements are equiva Zent:

(i)   There exist continuous additive va Zue junetions (v ) j=1 for >.
(ii)  > is a continuous weak order that satisfies CI and the Thomsen

condition.

(iii) > is a continuous weak order that satisfies tripZe canceZZation.

Furthermore. (V )n in (i) is simuZtaneously cardinaZ.'   j j=1

PROOF. (i) =* (ii) and (i) - (iii) are straightforward. For (iii) =* (i)

and   (ii)  -  (i),  let  i  and  j  be  the two essential coordinates.  The

other coordinates do not affect the preference relation, e.g.

(s   .a ,x.) > (t b.,y ) iff (ai'x.) > (bi,yj), for all s,t.-i,J i j -i,j 1 J   {i,j}
Hence, the Thomsen condition (respectively CI; or triple cancellation)

for > implies the same condition for >, .. So by Lemma III.2.7, (ii)
1,1

(respectively (iii)) for > implies (ii) (respectively (iii)) for

>{i,j}'
Now (ii) for > implies the existence of simulaneously

{i,j}
cardinal additive value functions (V . V.) for >

on Ci x C , asi. J {i,j}
can be derived from Theorem 2 of section 6.2.4 of Krantz et al. (1971),

in the same way that Theorem 14 of section 6.11.1 of that book is

derived from Theorem 13 there. The reasoning of section 6.2.13 there

applies literally for n = 2. See also exercise 34 of chapter 6 there.

Also (iii) for > implies the existence of simultaneously
{i,j}

cardinal additive value functions for > A hint in this direction
{i,j}.

is given at the end of section 6.2.4 of Krantz et al. (1971).

For every k 0 i,j we can, and must, let Vk be any constant

function. It then follows that indeed
(Vk)k=l are simultaneously

cardinal additive value functions  for  >,   if   (Vi' V  )   are   for  >.1,]
Continuity is by Proposition III.2.15. So (ii) implies (i), (iii)

implies (i) too; and the Furthermore-statement holds.

0
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III.3.3. MORE THAN TWO ESSENTIAL COORDINATES

Surprisingly, when there are three or more essential coordinates,

the structure turns out to be rich enough to enable a further weakening

of the conditions which we met in the previous subsections.

The following theorem is essentially due to Debreu (1960). We

give it in a slightly stronger form, by leaving out the assumption of

topological separability, an assumption made and essentially used in

the proof by Debreu. Krantz et al. (1971, Theorem 6.14) showed that

without that assumption, still additive value functions exist. Combined

with Proposition III.2.15, this gives:

THEOREM III.3.7. (Debreu, 1960). Let the topological assumption III.=.11

hoZd. Let three or more coordinates be essentiaZ. For the binary

reZation > on x =tci, the fo ZZowing two statements are equivaZent:

(i)      There   exist   cont€nuous   additive   vaZue   functions (vj) =1 for>·

(ii) > is a continuouB CI weak order.

Furthermore.  (v )n   of (i) u 8€muztaneousZy card€naZ.
'   j j=1

PROOF. By Theorem 14 of section 6.11.1 of Krantz et al. (1971), and

Proposition III.2.15.
0

III.4. SOME FURTHER RESULTS ON ADDITIVE DECOMPOSABILITY

The results of this section are from section 3 in Wakker (1985b),

and will be used only in section IV.4. They may have interest of their

own, since they can be considered stronger than previous results

(Theorems III.3.6 and III.3.7) in this Chapter.
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DEFINITION  III .4.1. > satisfies Weak separab€Zity  if  x_ivi  >  x-iwi  4
y-ivi > Y-iwi for all x, y€X,1 l i I n, vi' wi € Ci·

The above property expresses some sort of monotonicity of > with

respect to the >i's (> cA mon, in the terminology of Chapter II , see
(III.4.1) in the sequel). It is well-known that the above property is

necessary, and under some further assumptions sufficient, for the
existence of functions 0   :  C  + IR, and a function F that is strictly
increasing in each variable, such that x » F(01(xl)'  "' 0n(xn  
represents > . Also weak separability is implied by CI; it is in fact
the independence of equal subalternatives property, restricted to equal

subalternatives of length n-1.

DEFINITION III.4.2. > satisfies equivaZence-coordinate independence

(eq-CI) if: [x-ivi x y-ivi " x-iwi w Y-iwi] for all x, y, i, vi' wi

To   see  that  this is implied  by  CI,   let  x-ivi  0  Y-ivi *   Then
X-ivi > Y-ivi and y-ivi > x-ivi ' by twice CI we obtain x-iwi >
y-iwi   and  y-iwi  >  x-iwi   '   i.e.   x-iwi  x  y-iwi·

For the property defined below, in view of Definition II.6.3 (CI),
III.4.2 (eq-CI), and also in view of Definitions IV.2.4 (CCI) and
IV. 2.6   (eq-CCI) of Chapter  IV,   the name "equivalence-triple
cancellation", derived from "triple cancellation" (Definition III.3.5),
could have been chosen for it. We deviate slightly from literature by
formulating it for the case of two essential, instead of two,

coordinates. Also in literature the property is usually formulated in
terms of a (representing) function, instead of in terms of > .

DEFINITION III.4.3. If > has exactly two essential coordinates i, j,
then > satisfies the Re€demeister condition if (s-i,jai'xj) x

(S-i'4bi,yj) & (s-i,jci'xj) Ai ( s-i,jdi'yj) & (S-i,jai,vj) - (s-i,jbi'wj)
together imply (s-i,jci,v ) m M   .d .w.) for all s. a  b  c  d-i,J i' 1 '  i'  i'  i'  i-

Xj, yj, Vj, Wj.

Again, this is implied by triple cancellation: The first three

equivalences z, Ai , . imply < , > , > , and hence, by triple
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cancellation, give (s C ,V.) > (S .d.,w.), and they also imply
-i,j i ] -i,] 1  ]

> , < , < ,t o give, by triple cancellation, (s-i,jci'vj) <

(s   ,d.,w.).
-i,] 1  J

LEMMA III.4.4. Let the topoZogicaL assumption III. 2.11 hoZd. Let >

be a continuous weak order. The foZLowing two statements are

equivaZent:

(i) > satisfies CI.

(ii) > satisfies weak separab€Zity and eq-CI.

PROOF. We have already seen above that (i) implies (ii). So we assume

(ii), and derive (i).

First let us show:

If  v   >  w   for  all  j,  then  v > w. (III.4.1)

This follows, by repeated application of weak separability, from v >

V-lwl > (v-twl)-2 ,2 > ((v-lwl)-2w2)-3w3 ) ' •   w
Now suppose x-ivi > y-ivi. To derive is x-iwi > Y-iwi  Let A =

{j #i:x  >  y }. Say A={1, ..., k}, andi=n; with O l k<n.

For  all  j  9  A,  not  x   >   y ,   so  z_ x   >  z- y   for  no  z,  and  x   <    y 
follows for these  j. By (III.4.1) we obtain (x-AyA) -nvn < y-nvn  <

0           1     1-1
x  v. Let x =x-nvn, X  = (x-1 yl) for all l i l l k.B y weak-n n
separability x-nvn =x >x l> ... >x k= (x-AyA) -nv . Let now l b e

1-1
such  that  x        >  y-nvn >x l.B y restricted solvability (Lemma  III.2.13)

1
there exists   zl   such   that  xllzl  Q  Y-nvn.   Now  x-lzl  has n-th coordinate

vn'   so  by   eq-CI we obtain  y-nwn  w   (xilzl) -nwn'   That  xl  >1 zl follows
from xllxl = xl-1 &* y-nvn= xllzl, Apparently (x-nwn)j  j ((xllzl)-nwn) j
for all j. By (III.4.1), (x-nwn)   (xilzl)-nwn ' the latter was

equivalent to y-nwn'
0

The implication (ii) 4 (i) above does not have to hold if the

continuity assumption does not hold. This can be seen from > , defined

as follows. First,  let  V  :  ]R3 +  IR be defined by

V : x 2 xl+x2+x)+min{xl' x2, x3  Then define x>y whenever V(x) >

V(y), or V(x) = V(y) and x 1 > Yi, or V(x) = V(y) and xl = yl and
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x2 > Y2' or x=y. Then x .y only if x=y, and eq-CI is trivially

satisfied. For every i, >i =1, and weak separability follows. But
(9,1,1) > (5,5,1) and (9,1,9) < (5,5,9) violate CI.

LEMMA III.4.5. Let the topo ZogicaZ assumption III. 2.11 hoZd. Let >
be a continuous weak order, and Zet exactZy two coordinates i, j
be essentiaZ. The foZZowing two statements are equivaZent:

(i) > satisfies   tripZe   cance ZZation.

(ii) > satisfies   weak   separab€Zity   and  the   Re€deme€ster  condition.

PROOF. The implication (i) 4 (ii) can be obtained by elementary means;
or as a corollary from Theorem III.3.6. So we assume (ii), and derive

(i). We suppress inessential coordinates from notation. Say the first
two coordinates are essential. Let now (al'x21 < (bl'92)'(cl'x2) >(dl,y-), (al'v2) > (bl'w2). To derive is (cl'v2) > (dl'w2)'

If  we  can  find  a;  >1  al'  b;  <1  bl'  c;  <1  cl'  d;  >1  di,  v:  <.  v„L            L            6

w  > 2 w2' such that (a;,x2) . (b;,Y2)' (c;,x2) Z (d;,Y2)' (a;,v ) =2
(b;,w:),   then  we may conclude  from the Reidemeister condition  thatL

(c;,v ) m (d;,w ), and, by weak separability that (cl'v2) > (c;,v ) x
(d;,w ) > (dl'w2)' which is what is desired. So all that remains is
to find a;, ..., w  as above.

First we use (al'x2) < (bl 'y2) and (cl'x2) > (dl'y2) to find

a;,  b;.   I f   (cl'x2)  >  (bl'Y2) '   then by restricted solvability (Lemma

III.2.13) from (al'x2) < (bl 'Y2) < (cl'x2) we conclude that ai must
exist  such  that   (a;,x2)  - (bl 'Y2) •  Here  a;  >1  al.  We  then take b;  = bl.The other case is (cl'x2) < (bl'y2). Then we take a; = cl if (cl'x2) >
Cal,x2)' and a; = al if (al'x2) > (cl'x2). We then, in any way, have
(dl,Y2)  <  (a;,x2)  <  (bl'y2) ' Restriced solvability gives existence  of

b; such that (b;,72) - (a;,x2)' Again here b; <lbl' also a; >1 al  So
always a;, b; are found such that a; >1 al' b; 41 bl' and (a;,x:1) RS
(b;,y2).

Analogously one uses
(dl 'y2) < (cl'x2) and (bl'y2)   (al'x2) to

find d; and c; as desired.

Analogously (exchange the role of the first and the second

coordinate), one uses (b;,w2) < (a;,v2) [since a; >1 al' bl  1 bi] and
(b;,y2) > (even .) (a;,x2) to find v  and w  as desired.

0
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A straightforward consequence of the above Lemmas is the

following theorem.

THEOREM III.4.6. Let the topoZogicaZ assumption III.2.11 hoZd. For
the binary re Zation > on xi=ici, the foZZowing two statements are
equivaZent:

(i)      There   exist   continuous  additive   vaZue   functions    (v )  =1   for  >   .
(ii) > is a continuous weak order that satisfies weak separab€Zity,

eq-CI, and, in the case of exactZy two essentiaZ coordinates,

the Re€demeister condition.

The foZZowing uniqueness resuZts hoZd for (vj)j=l of (i) .
If two or more coordinates are essentia Z, then (III.4.2)

(v.)9   -   is  simuZtaneousZy  cardinaZ.
J J=l

If exactZy one coordinate is essent€aZ, then (III.4.3)

the v 's are continuousZy ordinaZ.

PROOF. By Corollary III.3.2, Theorems III.3.6, III.3.7, and the Lemmas

III.4.4 and III.4.5.

0

III.5. HISTORICAL REMARKS ON ADDITIVELY DECOMPOSABLE REPRESENTATIONS

In Blaschke and Bol (1938) the following problem of "web theory"

was studied: suppose Fl' F2' F3 are three families of curves in the

plane, such that through every point of the plane, for every family Fj,

exactly one curve from F  goes through this point. When can continuous

transformations Vl and V2 be applied to the first and second

coordinates, to transform the three families of curves into three

families of parallel straight lines7 If one now lets Fl correspond to

lines with constant first coordinate, F2 to lines with constant second

coordinate, and F3 to equivalence classes of the preference relation,
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then the matter is closely related to the problem that we addressed in

subsection III.3.2, for the case that n=2,C l= (2=R, and where >
should satisfy, for example, strong cA monotonicity.

In Blaschke and Bol (1938) conditions like the Thomsen condition

already appeared.

Debreu (1960) showed the way, with Theorem III.3.1 as a starting
point, to use the above results to obtain characterizations of

continuous additively decomposable representations for binary relations

on cartesian products of separable connected topological spaces. He

proved that coordinate independence (together with continuity,

transitivity and completeness) is the necessary and sufficient con-

dition for the case of three or more essential coordinates. By this,

Debreu also extended earlier work of Leontief (1947 a,b),who considered

Euclidean spaces, presupposing the existence of "smooth" representing

functions, and then obtained conditions requiring that rates of

substitution of pairs of coordinates be independent of other

coordinates. Results as those of Leontief had earlier been obtained

by Sono (1945, 1961), but this had not been well-known. See also

Samuelson (1947, pp. 174-180). Further already Fleming (1952; treated

in section 4.9 of Harsanyi, 1977) had obtained a derivation of additive

decomposability, on R . His main characterizing property was even

weaker than coordinate independence, it was, essentially, independence

of equal subalternatives of only length n-2, formulated in terms of a

(presupposed, representing) function, already without the use of

derivatives ;  see his Postulate E.

Gorman (1968,a,b) showed, for cartesian products of topologically

separable arcconnected  spaces, how in fact coordinate independence

can be weakened, still remaining strong enough together with the other

assumptions, to imply coordinate independence. His weakening requires

the independence of equal subalternatives condition for only certain

subsets A of I. In Vind (1971) the extendability of Gorman's Theorem

to cartesian products of separable connected (instead of arcconnected)

topological spaces is indicated. See also Gorman (1971) and Murphy (1981).
Another result can be found in Krantz et al. (1971, chapter 6).

They   use an algebraic approach, employing a theorem of H6lder    ( 19C 1)
on the possibility to embed archimedean ordered groups into the reals.

First they use reasonings such as those below Figures III.3.1 and



64

III.3.2 to derive differences or concatenation - like operations on

every coordinate set Ci. Next they use this and results such as the

Theorem of H6lder to construct the additive value functions on the

coordinate sets. They ascribe their method of proof to Holman (1971).

For further history on their approach, see section 6.2.5 of their book.

In Keeney and Raiffa (1975, sections 3.4 to 3.6) one finds, for

Euclidean spaces, an appealing sketch of the main ideas of the proofs.

Another appealing proof for Euclidean spaces is provided in Koopmans

(1972). For the case of two essential coordinates, there is a proof

in Roberts (1979).

Many results on weakenings of coordinate independence for Euclidean

spaces   in the spirit of Gorman' s weakenings are given in Blackorby,

Primont and Russell (1978).

Necessary and sufficient conditions for the existence of additively

decomposable representations, without any restrictive assumptions, have

been obtained in Jaffray (1974). For the case of finite Ci's, such

conditions have longer been known, see Scott (1964, section 1). They

can be obtained from separating hyperplane theorems, and standard ways

of application of these to the solution of systems of inequalities.

Jaffray used an Archimedean-like strengthening of Scott's conditions,

excluding "infinitesimally small" differences.
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CHAPTER IV

CARDINAL COORDINATE INDEPENDENCE

IV.1. INTRODUCTION

nIn this chapter we shall assume that X=C  for some connected

topological space C; so, in comparison with previous chapters, we add

the assumption that Ci = C for all i. We shall study representations

of the form x M I =tA U(x ). Our main intended application lies in

decision making under uncertainty (DMUU). Hence we shall use

terminology of DMUU in this chapter, and chapters V and VI; with the

exception of section IV.4 and part of section IV.5. For DMUU, Theorem
IV.3.3 (given in Wakker, 1984a, for C=R; and in Wakker, 1986 , for
C any connected topological space), the central result of this and

following chapters, shows for the case of a finite state space, that

a person with a continuous weak order as preference relation maximizes

subjective expected utility, if and only if his preference relation

satisfies cardinal coordinate independence (Definition IV.2.4). The

more complicated conditions for infinite state spaces are given in

Chapter V. Thus we have characterized subjective expected utility

maximization under only one restriction: continuity of the utility
function, with respect   to a connected topology    (e.g. a Euclidean

topology). Like Savage (1954) we derive probabilities and utilities

simultaneously, without supposing that any of them are known in

advance.

In section IV.4 we characterize the above representation for the

case where some of the X 's may also be negative. This result, and
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applications to the theory of economic indexes, are given in Wakker

(1985b). Here we indicate an application to dynamic contexts: a

characterization, alternative to the one in 1<oopmans  (1972) , of a

representation of the form x F+ IA U(x ).
In section IV.5 we obtain a stronger result than Theorem IV.3.3,

by restricting the involved indexes i and j in cardinal coordinate

independence. Again we apply this to the dynamic context, to

characterize a representation as in Koopmans (1972), mainly by letting

every point of time be "CCI-related" to the previous point of time, and

by letting the amount $a at a point of time, in preference equivalent

to $1 at the previous point of time, be the same for all points of time.

In section IV.6 several other ways to strengthen Theorem IV.3.3

are suggested without elaborations. One could investigate how to

combine the many ways, mentioned above, to strengthen Theorem IV.3.3.

Because of the size of this task, we do not take it up.

In section IV.7 we compare our derivation of SEU maximization to

the most well-known other derivations, available in literature.

IV.2. CARDINAL COORDINATE INDEPENDENCE

Let us first repeat the terminoly of DMUU.

TERMINOLOGY IV.2.1. We use the term (possible) state (of nature)

instead of index, and act instead of alternative. Elements of C are

called consequences, and denoted by Greek characters a, 8, y, 6;

sometimes they are also called coordinates, and denoted as xi' v , etc.

The following definition gives the most known approach to DMUU.

DEFINITION IV.2.2. We say [C , >. (P )n- . u] is a subjective expected
j j-1.

ut€Zity (SEU)   model    (for   >)    if   the   pl' s are nonnegative real numbers

that sum to one, and U:C+R i s a function, such that

Ix >y *• Ij=lpju(xj) 1 El=tp U(y )] for all acts x,y: Then p  is
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called the subjective probab€Zity for state j, u the (subjective)

utiLity  function,   and  I =lp U(x )   the  subjective  expected  ut€Zity  of
act x.

A notation, only applicable in the present context, where all

coordinate sets Ci are one same C:

NOTATIONS IV.2.3. For a € C, E € Cn is the act with all coordinates

equal to a. We write a>B i f a>B.

The act a with certainty gives consequence a. Note that, by the

above notation, the binary relation > on C  induces a binary relation

on C, also denoted by >. This notation will not cause confusion.

The remainder of this section is devoted to elucidations, and

elementary results, for the following property.

DEFINITION IV.2.4.  > satisfies card€naZ coordinate independence (CCI)

if:

X-ia  < y-iB   and   v_ a  > w_ B

and x-iY > Y-i6

imply  v_ y >  w_ 6
for all acts x, y, v, w, all consequences a, 8, y, 6, all states j,

and all essential states i.

ELUCIDATION. Replacement, in x-ia < y-28, of a,B by y,6, changes <

into  >,   to  give  x-iY  >  Y-i6. We imagine that replacement,   in

v- a > w_j B, of (a,B) by (y,6) , should thus kind of "reinforce" >,
to v_ y > w_ 6. So the replacement should certainly not induce a

reversal of preference, into v_ y < w_ 6.

Let us emphasize that the above Definition does not have a

restriction i 0 j, or i = j. If exactly two coordinates are essential,

then putting i=j essential, in Definition IV.2.4, gives triple

cancellation. The proof of Lemma IV.2.5 in the sequel may serve as

a further illustration of the meaning of CCI.

To obtain an example of a binary relation > , satisfying CCI, we
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let n€ N be arbitrary, C = IR++,al'...'an € :R++ ; further let>be

represented by the "Cobb-Douglas" production function  (xl '-  - 'xn)  ++n  a,
Hj=lxjl.  Then, with p  := a / =lai, j = 1,...,n; and U : p # 109 p,
> is also represented by x 5 I D U(x.). Lemma IV.2.5 will show that

j=l. j   j
indeed > satisfies CCI.

An example of a continuous weak order, satisfying CI and triple

cancellation, but violating CCI, is obtained by taking n = 2, C = ]0,1[,

and  >  represented  by   (xl'x2)  5  xl-xlx2    One may think  of the inter-

pretation where x 1 is a share of total income before tax, allocated to

a person, x2 is tax rate, and x 1-Xlx2 is the share of total income

after  tax.  Here  >  is also represented by (xl'x21  » log xl+log (1-x2)'
so by Theorem III.3.6, > is a continuous weak order satisfying CI and

1 1 2 3triple cancellation,   and the Thomsen condition.   We have (3'2-)   <   (-3-'4)'
1 1 13 11 2 2 1 1 2 1

(8'6)  >   (4'4) '   (5'3)  >  (5,3),   but   (-5,8)  <  (·5,4),   so  by  i  -1,   j   =2,

c' = .5' B = .5, Y = *, 6 = i, .2 -  F' "2 -  ' .1 . .5' .1 = 25 this gives
a violation of CCI.

Lemma IV.2.5. If an SEU modeZ [Cn, >, (p )n  , U] exists for> then
j j=1

>  satisfies   CCI.

PROOF. Suppose:

i is essential. (IV.2.1)

Then there must exist z, 0, T such that z .a > z .T, i.e.-1     -1

Ek0iPku(zk)  + Piu(a)  > Ik0ipku(zk) + PiU(T) . This can hold only if:

Pi >
O. (IV.2.2)

Next let:

X-ia < y-iB and x-iY > Y-i6 (IV.2.3)

Then Ek#ipkU(xk) + Piu(Ot) 1 Ik0ipku(yk) + Piu(B) and Ek#ipkU(Xk) +
Piu(Y) 1 Ek#ipku(Yk) + Piu(6) ' Taking these together: Pi[u(a) - u(B)]
1  Ek0iPk[U(Yk)   -  U(xk)]   i  Pi[U(y)   -  U(6)].   By   (IV.2.2)   we may conclude:

U(Ct) - U(B) LUCY) - u(6). (IV.2.4)

Finally let:

v_ja > w_jB.
(IV.2.5)
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Then Ik0jpku(vk) + PjU(a) 1 Ek0jpkU(wk) + PjU(B), or pj[U(a) - U(B)]

1 Ik0jpk[U(wk) - U(vk)1· By (IV.2.4) we obtain p [U(y) - U(6)] 1
Ik0jpk[U(wk) - U(vk)1' or Ik0jpkU(vk) + PjU(Y) 1 Ik0jpkU(wk) + PjU(6)
This means:

v_ y > w_ 6.
(IV.2.6)

So indeed (IV.2.1), (IV.2.3) and (IV.2.5) imply (IV.2.6), as is

required by CCI.

0

Formula (IV.2.4) is an indication that comparability of utility

differences underlies cardinal coordinate independence. The following

property is obtained from cardinal coordinate independence by replacing
< , and all >'s, by At .

DEFINITION IV.2.6. We say > satisfies equivatence-card€na Z coordinate

independence (eq-CCI) if for all acts x, y, v, w, all consequences

a,   B,   Y,   6, all states   j,   and all essential states  i,   x-ia  Al  y-iB  &
x-iy N y-16  &  v_ja N w_j B  imply v_jy w w_j6.

This property will be studied extensively in section IV.4. For

the next section, we now only need:

LEMMA IV.2.7.  CCI in;pZies eq-CCI.

PROOF. Replacing, in Definition IV.2.6, the first three equivalences
by  < , > ,   and > , shows   that,   by   CCI,   v_ y> w_ 6.

Interchanging

everywhere left and right sides of the equivalences, and writing again

< , > and > instead of the equivalences, gives by CCI that

w  6>v.y.-j      -J

0
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IV.3. THE MAIN THEOREM

Let us first note that the existence of an SEU model

 Cr ,  , (P ) =1' U] for > implies the existence of additive value

functions (V ) =1 for >, by the definition V  := p U for all j. In
section III.3 we saw that CI, and triple cancellation for the case of

exactly two essential coordinates, were necessary (and sufficient)

for a continuous weak order to have additive value functions existing,

under the topological assumption III.2.11. So CCI, the property of a

continuous weak order that will be shown to be necessary and sufficient

for the existence of an SEU model, must imply CI and triple cancellation.

LEMMA  IV.3.1.  Let  w be  an  equivaZenag reZation.   Then  CCI  €mpZies  CI.

PROOF. Let x_ a > y_ a, and B € C. To derive is x_ B > y_ B. If no
coordinate is essential, then by Lemma III.2.10 indeed x .8 > y .8.

-J -J

So let i be an essential coordinate. Then, for arbitrary z, z-ia <

z-ia, z-i B > z-i B, x_ a > y_ a, and CCI imply x_ B > y_ B.
0

LEMMA   I V.3.2. Let exact Zy two coordinates be essentiaZ. Then CCI

impZies tripZe canceZZation.

PROOF. Substitute, in Definition III.3.5, x = (s a ,x.), a = a.,-i,j i  J        1

y = Cs-i,jbi'yj)' B = bi' Y = ci' 6 = di' v = (s-i,jai'vj),

w = (s . .b.,w.), and let both i and j of Definition IV.2.4 correspond
-1,J 1  J

to the i of Definition III.3.6.

0

Before we formulate the main theorem, Zet Us repeat that the

topological assumption III.2.11 entails that C is a connected

topological space which is topologically separable for the case of

exactly one essential coordinate.
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THEOREM Iv.3.3. Let the topoZogicaZ assumption III.2.11 hoZd. For the

binary reZation > on Cn, the foZZewing two statements are equivaZent:

(i)  There exists an SEU mode Z [Cn, >, (pj)  =1, u] for >, with u
continuous.

(ii) > is a continuous weak order on Cn that satisfies CCI.

The foZZowing uniqueness resuZts hoZd for u. Cp.)    of (i):
J j=1

If two or more states are essent€aZ, (IV.3.1)

then (p ) =1 is unique Zy determined; and u is eardinaZ.
If exact Zy one state i is essent€aZ, (IV.3.:)

then pi = 1, pj = 0 for aZZ j 0 i; and u ia continuousZy

ord€naZ.

If no Btate is essent€aZ, (IV.3.3)

then    (p )  =1   can be taken arbitrari Zy,    as    Zong   as

pj 2-0 for aZZ j, Ep =l: u can be any constant function.

PROOF.  For  (i) 4 (ii), suppose  (i) . Then the function, assigning to

every act x its expected utility Ip.U(x.), is continuous, and
J     ]

represents >. So certainly > is a weak order. For every y,

{x : x > y} = {x : Ep U(x ) 1 Ip U(y )} is closed; so is {x : x< y}.
Consequently > is continuous. By Lemma IV.2.5 > satisfies CCI. So

(ii) follows.

Next, let (ii) hold. We derive (i), and the uniqueness results.

First the case of no essential i. Then by Lemma III.2.10, > is trivial.

We  can   let   (p )  =t be completely arbitrary,   as   long  as   they  are

nonnegative and sum to one. Further we can let U be any constant

function. Also, U must be constant, U(a) > U(B) would imply a > B.

So for the case of no essential state, (i) and the uniqueness result

(IV.3.3) hold.

Next  the  case of exactly one essential i.B y Corollary  III.3.2

there exist continuous additive value functions (V ) =t for >. From

x-ka > x-kB *• Vk(a) > Vk(B) we see that Vi must be nonconstant, and
that Vk is constant for all k 0 i. By the uniqueness result of

Corollary III.3.2, for PiU, hence for U, of (i), there must exist a

continuous strictly increasing transformation $ such that U = 00 Vi· So

U  must be nonconstant. For every  k  0   i,   P]CU  must be constant,   so  Pk
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must be zero. Consequently Pi= 1. Further, any continuous strictly

increasing transformation U of Vi ' together with Pi = 1, Pk
= 0 for

all k 0 i, gives additive value functions
(PkU)k=t

for >, so makes

(i) valid. So for the case of exactly one essential coordinate, (i)

and the uniqueness result (IV.3.2) are verified.

Finally, the case of two or more essential states. First we show:

There exist continuous simultaneously (IV.3.4)

n
cardinal additive value functions (V ). for >-

j J=1

For the case of two essential coordinates, this follows from

Lemma IV.3.2 (giving triple cancellation for >) and then from Theorem

III.3.6. For the case of three or more essential coordinates, it

follows from Lemma IV.3.1 (giving CI for >) and then from Theorem

III.3.7. Now Zet i be essentiaZ. We next show:

For all j : V. = 4. 0 V., for a continuous (IV.3.5)
JJl

nondecreasing 0,.
J

Suppose Vi(a) 1 Vi(B) . Then, for arbitrary x, v, x-iB < x-iB,
X-ia > x-iB, v_j B > v_j B, and CCI imply v_ a > v_j B. So Vj(01) 1 vj(B) .
Now (IV.3.5) follows from Lemma VIII.4.

Our following step is to show:

Every 4. is affine. (IV.3.6)
]

If j is inessential, then V. is constant, and affinity of $.
J J

follows. Of course, if j = i, then $  is identity, so affine too.

So let j 0 i, j essential. V, and V, are not constant, so the1        J

connected Vi(C) [respectively V (C)] must contain an interval with

length Oi >0 I respectively 6  > 0]. Let now Vi(a) € int(Vi(C)) be

arbitrary. Since 0. is continuous, there exists E>O s o small that:
J

E i Sj; W := ]Vi(a)-E, Vi.(a)+E[ C Vi(C); and
*j(Vi(a)+E) - 0j(Vi(a)-E) 1 6i'

Now let a<T€W. There exist B, y, 6€C such that:

v. (B) = c, Vi(6) = r, vi(Y) = (C+T)/2.1

We can take a ,b  € C such that:

V (b ) - V (a.) = V. (B) - Vi(Y) = Vi(Y) - Vi(6) 1 E i tj'3 1

And we can take ci' di such that:

Vi(di) - Vi(ci) = Vj(B) - Vj(y) 1 6i*
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All these choices lead, for arbitrary fixed s € Cn, to:

(S-i'j B,a j) w (s-i'jY'bj) & (s_i,jci,B) su (s_i,jdi,Y) (IV.3.7)

& (S .y,a.) R, (s 6 b)
-i,] 1 -i,j ' j

as follows from substitution of
(Vk)k=l Equivalence-CCI (Definition IV.

2.6) with s_ a  in the role of x,s_ b  in the role of y, (B,y,y,6) in
the role of (a,B,y,6), s-ici in the role of v, and s-idi in the role

of w, gives (S-i'jci,Y)=(s-i,jdi'6) . This implies Vj(y) - Vj(6) =
V. (di) - V. (ci)· We have chosen d. and ci to have the latter equal1           1                             1

to V.(B) - V (y). So V.(B) - V.(y) = v,(y) - v (6) has been derived.J j J J J j
This means: 0 (a) - 0.((0+T)/2) = 0.((0+T)/2) - 0.(T), or:
$j((a+T)/2) = [$j(c) + 0 (t)]/2. By Corollary VIII.3, with v for
Vi(a),p=  , affinity of $  follows:  (IV.3.6) is demonstrated.

So   now  we have nonnegative    (a ) ;= 1,   and   real    (·[ .) I          ,    such   thatJ J=1
V. = T.+C,Vi for all j. We can now define:J       J J

U := Vi; pj := aj/(Ik=lak) for all j. (IV.3.8)

(Note that ai = 1, so Eak > 0·) Because of simultaneous cardinality,

this gives additive value functions   (p U)  =1   for  >.   Thus (i) follows.
For the uniqueness result (IV. 3.1), let [Cn, >, (p:): ., U'] be

J J=l
another SEU model. Then (p;U') j=l are additive value functions for >

too.By simultaneous cardinality,    (T ) =1   and a>0 exist   such   that

p U'= ap U + T  for all j, i.e., with a arbitrarily fixed:

p [u'(B)-U'(a)] = ap [u(B)-u(a)] for all B. (IV.3.9)

Since U is not constant, we can take B such that U(B) 0 U(a). Then

pj = pi . [u, (B) - U'(a)] / (a.[U(B) - u(a)]) for all j. Since

Ip  = Ip  , p  = pi for all j follows. For p  > 0, (IV.3.9) now shows

that [U'(B)- u'(a)] = a[U(B) - u(a)]. Hence u'(·) = a[U(·)-u(a)]+u' (a)
must hold: U' is derived from U by multiplication with a positive c,
and addition of U'(a) - CU(a), as (IV.3.1) requires it.

Conversely, that every such U' instead of U verifies (i), is

straightforward.

0
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IV.4. EQUIVALENCE-CARDINAL COORDINATE INDEPENDENCE

In this section we give a characterization of the representation

x » I =lA U(x ) with some A 's possibly negative. Our characterization

is an alternative for the one in Krantz et al. (1971, Theorem 6.15).

Our eq-CCI is stronger than their "standard-sequence-invariance". BY

this, we only have to add weak separability, instead of the stronger

coordinate independence; and we do not have to treat the case of two

essential coordinates separately.

For DMUU, this representation as such has little interest, since

negative X 's are not suited to be interpreted as probabilities. For

other contexts it may be desirable to allow negativity of some X 's,
see Wakker (1985b). The interest of this representation for DMUU lies

in the possibility to apply it in special contexts where the preference

relation has further properties (such as monotonicity) that imply the

X 's, mentioned above, to be nonnegative after all. We then obtain,
for these special contexts, a characterization of SEU-maximization by

means of weaker properties than in the previous section. See Corollary

IV.4.4.c.

The main property used to derive the desired representation is

eq-CCI.

LEMMA IV.4.1. Let w be an equivaZence retation. Then eq-CCI impZ€es

eq-CI.

PROOF. As in Lemma IV.3.1, with all preferences replaced by

equivalences.
0

LEMMA IV.4.2. Eq-CCI impZies the Reideme€ster condition.

PROOF. With the same substitution as in Lemma IV.3.2.

0

The main theorem of this section:
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THEOREM IV.4.3. Let the topoZogicaZ assumption III. 2.11 hoZd. For the

binary reZation > on Cn, the foZZowing two statements are equivatent:

(i)  There exist reaZ A , j= 1,...,n, and a continuous U:C+ IR,Buch
that x H E =tx U(xj) represents >.

(ii) > is a continuousLy weak Zy separabZe weak order that satisfies

eq-CCI.

The  foZZowing  uniqueness  resuZts  hoZd  for u,   j j=l of (i):
If two or more coordinates are essentia Z, (IV.4.2)

((A.) n     . .u)     can be repZaced by (( l'j) =1,W), if andJ J=l
on Zy if reaZ v, a, T exist with vo > 0, such that

uj = VAj for aZZ j and w = T+Qu.

If exactZy one coordinate is eBsentiaZ, then (IV.4.3)

((x )n  ,u) can be repLaced by ((pj)1=i,w), if andj j=1
on Zy if positive v and continuous atI€et Zy increasing

0,    or  negative   v   and  continuous,    strictZy   decreasing   0,

exist such that Uj = vAj for aZZ j and w = tou.

If no coordinate is essentiaZ, then aZZ A '8 are 0, (IV.4.4)

or U is constant.

PROOF.  (i) 4 (ii)  is, as usual, straightforward, so we assume  (ii),
and derive (i) and the uniqueness results. The case of no essential

coordinate is direct. If exactly one coordinate i is essential, then

X  = 0 for all j 0 i, and everything follows from Corollary III.3.2.
In the sequel we shall assume:

Two or more coordinates are essential. (IV.4.5)

There now exist simultaneously cardinal additive value functions

(Vj) =1 for >, by Le=na IV.4.1, IV.4.2, and Theorem III.4.6. As usual,

we suppress inessential coordinates j from notation, they get assigned

X. =0.S o all (remaining) coordinates are essential,   and  the  V. 's
J                                                                                              J

are nonconstant. If now, for any i, Vi(a) = Vi(B), then, for any

j,x,by eq-CCI,{x .a Aix ,a & xia ex .B & x .a ex .a} imply
-1     -1 - -1     -]     -J

x_ a w x_ B, i.e. V (a) = V (B). This means that for any i, j,

Vi = 4ij o Vj for 0ij : V (C) + Vi(C). Here ti  is the inverse of

0ji, so all 0   are bijective. By Corollary VIII.10 they areij
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continuous. The derivation that they are affine, by Lemma VIII.8, is

completely analogous to the derivation of (IV.3.6).

We can, for arbitrary a € C, set V (a) = 0 for all j; existence

of (Aj) =1 such that V  = A Vt for all j, follows. Take U := Vl. The
uniqueness result (IV.4.2) follows from the simultaneous cardinality

of the additive value functions.
0

Below we make some observations that follow straightforwardly

from substitution in (i) above. First note that, in the above theorem,

we can always arrange I =txj 10; if EX  < 0 we replace ((A ) =1'U)

by ((-A ) =t'-U) . We then havea > 8 - U(a) > U(B). The assumption

in the beginning of the following Corollary IV.4.4 serves to avoid

uninteresting cases such as triviality of >, or negativity of

5-1'j which would make U some kind of "anti-utility" (or "loss")

function. The following corollary shows that the above theorem can be

used to characterize several representations, studied in literature,

which in  fact are special forms  of (i) above.  This  is  done  by  the

addition of, usually weak, conditions to (ii) above.

COROLLARY IV.4.4. Let (i) of Theorem IV. 4.3 hoZd. Assume that a,B € C

exist with 0>8. and Zet u(a) > u(B). Then we have, for every j:

(a)  A  >o i f and onTy if there exist 9>3 and x such that

x_17 > x_ 6.

(b)   Aj l o if and onZy if there exist 9>3 and x such that
x .y > x ,6.
-1     -]

Furthermore,

(c) There exist8 an SEU-mode Z for > if and on ZY if x .a > x_j B-J

for azz x.j.

0

The characterization of subjective expected utility maximization,

obtainable from (c) above and Theorem IV.4.3.(ii), is preferable to

the one in Theorem IV.3.3 in the sense that all conditions used here

follow straightforwardly from those in (ii) of Theorem IV.3.3, whereas



77

the converse derivation is not elementary since it essentially needs

continuity, see the text after Lemma III.4.4.

Characterizations of > on (2 by (xl'x2) '+ U(xl)-U(x2) ' with >
interpreted as strength of preference re Zation [ i . e . (x l 'x 2) , (Yl 'Y2) i

x1
is preferred to x2 more strongly than yt to Y2] have received much

attention, and have often been discussed, in literature, see Frisch

(1926), Lange (1934), Alt (1936), Scott and Suppes (1958), Debreu

(1958), Suppes and Zinnes (1963), Fishburn (1970, Chapter 6), Krantz

et al. (1971, Chapter 4), Shapley (1975), and Fuhrken and Richter

(1985).

A new characterization of the above representation can be obtained

as a corollary of Theorem IV.4.3:

COROLLARY IV.4.5. Let n = 2. Let (i) in Theorem  IV. 4.3  hoZd.   We  can

obtain Al = 1, 12 = -1, if and onZy if one of the foZZowing hoZds:
(a) (a,B) > (Y,6) 4 (6,y) > (B,a) for aZZ a, B, y, 6.

(b) (a,B) > (B,y) - CY,B) > (B,a) for aZZ a, B, y.

(c)  a w B for azz a. B.
(d)  If there exist a, B, y such that (a.y) > (B,y), then there a Zso

exist   such   a,    B,   y with furthermore R x B.

0

Finally, in dynamic contexts (see Example II.1.4) representations

of the form (xl'...'x )1+ I  .11U(x.), with 0<A l l, have received
n     ]=1     J

attention. There  X is interpreted  as a discount factor. A well-known
 N

characterization, for the case of an infinite cartesian product C

by means of a "stationarity assumption", has been obtained by Koopmans

(1972). We can characterize, for our finite cartesian product (so only

finitely many points of time) the analogous representation.

COROLLARY IV.4.6. Let (i) in Theorem IV. 4.3 hotd. There exists
0 < A < 1 such that we can take A  = x1 for aZZ j, if and onZy if >

is tr€Via Z or it satisfies a weak stationarity assumption. i.e. there

exist x, a>B>Y such that x-i,i+lB,y Ri X_i,i+1 Y'a for aZZ O s i<n.
0
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The weak stationarity assumption above is weaker than the one

used by  Koopmans (1972), mainly because we only have "there exist

x, R, 8, 9,...", whereas Koopmans' stationarity assumption requires

analogous things "for all ... ." Of course, this weakening is possible

only  because  in   (ii) in Theorem  IV.4.3 we require properties  for  >,

far stronger than those which Koopmans uses next to his stationarity

assumption.

IV.5. CCI-RELATED EVENTS

In this section we consider relaxations of cardinal coordinate

independence that moderate  the   "for  all   i,j"  part   in the definition

(IV.2.4) of cardinal coordinate independence. This weakening will be

used to strengthen Theorem IV.3.3. The next definition will also be

of use in Chapter V. First we introduce a notation in the spirit of

Notation II.2.4; see also (II.2.1).

NOTATION IV.5.1. For A c I, x € X, a € C, x-Aa denotes (x with xi

replaced by a, for all i € A).

With this we can define:

DEFINITION IV.5.2. Let A, B C I. We say A is CCI-re Zated to B if for

all x, y, v, w, a, 8, 7,6 : x-Ba < y-BB & x-BY   y-86 & v-Aa > w-AB

imply v-AY > w-AB.

The binary relation, introduced on the set of events by the above

definition, usually is not symmetric or transitive or reflexive. With,

as usual, i instead of {i}, every nonessential i is CCI-related to

every essential j, and a coordinate j is CCI-related to a nonessential

i if and only if j itself is nonessential, as one can see. CCI holds

if and only if every j is CCI-related to every essential i.
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LEMMA IV.5.3. Let > be refzexive.    Let   i be CCI-re Zated  to   some   j .   Then

IX-ia > y-ia *0 x-iB > y-iB] for aZZ x, y, a, B.

PROOF. z .a < z .a & z_ B > z_ B & x_ a > Y-:i.a must imply x-i.B > Y-i.B.-J     -J
0

THEOREM Iv.5.4. Let the topological assumption III.2.11 hold. Let
n  1 3,  and  Zet  aZZ  coordinates  be  essent€aZ.  For  the  binary  reZation
> on Cn, the foZZowing two statements are equivaZent:

(i)  There exists an SEU modeZ [Cn, >,  (pj) =1, u] for >. with u
continuous.

(ii) > is a continuous weak order on C , every i , 2 is CCI-reZated
to i-1, and 1 is CCI-re Zated to itsetf or some other j.

PROOF. CI follows from Lemma IV.5.3. By Theorem III .3.7, additive
value functions

(V1)1=1
exists for >. To show that V is an affinei+1

nondecreasing transformation of V,, for i = 1,...,n-1, is exactly as1

the derivation of (IV.3.5) and (IV.3.6) (take j = i+1 there). We can
give all Vi's a common zero. Vi = wivi-1 for some Wi 2 0, follows for

all i 1 2, i.e. Vi = Aivl' for some Xi 1 0 follows, for all i 1 1.
By essentially of all coordinates, Xi > 0 for all i. We take U = Vl'
p. = A,/(En  A ) for all j.
1    1   1=1 i

0

The above theorem  also  can be derived  for  n  =  2,  but  then  a  more
complicated proof is needed. The main complication is that only a weak
version of triple cancellation can be derived, so that the additive value

functions cannot be obtained directly from Theorem III.3.6. Further
the assumption of essentiality of all coordinates can be omitted, if

in (ii) we require the first essential coordinate to be CCI-related

to some other essential coordinate, and every other essential coordinate
to the preceding essential coordinate. Also in (ii) above we could

have assumed that every coordinate was CCI-related to coordinate 1,

or that, for an appropriately chosen sequence of subsets (Al'...'Al)

of I, A +1 is CCI-related to A  for all k < 1-1. We do not elaborate
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these matters.

Let us formulate a corollary of Theorem IV.5.4 that gives another

characterization of the representation of Koopmans (1972), adapted to

our finite cartesian product. Our main requirement is that every

coordinate (point of time) is CCI-related to the previous coordinate

(point of time), and that the consequence a (say amount of dollars) on

some point of time, equivalent to one dollar on the previous po
int of

time, is independent of that point of time.

COROLLARY IV.5.5. Let n 1 3. Let >· be a binary reZation on R ,  that

is strongZy eA monotonic (i.e.  x>y i f x j Z.yj for aZZ j and xj >y j
for   some   j) .   The   foZZowing   two   statements   are   equivaZent:

(i)  There exists 0<X f 1, and a continuous U:R+I R, such that
x &

IA1U(x ) repreSent8 >.

(ii)  > is a continuous weak order, every  i 1 2  is  CCI-reZated to  i-1,

1 i s   CCI-re Zated  to   some   i    (e.g..i=1,ori=   n),   and  a l l

exists such that (8-il) 0 (5 a) for aZZ i 1 n-1.-(i+1)

PROOF. (i) 4 (ii) is straightforward. Let (ii) hold. All conditions in

(ii) of Theorem IV.5.4 hold, so a representation x » Ip .U (x .) exists
1     j

for >. By strong cA monotonicity, positivity of the p 's and strict

increasingness of U can be arranged. Now A = [U(1)] / U(a) is chos
en.

0

IV.6. FURTHER WAYS TO RESTRICT CARDINAL COORDINATE INDEPENDENCE

In this section we briefly suggest further ways to strengthen

Theorem IV.3.3, by weakening the cardinal coordinate independence

property in (ii) of Theorem IV.3.3. A first way may be to require

cardinal coordinate independence only "locally", i.e. only to require

that for every x€X there exists an open neighbourhood of x, such

that cardinal coordinate independence holds in this neighbourhood. The
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main problem then seems to be, to strengthen the results on additive

decomposable representations of Chapter III by considering the local

versions of the involved characterizing properties. That this may be

possible, has been mentioned in Debreu (1960, page 17, lines 2-4).

First one uses the local properties to obtain local additively

decomposable representations. Next these local representations must

be made to fit together to give a global representation. This however

seems to be a complicated operation (compare subsection VI.7.3) and

additional requirements as local connectedness of C are maybe needed

here. (Debreu, 1960, considered Euclidean spaces). Finally,

proportionality of the additive value functions is obtained by using

the local cardinal coordinate independence property for the certain

acts a.

A second way to weaken cardinal coordinate independence is by

weakening   the  part   "for all a,B,Y,6" .I t   i s for instance sufficient

to require it for only one a. This does not complicate the proof of

coordinate independence, so, for more or less than two essential

coordinates, additive value functions must exist. For two essential

coordinates matters are slightly more complicated because triple
cancellation (Definition III.3.5) then no longer directly follows.

Once additive value functions have been obtained, the derivation of

proportionality of them is as in Theorem IV.3.3. Analogously one may

restrict the B's, or y's, or 6's, in Definition IV.2.4. Whether it

is sufficient to require Definition IV.2.4 for only those a, B, y, 6,

for which B = y, or a = 6, is an open question. In such a case no

readily available results on additive decomposability are present

in literature.

A third way to weaken cardinal coordinate independence is to

restrict the involved x, y, v, w. Maybe it is sufficient to require

matters for only a dense subset of X.

Also the question has been considered whether it is sufficient

to require cardinal coordinate independence on every two dimensional

subspace (obtained by keeping all but two coordinates fixed). The

following example, communicated to the author by A. Tversky in 1985,

shows that this does not work: Let C= IR , n = 3. Let > be++

represented by x 2 xlx2 + x2x3 + xlx3 =  (xl+x3) fx2+x3)  - X3• Clearly,
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with x
3

fixed, > is represented by x ,+ 109(xl+x:3) + 109(x2+x3)' so
satisfies CCI. But > has no additive value functions, since (1,7,1) Rs

(3,3,1)   and  (1,7,2)  > (3,3,2) violate coordinate independence.

Requiring cardinal coordinate independence for every three - or more

dimensional subspace, seems to be sufficient.

IV.7. COMPARISON OF OUR RESULT TO OTHER DERIVATIONS OF SUBJECTIVE

EXPECTED UTILITY MAXIMIZATION

A really satisfactory characterization, with appealing conditions

that are both necessary and sufficient, for subjective expected

utility (SEU) maximization in the context of DMUU (with "unknown"

probabilities) is not yet available in literature. Shapiro (1979),

Richter and Shapiro (1978), and Richter (1975), indicate how difficult

this may be. SEU provides however the most used (and criticized)

approach in DMUU. Hence derivations (giving sufficient conditions)

are useful.

The best known derivation of SEU maximization, like ours not

presupposing any probabilities or utilities, is the one given in

Savage (1954). Savage's assumption P3 allows the derivation of a

"qualitative probability relation" ("more probable   than")   on  the   set

of events, from the preference relation on the set of acts. Mainly

Savage's assumption P4 (the "sure-thing principle") guarantees

"additivity" (condition  2,  at  the  top  of  page  32)   of this qualitative

probability relation. The main restrictive assumption in Savage's

approach is P6, some sort of continuity condition, requiring structure

for the state space. For example this must be infinite, though not

necessarily uncountable, contrary to what is sometimes thought. The

major step in the proof of Savage is to use this qualitative

probability relation, and the structure on the state space, to derive

the probability measure. (Wakker (1981) pointed out some misunder-

standings in literature about this part of Savage's work.) Once the

probability measure has been obtained, the utility function is derived

analogously as this was done in von Neumann and M6rgenstern (1947,
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1953, Chapter 3 and Appendix). For the consequence space Savage

hardly needs restrictions. Mainly must the utility function be bounded.

(This was discovered after publication of Savage (1954), see Fishburn

(1970, section 14.1).)

In economic contexts the consequence space is usually assumed to
mbe  endowed with topological structure; for example  it  is  IR . Hence+

in economic contexts derivations of SEU maximization, employing thls

structure, such as our Theorem IV.3.3, and Theorem V.6.1 in the sequel,

may be valuable. Note that we did not use a qualitative probability

relation as intermediate in the derivation of the probability measure.
Our probabilities resulted from the "scale parameters "  c ,  in the proof

J

of Theorem IV.3.3, (see (IV.3.8)); they are proportional to the scales

of the additive value functions (V ) =1 there.
Another derivation of the same representation as ours, in terms

of  a  derived "mean groupoid operation"  on the consequence space,   is
given in Grodal (1978).

An early derivation of SEU maximization has been given in de

Finetti (1931; see also 1937, 1972, 1974). De Finetti assumed that

consequences were real numbers (amounts of money) . His "coherence
condition" requires the impossibility of a "Dutch book" to be made
against the decision maker, i.e. no positive linear combination of

bets, favourable in the view of the decision maker, should result in

a bet, giving with certainty a negative yield. This entails linearity

of the utility function. A major advantage of de Finetti's approach

above most others (including Savage's and ours) is that it gives useful

results for preference relations that are not complete.

Other approaches assumed consequences to be lotteries, or more

generally elements of a mixture space (see Definition VII.2.1). See

Anscombe and Aumann (1963), Fishburn (1982). Also Ramsey (1931) can

be placed in this group, if his "neutral event" is considered as a
1      1

2   -2- lottery. These approaches used linear (affine; von Neumann   -

Morgenstern) utility. The involved mathematics is in fact quite similar

to those of de Finetti. Compared to these, our Theorem IV.3.3 no longer

needs lotteries on the consequence space, or linearity of the utility
function.

Extensive surveys on expected utility are provided in Fishburn

(1981), Schoemaker (1982), and Machina (1983).
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CHAPTER V

SUBJECTIVE EXPECTED UTILITY

FOR ARBITRARY STATE SPACES

V. 1. INTRODUCTION

In this chapter we extend the characterization of continuous

subjective expected utility maximization, given only for finite state

spaces in Theorem IV.3.3, to arbitrary state spaces. This is the only

chapter where the index (= state) set I is not assumed finite. We

shall only consider acts which are in some sense bounded. In this way

we avoid the main complication for infinite state spaces: how to

handle acts with infinite, or even undefined, expected utility. In

our apprach the utility function itself is not necessarily bounded,

this contrary to Savage's approach.

The present chapter closely follows Wakker (1984c). We slightly

generalize the latter work by leaving out the condition that D, the

algebra on the consequence space C that we shall introduce in the

sequel, should contain all one-point subsets of C. This we achieve

by a small variation in the definition of "simple" acts. In this

chapter terminology will be as in decision making under uncertainty,

the primarily intended field of application of our present work.

The strategy in this chapter is to first, as much as possible,

assume properties and derive results for > on the "simple" acts,

which have finite range. The results then are extended to acts with

infinite range, mainly by "constant-continuity" and "pointwise

monotonicity".
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V.2. ELEMENTARY DEFINITIONS

Acts, consequences, and states of nature, are as in Example

II.1.1 (DMUU; see also Terminology IV.2.1). To stay close to

probability theory we generalize our set-up by introducing measure-

theoretic structure. We assume  that an aZgebra   A  on  I is given,   i.e.
I

A c 2  contains 0, is closed with respect to finite union and

complement taking; hence contains I, and is closed with respect to

finite intersection taking. Elements A,B of A are called events. Also

an algebra D on C is given, with generic  elements E,F.

As an example, A may contain all subsets of I. Then all measure-

theoretic requirements, made in the sequel, are satisfied, and can be

ignored. This shows that the introduction of measure-theoretic

structure really is a generalization.

By F we denote the set of acts x that are (D- A-)measurabZe, i.e.

for every E E D, {i€I:x i€E} €A.I f A,2 I, then F= CI.
we say > is a weak order on a subset F' of X, if the restriction

of > to F', as binary relation on F', is a weak order. Then, in the

same  way,  0  is an equivalence relation  on   F' .
Throughout this chapter a partition   P  = (Aj)j=l will, without

further mention, be assumed to consist only of events. We then write

Ij=lajlA  for
the act,

assigning consequence a  to every i € A ,
j - 1,...,m, and call such an act simpZe. Simple acts are elements

of F. The notation for simple acts is just a suggestive notation; it

does not designate any addition or scalar multiplication operation.

Fs denotes {x €F:x i s simple}.

By Fb we denote {x €F: 11,v €C exist such that xi >U and
v      for all i}. Its elements are

called strongZy bounded. If > is

a weak order on F, then FS c P. Note that, if I = N, C = ]0,1],

x. = 1/i for all i, then x is bounded in the usual sense, but not1
strongly bounded. Also note that, for any a€C,x€F [respectively

Fs; or F ], and A € A, x-Aa (Notation IV.5.1) is an element of F
[respectively FS;  or P if > is a weak order on Fb].

Next we adapt a definition, given earlier for finite I, to the

present situation.
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DEFINITION V.2.1.A n event A i s simpZe-inessentiaZ,or  8-inessentiaZ

(with respect  to  >)   if  x w  y  for  all  x,y  €  FS for
which  xi  =  Yi  for

every i € Ac. Otherwise A is simp Ze-essent€aZ (or 8-essent€a Z) (with
respect to >).

The following assumption will be used throughout this chapter.
I

For finite I (with A=2)i t comes down to the topological assumption

III.2.11. It adds to this some measure-theoretic structure.

ASSUMPTION V.2.2. C is a connected topological space. D contains all

open subsets of C. If I is s-essential, and no two disjoint s-essential

events exist, then C is topologically separable.

The case where no two disjoint s-essential events exist, will be

treated in Lemma V.3.1. This case can be interpreted to be the case

of certainty. Of course D also contains all closed subsets of C. A

further adaptation of an earlier definition to the present situation:

DEFINITION  V. 2.3. >i s simpZe-continuous,   or  8-continuous   if,   for  any
partition (A )m   and any act x = E  8.1 we have closedness of

j j=1

< Wl'  *,am) € Cm : Ej=lajlA. > x} and {(a ....,am) € Cm: Ij=lajlA < x 
with respect to the product  opology on Cm.

One may formulate s-continuity as: the binary relation >' on C 1,

defined by (al'*,''am)    (81 '...., Bm) if d a.1  >E:  8 1  .i s continuousJ=l J Aj  j=l j Aj
with respect to the product topology on Cm. The assumption of this

"finite-dimensional" continuity is not unusually strong since a finite-

dimensional product topology is not coarser than other usual topo-

logies. If C is a metric (for example Euclidean) space, then the finite-

dimensional product topology is equal to the sup-metric topology (for

example to the usual Euclidean topology). Koopmans (1972) uses a sup-

metric topology on a denumerable cartesian product.

The main topological complications occur for infinite dimensions.

Then the product topology is coarser than other usual topologies, and

continuity with respect to this is then too strong for our purposes.

It would imply countable additivity of the probability measure P,
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to be derived in the sequel, and would quickly lead to boundedness of

the utility function U, to be derived in the sequel, if > is not

restricted to an appropriately chosen subset of X. In section V.4 we

shall deal with infinite-dimensional aspects. For that we use:

IDEFINITION V.2.4. > is constant-continuous on F' c C  if
{a€C:a>x}and {a€C:a<x}are closed for all x€ F'.

Again, as s-continuity, this continuity is implied by the sup-

metric continuity assumption of Koopmans (1972), also by continuity
I

of > with respect to the producttopology on C . In fact the only

consequence of it, that we shall use, is that there exists, for every

x  which  has  a  >  x  >  B   for  some  a,B  €  C, a "certainty equivalent"  y  Rl  X.

The main tool in this chapter for the characterization of

subjective expected utility maximization is the following adaptation

of the CCI-relatedness property:

DEFINITION V.2.5. Event A is simpZe-cardinaZ coordinate independent

related, or 8-CCI-related, to event B, if for all a, B, y, 6 € C, and

all x, y, v, w E FS : x-Ba < y-BB & x-BY   y-86 & v-Aa & w-AB imply

v-AY > w-AO.

For finite I every act is simple, and Definitions V.2.1, V.2.3,

and V.2.5, without "s- ", coincide with the old ones; under the, for

finite I usual, assumption that A = 2 I.

V.3. RESULTS FOR SIMPLE ACTS

First we handle the "degenerate" case where one state,  or  an

"ultrafilter" of states (see (V.3.4)) is "certainly true".
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LEMMA V.3.1. Let there not exist two disjoint 8-essentiaZ events.

Under Assumption V.:.2 the foZZowing two statements are equivaZent:

C i)      There   exists   a  finite Zy   additive   probab€Zity   measure   p  on   A,   and

a continuous U:C+ IR, such that Ej=lajlA. > Ik=lsklB **
I -lp(Aj)U(aj) 1 Ekt=lp(Bk)U(Bk) for aZZ al':..,Bt.     k

(ii) > is an 8-continuous weak order on Fs.

Furthermore, if (i) holds, then every event is 8-CCI-reZated to every

8-essentiaZ event.

The foZZowing uniqueness resuZts hoZd for u. p of (i):
If > is not triviaZ on FS, then p(A) = 1 for aZZ (V. 3.1)

8-eseentiaZ A, P(A) = 0 for aZZ 8-ineaaentiaZ A,

and u is continuousZy ordinaZ.

If > is triviaZ on FS, then u must be constant, (V. 3.2)

and P is arbitrary.

PROOF.  (i) 4 (ii) is straightforward. So we suppose (ii), and derive

(i), and the results below (ii).

There exists no s-essential event  iff x w y  for all x,y C Fs,

i.e. > is trivial on FS. In this case all of (V.3.2), and (i), follow.

So from now on we assume:

There exists an s-essential event. (V.3.3)

To derive P, we show:

The collection of all s-essential events is an (V.3.4)

uZtraf€Zter, i.e.

(a) I is s-essential.

(b) Event A is s-essential iff A
C

is s-inessential.

(C) If events A and B are s-essential, then so is An B.

Were I s-inessential, then > would be trivial on FS, contra-

dicting (V.3.3). So (a) above follows. Were, for an event A, both A

and AC s-inessential,   then  x  w  X.y      x y would follow  for  all
A Ac sx,y € FS, and > would be trivial on F . This cannot hold, and (b) now

follows from the assumption that no two disjoint s-essential events
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can exist.

If events A and B are s-inessential, then so is A U B, since for

all x,y € FS with x = y we have x x X cyA 0 y. This and
AcABc Ac ABC                     A

(b) imply (c).

We define P(A) = 1 for all s-essential events A, and P(A) = 0

for all s-inessential events A. One easily checks that this gives a

finitely additive probability measure P.

Let U represent > on C, as defined in Notation IV.2.3. By Theorem

III.3.1 such an U indeed exists, and is continuously ordinal.

(i) is demonstrated if we show that:

s tx=I j=lajlAj > Ek=lBklB =  Y  **  I s.P(A, )U(a   )    >
k J=1   J    j  _

Ikt=lp(Bk)U(Bk) ' (V.3.5)

Of the mutually disjoint (A  n Bk)1=l,k=l
exactly one is

s-essential, say Al fl Bl. Then x w al' y R, 81' P(Al) =1= P(Bl)' and
(V.3.5) follows.

Now (V.3.1) follows from the observation that a U as in (i) must

represent > on C, and that P as in (i) must assign probability 0 to

every s-inessential event, thus 1 to every s-essential event.

The "furthermore-statement" in the lemma is by simple substitution

in (i).

0

The next lemma shows how, on a "finite-dimensional" subspace of

the form {x €C I:x= I =ta lA,6, for a fixed partition (Al'...'Am '
the results for finite cartesiaA products can be applied.

LEMMA V.3.2. Let Assumption V. 2.2 hojd. Let > be an s-continuous weak

order on FS. Let every event be 8-CCI-re Zated to every 8-essentiaZ

event.  Let  Pl  =  (Al'...'As)  be  a partition with  at  Zeast  two
8-essentiaZ  events. Then there exist  nonnegative   (pl) ;=1,  summing  to   1,
and a continuous ul :C+ ]R, such that:
I =la jlAj > E;=18 jlAj ** I =lp Ul (a j)3.I;=lp ul (Bj) .
The   pl's   are   unique Zy   determined,   and  ul   is   cardinaZ.
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PROOF. Define >'  on Cs by (a.)s   >' (B.)s   if Is  a.1   >Is  B.1
J J=1 J J=l ]=l J Aj    J=l j Aj

Then >' satisfies all requirements of Theorem IV.3.3. This implies

all desired results.

0

12
Next we show that for two finite partitions P  and P , each with

at least two s-essential events, the representations resulting from

the previous Lemma, "fit together",   i.e. the utility functions  can  be

taken the same and events occurring in both partitions, have the same

probability in each representation. This we do by comparing Pl and P2
3                   1               2

to a partition P , finer than P  and than P , and by showing that the
2representations  of  Pl  and  P "fit together"  with  that  of  P.3.

LEMMA   V.3.3. Let, under the assumptions  and  notations   of  Lemma   V.3.2,

1,2  =  (Bl ....'Bt)  be  another partition  with  at  Zeast  two  8-essent€a Z
9t

e ents. Let appZ€cation of Lemma V. 3.2 to 1'2 give (p ) =1 and u2. Then
u  =0 0 U l for a positive affine 0, and if Ai =B j for some i,j, then

«%««  pl  -  pi ··

PROOF. Define   P3   : =   ( ( (A,   n  B   )t     )s ) First  we   show  that  P3  must
J    k k=1 j=1

have two or more s-essential events. Say Al and A2 are s-essential.

Now s-inessentiality of all At A Bk' k = 1,...,s, would imply, by a

reasoning as used to derive (V.3.4.c), s-inessentiality of At. So of

the Al n Bk's, at least one is s-essential. Analogously of the

A2 n Bk's at least one is s-essential.31
So we can apply Lemma V.3.2 to P instead of P , yielding

( (pjk) =1) =1 and U 3. Now, defining p  := Ek=lpjk for all j, and
U := U3, we obtain an array (p ) =1 and a U, that satisfy all require-

l n        1
ments for (p ) =1 and U in Lemma V.3.2. The uniqueness results of

1                               113that Lemma imply p. =p. for all j, and U  =0 0 U  for a positive
J      J

affine 01.

Analogously p2 = I: .p.. for all i, and U2 = 020 U·3 for a positive
1-1 1122affine $ .S o U  =0 0 U l for a positive affine 0. And if A. =B. for

12 1     J

some i,j, then pik = Plj = 0 for all k 0 j, 1 0 i; Pi = Pj = Pij
follows.

0
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Now we are ready for the main result of this section, a

characterization of a subjective expected utility representation on FS.

THEOREM V.3.4. Under Assumption V.:.2, for the binary reZation > on

C  the foZZowing two statements are equivalent:

(i)      There   exist   a   finiteZy   additive   probab€Zity  measure    P,   and  a

continuous  function  u   :   C  +  m ,  such  that  Im    a   1    »  Im    p(A. )u(a. )
j=1 j A.   j=1   J    J

J
represents > on Fs.

(ii) > is an 8-continuous weak order on FS, and every event €8 8-CCI-

reZated to every 8-essentiaZ event.

The foZZowing uniqueness reauZts hoZd for u. p of (i):

If wo disjoint 8-essential events exist, then P is (V.3.6)

unique Zy determined, and u is cardinaZ.

If I is 8-essential, but no two disjoint 8-essential (V.3.7)

events exist, then p assigns 1 to every 8-essentiaZ

event,   0 to every  8-inessentia Z event,   and  u  €8

continuousZy ordinaZ.

If I is s-inessentiaZ, then p is arbitrary, and u (V.3.8)

can be any constant function.

PROOF. As always, (i) - (ii) is straightforward. So we assume (ii),

and derive (i) and the uniqueness results. For the case (V.3.8), I

s-inessential, everything is straightforward. The case (V.3.7) is

covered by Lemma V.3.1. So we assume that there exist two disjoint

s-essential events. By Lemma V.3.2 there exist, for every partition

P = (Al'...,At) with at least two essential events, a probability

measure P  on the algebra of events, consisting of unions of events

from  P,   and a utility function   U  :C+I R, continuous,   such   that

It     a   1       »  It=. Pp(A.) Up(a ) represents  >  on the elements  of   FS,   that
j=l j Al    J 1   tl

can be wkitten as E =la 1Al. By Lemma V.3.3, Pp and U  can be taken

independent of P. That we do, and we leave out indexes P.

First we show that P is a probability measure P(0) = 0, P(I) = 1

are obvious. Let A,B be disjoint. To show is: P(A U B) = P(A) + P(B).

We define Al := A, A2 := B, A3 := AC n BC. Let C,D be two disjoint
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s-essential events. Define Bl := C, 82 :- D, 83 := CC A DC. Let P =

(((Ai n Bj)i=l)j=t)· This P has, by a reasoning as in the proof of
3    3

Lemma  V.3.3, at least two s-essential events.   Let   (p,  . ) ,   . , ,        and  U
3     ij J=1 1=13

be as resulting from Lemma V.3.2. Now P(A) = Ej=1Plj' PCB) = Ij=lP2j'

and P(A U B) = E =t(plj+P2j)'

That now Es a t  >I t  8 1  ** Is  P(A )U(a.) >E t  P(B )U(B )
]=l j Aj    k=l k Bk

j=1 j 1  - k=1   k    k'

follows from consideration of a P, both finer than (A )  =1 and (Bk) k=l ,
The uniqueness result (V.3.6) follows from Lemma V.3.2.

0

The following Corollary, a simple consequence of the above

theorem, gives properties which > has on FS, but in general not on all

of   F,   or   f.

COROLLARY V.3.5. Let > satisfy (i) of Theorem V. 3.4. rhen, for a ZZ
x,y € FS,  Ixi >y i for aZZ i€I 4 x>y] . And > is coordinate inde-
pendent on Fs.

V.4. RESULTS FOR STRONGLY BOUNDED ACTS

In this section we want to extend the representation of Theorem
bV.3.4 (i) to more general acts, mainly those of F . We have in mind

an expected utility representation by means of some sort of integral

of U with respect to P. The approach to integration for measures that

are only finitely additive, as adopted in section I.III.2 of Dunford

and Schwarz (1958) or section 4.4 of Bhaskara Rao and Bhaskara Rao

(1983) does not seem to be suited for our purposes. This is because

we see no easy way to reformulate the properties of P and U o x, used

there in the definition of an integral, in terms of our primitive,

i.e.  >.   The less general Sti#Ztjes   type  integraZ, as exposed   in

section 4.5 of Bhaskara Rao and Bhaskara Rao (1983) does serve our

purposes. In this, an integral, notation EU, of a bounded measurable

function U o x o n I i s obtained as a "lower integral", equal to
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sup{EU(fs) :f s:I+R has finite range and is measurable, fs e

U o x}, with <P pointwise dominance, i.e. fs <P U o x whenever fs(i)

1 u(x.) for all i € I; or the integral is obtained as an upper

integral, which is analogous and yields the same result for bounded

functions. If U o x i s bounded below (above) but unbounded above

(below), one may still define the lower (upper) integral, and see if

this is useful. Of course, what we have in mind is to let the fs above

be of the form U o xs for xs E FS. We handle pointwise dominance as

follows:

I
DEFINITION  V. 4.1. >i s pointwise monotone   on   F'   c C     if  x>y   for

all x,y € F' for which xi > yi for all i € I.

Note that, in the terminology of Chapter II, this is weak cA

monotonicity, if we take >i = > for all i, and allow for infinite

cartesian products. Suppes (1956, A9) and Ferreira (1972, Cl) also

used this kind of monotonicity. Note that it uses comparisons of

consequences xi to consequences Yi, only if these consequences are

assigned to the same state of nature. This differs from assumption

"P7" in Savage (1954). The latter requires something like: x>y

whenever xi > y for all i, or x > Yi for all i. An advantage of our

set-up with pointwise monotonicity, over Savage's set-up with his P7,

is that in our set-up the utility function does not have to be

bounded, where in Savage's set-up it must be, see section 14.1 in

Fishburn (1970). An advantage of Savage's set-up is that, once

utility is bounded, Savage's set-up handles all acts, whereas our's

only handles all strongly bounded acts. For a further illustration

of this the reader is referred to the example (1) in section 5.4 of

Savage (1954), where no expected utility representation exists, but

where pointwise monotonicity can be seen to be satisfied.

The following example illustrates that pointwise monotonicity

b
on F  is not implied by the other properties, introduced:

EXAMPLE V.4.2. Let I = 10,1], C = IR, A the Borel a-algebra on ]0,1],
D the Borel a-algebra on  ,U identity, and let P b e Lebesgue measure.

Let  >  on   Fb be represented  by a linear functional   V   from   F   to   P.,
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with V(1A) = P(A) for all events A. Then > is a constant- and
bs-continuous weak order, even > is coordinate independent on F . Every

event is s-CCI related to every s-essential event. Yet, without point-

wise monotonicity we are still completely free to let V assign to x,

with x. = i for all i, any real number, such as -1 since x is not in1

the linear subspace, spanned by the indicator functions. Then x. > 0
1

for all i, but not x > 6, so pointwise monotonicity is violated.

LEMMA v.4.3. Let > be a constant-continuous pointwise monotone weak

order on P. Then for every x€F b there exists a€C such that x w a.

PROOF. {B €C:B>x} and {B €C:B<x} are closed by constant-

continuity, and nonempty   if x€F b, because   then   [D>x i>  v   for   all
i] and pointwise monotonicity imply U to be in the first, v in the

second, set above. These sets, with union C, must have nonempty

intersection by connectedness of C. Let a be in this intersection.

0

bWe can now, for x€F, simply take a a s above, and define

EU(x) := U(a), with U as in Theorem V.3.4, under the appropriate

assumptions  for  >.  Then  x >  y ** EU (x)   1  EU (y),  and  for  any

x = Ij=lajlA ' EU(x)  = Ij=lp(Aj) U(aj). Question remains whether EU
can be consi ered a (Stieltjes-type) integral outside FS. Below we

shall see that it can.

THEOREM V.4.4. Under Assumption V.2.2, for the b€nary re Zation  >  on

C , the foZZowing two statements are equivaZent:

(i)     There  exist  a  finite Zy  additive  probab€Zity  measure  P,  and  a
continuous u:C+R, such that, on F , x" fu(xi)dP(i)
represents >, with the integral. well defined.

( ii)   >  is   a   constant-  and  8-continuous   pointwise   monotone weak order

on   P.   such  that every event  is  s -CCI-reZated  to  every
8-essentiaZ event.

Uniqueness results for (i) are as (V.3.6), (V.3.7), and (V.3.8) in

Theorem V. 3.4.
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PROOF. We only show (ii) - (i). Let P,u be as provided by Theorem

V.3.4. Let x € F , U > x  > G for all i € I. Let E N x, such an a
exists by Lemma V.4.3. Let EU(x) = U(a). We have to show that EU is

-   - -      -    -

an  integral.   If  u  w  v  then by pointwise monotonicity  x  %  p'   SO  a %  P,

U 9 x is constant, and EU(x) = fU(xi)dP(i).
-    -

Now suppose U > v. For notational convenience we shall suppose

that U(W) = 1, U(v) = 0. We now construct a sequence of pairs of

simple functions (xm,ym) m=1 '   such  that:

U(x.)-1/m i U(xi) i U(xi) i U(yi) 1 U(xi)+1/m (V.4.1)
1

for all i,m.

For any m, and 0<k< m-1,--

Ak := {i €I: k/m < U(x.) < (k+1)/m}-1

is an event. Since U is continuous, and C connected, also U(C) c R

is connected. So for any O f k i m there exists ak such that

U(a ) = k/m. We define
k

xm := I - aklAk + am-ll{i:u(xi)=1}' and
m     m-1

Y  := Ek=0ak+11Ak + aml{i:U(xi)=1}.

We  then  have  U (x )  1 U (xi)  1 U (yT) ,  so  x  <  x-7 < yT   ,   for  all  i.
By pointwise monotonicity  xm <  x  < ym Hence  EU (xm)  f- u (a)   L EU (ym).

But also EU (ym) - EU (xm) = 1/m for all m. (See lines above the

theorem.) We conclude that EU(x) = U(a) = lim EU(xm) = lim EU(ym).
In-+00 III+..

Indeed EU(x) can be considered to be an integral of U w.r.t. P.

0

V.5. COUNTABLE ADDITIVITY

We shall give a continuity assumption, necessary and sufficient

for countable additivity of the probability measure P of Theorems

V.3.4 and V.4.4. This adapts the known results, as presented in

section 6.9 of de Finetti (1972) to the more general case where
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C#R; with everything formulated in terms of the preference relation

>. Property F7 in section 10.3 in Fishburn (1982), and the "monotone

continuity" assumption of Villegas (1964), also used in Arrow (1971,

Lecture 1), are analogous.

DEFINITION V.5.1. A probability measure P on an algebra A is countabZy
00

(or 0-)additive if, for any sequence of events (Am) m=1 with Am+lcAm
00

for  all  m, and f"LI=lAm  =  0,  we  have  lim  P (A )   =  0.In-+I.

The following lemma gives an equivalent formulation that is

well-known.

LEMMA  V.5.2.  p  is  0-additive  if  and  on Zy  if,  for  any  sequence   (Bm) m·=1
of mutuaZZy disjoint events, with B = U-  8  in A, we have p(B) =

m=1 m

Em. lP (Bm).

PROOF. Substitute  Am  :=  B\(U =1Bk)'  or  Bm  :=  A  Am+1'
0

The following definition will only be used in the definition

thereafter.

DEFINITION V.5.3. A set of acts {x1} is uniforn,Zy strongZy bounded
j€Jif there exist 11, v€Csuch that W>x  >G for a l l i€I,j€J.

With this we define the property, characterizing c-additivity of

P. We could below have restricted attention to all simple xJ's, and

even to all acts with only two consequences in the range. This is the

only thing needed in the proof of Theorem V.5.5.

DEFINITION   V.5.4.     >i s  boundedZy   striet Zy   continuous   if   for   any
uniformly strongly bounded sequence   of   acts    (xl)   =1    ,   and   any  pair   of
acts x,y, for which xl > y [respectively xJ < y] for all j, and

lim x  =x i for all i, we have x>y [respectively x< y].
i-+co



98

Note that the above definition is weaker than continuity with

respect to the product topology, i.e. pointwise convergence. For we

only consider uniformzy strongzy bounded converging sequences (and

no uncountable converging   "nets")  .

THEOREM V.5.5. Let (i) in Theorem   V.4.4   hold.    Then   p  can   be   chosen

0-additive if and on Zy if > is boundedZy BtrictZy continuous.

PROOF. First we assume bounded strict continuity, and derive

c-additivity. If I is s-inessential, then U is constant, and we can

let P be any c-additive probability measure, e.g. let P(A) = 1 if and

only if A contains some fixed i € I.

Next suppose I is s-essential. Then a,B exist such that a > B,

otherwise pointwise monotonicity (or s-CCI relatedness)  would imply
CO

s-inessentiality of I. Now let
(Am)m=l be a sequence of events, such

that Am D Am+1 for all m, and nAiji = 0. Define xm := alAm+ BlAI 'x=B.
m+1

By pointwise monotonicity xm > x > B for all m, so lim EU(xm) 1

u(B). (EU: see above Theorem V.4.4.) We now first show i at the last
inequality is in fact equality.

Suppose lim EU(xm) > U(B). U(a) > U(B), so U(B) is not maximal

in U (C) . Sinc U (C) is connected, a y must exist with lim EU(xm) >
III+©°

U (y)  > U (B). Now 21 >y for all m, so B=x>y b y bounded strict

continuity. This contradicts U(y) > U(B). It follows that

lim EU(xm) = U(B).
tlr"» The last equality, and EU(x ) = P(A )U(a) + (1-P(Am))U(B), imply

m

lim P(A ) = 0; as required for a-additivity of P.
m

m+30
Conversely, let P be a-additive. Then bounded strict continuity

follows from continuity of U and the dominated convergence Theorem

of Lebesgue (e.g. see Corollary 16 in section I.III.6.16  of Dunford

and Schwartz, 1958). This theorem is usually formulated for a-algebras.

It can be applied to our context by taking the smallest c-algebra

containing A, and taking the unique 0-additive extension of P to this,

guaranteed by Royden (1963,  section 12.2). The values of the involved

integrals of U o x m and U o x are not affected by this extension of

A and P.
0
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V.6. THE MAIN RESULT, CONCLUSIONS AND FURTHER COMMENTS

First we formulate our main result, combining the previous

results. Let us repeat that I is a nonempty set, A an algebra on I,

elements of A are "events", C is a connected topological space, D an
Ialgebra of subsets of C that contains all open subsets of C. F c C

b
is the set of acts that are A- D measurable, F  is the set of all

strongly bounded (section V.2) acts in F. > is a binary (preference)
I

relation on C .

THEOREM V.6.1. Under Assumption V. 2.2, for the binary re Zation > on

C , the foZZowing two statements are equivaZent:

(i)       There   exists   a  finite Zy   additive   probab€Zity   measure   p  on   A.   and

a continuous u:C+ IR, such that, on Fb, x # fu(xi)dP(i),
(integraZ   we ZZ-defined)   represents  >.

(ii) > is a constant- and 8-continuous pointwise monotone weak order

on   F ,  for  which  aZZ  events  are   8-CCI-reZated  to  a ZZ  8-e8sent€aZ
events.

Furthermore, in (i) we may repZace "finite Zy " by "countab Zy ", if we
add  in    (€i)   the   requirement   that  >  is   boundedZy   strictZy   continuous.

Uniqueness resuZts for (i) are as in Theorem V. 3.4.

PROOF. See Theorems V.3.4, V.4.4, and V.5.5.

0

To our knowledge this is the most general characterization of

subjective expected utility maximization with continuous utility, now

available. The special case where C= IR , and U i s identity, is treated

in de Finetti (1972), a major source of inspiration for our work.

Theorem 3 of Grodal (1978) derives a representation as in (i)

above, so also for a possibly infinite state space, under the

supposition that a triple of disjoint s-essential events exists. The

conditions used there employ a (presupposed) measure on A, and a
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derived mean groupoid  operation. Grodal's results also treat the case

where the set of acts is a subset of F (or Fb), as long as it is

closed under a certain mixture operation, and contains the constant

acts.

For not strongly bounded acts a representation as in (i) above

meets new complications. Say x is not strongly bounded. Of course,

if x w a for some a€C, which always occurs if P>x>v for some
u, v€C (under appropriate assumptions), we would still like to define

EU(x) = U(a). But now there is no justification to consider this as

an integral of U o x. If x is strongly bounded below (there is y such
- -

that x, > y for all i) an integral value for U o x, its "lower inte-
1

gral",   exists. This integral value  is not greater   than  EU (x)  ,   may

equal EU(x), but may also very well be smaller than EU(x). If x w a,

but now x strongly bounded above , we can obtain an upper integral

value  that  may  be "too" large.

Conditions for >, strong enough to guarantee that > can be repre-

sented by an integral for all acts, are usually undesirably strong,

for instance they may simply imply boundedness of U, as turned out to

be the case in Savage  (1954) . They may even lead to impossibility

results, for instance if C = ]0,1] = I, > maximizes Lebesgue integral,
I

and one would let A = 2  and require continuity of > with respect to

I
the product topology on C . Then this would require a c-additive

extension of the Lebesgue measure to 2 , which is known not to
]0,1]

exist, see Banach and Kuratowski (1929), or Ulam (1930). Finally,

such conditions for > may restrict the set of considered acts strongly.

The integral representation can be extended to those acts x,

equivalent to some a, that have, for every B < x, a "sufficiently good"

consequence y to ensure that the "above truncation" x' of x at y (i.e.

x  = xi if xi < 9, xi = y if x  > y) has B < x, and that have, for
every  p >x,a "sufficiently bad" consequence  v to ensure  that  the

"below truncation" x" of x at v (i.e. xi = xi if xi > G, xi = v if
x. < v) has x" <  D.  This is the way to extend > to the class of all
1

acts with finite expected utility, a desirable result for instance for

statistical applications (see De Groot, 1970, end of section 7.9). For

brevity this is not elaborated here.

Other acts are difficult to handle. One quickly runs into problems,

related   to   the "St. Petersburg paradox".
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The application of our results of course is not restricted to

DMUU. For instance one may think of welfare theory, with agents in-
stead of states of nature, and with P interpreted as power index.

A major application of our results lies in dynamic contexts. Our

theorems are general enough to apply both to continuous and discrete
time. One may characterize "constantness" of the "discount factor" P,

where P corresponds to weights of a form ke , by the addition of
-Pt

an extra stationarity assumption. Such a thing is done in Theorem 4
of Grodal (1978). Compare also Corollary IV.4.6, or Corollary IV.5.5.

Dr&ze ( 1982) emphasizes the analogy between the "I=set of states" and
"I=set of points of time" interpretations.

We end with two conjectures:

CONJECTURE V.6.2. If C is topologically separable, then s-continuity
is implied by the other properties of > in (ii) of Theorem V.6.1.

CONJECTURE V.6.3. In Theorem V.6.1(ii) one may weaken pointwise mono-
tonicity to:  [i- > FI for all  i= •x>y for all x,y €  P].

The property in Conjecture V.6.3 is more closely related to the

"coherent condition" of de Finetti, see de Finetti (1974, section
3.3.6).
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CHAPTER VI

SUBJECTIVE EXPECTED UTILITY

BY CHOQUET INTEGRALS

VI.1. INTRODUCTION

In this chapter we shall characterize, in Theorem VI.5.1, sub-

jective expected utility maximization with continuous utility for the

case where the probability measure no longer has to be additive. The

main characterizing property will be "comonotonic cardinal coordinate

independence". The "nonadditive probability measures" will be called

"capacities", see Definition VI.2.1. Choquet (1953-54, 48.1) has

indicated, for a special class of capacities, a way to integrate with

respect to these capacities. We shall adopt this way of integration.

For an alternative way to integrate with respect to capacities see

Gilboa ( 1985a).

Capacities play a role in cooperative game theory with side

payments, where  I  is  a  set of "players", a subset  of  I  is a "coalition",
and the capacity is a "characteristic function", or "game", indicating

productivity, power etc. See von Neumann and Morgenstern (1944), Luce

and Raiffa (1957), Driessen (1985). Capacities also play a role in

the study of robustness in statistics, see Huber (1981, section 10.2),

Huber and Strassen (1973).

Schmeidler (1984 a,b,c) applied capacities in decision theory.

One motive was to vary on expected utility maximization so as to avoid

A-



paradoxes such as the "Ellsberg paradox" (see Ellsberg, 1961) or the

"Allais paradox" (see Allais, 1953, or Savage, 1954, pp. 101-103),

paradoxes that are often used to criticize or falsify expected utility

maximization. Another motive   is the applicability in welfare theory.

Special kinds of capacities are the "belief functions" in Shafer

(1976, 1979), or the "plausibility" in Reschner (1976).

In this chapter we shall again use terminology of decision making

under uncertainty. Schmeidler (1984a) has characterized subjective

expected utility maximization with nonadditive probabilities, for the

case where consequences are lotteries. He could start with an

application of the theorem of Herstein and Milnor (1953), and thus

immediately obtain a cardinal representing function for the preference

relation on the set of acts. (This induces "linear" utility for the

consequences.) After that he could apply to this representing function

the characterization of functionals that can be considered Choquet

integrals, as given in Schmeidler (1984c). See also Anger (1977,

Theorem 3).

We adapt, under the simplifying assumption that the state space

is finite, the work of Schmeidler to the case where the consequence

space is a connected topological space, and utility is continuous,

not necessarily linear. In our work a (cardinal) representing function

is not easily available, and a derivation of it will be the main

mathematical difficulty.

One can consider Schmeidler's work the adaptation of Anscombe

and Aumann's (1963) characterization of subjective expected utility,

to the case of nonadditive probability, and the results of this

chapter the adaptation of our characterization of subjective expected

utility, given in Theorem IV.3.3. Gilboa (1985b) adapts the

characterization of subjective expected utility maximization of

Savage (1954) to the case of nonadditive probability.
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VI.2. CAPACITIES AND THE CHOQUET INTEGRAL

Throughout this, and following, chapters, I is the finite set

{1,...,n}.

DEFINITION  V I.2.1. A function  v   :   2·I  +  IR   is  a  capacity   if:

V(0) = 0. (VI.2.1)

v(I) = 1. (VI.2.2)

A c B- v(A) 1 v(B) (monotonieity). (VI.2.3)

Note that the range of v must be a subset of [0,1]. In literature

capacities  are also defined  when  I is infinite ; thal usually continuity
with respect to increasing and decreasing sequences of events is

required. For our finite I this is trivially satisfied. Also the domain
of the capacity in literature is often taken to be the collection of

compact subsets of I, with I a (Hausdorff) topological space, or it

is taken to be an algebra on I. To follow this, we could of course
I

endow I with the topology, or algebra, 2 . Finally, the normalization

(VI.2.2) is sometimes left out.

The following definition was essentially first given by Choquet

(1953-54, 48.1).

I
DEFINITION VI.2.2. Let v:2  +R b e a capacity. Then, for any

f:I+ :R, the Choquet integraZ of f with respect to v, fIfdv, is:
0

7 v({i€I : f (i) 21 r})dr + f- [v({i€I : f (i) 1 T})-l]dr.   (VI.2.4)0

Note that for nonnegative f the second term vanishes. And note

that for additive v the Choquet integal coincides with the usual

expectation of f with respect to v, as follows from integration by

parts. I being finite, (VI.2.4) can be written as a sum. To this end

let 1 be a permutation, dependent on f, on {1,...,n}, such that

f(TT(1)) Lf(TT(2)) 2-··· 2-f(Tr(n)).So 17 assigns to every i, con-
sidered as a ranking number, the state of nature with this ranking

number, where ranking is according to the values of f. States with



lrC

IR

f (2)-

f (3) -

f (5)= f (11         9   

%I
0 -1

f (4) =1 IE
FIGURE VI.2.1.(a). fIfdv = (VI.2.4) = A(///) +A(\'1) + A(-) + ACE)  +

[A(|||)  - A(000)1.

IR  

f(2)

f ( 3)  -

f(5)=f(1) AA
E              I

0 -1---2--3=-4--5=4 ---14*O-0-0-0-0-0-0-00000-0-01
0-0-0-0-0-0-0-0-0000 -O-0-01
O-0-0-0-0-0-0-04 0 0 0 0-0-01
O<>-O-0-0-0-0-0-00000-0-01
O-0-0-0-0-0-0-0-0000 0-0-01

f (4)

FIGURE VI.2.1.(b). f fdv = (VI.2.5)  = A(///) + A(\\\) + A(·-) +
000.

A(E)  - A(000) .
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m 

£12) -&

f (3,  -'                mi  -           1111-

<s=  <111  1-             -i        il         1-1        I -
t(4)

---- -3         <28 2&9

-#-- -I'l- --I.-* --'llj -Il--

A(///) + [A 09)-A('N]+[Ay,9)-ANW]+[Ay/2)-Ae)]-[A(/9)-A(W]

FIGURE VI.2.1.(c)  fIfdv = (VI.2.6)  (Rewritten in (VI.2.7)).

FIGURE VI.2.1. The Choquet integra Z.
I= {1,2,3,4,5}, f:I+ IR, f(2) > f(3) > f(1) = f(5) >0> f(4).
 (1) = 2, Tr(2) = 3, T(3) = 1,  (4) = 5, TT(5) - 4. We could also have
taken ir (3) = 5, 7T (4) = 1.

A doubly marked part belongs to two areas. For example     in (a)
000belongs both to  I l l   And  to 000 I

A = "area". We always take area positive. In (a), A(///) = [f(2)-f(3)]
v ({2}); AA\\) = [f(3)-f(5)] v ({2,3}); f(1) = f(5), hence-is an
empty   set,   A (-)    =   0.
Area is additive in the IR-axis, so in (a), ACE U 111 ) =  ACE) +
A(Ill) . Area does not have to be additive in the I-axis,   so in  (a) ,
ACE) 0  f(1)[v({1,2,3})   +  v({5})]   may  very  well  hold.
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equal f-value mutually can be ranked in any arbitrary way. Now (VI.2.4)

can easily be seen to equal (see Figure VI.2.1, (a) and (b)) :

I =i[ ft,T(j)) -f(11(j+1))].  v({TT(1),...,ir (j)}) + f (Tr(n)). (VI.2.5)

Note from this expression that the mutual ranking of states with

equal f-value is immaterial. After a reordering of terms, (VI.2.5)

becomes (see Figure VI.2.1 (c)):

I8 .f(11(j))[v({Tr N),...,Tr(j)}) - v({71(1),...,I(j-1)}]. (VI.2.6)
J=i

And this will lead to the expression that will be most useful for

our work in the sequel. For this a new definition is needed:

DEFINITION VI.2.3. For a capacity v, and a permutation A on {1,...,n},

and 1<j<n,--

.T

P (j):= v({i€I : 1-1(i) 1 A-1(j)}) - v({i€I : A-1(i) < A-1(j)}).

Dependency of P (j) on v is not expressed in the notation. One

may interpret P (j) as the marginal contribution in capacity of j to

those states of nature which are ranked before j, by  . By this  we

can, with 1 as above formula (VI.2.5), rewrite (VI.2.6) as:

Ej=lP (j)f(j).
(VI.2.7)

Note that, for fixed r (and v), the P (j)'s above are nonnegative

and sum to one. One may consider ffdv as the integral of f over I with

respect  to the (additive) probability measure  P  ,   induced  by  the
'IT

P (j)'s. This will lead to the main strategy of our approach to derive

the main result, Theorem VI.5.1: We shall consider subsets of acts,

that induce a same "ranking" permutation A. On such subsets we can

proceed as if we were dealing with additive probability Pr, thus we

can apply well-known techniques there.

Let us now give some elementary properties of the Choquet integral,

that follow from the above expressions.

flfdv = Affdv for all A 1 0  (positive homogeneity). (VI.2.8)

f(X+f)dv =A+ ffdv for all X€I R (transZation (VI.2.9)

invariance).

We also have:
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If f (i) 2- g(i) for all i, then Jfdv 1 fgdv (monotonicity).  (VI.2.10)

The latter is most easily seen by taking X+f and A+g with X so

large that X+f and X+g are positive, and by applying (VI.2.9), and

(VI.2.4). Finally, if we consider the Choquet integral as a function

from  R 1    to   1-    with   (Al'...'X   )   € Rn interpreted  as the function,n
assigning X. to every j, then we obtain the well-known:

J

PROPOSITION VI .2.4. The Choquet integraZ is continuous.

PROOF. First we derive continuity in each variable. Let 1< i< n.

By (VI.2.10), the Choquet integral is nondecreasing in its i-th

variable.   Let   x  €   IR ,   and   E   >   0.   Let   A   be as above    (V I.2.5) . Since   the

mutual ranking, by A, of states j with value x  equal to xi ' can be
-1

chosen arbitrarily, we may assume that of these, A (i) is the
-1

smallest. Let 6 = min{E, xk-xi} where k is such that A  (k) =
-1                                                -1
TT  (i)-1, if the latter is positive; let 6=E i f 7T (i) = 1. Then

for all x .(x.+A) with 0<1<6,i n the calculation of the Choquet
-1 1    - -

integral through (VI.2.7), we can use the same Tr, and thus Plr(j),s,
as for x. Thus fx . (x.+A)dv - fxdv < PT'(i)6 16<E.-1 1     -

Analogously one shows that 6>0 exists such that for all

0  <  A  1- 6, every  x-i (xi-A) gets assigned Choquet integral,  not  more
-1

than E smaller than x. (This time let A (i) be as large as possible.)

The Choquet integral is nondecreasing and continuous in each

variable. It must be continuous.

0

We shall need the following observation (VI.2.11) in the proof

of Theorem VI.8.8. Note that the P (i) of Definition VI.2.3 uniquely

determine v : for any A c I, we take a A such that A = {A(1),...,Tr(i)},
1  T

then we have v(A) = I P (w(i)). This also shows that if one takes
j=1

an arbitrary collection of real numbers P (j), j = 1,...,n, A €

{permutations on {1,...,n}}, then: there exists a (necessarily unique)

capacity v such that any P (j) can be derived from v as in Definition

V I.2.3,   if  and  only  if  for  all  i,   Tr ,   A' :

PT,(i) 21 0; I =  piT(j) = 1 ; { ,T (1),...,7T (i)} = (VI.2.11)
7T '

{Tr'(1),...,A'(i)} - Ej=iPT,(j) = Ij=tp  (j)·
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VI.3. COMONOTONICITY

In the previous section we saw that for the Choquet integral, an

ordering  on the states of nature,  by the "ranking" permutation  1,

plays a central role. Hence we define, with  >on  C  as in Notation  V I.2.3:

DEFINITION VI.3.1. For x € Cn, >  is the binary relation on I, defined
X

by i >x j whenever xi > xj.

If > is a weak order, then so is > .X

DEFINITION VI.3.2. For S C C , >s :=  n >x ·
XES

Thus i >sj if and only if xi > x  for all x € S. The following is

a central notion:

DEFINITION VI.3.3. A set C c Cn is comonotonic if no x,y € C, i,j E I

exist such that xi > xj, Yj > Yi'

The following sets are "maximal" comonotonic sets, as will follow.

DEFINITION VI.3.4. For a permutation A on I,

C" := {x € Cn : x >X > .>X }
A(1) 7,(2)        -         TT (n)

id    7T
C   = C  with A identity.

We now obtain, with an ordering a weak order for which no

different elements are equivalent, the following Lemma. We shall use

only (i) and (iv) of it. Statement (iii) is added because it shows the

way to proceed in case I is infinite, a case for further research. (ii)

is added because it is used in the proof; and because it may be

clarifying.

LEMMA VI.3.5. Let S c C . Let > be a weak  order.  The  foZzowing  four

statements are equivalent:
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(i) S is comonotonte.

(ii) > €8 a weak order.
S

(iii) There  exists  an  ordering  f on  the  state  space  I  Buch  that:

[i  f  j  -  xi  > x j] for aZZ i,j € I, x € S.

(iv) s c c1 for some permutation w on I.

PROOF. (iii) follows   from   ( ii) by letting  f be any ordering  such  that
i  f j  -i  >s  j ·Such an ordering exists by Szpilra jn   ( 1930), or Richter
(1966, Lemma 2) (applied to 0).

(iii) =* (iv) follows by taking A such that A(1) f b(2) f ... f A(n).
If (iv) holds, then for x,y € S, x, > x. and y. > Yi would imply1 J J
7T(i) > 7T(j) and 7T( j) > 7T(i), which cannot hold. So (i) follows.

Finally, (i) is assumed, and (ii) is to be derived. Transitivity

of >s is from transitivity of >. So completeness of >s remains to be
derived. If not j>s i, then there must be x€S with x. > x.. By

1     J
comonotonicity y  > Yi for no y € S, i.e. yi > y  for all y € S. So

i  S  

0

DEFINITION VI.3.6. Let C c Cn. Then i is inessent€aZ (with respect to

>) on C if z-ia Al Z-iB for all z-ia, z-iB € C. If i is inessential on
7T

C , then we also call i w-inessentia Z. If A is the identity, we write

id-inessentia Z. The opposite of inessential always is essent€aZ.

The proof of the following lemma is more complicated than that of
its "additive" analogue, Lemma III.2.9. The reason is that we are now
no longer "free to cross borders" from one C  to another. This is the
main complication in the work of this Chapter. A preparatory notation:

NOTATION VI.3.7. For a,B E C,a v B [respectively a A B]i s a i f a>B

[respectively a < B], B otherwise.

Note that a v 8 0 8 v a i f a m B and a 0 B.I f>i s a weak order,
then a v B A'B v a for all a, B. Same things hold for A.
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LEMMA VI.3.8. Let > be a weak order. Let x,y E c ,  and xj = yj for

aZZ H-essentiaZ j. Then x w y.

id          0       0
PROOF. Suppose x,y €C  . Define x  := x,y  := y, and inductively,

for j = 1,...,n, x1 :=  xlit(xjv yj), y1 := ylil(x  v y ). Note that,

for all id-essential j, x  =y. =x  v y,. Note also that, for all

j > 1, x:  v y  < x _  , a d xj Jv y  < y _  , so that x ,y1 € Cid for

all j. We conclude:

x - xls:txl e ... xn = yn w yn-1
% ...Aly =y.

0

0

LEMMA VI.3.9. Let > be a weak order. Let aZZ i be 1-inessentiaZ for

aZZ A. Then > is triviaZ.

PROOF. Let x,y € Cn. Take any a € C. Since G € C  for all A, there

are #, A', such that x,a € C , and y,a € C  for some w'. By the

previous Lemma,   x  R,  a  m  y.
0

VI.4. COMONOTONIC CARDINAL COORDINATE INDEPENDENCE

The definition of A-essentiality, given in the previous section,

is the key tool for the adaptation of cardinal coordinate independence

to the present context with (nonadditive) capacities:

DEFINITION VI.4.1. > satisfies comonotonic cardina Z coordinate

independence (Com. CCI) if for all permutations A,T' on {1,...,n},

all j and A-essential i, and all x-ia, y-iB, x-iy' y-io € CW, and

finally all s_ a, t_ B, s_ y, t_ 6 E C":

Ix-ia < y-iB & x-iy > y-io  & s_ a > t_18] - [s_ y > t- 6].

A way to obtain intuitive insight into the condition, is to

consider the elucidation to Definition IV.2.4 (CCI), and to study the
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proof in section VI.5, in the sequel. The remainder of this section

is devoted to the study of consequences of Com. CCI. For this we
assume throughout this section, without further mention:

ASSUMPTION VI.4.2. (For this section). > is a weak order that satisfies

comonotonic cardinal coordinate independence.

The following is the analogue of coordinate independence. It is

more convenient to formulate it now in the spirit of independence of

equal subalternatives (Definition II.6.2).

DEFINITION VI.4.3. > satisfies comonotonic coordinate independence

(Com. CI) if for all comonotonic {x-ASA' Y-ASA' x-AtA' y-AtA} we have

[x-ASA > Y-ASA ** X-AtA   y-AtA) '

LEMMA VI.4.4. > satisfies comonotonic coordinate independence.

PROOF. First we consider the special case that ||A|| = 1, say A = {k}.
Let x-ksk' Y-ksk' x-ktk' y-ktk € Clr. If k is A-inessential, then

x-ksk  x  X-ktk'   and  y-ksk  w  y-ktk' and everything follows.   So  let  k  be
Tr-essential.  Then   [x-ksk  < x-ksk  &  x-ktk  >  x-ktk  &  X-ksk    y-ksk]  by
Com. CCI imply x-ktk > Y-ktk

idNext the general case. Say x-ASA' Y-ASA' x-AtA' Y-AtA € C
Define:
0               0               0               0

a  := x-ASA' b  := y-ASA' c  := x-AtA' d  := y-AtA'
Then define, inductively, for j = 1,...,n:

If j € A, then (a ,b ,c ,d1) := (a -1,bj-1,cj-1,dj-1)
If j € A, then (a1,b ,c1,d1) := (a1.la,b -la,c -la,d1.la), with

-J -j -J    -J

a =sj v tj.

The above construction has been such that al = cl and b1 = d 
for all k i j, and such that all new acts are in Cid. For instance if

j € A, then a1-1, bj-1, cj-1, dj-1 € Cid imply, by simple manipulations,

a < a -1,a < b -1,a < cj-t,a < d -1 · Further an = cn, bn = dn
By repeated application of the already handled case  |A|| = 1,

we conclude that:

x-ASA > Y-ASA ** a  > b ** al > bl** ...**an > bn** cn > dn
u cn-1 > dn-1 4* . . . "c l>d l* * x-AtA   y-AtA'

0
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...

By the above Lemma, the following definition is useful under

Assumption VI.4.2.

DEFINITION   V I.4.5. We write   xA  >A  YA if there
exists   sAC   such   that

XAs  c  >  YAS  c   '   and  xAS  c   '   yAS  c  €  Cl'.
A      A          A       A

LEMMA VI.4.6. If xA >A YA, then
xASAc , YA"Ac for aZZ sAc for which

xASAC , YASAC € C .

PROOF. Direct from Lemma VI.4.4.

0

The second and third consequence of comonotonic cardinal

coordinate independence are, with in the terminology of Chapter II,

"CA"   omitted:

DEFINITION  VI .4.7.> satisfies weak monotonicity   (w.mon.)  if  x>y

whenever xi > Yi for all i.

DEFINITION VI.4.8. > satisfies comonotonic strong monotonicity

(com. 8.mon.) if for all comonotonic {x,y} c (Tr with xi > Yi for all i,
and xi > Yi for a A-essential i, we have x > y.

LEMMA VI.4.9. > satisfies weak, and comonotonic strong, monotonicity.

PROOF. First we derive weak monotonicity. In three steps:

id
Assume y= x-ka, {x,y} comonotonic, say x,y €C  ; xk  a (VI.4.1)

Suppose we have x<x a. Contradiction is derived.
-k

Define, for j = 0,...,n:

zl has z  = ... = z  = xk' zl+l = ... = z1 =
a. (VI.4.2)n

j         id                                kThen all z are in C . By Com.CI , X < X-ka implies z-kxk <
k          k    k-1
z-ka, i.e. z

<z . Each of the last three preferences implies

id-essentiality of k. Thus, by Com. CCI,

 z-ka K z-ka & z-ka   z-kxk & zlia > zlial
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implies zl a > zljxk ' i.e. z -1 > z1, for all j 1 1.
0 1 k-1 k

k+1    ,, >z n=x.Apparently G=z >z  > ... >z >Z >Z
k

This, finally, contradicts  xk  >a.   The  case (VI.4.1)is handled.   Next :

id
Now assume y= x-ka, xk >a; say x€C (VI.4.3)

So {x,y} no longer has to be comonotonic. Let 1 be such that

xl > a, x. < a for all j > 1. Then, by repeated application of the
J

result  for  case (VI.4.1), x>x-kxk+1 > x-kxk+2  >  ','  > x_kxl  >  x-ka,
since every two subsequent acts are comonotonic (e.g. x-kxk+2 and

x-kxk+3 are in C  with w Ck+2) = k) . The case (VI.4.3) is handled. The

third case is the general case where xi > Yi for all i. Then, by
repeated application  of the above result,  x > x-1 1  >  C (x-1Yl  -2V2    
...   ((Cx-1Yl)-2Y:  "' y ) = y. Weak monotonicity is proved.-n n

Next, to derive com.s.mon., suppose {x,y} comonotonic , say
id

{x,y}  C C     ,   further  x   >p  y    for  all   j,   and  x   N y]c  for an id-essential
k. To derive is x > y. Define:

z has z  = x  for all j 1 k, z  = y  for all j > k. (VI.4.4)

id
Then both (z=) z-kxk and z-kyk are in C  . By w.mon. x > z-kxk >

z-]cyk > Y. It is sufficient for com. s.mon. to show that z-kxk > z-kyk.

Suppose to the contrary that we have z-kxk < z-kyk. We derive a
contradiction.

Define z ,...,zn as in (VI.4.2), with a = Yk.kSince k is id-j

essential,  by  Com.  CCI,   [zlyk  <  zkkyk  &  ztkyk >  z-kxk  &  z-jyk  >
zijyk] implies z  yk > z  xl,' i.e. z -1 > zl, for all j 2- 1. So
yk > xk. This contradicts xk   yk.

0

COROLLARY VI.4.10. >i s triviaZ if and onZy if a>B for a ZZ a,B E C.

PROOF. If > is trivial, then a > B, so a > B, for all a,B. Next assume

a > B for all a,B. Then for any x in any C , and any a € C, xi > ai

for all i, and a € C , hence by w.mon .  we have x > a.
-          -

Analogously x < a. So x w a. Also x w a w y for all x,y,a : > is
trivial.

COROLLARY VI.4.11. One Tr has a. Tr-essentiaZ state, if and on Zy if every
A has a A-essentiaZ state.
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PROOF.   If  one   A   has  a Tr-essential state,   then > cannot be trivial.   By

Corollary VI.4.10 we have a<B for some a,B €C. Since a, B€C   for

every A, Lemma VI.3.8 implies that every w must have a 1-essential

state.

0

VI.5. THE MAIN THEOREM

In this section we give the main theorem of this chapter. After

the theorem we give a proof for the simplest implication (i) - (ii) in

it. The proof of  (ii) 4 (i), and of the uniqueness results, will be

carried out in following sections, and completed in section VI.9.

A survey is given in section VI.10.

THEOREM VI.5.1. Let n € m. Let C be a connected topoZogicaZ space,

that is separabZe if every permutation   on {1,...,n} has exactZy one

w-essentiaZ state.    For the binary   reZation   >  on   Crl,    the   foZZowing   two

statements are equivaZent:

(i)  There exist a capacity v on 2{1"."n}, and a continuous

u:C+ IR, such that x & /(u o x)dv represents >.

(ii) > is a continuous weak order that satisfies comonotonie cardinaZ

coordinate independence.

The foZZowing uniqueness resuZts hoZd for u, v of (i):

If some A has two or more A-essent€aZ states, then U (VI.5.1)

is eardinaZ, and v is un€queZy determined.

If > is not triviaZ, and no w has two or more (VI.5.2)

A-essentiaZ states, then U is Continuous Zy ordinaZ,

and v €8 uniqueZy determined.

If > is triviaZ, then u is any constant function, (VI.6.3)

and v is arbitrary.
0
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PROOF OF (i) 4 (ii) ABOVE. Suppose (i) holds. Obviously > is a weak

order.

The map x 5 (U(xl)'...'U(xn)) is continuous, so is, by Proposition

VI.2.4, the map (U(xl)'---'u(x )) » f(U o x)dv. The map x & /(U o x)dvn
is apparently continuous. This implies continuity  of  >.

All that remains is Com. CCI. For this, first suppose that:

x-ia < y-iB, X_i.Y   y-i.6; {x-ia, Y-:LB, x_iY, Y-id} c (Tr;  (VI.5.4)
i is A-essential.

The two preferences give, by (VI.2.7) (with the A in (VI.2.7)

identical  to our present Tr since  xi  >  x   -  U (xi)  1 U (x j ) ) :

Ek#ipw(k)U(xk) + P (i)U(a) 1 Ik0ipT(k)U(Yk) + P1(i)u(B)

and

Ik0l P  (k)U (xk) + P (i)U(y) 1 Ik0ip  (k)U(yj) + P (i)U(6) .

These two imply:

P'T(i)[U(a) - U(B)] 1 P (i)[U(y) - U(6)]. (VI.5.5)

Were P (i) = 0, then by (VI.2.7)  and the representation of >

by x»f(U o x)dv, i would be Tr-inessential.  So:

P1(i) > 0. (VI.5.6)

The last two numbered results imply:

U(a) - U(B) 1 U(y) - U(6). (VI.5.7)

Now suppose, besides (VI.5.4), also:

1T '

s_ a > t- B; {s_ a, t_ B, s- y, t_ 6) c C . (VI.5.8)

The preference implies:
7T'           17'              7T'

Iktjp (k)U(sk) + P  (j)U(a) 2 Ektjp
(k)U(tk) + Plr'(j)U(B). This, and

(VI.5.7), implies:
Tr'              17'           7T'

Ek#j P  (k)U (sk) + P  (j)U(Y) 1 Ek0jp  (k)U (tk) + P  (j) u(6) .

Or: s_ y > t_ 6. This is exactly what, by Com. CCI, should follow from

(VI.5.4) and (VI.5.8).

0

Next we give some examples of decision making, discussed in Luce

and Raiffa (1957, Chapter 13, for instance page 282). These examples

have no expected utility representation with additive probability
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measures, but they can be represented by (i) in the above Theorem.

EXAMPLE VI.5.2. Let 1 -f k 1 n. Let v (A) = 0 if | |A| | < k, v (A) = l if

1|Al| l k. Then f (U o x)dv = U(x ), with U(x ) the k-th highest value

in U(xt),···,U(x ). P"(T(k)) = 1, for all 1. The preference relat
ion

belongs to a "maximin"-decision maker if k = n, and to a "maximax"-

decision maker if k = 1.

EXAMPLE VI.5.3. Let 0<1<1. Let v(0) =0, v(I) =1, v(A) = X for

all remaining A. Here P (A(1)) = X, P (·,t(n)) = (1-A) for all 1, and

f (U ox)dv =A max{U(x ): 1 i j in} + (1-A)min{U(xj): 1 < j in}.The
preference relation belongs to a decision maker, adopting the "Hurwicz

criterion" with "pessimism-optimism index"   1-k, see Hurwicz   ( 1951) .

VI.6. PREPARATIONS FOR THE PROOF

LEMMA VI.6.1. Let C be a topoZogical space, > a weak order on Cn,

continuous  with   respect   to   the   product   topoZogy.    Then   for   aZZ   x   €   Cn,

{a€C:E>x}and {a €C:E<x}a r e open subBets of C.

PROOF. Let a > x. Then an open neighbourhood V c Cn of a exists such

that y>x for all y€V.W e may assume that V i s o f the form

Alx...xAn' with all A  open subsets of C. Now A :=11 =1Aj gives an open

neighbourhood of a within {a €C:a> x}. The latter is open.

Analogously {a €C:a<x}i s open.
0

LEMMA VI.6.2. Let no A have two or more 1-essentiaZ states. Let the

assumptions in Theorem VI. 6.1, and aZao (ii)   there,  hold.   Then  also

(i)   and  the  uniquene88 resuZts there  hoZd.   If  >  is  nontrivia Z,   then
v onZy takes the vaZues 0 and 1.

PROOF. If there is a A with no A-essential state, then by Lemma VI.3.8,

for all a,B € C, a w B. By Corollary VI.4.10, > is trivial. Now (VI.5.3) ,
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and (i), follow straightforwardly.

So we assume:

Every a has exactly one A-essential state. (VI.6.1)

The binary relation on C, also denoted by >, and defined by

a>B i f a>B (Notation IV.2.3) obviously is a weak order. By Lemma
VI.6.1 it is continuous. By Theorem III.3.1 there exists a, continuous-

ly ordinal, $ :C+ IR, representing>on C. We can set U: = $ ,a s w e
shall see; so any continuous strictly increasing transform of U can
be used.

Next we define v. Let A C I b e arbitrary. By nontriviality, there
are a and B such that a>B.I f a  B  >B,w e define v(A) := 1,A   cA
otherwise v(A) := 0. By com.s.mon. and Lemma VI.3.8 we see that

v(A) = 1, iff for any w with {A(1),...,A(k)} = A, A contains the w-
essential state. This shows that v is independent of the particular

choice of a and B above. Also it follows that P"(j) = 0 for all A-

inessential j, and P (j) = 1 for the A-essential j.

Now we show that with these constructions, (i) in Theorem VI.5.1

holds. Let x and y be two acts. Let x € C , y € C '. Let i be the A-
essential state, j the A'-essential state. Then, by Lemma VI.3.8,
- -

X w xi' y w y . There now follows:

x > y - xi > yi** U(xi) 1 U(yj) ** IPT (k)U(xk) 1 EPN,(k)U(Yk) **
f(U o x)dv 1 /(U o y)dv.

Finally we derive the uniqueness result (VI.5.2). We saw above
that U can be any continuous strictly increasing transform of $.

Since, obviously, U has to represent > on C, no other kind of U can

be taken : U is continuously ordinal.

For uniqueness of v, we consider an arbitrary A, and show that

P (i) = 0 for all A-inessential i. Then P (j) must equal 1 for the
A-essential j. These values P (.) uniquely determine v. So let,

finally, i = #(k) be A-inessential. Let a > B. Let x assign a to

I(1),...,w(k), B to 1(k+1),...,w(n). Then x and x-iB are in CW. By
A-inessentiality of i, x w x-iB Since U (a)  > U (B) , by (VI. 2.7) we
obtain P (i) = 0.

0
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In cooperative game theory with side payments v's as above are

called "
(monotonic) simple games", see Driessen   ( 1985, Definition

V.3.1).

DEFINITION VI.6.3. a€C i s mao:€ma Z [respectively minimaZ] if B>a
[respectively B < a] for no B € C.

id
VI.7. ADDITIVE VALUE FUNCTIONS ON C

id
In this section we derive results for C . Of course, the same

results hold for any C . Without further mention, we assume through-

out this section.

ASSUMPTION VI.7.1. The assumptions, and statements (ii), of Theorem

VI.5.1 hold. There are at least two id-essential states. Further we

assume that all states are id-essential. No maximal or minimal conse-

quences exist.

The assumption of at least two id-essential states is essential

for the sequel. The assumption that all states are id-essential is

only made for convenience. By Lemma VI.3.8 id-inessential states do
id

not affect the preference relation on C , and may just as well be

suppressed from notation. They will simply get additive value
id

functions V. assigned that are constant, say zero.
J

DEFINITION VI.7.2. Let C c Cn. Let (V ) =t be an array of functions,

each  from a subset  of  C  to the reals.  Then   (V.):      are  additive  vaZue
1 1=1

functions (for >) on C if x » E =1 V (x ) is well-defined for every

x € C, and represents > on C.

VI.7.1. ADDITIVE VALUE FUNCTIONS (Vz)n ON THE EZ,S.
j j=1

id   z     z
NOTATION VI.7.3. For z€C  ,E: =E l x •·· x EZ, with E  :=n
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{a€ C :a>zl ' E  := {a EC:a<zn-13' and for all j 0 1,j 0 n,
E; := {a €C:z j<a< zj-1}-

Note that zn plays no role in the above notatian. And z € Ez c Cid.
The EZ's are cartesian products, and they are comonotonic so that on

them the conditions of this chapter hold without the comonotonicity

premise. That enables us to apply the theorems of Chapter III.

PROPOSITION VI.7.4. For any z€c there exist continuous s€muZ-
id

taneous Zy   card€na Z   additive   vaLue   functions    (vz) n        for  >  on   Ez.
J ]=l

ZPROOF. Since no maximal consequences exist, there is a > zl in El
Z

Since no minimal consequences exist, there is B < zn-1 in En- Hence,

by id.essentiality of 1,n, and by com.s.mon.,z-la > z > z-n B. This
shows that 1 and n are essential on EZ. Since EZ, and any subset of

it, is comonotonic, the properties of Com. CCI and Com. CI all hold

without the comonotonicity restrictions. The topological assumption
III.2.11 on EZ will be guaranteed in the next subsection. Hence , for

the case of three or more essential states on EZ, Theorem III.3.7
gives all desired results. Otherwise only 1 and n are essential on EZ.

Then triple cancellation follows from (Com.) CCI, exactly as in Lemma

IV.3.2. And then Theorem III.3.6 gives all desired results.

0

In the proof of the above Proposition we have postponed one
matter: the topological assumption III.2.11. The problem is that, if

we  take the restriction  to  E   of the topology  on  C,   then  E   will
J

possibly be no longer connected. For instance let (i) of Theorem VI.

5.1 hold, where C = IR with the usual Euclidean topology, n = 2, v is
the additive probability measure assigning | A |/2 to every A c I,

and U:a»a sin a. Let z=  (0,0). Then E  = {a: U(a) 1 0}, is not
connected.

VI.7.2. THE TOPOLOGICAL ASSUMPTION FOR PROPOSITION VI.7.4

NOTATION   V I.7.5. The topology   on   C is denoted   as   T.   By   T (>) we denote
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the coarsest topology on C with respect to which > on C is con-

tinuous. By ... |E we denote: "restricted to E".

Of  course  T (>) is coarser  than  T,   so is connected  too.

LEMMA   VI.7.6.Any    Ec   C   of   the   form{a€   C    :    c   >   a   >T},

{a E C:c>a> I}, {a E C:a>a>T} , {a €C:G>a> T},

{a€C:a>a},REC:c>a}, {a E C:a> T},
or   {a   €   C    :   a  >   T} ,   is   connected with respect   to   T (>)  |E.

PROOF. Throughout this proof, "open" always referS to  T (>).   Let  E  have

a form as above. Let Fl' F2 be open in C. Let El =E n Fl' £2 =E n F2

Suppose El 0 0 0 E2' El A E 2=0'E l U E 2
= E. We derive a contra-

diction.

Let  al  €  El,   a2  €  E2.   T   does not separate between equivalent

consequences,   so  01  Al a2 cannot  hold.   Say  al  < a2 Define:

Gl := [Fl n{a:a l<a< a2 ] U [{a :a< al l' and

G, := [F2 n{a:a l<a< 02 ] U [{a :a> 02 ]
Then Gl A G 2=0'G l 0 0 0 G2' and Gl U G 2=C since

{a :a  <a< a } c E.
First we derive openness of Gl. For any element of Gl' an open

neighbourhood H of it within Gl must be found. Let 6 € Gl- If 6 < al'

take  H= {a:a<a l  '  if  6>  a l'H=F l r l{a:a l<a<  a2} is taken .

So   finally let 6%
0 1 0

There   must  be   an open neighbourhood   H'o f 6

within Fl o f the form {a :a> 11}, or {a :v>a> 11}, or {a :v>a}

for some u,v € C. The first case is impossible since 02 € Fl. So,

finally, F= {a:v>a} can be taken, in both other cases.

Analogously openness of G2 is derived. Openness of Gl and G.4
contradicts connectedness of C.

0

The above Lemma shows  that,   if  we  use  T (>) instead  of  T,   then
Z

every E. is connected. Next we show:
J

idLEMMA VI.7.7. For any z€C  , > , restricted to EZ, is continuous with
respect  to  the  product  topoZogy  of  the  T (>)

1„:is.



123

PROOF. Let x, y € EZ, x > y. We construct an auxiliary x such that

x>y,  and by means of this a subset Fl  X  · · ·X F   of {v €E Z:v> y},n
containing x, and with every F  c E  open w.r.t. T(>) |E . For the

construction of x1' consider:

V:={a€C:(a,x2'.  'xn) N Y '
By Lemma 0.1 this is open w.r.t. T. V contains x 1 so is nonempty. If

 V

V contains zl' then xl = zl and Fl = E  is taken.
If V does not contain zl' then by connectedness of C w.r.t. T,

V cannot be closed w. r.t. T, so not of the form {a :a> xl ' by

continuity of > on C (Lemma VI.6.1) with respect to T. Since V, by

w.mon., contains all a > xl' V must contain an a < xl. This a cannot
be   <z l  (that,  by w.mon., would imply zl  € V).So z l<a<x l:
a€ El. Take 91 =a,F l=E l n{B€C:B> a}.

r.,

Anyway, we have (xl' x2' ...' x )  - y' and Fl is open w.r.t.

T (>)|El

By analogous constructions we obtain x2' F2' ..., xn, Fn' such- -                                 Zthat: (xl, X2, ..., xj, xj+1 ...,
xn)   y for all j, Fjz= E1 if-

x1 = z , therwise z  <x   <x   and F  = {a:a> x } A E . Finally,
(xl'  ..' xn)   y. For every w € Fi x ··· x Fn' in particular w = x,

-
w. >x. for all j. By w.mon.: w>x>y.
J       J

So indeed, if x>y,w e can construct Fl x ...xFcn
IE  A{w:w> y}] , containing x, and open w.r.t. the product topo-

logy of T(>)|E;,j = 1,...,n. Hence {x € EZ : x > y}is open w.r.t.
the latter product topology ,  for all y € EZ. Analogously {x € EZ :

x < y} is open, for all y. Continuity of > w.r.t. the product topology

of  the  T (>)IE; , follows.
0

We can now take care of the topological assumption III.2.11 for

Proposition VI.7.4. On every E  we take T(>) IE . By
Lemma VI.7.6, E 

is connected. On EZ we take the product topology. By Lemma VI.7.7, >

on EZ is continuous w.r.t. this topology. So indeed we can apply the

theorems, mentioned in the proof of Proposition VI.7.4. These yield

additive value functions, continuous w.r.t. the T(>) IE 's; so
certainly w.r.t. the TIE 's.
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VI.7.3. FITTING THE FUNCTIONS Vz TOGETHER ON Cid
J

id .
Our  next  step  is  to  show that there exist  V.     :   L  +  IR,

J

j = 1,...,n, such that for every z and j, V  can be taken to be the
restriction  of  V d  to  Ez.  Thi.s of course could never  be  done if there

1      1
were A c I, and s ,t€Cid,   such  that   (Vj) jEA  and   (Vj) j€A

would  be

additive value functions for different binary relations on the "common

domain" X    (Es A Et). By comonotonic coordinate independence (Lemma
j€A j  J

VI.4.4) that never happens. Both
(V1) EA

and (Vt) are additive
j j€Aid

value functions for >A ' on appropriate domains.

id .
LEMMA VI.7.8. There exist, simuZtaneousZy card€naZ,  vj   :  l. +R,

j = 1,...,n, that are additive vaZue functions on EZ for every z € cid.

PROOF. On every EZ we are given additive value functions (V ) =t for

>, that are simultaneously cardinal. So we may add to every V  an

arbitrary "location" constant T (z), and multiply the V 's by one
common positive "scale" constant    c (z), to obtain again additive value

functions. Our plan in the sequel is to choose,in 5 stages, scales and

locations such that all. V ' s will "fit together", i.e. be the same on
J

common domains. They can then be considered the restrictions of one

array (V d) =1·
1    0

There must exist 8 ,B  € C such that Bl > B . We shall arrange
id 0 id  1

vj (B ) =0 for all j, and V  (B ) =1.

STAGE 1. Choice of scale and location on Er with r = 80.

-         1 r
Letr ("reference point") = BO. El = {a:a> BO}, contains B.E  =n

{a:a< 80}. For all j#l,j#n, < = {a:a w BO}.Of course we

choose scale and locations such that:

vr(BO) = 0 for all j, Vl(81) = 1. (VI.7.1)
J

Z Z

STAGE 2. Choice of scale on all EZ, and location for all Vl' V .

Let   now   z   €   Cid be arbitrary.   By  Com.    CI,    (Vl,   V )    and    (Vl,   V )
id

are additive value functions for the same > on (El O El) x{l,n} Z     Z
(Er  A  EZ).   Note   that  both   1   and  n are essential  on   (E   n  El   n  El)   Xn n
CEI 11 Enz) w.r.t. :4 .n}. By Lemma VI.7.6. 1 n E  and E  n E  are
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connected w.r.t. the restrictions of T(>), and by subsection VI.7.2

we may use the uniqueness result of Theorem III.3.6. So we can choose

the scale for  (Vl, V ),  (and hence for all  (V ) =1:;) and the locations
for (Vl, V ), such that Vl = Vl on El n El , and vn = Vn on En   En
Thus we have, even stronger:

s t st
Vl = Vl and Vn = V  on common domain (VI.7.2)n

for all s, t E Cid

This follows since,  on   (E   n  Et)   x   (Ens     E ) '   (Vl'  Vn)   andt   t
(Vl , Vn) are additive value functions for the same >  n}' hence they

can only differ w.r.t. their locations, and a common scale. However,

for j = 1,n, V  and V  coincide (with V ) on E  fl E  fl E ; hence they
coincide on common domains.

STAGE 3. Intermediate observation.

In fact, for all s, t, j, V  and V  now have the same scale, and
only differ w.r.t. their location, as we shall show:

s t
There exist constants T.(s,t) such that on E. R E. , (VI.7.3)

s              t           J id J      J
V. = T.(s,t) + V.; for all s,t€C  ,1<j<n.
J       J               J                                        --

For j=l o r j=n,b y (VI.7.2), in fact T.(s,t) =0.S o let
S          S S ttt ]

1 0 j t n. Then (Vl' V., V) and (Vl' V , V) are additive value
J idn                nfunctions for the same >{1,j,n, on  (E  fl E ) x  (E  fl E )  x  (EI A Ent)·

S
So they can only differ by location, and common scale. However, Vl

and V  , and V  and V  , coincide on their common domain (which con-
tains more than one element). The common scales must be the same.

STAGE 4. Choice of location for all V 's (j 0 1,n), having B  in their
domain.

Of course for all V 's as above we choose location such that
J

V (B ) = 0. Then we have not only (VI.7.1) to (VI.7.3), but also:

t 0
If V  and V. have B  in their domain then they (VI.7.4)

J          J

coincide on common domain.

This is direct from (VI.7.3).
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Z

STAGE 5. Choice of location for remaining V 's.

Let now z€ Cid and j b e such that 80 €E  ,j 0 1,1 0 n.

Ej = {a idzj-1 >a > zj}. Say zj > BO  (zj-1 < BO is analogous) . Let

r(z) € C   be such that (r(z))i = zj-t for all i < j, (r(z))i = BO

for all i 1 j. Then E; c E (z) = {a : z -  > a > BO}·
-r (z)        0                                                                                                                  zIn Stage 4 we arranged v.   (B ) = 0. We now choose location of V.

such that V  = V (Z) on E . We now shall derive:

For all s,t € Cid, 1 1 j f n,V   and V  coincide (VI.7.5)
J

on common domain.

0
We check this only for the case where 1 0 j 0 n,B  is neither

in the domain  of  V ,   nor   in  that  of V  (other cases are treated

before,   or are analogous),   and  s   >  BO.   Here  E    is  of   the  form

 « . s -1   a   sij  For El,to have<Xnempty intersection;, ;h E  ,
we must have t. >B. Now V. and V. coincide on E. n E. , so do

Vt and Vr(t) on Et A Er(t);Jso do, by (VI.7.4), Vr(s 
J

r(t)
and V. on

1          1             1       1                                            1               1

E (s) A E (t). The latter contains E  fl E .
id n

We can now define (V  ) =1. For any a € C, and 1 3 j in, we take
id

any z€C such that a € E: ,  z. = a suffices. Then we define
J        J

v d(a) := V (a). By (VI.7.5), this does not depend on the particular
id     z

choice of z; and every V  is now the restriction of V.  to E .J                                           J

id n
Finally the uniqueness result. Any (W  ) =1 ' for which real T  ,

j = 1,...,n , and positive a exist such that wid = T.+CV d for all

j, satisfy the requirements of the Le=na. Conversely, if (Wld)  =1
id

satisfy all the requirements of the Lemma, then so do U,  :=
J

[Wid - Wid(BO)] / [wid(81) - wid(BO)].
id 0 id  1

From U. (B ) = 0, Ul (B ) = 1, and from rereading the proof, the
]

reader will see that this uniquely determines U d, U d = V d must hold

for all j.

0

id n
Note that we may not yet conclude that (V  ) =1 are additive

id
value functions on aLL C
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id n idVI.7.4. THE
FUNCTIONS (V  ) =1

ARE ADDITIVE VALUE FUNCTIONS ON C

id id
LEMMA VI.7.9. For aZZ (id-easentiaZ) k: a>B#V k (a) 21 V k (B) .id         id
Hence a>B* * Evk  (a) 1 Evk  (B).

PROOF. Let a, B, k be arbitrary. First suppose a > B. Let xj. = a for
id

all j<k,x  =B for all j l k. Then x=x-kB and x-ka €C  , and
x-k B and x-ka € EX. By w.mon. and Lemma VI.7.8:

a x B-a>B a n d B>a-x-ka w x-kB - v d(a) = V d(B).
By com.s.mon. and Lemma VI.7.8:

id id
a>B=ox-ka>x-kB -v k (a) >V k (B)

Analogously:
id id

a<B„V k  (a)<Vk  (B).
All of this together implies that V represents > on C.

id
k

0

id n   id            idLEMMA VI.7.10. Let x€C   ,x w G. Then I =lv   Mj) = Ej=tvj  (a) '

PROOF.   The  case  x.   Al  a   for  all   j is direct.   The  case  x.   >  a  for   some
J                                                            J

j and x, < a for no j, and the case x, < a for some j and x. > a for
J                                                 J                                   J

no j, are excluded by com.s.mon.

So suppose j<i exist such that x  >a, xj+1 w ... At Xi-1 w a,

Xi  <  a. We define  x   such  that  x    =  xk  for  all  x   0  a,   and
x   =  a   for  all  x   m  a.

1    id
Now suppose, for some 0 1 1 1 n-2, x €C has been defined such
1            id 1 id

that x  w G, and EVk (xk) = Ivk (xk)' with at least 1 coordinates of1
x  equal to a, and no coordinate equivalent but unequal to a. If in

1                                              1+1     1
fact x  has 1+1 or more coordinates equal a, define x    := x . If

not, then, say:
1 1   1 1

xa > a, xa+1 = ' ' = xb-1 = a, xb < a, with b = a+1+1.
If now (x a'  -ba  svc,   define

x
1+1 := Mlaa)-ba (= x1+2). If-               1+1    1

(xlaa)-ba<a, define a<x <x such that:a a
1+1 1+1x    := (X

1ba)-a(xa ,  Ala.

1+1

(Take  xa      in  {B  E C:   (xlba)-aB >a}n{B E C:   (xlba) -aB < a},
both involved sets are nonempty; closed by Lemma 0.1; they intersect

by connectedness.)
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1         -              1+1    1
If (x-aa)-ba > a, define a > xb  > xb such that

1+1
x        :-  (xlaa) -bx +1 53 a.

1          1+1      1         z
In any case, for z = x-aa, both x and x are in E , their a-th

1
coordinate is "between" x and  a,   their b-th coordinate "between"  a

a-1
1+1 id 1+1and xl. Hence by Lemma VI.7.8, x1(w E) m x implies IVk (xk    =

id  1
Ivk (xk)'

-     -Finally  we   end  up  with  xn   1  0  a,   with n-1 coordinates equal  to  a.
n-1

Then by com. s.mon. the remaining coordinate of x must also be

equivalent, so equal, to a. And:

Ikvkd(xk)   =   Ikvkd(x )   =   ...   =   IkVid(x:-1)   = IkVid(a) follows.
0

Now, finally, to show that the (Vid)n are additive value
j  j=1

functions on Cid, let x,y € Cid be arbitrary. First we find "certainty

equivalents."

LEMMA VI.7.11. For every z € Cn there exista a such that z N E.

PROOF. For z € Cn there exist i,j such that xi > xk > x  for all k € I.

Let V: = {a€C:E>x} ,W: = {B€C:x> 8}. Then V n W=0.V a n d
W are open by Lemma VI.6.1. Now xi 9 W and x  i V by w.mon. By

connectedness of C, there is an a e V U W;s o a F u x.
0

We now give the main result of this section:

THEOREM V I.7.1 2. There   exist   continuous   simuZtaneous Zy   cardinaZ
id n id

additive vaZue functions (vj ) =1 for > on c

id id n
PROOF. Let x,y € C   be arbitrary. Let (V  ) =1 be as constructed
above.   Let   a,B   be   such   that   x  N  a,y  N   B    (Le=na   V I.7.1 1) .   Then   x  >  y

iff   Q  > 8, which by Lemma  V I.7.9   is   iff   Ikvid (a)   1  IkVid (B) .   The
id idlatter by Lemma V I.7.1 0 holds  iff  Ik k   (xk)   2-  Ik rk   CYk  '

0
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The following Corollary is not needed for the sequel, but may

have some interest of its own. It considers, as all of this section

does, an example of an additively decomposable representation on a set
that is not a cartesian product, but only a subset of that. The only

literature on this subject, known to the author, is Krantz et al.

(1971, section 6.5.5); and Fishburn (1967, 1971) for the case where

coordinate sets are mixture spaces (see Definition VII.2.1).

COROLLARY VI.7.13. Let > be a continuous weak order on

x:= {x € R + : xl i x2 2 ..· 1 x j' such that [xj lyj for aZZ j and
x 0 y] impZies [x>y]. Let n,3. The foZZowing two statements are
equivaZent:

(i)  There exist continuous simuZtaneous Zy cardinaZ additive vaZue

functions for > on x.

(ii) > satisfies   (comonotonic)   coordinate  independence.

PROOF. As Theorem VI.7.12. Weak, and (comonotonic) strong, monotonicity
are easily verified. We have all, so certainly three or more, coordi-
nates essential.   For  this  case   the only consequence  of  Com. CCI, (apart
from the monotonicities,) used in the proof of Theorem VI.7.12, is
Com. CI. Theorem VI.7.12 only considered C , and did not need any

id

assumption "outside" Cid.
0

VI.8. COMPLETION OF THE PROOF OF THEOREM VI.5.1 UNDER ABSENCE OF

MAXIMAL OR MINIMAL CONSEQUENCES

Throughout this section, with Theorem VI.8.8 excepted, we shall
assume:

ASSUMPTION VI.8.1. The assumptions, and statement (ii), of Theorem

VI.5.1 hold. There exists # with two #-essential states, say
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  = identity. By m we denote an id-essential state. No maximal or

minimal consequences exist.   Let   Bl  >  BO  be two fixed consequences.   For

every A with two or more A-essential states, the continuous simul-

taneously cardinal additive value functions (V ) =t for > on C" (that

exist according to the previous section) are chosen such that

v (B ) = 0 for all j, and E =1V (Bl) = 1.

Note that we have changed "scale", as compared to the previous
id 1 id  1

section. There   we   had  Vl    (B   )    =   1, now Ej=tvj    (B    )    =   1.   Note   also   that,

at present, we may not yet conclude for different 1,  ', and x € C ,

y   E   CA:    that   x  >  y.  In     VT'(x   )    >   En     V '(y.).   The   only   consequences
j=1 j  j  - j=1 j  J

of comonotonic cardinal coordinate independence that we used in the

previous section (comonotonic coordinate independence, weak monotoni-

city, and comonotonic strong monotonicity) probably do not suffice for

this purpose. We shall essentially use:

LEMMA vI.8.2. Let there be at Zeast two A-essentiaL and two

1'-essentiaZ, states. Let k be w'-easentiaZ. Then for aZZ 1 € I,
7T         1T'

vl = 01 0 vk  for a constant or positive affine 01.

PROOF. Say 8' is identity. We write $ for $1. If 1 = A-inessential,

then Vl is constant, and $ is the same constant. So assume:

1 is A-essential.
id

By Lemna VI.7.9, (which applies to all essential k) V; and Vk
Tr       id

represent   the   same >, hence   Vl  =   $   0   Vk for.a continuous strictly

increasing $.

Note first that Com. CCI (Definition VI.4.1) implies the same

property with all preferences replaced by equivalences (compare Lemma

IV.2.7). This we write out with additive value functions brought in,

id
and with $ o V   for Vl everywhere, to give:

v 61(a) - 14(1(B) (1)I j0k[V d(yj) - V (1(xj)](2) (VI.8.1)

Vid CY)    -   Ykd (6)

and

0°vid(a) - 00Vid(B)(1)E   [VT'(t ) - V'r(s )] (VI.8.2)
jtljj jj

impzy
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Ej01[V; (tj) - V;(sj)](1) 00V (1(y)- 00\,}:d(6) for all   (VI.8.3)
id

x-ka, y-kB, x-ky' y-k6 €C  ; s-la, t-18, s-ly, t-16 € cw

id id
Now let Vk (v) be an arbitrary element of int(Vk (C)). There can

id
be seen to be an interval S around Vk (P), so small that for allid id id id
Vk (a), Vk (8), vk CY)' and Vk (6) € S, there exist x,y such that

x-ka, Y-kB, x-ky' Y-k6 are in Cid, and such that (1  is satisfied.

For this we use the existence of an id-essential state i 0 k, which
idimplies nondegenerateness   of the interval  V, (C).Of course,ifi<k,1

then x. > a, xi > Y, Yi > B, y. > 6 will have to hold. If i > k, the1 1

converse has to hold. Furthermore, by continuity of $, S can be taken
so small that $(S) is small enough to guarantee existence of s and t

(3)
such that s-la, t- B, s-lY, t-16 are in C , and such that  =  holds.

id id id id
We conclude for all Vk (a), Vk (B), vk CY)' Vk (6) € s:
id id id id

Vk (a) - Vk (B) = v  (Y) - Vk (6)
- (VI.8.4)

id id id id
*Ovk  (a) - $0Vk  (B)  = $ovk  (Y)  -  ov   (6) .k

This is now shown by choosing x,y,s,t as above.(VI.8.4), only
for the case where B = y, already suffices to show that on S, 4

satisfies: 0((a + 6)/2) = [$(S) + $(6)]/2. Corollary VIII.3 gives
affinity of $.

0

For all = with two or more IT-essential states, we can, by Lemma
VI.8.2, and the fact that all V (B ) equal 0, define A  € R   such that,
with m id-essential:

V: = Aivid   (VI.8.5)J       J m
We define for all these A:

P; „ Aj / En.''id. (VI.8.6)

For 7Y with exactly one A-essential state, say 1, we define:

pl := 1, p  := 0 for all i 0 1. (VI.8.7)

We now define U:C+R.

n   id
DEFINITION VI.8.3. For all a € C, U(a) := E =lv  (a).
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LEMMA VI.8.4. For aZZ 11 With two or more ir-essentiaZ states, and aZZ

a, \1(a) = p U(a). For aZZ w, Ep  = 1.

PROOF.   Let   A  have   two A-essential states.   Then  p U (a)   =

[A; / Eni=lkidltri=lvid(„)} = IA; / ri=lkid][Ei=lkidv; d(a)1 . v;(«). For
1T     Tr id A 1 id  1

such w,  Ep  = EX   / Ili   = IV  (B  )  / Evi  (B  )  = 1/1 = 1.
For  other   Tr,   with  only  one A-essential state,   [Ip     =    1]   is

direct.

0

LEMMA  V I.8.5.   Let  x  €  C'r ,   x  w  a.   11:en   Ip U (x )   =  U (a).

PROOF. If there are two or more A-essential states, then by Lemma VI.

7.10,  adapted to (11,  IV; (x )  =  IV; (a). Hence Ep U(x )  =  Ep;U(a)  -  U(a).
If A has exactly one A-essential state, say k, then by Le=la VI.

3.8, xwxk Hence by Lenuna VI.7.9, U(x ) = U(a), i.e. Ip U(x ) = U(a).
0

LEMMA VI.8.6. Let x € C; y € CT'.Then x> y•• E =.p;U(xj) 1
E =ip;U (Yj ).

PROOF. Let (Lemma   V I.7.1 1)    x  Al  E,y  Al  B.Then  x  >  y   iff   a  > B, which
by Lemma VI.7.9 is iff U(a) 1 U(B). By Lemma VI.8.5 the latter holds

iff Ep;U (x ) 1 Ep U (yj).

0

LEMMA VI.8.7. Let A CI. Let A = {Tr(1),...,TT(k)} = {Tr'(1),...,Tr'(k)}.
k 7r k lT'

Then Ij=lpj = Ij=lPj

PROOF. Let x  = Bl for all j € A, x  = B  for all j E A. Then x € C 

and x E C  . Apply the above Lemma with y = x.

0

The purpose of the last two sections has been to derive the

following result:
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THEOREM VI.8.8. Let the aBsumptions of Theorem VI.5.1 hold. Let (€i)

there ho Zd. Furthermore, Zet no maximaZ or m€nimaZ consequences exist,
and Zet there be a ir with two or more 1-essentiaZ states. Then (i),

and (VI.5.1), of Theorem VI.6.1 hold.

PROOF . According to Lemma  VI .8.7, and formula   (V I.2.1 1) ,   with   P  (j)    : =
77

p  for all 1,j, there exists a unique capacity v in accordance with
Definition VI.2.3. Lemma VI.8.6, and formula (VI.2.7) now verify (i)

of Theorem VI.5.1.

To derive (VI.5.1), say there are two id-essential states. Then
id n id

the fact that e  (j)U) =1 are additive value functions for > on C
id n

and simultaneous cardinality of (V. ). 1 in Theorem VI.7.12, give
J  J=

cardinality  of  U, and together  with [ Spilj) =1] uniquely determine
id  n

(P (j)j=1. Analogously(P"(j)) =1 are uniquely determined for any Tr
pith two or more A-essential states.  If A has exactly one A-essential

state k, then P (k) = 1 must hold, and P (j) = 0 for all j 0 k.
0

VI.9. MAXIMAL AND/OR MINIMAL CONSEQUENCES

In this section we derive the implication (ii) - (i), and the

uniqueness result (VI.5.1) in Theorem VI.5.1, for the case where
maximal and/or minimal consequences may exist, and where furthermore,
as we assume throughout this section without further mention:

ASSUMPTION VI.9.1. The assumptions of Theorem VI.5.1 hold. Also (ii)

there holds. There exists   ·rr  with   two   or  more A-essential states , say
A = identity.

LEMMA VI.9.2. Let a,y€C b e such that a>y. Then there exists B€C

such that a>B>Y.
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PROOF. E: = {B:B>Y} and F: = {B:B<a} are open and nonempty.

Their union is C, for if B € Fc then. B > a so B > y. Hence by

connectedness of C, E and F must have nonempty intersection.
0

*
NOTATION VI.9.3. C := {a €C:a i s neither maximal nor minimal}.

(1* := CT' n (c*)n.

Since 1 = id has a A-essential state (even more than one), there
*

exists a > B. By Lemma VI.9.2, C  is nonempty, and has no ("new")

maximal or minimal consequences itself.

LEMMA VI.9.4. If i is essentiaZ on (Tr (i.e. Tr-eaaentiaZ), then it is
IT *

on C

PROOF. Say A i s identity. There exist a, B€C such that a>B.B y

Lemma VI.9.2, there exists y such that a>y>B, again Lemma VI.9.2

gives 6 such that y>6>B .   Let x€C have x = y for all k < i,
id

i              id*
xk = 6 for all k > i. Then x-iY' x-i

6 are in C , even in C . BY

com.s.mon. x-i  > x-i6.
0

Next we show that, on (C )n, (i) in Theorem VI.5.1 is satisfied.

PROPOSITION VI.9.5. There exist a capacity v, and a cont€nuouB
*      *                                  *                                    *nU     :   C    +   9 ,   such  that  x  »  / (U   o  x) dv  represents  >  on    (C   )    .

*
PROOF. By Lemma VI.9.2, C  itself has no maximal or minimal conse-

*n
quences. By Lemma VI.9.4, essentiality of states on (C )  is as on Cn.

The proposition now follows from Theorem VI.8.8, if the topological

assumptions in it can be guaranteed. This is done analogously to sub-
*

section  VI .7.2.   T (>)|C* is taken as topology  on  C . Mainly  by  Lemma
*n

VI.7.6 this preserves connectedness. Continuity of > on (C )  w.r.t.

the product topology  of   the   T (>)|C 's, differs   only in details   from

Lemma VI.7.7:
-

Let again x > y, for x,y € (C )n. We construct x > y, and by means
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of this a subset Fl x .- x F n o f{w€ (C )n :w>y}, containing x,
* -

and with every F  C C, open w.r.t. T |C . For the construction of x 1'
consider:

V: = {a E C: (a, x2'...' x )   y1. By Lemma 0.1 this is open w.r.t. T,

the "old" topology on C. V contains x 1 so is nonempty. If V = C, then
*../*

Xl €C  not being minimal, we take x 1 =a for any a€C  with a< xl.
If V *C, then by connectedness of C w.r.t. T, V cannot be closed

w.r.t. T, so not of the form {a :a> xlj' by continuity of >o n C

(Lemma VI.6.1) w.r.t. T. And since, by w.mon., V contains all a > x 1'
rw

V must contain an a < xl. Now take (Lemma VI.9.2) xl = B for any

a <B< xl. Then xl € C*.
- * - -

S o a lway s x 1 € C  i s found w i th x 1 < x 1 ' ( x l ' x2
'... ,xn) > x. Let

Fl := {a:a>xt}
Further we proceed as in the proof of Lemma VI.7.7.

0

* * * *We plan to define U(a) := sup(U (C )) [respectively inf(U (C ))]
for maximal [respectively minimal] a. Hence:

* *LEMMA VI.9.6. If a is mar£maZ [respective Zy min€maZ], then u (C ) is
bounded above [respective Zy beZow].

PROOF. Only for maximal a. Let i<j b e two id-essential states. Let,

only in this proof, (B,y) denote the act z with zk = B for k 1 i,
*

zk =y for k>i, for all B, y E C.B y com.s.mon., for all y€C,

a > (a,Y).
*

Let y€C  be fixed, let B (by Lemma VI.7.11) be such that
*                    *                          id *(a,y) w B (so B€C) . Now for all P€C  with w>y, (u,y) is in C   ,

and (U,Y) < (a,y) % 8, so:

*                                                                                          *                        *v({1,...,i})U (11) + [v(N) -v({1,...,i})]U (y) < U (B). (VI.9.1)

id *
Since i is essential on C , v({1,...,i}) is positive, and

*               *
(VI.9.1) gives an upper bound for {U (0) :u€C,u> y}, thus for

U*(C*).

0
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* *
DEFINITION VI.9.7. If a€C i s maximal, then U(a) := sup(U (C )). If

* *     *
a€C i s minimal, then U(a) := inf(U (C )). If a€C, then

*
U(a) := U (a).

As  we saw above,   U (a)   €   IR   for  all  a. We denote:

NOTATION VI.9.8.  C  := C  U{a€C:a i s maximal}.

With this we obtain:

LEMMA VI.9.9. For aZZ x E  (C+)n, and y E C with x =9, /(Uox)dv = U(y) .

id                                           +PROOF. Say x E C  .B y com.s.mon., y i s not minimal, so Y E C . If no

maximal a exists, Proposition VI.9.5 gives the desired result. So let

a be maximal. Let 0 Sk in be such that xl ea,...,xk N a, xk+1 <a,
..., x  <a. If y is maximal, then y Ri a, and by com.s.mon. k+1,...,n

n
must be id-inessential. Then /(Uox)dv = U(y) follows.

There remains the most complicated case, where y is not maximal,
*

so, neither being minimal, is in C . First we show that /(Uox)dv 1 U(y).
*

By w.mon.,for all v€C  with Ca >)It > xk+1' we have
(P'....V.X ,x ) < y, i.e.

f(Uo(v,...,11,Xk+1'" .,x ))dv < U(y).
k+1""  n                                   n  *  -

Writing for all 1<jlk,U(x ) = UN) =sup{U(9):11€C,11>xk+1 
shows that f(Uox)dv f U(Y).

To see that 5(uox)dv 1 U(y), we consider 6 such that y> 6, so

x > 3. By standard arguments continuity of >, Lemma 0.1, and

connectedness  of C, imply existence  of  Pk  such  that  xk >  Pk  >  xk+1'
and x  v >3. Also, U exists such that x > Wk-1 > Uk and-k k k-1 k-1

(x-k,k-lwk'  Uk-1   > 3 Finally we end up with a > 01   112 >...Uk  such

that (111'*"'pk'xk+1' "'xn) > 6. Hence, for all u € C such that

a >1 1> 111 (>'   ' > 1,k  , we obtain /(Uo N,...,P,xk+1'-"'xn-",xn))dv > U(6).*
Substituting, for 1 f-j l k, U(x ) = U(a) = sup{U(W) : p€c,

P   111  , shows that f (Uox)dv Z U(6). This holds for all 6 < y. Hence

f(Uox)dv 2-U(Y).
0

LEMMA VI.9.10. The map x » f (Uox)dv repreBenta > On (C+)n.
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PROOF. First for constant acts. Suppose  9  >  3,  with y maximal.   Then,
by Lemma VI.9.2, y>a>3 for some a€C.S o U(y) 1 U(a) > U(6)
follows, the latter strict inequality by Proposition VI.9.5. All other

cases of y>3* * U(y) 1 U(6) are straightforward.
Next let x,y € (C+)n be arbitrary. Let x N 9, y 0 3 (Lemma VI.7.

11). Then x>y* * >3* * U(y) 1 U(6) ** f (Uox)dv 1 f (Uoy)dv, the latter
by Lemma VI.9.9.

0

Next we must turn to (C  U{a€C:a i s minimal})n = Cn, and

show  that  also  here  x »  f (Uox) dv represents  >.  This  is very analogous

to the above, elaboration is left out. We conclude that the implication

(ii) =4 (i) in Theorem VI.5.1 is now also proved if maximal and/or
minimal consequences exist. For the uniqueness result (VI.5.1) in

Theorem VI.5.1, we must show that for maximal [respectively minimal] a
*                  *

no other choice for U(a), than sup(U(C )) [or inf(U(C ))] can be made.

This can for instance be seen from the proof of Lemma VI.9.9. Let i>j

be id-essential states. Then, with a maximal, xl = ·-· = xi = a,
a>x

  "    xn. the formula  f (Uox) dv  =  U (y) there uniquely deter-i+1

mines U(a). For minimal consequences matters are analogous.

VI.10. SURVEY OF THE PROOF OF THEOREM VI.5.1

The   implication   (i) -   (ii) in Theorem  V I.5.1   has been demonstrated

directly below the Theorem. The proof of (ii) =D (i) for the case where
no   r  has  two  or  more A-essential states,  and the proof  of the unique-
ness results (VI.5.2) and (VI.5.3), have been given in Lemma VI.6.2.

There remains   the case where   one   Tr  has   two  or  more A-essential states.

The case of no maximal or minimal consequences is handled in Theorem

VI.8.8, the existence of maximal consequences is handled in Lemma VI.

9.10, the general case in the final lines of section VI.9.
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VI.11. STRONG SUB- AND SUPERADDITIVITY

In this section we study the following properties of capacities:

DEFINITION  V I.1 1.1. A capacity   v   :    2I   +   m is strongZy superadditive

[respectively BtrongZy subadditive] if for all A, B C I:

v(A U B)  + v(A   B) 1 [respectively i]  v(A)  + v(B) .

Other terms for strong superadditivity are 2-monotonicity, or

(strong) convexity. This property has received much attention as it is

a sufficient property for v to be the infimum of all additive proba-

bility measures, dominating v; and even stronger, this property of v

is necessary and sufficient for the Choquet integral with respect to v,

to be the infimum of all integrals with respect to the additive

probability measures which dominate v (see Huber, 1981, Propositions
*

10.2.5, and 10.2.1 applied to v (A) := 1-v(A ); or, for arbitrary state

spaces I, Schmeidler, 1984b, Proposition 3; or Anger, 1977). Such

dominating additive probability measures are called "core-elements" in

cooperative game theory with side payments. For strongly superadditive

(= "convex") v's [that do not have to satisfy (VI.2.2) or (VI.2.3)],

core-elements are studied in Shapley (1972). For strong subadditivity,

other common terms are 2-alternating, or (strong) concavity.

The following lemma reflects ideas of nondecreasing (or non-

increasing) marginal measure, and is like (6) in Shapley (1972). P1(i)

is as in Definition VI.2.3.

LEMMA  V I.1 1.2.   For a capae€ty   v   :   2I  +  m   the  foZZowzng  four  statemente

are equivaZent:

(i) v is strongZy superadditive.

(ii)   v(AO U Al U A2) - v(Al U A2) 2 v(AO U Al) - v(Al) for aZZ d€Bjoint

AO,Al'A2 c N.

(iii) v({i} UAU{j}) - v(A U {j}) 1 v({i} U A) - v(A) for aZZ disjoint
{i}, A, {j}.
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(iv)  Let l i k<n, and Zet 1, A' be two permutations on N, such that
x =  ' on N \ {k,k+1}, w(k) = 1r'(k+1),  (k+1) = T['(k).Then
P .(T(k)) 1 PA(A(k)).

The same ho Zds if superadditive in (i) is repZaced by subadditive,

and > by i everywhere.

PROOF. Only for strong superadditivity, and 1 everywhere. v is strongly

superadditive iff v(A U B) - v(A) > v(B) - v(A A B) for all A, B. This

is equivalent to (ii) above by the substitution A  = B\A, Al =A R B,

A2 = A\B. The implication (ii) - (iii) is by {i} = AO, A = Al, {j} = A2.

So suppose (iii), to derive is (ii).

Let there be given disjoint AO = {ia =1' Al' and A2 =   b b=l
a,b  _ f• 0,0We write Al   :- zil'...'ia} U Al U {jl'...'jb = So Al   = Al 

Furthermore:
k l 0.1. _ _k  r   a,1v(AO U Al U A2) - v(Al U A2) = v(Al' ) - v(Al' 1 - lia=llv(Al  )-v(A -1'1)].

Now for every a 1 1, by (iii):

v(A '1)  -v(A -1,1)  > v(Aa,1-1) - v(A -1,1-1) 1 ··· 21 v(A ,0) - v(A -1,0) .- 1
So the above summation is:

2- I:=l[v(A '0) - v(A -1,0) = v(At,0) - v(A '0) = v(AO U Al) - v(Al)'
(iii) ** (iv) is by taking A =  (1), ..., IT(k-1), i = ir(k), j =

#(k+1).

0

In section VI.1.2 we chose, for the calculation of the Choquet

integral of Uox (where x is an act) a permutation   such that a low
-1

value * (j) indicated that state j was "favourable"",, i.e. had a

relatively highly-preferred consequence x.. With this in mind, one
J

may formulate (iv) in the above lemma as: the weight P. (j) of state j

(j = ACk), in (iv)) does not decrease if j becomes less favourable.

This indicates a kind of pessimism.

DEFINITION VI.11.3. > is pessimistic [respectively optimistic] if for

all i 0 j,a>B>y>6 [respectively a>y>B> 6], and comonotonic

{(x . .B,6), (y . .y,6)} and {(x . .B,a), (y . .y,a)} for which
-1,1 -1,3 -1'J -1,1

a>x k>6 for no i*k#j, and a>Y k>6 for no i 0 k t j,w e have:
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(X-i'j B.6) > Cy-i,jY,61 - (VI.11.1)

(x    B,a) > Cy_, AY,a).-i,j ..J

For an elucidation of the pessimism definition, note that in both

preferences, the i-th state assigns a better consequence to the l
eft

act than to the right act, so may be interpreted as a positive argument

for preferring the left act. Further the j-th state may be interpreted

as a neutral argument. For the lower acts, state i is less favoura
ble

than for the upper ones, it no longer being more favourable tha
n state

j. So a pessimistic person will give at least as much weight to state

i when he is dealing with the lower acts, as when he deals with the

upper ones.

With this we obtain:

THEOREM VI.11.4. Let every A have at Zeaat three *-eBsentiaZ Stat
ea.

Let the aseumptions,and statements (i) and (i€), of Theorem VI. 5.
1

hoZd. Then v is stronZy superadditive if and onZy if > is pessimistic;

v is strongZy subadditive if and on Zy if > is optimistic, and v is

additive   if   and   only   if  >  is   both   Optimistic   and  peBsimiBtic.

PROOF. First suppose v is strongly superadditive. Let (x-i,j B,6) >

Cy-i,jY,6), where all conditions in the definition of pessimism
, apart

from the implication there, are assumed to be satisfied. To derive
 is

(X-i'jB,a) > Cy-i,jy'a).
Let r be such that (x 8,6) ,    C Y-i,j y'6)   €   CTI ,   and   for   some   k,

-i,j
11(k)  = i,  #(k+1)  = j. Let A' = 1 on N\ {k,k+1}, A' (k) = j,  Tr'(k+1)=i. Then

(X-i,j B,a), (y-i,jy,a)   €  CTT'.. The first preference above implies:

E   P (m)U(xm)+PT,(i)U(B)+P,(j)U(6) 1 (VI.11.2)
m*i,j w

Emti,jPw (m)U(ym) +P,r(i)U(y)+P (j)U(6).

This,  PT'.(m)  =  Pw (m)   for  all  m  0  i,j,  and (Lemma VI.11.2.(iv) )

plt • (i) 1 P# (i) , together implies:

In10i,jP1'(m)U(xmt +Plr'(i)U(B)+P,I'(j)U(a)  2
I     P ,(m)U(ym)+PiT '(i)UCY)+P ,(j)U(a),

(VI.11.3)
mti,j A

i.e.    (x-i,j B,a) > (y-i,jY'a). Indeed  > is pessimistic.

Next suppose > is pessimistic. We derive (iv) in Lemma VI.11.2.
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Let k, 1, A' be as given there, i = 1(k), j = 1(k+1). Because of the

essentiality assumption in the Theorem, there exists m 0 i,j with

P (m) > 0, and U(C) is an interval consisting of more than one point.71

So we can find x, y, a, B, y, 6 such that (VI.11.2) holds w€th

equaZity, and such that:

U(XT[(1)) 1 ... 2. U(x,T(k-1)) .1 U(a) > u(B) > u(y) > u(6) 1
U(X  Ck+2)) 2- ... 1 U(XTT(n)),
and such that the same holds with y instead of x. Hence (x . .8,6),

-1,1

C -i,jY,6) € C , (x-i,j B,a), (y-i,jy,a) € C  . By pessimism of > we

may conclude that (VI.11.3) holds. This, (vI.11.2) with equality, and

U (B)   >  U (y),   imply  Pir ' (i)   1  PTT (i). By Lemma VI.11.2,    (iv)   4 (i) there,
v is strongly superadditive.

Analogously equivalence of strong subadditivity of v, and optimism

of >, is derived. The last statement of the theorem holds because

additivity of v is equivalent to the combination of strong sub- and

superadditivity of v.

0

Note that the last statement in the above theorem gives a further

way to characterize subjective expected utility maximization with

(additive) probability. Finally we give an example to show that the

condition of the three #-essential states in the above theorem cannot

be omitted.

EXAMPLE VI.11.5. Let N = {1,2}, C = 1, 0 i v({1}) = v({2}) 1 1, U is
identity.   Let >b e represented  by  x»f (Uox) dv.  Then  >i s  both  opti-

mistic and pessimistic; v is strongly superadditive and not strongly

subadditive for v({1}) < 3, v is strongly subadditive and not strongly

superadditive for v({1}) > J.
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CHAPTER VII

CONCAVITY ON MIXTURE SPACES

VII.1. INTRODUCTION

In this chapter we shall assume that X, the set of alternatives,

is a cartesian product of "mixture spaces", i.e. spaces endowed with

some sort of convex combination operation. Two main examples of mixture

spaces are, firstly, convex subsets of Euclidean spaces, and secondly,

sets of probability distributions, "lotteries" over a given set of

"certain outcomes". Mixture spaces have been introduced in von Neumann

and Morgenstern (1944), mainly as generalizations of lotteries, and

have almost exclusively been studied with the purpose to obtain results,

useful for lotteries. Fishburn (1982) contains many results. See also

Luce and Suppes (1965). The applicability of mixture spaces to fields

such as quantum mechanics, and colour perception in psychology, is

indicated in Gudder (1977) and Gudder and Schroeck (1980).

We shall study mixture spaces mainly as generalization of convex

subsets of Euclidean spaces. We shall also study concave and convex

(representing) functions on them. To the best of our knowledge con-

cavity and/or convexity of functions on mixture spaces have not yet

been studied in literature, whereas mixture spaces do have the natural

structure for the study of these notions.

The first five sections of this chapter closely follow Wakker

(1986).  The first four sections study (quasi)concave additively de-

composable representing functions. (Quasi)concavity is a very usual

assumption in consumer and production theory, see section 1 in Debreu
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and Koopmans (1982). The recent study Crouzeix and Lindberg (1985)

mmtions usefulness of quasiconcave additively decomposable functions

in mathematical programming.

Section 5 applies results to decision making under uncertainty,

where concavity is associated with risk aversion. Arrow (1953) has

already noted the importance of the assumption of risk aversion in the

analysis of equilibrium with uncertainty. Shubik (1975) remarked  that

also without uncertainty the assumption of concavity of the utility

function (to be used in expected utility) is important. Without it, in

a Walras allocation the risk-loving agents would "create markets for

lotteries". (See Debreu, 1976, footnote 1.) See further Drhze (1971).

The final section follows Wakker ( 1984b) . It considers decision

making under uncertainty with monetary consequences, and characterizes

the most usual special case of expected utility maximization with risk

aversion: that with nonincreasing risk aversion. We shall see that

this further behavioural assumption simplifies the derivation of

expected utility maximization, and makes it possible to dispense with

the cardinal coordinate independence condition. Arrow (1971, Essay 3,

page 96) states that nonincreasing (in fact, decreasing) risk aversion

seems supported by everyday observation. Comments are given in Stiglitz

(1969a, 1969b). See also section 3 in Bernoulli (1738). An empirical

study, finding nonincreasing risk aversion, is Binswanger (1981). Many

more references are given in Machina (1983). The case of state-dependent

utility functions is studied in Karni (1985).

VII.2. PRODUCT TOPOLOGICAL MIXTURE SPACES

The notations for mixture spaces that we shall adopt below will as

much as possible be as in Euclidean spaces, to be of most convenience for

readers interested only in this special case.

DEFINITION VII.2.1. Let C be a nonempty set, and 8 a map from C x I 0,1]
x C to C. Let Aa + (1-A)B denote 8(a,A,B). 0 is a mixture operation
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if for all a,8 € C, A,0 € [0,1]:

la + (1-1)8 = (1-A)8 + Aa (commutativity). (VII.2.1)

u(Aa+(1-A)B)+(1-u)B = (PX)a +(1-VA)B (associativity). (VII.2.2)

10 + 08 = a (identity). (VII.2.3)

Here (C,0),or simply C, is called a mixture space.

We write a/U for (1/0)a, and la/u for (1/0)a. We say y is between

a and B if X € [0,1] exists such that y = la + (1-1)8.

The following result is proved in Fishburn (1970, section 8.4).

LEMMA VII.2.2. If C is a mixture space, then for aZZ a, B € C,

A,p.v € [0,1]:

Ua + (1-11)a = a. (VII.2.4)

A(ya + (1-0)8) + (1-A)(va + (1-v)8) = (VII.2.5)

(Xy + (1-X)v)a + (A(1-M) + (1-X)(1-v))B.
0

Some examples of mixture spaces:

EXAMPLE  V I I.2.3.   C   is a convex subset  of a linear space  over   m.    0   is
the usual convex combination operation.

EXAMPLE VII.2.4. C is a set of probability distributions ("lotteries")

over a measure space. For every Pl'P2 € C, and O fA < 1, the proba-
bility distribution Apl  +  (1-A)P2'  assigning Apl (A)  +  (1-A)P2 (A)  to
every A, is in C too.

One can consider Example VII.2.4 as a special case of Example

VII.2.3. As Gudder (1977) indicated, not all mixture spaces are iso-

morphic to convex subsets of linear spaces:

EXAMPLE VII.2.5. Let C = {(xl'x2) € IR2: x2 = 0, -1 6-xl 10} U
<M1,x2)   €   R2:   0   <  xl  3   1,   -xl  lx2   <  xl}.   Let   0  be as follows:
(i)  If xlyl 20, then 0((xl'x=),A,(yl'y2)) =

(Axl + (1-X)yl, Ax- + (1-A)Y2),.
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(ii) If xlyl < 0, then 8((xl'x2)' A, 51'y2)) is the unique point in

{ #X   :   0  1  P   <l}   U   {l l y:   0  1  U <l}with first coordinate

Axl + (1-X)Y1'

In the above example every "line segment" {z : z is between x,y}

can be considered isomorphic to {zl € IR : zl is between xl and Y 1  ·
Still C is not isomorphic to a convex subset of a linear space as

follows from 0((-1,0),1/2,(1,1)) = (0,0) = 8((-1,0), ,(1,-1)) whereas

of course (1,1) 0 (1,-1).

EXAMPLE VII.2.6. Let C = {g,u,b}, were g stands for "good", u for

"undetermined",  and b for "bad" . Let Ax + (1-A)y = :

g i f x=y=g,i f X=l a n d x=g,o r i f A=O a n d y=g;

b ifx=y =b, if X = 1 andx =b, or if X=0 andy =b;

u in all remaining cases.

The following adaptations of well-known notions for linear spaces

to mixture spaces are straightforward. Let C be a mixture space. A

subset E of C is convex if Xa + (14)8 € E for all a,B € E- 0< A< 1.

A function V:E+I R i s coneave if V(Aa + (1-X)B) 1 AV(a) + (1-A)V(B)

for a l l a,B€E,0<A<1.V i s convex if -V is concave, and V is

affine if it is both convex and concave. We prefer the term affine to

the often used term linear. Finally, V is quasiconcave if

V(Aa + (1-A)B) 1 min{V(a), V(B)} for all a,B € C, 0 f X i 1. The latter

holds   if   and  only   if, for every  11  €   IR,    {a  €C:   V(a) l w}i s convex .

Every concave function is quasiconcave.

DEFINITION VII.2.7. A triple (C, T, 6), is a topoZogicaZ mixture space
if C is a nonempty set, T a topology on C, and 8 a mixture operation

which is continuous (with respect to the product topology on

C X [0,1] X C).

Often we simply write C instead of (C, T, 0). Again, any convex

subset of a Euclidean space is a topological mixture space. The

following lemma will be used for Corollary VII.2.9, and in the proof

of Lemma VII.2.10.



147

LEMMA VII.2.8. Let C be a topoZogicaZ mixture space. Let a,B € C. 19:en
0: [0,11 -C, defined by $ :A»A a+ (1-x)8, is continuous.

PROOF. Let E c C b e open. By continuity of 8,

{y,X,6) €C x [0,1] X C:X Y+ (14)6 €E}i s open. By Lemma 0.1,

{X € [0,1] : Aa + (1-X)B € E} is open. Continuity of 0 follows.

0

A direct consequence of Lemma VII.2.8:

COROLLARY   VII.2.9.A   topological   mixture   space   Cis   arceonnected,    hence
connected.

0

The following lemma is the straightforward generalization of re-

lated results for linear spaces (compare Lemma VIII.2), and will be

used in the proof of Theorem VII.3.5.

LEMMA VII.2.10. Let V be a continuous function from a mixture space C
to IR. Let there exist n>0 such that for aZZ a,B €C with
0   V(a) - V(B) 1 71, there exists 0<A<1 for which v(Xa + (1-1)8) 1
AV(a)  +  (1-A)V(B). Then V is concave.

PROOF. Let y,6 € C be arbitrary. We must show that V(Xy + (1-1)6) 1
AVCY) + (1-X)V(6) for all O l A 1 1.B y Lemma VII.2.8, 0:X» * XY+(1-A)6
is continuous. So W = Vo  is also continuous. The proof is complete if

we show that W is concave.

Let V E ]0,1[ be arbitrary. W being continuous, there is an open

interval S around u within [0,1], such that |W(c) - W(t)' 1 n for all

c,T in S. So for all a,T € S, with, say, W(a) 1 W (T),

O f V(ay + (1-0)6) - V(Ty + (1-T)6) i n. Hence 0<1<1 exists such

that:

v(A[ay+(1-0)6]+ (1-A)[Ty+(1-T)6]) 2- AV (ay+(1-0 )6)+ (1-A) V (TY+(1-·r) 6) .
To the left side of this inequality we apply (VII.2.5), to obtain:

V([AC+(1-A)T]Y+[1(1-0)+(1-X)(1-1:)]6)1 AV(ay+(1-a)6)+(1-A)V(TY+(1-·r)6).
Next we substitute W:
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W(XC+(1-X)9 , AW(a)+(1-A)W(T).
By Lemma VIII.2, W is concave.

0

As in linear spaces, a binary relation > on a mixture space C is

convex if {x E C:x>y}i s convex for every y€C.A weak order >
is convex if and only if [x > y] implies [Ax+(1-A)y > y] for all

x,y, X. This holds if and only if Ax+(1-A)y >x A y (A: see Notation

VI .3.7) .   If a function V represents  >,   then  > is convex  if  and  only  if

v is quasiconcave.

LE11MA VII.2.11. Let > be a continuous weak order on a topoZogicaZ

mixture space C. Let, for aZZ x>y,0<A<1 exist such that

Ax+(1-Hy > y. Then > is convex.

PROOF. Let s,t € C be arbitrary. Let s > t. We shall demonstrate that

s := {p € [0,1] : ps+(1-v)t > t} equals [0,1].

By continuity of >, {z €C:z>t}i s closed. By continuity of

8, {(v,V,w) €C x [0,1] x C: 1,v+(1- 1)w > t} is closed. By Lemma 0.1,

S is closed.

Let a,T E S, 0 0 T. Say as+(1-0)t > Ts+(1-·[)t > t. There exists

0<1<1 such that:

A[cs+(1-G)t]+(1-X)[Ts+(1-T)t] > Ts+(1-T)t.

By (VII.2.5) and transitivity this gives:

[AG+(1-X)T]s+IX(1-0)+(1-A)(1-T)]T > t.
So S is a closed subset of [0,1], containing 0 and 1, and con-

taining, for every a#T i n S,a n element between a and T, and different

from a and T. S = [0,1] follows.
0

The terminology in the following definition will be justified by

Theorem VII.2.13.

DEFINITION VII.2.12. For a sequence of mixture spaces (C.,ei)i=l' the
product mixture operation e : Xi=lci x [0,1] x Xi=ici + Xi=1Ci' is

defined by:
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0 : (x,X,y) 2 (Axl+(1-X)Yl,·-·,Axn+(1-A)yn) =: Ax+(1-A)y,

where x - (x ,...,x ), y = Cyl'  .'yn). We then call (Xi=lci,0), or1 n
simply X =lci' the product  mixture  space.

If the Ci's are topological mixture spaces, then X =lci' endowed

with the product topology, is the product topoZogica Z mixture space.

THEOREM  VII.2.13.A  product   mixture   space   ie   a  mixture   space.A  product
topo Zogica Z  mixture   space   ia   a   topo Zogica Z  mixture   space .

PROOF. Let
(Ci,ei)i=l,,0 be as in Definition VII.2.12. It is straight-

forward that 8 is a mixture operation. Now let Ti be a topology on Ci'

i = 1,...,n, let every ei be continuous. We derive continuity of 6.
-1

Let El € Tl. Then 6  (El x (2 x ... x Cn) equals, after a re-
ordering  of the coordinates of (x =lci)   x  [0,1]  x   (X =lci),  the  set-1
(e    (El))  x  (4=2Ci)  x (Xi=2Ci), which is open.  This can be shown,  not
only for El' but, mutatis mutandis, for any Ei € Ti. Continuity of 8

follows.

0

VII.3. THE CONCAVITY ASSUMPTION

In this section we shall assume without further mention:

ASSUMPTION  V I I.3.1.     Xi=lci   is a product topological mixture space .

Further, as throughout this monograph, > is a binary ("preference")

relation on X =lci. The following property is a generalization of

"Axiom  Q" in Yaari   (1978,  p. 109) which was formulated  for  the  case

where  Ci   =   IR    for  all   i,   and  for  this case  by some elementary analysis
can be seen to be equivalent to our present definition.(See also

Corollary VII.3.7.(ii) below.)
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DEFINITION VII.3.2. > satisfies the concavity assumption if for all

x, y, i, vi' Wi' and X:

x-ivi  >  y-i(Xvi+(1-X)wi)  -  x-i(Awi+(1-A)vi)  >  Y-iwi ,

If in the above definition the second preference > were replaced

by <, then it would   seem  that the "extreme" coordinates  vi   and  w.   were1

coming off relatively better than the "intermediate" coordinates

XV,+(1-X)w. and Aw.+(1-X)v.. This seems not in accordance with con-
1111

cavity, a concave function  assigning relatively high values to inter-

mediate arguments, as in the sequel can be inferred from (VII.3.1). The

following Lemmas adapt to the present context some results of Yaari

(1978; the Remark at section 4, and the Lemma 2 of section 5 and, by

that, the implication of "axiom D" through "axiom  Q").

LEMMA   V I I.3.3.   The   concavity   assumption   impZies   coordinate   independence .

PROOF. Let X=l i n the definition of the concavity assumption.
0

LEMMA  v I I.3.4.   Let  >  be  a  continuous weak order, that satisfies the

coneavity assumption. Then > is convex.

PROOF. By Lemma VII.2.11, it is sufficient to prove that v>w implies

v/2 + w/2 > w. For this it is sufficient to prove that even v/2 + w/2

> v, under the assumption:

v/2 + w/2 <w<v.

We define, inductively, for 0<j i n:
v  = v/2 + w/2, vj = v2jl:j; w  = w, wj = wlil(vj/2 + wj/2).

n
This gives v  =v,w  = v/2 + w/2. For j=O w e have, by assumption,

0 0 j-1   V1-1, for some l i j i n. Then:w >v. Now suppose w

(wj-1 = ) wljwj > vtj(v /2 +
w /2)

(= vj-1 

By the concavity assumption with A = 1/2, this implies

wij (v /2  + w /2)  > vl v ,  i.e.  w  > v .
By repeated application, w  > v  follows, i.e. v/2 + w/2 > v.

0
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If three or more coordinates are essential, the above Lemma can

also be obtained as a corollary of Theorem VII.3.5 below. We are now

ready for the main result of this section:

THEOREM VII.3.5. Let the binary reZation > on the product topo ZogicaZ

mixture space x =1Ci have at Zeast two essentiaZ coordinates. Then the
foZZowing two statements are equivaZent:

(i)      There  exist  continuous  concave  additive  vaZue  functions    (vj)  = 1
for,·

(ii)   >  is  a  continuous weak order that satisfies the concavity

assumption, and furthermore the Thomsen condition of exactZy two

coordinates are essentiaZ.

Furthermore, (v . ) :  of (i) is s€mu Zaneous Zy cardina Z .
J J=1

PROOF. Suppose (i). Then all of (ii), except the concavity assumption

follows straightforwardly, see Theorems III.3.6 and III.3.7.

For the concavity assumption, first note that twofold application

of concavity of Vi ' and addition of inequalities, gives:

Vi (Avi+(1-A) wi)+Vi (Awi+(1-X) vi) 1 Vi (vi)+Vi (Wi)
(VII.3.1)

If we now had:

X-ivi > Y-i(Xvi+(1-X)wi)  and y-iwi > x-i(Xwi+(1-A)Vi),
then we could express these two preferences in inequalities of sums

of additive value functions, add up these two inequalities, cancel all

terms V (x ) and V (y ) (j 0 i), and end up with formula (VII.3.1)
with "<" instead of ">" : contradiction!

Next we assume (ii) above. To derive is (i), and the uniqueness

result. The existence of continuous additive value functions (V )  =1'
simultaneously cardinal, directly follows from Lemma VII.3.3, and

Theorems III.3.6 and III.3.7. So only concavity of the V.'s remains
]

to be proved.

Rewriting the definition of the concavity assumption in terms of

additive value functions, with A = 1/2, gives:

(1)

Vi(vi)-Vi(vi/2 + wi/2)   2.  Ij,0i[Vj(yj)-Vj (x )] (VII.3.2)

(2)„ Ij+i[vj(yj)-vj(xj)] S Vi(vi/2 + wi/2)-Vi(wi) ·
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This means that, for all v., wi' for which x,y can be found to
(1)                           1

make  >  hold with equality, we have:

 Vi (vi) + Vi (wi) ]/2 1 Vi (v./2 + wi/2).
(VII.3.3)

At least one coordinate j 0 i i s essential, so V.(C.)  (, by

connectedness of C  and continuity of V  an interval,) must have length

greater than n for some n > 0. For any vi and wi with

0 1 Vi(vi)-Vi(wi) i n, we can find xj, yj with Vj(yj)-Vj(xjll;
Vi(vi)-Vi(wi)  Taking xk = Yk for all k 0 i, k 0 j, gives   1 with

equality.

Now concavity of Vi' analogously of any V  , follows from Lemma

VII.2.10.
0

The statement (i) above is equivalent to the statement that there

exists a cardinal concave continuous additively decomposable repre-

senting function V : Xi=lci + IR, as mainly follows from the following

result.

PROPOSITION VII.3.6. Let V  :C   +8 for aZZ 1 1 j < n. Let V:x»
E =1Vj(xj). Then v 68 coneave if and onZy if every v  is concave.

PROOF. Let V be concave. Vl (Xx 1+(1-A)Yl) equals, for any arbitrary z,

V(1(z .x)+(1-X)(z  Yl))- E   V (z.).-11           -1        j01 j  J
By concavity of V this is greater/equal

XV(z-lxl) + (1-X)V(z-lyl) - I j01Vj(zj)

The latter equals AV1(xl) + (1-X)Vl(yl). Concavity of Vl' ana-

logously of any V., follows.
]

Next assume: Every V. is concave. Then every VI, assigning V.(x.)
J                                      J                    JJ

to every x, is concave. V is a sum of concave functions V' , so V it-
J

self is concave.

0

In Yaari (1977) and Debreu and Koopmans (1982, Theorem 2, and end

of section 4) it is demonstrated that a quasiconcave additively de-

composable function has all but one of its terms concave. By Lemma
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VII.3.4, (ii) in Theorem VII.3.5 implies convexity of the preference

relation. This in turn implies quasiconcavity of the representing

additively decomposable function V, that exists according to section

III.3. So now, by the theorem of Debreu and Koopmans, all but one of

the additive value functions in (ii) above are concave. At this stage,

we do not see an easy way to proceed to derive concavity of the re-

maining additive value function. Hence we have chosen a proof, which

does not employ the results of Debreu and Koopmans.

Also, from the above observations, one may divine that in (ii)

above we might replace the concavity assumption by three conditions,

as follows. First one uses coordinate independence (and the Thomsen

condition) to guarantee the existence of additive value functions.

Next one uses convexity of > to guarantee quasiconcavity of the sum of

the additive value functions, which by the result of Koopmans and

Debreu implies concavity of all but one of the additive value

functions. Thirdly, one adds one weak condition for > to guarantee

concavity of the one remaining additive value function. We have not

been able to find a weak condition for > as described after "thirdly"

above. Hence we have taken our alternative approach. Figure VII.4.1
3

(, mainly f  there,) will show that a further (weak) condition as

after "thirdly" above, cannot be dispensed  with. The earliest reference

for this observation, given in Debreu and Koopmans (1982), is Slutsky

(1915).

The following Corollary applies Theorem VII.3.5 to the case where

Ci = ]R   for all i, and > is WeakZy cA monotonic (xi 1 yi for all i.
then x > y; see Definition II.3.7.b). The property after "furthermore"

in (ii) below is simply a reformulation of the concavity assumption,

so of Yaari's axiom Q, which may appeal to the idea of nonincreasing

marginal utility.

COROLLARY VII.3.7. Let n 1 3, and Zet > be a binary re Zation on <  .
The   foz zowing two statements are equivaZent:

(i)  There exist concave (so continuous) nondecreasing nonconstant

additive value functions (vj);=1 ·
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(ii) > is a continuous weak order, weakZy cA monotonic, every coordi-

nate is essentiaZ, and furthermore:

x-ia > y-iB - x-i (a-E) > y-i (B-E) whenever (a-B)& 1 0.
0

Of course the results in this section can easily be adapted to

deal with convex additive value functions; e.g. by replacing every-

where > by <, and V. by -V . Also results on concavity and results
J          j

on convexity can be combined, to obtain results for affine additive

value functions. This, under the addition of continuity conditions,

gives characterizations, alternative to those in Fishburn (1965),

Pollak (1967), and Keeney and Raiffa (1976, Theorem 6.4).

VII.4. SOME COUNTEREXAMPLES

In this section we give all logical relations between the state-

ments (VII.4.1) through (VII.4.4) in Figure VII.4.1. Throughout we

assume:

ASSUMPTION VII.4.1. > is a continuous weak order on a product topological

n nmixture space Xi=lli· Further m< n is the number of essentiaZ coor-

dinates.

In the sequel of this section we shall give elucidations to the

seven counterexamples of Figure VII.4.1.

Counterexample (1). For m = 1, statement (VII.4.2) does not imply

(VII.4.1), even if a representing function V exists. This follows from

Kannai (1977, p.17), or from fs in the Figure. This function fs is

straightforwardly seen to represent a binary relation >, satisfying
5

the concavity assumption. Our f  is a minor variation on the example

of Artstein in Kannai (1981 , p.562), where it is shown not to be
5"concavifiable",   i.e. >, represented  by  f   ,   has no concave repre-

sentation.
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There exists an array of continuous concave additive (VII.4.1)

vazue functions for>.
*

fl'' f--1: counterexample (1), V = fs By Th.VII.3.5

     .•   m=
2: counterexample   (2) ,   V  = f2 for  m12;  b   

1 1   m>3: correct by Theorem VII.3.5 analogously for m=1I t. -                                   J  ....

> satisfies the concavity assumption. (VII.4.2)

1ft  'm=1: counterexample  (3) ,V=f by.

 | QI m=2: counterexample (4), V - f3 Lemmas,•;
11                                3
Il   m>3: counterexample (5), V=f VII.3.3 & VII.3.4
11 -- . V.

> is convex and CI. (VII.4.3)

1       
m=1: correct

4
11 '€m=2: counterexample (6), V=f direct 4 '
11'1                                    2                         flm13: counterexample  (7),V=f

.../

> 13 convex. (VII.4.4)

FIGURE  V I I.4.1.  >  is a continuous weak order  on  R +  ,   with m essential
coordinates. In the counterexamples the function V represents >. The

solid arrows downwards indicate implications that hold, the broken
arrows upwards indicate implications that do not always hold. For all
1<k<5,--

k                        nf  is a function from R to   IR:
++

fl(x) = l if xl 1 1, fl(x) = xl if xl 1 1;
f2(x) = In .x. + min({x.}n  ),

f·'(x) = d-1 )«"1 + r.:i-22gxl '
f4(x) = -(En  (x.-2))2;

1=1  J

fs(x) = x1-1 for 0 < xt < 1, fs(x) = (xl-1)2 for 1 1 xl < 2,

f5(x) =3-x l for xl 12.
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Counterexample (2). For m = 2, (VII.4.2) does imply (VII.4.1) if

and only if > satisfies the Thomsen condition. That >, represented by
2

f , does not satisfy this for m = 2, hence has no additive value

functions,   can  be  seen  from:

(1,4,9,...,9) w (2,2,9,...,9), (2,8,9,...,9) R (4,4,9,...,9),

(1,8,9,...,9) > (4,2,9,...,9). Still this > by some elementary

arguments can be seen to satisfy the concavity assumption.
1

Counterexample  (3) . That >, represented by f , does not satisfy

the concavity assumption, follows from(1/2,1,...,1) > (1,...,1) <
(3/2,1,...,1).

3
Counterexamples (4) and (5). That f  is quasiconcave, thus repre-

sents a convex >, can be derived from 6.28 of Arrow and Enthoven (1961).

3
Here f is a sum of additive value functions of which the first is not

concave.   For  m  2-  2 any additive value functions are positive  af fine

transformations of the above ones, so have the first one not concave.
3

So >, represented by f (,satisfying the Thomsen condition for m = 2,)

must violate the concavity assumption.

The observation that (VII.4.3) does not imply (VII.4.2) for m 1 2,

is closely related to the observation that quasiconcavity and additive

decomposability of V do not imply (VII.4.1), i.e. concavity of V.

This latter observation has some times been made in literature. The

earliest reference to this, given in Debreu and Koopmans (1982), is

Slutsky (1915).
4

Counterexample   (6) .  That  for  m  ,  2,  > as represented by  f  ,  is  not

coordinate independent, follows from (2,...,2) > (2,3,2,...,2) and

(1,2,...,2) < (1,3,2,...,2).
.

Counterexample (7). That for m 1 3, the > as represented by f ,

is not coordinate independent, follows from (1,6,1,...,1) >

(3,3,1,...,1), (1,6,3,...,3) < (3,3,...,3).



157

VII.5. SUBJECTIVE EXPECTED UTILITY WITH RISK AVERSION

In this section we assume C. = C for all i. So we have:1

ASSUMPTION VII.5.1. Cn is a product topological mixture space.

In this section we again adopt the terminology of decision making

under uncertainty. We combine cardinal coordinate independence and

the concavity assumption to obtain a concise characterization of sub-

jective expected utility maximization with "risk aversion", which here

is simply defined to mean concavity of the utility function.

DEFINITION VII.5.2. > satisfies coneave cardinat coordinate indepen-

denee if for all acts x,y,v,w, all consequences a,B,y,6, every X € [0,1],

every state j, and every essential state i:

X-i a < Y-i B and   v   a          >w.B
-j                 -J

X-i Y   y-i(Xy+(1-A)6)

imply v ,(16+(1-X)y) > w .6.
-J                 -J

LEMMA VII.5.3. Let > be a continuous weak order. Let > satisfy eoneave

cardina Z coordinate independence . Then > satisfies eard€na Z coordinate

independence, and the coneavity assumption.

PROOF. That CCI holds can be seen by setting X=O i n Definition VII.

5.2. So only the concavity assumption remains to be derived. Let:

x-i=Y   y-i(AY + (1-1)6). (VII.5.1)

To prove is:

X-i(X 6 + (1-X)Y) > y-i6. (VII.5.2)

If i is inessential this is immediate. So let i be essential.

Suppose there  are  n,   4  €  C  with  x-in <   X.ic ;    if  no  such n,4 should exist

(VII.5.2) would be direct. Our plan is to find a, B in C such that:

X-i  a   At   y-i B. (VII.5.3)
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If we succeed in this, then we can apply concave cardinal coor-

dinate independence, with i = j, x = v, y = w, to obtain (VII.5.2).

So finally, by means of n, C as above, we derive (VII.5.3) for some

a, B.

Suppose firstly that y-i(Xy + (1-A)6) > x-in. Then x-iY >
y-i(xY + (1-A)6) > x-in. By restricted solvability (Lemma III.2.13),

with B := XY + (1-X)6, we obtain an a such that (VII.5.3) holds.

Secondly, suppose y-i(Xy + (1-1)6) < x-in. Then y-i(ly + (1-X)6)

<  x-in  < Y-ic. By restricted solvability, with a := Ti, we obtain B

such that (VII.5.3) holds.
0

With the above lemma we obtain:

THEOREM VII. 5.4. Let at Zeast two states be easentiaZ with respect to

the  binary  reZation  >  on   the  product   topo ZogicaZ  mixture   space   Cn.

The fozzowing three statements are equiva Z.ent:

(i) There ex€Bts a SEU mode Z [cn, >,  (P )n   , u] for >, with u con-
j j=1

cave and continuous.

(ii)  > €8 a continuous CCI weak order; > satisfies the concavity

assumption, or > is convex.

(iii) > is a continuous weak order, satisfying coneave cardinaZ

coordinate independence.

PROOF. We derive (i) - (iii) 4 (ii) - (i). First assume (i). Obviously

> is a continuous weak order. For concave cardinal coordinate

independence, let i be essential. Now x-ia < y-iB and x-iY >

y-i(xY + (1-1)6) imply

U(a) - U(B) 1 U(y) - U(Xy + (1-A)6), compare (IV.2.4) in the proof of

Lemma IV.2.5. By concavity of U, the latter righthand side is smaller/

equal U(16 + (1-X)y) - U(6) . Now U(a) - U(B) f U(16 + (1-X)y) - u(6)

and v_ a> w_ B, imply v_ (A 6 + (1-X)y) > w_ 6.
Concave cardinal

coordinate independence is derived, hence (iii).

By Lemma (VII .5.3 the implication (iii) 4 (ii) follows. So finally

we assume (ii), and derive (i). By Theorem IV.3.3 there exists a SEU
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model  for  >,  with U continuous. Of course   (p U) ;=1 are additive value
functions for >. If now > satisfies the concavity assumption, then,

> satisfying the Thomsen condition if exactly two states are essential,

by Theorem VII .3.5 there must exist simultaneously cardinal concave

additive value functions (V ) =1 for >. Further every V  then is a

positive affine transformation of p,U, and since at least one p. is
J                                             J

positive, U must be concave.

If > is convex, then it is well-known that U must be concave , see

for example Debreu and Koopmans (1982, near the end of section 1).

0

A derivation of the SEU model with concave utility, using

differentiability conditions, is given in Stigum (1972).

VII.6. SUBJECTIVE EXPECTED UTILITY WITH NONINCREASING RISK AVERSION

In this section we consider again the context of decision making

under uncertainty. In Theorem IV.3.3, we have characterized (roughly)

the class of all preference relations, representable by subjective

expected utility with continuous utility. Usually one is not interested

in all of this class, but only in a subclass of those preference

relations that furthermore have certain "desirable behavioural proper-

ties". For instance, in the previous section we considered "risk averse"

preference relations. For such further "desirable properties" of the

preference relation then necessary and/or sufficient properties of the

probabilities and/or utilities are searched, usually under the

presupposition that a subjective expected utility model exists.

In this section the further "desirable property" of the preference
relation that we shall consider, is (mainly) nonincreasing risk aversion.

Necessary and sufficient properties of the utility function for this

are well known, from the work of Pratt (1964) and Arrow (1965, 1971).

Our aim in this section is to show a, surprising, extra implication of

nonincreasing risk aversion for an earlier part of the characterization



lou

work: together with, mainly, the concavity assumption, nonincreasing

risk aversion implies subjective expected utility maximization, and

makes cardinal coordinate independence superfluous. This applies to

the context where consequences are real numbers (say, amounts of

money):

ASSUMPTION  VII .6.1.  Let  in this section  C  c  IR  be a nondegenerate

interval. Let C. = C for all i.
1

VII.6.1. PREPARATORY RESULTS

DEFINITION VII.6.2. Let [Cn, >, (pj) =1, U] be a SEU model for >. Then

> is risk averse if x<a for all x and a with a= Ip,x..JJ

If a decision maker T (i.e. his preference relation) is risk

averse, then T will never strictly prefer an act x to its "expected

value" Ej=lpjxj. The characterization  (i)  *• (ii) below of risk aversion
is well known.

PROPOSITION VII.6.3. Let n 2- 2. Let [Cn, >.  Cp )n   . u] be a SEU mode Zj j=i.

for>· with aZZ pj > 0, and u cont€nuous. Then the foZZowing three

statements are equivaZent:

(i) u is concave.

(ii) , is risk averse.

(iii) > satisfies the concavity assuwption.

PROOF. (i) ** (iii) is by Theorem VII.5.4, and (i) =* (ii) is straight-

forward. Next assume (ii).

Let y = pla + (1-pl)B. By risk aversion, y > (a,B,...,B), so

U(Pla  + (1-Pl)B) 1 Ptu (a) + (1-pl)U(B). By Lemma VIII.l,  U is concave.
0

One may argue that the Definition VII.6.2 of risk aversion re-

flects more decision maker T's attitude towards the (linear structure

of) money, than his attitude towards risk or uncertainty. Statement
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(i) above supports this. Some authors, inspired by Kahneman and

Tversky   ( 1979) , have introduced new definitions  of "risk aversion",

reflecting more T's attitude towards risk and probability, see Quiggin

(1982) and Yaari (1984).

DEFINITION VII.6.4. > has nonincreasing [respectively nondecreasing;

or constant] (abso Zute) risk aversion if for all E>0 [respectively

E  <  0;   o r E€  IR],   and  for  all  x,x+E  in  Crl,  a,a  +E€C,w e  have:
-         -    -   -

X>a= >X+E>a+E.

Say a decision maker T has a preference relation with nonincreasing

risk aversion. If then he is willing to take a (possibly) risky act x,

instead of a certain amount a of money, then certainly he is willing

to do so if his wealth is increased by an amount E.

DEFINITION VII.6.5. > has Conatant re Zative risk avers€on if for all

X   €  IR      ,   x,Ax  in  Crl,   a,Aa  E  C,   we  have:++

x  >  a  »  Ax  >  A a.

Now let decision maker T have a preference relation with constant

relative risk aversion. Say he is willing to invest an amount a into

a risky undertaking, instead of keeping amount a for himself; where

the risky undertaking gives him in return x./a per invested unit, if
]

state of nature   j   is   the true state. Then,   if the amount  to be invested

is Aa instead of a, he is still willing to invest it in the risky under-

taking. In other contexts than decision making under uncertainty, the

above property of preference relations is often called "homotheticity".
With > strongZy eA monotonic if x>y whenever xj 1 y  for all j,

and x, > y. for some j, we have the following result, mainly due toJ      j

Pratt (1964) and Arrow (1965, 1971).

THEOREM VII.6.6. Let n 1 2. l'ke foZZowing three statements are equivaZent

for the nondegenerate intervaZ C, and the binary reZation > on Cn:

(i) There exists a SEU mode Z [Cn, >, (p.)1  ., u] for >, with aZZ
J J=1

pj > 0, and with u continuous, strietZy increasing, concave, and
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for aZZ a 2 B L Y>6 i n C:
E » [uca+E) - U(B+E)] / [Ucy+E) - U(6+E)] (VII.6.1)

is a nondecreasing function on its domain.

(ii)  There existe a SEU mode Z [Cn , ,, (p )n  , ul for >, with aZZ
j j=1

p  > 0, u continuous, strietZy increasing. Further > is risk

averse, and has noninereasing risk aversion.

(iii) > is a continuous strongZy cA monotonic CCI weak order, it satis-

fies the coneavity assumption, and has nonincreasing risk

averston.

PROOF. Apart from the statements on nonincreasing risk aversion, and
the statement on the function defined in (VII.6.1), everything is

straightforward from Theorem IV.3.3, and Proposition VII.6.3. The re-

maining statements  do not immediately follow from, mainly,   (e)   in

Theorem 1 of Pratt (1964), because there U was assumed twice continuous-

ly differentiable, and because here we only have a fixed and finite

number of probabilities Pl,.··,P . The present results follow from

Wakker, Peters, and Van Riel (1985, Theorem 4.1 and Lemma A.7.4), mainly
-      -

by comparing > with >', defined by x >' y if x-E > y-E. For brevity,

we omit elaboration.

0

We  added the formulation   in   ( iii)   to  give a "complete" character-

ization of (i), i.e. a formulation of necessary and sufficient conditions,

completely in terms of properties of the preference relation. Hence we

could not use the property of risk aversion in it, as this needs the

probabilities for its definition.

One can replace nonincreasing risk aversion by nondecreasing risk

aversion in (ii) and (iii) above, if one replaces nondecreasingness of

the function defined in (VII.6.1) by nonincreasingness. Analogously

one can of course substitute "constant risk aversion"  in  (ii)  and  (iii),

and constantness of the function, defined in (VII.6.1). In the latter

case  either  U is affine or exponential  (a ,+ T  + laP; concavity implies

P i 1), as can be derived from Theorem VII.6.12 in the sequel. Finally,

if  C  =  IR  ,    one can replace "nonincreasing risk aversion"   in   (ii)   and
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(iii)  above by "constant relative risk aversion",  if one replaces  the
statement on the function defined in (VII.6.1) by the statement that

U:a# log a, or U:a# Aa ,as can be derived from Theorem VII.6.11
in the sequel.

VII.6.2. REMOVING CARDINAL COORDINATE INDEPENDENCE

The major mathematical difficulty of this section is dealt with
in the following lemma.

LEMMA  V I I.6.7.   Let   (V. ) .b e  continuous  nondecreasing  additive  vaZue
J J=1

functions  for >,  with  vl'  and at  Zeast one other Of them, nonconstant.
Let, for j= 1,...,n, there exist f. :C+l i t such that v.(a) - v.(B) =

J

f]B,a[ fj(T)dr (Lebesgue integnaZ) for aZZ a>B i n C. Let > have non-

increasing,    or  nondecreasing,   risk   aversion.    Then   there   exist   ·rj   €   IR.
and cj € R  , such that Vj = Tj+ vt for aZZ j 1 2.

PROOF. First the case where > has nonincreasing risk aversion. By
Theorem 6 of Chapter VI of Hartman and Mikusi6sky (1961), every function

which can be written as an integral, so also every Vj, is Lebesgue
almost everywhere differentiable on every [a,B] c C; hence on C. So

there is a subset E of C, with Lebesgue measure zero, such that for

every j, Vj is differentiable on C\E. We may assume that E includes
boundary points of C, and that f  vanishes on E, f  = V  on C\E, for
every j, by the above-mentioned theorem. Note that V' , hence f, , is

J                 J
nonnegative.

First we derive an auxiliary result:

fi(a)fj(B) = f (a)fi(B) for all i,j, and a,B E C. (VII.6.2)

Because of symmetry in i and j, it is sufficient to prove:

If i 0 j, and a > B, then fi(a)fj(B) > f.(a)f.(B). (VII.6.3)-1   1

The result is direct if a o r B E E, then fi(a)fj(B) =0=

f (a)fi(B). So let a,B in C\E, i.e. the f 's are derivatives of the
Vk's and a,B are in int(C).

First we derive (VII.6.3) for those B for which 6>0 exists such
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that 8-6€C, and Vj(B-6) = Vj(B). Then Vj is constant on [B-6,B],

and f (B) = V (B) = 0. Also then B  (8-6) w B. We add a-8, apply non-
increasing risk aversion, and get a .(a-6) > a. Consequently

V (a-6) 1 V (a), i.e. V  is constant on [a-6,crl. Also f (a) = 0, and
f.(a)f.(8) -0= f.(a)f.(B): (VII.6.3) holds.1 ] 1      1

Next we derive (VII.6.3) for those B for which 6>0 exists such

that 8+6€C, and Vi(8+6) = vi(B). We can have 6 s o small that

a+6€C. Now B+3% (8+6)-iB. By nonincreasing risk aversion

0+6< (0+3)-ia' Consequently Vi(a+6) = Vi(a), and f.(a) =0= f.(B),1 1

and again (VII.6.3) follows.

Remains the case where V,(y) < v,(B) for all y < B, and V, (y) >J           J

Vi(B) for all y > B. For this case we first take (a ):=1, (rk):=1 E
IR   such that
++

k       k             k                            k
O  + 0, T  + 0, V. (B+T ) - v. (B) = V (B) - v (B-G ) (VII.6.4)

1            1 j j

for all k.

k
By continuity of Vi, V , indeed such ak, T  exist. Now, for 

all k,

(B . .(B+Tk),(B-ak)) SS B follows. By nonincreasing risk aversion
-1'J                                                           k

(a .  .(0+Tk),(a-ok)) > a hence V. (a+Tk) - V. (a) > V.(a) - V.(a-c ),
-1,1                            1          1    -  ]       J

for all k. We obtain:
k    k k

fi(a)fj(B) = lim[Vi(a+tk) - Vi(a)][Vj(B) - Vj(B-a )]/T a  1
k-+CO

lim[V.(a)  - V, (a-ak)][Vi(B+Tk)  - V. (B)]/ak.rk = f (a) fi(B) .
J            J                                  

1
k-+-

So (VII.6.3) always holds, hence (VII.6.2) holds. Now we use this,

with j = 1. Since Vl is not constant, fl(n) > 0 for some n. We define

Ci := fi(n) / fl(n) for all i. By (VII.6.2),with B = n, j = 1, we have

fi(a) = °ifl(a) for all a € C. So Vi(a) - Vi(B) = f(B,a)fi(r)dr =

5     0-f.(T)dT = ci[Vl(a) - Vl(B)] follows. Of course now(B,a) 1 1

Ti := Vi(n) - Civl(n)
For the case where > has nondecreasing, instead of nonincreasing,

risk aversion, the proof is like above, with minor changes, mainly

reversals of inequalities and preferences. Let then a<B i n (VII.6.3),

next let 6 always be negative, etc.
0

With this we obtain the main mathematical result of this section:
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THEOREM VII.6.8.  Let > have continuous nondecreasing additive vaZue

functions (V1) =t, such that, for j = 1....,n, there exist f. with
J

v.(a) - v.(B) = f ]B,a[fj(T)d·r, for aZZ a > B. Let at Zeast two statesJ            J

be essentiaZ, and Zet > either have nonincreasing, or nondecreasing,
abso Zute  risk aversion. Then there exists a SEU modeZ (Cn, ). (pj) =l,U)
for  ,.

PROOF. Say state 1 is essential, so Vl is not constant. Apply Lemma

VII.6.7, let U := Vl' 01 := 1, and p  := c./I =lai for all j.
]    1

0

In all characterization theorems of this monograph after Chapter

II, it has been our aim to use in the characterizing statements (mostly

numbered (ii)) only conditions directly in terms of the preference

relation. The above theorem as such is not well suited to be considered

a characterization theorem, because the assumption on the existence of

the f.'s has to the author's knowledge no equivalent formulation inJ

terms of simple appealing properties of the preference relation. It

does however serve as a starting point to derive characterization
theorems.

COROLLARY VII.6.9. In (i€€) Of Theorem VII.6.6, for n 13 the CCI

assumption may be omitted.

PROOF. The strong cA monotonicity assumption there implies that every,

so (n 2 3) at least three, states are essential. By Theorem VII.3.5,
the concavity assumption implies existence of continuous concave

additive value functions (V )  =1
· Strong cA monotonicity implies non-

decreasingness, even strict increasingness, of every V.. By concavity
J

of every V , Corollary 24.2.1 of Rockafellar (1970) implies existence

of f  such that V (a)  - V (B)  = f]B,a f (r)dz for all a>B i n int(C),
e.g. f. may be the right or left derivative of V.. By continuity of V.

J                                                                     J                                 J

this also holds for a and/or B boundary points of C, e.g. let f  := 0

in boundary points. Theorem VII.6.8 gives existence of a SEU model,

which implies CCI.

0
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Of course, the same as above holds with nondecreasing, instead

of nonincreasing, risk aversion. For characterization purposes, the

following conjecture, if true, would be useful. It would show

equivalence of (i) and (iii) in Theorem VII.6.6, if concavity of U in

(i) was left out, and CCI in (iii) was left out, further in (iii) the

concavity assumption was replaced by coordinate independence (= sure-

thing principle) ; for n 1 3.

CONJECTURE VII.6.10. In Theorem VII.6.8, existence of the f.'s can beJ

left out.

We   do   not   need   the   "f . -condition" in Theorem VI I.6.8 i f C=I R
J

and  we have constant absolute risk aversion,   or  if  C   = IR and we
++

have constant relative risk aversion. First we give the latter result,

this being directly derivable from Stehling (1975).

THEOREM VII.6.11. Let C = IR+.1.. The fozzowing two statements are

equivaZent for the binary re Zation > on Cn:

(i)   There exists a SEU mode Z [C , >,  (pj)  =1, u] for >, with aZZ
pj   >   0, and either  u   :   a ,+  Aap for some X,p € ]R with Ap > 0, or

U   :   a  &  log  a.

(ii) > is a continuous strongZy cA monotonic coordinate independent

weak order, satisfying the Thomsen condition if n = 2; > has

constant re Zative risk aversion.

PROOF. Suppose (i). Then, for any V > 0, x € Cn, for the expected

utility EU, EU(Ux) = v9EU(x) or EU(px) = P+EU(x). From this, constant

relative risk aversion, and all of (ii) follows straightforwardly. So

we suppose (ii), and derive (i).

If n = 1, the choice Pl = 1 and U = identity, by strong cA mono-

tonicity gives  (i). So let n 12. By strong cA monotonicity every

state is essential. By Theorems III.3.6 and III.3.7, there exist

continuous additive value functions (V ) =1 for >. By strong mono-

tonicity, every  V  is strictly increasing. Define  V:C r l+R,  0:C
+ R, W : Cn + m by:
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v:x» IV.(x.), 0:a»V(a) ,W:x» 0-10 V(x).
J    ]

Then V and W represent >. Wca) = ot, [w(x) = a-xr= a], W(Wx) =
PW (x)   for  U   >  0   (W is "linearly homogeneous",   so  V is "homothetic") .
By Stehling (1975, Theorem 2), or Eichhorn (1978, Theorem 2.5.2),

either:

V : x 8 4 [P(Hj=lx  )] for a continuous strictly (VII.6.5)

increasing 4, positive W, and nonzero p1,···,p  that sum to one,n

or:

V:x» 11,[( E n_   ajx  ) 1/P]   for a continuous strictly (VII.6.6)J-1

increasing 4, positive al'...'an' and nonzero p.

In case of (VII.6.5), V is a strictly increasing transform of

x  »  Hx  1,   so, by taking
logarithms,   of  x  »  Ip  log (x )  . By strict   in-

creasingness of every V , every p  is positive. So indeed we have a
SEU ·model  for  >,   with  U   :   a 5  109  a.

Next suppose (VII.6.6). First assume p > 0. Then V is a strictly

increasing transform of Ec.x. . So we have a SEU model for >, with

pj := 01/I =lai for every j, and U: a# a; so A=l i n (i) above.

Finally, suppose (VII.6.6), with p < 0. Then V is a strictly

decreasing transform of x » Ic x  , so a strictly increasing trans-

form of x » Ia.(- (x.P)). We have a SEU model for >, with
J         J

pj := a./I: .a. for every j, and U :at-* -(a ), so in (i) above, X = -1.1  1-1 1
0

From this we derive:

THEOREM VII.6.12. Let C = IR. 2'he foZZowing two statements are
equivatent for the binary relation > on Cn :

(i)  There exists a SEU ·modeZ [Cn, >, Cpj ) j=1, u] for >, with aZZ
pj >0, and u:a» Xepa for some A,p €m with Ap >0,o r u
identity.

(ii) > is a continuous strongZy cA monotonic coordinate independent
weak order, satisfying the Thomsen condition if n = 2: > has

constant absoZute risk aversion.
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PROOF. Suppose (i). Then, for any 0 > 0, x € Cn, the expected utility

EU(x) has EU(x+U) = epuEU(x) or EU(x+0) = P+EU(x). From this constant

absolute risk aversion,   and  all  of (ii), follows straightforwardly.   So

we suppose (ii), and derive (i).

Define L : :El   + R  by L : (xl'...'xn) H (109(xl)'   '109(xn))'
and define >' on IRn by x >' y iff L(x) > L(y) . Then it follows

++

straightforwardly  that >' satisfies   (ii) of Theorem  VII.6.11.   We

obtain, for  all  x,y  €  IRn:
X.

x > y ** L-1 (x) >'  L-1 (y) 44 Ip U(e 1)  1 I:p U(e  ), with U. p   ,  and
also A, p as in (i) of Theorem VII.6.10.

0

Most probably the last two theorems also hold for any interval

C  c   IR  ,     respectively   C  c   :R,     but   we   do   not   know  of   a   reference   where
the   analogue of Stehling' s (1975) theorem, needed to prove  that,   is

readily available. For the study of the extendability of the above

results, for the case of constant risk aversion, to multidimensional

consequences, Rothblum (1975) may be useful.
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CHAPTER VIII

CONTINUOUS FUNCTIONS ON INTERVALS

In this chapter we derive some elementary properties of functions

from nondegenerate intervals to the reals. These properties have been

used, and referred to, in many places in this monograph.

VIII.1. GENERALIZATIONS OF MIDPOINT CONVEXITY

The first two results give conditions sufficient for convexity of

a  function  0, by means of properties  that are variations on "midpoint-
convexity" [$((11+v)/2) f $(1,)/2 + 0(v)/2)]. When formulated for -$,
these conditions of course are sufficient for concavity of 4, and

when formulated both for $ and -$, they are sufficient for affinity of

0, see for example Corollary VIII.3. The first Lemma, and its elegant

proof, are due to Hardy, Littlewood and P61ya (1959, Theorem 88).

LEMMA VIII.1. Let S c I R b e a nondegenerate intervaZ. Let 0:s + IR
be continuous. For aZZ c<T E S Zet there exist 0<p<1 such that

0(pa + (1-p)T) i p$(c) + (1-p)0(T). Then 0 is convex.

PROOF. Suppose 0 were not convex. Then we had X<W<v i n S such that

the point (U,$(V)) of the graph G of $ lies strictly above the straight

line 1 through (A,$(A)) and (v,0(v)). Let then (c,$(a)) and (T,$(T))
be the points of intersection of G and 1, closest to (W,$(V)), with

c<M<T. Then A l a<K i<I<v. Between a and T all of G lies above

1, contradicting the existence of the p as in the Lemma.

0
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LEMMA VIII.2. Let S C I R b e a nondegenerate intervaZ. Let $ :S+E
be   continuous.    Let,   for   every   v   €   int (s),   an   open   neighbourhood  w  of

v   within   s b e   given   such   that   for  aZZ c<r i n w, there exists
0<p<1 such that $(pa + (1-p)T) i p$(a) + (1-p)0(7). Then t i s

convex.

PROOF. For every v in int (S) there must exist an interval ]v-6, \)+6[
around v within S, such that for all a,T within this interval, a p as

in the Lemma exists. By Lemma VIII.1, 0 is convex on ]v-6, v+6[. This

implies convexity of 0 on all of int(S), for instance because 4 has

a nondecreasing right derivative. By continuity, 0 is convex on all

of S.

0

COROLLARY VIII.3. Let S C I R b e a nondegenerate intervaZ. Let $ :S+R

be   continuous.    Let,    for   every   v   €   int (s),   an   open   neighbourhood   w   of   v
within s b e given such that for aZZ c<z i n w, there exists 0<p<1

such that $(pa + (1-p)T) = p$(a) + (1-p)$(T). Then 0 is affine.

PROOF. Apply Lemma VIII.2 to $ and -¢.
0

VIII.2. CONTINUITY OF TRANSFORMATIONS

The following results consider transformations $, such that

f = 409 for two functions f, g.

LEMMA VIII.4. Let C b e a connected topoZogiea Z space. Let f,g:C+IR

be   continuous.    The foZZowing three statements   are   equivaZent:

(i)   f = 009 for a nondecreasing 0.

(ii)  f = 009 for a nondecreasing continuous 0.

(iii) 9(a) 1 9(B) 4 f(a) 1 f(B) for aZZ a, B € C.

PROOF. (ii) = (i) and (i) 4 (iii) are obvious. So we assume (iii) . To

derive is (ii). If g(a) = 9(8), then g (a) 1 9(8) and g(B) 1 9(a), so
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f(a) > f(B) and f(B) > f(a). f(a) = f(B) follows. Hence f = 4.g for-           -

some 4. By (iii), $ must be nondecreasing. Continuity is postponed

to the next lemma.

0

Throughout the sequel we assume:

ASSUMPTION. C is a connected topological space. Further f and g are

continuous functions from C to R, and f = $09 for a transformation $.

We now investigate the kinds of properties that $ may have, such

as continuity.

LEMMA VIII.5. If 0 is nonincreasing or nondecreasing, then it is

continuous.

PROOF. 4 is a nondecreasing or nonincreasing function from the con-

nected g(C) onto the connected f(C), hence must be continuous. (It

cannot make "jumps".)

0

The following results are only used in section IV.4. Lemmas

VIII.6 and VIII.8, and Example VIII.7, were found, and communicated to

the author, by A.C.M. van Rooij in 1985.

LEMMA  VIII.6.0   has   the   intermediate vaZue property.

PROOF. Let G- {g (a) , f (a)  :a€C}c R2.  G i s the graph of $. Since

f and g, thus al-* (g (a), f (a) ), are continuous, G is connected. Now

let U < v, and let 0(9) < $(v)[0(P) > 0(v) is analogous]. Let

0(v) < X < 0(v) for some X. Let V = {(G,T) €G : a ili, or v <.a < v
and T l X}, and W={(a,T) €G:a,v,o r 1·1 1 0 1\ ' and T 1 X}. Then
V U W=G, (p,$(p))€V00, A,$(v)) €W 0 0,V a n d Wareclosed sub-

sets of G. By connectedness of G, V A W 0 0. Let (a,T) €V O W. There

follows T=A and u<a<v. Since $(a) =T, the intermediate value

property has been obtained.

0
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EXAMPLE VIII.7. $ is not necessarily continuous: Let $ : IR + IR assign

0   to  0,   and  sin (- ·)
to every  U  0   0.   Let  G  be the graph  of   $ .   Let  C   =  G.

Let f be the projection on the second coordinate, g that on the first.

Then indeed C is connected, f and g are continuous, f = 009; $ is not

continuous in 0.
0

LEMMA  V I I I.8.I f t  is  bijective,   then   it  is  strictZy  increasing  or
strictZy decreasing.

PROOF. It is sufficient to show, for any X<v<v i n the domain of 4,

that either $(A) < $(U) < $(v), or 4(X) > $(V) > 4(v). Say, for

A<U<v, 0(X) < 0 (v). Now were $(w) < 0 (A), then by Lemma VIII.6 any

value between $(A) and $(u), would be taken by $ at least two times:

once between X and w, and once between u and v. By bijectivity this

cannot hold. An analogous violation of bijectivity occurs if $(P) >

$(v). Also $(P) = $(A) or $(P) = 4(v) violates bijectivity. Hence

$(X) < $(U) < $( ) follows.
0

The following lemma shows that in the main case of interest for

us, where C is a convex subset of a Euclidean space, $ must be con-

tinuous.

LEMMA VIII.9. If C is arceonnnected, then 0 is continuous.

PROOF. It is sufficient to show that any sequence (Pj)j=1 in g(C),
00

converging to v in g(C), has a subsequence (u  )i=1 such that
1

lim $(u  ) = $(U). So let (U ) converge to u. We may
assume Uj 0 U

i-Ho        i                                                              -                °°
tor all J. There must exist a subsequence (vi)i=1 of (Wj)j=1 that

either strictly increases or strictly decreases; say the first. Now

take arbitrary al' a in C such that 9(al) = vl' 9(a) = 0. Of course

at 1 a. We use arcconnectedness by taking an arc A from al to a, i.e.

A : [0,1] + C is continuous, with A(0) = al' 1(1) = a. Now go X is

continuous,  (goX) (0) = vl'  Mox) (1)  - V. By the intermediate value

property, (cj)j=l in [0,1] exists such that (goX)(a ) = v  for all j.
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ax)

So (r.). - on X ([0,1]) exist with Tj := A(c ) for all j, g(I ) = v J ]=l
00

for all j. Since X([0,1]) is compact, (T.) has a convergent sub-
J j=1 00 00sequence (1:ji)i=l ' with limit say T. Also (g('rj.))i=l and (f(Tji))i=1

1
must converge to g(T), respectively f(T). This can only hold if

g(T) = v, and lim $(v. ) = lim 0(g(T. )) = lim f (T. ) = f (T) = 0(g(T))=
i-+oo J i i+°o J i              ie.oo            J i0(0).

0

COROLLARY VIII.10. 0 is continuous if it is nonincreasing, nondecreasing,

bijective, or if C is arcconnected.
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REPRESENTATIES VAN KEUZESITUATIES

SAMENVATTING

In deze monografie worden representatiestellingen voor beslissings-

theorie afgeleid. Nadruk zal daarbij liggen op stellingen die toepas-

baar zijn op beslissen bij onzekerheid.

Allereerst worden in hoofdstuk 0 enige elementaire definities ge-

geven.

Vervolgens geven we in hoofdstuk I aan wanneer er verband bestaat

tussen preferentierelaties en keuzegedrag, en bespreken we enige intuI-

tieve veronderstellingen. In hoofdstuk I veronderstellen we nog niet

dat structuur op de verzameling alternatieven gegeven is (behalve

verzamelingstheoretische structuur). In volgende hoofdstukken zal

steeds meer structuur op de verzameling alternatieven worden ingevoerd.

In hoofdstuk II voeren we de belangrijkste structuur van deze

monografie in: we veronderstellen dat de verzameling van alternatieven

een cartesisch product is. Iedere coordinaat van een alternatief be-

schrijft een relevant aspect van het alternatief, en bij een keuze

tussen alternatieven moeten de voor- en nadelen betreffende de diverse

aspecten tegen elkaar worden afgewogen. Deze benadering is dusdanig

algemeen dat toepassing op velerlei gebied mogelijk is. De zes belang-

rijkste economische toepassingegebieden in deze monografie worden ge-

geven in paragraaf II.1. In de daaropvolgende paragrafen worden diverse

monotoniciteitseigenschappen behandeld. Met behulp van de in deze para-

grafen verkregen resultaten tonen we in paragraaf II.6 aan dat "coor-

dinaat onafhankelijkheid" de enige waarneembare implicatie is van de

monotoniciteitseigenschappen, onder de in het vervolg van deze mono-

grafie steeds gemaakte veronderstelling dat slechts de preferentie-

relatie op de verzameling alternatieven waarneembaar is.

In hoofdstuk III, en alle volgende hoofdstukken, veronderstellen

we dat de verzameling alternatieven voorzien is van een samenhangende

producttopologie.  Met behulp van deze kunnen we in het vervolg con-

tinuiteitsveronderstellingen formuleren. In de paragrafen III.3 en
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III.4 geven we veralgemeniseringen van bekende stellingen over het be-

staan van representerende functies die als som van coordinaatfunc-

ties te verkrijgen zijn.

We nemen vanaf hoofdstuk IV (, met uitzondering van de paragrafen

VII.1 tot en met VII.4,) steeds aan dat alle coordinaatverzamelingen

identiek zijn. Stelling IV.3.3 geeft een hoofdresultaat van deze mono-

grafie: een karakterisering van subjectief verwacht nut maximalisatie

met behulp van een nieuwe eigenschap voor preferentierelaties, namelijk

cardinale coordinaat onafhankelijkheid. Dit gebeurt onder restricties

die in economische contexten gewoonlijk vervuld zijn. Verder worden

in de hoofdstukken IV, V en VI vele veralgemeniseringen van stelling

IV.3.3 gegeven. Ook geven we toepassingen aan voor andere contexten

dan beslissen bij onzekerheid; dynamische contexten vooral.

In hoofdstuk V breiden we het resultaat van stelling IV.3.3 uit

naar willekeurige, mogelijkerwijs oneindige, toestandsruimten. We be-

kijken dan zowel a-additieve, als eindig additieve, kansmaten.

Hoofdstuk VI breidt stelling   I V.3.3  uit tot "capaciteiten",   dat

wil zeggen "niet-additieve kansmaten". Deze zijn in beslissingstheorie

ingevoerd door Schmeidler (1984 a,b). Sub- en superadditiviteit zijn

veel bestudeerde eigenschappen van capaciteiten; ze worden gekarakte-

riseerd in paragraaf VI.11.

In hoofdstuk VII wordt weer een nieuwe structuur op de verzame-

ling alternatieven ingevoerd. We veronderstellen  dat de coordinaat-

verzamelingen zogenaamde "mengruimten" (mixture spaces)   zijn.   Stan-

daardvoorbeelden van mengruimten zijn convexe deelverzamelingen van

lineaire ruimten. We karakteriseren dan coneave representerende

functies die te schrijven zijn als som van coordinaatfuncties. In pa-

ragraaf VII.6 veronderstellen we dat de coordinaatverzamelingen con-

vexe deelverzamelingen zijn van de verzameling van redle getallen.

Hier hebben we te maken met de meest gestructureerde verzameling van

alternatieven in deze monografie. In paragraaf VII.6 laten we dan zien

dat veronderstellingen over (nietstijgende) risicoafkerigheid op een

verrassende wijze de karakterisering van verwacht nut maximalisatie

vereenvoudigen.

Hoofdstuk VIII tenslotte geeft enige wiskundige resultaten be-

treffende functies op intervallen. In vorige hoofdstukken is al vaak

naar deze resultaten verwezen.
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als wetenschappelijk assistent aan het Mathematisch Instituut van de

Katholieke Universiteit te Nijmegen, onder begeleiding van Professor

Dr. S.H. Tijs.

Van Z.W.0., de Nederlandse organisatie voor zuiver wetenschappelijk

onderzoek, verkreeg hij een beurs voor het maken van een studiereis naar

Isradl, van 8 januari 1985 tot 20 februari 1985. Hier werd hoofdzakelijk

samengewerkt met Professor Dr. D. Schmeidler van de Tel Aviv Universi-

teit.



STELLINGEN

behorende bij het proefschrift

REPRESENTATIONS OF CHOICE SITUATIONS

van

Peter WAKKER

STELLING 1. De benadering van speltheorie, waarbij wordt verondersteld

dat de uitbetaling  niet in (\ron Neumann-Morgenstern")   nut  is,  maar  in

redle grootheden als geld of goederen, levert interessante onderzoeks-

problemen op.

Wakker, P.P. (1983), "The Existence of Utility Functions in the Nash

Solution for Bargaining". Forthcoming in Paelinck,  J.H.P.,  and
P.H. Vossen (Eds., 1986), "Ariomaties and Pragmaties of Confzict
AnaZysis" (Studies in Interdisciplinary Issues), Grower Press,

Aldershot.

STELLING 2. De onmogelijkheidsstelling van Arrow (zie Arrow, 1978) is

geen verrassend resultaat als men bedenkt dat transitiviteit van een

groepspreferentierelatie alleen redelijk is wanneer de groepspreferen-

ties tussen alternatieven x,y, tussen alternatieven y,z, en tussen

alternatieven x,z, onder"overigens gelijke omstandigheden" tot stand

komen, wat onder andere inhoudt dat de groep bij de totstandkoming van

de drie preferenties steeds over dezelfde informatie beschikt, terwijl

de "independence of irrelevant alternatives" conditie juist inhoudt dat

de drie preferenties op verschillende informatie gebaseerd zijn.

Arrow,  K.J. (1978), "Sociaj  Choice and Individia Z  1/a Zues, " 9th edition.
Yale University Press, New Haven.



STELLING 7. Volgens het criterium dat empirische wetenschappers zichSTELLING 3. Met behulp van optimaliseringstheorie kan men bewijzen dat

een niet-expanderende afbeelding  van een deelverzameling  van  IR , naar alleen moeten bezighouden met zaken die tot waarneembare, dat wil zeg-

gen verifieerbare of falsifieerbare, resultaten leiden, moeten empi-IRn, kan worden uitgebreid  tot een niet-expanderende afbeelding  van
n        n                                                                                         rische wetenschappers zich niet bezighouden met het criterium. datR  naar IR .

empirische wetenschappers zich alleen moeten bezighouden met zaken die
Wakker, P.P. (1985), "Extending Monotone and Non-Expansive Mappings

tot waarneembare, dat wil zeggen verifieerbare of falsifieerbare,
by Optimization," Cahiers du C.E. R. 0. 27, 141-151.

resultaten leiden.

STELLING 4. Het statistische toetsen met behulp van significantie-
STELLING 8. Wanneer men denksporten als het schaken als wetenschappen

toetsen voldoet niet aan het "sure-thing principle."
wil beschouwen, en men bijvoorbeeld de opvatting in het schaken dat

Wakker, P.P. (1981), "The Additivity Principle in Decision Making under
een voor wit gewonnen stelling ontstaat als in de beginstelling de

Uncertainty," Report 81-35, Department of Mathematics, University zwarte dame en een wit paard worden verwijderd, als een wet uit deze
of Leiden.

wetenschappen wil beschouwen, dan horen deze wetenschappen bij de in-

ductieve, en niet bij de deductieve, wetenschappen.

STELLING 5. De eerste Remark in paragraaf 2 van Wakker (1981) geeft

aan dat het deel van paragraaf III.4, bovenaan pagina 43 in Savage

(1954), weinig gelezen is.
STELLING 9. In het schaakspel staat na de beginzetten 1.e4 - e6.2.d4 -

Savage, L.J. (1954), "The Foundations of Statistics." Wiley, New York. dS.3.Pd2 - Pf6.4.e5 - Pfd7 5.Ld3 - c5.6.c3 - Pc6.7.Plf) - f6.8.Pg5 -

Wakker, P.P.  (1981) , "Agreeing Probability Measures for Comparative fg5! niet wit gewonnen, zoals veel theorieboeken beweren (zie

Probability Structures," The AnnaZs of Statistics 9, 658-662. Matanovic, 1981, voetnoot 109 bij variant C05-21), doch zwart, omdat

zwart na 9.DhSt - 96.10.6964 - hg6.11.8962 - Kel over het tegenoffer

STELLING 6. De "weerlegging" van het scepticisme die gebaseerd is op Pd7 xe5 beschikt, bijvoorbeeld 12.Pc4 - PdleS!, als in de partij

de redenering dat een scepticus meent te weten dat hij niets weet, en H. Otten - P. Wakker (1982, Leiden, 3e ronde Notenboomtoernooi), of

zodoende toch iets meent te weten (zie O'Connor en Carr, 1982, boven- 12.Pf3 - Pd7e 51 13.L95+ - Kd7.14.de5 - Le 7.15.h4 - 098, of 12.Pe4!?

aan pagina 3), is niet juist omdat een scepticus alleen maar, uitgaan- CH.J. Goeman) - Pd7eS.13.Lg5+ - Kd7.14.Pf6+ - Kc7.15.Pe8+ (15.deS -

de van de veronderstelling dat hij iets kan weten, tot de conclusie PeS) - Kd7. 16.Pf6t - Kc7.17.Pe8t - DeBM 18.De8 - Lg7.

komt dat hij niets weet, en in de daaruit voortvloeiende tegenspraak Matanovic, A. (Ed., 1981), "Encyclopedia of Chess Openings   C,   Vol   I."

niet een weerlegging, doch integendeel een bekrachtiging, van zijn Batsford, Londen.
houding ziet.

Met dank aan internationaal schaakgrootmeester John van der Wiel voor

O'Connor, D.J. en B. Carr ( 1982), "Introduction to the Theory of het controleren en goedbevinden van bovenstaande stelling (en voor het
Knowledge.

" University of Minnesota Press, Minneapolis.
weerleggen van enige andere "nieuwtjes")  .

STELLING 10. Voor het verkrijgen van zelfkennis is het bezit van een

geweten een hinderpaal.
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