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Chapter 1

Introduction

Items in a test or a questionnaire are often scored, such that a higher score is
assigned to a more positive response to a statement (personality measurement)
or a better solution of a cognitive problem (ability measurement). Items serve
as indicators of the attribute of interest. For example, the response to the
statement “I cry at weddings” may be taken as an indication of the tendency
to cry (Vingerhoets & Cornelius, 1990), and higher scores are assigned as the
endorsement of the statement is more extreme, for example, on an ordinal rating
scale running from “never” to “always”. Another example is that scores can be
assigned to the subtasks the subject passes in solving a cognitive problem such
as arithmetic ability. For example, the item “1

3 + 1
6 =?” may be assigned one

credit point if the subject finds the common denominator, two credit points if
(s)he also correctly adds the numerators, and three credit points if (s)he finally
manages to simplify the solution correctly.

The attributes of interest in the examples are not directly observable, but
have to be assessed by means of the responses to a set of items that each
pertain to a certain aspect of the attribute. Different items can differ in their
attractiveness or difficulty. In general we may expect subjects to score lower
on the item that states “I cry when I feel relief ” than on the item “I cry at
weddings”. Likewise, the arithmetic problem “2

3 ÷
2
9 =?” may generally be

considered more difficult than “1
3 + 1

6 =?”, and thus lead to lower scores. In
these examples, the statements with respect to item orderings are expected to
hold at the group level meaning that the mean score on item i is smaller than
the mean score on item j. However, practical test users often assume that these
item orderings also hold for subjects but they do not support this assumption by
means of research results. It seems that researchers underestimate the strength
of such an assumption or worse, that they do not realize that an ordering
relationship that holds at the higher aggregation level of mean item scores does
not automatically generalize to the lower lever of individual subjects. Hence,
one finds that this aggregation error is regularly made.

Thus, that one item is generally less attractive or more difficult than the
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other item does not necessarily mean that this ordering of item difficulties is
the same for all subjects. For example, one item may be more difficult than
the other for low-ability subjects, while the reverse ordering of item difficulties
holds for high-ability subjects. If, however, the ordering is the same for all
subjects, then we say that the items are invariantly ordered. Such an invariant
item ordering (IIO) is convenient for the interpretation and the comparability
of test results of different subjects, and is highly relevant in many practical test
and questionnaire applications. An example, also to be discussed elsewhere in
this thesis, is the use of starting and stopping rules in intelligence testing (e.g.,
Wechsler, 1999). In child intelligence testing, items are usually administered
in the order of increasing difficulty, and the often implicit but not empirically
verified assumption is that this difficulty ordering is the same for all children.
Based on this assumption, older age groups may skip the easiest items because
they are thought to be trivial to them, and children stop solving items when
they fail, say, three items in a row. Obviously, the next items are assumed to be
too difficult and children should not be bothered with them. Inferences about
the subjects’ abilities on the basis of this and other adaptive testing strategies
rely on the property of IIO, and a violation of the assumption of common item
ordering may jeopardize the validity of the inferences made on the basis of such
testing procedures. Other examples are the testing of developmental sequences
or sequences based on alleged seriousness of symptoms, and person-fit analysis
(Sijtsma & Junker, 1996).

To investigate whether IIO holds for a particular test in a particular popu-
lation of interest, IIO is formally defined within the framework of item response
theory (IRT). In IRT models, latent variables represent attributes, and are de-
noted by θ. The score on an item i is assumed to be a random variable Xi,
and concrete item scores or realizations are denoted by xi ∈ {0, . . . ,mi}. The
mean item score for item i is denoted by E(Xi), and interpreted as an index
for the difficulty of the item. We index the k items in a test or questionnaire
according to increasing item means, so that i < j means that E(Xi) ≤ E(Xj).
Sijtsma and Hemker (1998) define IIO for the k items in the test as

E(X1|θ) ≤ E(X2|θ) ≤ · · · ≤ E(Xk|θ), (IIO)

for all θ. This definition allow for the possibiliy of ties.
The assumption of IIO obviously is a strong one and difficult to satisfy

for a particular test or questionnaire in a particular population. For dichoto-
mously scored items, from the better known IRT models only the Rasch (1960)
model and the double monotonicity model (Mokken, 1971) imply IIO but for
polytomously scored items none of the well-known IRT models implies the IIO
property (Sijtsma & Hemker, 1998). Very little research has been done to de-
velop models implying an IIO and methods that may be used for investigating
IIO without the assumption of a particular IRT model (Sijtsma & Hemker,
1998; Sijtsma & Junker, 1996). In our view, this does not mean that the topic
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is unimportant but rather that it may be badly understood among practitioners
that an item ordering ascertained from the data, either using item means as
in classical test theory or latent item location parameters as in item response
theory, does not automatically apply to the subject level.

In this thesis, from different angles I tackle the problem of developing models
implying IIO and methods that may be used for investigating IIO without the
assumption of a particular IRT model. Rather than take one approach and
develop it fully, given the no man’s land of IIO research I chose to explore
different possibilities and make several suggestions for what hopefully will prove
to be fruitful approaches.

Arrangement of Chapters

Each of the following chapters starts with an introduction of concepts, defi-
nitions, and notation, allowing each chapter to be read independently of the
other chapters. In addition, each chapter addresses a particular problem for
IIO research, so if one is interested in a specific topic it may pay of to first read
the abstracts at the beginning of the chapters.

In Chapter 2, I propose a method for investigating IIO for polytomously
scored items, which assesses for each pair of item response functions whether
or not they intersect, and I propose a procedure for reducing the large amount
of output so as to select a set of items for which IIO holds from a larger set
in which IIO does not hold simultaneously for all items. This method is called
method manifest IIO. Coefficient HT is defined for polytomously scored items,
and given that method manifest IIO supports IIO for a set of items, coefficient
HT expresses the accuracy of this item ordering. A top-down procedure for
IIO research by means of method manifest IIO and coefficient HT is illustrated
using a data example.

In Chapter 3, different items are allowed to have different numbers of score
categories. For such sets of items, the combination of monotone increasing
item response functions (monotonicity, for short) and IIO are investigated si-
multaneously. A bottom-up procedure is suggested for selecting a set of items
for which both monotonicity and IIO hold from a larger set. The procedure
is illustrated by an application to data collected by means of an Alzheimers’
symptoms checklist.

In Chapter 4, I consider an approach for testing monotonicity and IIO by
means of latent class models. The latent variable is approximated by a finite
number of discrete latent classes. The Gibbs sampling procedure is used to
impose ordinal constraints on the latent class model, where the constraints
correspond to the assumptions of monotonicity and IIO. Posterior checks are
used to identify the items that do not agree with the constraints corresponding
to monotonicity and IIO.

In Chapter 5, the perspective on IIO is such that item response functions
are required to be distinguishable in the data before the conclusion of IIO is
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drawn. Hence, strict inequality for all θ values is assumed in the definition of
IIO. For realistic sample sizes, it is shown that no more than six items can
be assumed to fulfill strict IIO. Another result is that for IIO research most
subjects need to be sampled form the extremes of the θ distribution, where
ironically the fewest observations are located.

In Chapter 6, I define a family of latent scales for polytomously scored
items. Latent scales are IRT models that imply IIO. The different latent scales
are shown to be hierarchically related, and for different levels of the hierarchy
testable consequences are derived, allowing the assessment of different defini-
tions of item difficulty ordering. The methodology of Chapter 2 is used to
select sets of items that satisfy a particular latent scale from larger sets. Two
data examples illustrate the viability of the approach. Finally, in Chapter 7,
a summary of the methods and models for IIO is given together with some
general conclusions.



Chapter 2

Investigating Invariant Item
Ordering for Polytomously
Scored Items∗

Abstract

This chapter discusses the concept of an invariant item ordering (IIO) poly-
tomously scored items and proposes methods for investigating IIO in real test
data. Method manifest IIO is proposed for assessing whether or not item re-
sponse functions intersect. Coefficient HT is defined for polytomously scored
items. Given that IIO holds, coefficient HT expresses the accuracy of this item
ordering. Method manifest IIO and coefficient HT are used together to analyze
a real data set. Topics for future research are discussed.

∗This Chapter has been accepted for publication as: Ligtvoet, R., Van der Ark, L. A.,
Te Marvelde, J. M., & Sijtsma, K. (in press). Investigating an invariant item ordering for
polytomously scored items. Educational and Psychological Measurement.
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2.1 Introduction

In several measurement applications, it is convenient that the items have the
same order with respect to difficulty or attractiveness for all subjects. Such an
ordering facilitates the interpretation and the comparability of subjects’ test
results. An item ordering that is the same for all subjects is called invariant
item ordering (IIO; Sijtsma & Junker, 1996). Before we define IIO, we first
mention several measurement applications in which IIO proves useful.

First, many intelligence tests present the items to children in the order ac-
cording to ascending difficulty (e.g., Bleichrodt, Drenth, Zaal, & Resing, 1987;
Wechsler, 1999). One reason for this presentation order of item administration
is to comfort children and prevent them from panicking, which might result
from starting with difficult items and which might negatively influence test
performance. Another reason is that different age groups are administered
different subsets of the items, and subsets of items are more difficult as age
increases. For example, the youngest age group starts with the easiest items
and a child stops when he or she fails, say, three consecutive items. The next
age group always skips the five easiest items, because these items are believed
to be trivial to them, and starts at Item 6, and again a child stops when he
or she fails, say, three consecutive items. And so on for the next age groups.
Several intelligence tests use this administration mode, which assumes that the
ordering of the items by difficulty is the same across age groups and children.
This assumption usually is ignored in the phase of test construction. In sub-
sequent test use, test practitioners often are unaware that the assumption was
never ascertained by means of empirical research, but they use the test as if it
were.

Second, several developmental theories assume that abilities or skills go
through different phases before they reach maturity (Bouwmeester & Sijtsma,
2007; Raijmakers, Jansen, & Van der Maas, 2004). A simple example is arith-
metic ability, for which it may be assumed that development goes through
mastering the operation of addition, and then subtraction, multiplication and,
finally, division. An arithmetic test, which aims at measuring the degree to
which these operations have been mastered, may be assembled and adminis-
tered such that the hypothesized item ordering by difficulty reflects the assumed
ordering of the operations or combinations of the operations. The hypothe-
sized developmental ordering could be investigated using this test with either
cross-sectional or, even better, longitudinal data from the population of inter-
est. When the theory proves to be correct, this would lend credence to the
diagnostic use of the test and the possibility to pinpoint children’s problems
with arithmetic as either normal developmental hurdles to be taken or signs of
abnormal development.

Third, in attitude and personality testing, and also in the medical context
researchers often assume their items to have a cumulative structure, reflecting
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a hierarchy of psychological or physical symptoms hypothesized to hold at the
subject level (Van Schuur, 2003; Watson, Deary, & Shipley, 2008). For example,
in measuring introversion it seems reasonable to expect a higher mean score
on a rating scale statement like “I do not talk a lot in the company of other
people” than on “I prefer not to see people and do things on my own”, because
the latter statement seems to refer to a more intense symptom of introversion.
However, an ordering of these statements by group mean scores does not imply
that this ordering also holds at the subject level. Indeed, several subjects may
indicate a higher prevalence for doing things on their own, but the mixture of
the two item orderings may be such that the first still has the highest mean
score in the total group. Any set of items can be ordered by means of item
mean scores, but whether such an ordering also holds for individual subjects
has to be ascertained by means of empirical research. Only when the set of
items has IIO, can their cumulative structure be assumed to be valid at the
lower aggregation level for subjects.

This study deals with the investigation of IIO for a set of polytomously
scored items and extends previous work of Sijtsma and Meijer (1992) and Si-
jtsma and Junker (1996) for dichotomously scored items. Very little work has
been done in this area. Therefore, this study presents some first steps and has
an exploratory character. An empirical data example shows that the results
may be used for investigating whether IIO holds in sets of polytomously scored
items. Finally, directions for future research are discussed.

2.1.1 Definition of Invariant Item Ordering

The context of this study is item response theory (IRT). Let a test contain k
polytomously scored items, each of which is characterized by m + 1 ordered
integer scores. These scores reflect the degree to which a subject solves a
complex problem (e.g., a physics problem or a text comprehension problem)
or endorsed a statement (e.g., as in Likert items). For m + 1 = 2, items are
dichotomously scored. Technically, the number of ordered item scores may
vary across items but this hampers the comparison of expected item scores for
different items. Hence, we follow Sijtsma and Hemker (1998) in only considering
equal numbers of ordered item scores; equal numbers are common in many
standard tests and questionnaires.

Let random variable Xi denote the score on item i, with realization xi ∈
{0, . . . ,m}. Let θ be the unidimensional latent variable from IRT on which
the subjects can be ordered. A test that consists of k items has IIO (Sijtsma
& Hemker, 1998) if the items can be ordered and numbered accordingly, such
that for expected conditional item scores

E(X1|θ) ≤ E(X2|θ) ≤ . . . ≤ E(Xk|θ), (IIO)

for all θ. IIO allows for the possibility of ties. The expected conditional item
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score E(Xi|θ) is called the item response function (IRF), and IIO implies that
the IRFs do not intersect. For dichotomously scored items, E(Xi|θ) = P (Xi =
1|θ), which is the conditional probability of a correct score or the endorsement
of a statement.

IIO is a strong requirement in measurement practice. Researchers some-
times assume that a fitting IRT model implies that the items have the same
ordering by difficulty or attractiveness for all subjects but this assumption
requires modification. For dichotomously scored items, Sijtsma and Junker
(1996) showed that only IRT models that employ nonintersecting IRFs imply
IIO. Examples are the Rasch (1960) model and the Mokken (Mokken & Lewis,
1982) double monotonicity model, but the much-used two- and three-parameter
logistic models (Birnbaum, 1968), which allow intersecting IRFs, do not imply
the IIO property. For polytomously scored items, Sijtsma and Hemker (1998)
showed that popular IRT models such as the partial credit model (Masters,
1982), the generalized partial credit model (Muraki, 1992), and the graded re-
sponse model (GRM; Samejima, 1969) do not imply an IIO. Thus, when any
of these models give an accurate description of the data, one cannot conclude
that the items follow the same ordering by difficulty or popularity for each
subject from the population of interest. Sijtsma and Hemker (1998) showed
that only restrictive polytomous IRT models, such as the rating scale model
(Andrich, 1978), a rating scale version of Muraki’s (1990) restricted GRM, and
the isotonic ordinal probabilistic model (Scheiblechner, 1995) imply IIO.

Thus, there appears to be a mismatch between many of the IRT models
for polytomously scored items and the IIO property. This mismatch is due to
an aggregation phenomenon, which is illustrated by means of the GRM and a
special case of this model. We assume a unidimensional latent variable θ, and
item scores that are locally independence. Response functions of polytomously
scored items are defined for separate item scores and given that an item has
m + 1 different scores, for each item m such response functions are needed
(Mellenbergh, 1995; Molenaar, 1983). An example of these response functions
are the item step response functions (ISRFs) of the class of cumulative prob-
ability models, which are defined by the conditional probability P (Xi ≥ xi|θ),
for xi = 0, . . . ,m; by definition, P (Xi ≥ 0|θ) = 1 and P (Xi ≥ m+ 1|θ) = 0.

Given IIO, one is interested in statistical information at the aggregation
level of the item rather than the level of the item scores. Hence, we considering
the IRF, which is related to the m ISRFs by means of

E(Xi|θ) =
m∑

xi=1

P (Xi ≥ xi|θ). (1)

Sijtsma and Hemker (1998) used relationships like this one to show that for
many polytomous IRT models, combining the m ISRFs of items into IRFs, does
not result in IIO. These authors also showed that one needs restrictions on the
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relationships between the ISRFs of different items in the test or questionnaire
to obtain IIO. Two examples of relationships between ISRFs and IRFs are
given, one resulting in failure of IIO and the other in IIO.

First, in Samejima’s (1969) GRM each item has m threshold parameters
such that β1i ≤ . . . ≤ βmi (i.e., the m ISRFs have a fixed order). In addition,
each item has one discrimination parameter αi > 0; then, the ISRF for item
score xi is defined as

P (Xi ≥ xi|θ) =
eαi(θ−βxi )

1 + eαi(θ−βxi )
, (2)

for item scores xi = 1, . . . ,m. The summation across them ISRFs in Equation 2
across the m item scores yields IRF E(Xi|θ) (Equation 1). As an example
for the failure of IIO for the GRM, consider two items: for item 1 we have
βx1 = (−1.5, 1.5) and α1 = 1, and for item 2 we have βx2 = (.5, .5) and α2 = 3.
Figure 2.1a shows the ISRFs of these two items. Using Equations 1 and 2, it is
shown in Figure 2.1c that the two IRF intersect at θ = 0; hence IIO does not
hold.

Second, restricting the slope parameters of Muraki’s (1990) rating scale
version of the GRM (Sijtsma & Hemker, 1998) places restrictions on the rela-
tionships of the ISRFs of different item, which results in IIO. Let α denote a
general discrimination parameter, λi an item specific location parameter, and
εx is the distance of the xith ISRF to location λi, so that βxi = λi + εx, and
with the restriction that

∑
εx = 0; then, the xith ISRF of item i is

P (Xi ≥ xi|θ) =
eα(θ−λi−εx)

1 + eα(θ−λi−εx)
, (3)

for item scores xi = 1, . . . ,m. All items show the same dispersion of the
ISRFs around the location parameters λi. For two items satisfying Equation 3,
Figure 2.1b and 2.1d show that they have IIO.

Two sources of confusion seem to exist with respect to IIO. The first is that
if an IRT model does not imply IIO, then the IIO property cannot be important.
We emphasize that it is the measurement application which determines whether
IIO is important, not the IRT model. If a particular IRT model does not give
information about IIO, other methods have to be used in data analysis for
ascertaining whether IIO is valid. The second source of confusion is that the
IIO property applies to particular content areas but not to others, and that
it applies to rating scale items but not to constructed-response items. The
examples given in the beginning of the chapter illustrated that IIO may be
important in different content areas. This is also true for different item types.
For example, in intelligence tests many items require constructed responses,
as in explaining to the test administrator the use of a particular object (e.g.,
a hammer, a car). If such items are administered in an ascending difficulty
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Figure 2.1: (a) Two items having two ISRFs under the GRM, (c) failing IIO,
and two items having two ISRFs under the restricted rating scale version of
the GRM, (d) having IIO.

ordering, IIO is assumed, which has to be supported by empirical research.

2.1.2 Investigating Invariant Item Ordering

In IIO research for polytomously scored items, a distinction is made between
IRFs that are close together and IRFs that are further apart. If IRFs are close
together, subjects produce data that contain little information about the item
ordering, resulting in an inaccurate ordering. If IRFs are far apart, subjects
produce data that contain more information on the actual item ordering. Thus,
given that IIO has been established, an index for the distance between the IRFs
can be interpreted as an index of the accuracy of the ordering of the IRFs. In
this study, the IRFs of the k polytomously scored items, defined by E(Xi|θ),
are estimated, and IIO is ascertained, and if it is concluded that IIO holds, a
generalization of coefficient HT is used, proposed by Sijtsma and Meijer (1992)
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for dichotomously scored items, to express the accuracy of the item ordering.
Sijtsma and Meijer (1992) demonstrated by means of a simulation study

that for k invariantly ordered dichotomously scored items coefficient HT in-
creased as the mean distance between the item locations increased, or as the
item discrimination increased (both manipulations have the effect that IRFs
are further apart), while other properties of the IRFs and the distribution of
θ were kept constant. They did not find convincing support for different val-
ues of HT to distinguish between the situations for which IIO held or did not
hold (yet suggested tentative rules of thumb for making this distinction; to be
discussed later). In a pilot study we found that this distinction was even more
difficult to make for polytomously scored items.

In what follows, a two-step procedure for IIO research is proposed for poly-
tomously scored items. First, we discuss the estimation of the IRFs, and
propose method manifest IIO, which is based on the estimation of IRFs for
dichotomously scored items (see Molenaar & Sijtsma, 2000, pp. 74-78) and
which evaluates for each pair of IRF estimates whether or not they intersect.
By means of a simulation study, the Type I error rate and power of the method
was investigated. Second, coefficient HT for polytomously scored items is dis-
cussed. By means of a computational study, the influence of different item and
test properties on HT was investigated under the situation for which IIO holds.
Finally, method manifest IIO and coefficient HT were used to analyze a real
data set.

2.2 Method Manifest IIO

2.2.1 Estimation of IRFs and Pairwise Inspection of IIO

Method manifest IIO is available from the R package mokken (Van der Ark,
2007). Let Yij = X+ − Xi − Xj be the rest score; that is, the sum score on
all items excluding the items i and j. Also, y be the realization of Yij , with
y = 0, . . . ,m(k−2). Let E(Xi|Yij) be the estimated IRF of item i. If population
item means are ordered such that for item pair i and j, E(Xi) ≤ E(Xj), then
IIO implies that

E(Xi|θ) ≤ E(Xj |θ), (4)

for all θ. Ligtvoet, Van der Ark, Bergsma, and Sijtsma (2009) showed that
Equation 4 implies that

E(Xi|y) ≤ E(Xj |y), (5)

for all Yij = y.
Equation 5 is investigated for each pair of items using conditional sample

means Xi|y and Xj|y, for all y. If it is found that Xi|y > Xj|y (i.e., a violation of
IIO occurs), a one-sided t test is used to test the null hypothesis that E(Xi|y) =
E(Xj |y) against the alternative that E(Xi|y) > E(Xj |y). Rejection of the null



12

hypothesis for at least one value of y leads to the conclusion that items i and
j are not invariantly ordered. If the number of subjects having a rest score
y is too small for accurate estimation, adjacent rest score are combined into
rest-score groups until the group size exceeds a preset minimum (Molenaar &
Sijtsma, 2000, p. 67). A protection against taking very small violations seriously
is to test sample reversals only when they exceed a minimum value denoted
minvi. Molenaar and Sijtsma (2000, pp. 67-70) recommend for dichotomously
scored items the default value minvi = .03. Polytomously scored items have a
greater score range, and a logical choice for minvi is m× .03. Whether this is
a reasonable choice was investigated in a simulation study (next section).

The following sequential procedure is used for method manifest IIO. First,
for each of the k items the frequency is determined the item is involved in
a significant violation that exceed minvi. If none of the items is involved in
violations, we conclude that IIO holds for all k items; else, the item with the
highest frequency is removed from the test. Second, the procedure is repeated
for the remaining

(
k−1
2

)
item pairs, and if an item is removed, for the remaining(

k−2
2

)
item pairs, and so on. When several items have the same frequency

of significant violations, the items having the smallest scalability coefficients
(Sijtsma & Molenaar, 2002, p. 57) may be removed but researchers may also
consider other exclusion criteria, such as item content.

This procedure is suited for exploratory data analysis but for confirmatory
purposes, when one wants to know whether all k items have an IIO, manifest
IIO is checked for all item pairs but items are not removed. For the set of
items for which no significant violation is found coefficient HT is computed
to evaluate the degree of accuracy of the item ordering. Coefficient HT is
discussed in the next section.

2.2.2 Type I Error and Power of Method Manifest IIO

A Monte Carlo study was performed to investigate the Type I error rate (prob-
ability that IIO is incorrectly rejected) and the power (probability that IIO
is correctly rejected) of method manifest IIO. Here, we only considered the
confirmatory procedure for assessing IIO for all k items.

Method

The following six design factors were used: 1) Situation IIO or not IIO, 2)
Size of minvi, 3) Item discrimination, 4) Sample Size, 5) Test Length, and 6)
number of Score Categories.

1. Situation IIO or not IIO. Samejima’s (1969) GRM (Equation 2) was used
to generate data for those cells of the design for which IIO did not hold.
Particular choices of item parameters may coincidentally produce IIO.
A pilot study showed, however, that IRFs almost always intersected in
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dense regions of the latent variable, so that it seemed safe to use the GRM
for the situation in which IIO did not hold. The restricted rating scale
version of the GRM (Equation 3) was used to generate data for the cells
of the design that correspond to the situation in which IIO did hold. Item
parameters βxi were sampled from N(0, 1), where in case of Equation 3
λi = 1

m

∑
x βxi , and εx = 1

k

∑
i βxi . Slope parameter are discussed below.

2. Size of minvi. A total of 16 values for minvi were chosen to covering
a wide range: minvi = .00(.03).45. These increments include the sug-
gestion that minvi = m × .03. The value minvi = .00 implies that all
violations, however small, were tested.

3. Item discrimination. Two levels of the item discrimination were in Equa-
tions 2 and 3, corresponding to weak and moderate discriminating items.
For the situation in which IIO did not hold for weak discriminating
items, parameters αi were sampled form logN(−.5 ln 20, ln 5), which yield
E(αi) = .5 and V ar(αi) = 1. For moderate discriminating items, these
parameters αi were sampled form logN(−.5 ln 2, ln 2), which yield E(αi) =
1 and V ar(αi) = 1. For the IIO situation a single slope parameter was
sampled from the same distributions for weak and moderate item dis-
criminations.

4. Sample Size. Sample Size had three levels: n = 200, 433, and 800, where
n = 433 corresponds to the data example below. Values of θ were sampled
form N(0, 1).

5. Test Length. Test Length had three levels: k = 5, 10, and 15, where
k = 10 corresponds to the data example.

6. Score Categories. Three numbers of Score categories were considered:
m+ 1 = 3, 5, and 7, where m+ 1 = 5 corresponds to the data example.

For each of the (Situation × Item Discrimination × Sample Size × Test
Length × Score Categories =) 108 cells of the design 500 data sets were gener-
ated and each data set was analyzed by means of method manifest IIO for each
of the 16 minvi values. The Type I error rate was computed for each of the
cells corresponding to IIO, and the power was computed for each of the cells
corresponding the not IIO situation.

Results

The Type I error rate of method manifest IIO ranged from .000 to .725 across
all design cells (mean = .151, standard deviation = .195), and the power ranged
from .013 to 1.000 (mean = .686, standard deviation = .337). Only significant
main effects on the Type I error rate and power are discussed (Kruskal-Wallis
test for several independent samples, nominal Type I error of .05).
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Table 2.1: Type I Error Rate and Power of Method Manifest IIO for Different
Sizes of minvi.

minvi Discrimination
Weak Moderate
Type I Error Power Type I Error Power

.00 .350 .924 .098 .998

.03 .350 .924 .098 .998

.06 .350 .924 .098 .998

.09 .350 .924 .098 .998

.12 .350 .924 .098 .998

.15 .350 .924 .098 .998

.18 .348 .924 .098 .998

.21 .346 .918 .092 .998

.24 .284 .892 .076 .998

.27 .170 .850 .040 .996

.30 .100 .776 .026 .986

.33 .058 .718 .006 .980

.36 .030 .654 .004 .962

.39 .012 .596 .000 .950

.42 .002 .558 .000 .924

.45 .000 .490 .000 .902

Table 2.1 shows the Type I error rate and power for the two levels of Slope
of the IRFs and the 16 levels of minvi, for n = 433, k = 10, and m + 1 = 5
(choices corresponded to data example). For these cells of the design, Type I
errors were higher for weak discriminating items and small minvi-values, and
decreased as either minvi increased or item discrimination increased. Power
was generally high, except for weak item discrimination in combination with
high minvi-values. The reason that the results are the same for all minvi-
values lower than .18 is that the critical value of the t-test is larger than these
values of minvi. Based on these results, the suggestion for minvi = m × .03
seems reasonable if items from the data example show at least a moderate
discrimination.

Across the cells of the design (averages are reported here) an increase
in minvi resulted in lower Type I error rates: .240 (minvi = .00) and .030
(minvi = .45) and lower power: .790 (minvi = .00) and .490 (minvi = .45).
The Type I error rates were higher for weak discriminating items than for mod-
erate discriminating items: .211 and .092, respectively, whereas the power was
lower for weak discriminating items than for moderate discriminating items:
.614 and .758, respectively. Larger Sample Size resulted in lower Type I error
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Table 2.2: Summary of Main Effects on Type I Error Rate and Power of Method
Manifest IIO.

Type I Error Power

Size of minvi – –
Slope of the IRFs. – +
Sample Size – ·
Test Length + +
Score Categories + +

rates: .269 (n = 200) and .085 (n = 800). Larger Test Length resulted in larger
Type I errors: .021 (k = 5) and .285 (k = 15), and larger power: .350 (k = 5)
and .913 (k = 15). Finally, the number of Score Categories increased the Type
I errors: .125 (m + 1 = 3) and .162 (m + 1 = 7), and increased power: .486
(m+1 = 3) and .827 (m+1 = 7). Table 2.2 gives an overview of the significant
positive (+) and negative (–) main effects.

Discussion

Higher minvi-values result in a smaller Type I error rate but also lowered
the power of method manifest IIO. The choice of minvi thus depends on the
specific application for which IIO is investigated. A high cost of incorrectly
accepting IIO requires a lower minvi-value, but in other cases, including our
data example, minvi = m× .03 may be appropriate. Method manifest IIO also
benefits from higher discriminating items, and larger sample sizes.

2.3 Polytomous Coefficient HT

2.3.1 Definition of Coefficient HT

Let X denote the data matrix of n subjects (rows) by k items (columns),
with scores x = 0, . . . ,m in the cells. Coefficient H (Mokken & Lewis, 1982;
Sijtsma & Molenaar, 2002, chap. 4) is a measure for the accuracy by which
k items constituting a scale for ordering subjects (Mokken, Lewis, & Sijtsma,
1986). Sijtsma and Meijer (1992) showed for dichotomous items that when
H is computed on the transposed data matrix, the coefficient denoted HT , is
a measure for the accuracy by which n respondents order k items. Here, we
generalize coefficient HT to polytomously scored items.

Let subjects be indexed by g and h, and let the vector Xg (g ∈ {1, . . . , n})
contain the scores of subject g on the k items. We assume that the k item scores
show at least some variation, so that var(Xg) > 0 for all g. Let cov(Xg,Xh)
be the covariance between the scores of subjects g and h, and maxcov(Xg,Xh)
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the maximum possible covariance given the marginal distributions of the item
scores the subjects. The sum score on item i is denoted by Yi =

∑
gXg. Let

vector Y contain the k item sum scores, and let vector Yg = Y−Xg contains
the k sum scores excluding the contribution of subject g. The subject scalability
coefficient HT

g is defined as the weighted normalized covariance,

HT
g =

∑
h6=g

cov(Xg,Xh)∑
h6=g

maxcov(Xg,Xh)
=

cov(Xg,Yg)

maxcov(Xg,Yg)
. (6)

Thus, coefficient HT
g expresses the association between the k item scores of

subject g and the k sum scores of the remaining subjects. Because even for
small samples, Y ≈ Yg, coefficient HT

g expresses the degree to which the scores
of subject g have the same ordering as the sum scores.

When IIO holds for the k items, theoretically we expect a positive associ-
ation between the ordering of the item scores in Xg and the total scores Yg.
When IRFs are close together, we expect this ordering of the item scores to
be unstable and the values of many coefficients HT

g to be low. When IRFs are
further apart, we expect the orderings of the item scores to be more stable and
better in agreement with the ordering of the item totals, thus resulting in many
higher HT

g values. Coefficient HT wraps up the n subject coefficients as

HT =

∑
g

cov(Xg,Yg)∑
g

maxcov(Xg,Yg)
. (7)

When k items have IIO, the value of coefficient HT is higher the further the
IRFs are apart.

For k invariantly ordered items, assuming LI it follows that 0 ≤ minHT
g ≤

HT ≤ maxHT
g ≤ 1 (see Appendix A). The value of 0 is obtained if the k IRFs

coincide and cov(Xg,Xh) = 0 for all subject pairs. Maximally, HT = 1, and
this value is obtained if the agreement between the subjects’ ordering of item
scores and the ordering of the corrected item totals is maximal. We used a
computational study to investigate the influence of item and test properties on
the value of coefficient HT for polytomously scored items.

2.3.2 Influence of Item Properties and Test Length on HT

Figure 2.2 illustrates that for dichotomously scored items coefficient HT can-
not distinguish well between data generated under a model inconsistent with
IIO (Figure 2.2a) and one consistent with IIO (Figure 2.2b). Here, the data
was generated under the two-parameter logistic model with the same location
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Figure 2.2: (a) Failure of IIO and (b) IIO. Both cases produce HT ≈ .50.

parameters and with equal mean discriminations1. Hence, Sijtsma and Meijer
(1992) recommended using Mokken scale analysis (e.g., Sijtsma & Molenaar,
2002) to first identify and remove items that have flat IRFs and tend to produce
many intersections with other, often steeper IRFs. For the remaining items,
they suggested concluding that IIO held based on the value of HT and the
percentage of negative subject scalability values (not discussed here) did not
exceed 10; else, IIO was rejected. Because we used method manifest IIO to
select an item set that is consistent with IIO, the use of coefficient HT sufficed.

In their Monte Carlo study, for dichotomous items Sijtsma and Meijer
(1992) found that coefficient HT increases as distance between item locations
increases or item discrimination increases. here, we used a computational study
for polytomously scored items based on stratified sampled values of θ (for which
sample size did not play a role) to investigate IIO conditions so as to learn how
HT may be used once IIO has been ascertained by means of method manifest
IIO. Similar to Sijtsma and Meijer (1992), we included in our design 1) Distance
between Item Locations, 2) Item Discrimination, and 3) Test Length, but with
more variation in levels. We expected similar trends influences on HT as for
dichotomously scored items. The factors 4) number of Score Categories and 5)
Distance between adjacent ISRFs were unique for polytomous items.

Method

Coefficient HT was computed at for the restricted rating scale version of the
GRM (Equation 3), which implies IIO. The dependent variable was the ex-
pected value of coefficient HT , for which the computational details are given

1For both Figure 2.2a and Figure 2.2b: βi = .5, 0, 1, and θ ∼ N(0, 1). In addition, for
Figure 2.2a: αi = 1.5, .75, 2.25 and for Figure 2.2b: αi = 1.5, 1.5, 1.5.
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in Appendix B. The levels of the five independent variables are listed below.

1. Distance Item Locations. Item locations λi were symmetrical relative to
the mean of the distribution of θ (µθ = 0), and adjacent item locations
were at a constant distance. The location of the least attractive item was
chosen λk = 0, 1, and 2 (for λk = 0 all IRFs coincide), corresponding
to a distance between the most and least attractive item of 0, 2, and
4, respectively. The distance between adjacent items depend further on
Test Length k.

2. Item Discrimination. The discrimination parameters αi ranged from
weak discriminating to strong discriminating: .5, 1, 1.5, and 2.

3. Test Length. Test Length had three levels: k = 5, 10, and 15.

4. Score Categories. For numbers of Score categories were considered: m+
1 = 2, 3, 5, and 7, where m+ 1 = 2 corresponds to dichotomously scored
items.

5. Distance ISRFs. For dichotomously scored items, by definition εx = 0,
but for polytomously scored items, the parameters ε1, . . . , εm may vary.
Two variations were considered. First, the extremes were fixed ε1 = −1
and εm = 1, with the otherm−2 ISRFs located at equal distances between
these extremes. Thus, for greater m the ISRFs were more densely located
around the item location. Second, the distance between the locations of
adjacent ISRFs was fixed at .5, which resulted in a greater dispersion of
the ISRFs around the item location as m was greater.

Because dichotomously scored items only have one item step, the 2 cells in the
design corresponding to Distance ISRFs collapsed, resulting in a design with
3× 4× 3× 4× 2− 2 = 286 cells.

Results

For the design factors typical of polytomous items, which are number of Score
Categories and Distance between adjacent ISRFs, we found little effect on
coefficient HT (no more than a few hundredths between corresponding design
cells). This justifies discussing results for only the simplest case of m+ 1 = 2.
For the cells concerning coinciding IRFs (λk = 0), we found that HT = 0
(consistent with mathematical proof in Appendix A). Table 2.3 shows HT -
values for the combinations of Slope of the IRFs, Distance Item Locations
(λk = 1, 2), and Test Length. Similar to results found by Sijtsma and Meijer
(1992), Slope of the IRFs and Distance Item Locations had positive effects
on HT . Unlike their results, however, where the number of items had no
significant negative effect for k = 9 and 18, our results show a negative effect
of Test Length. This discrepancy can be explained by the levels we used for
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Table 2.3: Values of Coefficient HT for Levels of Slope of the IRFs, Distance
Item Locations, and Slope of the IRFs.

Test Distance Item Slope of the IRFs
Length Location .5 1.5 2.5 3.5

5 2 .038 .145 .279 .413
4 .135 .405 .610 .742

10 2 .031 .121 .239 .362
4 .112 .355 .557 .698

15 2 .029 .114 .227 .346
4 .106 .340 .540 .683

Test Length (k = 5, 10, and 15), where we found the largest decrease in HT

between k = 5 and 10. These results suggest that beyond approximately 10
items there is little to no effect of the number of items on the value of HT .

Discussion

The computational results supported the expectation that when items are fur-
ther apart, for a fixed θ the items’ response probabilities show more variation
and the ordering of a subject’s item scores better resembles the ordering of the
items’ sum scores. Given IIO, coefficient HT expresses the degree to which the
ordering of the sum scores on the items is reflected by the individual vectors of
item scores. The next section illustrates the practical use of method manifest
IIO and the coefficient HT .

2.4 Real-Data Example

Method manifest IIO and coefficient HT were used for investigating whether
IIO held in the two scales for measuring deference (k = 9) and achievement
(k = 10) from the Dutch version of the Adjective Checklist (ACL; Gough &
Heilbrun, 1980). The scales were not constructed with IIO in mind, but are
well suited for demonstrating the exploratory use of method manifest IIO. Items
consist of an adjective and five ordered score categories. Table 2.4 shows the
item labels (negatively worded items were recoded). The subjects were n = 433
students, who were instructed to consider whether an adjective described their
personality, and rate the answer category that fitted best to this description.
Vorst (1992) collected the data, which are available from the R-package mokken
(Van der Ark, 2007).

Prior to investigating IIO, following Sijtsma and Meijer (1992) a Mokken
scale analysis was done on both subscales. Inclusion of all items resulted in
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Table 2.4: Number of Violations for the Deference and Achievement Scale.

Deference Achievement
Items Step Items Step

1 1 2
Impulsive 0 Quitting∗ 0 0
Demanding 0 Unambitious∗ 0 0
Forceful 0 Determined 0 0
Rebellious 0 Active 0 0
Uninhibited 0 Energetic 0 0
Bossy 0 Ambitious 1 0
Reckless 0 Alert 2 -
Boastful 0 Persevering 1 0
Conceited 0 Thorough 0 0

0 Industrious 0 0

Coefficient HT .320 .116
∗ Negatively worded items.

H = .307 for scale Deference, and H = .378 for scale Achievement. Following
Mokken and Lewis (1982), .30 ≤ H < .40 stands for a weak scale.

For method manifest IIO, the IRFs were estimated after adjacent rest scores
were joined until each group contained at least 86 respondents (Molenaar &
Sijtsma, 2000, p. 67). The R package mokken (Van der Ark, 2007) was used
for the computations. Table 2.4 shows for minvi = .03 ×m = .12 that scale
Deference did not have significant violations of IIO, and that HT = .320. The
scale Achievement had two significant violations, both involving item Alert.
Removal of this item resulted in a scale containing nine items for which IIO
held. Coefficient HT

g cannot be computed for subjects that have the same
scores on all items. For the scale Achievement, six subjects were excluded for
computing HT as their HT

g -values could not be computed. For the remaining

427 respondents we found HT = .116. Support for IIO is stronger for Deference
than for Achievement. Interpretation of HT is discussed in the next section.

2.5 General Discussion

A top-down sequential procedure was used for selecting a subset of items having
nonintersecting IRFs, based on method manifest IIO. Thus, not all item subsets
were investigated and, once removed, an item was not re-evaluated for possible
re-selection in later steps of the procedure. Alternative selection procedures
(e.g., genetic algorithms; Michalewicz, 1996), which assess all possible item
subsets, may be investigated in future research so that possibly larger and
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different item subsets for which an IIO holds may be identified.
IIO research is new, and experience on how to interpret results has to

accumulate as more applications become available. For the time being, we
tentatively generalize the heuristic rules proposed by Mokken and Lewis (1982)
for interpreting values of scalability coefficient H to the interpretation of HT

values, provided IIO holds for an item set. Thus, we propose: HT < .30 means
that the item ordering is too inaccurate to be useful; .30 ≤ HT < .40 means
low accuracy; .40 ≤ HT < .50 means medium accuracy; and HT ≥ .50 means
high accuracy. Based on these rules, the nine items from the Deference scale
may be ordered with low accuracy (HT = .320), and the remaining nine items
from the Achievement scale do not have IIO (HT = .116).

The assumption of IIO is both omnipresent and implicit in the application
of many tests, questionnaires, and inventories. Test constructors and test users
alike often assume that the same items are easy or attractive for each of the
respondents to whom the items are administered but rarely put this strong as-
sumption to the test of empirical evaluation. Yet, an established IIO underpins
and greatly facilitates the interpretation of the test results, for example, when
the test administration procedure is based on the ordering of the items from
easiest to most difficult, the items reflect a developmental sequence of cognitive
steps assumed to be the same for everyone, or when the set of items is assumed
to reflect a hierarchical or cumulative structure. Invariant item ordering for
polytomously scored items is an unexploited terrain. This study provides a
first start for this topic, and shows directions for future explorations.

Appendix

A IIO implies HT
g ≥ 0 and HT ≥ 0

First, let θg and θh be the latent variable values of two arbitrary subjects g and
h. IIO implies that for subject g and h the items are ordered in the same way;
that is,

E(X1|θg) ≥ E(X2|θg) ≥ · · · ≥ E(Xk|θg) (A1)

and
E(X1|θh) ≥ E(X2|θh) ≥ · · · ≥ E(Xk|θh). (A2)

Second, for two arbitrarily selected items i and j let E(Xi−Xj |θg) and E(Xi−
Xj |θh) denote the expected differences between the item scores for subjects g
and h, respectively. Because for g and h all items are ordered in the same way
(Equations A1 and A2), it follows that E(Xi−Xj |θg) and E(Xi−Xj |θh) have
the same sign. Thus

E(Xi −Xj |θg)× E(Xi −Xj |θh) ≥ 0. (A3)
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Third, because of assumption LI E(Xi −Xj |θg) and E(Xi −Xj |θh) are inde-
pendent. As a result, Equation A3 is equivalent to

E[(Xi −Xj |θg)(Xi −Xj |θh)] ≥ 0. (A4)

Fourth, the left-hand side of Equation A4 equals 2cov(Xg,Xh), so that

2cov(Xg,Xh) = E[(Xi −Xj |θg)(Xi −Xj |θh)] ≥ 0. (A5)

Fifth, coefficient HT
g was defined as (Equation 6)

HT
g =

∑
h6=g

cov(Xg,Xh)∑
h6=g

maxcov(Xg,Xh)
. (6)

By substituting Equation 6 into Equation 7, HT can be rewritten as

HT =

∑
g

∑
h6=g

cov(Xg,Xh)∑
g

∑
h6=g

maxcov(Xg,Xh)
. (A6)

It follows from Equation A5 that cov(Xg,Xh) ≥ 0. Because maxcov(Xg,Xh) ≥
0 by definition, it follows thatHT

g ≥ 0 andHT ≥ 0. Sixth, because cov(Xg,Xh) ≤
maxcov(Xg,Xh), it follows that HT ≤ 1 and HT

g ≤ 1.
When the k IRFs coincide, then E(Xi − Xj |θg) = E(Xi − Xj |θh) = 0

for all pairs of items. It follows from Equations A3, through A6, that then
HT
g = HT = 0.

B Computational Procedure for HT

Procedure for Determining Coefficient Hij using the Weighted Num-
ber of Guttman Errors

Molenaar (1991) proposed an algorithm that uses weighted Guttman errors
to compute Loevinger’s (1948) coefficient Hij for polytomously scored items.
This algorithm is explained by means of the example in Table 2.5. Table 2.5
shows joint frequencies, marginal frequencies, and cumulative proportions of
the scores of 178 respondents on items i and j. Let fxi,xj denote the joint
frequency of item-score pattern (Xi = xi, Xj = xj), and let fxi denote the
marginal frequency of Xi = xi. The order of the cumulative proportions,
P (Xi ≥ x) and P (Xj ≥ x), for x = 1, 2, and 3, determines the order of the
item steps. In Table 2.5, this order is: P (Xi ≥ 1) = .984, P (Xi ≥ 2) = .905,
P (Xj ≥ 1) = .854, P (Xj ≥ 2) = .596, P (Xi ≥ 3) = .517, and P (Xj ≥ 3) =
.163. Thus, the order of the item steps from most attractive to least attractive
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Table 2.5: Contingency Table for the Scores of 178 Respondents on Items i and
j with Weights in Parenthesis

Item j
x = 0 x = 1 x = 2 x = 3 fxi P (Xi ≥ x)

x = 0 3 (0) 0 (2) 0 (4) 0 (7) 3 1.000
Item i x = 1 4 (0) 7 (1) 3 (2) 0 (4) 14 0.984

x = 2 10 (0) 22 (0) 34 (0) 3 (1) 69 0.905
x = 3 9 (2) 17 (1) 40 (0) 26 (0) 92 0.517
fxj 26 46 77 29 178

P (Xj ≥ x) 1.000 0.854 0.596 0.163

Note: data from Weijmar, Schultz, and Van der Wiel (1991), as referred to in Molenaar

(1991, p. 101); fxi is the marginal frequency of Xi, fxj is the marginal frequency of Xj .

is
Xi ≥ 1, Xi ≥ 2, Xj ≥ 1, Xj ≥ 2, Xi ≥ 3, Xj ≥ 3. (B1)

It is assumed that in order to reach item-score pattern (Xi = xi, Xj = xj),
one starts at the most attractive step and then proceeds step-by-step until one
arrives at (Xi = xi, Xj = xj). It happens regularly that along the way one
misses steps that are necessary to arrive at the pattern (Xi = xi, Xj = xj).

The indicator vector rxi,xj =
(
r
(1)
xi,xj , . . . , r

(2m)
xi,xj

)
(here, 2m = 6) tracks the item

steps that must be passed (score 1) and the item steps that are failed (score
0) until item-score pattern (Xi = xi, Xj = xj) is reached. For example, in
Table 2.5, to obtain item-score pattern (Xi = 1, Xj = 2), the first, third, and
fourth item step in Equation B1 must be passed; thus, r1,2 = (1, 0, 1, 1, 0, 0).
To obtain the item-score pattern (Xi = 0, Xj = 0), none of the item steps must
be passed and r0,0 = (0, 0, 0, 0, 0, 0).

The 2m elements of indicator vector rxi,xj form m(2m−1) different pairs. A
pair is discordant if the element pertaining to the less attractive item step equals
1 (i.e., the less attractive item step was passed) and the element pertaining to
the more attractive item step equals 0 (i.e., the more attractive item step was
missed). It may be verified that r1,2 = (1, 0, 1, 1, 0, 0) has 15 pairs; two pairs,

(r
(2)
1,2, r

(3)
1,2) and (r

(2)
1,2, r

(4)
1,2), are discordant, the other 13 pairs are concordant.

An item-score pattern is called a conformal pattern if for each item step
that was passed no previous item steps were missed. This means that for
a conformal pattern, indicator vector r has no discordant pairs of elements,
(0, 1). In Table 2.5, the frequencies of the conformal patterns are shown in
bold face. An item-score pattern is called a Guttman error if for at least one of
the item steps that were passed, a previous item step was missed. This means
that indicator vector r has at least one discordant pair of elements, (0, 1). In
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Table 2.5, the frequencies of the Guttman errors are shown in normal face.
Each item-score pattern (Xi = xi, Xj = xj) is weighted by the total num-

ber of discordant pairs in rxi,xj , denoted wxi,xj . Then, the total number of
discordant pairs equals

wxi,xj =

2m∑
v=2

r(v)xi,xj

v−1∑
u=1

(
1− r(u)xi,xj

)
. (B2)

In Equation B2, the term
v−1∑
u=1

(
1− r(u)xi,xj

)
counts the zeroes in rxi,xj before

the vth entry. For the item-score pattern (Xi = 1, Xj = 2), for which r1,2 =
(1, 0, 1, 1, 0, 0) and 1− r1,2 = (0, 1, 0, 0, 1, 1), the corresponding weight equals

w1,2 =
6∑
v=2

r
(v)
1,2

(
v−1∑
u=1

[
1− r(u)1,2

])
= 0(0) + 1(1 + 0) + 1(0 + 1 + 0) + 0(0 + 0 + 1 + 0)+

0(1 + 0 + 0 + 1 + 0)
= 0 + 1 + 1 + 0 + 0 = 2.

In Table 2.5, the weights corresponding to all the score patterns are given in
parenthesis. The conformal patterns have zero weight.

Next, let fxi,xj and exi,xj indicate the frequency of observed score patterns
and the frequency of expected score patterns in the group under marginal
independence, respectively. The scalability of two polytomously scored items i
and j can be computed by insertion of

Fij =
m∑

xi=0

m∑
xj=0

wxi,xjfxi,xj

and

Eij =
m∑

xi=0

m∑
xj=0

wxi,xjexi,xj

in

Hij = 1− Fij
Eij

. (B3)

Computation of HT

Latent trait θ was approximated using 50 discrete values θ1, . . . , θ50, of which
the values were chosen such that P (Z > θg) = g

51 , for g = 1, . . . , 50. This
yields: θ1 ≈ −2.06, θ2 ≈ −1.76, θ3 ≈ −1.56, . . . , θ50 ≈ 2.06. For given θg, the
probability of obtaining score x on item i is derived from the ISRFs of the IRT
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model (in this case Equation 3); that is

P (Xi = x|θg) = P (Xi ≥ x|θg)− P (Xi ≥ x+ 1|θg). (B4)

For subject g with θg and subject h with θh, and one item i, the bivari-
ate probability that (Xig, Xih) = (xg, xh) is computed as the product of the
corresponding marginal score probabilities obtained from Equation B4; that is,

P (Xig = xg, Xih = xh|θg, θh) = P (Xi = xg|θg)P (Xi = xh|θh).

Assume that the k items in the test are administered to these two respondents,
and let fxg ,xh denote the number of times that they produce item-score pattern
(xg, xh). Then, the expected value of fxg ,xh under the IRT model equals

E(fxg ,xh) =

k∑
i=1

P (Xi = xg|θg)P (Xi = xh|θh). (B5)

Above, coefficient Hij was computed on the basis of the values of fxi,xj .
Based on these values, an ordering of the item steps was established (Equa-
tion B1) and weights, wxi,xj , were derived (Equation B2). Similarly, to compute
HT
gh the values of E(fxg ,xh) are tabulated, and based on these values an order-

ing of subject steps is established and weights, wxg ,xh , are derived. After fxi,xj
has been replaced by E(fxg ,xh), the computational procedure for HT

gh is exactly
the same as for Hij , Hence, the expected number of weighted Guttman errors
under the IRT model equals

Fgh =
m∑

xg=0

m∑
xh=0

wxg ,xhE(fxg ,xh). (B6)

Under the model of marginal independence, for a test containing k items
the expected number of times that subject g has score xg and subject h has
score xh equals

exg ,xh =
1

k

k∑
i=1

P (Xi = xg|θg)
k∑
i=1

P (Xi = xh|θh). (B7)

Hence, under marginal independence the expected number of weighted Guttman
errors equals

Egh =

m∑
xg=0

m∑
xh=0

wxg ,xhexg ,xh . (B8)

Under the IRT model coefficients HT
gh and HT are computed using Fgh
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(Equation B6) and Egh (Equation B8); that is,

HT
gh = 1−

Fgh
Egh

, (B9)

and

HT = 1−
∑∑

g<h Fgh∑∑
g<hEgh

. (B10)

A Numerical Example

Consider two respondents g and h, with θg = −1
3 and θh = 3

4 , and two trichoto-
mously scored items i and j with item parameters: α = 3

2 , λi = −1, λj = 1,
and εx = (−1

2 ,
1
2). Here we consider the GRM in Equation 3 for illustration.

For the GRM we obtain

P (Xi ≥ x|θg) = (1.000, .852, .562),
P (Xi ≥ x|θh) = (1.000, .967, .867),
P (Xj ≥ x|θg) = (1.000, .223, .060), and
P (Xj ≥ x|θh) = (1.000, .593, .245);

and applying Equation B4 yields

P (Xi = x|θg) = (.148, .290, .562),
P (Xi = x|θh) = (.033, .100, .867),
P (Xj = x|θg) = (.777, .163, .060), and
P (Xj = x|θh) = (.407, .348, .245).

Next, applying Equation B5, we obtain

E(f0,0) =
k=2∑
i=1

P (Xgi = 0, Xhi = 0|θg, θh)

= .148× .033 + .777× .407 = .322 .

For the nine item-score patterns the results are tabled below:

h
0 1 2 E(fg) P (Xg ≥ x)

0 .322 .285 .319 .924 1.000
g 1 .076 .085 .291 .454 .538

2 .043 .077 .502 .622 .311
E(fh) .440 .448 1.112 k = 2

P (Xh ≥ x) 1.000 .780 .556
Note: E(f) is the expected marginal frequency.

Because P (Xh ≥ 1) = .780, P (Xh ≥ 2) = .556, P (Xg ≥ 1) = .538, and
P (Xg ≥ 2) = .311, the ordering of the subject-steps is

Xh ≥ 1, Xh ≥ 2, Xg ≥ 1, Xg ≥ 2. (B11)
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Constructing indictor vectors rxh,xh based on the ordering in Equation B11,
and applying Equation B2 to these indicator vectors the following weights for
E(fxh,xh) are obtained:

h
0 1 2

0 0 0 0
g 1 2 1 0

2 4 2 0

For marginally independent respondents, the expected frequencies for item-
score patterns are found by using Equation B7. This yields, for example,

e0,0 = 1
k

k=2∑
i=1

P (Xi = 0|θg)
k=2∑
i=1

P (Xi = 0|θh);

= (.148 + .033)× (.777 + .407) = .204 ;

and for all nine score patterns we obtain

h
0 1 2 E(fg)

0 .204 .207 .515 .924
g 1 .100 .101 .252 .454

2 .137 .139 .346 .622
E(fh) .440 .448 1.112 2

Coefficient HT
gh is obtained from Equation B6, Equation B8, and Equation B9,

such that

Fgh = 0(0.322) + 0(0.285) + 0(0.319) + 2(0.076) + 1(0.085)+
0(0.291) + 4(0.043) + 2(0.077) + 0(0.502)

= 0.563;
Egh = 0(0.204) + 0(0.207) + 0(0.515) + 2(0.100) + 1(0.101)+

0(0.252) + 4(0.137) + 2(0.139) + 0(0.346)
= 1.127; and

HT
gh = 1− Fgh/Egh

= 0.500.

Finally, coefficient HT can be obtained from Equation B10.
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Chapter 3

Selection of Alzheimer
Symptom Items with Manifest
Monotonicity and Manifest
Invariant Item Ordering∗

Abstract

A procedure is proposed for selecting items from a test for which the assump-
tions of both manifest monotonicity and manifest invariant item ordering hold.
The use of the procedure is illustrated by means of an application to data from
an Alzheimer disease assessment†.

∗This Chapter has been published as: Ligtvoet, R., Van der Ark, L. A., & Sijtsma, K.
(2008). Selection of Alzheimer symptom items with manifest monotonicity and manifest
invariant item ordering. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.), New
trends in psychometrics (pp. 225-234). Tokyo: Universal Academic Press.
†The authors would like to thank Larry Hughes for providing the data.
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3.1 Introduction

Nonparametric item response theory (IRT) is based on a minimal set of as-
sumptions necessary to obtain useful measurement properties. A regularly
used assumption is local independence (LI) of the item scores given the latent
variables underlying these item scores. Often, IRT models assume only one
latent variable, an assumption that agrees with the practical requirement that
the test measures only one trait or ability. This assumption is known as unidi-
mensionality (UD). Other assumptions concern the relationships between the
items and this latent variable. One assumption is monotonicity (M; Junker,
1993) and another is invariant item ordering (IIO; Sijtsma & Junker, 1996). M
means that the higher the score on the latent variable, the higher the expected
item score. IRT models that assume LI, UD, and M allow ordinal measurement
of subjects (Sijtsma & Molenaar, 2002). IIO means that the ordering of the
items in a test according to their attractiveness is the same for all levels of
the latent variable. Sijtsma and Junker (1996) discuss several practical testing
situations in which latent IIO is important, such as intelligence testing and
person-fit analysis.

This study provides the outline of a bottom-up procedure which assists the
researcher in selecting from a larger set of items a subset of items for which
both M and IIO hold. The proposed procedure is illustrated by an application
to data from Alzheimer disease assessment at the Southern Illinois University
School of Medicine.

3.2 Theory

We assume that LI and UD hold for the test under consideration. For k items
indexed i (i = 1, . . . , k; indices i′ and j are also used), let Xi denote the item
score, and let Xi have realizations xi ∈ {0, . . . ,mi}. For dichotomous scoring,
mi = 1, and for polytomous scoring mi ≥ 2. Let θ denote the latent variable.
The conditional expected value E(Xi|θ) is known as the item response function
(IRF).

3.2.1 Latent and manifest monotonicity

The assumption of M means that the IRFs are nondecreasing in θ (i.e., no strict
increasingness is required); that is,

E(Xi|θ) is nondecreasing in θ. (M)

For dichotomously scored items for which the assumptions of LI, UD, and
M hold, IRFs may be estimated from the test data as follows. Let Y be a
conveniently chosen ordinal estimator of latent variable θ, and let us consider
the IRF of item i. We define the total score on k−1 items in the test excluding
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item i for which we seek to estimate the IRF, as Yi =
∑

j 6=iXj . It has been
shown (Junker, 1993) that LI, UD, and M together imply that

E(Xi|Yi = y) is nondecreasing in y,

for y = 0, . . . , k − 1. This observable property, known as manifest M, can be
estimated from the test data for each item. Manifest M does not imply M; this
means that manifest M is a necessary condition for M. Thus, if manifest M holds
in the data, this provides support but not proof of M, whereas deviations from
manifest M are in conflict with M. Because the proof of manifest M does not use
the number of items k, manifest M also holds for a two-item test containing
items i and j, for which Y = Xj ; that is, E(Xi|Xj = 0) ≤ E(Xi|Xj = 1).
A violation of manifest M occurs each time we find that E(Xi|Xj = 0) >
E(Xi|Xj = 1).

Unfortunately, for polytomously scored items for which LI, UD, and M hold
it has been shown that M does not imply manifest M (B. T. Hemker, in Junker
& Sijtsma, 2000). This means that a sequence of expected values E(Xi|Yi = y),
that is nondecreasing in y, need not support M, and a sequence that is not
monotone need not be in conflict with M (this conclusion also holds when
Y = Xi′). In practical data analysis, however, it seems reasonable to assume
that little harm is done when researchers use such sequences heuristically for
assessing M (Sijtsma & Meijer, 2007).

In this study, for polytomously scored items we use this heuristic strategy for
expected item score Xi conditioned on only one item Xj , and employ manifest
M as

E(Xi|Xj = xj) is nondecreasing in xj , (1)

for xj = 0, . . . ,mj . A violation of manifest M occurs each time we find for two
item scores 0 ≤ xj < zj ≤ mj , that

E(Xi|Xj = xj) > E(Xi|Xj = zj). (2)

Figure 3.1a shows an example of two monotone IRFs. Examples of violations
are found in Figure 3.1b (solid curve; one violation) and Figure 1d (solid curve;
two violations).

3.2.2 Latent and manifest invariant item ordering

IIO has been defined for polytomously scored items (Sijtsma & Hemker, 1998)
with m + 1 score categories, and dichotomous scoring as a special case. This
definition can be generalized to items from the same test having different num-
bers of score categories, by considering the conditional expectation of item i
adjusted for the number of answer categories, E(Xi|θ)/mi. Let the attractive-
ness of item i be defined as the unconditional expectation, E(Xi)/mi, and let
the items be numbered such that i < i′ means that item i is less attractive
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Figure 3.1: Graphs of E(Xi|Xk)/mi values with (a) no violations, (b) violation
of manifest M, (c) violation of manifest IIO, and (d) violations of both manifest
M and IIO.

than item i′, E(Xi)/mi < E(Xi′)/mi′ . A set of k items has latent IIO if

E(Xi|θ)/mi ≤ E(Xi′ |θ)/mi′ , (IIO)

for all i < i′, and all θ. IIO allows possible ties. Ligtvoet, Van der Ark,
Bergsma, and Sijtsma (2009) showed that for conditioning variable Y , item
score Xi, and item score Xi′ , all three independent of one another conditional
on θ, latent IIO implies manifest IIO; that is

E(Xi|Y = y)/mi ≤ E(Xi′ |Y = y)/mi′ , (3)

for all i < i′, and all y; again allowing possible ties (proof in Appendix A).
Manifest IIO does not imply latent IIO; thus, manifest IIO is a necessary
condition for IIO. Analogous to manifest M, one may replace Y by a single
item score, such that Y = Xj and, as a result, Equation 3 is defined for a
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3-tuple of items; that is,

E(Xi|Xj = xj)/mi ≤ E(Xi′ |Xj = xj)/mi′ , (4)

for all i < i′, and xj = 0, . . . ,mj . In this 3-tuple, each of the three items may
play the role of conditioning variable Y . Thus, for a 3-tuple of items manifest
IIO in Equation 4 needs to be evaluated three times, conditioned once on each
of the three items i, i′, and j. A violation of manifest IIO occurs each time we
find for at least one value xj , that

E(Xi|Xj = xj)/mi > E(Xi′ |Xj = xj)/mi′ . (5)

Examples are found in Figure 3.1c (one violation at xj = 0) and Figure 3.1d
(one violation at xj = 2).

3.2.3 Combination of monotonicity and invariant item ordering

For dichotomously scored items, M and IIO can be combined into one set of
inequalities (Proposition 2.1 in Sijtsma & Junker, 1996). First, define the total
score on k− 2 items excluding the items i and i′ for which we seek to establish
non-intersection of the IRFs, such that Y = Yii′ =

∑
j 6=i,i′ Xj . By assuming

that LI, UD, and M hold, and assuming that also IIO holds for items i and i′,
for two arbitrarily chosen values θa and θb, we have that if

θa < θb ⇒ E(Xi|θa)/mi ≤ E(Xi′ |θb)/mi′ , (6)

it follows that, for Y = Yii′ ,

ya < yb ⇒ E(Xi|Yii′ = ya)/mi ≤ E(Xi′ |Yii′ = yb)/mi′ . (7)

Equation 6 may be called assumption M&IIO, and Equation 7 may be called
manifest M&IIO. For finite test length k, manifest M&IIO does not imply
M&IIO. Manifest M&IIO is a necessary condition for M&IIO and, logically, if
manifest M&IIO holds for the data this supports but does not prove M&IIO,
whereas failure of manifest M&IIO disproves M&IIO. The proof that Equa-
tion 6 implies Equation 7 does not depend on the number of items k; thus, it
also holds for k = 3 and Y = Yii′ = Xj .

Because for polytomous scoring M does not imply manifest M, the impli-
cation in Equation 6 and Equation 7 does not straightforwardly generalize to
polytomously scored items. Here we propose to use as a heuristic for investigat-
ing M&IIO (Equation 6) in real data the following manifest M&IIO property.
Let the items i, i′, and j be polytomously scored and let the number of ordered
scores be variable across the items. Then, for two arbitrarily chosen item scores
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for which 0 ≤ xj < zj ≤ mj , we propose to use the heuristic

E(Xi|Xj = xj)/mi ≤ E(Xi′ |Xj = zj)/mi′ . (8)

A violation of manifest M&IIO occurs each time we find for at least one pair
xj < zj , that

E(Xi|Xj = xj)/mi > E(Xi′ |Xj = zj)/mi′ . (9)

Figure 3.1b shows a violation of manifest M, which does not lead to a reversal
of expectations as in Equation 9, Figure 3.1c shows a violation of manifest IIO,
which again is not picked up, and Figure 3.1d shows a violation of both manifest
M and manifest IIO, which is reflected by a reversal of expected values as in
Equation 9. Thus, Equation 8 may not be a powerful tool for investigating
violations of manifest M and manifest IIO.

3.2.4 Estimation of expected values

The E(Xi|Xj)/mi values for assessing the inequalities in the equations Equa-
tion 1, 4, and 8 can be estimated from the data as follows. Let nxj denote the
number of respondents out of a sample of size n who have a score equal to xj
on item j, and let nxixj denote the number of respondents who have a score xi
on item i and a score xj on item j; then

Ê(Xi|Xj = xj)/mi =
1

mi

mi∑
xi=1

xi
nxixj
nxj

.

3.3 A bottom-up item selection procedure

The goal of this study is to suggest a procedure for finding subsets of items in
a larger set, for which manifest M and manifest IIO are satisfied. The first step
of the procedure is finding all 3-tuples consisting of three different items that
satisfy manifest M and manifest IIO. The second step of the procedure entails
combining the 3-tuples found in the first step into 4-tuples for which manifest
M and manifest IIO hold. The third step entails combining the 4-tuples found
in the second step into 5-tuples for which manifest M and manifest IIO hold.
The procedure ends when the largest l-tuple is found for which manifest M and
manifest IIO holds.

The first step of the procedure can be executed using two different methods
for investigating manifest M and manifest IIO. The first method (Method I )
investigates both manifest M (Equation 1) and manifest IIO (Equation 4).
The second method (Method II ) investigates manifest M&IIO (Equation 8).
Method I and Method II are discussed next.
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3.3.1 Technical details of first step

Method I. For the 3-tuple of items, i, i′, and j, the procedure is as follows.
Arbitrarily, let item j be the conditioning variable in Equation 1 and Equa-
tion 4. All violations of manifest M (Equation 2) for item i and item i′ are
tested using a one-sided independent t-test: The null hypothesis E(Xi|Xj =
xj) ≤ E(Xi|Xj = zj) is tested against the alternative that E(Xi|Xj = xj) >
E(Xi|Xj = zj) (Equation 2). Rejection of the null hypothesis means that a
violation of manifest M is found.

All violations of manifest IIO (Equation 5) are tested using a one-sided
dependent t-test. For E(Xi)/mi < E(Xi′)/mi′ , the null hypothesis E(Xi|Xj =
xj)/mi ≤ E(Xi′ |Xj = xj)/mi′ is tested against the alternative that E(Xi|Xj =
xj)/mi > E(Xi′ |Xj = xj)/mi′ (Equation 5). Rejection of the null hypothesis
means that a violation of manifest IIO is found. It may be noted that testing
may be problematic when Xi en Xi′ have not been measured on the same scale,
but given the heuristic nature of this research this is ignored here.

Hypothesis testing is done with item i, i′, and j consecutively playing the
role of conditioning variable while the expected values of the other two items
are evaluated. If no violations are found, this result supports M and IIO for
the item 3-tuple. If at least one violation is found, it is concluded that M and
IIO are not valid for the 3-tuple. Because each 3-tuple of items is investigated
three times, and because the number of 3-tuples is large for realistic test length
k, it is reasonable to expect large numbers of sample violations of manifest M
and manifest IIO. Method I picks up all violations and allows the researcher to
adjust the level of significance so that the violations considered to be important
can be assessed for item selection with an eye to optimal decision-making.

Molenaar and Sijtsma (2000) noted that practical data analysis often yields
large numbers of violations of manifest M and manifest IIO but argue that
many of the relatively small violations are not damaging for the measurement
of persons on an ordinal scale. They suggest ignoring violations smaller than
a value minvi for statistical significance testing. The computer program MSP
(Molenaar & Sijtsma, 2000) uses default option minvi = .03. If a large power
of the statistical test is considered to be undesirable, the user could choose even
larger values of minvi. For the violations that remain after selection by minvi,
the nominal Type I error rate of the statistical test may be adapted. The
requirement not to reject items too easily is accomplished using large minvi
and small Type I error rate.

Another possibility arises in applications in which having the best item
subset possible has priority over reliable subject ordering using large numbers
of items. For example, when the importance of individual decision-making is
paramount, as in medical diagnosis, items are selected that show no more than
minor violations of manifest M and manifest IIO. This is accomplished using
small minvi and large Type I error rate. In the research to be reported shortly
both minvi and the nominal Type I error rate are manipulated.
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Method II tests Equation 8, which is true when both manifest M and man-
ifest IIO hold, using a dependent t-test. Again, minvi = .03 may be used for
ignoring small sample violations, and statistical testing may be used for the re-
maining violations. However, the method may well overlook serious violations
of manifest M and manifest IIO in the data and, as a result, it is expected to
have less power than Method I.

3.3.2 Technical details of the next steps

The next steps combine item 3-tuples into larger items sets without further
statistical testing. In the second step, item 4-tuples are identified of which
all
(
4
3

)
= 4 constituent item 3-tuples were found in the first step by means of

either Method I or Method II. In the third step, item 5-tuples are identified of
which all

(
5
4

)
= 5 constituent item quartets were found in the second step; and

so on, until no larger sets can be identified. The end result of this procedure
may consist of several item subsets that overlap, and that may contain different
numbers of items. It is up to the researcher to interpret this result with respect
to his/her research question.

3.4 Simulation study

A study was done to investigate the effects of different values of minvi and
the significance level α on the number of item 3-tuples identified using either
Method I or Method II, and on the end result of item selection.

3.4.1 Method

The data were sampled from a data set consisting of the scores of 200 pa-
tients on the Mini-Mental State exam (MMS; Folstein, Folstein, & McHugh,
1975). These data were collected during an Alzheimer disease assessment at
the Southern Illinois University School of Medicine between 1994 and 2000
(Hughes, Perkins, Wright, & Westrick, 2003). The MMS consists of eleven
items that assess several cognitive functions such as orientation, registration,
and attention (see Appendix B for item labels). The assumptions UD and Li
were checked on the dichotomized item scores using the DETECT index (Zhang
& Stout, 1999a, 1999b) and the scalability coefficient H (Mokken, 1971). The
resulting values of DETECT and H suggested that the assumptions of UD and
LI were satisfied by the data.

To investigate the effects of different test characteristics on the sets of items
satisfying manifest M and manifest IIO, four design factors were used:

1. Method for investigating manifest M and manifest IIO. Method I and
Method II were used.
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2. Size of minvi. Two levels were investigated: minvi = 0, which implies
that all observed violations are tested for significance, and minvi = .03,
which is the MSP default value.

3. Nominal Type I error rate. The default value in MSP is α = .05. In
addition α = .10 was considered, which leads to a more frequent rejection
of the null hypothesis.

4. Sample size. A relatively small (n = 200) sample and a relatively large
(n = 500) sample were drawn with replacement from the real data.

For each of the (Method × Size of minvi × Nominal Type I error rate ×
Sample Size) = 16 cells of the design, 10 data sets were generated. Given a
particular Sample Size, a given data matrix was used across all 8 combinations
of Method, Size of minvi, and Type I error rate. As a result, sample size is a
between-factor, and the other independent variables are within-factors.

Two dependent variables were used in this study to assess the effect of the
methods on the sets of items.

1. The proportion of item 3-tuples for which manifest M and manifest IIO
could not be rejected. This proportion was computed as the number
of item 3-tuples for which manifest M and manifest IIO could not be
rejected divided by

(
11
3

)
= 165, the maximum number of item 3-tuples in

this study.

2. The magnitude of the largest item set that resulted from the item selection
procedure. The maximum value that can be obtained is 11.

3.4.2 Results

Table 3.1 shows the proportions and the standard deviations of the number of
item 3-tuples in each cell of the design, based on the theoretical maximum of
165 item 3-tuples. Furthermore, Table 3.1 shows the modal number of items
in the largest item set that resulted from the selection procedure. Most item
3-tuples were found using Method II; between 93% and 96% of the theoretical
maximum. Here, the smaller standard deviation is due to the proportions being
close to 1. This higher number of item 3-tuples leads to larger modal l-tuples; 8-
tuples for α = .10 and 9-tuples for α = .05. The mean number of item 3-tuples
was close to the theoretical maximum; thus, few 3-tuples violated M&IIO. For
Method I, nominal Type I error rate and sample size had a relatively small
effect. The modal number of items in the largest item set was equal to 6.
Nominal Type I error α = .05 yielded higher means than nominal Type I error
α = .10, and n = 200 yielded higher proportions than n = 500. These effects
were smaller for Method II. No effect of factor minvi was found.
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Table 3.1: Proportion of Item 3-tuples (Standard Deviation Between Parenthe-
ses) and Modal Number of Items in the Largest Set (bold).

Size of Sample Size
Method minvi Alpha 200 500

I .00 .05 .654 (.080) 6 .623 (.076) 6
.10 .549 (.073) 6 .530 (.072) 6

.03 .05 .654 (.080) 6 .624 (.076) 6
.10 .552 (.075) 6 .532 (.071) 6

II .00 .05 .957 (.011) 9 .948 (.018) 9
.10 .939 (.017) 8 .929 (.023) 8

.03 .05 .957 (.011) 9 .948 (.018) 9
.10 .939 (.017) 8 .929 (.023) 8

3.4.3 Discussion

Method II identified few violations of M and IIO, and may have had too little
power to be useful here. Lower bound minvi did not have any effect. This
may be due to small sample size yielding no significance for small violations
when minvi = 0. For minvi = .03, the same small violations were not tested
or they were not significant, yielding the same result as found for minvi = 0.
For larger sample sizes minvi is probably more effective for reducing power.

3.5 Real-data analysis

3.5.1 Method

Because the MMS is used to identify symptoms of Alzheimer disease, we con-
sidered reliably identifying the largest subset of items that is characterized by
M and IIO to be of greatest importance here. Based on the results found in the
previous section, we thus used Method I with minvi = 0 and α = .10. These
choices produced a conservative item selection, thus avoiding unnecessary risk
of selecting items for which latent M and latent IIO did not hold.

3.5.2 Results

The 11 items from the MMS were numbered from least attractive to most
attractive (see Appendix B for item numbers). Method I was used to test all
165 item 3-tuples three times for violations of manifest M and manifest IIO.
This resulted in 107 item 3-tuples. Next, 3-tuples were combined to produce
larger item sets fulfilling both manifest M and manifest IIO. The result was
one 7-tuple containing the items 1, 2, 5, 6, 8, 9, and 11.
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3.5.3 Discussion

The items 1, 2, 5, 6, 8, 9, and 11 can be interpreted as follows with respect
to M and IIO. Given the severity of the symptoms associated with the items,
we conclude that the first problems of Alzheimer disease occur with recalling
recently learned series (item 11), naming the date (item 9), naming a location
(item 8), following a sequence of instructions (item 6), copying a drawing (item
5), registration of words read aloud (item 2), and writing a sentence read aloud
(item 1). This ordering seems to agree with the onset of symptoms (memory
impairment, disorientation, impaired judgement, and language disturbance)
reported by (Kang, Jeong, Lee, Baek, Kwon, Chin & Na, 2004). Much research
with respect to the progression of Alzheimer disease remains to be done (and
is beyond our expertise).

3.6 General discussion

A bottom-up item selection procedure was proposed which assists the researcher
in selecting items from a larger set in which items satisfy the requirements of M
and IIO. Two methods were used to assess these properties. Method I, which
assesses both manifest M (Equation 1) and manifest IIO (Equation 4) is more
demanding than Method II, which assesses a weaker version of manifest M and
manifest IIO, here denoted manifest M&IIO (Equation 8). Any subset of items
that is selected using Method I is also selected using Method II but not the
other way round. Method II probably will gain power if it is used to assess
expected values conditional on, for example, Y = Yii′ , as in Equation 7. Rest
score Y = Yii′ is certainly a more fine-grained ordinal estimator of latent trait θ
than the coarse estimator provided by single item score Y = Xj (Equation 8).
Thus, rest score Y = Yii′ will reveal violations of manifest M&IIO more easily
than item score Y = Xj . Use of the rest score requires the number of item
scores to be the same across the items; else, scores from different items are
incomparable.

For the analysis of the MMS we chose minvi = 0 and α = .10. This way, we
reduced the risk of selecting items for which manifest M and/or manifest IIO do
not hold. The resulting item subset has these properties with much certainty;
thus, we infer M and IIO to hold for these items. In other applications, in which
a large number of items is needed to accurately order respondents for whom the
items have the same ordering, a larger value of minvi and a smaller value of α
allow more items into the scale but the selection is less stringent and accepts
more violations of M and IIO. Future research should clarify which values of
minvi and α are acceptable for producing scales that allow for accurate subject
and item ordering, while rejecting as few items as possible.

This study did not provide a benchmark indicating whether Method I or
Method II is more appropriate for identifying violations of M and IIO. Such a
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study would require knowledge about the presence of M and IO in the popula-
tion, but this information is unavailable in real-data analysis. A well controlled
simulation study to investigate the extend to which the procedure yields correct
conclusions concerning M and IIO, is a topic for future research.

Furthermore, it has been suggested to use scalability coefficient H to eval-
uate manifest M (Molenaar, 1991; Mokken, 1971, pp. 148–153) and coefficient
HT to evaluate manifest IIO (Ligtvoet, Van der Ark, Te Marvelde, & Sijtsma,
in press; Sijtsma & Meijer, 1992). For the item subset 1, 2, 5, 6, 8, 9, and 11,
we found that H = .598, which indicates a “strong” scale (Mokken, 1971, p.
185). This result supports manifest M. We also found that HT = .747, which
indicates a strong agreement of subjects’ item-score patterns with the order-
ing of items in the group. This result supports manifest IIO. These results
lend credibility to the results obtained by means of our proposed item selection
procedure.

Appendix

A IIO implies manifest IIO

The proof that IIO implies manifest IIO (Equation 3) is based on a proof by
Van der Ark and Bergsma (2006). Let G(θ) be the distribution function of θ.

First, E(Xi|Y )/mi (see Equation 3) is rewritten. Standard algebra shows
that

E(Xi|Y )/mi =
1

mi

∑
xi

xiP (Xi = xi|Y ) = [mi · P (Y )]−1
∑
xi

xiP (Xi = xi, Y )

= [mi · P (Y )]−1
∫
θ

∑
xi

xiP (Xi = xi, Y, θ)dG(θ)

= [mi · P (Y )]−1
∫
θ

∑
xi

xiP (Xi = xi, Y |θ)G(θ)dG(θ). (A1)

Because of LI, P (Xi = xi, Y |θ) in Equation A1 can be further reduced to

P (Xi = xi, Y |θ) = P (Xi = xi|θ)P (Y |θ). (A2)

Substituting Equation A2 into Equation A1 gives

E(Xi|Y )/mi = [mi · P (Y )]−1
∫
θ
P (Y |θ)G(θ)

∑
xi

xiP (Xi = xi|θ)dG(θ)

=
1

mi

∫
θ
E(Xi|θ)G(θ|Y )dG(θ). (A3)

Second, it is shown that IIO implies a manifest IIO. Multiplying both sides
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of the definition of IIO by G(θ|Y ) and taking the integral over G(θ) leaves the
inequality unchanged. Hence, IIO implies

1

mi

∫
θ
E(Xi|θ)G(θ|Y )dG(θ) ≤ 1

mj

∫
θ
E(Xj |θ)G(θ|Y )dG(θ). (A4)

It follows from Equation A3 that the left-hand side of Equation A4 equals
E(Xi|Y )/mi, and the right-hand side of Equation A4 equals E(Xj |Y )/mj .
Hence, IIO implies Equation 3. This completes the proof.

B The 11 Alzheimer assessment items.

For the 11 Alzheimer assessment items from the Mini-Mental State exam, Ap-
pendix B shows the item numbers, their content, and their number of answer
categories between parentheses.

1. Writing (2) 5. Copying (2) 9. Date (5)
2. Registration (2) 6. 3-Stage Command (3) 10. Naming (2)
3. Repetition (2) 7. Attention (4) 11. Recall (4)
4. Reading (2) 8. Location (4)
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Chapter 4

Latent Class Models for
Testing Monotonicity and
Invariant Item Ordering for
Polytomous Items∗

Abstract

Two assumptions that are relevant to many applications using item response
theory (IRT) are the assumptions of monotonicity (M) and invariant item or-
dering (IIO). An IRT model is proposed for ordinal items which implies M and
IIO. This model is specified as a latent class model with inequality constraints
on the class-specific item means. A Gibbs sampling scheme is used for estimat-
ing the model parameters. It is shown that the deviance information criterium
(DIC) can be used as an overall test of M and IIO, while posterior predictive
checks can be used to test these assumptions at the item level. A real-data ap-
plication illustrates a model fitting strategy for selecting an item set for which
M and IIO holds.

∗This Chapter has been submitted for publication.
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4.1 Introduction

Item response theory (IRT) models are used to construct measures using multi-
ple observed scores from tests or questionnaires. An example of a questionnaire
item used to measure a subject’s attitude towards women’s liberation reads
“Women’s liberation sets women against men.”, for which the subject scores
0 if he or she agrees with the statement, 1 if he or she is neutral towards the
statement, and 2 if he or she disagrees with the statement (Heinen, 1996, p.
291). The score on each item i is considered to be a random variable Xi, for
which each subject has the ordered score xi ∈ {0, . . . ,m}, and where for the ex-
ample m = 2. In IRT an unobservable latent variable θ is postulated to underly
the items scores and the item scores are assumed to be mutually independent
conditional on θ. The latter assumption is usually referred to as the assumption
of local independence (Ip, 2001; Lord & Novick 1968, p. 361). Further, in IRT
the relationship between the latent variable and the item scores is described by
means of response functions, and it are these response functions about which
specific assumptions are made. Let ai be the slope parameter of item i and
bxi its difficulty parameter corresponding to item score Xi = xi. Samejima’s
(1969, 1997) graded response model, for example, specifies a logistic function
for the cumulative probability of item i (i = 1, . . . , k) and score xi = 1, . . . ,m;
that is,

logitP (Xi ≥ x|θ) = ai(θ − bxi). (1)

with ai > 0. In this IRT model, the P (Xi ≥ x|θ) are nondecreasing in θ,
which implies that subjects with higher scores on θ (e.g., with a more extreme
attitude related to women’s liberation) are expected to score higher on each
of the items. The nondecreasingness of the response functions is referred to as
the assumption of monotonicity (M; e.g., Holland & Rosenbaum, 1986).

The logistic shape of the response function in Equation 1 is mathematically
convenient, but it may also be too restrictive, in which case model-data misfit
may occur while M may still hold. When solely interested in the assumption
M, more flexible models may be considered which still allow for an ordering
of the subjects on θ (e.g., Junker & Sijtsma, 2001; Molenaar, 1997). These
subject ordering models are based on the assumption M, which states that for
all i,

E(Xi|θ), is nondecreasing in θ. (M)

In contrast to most IRT models which define m response functions for each
item, taking the conditional expectation E(Xi|θ) as the point of departure
yields an IRT model with only one response function per item.

In addition to assumption M relating to the ordering of subjects based on
θ, a second assumption relating to the ordering of the items is sometimes con-
sidered. The latter assumption, which is known as an invariant item ordering
(IIO; Sijtsma & Hemker, 1998), implies the same ordering of items, in terms of
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attractiveness (or difficulty), holds for all subjects. Let the items be indexed
so that i < i′ indicates that E(Xi) ≤ E(Xi′), then IIO states that

E(X1|θ) ≤ E(X2|θ) ≤ · · · ≤ E(Xk|θ), for all θ. (IIO)

Sijtsma and Junker (1996) provided various examples of practical applications
of IRT requiring IIO. However, only few IRT models imply IIO (Sijtsma &
Hemker, 1998), and those models that do so are often too restrictive to fit real
life data well. For example, while the IRT model described in Equation 1 does
not imply IIO, a version with equal slope parameters across items and difficulty
parameters restricted by bxi = di + cx yields a model that is consistent with
the IIO assumption. The resulting rating scale version of the grade response
model (Sijtsma & Hemker, 1998) is defined as

logitP (Xi ≥ x|θ) = a(θ − di − cx). (2)

This parametric IRT model will typically be too restrictive to show an accept-
able model-data fit, whereas in reality the M and IIO assumptions may still
hold. The reason is that it imposes many more constraints than M and IIO.
The contribution of this article is that it proposes a class of less restricted IRT
models that in addition to assumption M can be used to test assumption IIO
without imposing “irrelevant” restrictions such as logistic response functions.
The resulting non-parametric IRT models can be considered additions to ex-
isting tools for IIO research (see also, Ligtvoet, Van der Ark, Te Marvelde, &
Sijtsma, in press).

Constrained latent class models (LCMs) have been shown to be useful tools
for obtaining approximations of IRT models, where the underlying continuous
latent variable is discretized by assuming that subjects belong to q homogenous
latent classes (Heinen, 1996). By imposing linear constraints on the logistic
parameters of a LCM, discretized versions of parametric IRT models, such as
the graded response model, can be obtained (Vermunt, 2001). The approach
proposed in this paper is to assess the assumptions M and IIO using latent class
models with inequality restrictions. Such LCMs with inequality constraints on
the model parameters have been used for testing model assumptions in the
context of nonparametric IRT models (e.g., Croon, 1990, 1991; Karabatsos
& Sheu, 2004; Vermunt, 2001). Also Hoijtink and Molenaar (1997; see also
Hoijtink, 1998; Van Onna, 2002) showed how to formulate nonparametric IRT
models as LCMs with ordinal constraints, and moreover illustrated how to
estimate and test such models using Bayesian methods. Here, we apply a
similar type of Bayesian procedure to formulate a non-parametric IRT model
for the conditional expected item scores to test assumption M and IIO. As
an alternative, likelihood based methods developed by Bartolucci and Forcina
(2005), and Vermunt (1999, 2001) could be adapted to the models of interest
in this paper, but this approach is not further pursuit here.
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The remainder of this paper is organized as follows. First, we present the
unrestricted LCM and explain how to estimate its parameters using a Gibbs
sampler. Then we describe the restricted LCMs corresponding to M and IIO
and show how to incorporate the implied inequality restrictions in a Gibbs
sampler. Subsequently, Bayesian tests for assessing the validity of the M and
IIO assumption are described. And finally, the proposed LCM procedure for
testing M and IIO is illustrated with an application using five questionnaire
items measuring respondents’ attitudes toward women’s liberation.

4.2 Unrestricted Latent Class Models

To test the assumptions M and IIO, we approximate the continuous latent
variable in IRT using a finite number of latent classes (i.e., θ = 1, . . . , q). As an
IRT model, the resulting latent class model is a model for P (x); that is, a model
for a particular response pattern (note that x refers to the vector of k item
scores). LCMs are finite mixture models (Agresti, 1990; McLachlan & Peel,
2000), where subjects belonging the same latent class are homogeneous with
respect to the probability P (x|θ) of obtaining a certain response pattern. In
addition, we assume that within each latent class, the item scores are mutually
independent (e.g., Lazarsfeld & Henry, 1968, p. 22), which is equivalent to the
IRT assumption of local independence (see Clogg, 1988). Let πxi|θ denote the
probability of a score Xi = xi given θ and letting πθ be the class proportion,
the probability P (x) is expressed as

P (x) =
∑
θ

πθP (x|θ) =
∑
θ

πθ
∏
i

πxi|θ. (3)

Apart from choosing a fixed number of latent classes q and the local inde-
pendence assumption, Equation 3 is yet unconstrained and referred to as the
unconstrained LCM.

The Gibbs sampler is an iterative algorithm that can be used for obtaining
samples from the posterior distribution of the parameters of a statistical model
given a set of data, a likelihood function linking the data to the model of
interest, and a prior distribution for the unknown parameters (e.g., Zeger &
Karim, 1991). Let t denote the tth iteration of the Gibbs sampler algorithm.
When applied to the model described in Equation 3, the algorithm starts by
assigning initial values the class proportions

πθ
(0) =

(
π
(0)
1 , . . . , π(0)q

)
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and the conditional item probabilities

πx
(0) =

(
π
(0)
01|1, . . . , π

(0)
m1|1, · · · , π

(0)
0k|1, . . . , π

(0)
mk|1,

· · · , π(0)01|q, . . . , π
(0)
m1|q, · · · , π

(0)
0k|q, . . . , π

(0)
mk|q

)
.

The subsequential three steps are passed iteratively. The first step is a data
augmentation step, which involves assigning each subject to one of the latent
classes (Tanner & Wong, 1987). The second and third steps consist of sampling
values for the class proportions πθ

(t) and the conditional item probabilities
πx

(t), respectively. The algorithm is repeated until a criterium of convergence
is reached. Ones this criterium is reached, the parameters are sampled in
successive iterations as if sampled from their posterior distribution (Gelfand,
Smith, & Lee, 1992). Based on these samples from the posterior, inferences
can then be made about the parameter values. Our Gibbs sampler algorithm
consists of the following three steps:

Step 1: Given the parameters values at the previous iteration, we derive from
Equation 3 for each subject j with a score pattern x the probability of
belonging to latent class θ as

P
(
θ(t)
∣∣xj) =

π
(t−1)
θ

C

∏
i

π
(t−1)
xi|θ ,

with

C =

q∑
θ=1

π
(t−1)
θ

∏
i

π
(t−1)
xi|θ .

Each subject is assigned to a latent class by a single draw from a multi-
nomial distribution. This augmentation step yields values of the number

of subjects in latent class θ, denoted n
(t)
θ , and values of the number of

subjects in latent class θ with the item score xi on item i, denoted n
(t)
xi|θ.

The n
(t)
θ and n

(t)
xi|θ are used in the next two steps of the algorithm.

Step 2: The number of subjects the latent class θ (n
(t)
θ ) can be assumed to be

defined by a multinomial distribution, which combined with a (conjugate)
Dirichlet prior distribution yields a Dirichlet posterior distribution for
πθ

(t):
πθ

(t) ∼ Dir(n
(t)
1 + α, . . . , n(t)q + α).

Here, the α are hyper-parameters which are chosen to equal unity; re-
flecting ignorance concerning the information of the prior.

Step 3: Likewise, for a given item i and θ the parameters π
(t)
0i|θ, . . . , π

(t)
mi|θ are
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sampled form a Dirichlet distribution

π
(t)
0i|θ, . . . , π

(t)
mi|θ ∼ Dir(n

(t)
0i|θ + α, . . . , n

(t)
mi|θ + α).

4.3 Latent Class Models with M and IIO Constraints

Here, we wish to test whether the assumptions M and IIO hold by making
use of LCMs. Recall that these assumptions imply particular inequality con-
straints on E(Xi|θ) across θ values and across items, respectively. Because
E(Xi|θ) =

∑
x xiπxi|θ and πxi|θ are the LCM parameters, imposing the M and

IIO constraints in a LCM implies that the inequality constraints on E(Xi|θ)
should be translated into inequality constraints on the πxi|θ. Once this is done,
the restricted πxi|θ can be estimated using Gibbs sampling from truncated
Dirichlet distributions; that is, from distributions in which the πxi|θ parame-
ters can only attain values which are in agreement with M and IIO. However,
the sampling of πxi|θ under the relevant constraints is complicated by the fact
that the m+1 probabilities for item i and class θ are not independent of one an-
other. Van Onna (2002) proposed resolving this issue by a sequential sampling
scheme in which the probabilities for categories 0 to m − 1 are sampled from
truncated Beta distributions and the probability for category m is obtained

by π
(t)
mi|θ = 1 −

∑m−1
x=0 π

(t)
xi|θ. Because a small simulation (not reported here)

revealed that this procedure does not yield correct samples from the posterior
distribution, instead we follow Hoijtink (1998, see also Laudy & Hoijtink, 2007)
suggestion and re-parameterize πxi|θ as

πxi|θ =
γxi|θ∑
x
γxi|θ

, (4)

where γxi|θ ∼ Gamma(nxi|θ + α, 1). It is important to note that also E(Xi|θ)
can be expressed in terms of these γxi|θ parameters; that is,

E(Xi|θ) =

∑
x
xγxi|θ∑

x
γxi|θ

. (5)

The advantage of this re-parametrization is that in contrast to the πxi|θ, the
γxi|θ can be sampled independently of one another (e.g., Ferguson, 1973; Naraya-
nan, 1990). It is well-known that sampling m + 1 parameters γxi|θ from inde-
pendent Gamma distributions is equivalent to sampling the m+ 1 parameters
πxi|θ from a (m+ 1)-dimensional Dirichlet distribution.
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4.3.1 Monotonicity Constraints

Implementation of the assumption M in a LCM means that in addition to the
model formulated in Equation 3, for each item i, E(Xi|θ − 1) ≤ E(Xi|θ) for
θ = 2, . . . , q and E(Xi|θ) ≤ E(Xi|θ + 1) for θ = 1, . . . , q − 1. Substitution of
E(Xi|θ) by its definition in Equation 5 yields

E(Xi|θ − 1) ≤

∑
x
xγxi|θ∑

x
γxi|θ

(6)

∑
x
xγxi|θ∑

x
γxi|θ

≤ E(Xi|θ + 1). (7)

for 2 ≤ θ ≤ q and 1 ≤ θ ≤ q − 1, respectively.
In the Gibbs sampler, γxi|θ is sampled at each iteration given the values

of all the other parameters. This means that the restrictions on γxi|θ implied
by M should be derived from Equations 6 and 7; that is, the bounds for the
admissible values of γxi|θ are obtained by isolating the term γxi|θ from these
equations. More specifically, we can derive the first bound for γxi|θ by using

the equality E(Xi|θ − 1) = E(Xi|θ). Denoting this bound by uM, we obtain

uMxi|θ =

∑
y 6=x

γyi|θ

(
E(Xi|θ − 1)− y

)
x− E(Xi|θ − 1)

,

for θ ≥ 2. The second bound corresponds to the value of γxi|θ for which

E(Xi|θ) = E(Xi|θ + 1). Denoting this bound by vM, for θ < q

vMxi|θ =

∑
y 6=x

γyi|θ

(
E(Xi|θ + 1)− y

)
x− E(Xi|θ + 1)

.

Though at first glance one may think that uMxi|θ and vMxi|θ are the lower
and upper bounds for γxi|θ, respectively, this is not correct. To illustrate this
point, consider γ0i|1, the parameter for the first category of item i at θ = 1. Its

bound is derived from the equality E(Xi|θ = 1) = E(Xi|θ = 2). Here, vM is
not an upper but a lower bound for γ0i|1, because gamma values smaller than

vM yield higher E(Xi|θ = 1) values, which are not allowed according to the M
restriction. It turns out that the bounds define the domain of admissible values
for γxi|θ, which can lie either inside or outside the interval defined by uMxi|θ and

vMxi|θ. This means that not only the bounds should be computed at each step
of the Gibbs sampler, but it should also be checked whether the domain of
admissible values lies inside or outside the bounds. Denoting the admissible
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domain under assumption M by AM
xi|θ, Step 3 of the Gibbs sampler can be

implemented as follows:

Step 3∗: For each γxi|θ at each iteration t compute the bounds uxi|θ and vxi|θ

and sample a new value γ
(t)
xi|θ from a truncated Gamma distribution:

γ
(t)
xi|θ ∼ Gamma(n

(t)
xi|θ + α, 1

∣∣γ(t)xi|θ ∈ Axi|θ).
After each sample of γ

(t)
xi|θ, E(x|θ)(t) is re-computed using Equation 5.

The method of inverse probability sampling is used to obtain samples from the
relevant truncated gamma distributions (e.g., Gelfand, Smith, & Lee, 1992).

4.3.2 Invariant Item Ordering Constraints

The IIO constraints on the LCM are similar to the ones for M, but with the role
of the items and latent classes reversed; that is, for any class q, E(Xi−1|θ) ≤
E(Xi|θ) for i = 2, . . . , k and E(Xi|θ) ≤ E(Xi+1|θ) for i = 1, . . . , k − 1. The
bounds on γxi|θ under IIO are

uIIOxi|θ =

∑
y 6=x

γyi|θ

(
E(Xi−1|θ)− y

)
x− E(Xi−1|θ)

,

for i ≥ 2, and

vIIOxi|θ =

∑
y 6=x

γyi|θ

(
E(Xi+1|θ)− y

)
x− E(Xi+1|θ)

,

for i < k. At each iteration of the Gibbs sampler, both bounds are computed
and the admissible domain AIIO

xi|θ is determined. To constrain the LCM by

both M and IIO, the γ
(t)
xi|θ parameters are sampled from truncated Gamma

distributions with admissible ranges Axi|θ defined as the intersection of AM
xi|θ

and AIIO
xi|θ.

4.3.3 Assessing Convergence

The values of the parameters obtained from the Gibbs sampler can be consid-
ered samples from their posterior distribution as the number of iterations t of
the Gibbs sampler approaches infinity. In practice however, we are interested in
t to be sufficiently large for our samples to correctly approximate the posterior
distributions. The first samples of the model parameters are drawn after dis-
carding the initial 10000 parameter values corresponding to the burn-in period.
Sequential samples are drawn at intervals of 10 iterations. For these samples,
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convergence is first assessed by comparing the samples from the posteriors be-
tween successive samples of size 5000 (e.g., Hoijtink & Molenaar, 1997). If the
differences between the posteriors are small, it is concluded that convergence
is reached. If the differences are large, the samples are discarded and new
samples are taken until it can be concluded that convergence is reached. A
second assessment for convergence we used is by inspection of the trace lines
for the likelihood function across iterations of the Gibbs sampler (e.g., Gamer-
man, 1997, pp. 134-137). A nearly flat trace line across the samples indicates
convergence.

4.3.4 Parameter Estimation

With the 10000 samples of parameter values taken from their posterior, the
parameter values are estimated by the median value. Likewise, the 95% credi-
bility interval is taken between the 2.5th percentile and the 97.5th percentile.
Because values of E(Xi|θ) were also computed for each of these samples, their
posterior expectations and credibility intervals are also reported. In the appli-
cation described below, the 10000 samples were obtained after 10000 burn-in
iterations by running the Gibbs sampler another 100000 iterations and retain-
ing each 10th draw.

4.3.5 Assessing Model Adequacy

Three statistics are considered to assess the fit of the M and IIO constrained
LCMs. The first one is the deviance information criterion (DIC; Spiegelhalter,
Best, Carlin, & Van der Linde, 2002), which can be used to compare the overall
goodness-of-fit of competing models. In addition, two statistics were developed
to assess assumptions M and IIO, respectively, at the item level.

Bayesian Deviance Statistic

Under inequality constraints, the number of free parameters of a model (or
model complexity) is not easily defined. However, Spiegelhalter, Best, Car-
lin, and Van der Linde (2002) proposed a Bayesian measure pD for the effec-
tive number of parameters of a model that can easily be obtained with our
Gibbs sampler. Let P (X|π) denote the likelihood function, and let D(π) =
−2 lnP (X|π) denote the deviance. Using the sampled parameter values from
the Gibbs sampler, the following two quantities can be computed: PE

(
D(π)

)
which is the posterior expectation of the deviance, and D

(
PE(π)

)
which is

the deviance given the posterior expectation of the parameters. The effective
number of parameters is expressed as

pD = PE
(
D(π)

)
−D

(
PE(π)

)
.
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Spiegelhalter, Best, Carlin, and Van der Linde (2002) suggested using DIC as
a measure for comparing model-data fit across competing models. Similar to
Akaike’s (1973) information criterion, DIC equals the deviance penalized by
the complexity of the estimated model. It is defined as

DIC = PE
(
D(π)

)
+ pD.

Lower DIC values indicate a better model-data fit.

Posterior Check for Monotonicity

Now we define the statistic expressing the deviation from M for item i. For
two items i and i′, let the corresponding rest score be defined as

Yii′ =
∑
i′′ 6=i,i′

Xi′′ ,

which is the sum score excluding items i and i′. Moreover, let S(Xi, Xi′ |y)
be the covariance between Xi and Xi′ conditional on their rest score Yii′ = y.
Holland and Rosenbaum (1986; Rosenbaum, 1984) showed that M implies that
these covariances are nonnegative. Let ny denote the number of observations
with rest score Yii′ = y. We define the item specific statistic for M as

Mi(X) =
1

n

∑
i′ 6=i

∑
y

nyS(Xi, Xi′ |y), (8)

where the weighing factor ny accounts for small observations yielding less reli-
able estimates of the covariances.

To obtain a distribution of the statistic in Equation 8 under the null-
hypothesis that the constrained LCM holds, new data sets X(t) are generated
using the parameter values of the tth sample. For each of these data sets,
statistic Mi(X

(t)) is computed, which yields a sampling distribution for the
test statistic under the null-hypothesis of the constrained LCM. We define the
(one-sided) p-value for assessing for each item whether it fits the constrained
LCM as the proportion of times Mi(X

(t)) is smaller than the observed Mi(X)
(cf. Gelman, Meng, & Stern, 1996; Meng, 1994). A small p-value undermines
the credibility of assumption M for that particular item.

Posterior Check for Invariant Item Ordering

The last statistic expresses the deviation from IIO for item i. It is derived in
a similar manner as Mi(X). For two items i and i′, where i < i′, IIO implies
that E(Xi′ − Xi|y) ≥ 0, for all Yii′ = y (Ligtvoet, Van der Ark, Bergsma, &
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Sijtsma, 2009). As a statistic for goodness of fit of item i, we propose

IIOi(X) =
1

n

∑
i′ 6=i

∑
y

nyE(Xi′ −Xi|y). (9)

In Equation 9, we only consider for i′ the items adjacent to i. Similar to Mi(X),
a posterior sample distribution of IIOi(X) with the corresponding p-value can
be computed by replicating new data sets X(t). A small p-value undermines
the credibility of the IIO assumption for that particular item.

Model Fitting Strategy

We propose using a three-step model fitting strategy for assessing whether
assumptions M and IIO hold. The steps involve: 1) determining the number
of latent classes q̂, 2) determining for which items M holds, and 3) determining
for which items IIO holds. This procedure yields a LCM for which M and IIO
holds for a certain number of items. We refer to the number of items for which
M holds as k̂M and for which IIO holds as k̂IIO.

Step 1 involves estimating LCMs with different numbers of classes, where
the model with the lowest DIC is retained for the next step. Step 2 starts by
fitting a M restricted q̂-class model and comparing its DIC value to the unre-
stricted q̂-class model. In case the constrained LCM fits worse, the posterior
check for M is used to determine for which items assumption M is violated. The
M constraint is then removed for the item with the largest misfit, and the model
is re-estimated with M constraints on the remaining items. This is repeated
until the DIC indicates that the LCM constrained by M for the remaining k̂M

items fits at least as well as the unconstrained LCM. Step 3 starts with the
estimation of a LCM constrained by both M and IIO, with constraints imposed
only on those k̂M items for which M held. The fit of this LCM is compared to
the fit of the final model from step 2. As long as the DIC values indicate that
the IIO restricted model fits worse, the IIO constraint is relaxed for the item
for which the posterior check indicates the largest misfit due to IIO.

4.4 Application

To illustrate the procedure for testing M and IIO by means of constrained
LCMs, we use an application to a set of items from a study on sociocultural
developments in The Netherlands (Felling, Peters, & Schreuder, 1987; Heinen,
1996, chap. 2 and 3). These were self-ratings of 1134 subjects to five statements
related to women’s liberation, each with three ordered score categories.

Because DIC values showed that an unrestricted four-class model did not
improve the model-data fit compared to a three-class model, we retained the
three-class model for testing M and IIO. The unconstrained LCM with three
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Table 4.1: Median Values Released Constrained LCM.

Latent Class Conditional Expectation
Class Proportion Item 1 Item 2 Item 3 Item 4 Item 5

1 .16 .23 .17 .55 .69 1.49
2 .34 .72 .73 1.30 1.65 1.90
3 .51 1.61 1.79 1.69 1.93 1.97

latent classes had a DIC equal to 8539.62. The estimates of the conditional
expectations revealed that the assumption M held for all items, whereas the
item ordering of items 1 and 2 was different at the first latent class than at the
remaining two classes, and the item ordering of items 2 and 3 was different at
the third latent class.

Then a LCM was fitted constrained by M to all five items. This constrained
LCM fitted as well as the unconstrained LCM, with DIC = 8539.56. The
posterior check for M also indicated that all items fitted the model. So there
is no reason to relax the M assumption for one of the items.

With the LCM constrained by both M and IIO for all five items we obtained
DIC = 8544.52, which indicated that the model fitted the data less well than
the LCM constrained by only M. The posterior check for IIO indicated that
the lack of model-data fit might be due to item 2, for which IIO2 = 0.284
(p = .001). All other items had p-values larger than .10. The posterior checks
for M remained similar to those of the LCM constrained by only M. Then
we released the IIO constraint for item 2, which means that item 1 is now
constrained by IIO from above by item 3 and item 3 from below by item 1.
This model showed a good model-data fit based on DIC = 8538.93 (lowest
value of DIC for all models tested). Non of the posterior checks for M and IIO
showed any item misfit. Table 4.1 contains the median values of the samples of
the class proportions and conditional expectations under the LCM constrained
by M for all five items and IIO for items 1, 3, 4, and 5.

4.5 Discussion

It was shown how the M and IIO assumptions in IRT models for ordinal
items can be translated into LCMs with inequality constraints on the class-
specific item means. A Gibbs sampling procedure was presented which uses a
re-parametrization of the model probabilities to make the implementation of
the complex inequality constraints feasible. Our data application illustrated
the proposed three-step model fitting strategy for determining the set of items
for which M and IIO holds. This procedure makes use of the overall fit statistic
DIC, as well as item-specific posterior checks.
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Because most IRT models are used with the goal of obtaining an ordering
of subjects, it is most logical to assume IIO only in addition to M, which is also
what we did in this chapter. However, in theory it is also possible to test IIO
without assuming M. This could be done using a LCM with only the IIO con-
straints. A practical problem one may encounter when estimating such a model
with a Gibbs sampler is what is referred to as the label switching problem (e.g.,
Redner & Walker, 1984; Stephens, 2000). Because the classes are not ordered,
their labeling is arbitrary and may thus change during the Gibbs sampling it-
erations (see Hoijtink, 1998, for an example of this phenomena). Note that this
may also occur in an unconstrained LCM. Stephens (1997, 2000) developed an
algorithm that can be used to reorder the classes so that their order is same
across Gibbs sample iterations (see also Jasra, Holmes, & Stephens, 2005).

Two posterior checks were proposed for assessing which items violate M
or IIO when DIC indicates that the specified model does not hold. In the
data application with five items and 1134 subjects, the posterior checks seem
to work well. However, the sample size required for these checks to achieve a
reasonable power remains a question for future research. Moreover, alternative
checks may be developed.

The proposed sequential approach for testing the assumptions M and IIO
did not exhaustively assess all possible combinations of items for which either
M and IIO holds. For example, in our application, all items corresponded well
to M, whereas the IIO constraint was removed for item 2. However, because
at least two items are involved in a violation of IIO, it might be the case that
releasing the IIO constraint for either item 1 or 3 would have resulted in a
better fitting model. Future research should show whether or not our model
fitting strategy is optimal in selecting the best fitting model.

Also, in our analysis the number of latent classes was fixed to three based on
the goodness-of-fit of the unrestricted LCM. An alternative strategy for testing
M and IIO using LCMs might be to use a model with a large number of latent
classes as the starting point. However, a downside of this alternative strategy
is that some of the classes will contain only a few subjects, hence reducing the
reliability of the estimates. Another possibility may be to treat the number of
latent classes as an additional parameter in the Bayesian estimation procedure.
This would yield a Gibbs sampler with in addition to the augmentation and
the two sampling steps, a step in which the number of latent classes is updated
(e.g., Neal, 1991; Richardson & Green, 1997).

A last extension of the proposed procedures for testing M and IIO we would
like to mention is the possibility of imposing constraints that correspond to
more common IRT models implying M and IIO. For example, Van Onna (2002)
defined a LCM with order restrictions similar to ours but imposed on the cumu-
lative probabilities P (Xi ≥ xi|θ) instead of the expected values E(Xi ≥ xi|θ).
These restrictions imply both M and IIO to hold (cf. the strong double mono-
tonicity model, Sijtsma & Hemker, 1998). Ligtvoet, Van der Ark, Bergsma and
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Sijtsma (2009) suggested models with similar order restrictions for continuation
ratios and adjacent category odds (see also Vermunt, 2001).



Chapter 5

On the number of items that
can be invariantly ordered in
samples

Abstract

Items in a test that have the same ordering according to their difficulty across
all ability levels exhibit an invariant item ordering (IIO). Provided IIO holds in
the population, the reliable estimation of an item ordering may be problematic
in small samples, but also in samples of realistic size. For a given sample
size, the gravity of this problem depends on the shape of the item response
functions and the distribution of the latent variable. It is shown that, under
ideal circumstances, in samples of realistic size no more than approximately
six items can be ordered reliably so that IIO can be inferred for these items.
Another result is that, for the investigation of IIO in a sample of realistic
size, a discretization of the latent variable into more than nine ordered discrete
categories leads to a loss of accuracy that is too big to be able to infer IIO.
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5.1 Introduction

Items in a test for children’s intelligence assessment are often administered in an
ordering from easy to difficult. As a starting rule, children skip the items that
are considered too easy for their age level. The stopping rule is that the testing
procedure terminates when the child fails, say, three consecutive items. Norm
tables can be constructed to assess the performance of each child within his/her
age category. An example of a test that uses this administration procedure is
the Wechsler Intelligence Scale for Children (WISC; Wechsler, 2003).

The administration procedure requires the items to have the same ordering
by increasing item difficulty across all age categories, but also within each age
category across all levels of the intelligence scale. Such an item ordering is
called invariant item ordering (IIO). IIO means that the items in a test have
the same ordering according to their difficulty across all ability levels. Other
applications for which IIO is relevant are person-fit analysis (Emons, Sijtsma,
& Meijer, 2004), differential item functioning (Shealy & Stout, 1993), and the
testing of theories about developmental processes (Bouwmeester & Sijtsma,
2007).

Let k denote the number of items in the test, and let Xi be the item score
variable of item i (i = 1, . . . , k), with realizations xi ∈ {0, 1}. In item response
theory (IRT) models, often a unidimensional latent variable, denoted θ, is as-
sumed to account for the associations between the item scores. Conditional on
θ, the item score variables of all k items are assumed to be independent; this
is the assumption of local independence (LI). Let the item response function
(IRF) be defined as P (Xi = 1|θ). IRT models for dominance data (Coombs,
1964, p. 23), such as intelligence test data and other maximum-performance
data but also personality assessment data and other typical-performance data,
assume IRFs to be monotone nondecreasing or strictly increasing. This is the
monotonicity assumption. Because IIO is relevant in the context of IRT models
for dominance data, we use monotone IRFs in the examples throughout.

Sijtsma and Junker (1996) defined IIO as follows. A test that consists of k
items has an IIO if the items can be ordered and numbered accordingly such
that

P (X1 = 1|θ) ≤ P (X2 = 1|θ) ≤ . . . ≤ P (Xk = 1|θ), (IIO)

for all θ. The definition of IIO is such that items become easier as the item
index increases. In the WISC example, the inequality signs in the definition
of IIO would have to be reversed. IIO allows the possibility that for certain
values of θ the ordering contains ties, but implies that the IRFs do not intersect.
Figure 5.1a shows three IRFs for which IIO holds, including ties. Figure 5.1b
shows three IRFs for which IIO does not hold; the solid IRF intersects once
with the dotted IRF and twice with the dashed IRF.

The concept of IIO also appears elsewhere in the psychometric literature.
Rosenbaum (1987a) defined a latent scale as a set of items for which LI and IIO
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Figure 5.1: Two examples of three IRFs: (a) IIO holds, and (b) IIO is violated.

hold. In another context, Rosenbaum (1987b) defined item i to be uniformly
more difficult than item j if P (Xi = 1|θ) ≤ P (Xj = 1|θ) for all θ. This ordering
property is equivalent to characteristic monotonicity in unfolding models (Ellis,
1994, chap. 6). Examples of IRT models that imply an IIO are the double
monotonicity model (Mokken, 1971, p. 118), the Rasch model (Rasch, 1960),
and the isotonic ordinal probabilistic model (Scheiblechner, 1995). Examples
of IRT models that do not imply an IIO are the normal ogive model (Lord,
1980, pp. 30-32) and the 2- and 3-parameter logistic models (Birnbaum, 1968).

Suppose, k items have a strict IIO in the population of interest; that is, IIO
holds with strict inequalities. Let bi denote the difficulty parameter of item i,
and let the Rasch (Rasch, 1960; Fischer, 1974, 1995) model define the IRF of
item i as a logistic function

logitP (Xi = 1|θ) = θ − bi. (1)

The Rasch model implies IIO. An example of two items with a strict IIO
is obtained by taking for two items i and j in Equation 1 the difficulty pa-
rameters bi > bj . This paper investigates the problem illustrated in Fig-
ure 5.2. A stratified sample of size n = 300 was drawn from θ intervals
(−∞,−2], (−2,−1.5], . . . , (1, 1.5], (1.5,∞) based on θ ∼ N(0, 1). The scores
on the two items i and j were simulated for bi = 1 and bj = −1 in Equa-
tion 1. For these scores, the confidence intervals were estimated for both items
at each increment of θ (here, θ was assumed to be known). Figure 5.2 shows
for the two items at each of the 5 θ-values the estimated proportion (black
diamonds) and their 95% confidence intervals. Note that, for the estimation of
the probabilities, we did not assume the Rasch model.
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Figure 5.2: The 95% confidence intervals based on a sample of size 300.

The example in Figure 5.2 shows that at θ = −2 and θ = 2 IIO could not
be reliably inferred as the confidence intervals overlap considerably. Hence, a
sample size of 300 does not allow estimates of the two IRFs that are reliable
enough to infer that the IRFs do not intersect. Further, for a realistic number
of items (more than two) this is likely to be a problem even if the sample size is
much larger than n = 300. The gravity of the problem depends on the interplay
of three factors: the constellation of the k IRFs, the distribution of θ, and the
sample size n.

This study investigates the number of items of which the IRFs can be
distinguished accurately in a sample, so as to infer correctly that IIO holds
in the population of interest. The point of departure is strict inequality in
the definition of IIO, which corresponds to an item ordering where the items
are distinguishable. The first research question is: Given a strict IIO and a
sample size n, what is the maximum number of IRFs that can be distinguished
significantly? The second research question is: Given a strict IIO, what is
the minimally required sample size needed to significantly distinguish k IRFs?
The two research questions were investigated separately, and the results are
discussed subsequently in Study 1 and Study 2.

5.2 Study 1

In Study 1, the first research question was investigated: Given a strict IIO and a
sample size n, what is the maximum number of IRFs that can be distinguished
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significantly? The number of IRFs was investigated for one arbitrary value
of θ. Notice that for one value θ0, the IRFs reduce to response probabilities
P (Xi = 1|θ0). This allows the investigation of the effect of sample size at
θ0 (denoted n0), without having to consider the shape of the IRFs or the
distribution of θ. The results of Study 1 are used in Study 2 to define a set of
IRFs.

5.2.1 Method

For θ0, two response probabilities for adjacent items, P (Xi = 1|θ0) and P (Xi+1 =
1|θ0), can be significantly distinguished if the null hypothesis that

H0 : P (Xi = 1|θ0) = P (Xi+1 = 1|θ0) (2)

is rejected in favor of the alternative hypothesis that

HA : P (Xi = 1|θ0) < P (Xi+1 = 1|θ0). (3)

If a strict IIO holds, the rejection of H0 implies that two nonadjacent response
probabilities, such as P (Xi = 1|θ0) and P (Xi+2 = 1|θ0), can also be signifi-
cantly distinguished. Thus, for a strict IIO of k items to hold it is sufficient to
reject H0 for all adjacent pairs. The maximum number of response probabili-
ties that can be distinguished depends on the sample size n0, the power 1− β,
and the nominal Type I error α.

Let k∗ denote the maximum number of response probabilities that can be
distinguished significantly. The procedure for determining k∗ at θ0 has three
steps which are discussed below and illustrated in Figure 5.3.

1. In deriving k∗, we use normal approximations to the difference between
P̂ (Xi = 1|θ0) and P̂ (Xi+1 = 1|θ0) (Appendix A) which are not valid if
values of P (Xi = 1|θ0) and P (Xi+1 = 1|θ0) are close to zero or unity. To
prevent the response probabilities from being close to zero and unity, a
lower limit l and an upper limit u are chosen such that 0 < l < u < 1. In
this study,

l =
5

n0
, and u =

n0 − 5

nt
.

The first response probability P̂ (X1 = 1|θ0) is set equal to l (Figure 5.3a).
The nominal Type I error is set to α.

2. The response probabilities of the items P̂ (X2 = 1|θ0), . . . , P̂ (Xk∗+1 =
1|θ0) are computed consecutively. Let di denote the smallest difference
between P̂ (Xi = 1|θ0) and P̂ (Xi+1 = 1|θ0) for which H0 is rejected.
Once P̂ (Xi = 1|θ0) (i = 1, . . . , k∗) has been estimated, P̂ (Xi+1 = 1|θ0)
is computed as P̂ (Xi+1 = 1|θ0) = P̂ (Xi = 1|θ0) + di (Figure 5.3b); di
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Figure 5.3: Illustration of the procedure for determining the maximum number
of response probabilities at θ0.

is derived in Appendix A. The procedure stops when P̂ (Xk∗+1 = 1|θ0)
exceeds the upper limit u (Figure 5.3c).

3. In Step 2, k∗ statistical tests were conducted. The nominal Type I error
is adjusted for multiple testing (Bonferroni correction), such that the
adjusted nominal Type I error equals α/k∗. Step 2 is repeated with the
adjusted nominal Type I error. An adjustment of the nominal Type I
error rate affects di and, therefore, it may also affect k∗. Hence, the value
of k∗ that was obtained the first time Step 2 was run, now denoted k∗(1),
need not equal k∗ that was obtained the second time Step 2 was run, which
is denoted k∗(2) and, as a result, the nominal Type I error is adjusted to
α/k∗(2). Step 2 is repeated until after the vth run k∗(v) = k∗(v−1).

The procedure ensures that the obtained k∗ response probabilities are located
just far enough apart, such that, if for any two items we were to test H0

(Equation 2) at θ0 (given n0, 1 − β, and α) the null hypothesis would be
rejected.

In this study, the dependent variable was the maximum number of response
probabilities that can be distinguished at θ0, and the independent variables were
the sample size at n0 and the power of the statistical test. Sample size n0 had
five levels (i.e., 100, 200, 400, 1000, and 2000), and the power 1− β had three
levels (i.e., .70, .80, and .90). The nominal Type I error was fixed at α = .05.

5.2.2 Results

In general, the number of response probabilities that can be distinguished at
θ0 was small. Table 5.1 shows that a larger sample size produced a larger
k∗. A higher power produced a smaller k∗. The values of P̂ (Xi = 1|θ0) that
correspond to the entries of Table 5.1 are given in Appendix B. These values
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Table 5.1: Maximum Number of Response Probabilities that Can be Distin-
guished Reliably at θ0, for Overall α = .05, and Varying Sample Size and
Power.

Sample Power
Size 0.70 0.80 0.90

100 6 6 5
200 9 8 7
400 13 12 10
1000 20 18 16
2000 28 26 23

show that di is smaller for response probabilities close to zero or unity than for
response probabilities close to .5.

5.2.3 Discussion

The maximum number of response probabilities that can be distinguished sig-
nificantly at one value of θ is small. In practice, it is not expected that many
subjects have the same value or approximately the same value of θ. So, what
was considered here to be a small sample (i.e., n0 = 100, 200) will be difficult
to collect in practice, and may actually be a small part of a very large sample
if we were to consider a distribution of θ instead of a single value.

The Bonferroni correction was used to correct for the inflation of the nom-
inal Type I error as the number of statistical tests increased. However, the
nominal Type II error (β) was not adjusted for the number of tests. This
would have resulted in a higher power, and consequently, in fewer response
probabilities that can be distinguished significantly.

5.3 Study 2

In Study 1, we determined the maximum number k∗ of response probabilities
that can be distinguished significantly for a given sample size and a given power.
In Study 2, the second research question was investigated: Given a strict IIO,
what is the minimally required sample size needed to significantly distinguish
k IRFs? The second study takes the shape of the IRFs into consideration.

5.3.1 Method

The Rasch model Equation 1 implies IIO, and was used to investigate the
minimally required sample size needed to significantly distinguish k IRFs. The
choice of the Rasch model reduced computational effort. Other unidimensional
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Figure 5.4: Illustration of six IRFs under the Rasch model generated using
response probabilities found in Study 1 (bi parameters were -1.80, -.72, .11,
.90, 1.79, and 2.94).

IRT models implying IIO are expected to yield similar results. Given the
purpose of this study, it is convenient to rewrite Equation 1. Let ai denote the
intercept of item i at θ0, that is, ai = (1 + ebi)−1. The Rasch model can be
written in terms of the item intercepts (instead of the item difficulties). This
version of the model can be obtained from Equation 1 by taking bi = ln(1−aiai

),
which results in

P (Xi = 1|θ) =

(
1 +

1− ai
aieθ

)−1
. (4)

The point of departure in Study 2 was the six response probabilities ob-
tained in Study 1, for a sample size n0 = 100 and a power 1−β = .70 (Appendix
B). It was assumed that a test contained six Rasch items each with an inter-
cept equal to one of the six response probabilities; that is a1 = .050, a2 = .143,
a3 = .289, a4 = .473, a5 = .673, and a6 = .858. The IRFs of the six Rasch items
were computed using Equation 4. Figure 5.4 shows the resulting six IRFs. The
minimally required sample size to significantly distinguish k adjacent Rasch
IRFs at an arbitrary θ value is derived in Appendix C.

In this study, the independent variable was latent variable θ, which had nine
values (i.e., −2,−1.5,−1, . . . , 1.5, 2). The dependent variable was the sample
size required at θ to significantly distinguish the IRFs of the six Rasch items
with power 1− β = .70 and nominal Type I error α = .05.
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Table 5.2: Required Sample Size to Distinguish Six Adjacent Rasch IRFs, for
α = .05 and 1− β = .70.

Adjacent Value of θ
items -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1,2 585 364 230 149 100 72 55 47 45
2,3 435 281 188 132 101 84 79 85 102
3,4 274 189 139 112 100 102 117 149 207
4,5 139 109 94 91 100 124 167 242 367
5,6 54 53 59 74 101 146 223 349 558

Maximum 585 364 230 149 101 146 223 349 558
∗ Total of the maximum values in each column: n = 2705

5.3.2 Results

The minimally required sample sizes for adjacent items are given in Table 5.2.
Table 5.2 shows that, for example, to distinguish items 1 and 2 for the given
nominal Type I error and power, the largest sample size is required at θ = −2
(n−2 = 585) and the smallest at θ = 2 (n2 = 45). To distinguish items 5 and
6, the largest sample size is required at θ = 2 (n2 = 558) and the smallest
at θ = −1.5 (n−1.5 = 53). Table 5.2 also shows the sample size required
to distinguish all six IRFs at each of the nine values of θ; this is simply the
maximum sample size in each column. Under the Rasch model with an ideal
constellation of the intercepts, and given an ideal distribution of the sample, a
total sample of at least 2705 subjects is required to distinguish six IRFs across
nine values of θ (nominal Type I error equal to .05 and power equal to .70).
Figure 5.5a-e shows the distribution of subsamples required to significantly
distinguish the pairs of IRFs across all nine values of θ. Figure 5.5f shows the
U-shape distribution required to distinguish between all item pairs.

5.3.3 Discussion

Study 1 showed that six response probabilities could be significantly distin-
guished for a sample size of 100, and nominal Type I error equal to .05 and
power equal to .70. Study 2 showed that for nine values of θ, a total sample
size of 2705 is required to distinguish six Rasch items that correspond to the
response probabilities found in Study 1. Because IRFs were closer in the tails
of the distribution of θ, larger subsamples were required there to distinguish
the IRFs.

Study 2 revealed that for investigating an IIO most values of θ have to be
sampled from the extremes of the θ distribution, whereas in real-data analysis
this is exactly where the fewest values of θ are located, given that real ability
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Figure 5.5: Minimally required subsample sizes to distinguish six adjacent
Rasch IRFs, for α = .05 and 1− β = .70.

distributions tend to be bell-shaped. This partly explains why samples needed
for investigating IIO need to be so large. In practice, when researchers do
not know the subjects’ values of θ, they have no way to stratify the sampling
procedure and, as a result, they sample primarily from the middle of the distri-
bution, simple because the majority of the subjects are located there. However,
this drives up sample size in the wrong regions whereas sampling from the tails
would be really effective.

Finally, for the investigation of an IIO in a sample of realistic size, a dis-
cretization of the latent variable into more than nine ordered categories leads
to a loss of accuracy that is too big to infer IIO.

5.4 General discussion

Study 1 showed that, given a strict IIO and a realistic sample size of respon-
dents with the same θ value, and given nominal Type I error α and power
1− β, the maximum number of IRFs that can be distinguished significantly is
at most six. Study 2 showed that, given a strict IIO, the minimally required
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sample size based on ideal stratified sampling that is needed to significantly
distinguish six IRFs across nine values of θ, is equal to 2705. Under less than
ideal circumstances, larger sample sizes are needed to significantly distinguish
the same number of items. These circumstances include the unavailability of
real values of θ. Rather, values of θ are estimated from the data. Using esti-
mated values of θ has the effect of introducing more uncertainty and requiring
even larger samples to reduce this uncertainty to an acceptable level.

The two studies were concerned with situations in which IIO held. In real-
data analysis, the researcher often does not have prior knowledge about the
ordering of items let alone whether IIO holds for the items. Clearly, IIO is a
demanding property of any item set and this is true a fortiori as the number of
items grows larger. It may even be reasonable to assume that most item sets
do not exhibit IIO in a particular population, so that in real tests applied to
real populations IIO is a relatively rare property, that one may only hope to
approximate to a degree that serious mistakes in testing subjects are avoided.

What our work also has shown, is that the establishment of IIO (or the
lack thereof) requires a large sample of observations at several levels of the
latent variable. Given the size of the sample and the typical requirements with
respect to the stratification of the sample, it seems safe to say that in practical
data analysis samples often will be too small to grant statistical tests enough
power for establishing strict IIO. This lack of power implies a large Type II
error rate, that is, a large probability of incorrectly assuming that the model
(i.e., IIO) is the true model that underlay the generation of the data.

Study 2 further shows that (given IIO and the availability of real values of
θ) a sample size of at least 2705 observations is needed to reliably conclude that
at most six IRFs are nonintersecting but that drawing the required U-shaped
sample distribution will not be easy. The general conclusion from Study 1 and
Study 2 is that a coarser, less demanding approach to the study of the response
functions is needed for the practical investigation of IIO.

Two alternative approaches that facilitate the investigation of an IIO are
the use of clusters of items instead of individual items, and an ordinal latent
class approach. First, instead of considering individual IRFs, item clusters may
be formed that consist of adjacent IRFs that are more or less similar. Then,
an invariant ordering of a limited number of item clusters could be established
even if the number of items is large (e.g., Van der Ark & Van Diem, 2003;
Verweij, Sijtsma, & Koops, 1999; Wainer, Bradlow, & Wang, 2007; Wainer &
Kiely, 1987). Second, instead of assuming θ to be continuous or having more
than nine discrete θ levels, a coarser division of the latent variable into ordinal
latent classes allows more powerful tests of the ordering of the IRFs. Both
approaches may cause more bias (i.e., a more distorted view of the IRFs) but
gain precision and keep the sample size realistic.

Future research with respect to an IIO may focus on the requirements of
IRFs to be considered similar, how to distinguish different clusters of items, and
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the optimal number of latent classes. The theoretical and practical implications
of a coarser IRT approach are well worth exploring in view of the practical
importance of being able to investigate and establish an invariant orderings of
items.

Appendix

A Derivation of di

For notational convenience, let Pi = P (Xi = 1|θ0), and let D = P̂i+1 − P̂i. If
H0 (Equation 2) is true, then for a large sample size n0 and a value of Pi that is
not close to zero or unity, D is approximately normally distributed with mean
E0(D) = 0 (subscript 0 refers to the null hypothesis) and standard deviation

sd0(D) =

√
Pi(1− Pi) + Pi+1(1− Pi+1)

n0

=

√
2Pi(1− Pi)

n0
. (A1)

We used restrictions Pi > l = n0/5 and Pi+1 < u = (n0 − 5)/5 (e.g., Hoel,
1984, p. 145) to ensure that the response proportions were not close to zero or
unity.

For the alternative hypothesis (Equation 3), we consider the simple hypoth-
esis

HA : Pi+1 − Pi = di > 0. (A2)

For a large sample size n0 and values of Pi and Pi+1 that are not close to
zero or unity, D is approximately normally distributed with mean EA(D) = di
(subscript A refers to the alternative hypothesis) and standard deviation

sdA(D) =

√
Pi(1− Pi) + Pi+1(1− Pi+1)

n0

=

√
2Pi(1− Pi) + di[1− 2Pi − di]

n0
. (A3)

Figure 5.6 shows the distributions of D under H0 (upper panel) and under
HA (lower panel), and critical value dz for which P (D > dz) = α. In the
upper panel of Figure 5.6 the area under the null distribution that lies right of
dz corresponds to the nominal Type I error α, and the area of the alternative
distribution (lower panel) that lies right of dz corresponds to the power 1− β.
Figure 5.6 shows that di consists of the sum of two parts: d0 and dA; hence

di = d0 + dA. (A4)
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Figure 5.6: Distribution of D under H0 (upper panel) and under HA (lower
panel).

Let z1−α be the critical value associated with nominal Type I error α under
a standard normal distribution and let zβ be the critical value associated with
the nominal Type II error β under a standard normal distribution (note that
in our case zβ < 0); then

d0 = d1−α = z1−α × sd0(D), (A5)

and
dA = di − d1−α = −zβ × sdA(D). (A6)

Substituting Equation A5 and Equation A6 into Equation A4 yields

di = z1−α × sd0(D)− zβ × sdA(D), (A7)

and substituting Equation A3 into Equation A7 yields

di = z1−α × sd0(D)− zβ ×

√
2Pi(1− Pi) + di(1− 2Pi − di)

n0
. (A8)

Solving di in Equation A8 means solving a quadratic equation with solutions

di =
−B ±

√
B2 −AC

2A
, (A9)
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with

A = n0 + z2β,

B = −2n0z1−αsd0(D)− z2β + 2z2βPi, and

C = z21−αn0sd
2
0(D)− 2z2βPi(1− Pi).

Only the solution

di =
−B +

√
B2 −AC

2A

in Equation A9 yields nonnegative values for di.

B Location of the IRFs at θ0 for all k∗ items corresponding to
the results of Table 5.1

Sample Power
Size 0.70 0.80 0.90

100 .050 .289 .673 .050 .327 .758 .050 .375 .848
.143 .473 .858 .157 .539 .940 .175 .616

200 .025 .270 .704 .025 .306 .780 .025 .360 .876
.075 .406 .839 .082 .460 .911 .092 .538
.158 .554 .947 .177 .623 .206 .718

400 .013 .323 .851 .013 .371 .923 .013 .437
.039 .428 .929 .043 .490 .984 .048 .571
.084 .539 .984 .095 .611 .111 .703
.148 .650 .169 .729 .199 .823
.228 .756 .263 .835 .310 .921

1000 .005 .259 .754 .005 .298 .830 .005 .357 .918
.016 .324 .818 .018 .372 .889 .020 .443 .965
.036 .394 .874 .040 .450 .938 .047 .532
.064 .466 .923 .073 .530 .975 .087 .621
.101 .540 .961 .116 .610 .139 .706
.146 .614 .989 .169 .688 .203 .787
.199 .686 .230 .762 .276 .858

2000 .003 .267 .782 .003 .309 .857 .003 .369 .938
.008 .315 .827 .009 .363 .897 .010 .432 .968
.019 .365 .868 .021 .420 .932 .024 .497 .990
.034 .418 .904 .038 .478 .961 .046 .562
.053 .471 .936 .062 .537 .983 .074 .626
.078 .525 .962 .091 .595 .997 .109 .689
.108 .579 .982 .125 .653 .151 .748
.142 .633 .996 .165 .709 .198 .804
.180 .685 .209 .762 .251 .855
.222 .735 .257 .811 .308 .900
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C Required sample size nθ to significantly distinguish adjacent

Rasch IRFs

For notational convenience, let Pi = P (Xi = 1|θ). From Equation 4, the

conditional variance of item i in terms of intercepts can be expressed for a

given value of θ as

P (Xi = 1|θ)
(
1− P (Xi = 1|θ)

)
=

eθai(1− ai)(
ai(eθ − 1) + 1

)2 . (C1)

The difference between two adjacent Rasch IRFs can be expressed for a arbi-

trary value of θ. Let di denote this difference. From Equation 4 we obtain

di = Pi+1 − Pi

=

(
1 +

1− ai+1

eθai+1

)−1
−
(

1 +
1− ai
eθai

)−1
=

eθai+1

ai+1(eθ − 1) + 1
− eθai
ai(eθ − 1) + 1

=
eθ(ai+1 − ai)(

ai+1(eθ − 1) + 1
)(
ai(eθ − 1) + 1

) . (C2)

In Appendix A the standard deviation of the sample statistic D under H0

is given in Equation A1. Substituting Equation A1 in Equation A8 yields

di =
1
√
nθ

(
z1−α

√
2Pi
(
1− Pi

)
−

zβ

√
2Pi
(
1− Pi

)
+ di

(
1− 2Pi − di

))
⇔

nθ = d−2i

(
z1−α

√
2Pi
(
1− Pi

)
−

zβ

√
2Pi
(
1− Pi

)
+ di

(
1− 2Pi − di

))2

(C3)

Now, by substituting Equation 4, Equation C1, and Equation C2 in Equa-

tion C3, the minimal required sample size nθ is obtained that is needed to

significantly distinguish adjacent Rasch IRFs at an arbitrary value of θ for a

nominal Type I error α, power 1− β, and item intercepts ai and ai+1.
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Chapter 6

Polytomous latent scales for

the investigation of the

ordering of items∗

Abstract

Latent scales are defined within the framework of nonparametric item response

theory for polytomously scored items. Latent scales imply an invariant item

ordering, without imposing parametric restrictions on the shape of the item re-

sponse functions. A hierarchical relationship between three latent scales is de-

rived. The observable properties of manifest invariant item ordering, manifest-

scale cumulative probability model, and increasingness in transposition are

derived. A real-data† example illustrates the investigation of latent scales by

means of these manifest properties.

∗This Chapter has been submitted for publication.
†The authors would like to thank Bas Hemker for providing data.
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6.1 Introduction

Nonparametric item response theory (IRT) imposes only restrictions on the

model structure that are necessary for obtaining useful measurement properties.

For example, Ünlü (2007, 2008; Grayson, 1988; Hemker, Sijtsma, Molenaar, &

Junker, 1997; Huyhn, 1994) studied the assumptions that are necessary for

ascertaining the stochastic ordering of subjects on the latent variable scale

by means of the observed total score on the items comprising a test. Another

example, in particular relevant to this study, is an ordering of items by difficulty

or unpopularity that is the same for all subject measurement values. Such an

item ordering is an invariant item ordering (IIO; Sijtsma & Junker, 1996;

Sijtsma & Hemker, 1998). The purposes of this study are to present and

discuss new models for IIO also known as latent scales (Rosenbaum, 1987a),

and methods to investigate the fit of these latent scales to test data.

IIO is necessary or desirable in several test applications (Sijtsma & Mole-

naar, 2002, pp. 92-96). Areas of application in the cognitive domain are in-

telligence testing, in which the items are often administered in the order from

easy to difficult, and starting and stopping rules are based on the alleged (but

rarely empirically investigated and supported) invariant ordering of the items

(e.g., Wechsler, 2003). Another area is the testing of developmental sequences

assumed to be the same for all subjects and represented by different items that

require processes and skills typical for a particular phase but not for others

(e.g., Jansen & Van der Maas, 1997). Finally, in person-fit analysis item-score

patterns of subjects may be assessed to be aberrant because they deviate from

an expected common item ordering (e.g., Meijer & Sijtsma, 2001).

In the typical-behavior domain, researchers often assume that items have

an invariant cumulative structure, reflecting a hierarchy of psychological or

physical symptoms (e.g., Van Schuur, 2003; Watson, Deary, & Shipley, 2008).

For example, a rating scale statement like “I do not talk a lot in the company

of other people” seems to invite higher ratings than “I prefer not to see people

and do things on my own”, because the former statement seems to refer to a
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less intense symptom of introversion. Questionnaires for cognitive Alzheimer

symptoms assume a fixed order in which these symptoms manifest themselves

(Ligtvoet, Van der Ark, & Sijtsma, 2008).

For dichotomously scored items, IRT models implying IIO are the non-

parametric Mokken (1971) double monotonicity model and its special case, the

Rasch (1960) model. IIO is a property of these models, which in addition have

other assumptions. Glas and Verhelst (1995) discussed methods for investi-

gating goodness of fit of the Rasch model, and Sijtsma and Junker (1996) for

investigating IIO in a nonparametric IRT context. For polytomously scored

items, IIO is inconsistent with the common IRT models, and only a few, re-

strictive IRT models imply IIO (Sijtsma & Hemker, 1998). Some methods are

available for investigating IIO in polytomous data (Ligtvoet, Van der Ark, Te

Marvelde, & Sijtsma, in press). One of these methods is at the basis of a

method discussed later.

In the next sections, we define IIO, discuss three classes of IRT models for

polytomously scored items, explain why most polytomous IRT models do not

imply IIO, and implement a sufficient condition for the IIO property in the

three different classes of polytomous IRT models. We prove that the three

classes of models are hierarchically related, and that all three imply the IIO

property. We derive observable consequences, propose different methods for

investigating these consequences in real data, and illustrate the methods in

two real-data examples.

6.2 Invariant Item Ordering and Polytomous IRT

Models

Let a test consist of k items, indexed by i = 1, . . . , k. Let random variable Xi

denote the item score; Xi has ordered realization x (x = 0, . . . ,m). These scores

may reflect the degree to which a subjects has solved a cognitive item correctly

or endorsed a typical-behavior statement presented in a rating scale item. The

unidimensional latent variable is denoted by θ, and represents the cognitive
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ability or the personality trait of interest. Finally, let E(Xi|θ) be the conditional

expectation of the item score Xi, also known as the item response function

(IRF; Chang & Mazzeo, 1994). For dichotomously scored items with x = 0, 1,

we have that E(Xi|θ) = P (Xi = 1|θ), which is the conditional probability of

answering correctly to item i.

For polytomously scored items, Sijtsma and Hemker (1998) defined IIO as

follows. A set of k items with m + 1 ordered answer categories per item have

an invariant item ordering (IIO) if the items can be ordered and numbered

accordingly such that

E(X1|θ) ≤ E(X2|θ) ≤ . . . ≤ E(Xk|θ), (IIO)

for all θ. It may be noted that IIO allows for ties, so that for some values of θ

the item ordering is partial.

6.2.1 Three Classes of Polytomous IRT Models

The three classes of polytomous IRT models are the cumulative probability

models, continuation ratio models, and adjacent category models (Agresti, 1990;

Hemker, Van der Ark, & Sijtsma, 2001; Mellenbergh, 1995; Molenaar, 1983).

The classes each assume unidimensionality, and local independence; that is, for

a k-dimensional vector of item scores X = x,

P (X = x|θ) =

k∏
i=1

P (Xi = x|θ). (1)

An item having m+ 1 ordered answer categories has m item steps, which have

to be passed in going from category 0 to category m (Molenaar, 1983). The

probability of passing the item step conditional on θ is the item step response

function (ISRF). The three classes of IRT models differ in their definition of

the ISRF, and models within classes place different restrictions on their class-

specific ISRF.



77

Cumulative probability models (CPMs) define ISRFs as

Cxi(θ) = P (Xi ≥ x|θ)

=

m∑
u=x

P (Xi = u|θ), (2)

for x = 1, . . . ,m, and Cxi(θ) = 1 for x < 1, and Cxi(θ) = 0 for x > m.

This ISRF definition implies that the ISRFs of the same item cannot intersect

(Mellenbergh, 1995). Examples of CPMs are the homogeneous case of the

graded response model (Samejima, 1969, 1997), and the nonparametric graded

response model (Hemker et al., 1997; also, see Molenaar, 1997). These models

assume that the ISRF defined by Cxi(θ) (Equation 2) increases monotonically

(i.e., the monotonicity assumption). Van Engelenburg (1997, chap. 2, 3) argued

that CPMs are particulary suited for modeling item scores that result from a

global assessment task as with rating scales.

Continuation-ratio models (CRMs) define ISRFs as

Mxi(θ) = P (Xi ≥ x|Xi ≥ x− 1; θ)

=

m∑
u=x

P (Xi = u|θ)
m∑

v=x−1
P (Xi = v|θ)

, (3)

for x = 1, . . . ,m, and Mxi(θ) = 1 for x < 1, and Mxi(θ) = 0 for x > m.

Examples of CRMs are the sequential Rasch model (Tutz, 1990), and the

nonparametric sequential model (Hemker et al., 2001). These models assume

monotonicity for Mxi(θ) (Equation 3). Items typically suited for CRM analysis

consist of m subtasks that have to be executed in a fixed order such that failing

a subtask implies failing the next subtasks, and the item score reflects that the

first x subtasks have been succeeded (Hemker et al., 2001).
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Adjacent category models (ACMs) define ISRFs as

Axi(θ) = P (Xi = x|Xi = x ∨Xi = x− 1; θ)

=
P (Xi = x|θ)

P (Xi = x− 1|θ) + P (Xi = x|θ)
, (4)

for x = 1, . . . ,m, and Axi(θ) = 1 for x < 1, and Axi(θ) = 0 for x > m. Exam-

ples of ACMs include the rating scale model (Andrich, 1978), the partial credit

model (Masters, 1982; Masters & Wright, 1997), the generalized partial credit

model (Muraki, 1992), and the nonparametric partial credit model (Hemker et

al., 1997). These models assume monotonicity for Axi(θ) (Equation 4). Van

Engelenburg (1997, p. 38) noticed that the structure of ACMs does not corre-

spond well with a particular task structure but he suggested that ACMs are

best suited for analyzing item scores that result from tasks that consist of x

subtasks, which may be solved in an arbitrary order. An item score of x means

that any x subtasks were solved correctly.

Van der Ark, Hemker and Sijtsma (2002) showed that the mathematically

most general representatives of each of the three classes, which are the non-

parametric graded response model (CPM class), the nonparametric sequential

model (CRM class), and the nonparametric partial credit model (ACM class)

have a hierarchical relationship; that is, using obvious acronyms,

np-PCM ⇒ np-SM ⇒ np-GRM.

Thus, Axi(θ) (ACM class) provides the strongest form of monotonicity, and

Cxi(θ) (CPM class) the weakest. For dichotomously scored items, the three

classes coincide, such that Cxi(θ) = Mxi(θ) = Axi(θ) = P (Xi = 1|θ).

6.2.2 Relating IIO and Polytomous IRT Models

Sijtsma and Hemker (1998) showed that well-known polytomous IRT models

such as the partial credit model (Masters, 1982) and the graded response model

(Samejima, 1997) do not imply IIO. The few parametric models that imply
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IIO are among the most restrictive IRT models known in the IRT literature,

such as the rating scale model (Andrich, 1978) and a restricted version of

Muraki’s (1990) rating scale version of the graded response model (Sijtsma &

Hemker, 1998; Van der Ark, 2001). These models are highly restrictive and

typically fail to fit data well. Hence, there appears to be a mismatch between

polytomous IRT models and the IIO property. The mismatch is due to the

focus of polytomous IRT models on sets of more-detailed ISRFs rather than the

aggregate IRF, E(Xi|θ), on which the definition of IIO is based. For example,

the ISRFs of the class of CPMs (Equation 2) are related to the IRFs by

E(Xi|θ) =
m∑
x=1

Cxi(θ). (5)

We use Samejima’s (1997) homogeneous case of the graded response model as

an example of the mismatch between ISRF and IRF. This model defines the

ISRF as a monotone increasing logistic function with slope parameter αi > 0

and score-category location parameter βxi (xi = 1, . . . ,m), as

Cxi(θ) =
eαi(θ−βxi )

1 + eαi(θ−βxi )
. (6)

Sijtsma and Hemker (1998) showed that Equation 5 and Equation 6 do not

imply IIO. They also showed that the monotonicity of an ISRF as in Equation 6

is neither necessary nor sufficient for IIO but, as we will see shortly, rather it is

the exact definition of the ISRFs (as in the rating scale model; Andrich, 1978)

or the mutual relationship between the ISRFs (see Equation 7 below) which

determines whether IIO holds. Polytomous IRT models were not proposed with

an eye toward the IIO property, and the dominant perspective of psychometrics

on the ISRF rather than the IRF means that polytomous IRT models may or

may not possess the IIO property. This is more the result of coincidence than

design.

For the class of CPMs, Sijtsma and Hemker (1998) defined an order re-

striction on the ISRFs of the k items in the test that describe the response



80

probability for the same item score x, Cxi(θ), i = 1, . . . , k, such that

Cx1(θ) ≤ Cx2(θ) ≤ . . . ≤ Cxk(θ), (7)

for x = 1, . . . ,m, and for all θ, and showed that this order restriction implies

IIO. Scheiblechner (1995, Definition; also, 2003) discussed weak item idepen-

dence, which is an item ordering property resembling Equation 7 but without

reference to a latent variable. We apply restrictions like those in Equation 7 to

the classes of ACMs and CRMs. This results in IRT models that imply IIO.

We show that the three general polytomous IRT models have a hierarchical re-

lationship, and derive observable consequences, which are used to investigate in

real data whether a set of k items has IIO. Next, we impose an order restriction

similar to Equation 7 on the typical ISRFs from each of the three classes.

6.3 Latent Scales for Polytomous Items

For dichotomously scored items, Rosenbaum (1987a) defined a latent scale as

a model for which local independence (i.e., Equation 1) holds and in each item

pair (i, j) (i < j) item i is uniformly more difficult than item j (Rosenbaum,

1987b), so that

P (Xi = 1|θ) ≤ P (Xj = 1|θ),

for all θ. We generalize the concept of a latent scale to the three classes of

polytomous IRT models. Using the acronym LS for latent scale, the resulting

models are denoted LS-CPM, LS-CRM, and LS-ACM. We assume local inde-

pendence to hold for the k polytomously scored items in the test. For scores

x = 1, . . . ,m on items i and j (i < j), an LS-CPM is defined as

Cxi(θ) ≤ Cxj (θ), (8)

for all θ (equivalent to Equation 7); an LS-CRM as

Mxi(θ) ≤Mxj (θ), (9)
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for all θ; and an LS-ACM as

Axi(θ) ≤ Axj (θ), (10)

for all θ. Equations 8, 9, and 10 do not restrict the ordering of the ISRFs cor-

responding to different score categories. Equation 8 is equivalent to Equation 7

and thus implies IIO. The latent scales do not assume monotonicity. We prove

the next theorem.

Theorem 1. The three latent-scale IRT models for polytomously scored items,

the LS-ACM, the LS-CRM, and the the LS-CPM have a hierarchical relation.

The least restrictive of these models, the LS-CPM, implies IIO. These relation-

ships are represented in the next scheme of logical implications:

LS-ACM ⇒ LS-CRM ⇒ LS-CPM ⇒ IIO.

We prove three lemmas, which together prove Theorem 1.

Lemma 1. The LS-ACM implies the LS-CRM.

Proof. First note that, for z > x,

Ayi(θ) ≤ Ayj (θ) ⇔
1−Ayi(θ)
Ayi(θ)

≥
1−Ayj (θ)
Ayj (θ)

⇔ P (Xi = y − 1|θ)
P (Xi = y|θ)

≥ P (Xj = y − 1|θ)
P (Xj = y|θ)

⇒
z∏

y=x+1

P (Xi = y − 1|θ)
P (Xi = y|θ)

≥
z∏

y=x+1

P (Xj = y − 1|θ)
P (Xj = y|θ)

⇔ P (Xi = x|θ)
P (Xi = z|θ)

≥ P (Xj = x|θ)
P (Xj = z|θ)

⇔ P (Xi = z|θ)
P (Xi = x|θ)

≤ P (Xj = z|θ)
P (Xj = x|θ)

. (11)

Thus, we have shown that LS-ACM (Equation 10) implies Equation 11. Sum-

ming both its sides over z = x+ 1, x+ 2, . . . ,m gives

P (Xi > x|θ)
P (Xi = x|θ)

≤ P (Xj > x|θ)
P (Xj = x|θ)

,
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which implies

P (Xi = x|θ)
P (Xi > x|θ)

≥ P (Xj = x|θ)
P (Xj > x|θ)

,

and so

P (Xi ≥ x|θ)
P (Xi > x|θ)

=
P (Xi = x|θ) + P (Xi > x|θ)

P (Xi > x|θ)

=
P (Xi = x|θ)
P (Xi > x|θ)

+ 1

≥ P (Xj = x|θ)
P (Xj > x|θ)

+ 1

=
P (Xj ≥ x|θ)
P (Xj > x|θ)

. (12)

The left and right hand sides of Equation 12 are the reciprocals of Mx+1i(θ)

and Mx+1j (θ), respectively, so we have shown that LS-ACM implies

Mxi(θ) ≤Mxj (θ)

for all x, θ and i < j; that is, that LS-CRM holds.

The following example shows that the reverse relationship between the two

latent scales does not hold; that is, the LS-CRM does not imply the LS-ACM.

For trichotomously scored items i and j, for some arbitrary value θ0 let P (Xi =

x|θ0) be (12 ,
1
4 ,

1
4), and let P (Xj = x|θ0) be (13 ,

1
12 ,

7
12). It may be verified that

M1i = M2i = 1
2 , M1j = 2

3 , and M2j = 7
8 , and further that for x = 1, 2 it

holds that Mxi < Mxj . Additional computations show that A1i = 1
3 , A2i = 1

2 ,

A1j = 1
5 , and A2j = 7

8 . Because A1i > A1j contradicts Equation 10, the

LS-ACM does not hold.

Lemma 2. The LS-CRM implies LS-CPMs.

Proof. We assume that the LS-CRM holds; that is, Equation 9 holds for all x
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and all θ. It may be noted that

Cxi(θ) =
P (Xi ≥ x|θ)
P (Xi ≥ 0|θ)

=
P (Xi ≥ 1|θ)
P (Xi ≥ 0|θ)

× P (Xi ≥ 2|θ)
P (Xi ≥ 1|θ)

× . . .× P (Xi ≥ x|θ)
P (Xi ≥ x− 1|θ)

=
x∏
u=1

Mui(θ). (13)

Because Mxi(θ) ≤Mxj (θ) for all x and all θ, it follows from Equation 13 that

Cxi(θ) ≤ Cxj (θ);

that is, that LS-CPM holds.

The following example shows that the reverse of the implication does not

hold; that is, the LS-CPM does not imply the LS-CRM. For trichotomously

scored items i and j, for some arbitrary value θ0, let P (Xi = x|θ0) be (12 ,
1
4 ,

1
4),

and let P (Xj = x|θ0) be (13 ,
9
24 ,

7
24). It may be verified that C1i = 1

2 , C2i = 1
4 ,

C1j = 2
3 , and C2j = 7

24 . Next, it can be verified that Cxi < Cxj for x = 1, 2.

Finally, we find that M1i = M2i = 1
2 , M1j = 2

3 , and M2j = 7
16 . Because

M2i > M2j contradicts Equation 9, the LS-CRM does not hold.

Lemma 3. The LS-CPM implies IIO.

Proof. See Sijtsma and Hemker (1998), who show that Equation 8 is a sufficient

(but not a necessary) condition for IIO.

The three latent scales provide different definitions of agreement among

the subjects with respect to the ordering of the items on latent variable θ, ex-

pressed by Equation 8, Equation 9, and Equation 10; See Douglas, Feinberg,

Lee, Sampson, and Whitaker (1991) for related work in the context of contin-

gency tables for ordered variables. A fourth latent scale may be defined by the

combination of local independence and IIO. Theorem 1 shows that these four

definitions become progressively weaker, going from the LS-ACM via the LS-

CRM and the LS-CPM to IIO. Thus far, in psychometrics item orderings have
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been defined in terms of expected item scores such as IIO. IIO is the weakest

form of agreement among the respondents with respect to the ordering of the

items on latent variable θ. However, given their relationships to particular task

structures (Van Engelenburg, 1997) the other latent scales are also possible

ways of defining this agreement.

The task types Van Engelenburg (1997) suggested for the three classes

of polytomous IRT models produce item scores, the structure of which also

matches the formal structure of the different latent scales; that is, tasks best

suited for CPM models are best suited for LS-CPM models, and so on. The

relationships between task structure and latent scale are not logically com-

pelling. However, the structure of the task may give direction for the choice of

an appropriate latent scale for analyzing one’s data.

6.4 Manifest Properties of Latent Scales

In this section, we derive three observable consequences or manifest properties

from the latent scales. In particular, the LS-ACM implies the increasingness

in transposition (IT) property (Theorem 3); the LS-CPM implies the mani-

fest scale cumulative probability model (MS-CPM) property (Theorem 2); and

IIO implies the manifest invariant item ordering (MIIO) property (Corollary).

Latent scales and observable properties are related as:

LS-ACM ⇒ LS-CRM ⇒ LS-CPM ⇒ IIO

⇓ ⇓ ⇓

IT MS-CPM MIIO

The manifest properties can be used as a basis for investigating whether support

can be found in the data for a particular latent scale. In the next section, to this

end we discuss the IT method, the MS-CPM method, and the MIIO method.

As with all model-data fit research, fit is necessarily assessed using observable

consequences, which can only provide incomplete information about a model.

Hence, conclusions should always be drawn with caution. Next, we prove the

downward implications in the scheme.
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6.4.1 Manifest Scales

Let Y be a manifest variable with realization y that is independent of item

scores Xi and Xj given θ. For example, Y may be a function of the k−2 items

in the test without the items i and j, the sum score obtained on a different

test, or an indicator of group membership. Replacing the latent variable θ in

the latent scales defined in Equations 8, 9, and 10 by the manifest variable

Y yields their manifest scale (MS) analogues. For example, for i < j and for

x = 1, . . . ,m, an MS-CPM is defined as Cxi(Y ) ≤ Cxj (Y ) for all values of Y (cf.

Equation 8). Similarly, for i < j an MIIO is defined as E(Xi|Y ) ≤ E(Xj |Y )

for all y.

In Theorem 2, we prove that the LS-CPM implies the MS-CPM, and the

Corollary shows that an IIO implies an MIIO. The LS-ACM and the LS-CRM

do not imply their manifest analogues. Thus, if in empirical data analysis the

MS-CPM and MIIO are satisfied, some support is found for the theoretical LS-

CPM and IIO, respectively, but if the MS-ACM and the MS-CRM are satisfied,

this cannot be taken as support for their latent scale analogues. Because fitting

MS-ACMs and MS-CRMs do not support latent scales, they are not further

pursued here.

Theorem 2. The LS-CPM implies the MS-CPM.

Proof. Let F (θ) be the cumulative distribution function of θ. Multiplying both

sides of Equation 8 by P (Y = y|θ) and integrating over θ yields

Cxi(θ) ≤ Cxj (θ), ∀θ ⇔ (14)

P (Xi ≥ x|θ) ≤ P (Xj ≥ x|θ), ∀θ ⇒∫
θ

P (Xi ≥ x|θ)P (Y = y|θ)dF (θ) ≤
∫
θ

P (Xj ≥ x|θ)P (Y = y|θ)dF (θ). (15)

Because Y is conditionally independent of Xi and Xj , Equation 15 is equivalent
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to ∫
θ

P (Xi ≥ x, Y = y|θ)dF (θ) ≤
∫
θ

P (Xj ≥ x, Y = y|θ)dF (θ) ⇔

P (Xi ≥ x, Y = y) ≤ P (Xj ≥ x, Y = y) ⇔

P (Xi ≥ x|Y = y) ≤ P (Xj ≥ x|Y = y). (16)

The proof holds for all x and y, and all i < j.

IIO does not imply MS-CPM. For reasons of space, we do not provide a

counter example. Counter examples showing that the LS-ACM and the LS-

CRM do not imply their manifest analogues are complex and can be obtained

from the first author. For an appropriate choice of variable Y , in real data it

can be investigated whether the MS-CPM property (Equation 16) is satisfied.

The next section discusses how the MS-CPM method based on Equation 16

may be used in the analysis of real data.

Corollary. IIO implies MIIO.

Proof. Theorem 2 states that for x = 1, . . . ,m, for i < j, and all θ that

P (Xi ≥ x|θ) ≥ P (Xj ≥ x|θ)⇒ P (Xi ≥ x|Y = y) ≥ P (Xj ≥ x|Y = y)

for all y. This result can also be shown to hold for sums of cumulative response

probabilities. For x = 1, . . . ,m, for i < j, and all θ

m∑
x=1

P (Xi ≥ x|θ) ≥
m∑
x=1

P (Xj ≥ x|θ)⇒

m∑
x=1

P (Xi ≥ x|Y = y) ≥
m∑
x=1

P (Xj ≥ x|Y = y)

for all y. This implication is equivalent to

E(Xi|θ) ≥ E(Xj |θ)⇒ E(Xi|Y ) ≥ E(Xj |Y ); (17)
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also see Shaked and Shantikumar (1994, p. 4).

For an appropriate choice of variable Y , the MIIO property (i.e., the right-

hand side of Equation 17) can be investigated in real data so as to collect

support in favor of IIO. The corresponding MIIO method is discussed in the

next section. Because the most general latent scale, which is the IIO, implies

MIIO, by implication the previous three latent scales in the ordered series also

imply MIIO. In the same vein, because the LS-CPM implies the MS-CPM, the

preceding and most restrictive latent scales, the LS-ACM and the LS-CRM,

also imply the MS-CPM.

6.4.2 Increasingness in Transposition

Rosenbaum (1987a) used the manifest IT property (Hollander, Proschan, &

Sethuraman, 1977) to investigate whether a set of dichotomously scored items

forms a latent scale. We adapt the results presented by Rosenbaum (1987a) to

investigate whether a set of polytomously scored items constitute a latent scale

(Equations 8, 9, and 10). First, we introduce some notation.

The set of items and their indices T is divided into two subsets (S,R).

Subset S contains at least two items, and subset R contains the remaining

items. The scores on the items in S are collected in item-score vector xS , and

the scores on the items in R in item-score vector xR. We define item difficulty

as the expected score on an item across the distribution of θ, denoted F (θ):

that is, E(Xi) =
∫
E(Xi|θ)dF (θ), for i = 1, . . . , k. Let i and j be two items

from S, and let i < j denote that item i is at least as difficult as item j; that

is, E(Xi) ≤ E(Xj). Then, xi > xj means that the score on the more difficult

item i is higher than the score on the easier item j. Furthermore, let h(XR)

be a function of the scores on the items in R. For example, h(XR) may be the

sum score on the items in R, or it may be a single item score.

Vector x′S is defined as a transposition of vector xS , if one or more reversals

of two scores in vector xS produce vector x′S (Hollander et al., 1977). For exam-

ple, x′S = (1, 1, 0, 2) is a transposition of xS = (1, 2, 0, 1), because the reversal
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of x2 and x4 in xS produces x′S . Also, two reversals are needed to go from xS

to x′′S = (0, 1, 1, 2). Finally, x′′′S = (1, 2, 1, 2) and xS are not transpositions of

one another.

Next, we consider two vectors xS and x′S , which are transpositions of one

another, and define the partial order ’≺’ on these vectors. A partial order

xS ≺ x′S means that xS produces x′S when interchanging item scores in xS

implies that higher item scores are moved to the right while lower item scores

are moved to the left. In the previous example, xS produced x′S when the

higher score x2 = 2 was interchanged with the lower score x4 = 1. What

happens is that, given the item ordering E(X1) ≤ E(X2) ≤ E(X3) ≤ E(X4),

the ordering of item scores in the resulting vector x′S better matches the item

ordering by difficulty than in the original vector xS .

Let P
(
xS |h(XR)

)
be the probability of item-score vector xS conditional

on score function h(XR). Under some IRT models, such probabilities can be

ordered in XS (i.e., for different vectors xS) provided the item-score vectors

are partially ordered. More specifically, conditional on function h(XR), the

probabilities of two vectors xS and x′S , which are partially ordered by xS ≺ x′S ,

are ordered such that P
(
xS |h(XR)

)
≤ P

(
x′S |h(XR)

)
. When such an ordering

is possible, the probabilities are increasing in transposition in XS . Suppose,

the partially ordered vectors xS and x′S differ with respect to two or more

transpositions; then, successive transpositions step-by-step move higher scores

from xS to the right until x′S is obtained. Vectors xS and x′S and the vectors

obtained in each step moving from xS to x′S are collected in a set denoted V.

It may be noted that set V contains only those vector permutations that are

partially ordered. Then, the formal definition of functions that are IT in XS is

the following: P (.) is IT in XS for function h(.) if for all {xS ,x′S} ∈ V, which

have a partial ordering xS ≺ x′S , we have that

P
(
xS |h(XR)

)
≤ P

(
x′S |h(XR)

)
.

As an example, for the sake of simplicity we assume that R = ∅. Thus,
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S = T , so that P
(
xS |h(XR)

)
= P (xS). Now, because the vectors (2, 1, 1, 0)

and (0, 1, 1, 2) are partially ordered, the IT property implies that P (2, 1, 1, 0) ≤

P (0, 1, 1, 2).

Theorem 3. The LS-ACM implies IT.

Proof. The point of departure is Equation 11, which holds under the LS-ACM.

For 0 ≤ y < z ≤ m and i < j, Equation 11 is equivalent to

P (Xi = z|θ)P (Xj = y|θ)
P (Xi = y|θ)P (Xj = z|θ)

≤ 1. (18)

For dichotomously scored items with y = 0 and z = 1, Rosenbaum (1987a,

Theorem 1) showed that Equation 18 implies IT. We extend Rosenbaum’s proof

to polytomous items.

Let ks be the number of items in subset S, and let S \ {i, j} denote the

subset of ks− 2 items that remain in S after items i and j have been excluded.

For subset S including items i and j (i.e., {i, j} ∈ S), Equation 18 is equivalent

to

P (Xi = z|θ)P (Xj = y|θ)
P (Xi = y|θ)P (Xj = z|θ)

∏
u∈S\{i,j}

P (Xu = xu|θ)
P (Xu = xu|θ)

≤ 1. (19)

Because of local independence (Equation 1), Equation 19 can be written as

P (X1 = x1, . . . Xi = z, . . . ,Xj = y, . . . , Xks = xks |θ)
P (X1 = x1, . . . , Xi = y, . . . , Xj = z, . . . ,Xks = xks |θ)

≤ 1. (20)

The item-score vector in the numerator is denoted by xS and the item-score

vector in the denominator by x′S . It may be noted that xS and x′S are partially

ordered, xS ≺ x′S . We rewrite Equation 20 as

P (xS |θ)
P (xS′ |θ)

≤ 1. (21)

Hollander et al. (1977, Theorem 3.2) show that Equation 21 implies∫
P (xS |θ)
P (x′S |θ)

dF (θ) ≤ 1. (22)
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Finally, Equation 22 implies the manifest IT property,

P
(
xS |h(XR)

)
P
(
x′S |h(XR)

) ≤ 1⇔ P
(
xS |h(XR)

)
≤ P

(
x′S |h(XR)

)
(23)

(cf. Rosenbaum, 1987a, Theorem 1).

The other latent scales (LS-CRM, LS-CPM) and IIO do not imply IT.

Counter examples may be obtained from the first author. It may be noted

that Equation 23 holds for any conditioning variable Y that is independent

of the items in S, but that we used h(XR) to stay close to previous work

(Rosenbaum, 1987a; Sijtsma & Junker, 1996). The proof may be extended to

partially ordered vectors xS and x′S that differ with respect to two or more

transpositions following a step-by-step permutation of xS into x′S by successive

transpositions that move higher scores to the right, and applying Equation 20

successively. In the next section, we discuss how the IT method based on the

IT property can be used in the analysis of real data to collect support in favor

of the LS-ACM.

6.5 Methods for Data Analysis

For realistic numbers of items, the investigation of the MIIO, MS-CPM, and

IT properties produces multiple results, which have to be combined for each

property to decide whether that property holds in the data and, hence, provides

support for a particular latent scale. Ligtvoet et al. (in press) proposed a

method for dealing with multiple results when testing the MIIO property. Here,

we adapt this method to the MS-CPM and IT properties, but first we explain

the MIIO method (see Ligtvoet et al., in press, for details).

For each item-pair (i, j) (i < j), it is investigated whether it violates MIIO

(Equation 17). This produces 1
2 × k × (k − 1) Boolean outcomes on violation

of MIIO. The statistical testing procedure for one item-pair (i, j) is as follows.

Variable Y in Equation 17 is replaced by rest score Rij =
∑

i′ 6=i,j Xi′ , so that

MIIO is investigated by checking whether E(Xi|Rij = r) ≤ E(Xj |Rij = r) for
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r = 0, . . . , k − 2. If the sample means are reversely ordered (i.e., Xi|Rij = r >

Xj |Rij = r), a one-sided t-test is used for deciding whether the violation is

significant. To avoid testing violations that are too small on a scale ranging

from 0 to m to be of practical interest, violations smaller than m × .03 are

ignored. Adjacent restscore groups r, r + 1, l . . . containing few observations

may be joined to gain statistical power (Molenaar & Sijtsma, 2000, p. 67). If

one or more t-tests of violations in excess of m × .03 are significant, the item

pair violates MIIO.

If MIIO does not hold for all k items, items are removed one-by-one until

a subset remains for which MIIO holds (Ligtvoet et al., in press). A backward

item-selection procedure reaches this goal while removing as few items as pos-

sible. This is done in the first step by counting for each item how many of

the k − 1 item pairs in which the item is involved violate MIIO significantly

according to the t-test procedure. The item with the highest count is removed

first; for the remaining k − 1 items the counts are redone without the item

that was removed, and if there are item pairs violating MIIO, the item having

the highest count is removed; and this procedure is repeated until there are no

item-pairs left that violate MIIO. If two or more items have the highest count,

then the item that has the lowest scalability value is removed (Ligtvoet et al.,

in press). The same rest score based on k − 2 items is used throughout so as

to minimize the risk of chance capitalization. We adapt this strategy to the

MS-CPM (Equation 16) and IT (Equation 23) properties, thus producing the

MS-CPM and IT methods.

For the MS-CPM property, let P (Xi ≥ x|Y = y) and P (Xj ≥ x|Y = y)

in Equation 16 be denoted pair of manifest ISRFs (i, j, x). For each pair of

manifest ISRFs (rather than for each item pair) it is investigated whether the

pair violates the MS-CPM property, which produces 1
2×k×(k−1)×m Boolean

outcomes. The testing procedure for one pair of manifest ISRFs (i, j, x) is

as follows. Just as for MIIO, variable Y in Equation 16 is replaced by rest

score Rij . Hence, the MS-CPM property is investigated by checking whether

P (Xi ≥ x|Rij = r) ≤ P (Xj ≥ x|Rij = r) for all r. If the sample fractions
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are reversely ordered (i.e., P̂ (Xi ≥ x|Rij = r) > P̂ (Xj ≥ x|Rij = r), a z-test

(Molenaar & Sijtsma, 2000, p. 78) is used to decide whether the violation is

significant . Following recommendations by Molenaar and Sijtsma (2000, pp.

67-70), violations smaller than .03 are ignored.

For the IT property (Equation 23), the method is adapted as follows. We

consider item pairs, so that item-score vectors xS and xS′ in Equation 23 are

reduced to two elements: xS = (u, v) and xS′ = (v, u) (u = 0, . . . ,m − 1; v =

u + 1, . . . ,m). Consistent with MIIO and MS-CPM, function h(XR) = Rij .

Let P
(
XS = xS |h(X)

)
= P (Xi = u,Xj = v|Rij) and P

(
XS′ = xS′ |h(X)

)
=

P (Xi = v,Xj = u|Rij) be the pair of bivariate conditional probabilities (i, j, u, v).

For each pair of bivariate conditional probabilities, it is investigated whether

the pair violates the IT property. This produces 1
2×k×(k−1)× 1

2×m×(m−1)

Boolean outcomes. The testing procedure for pair (i, j, u, v) is as follows. IT

is investigated by checking whether P (Xi = v,Xj = u|Rij = r) ≤ P (Xi =

u,Xj = v|Rij = r). If the sample fractions are reversely ordered (i.e., P̂ (Xi =

v,Xj = u|Rij = r) > P̂ (Xi = u,Xj = v|Rij = r)), the McNemar (1947) test is

used to decide whether the violation is significant. Let nuv|r and nvu|r denote

the sample sizes of the relevant fractions, then under the null-hypothesis that

the two bivariate conditional probabilities are equal,

X2 =
(nuv|r − nvu|r)2

nuv|r + nvu|r

has an asymptotic chi-square distribution with 1 degree of freedom. As with

MS-CPM, violations smaller than .03 are ignored.

For the MS-CPM and IT methods, the backward item-selection procedures

are formally identical to that of the MIIO method, and are not repeated here.

For confirmatory results from the MS-CPM method, we infer that the LS-CPM

supports the final item subset, and for confirmatory results from the IT method,

we infer that the LS-ACM supports the final item subset. Many different

strategies for testing the IT property are possible (see Sijtsma & Junker, 1996,

p. 90) but they are beyond the scope of this study.
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Table 6.1: Violations of MIIO, MS-CPM, and IT for Coping-Strategy Data.

Item Mean MIIO MS-CPM IT

1. Call environmental agency .264 0 0 2 0 1 NA
2. File a complaint with producer .353 0 0 1 0 0 0
3. Go elsewhere for fresh air .535 0 0 4 NA NA NA
4. Experience unrest .651 0 0 2 0 1 0
5. Try to find solutions .818 2 NA NA NA NA NA
6. Do something to get rid of it .860 1 0 3 NA NA NA
7. Talk to friends and family .983 1 0 2 0 1 0
8. Search source of malodor 1.849 0 0 0 0 0 0

Note: NA = Not available.

6.6 Real-Data Examples

We discuss two real-data examples to illustrate how the MIIO, MS-CPM, and

IT methods may be used to investigate the latent scales. We used the function

check.iio from the R package mokken (Van der Ark, 2007).

6.6.1 Ordering coping strategies

Data came from eight polytomously scored items administered to 828 subjects

(Cavalini, 1992) asking them how they coped actively with the bad smell from

a factory in the neighborhood of their homes. Table 6.1 shows the items or-

dered and numbered by increasing item mean. Items have four ordered answer

categories, “never” (score 0), “’seldom” (1), “often” (2), and “always” (3) (i.e.,

m = 3). The items constitute an ordinal scale according to the monotone

homogeneity model (Sijtsma & Molenaar, 2002, chap. 3). The items require

global assessment using a rating scale (Van Engelenburg, 1997); hence, the

LS-CPM may be the appropriate model to analyze the data. The aim of the

analysis was to select a subset of items that constitute an LS-CPM scale, and

represent a set of invariantly ordered coping reactions.

First, we tested the data for MIIO (Equation 17), which is the least restric-

tive manifest ordering property, to identify items grossly violating an invariant

ordering. We found that two out of the 1
2×8×7 = 28 item pairs (i.e., item-pairs
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(5,6) and (5,7)) violated MIIO. Table 6.1 (fourth column) shows that item 5

was included in two item pairs violating MIIO, and items 6 and 7 were each in-

cluded in one item pair. Removal of item 5 from the 8-item set (Table 6.1, fifth

column) resulted in a 7-item set without violations, which provided support for

IIO.

Next, we tested the MS-CPM (Equation 16) for the remaining 7 items, and

found that seven out of the 1
2 × 7× 6× 3 = 63 pairs of manifest ISRFs showed

violations (Table 6.1; sixth column). Items 3 and 6 together were involved in

all violations. Removal of these items from the 7-item set (Table 6.1, column

7) resulted in a 5-item scale for which the MS-CPM could not be rejected, and

which provided support for the LS-CPM.

For the purpose of illustration, we also investigated the IT property (Equa-

tion 23) for the remaining 5 items. Two out of the 1
2 × 5× 4× 1

2 × 4× 3 = 60

pairs of bivariate conditional probabilities violated IT; that is, P̂ (X1 = 2, X4 =

3|Rij ∈ {6, . . . , 9}) > P̂ (X1 = 3, X4 = 2|Rij ∈ {6, . . . , 9}) and P̂ (X1 = 2, X7 =

3|Rij ∈ {6, . . . , 9}) > P̂ (X1 = 3, X7 = 2|Rij ∈ {6, . . . , 9}). Both were sig-

nificant. Removal of item 1 from the 5-item set (Table 6.1, seventh column)

resulted in a scale without violations, thus providing support for the LS-ACM.

6.6.2 Dutch History

The data were scores on three items collected from 752 students. The items

were selected from a 40-item exam on Dutch history to illustrate the LS-ACM

rather than the LS-CPM used in the first example. In each of the items,

four historical events are presented and the student is asked whether the first

event preceded the second, the second the third, and the third the fourth.

The remaining 37 items had different item formats and could not be used for

illustrating the LS-ACM.

The events of zero or one correct answer were relatively rare. Hence, the

three items were scored as follows: 0 for zero or one correct answer; 1 for two

correct answers; and 2 for three correct answers. Items were numbered following

their ascending sample means, X1 = 1.243, X2 = 1.327, and X3 = 1.386. The
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task structure suggests that the subtasks may be solved in an arbitrary order

(Van Engelenburg, 1997). Thus, the LS-ACM may be the appropriate model

for investigating the item ordering. With only three items, item selection is

not of interest here. It may be noted that for three items, the rest score is the

score on one item only.

The LS-ACM was investigated checking 1
2 × 3× 2× 1

2 × 3× 2 = 9 pairs of

bivariate conditional probabilities (Equation 23), one of which was significant:

P̂ (X2 = 1, X3 = 0|X1 = 0) > P̂ (X2 = 0, X3 = 1|X1 = 0): X2 = 3.90, df = 2,

p = .048. Based on the IT method, the LS-ACM should be rejected. We also

used the MS-CPM and MIIO methods for data analysis. For MS-CPM, we

found that two out of the six pairs of manifest ISRFs violated the MS-CPM.

For MIIO we did not find violations.

6.7 Summary and Discussion

Several applications of tests are based on the assumption that the ordering of

the items by difficulty is the same for every subject to which the test is ad-

ministered, a property known as invariant item ordering. In this study, the

concept of IIO for a set of polytomous items was extended to three classes

of polytomous IRT models, which are the latent-scale adjacent category mod-

els, the latent-scale continuation ratio models, and the latent-scale cumulative

probability models. It was proven that these latent scales are hierarchically or-

dered, and that each implies the IIO property using progressively weaker forms

of agreement among respondents with respect to the ordering of the items on

latent variable θ.

The significance of this result was that it enabled the derivation of three

observable consequences. The latent-scale adjacent category model implies

the property of increasingness in transposition in partially ordered item-score

vectors. The presence of this structure in the data supports the latent-scale

adjacent category model, which implies IIO. The latent-scale cumulative prob-

ability model implies the manifest-scale cumulative probability model (MC-
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CPM) property, of which the presence in the data supports the model and,

consequently, IIO. Finally, the IIO property implies the manifest IIO property,

which can be used to find direct support for IIO without the intervention of a

polytomous IRT model. If the item type used matches the structure of one of

the latent scales, it may be preferable to first investigate whether this model

fits the data. Unfortunately, so far we have not been able to derive observable

consequences for the latent-scale continuation ratio model. This is a target for

future research.

Simply checking the MIIO, MS-CPM, and IT properties in data collected

from realistic test lengths produces much detailed results, which complicates

drawing inferences about the fit of a latent scale. Hence, we adapted a method-

ology for investigating MIIO (Ligtvoet et al., in press), which reduces large

numbers of detailed results to one final outcome, to be used also for investigat-

ing MS-CPM and IT. For example, for 20 items with five answer categories,

the IT method produces 900 series of local tests and, depending on the number

of rest scores left after joining small-frequency scores, each typically contains

four or five tests. We only count for each item the number of violations, and

use these counts in the backward item-selection algorithm.

Rather than using local tests, one may prefer a global goodness-of-fit statis-

tic, which assesses all violations simultaneously (but see Molenaar, 2004, who

warns against the lack of diagnostic information provided by such global test

results). Marginal models are a viable approach for simultaneous testing (e.g.,

Van der Ark, Croon, & Sijtsma, 2008). We ignored small violations of the

MIIO, MS-CPM, and IT properties but did not adjust the nominal Type-I

error-rate for multiple testing, which is consistent with model-fit investigation

in nonparametric IRT (Sijtsma & Molenaar, 2002). More research is needed

to find the proper balance between pre-selecting ignorable sample violations

and an adequate Type I error. Different choices can be made with respect

to conditioning variable Y . For the investigation of IT, the number of items

investigated simultaneously may be varied.

Only few studies have addressed the ordering of polytomously scored items,
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let alone IIO (for exceptions, see Ligtvoet et al., in press; Sijtsma & Hemker,

1998). This is remarkable because many test applications assume that the item

ordering is the same for all subjects. However, as a rule this is not empirically

established, and it seems that often it is not realized that IIO is a strong

property which cannot be assumed to hold just like that. This study provides

a step in the direction of the development of a sound psychometric theory

for latent scales and IIO of polytomously scored items, and of data-analysis

methods that can be used for investigating whether a latent scale or IIO holds.
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Epilogue

IIO is a highly underrated property of a test or questionnaire. Both test theo-

rists and practitioners assume all too easy that if an item is more difficult than

another item for a particular subject that this difficulty ordering also holds for

all other subject from the population of interest. This thesis not only shows

that this is indeed a strong assumption that is not easily satisfied for a particu-

lar test or questionnaire in a particular group but also that the investigation of

IIO in itself is difficult to accomplish and that many conceptual and statistical

problems need to be overcome. This thesis provides a set of essays on possible

avenues for IIO research but it is only a start.

Two avenues for future research with respect to IIO may be the following.

First, chapter 5 showed that an excessively large sample is needed in order to

distinguish realistic numbers of IRFs. If the purpose of research indeed is to

distinguish the k IRFs from the items in the test of questionnaire, selecting

an item subset with distinguishable and nonintersecting IRFs leads to an un-

acceptable loss of information, both with respect to test-score reliability and

coverage of the attribute measured by the test. The solution may be too dis-

tribute the k items into clusters of items in such a way that the clusters are

invariantly ordered ignoring the ordering of items within clusters.

For example, we may consider an invariant cluster ordering based on average

IRFs within clusters and require that these averages do not intersect across

different clusters. Wainer, Bradlow, and Wang (2007) provide suggestions for

how to cluster the items into so-called item testlets. If the original k items

are dichotomously scored (chapter 5), the methods for investigating IIO for
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polytomously scored items (chapters 2, 3, 4 and 6) can be readily applied,

with the conditional expectations taken over the item scores for those items

pertaining to the same cluster. Hence, the first avenue for future IIO research

may consider a courser approach to IRT by taking clusters of items as the unit

of interest, rather than each individual item.

The second future avenue for IIO research corresponds to the situation

where the actual ordering of items is subordinate to the global evaluation of

IIO. For example, in person-fit analysis (e.g., Emons, Sijtsma, & Meijer, 2004)

IIO is assumed for large numbers of items but only to allow the person response

function to be fitted, for example, by means of kernel smoothing. Future re-

search should reveal the robustness of such curve fitting to minor violations of

IIO. For example, simulation studies may focus on the required minvi value or

HT value (chapter 2) for which the person response function decreases as the

items become more difficult.

In general, the importance of IIO or the required level of agreement of sub-

jects on the ordering of items (e.g., chapter 6) depends on the application of the

test or the questionnaire. If one is only interested in the ordering of subjects by

means of a test score, the monotonicity assumption (in addition to unidimen-

sionality and local independence) may suffice (e.g., chapter 4) and IIO need not

be assessed. Most applications for which a test is intended may not be directed

at the item difficulties. Yet, as my role in statistics is not to find excuses for

researchers not to test certain assumptions, I would encourage test developers

to assess whether or not IIO holds for sets of items, even if it only serves as a

standard against which the users of a test can assess whether the test actually

matches the goal of their application (or method of item administration). Also,

a note in a test manual concerning IIO may warn researchers that the attained

ordering of items on the basis of the averaged values may not give information

about the item difficulties at the lower aggregate level of individual subjects.
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Summary

An invariant item ordering (IIO) means that the items of a test have the same

ordering, according to their difficulty or attractiveness, for all subjects for who

the test was intended. It also means for each subject, that the scores on the

items are expected to be lower as the items become more difficult. IIO facilitates

the interpretation of individual test performance and the comparability of test

performances of different subjects. However, IIO is also a strong assumption

and difficult to satisfy in many tests. As only few item response theory models

for analyzing test data imply IIO, only a few methods and models are available

to assess whether or not IIO holds. In this thesis, several new models are

developed that imply IIO, and methods for assessing IIO holds are generalized

to facilitate the research for a wide range of practical applications.

In Chapter 2, method manifest IIO was proposed for polytomously scored

items. This method assesses whether or not pairs of item response functions for

polytomously scored items intersect. Based on the outcome of method manifest

IIO, inferences about IIO can be made for both the entire test or for sets of

items. If it is concluded that IIO holds for a (subset of items from the) test,

then the generalized polytomous coefficient HT expresses the accuracy of this

item ordering. A data example illustrates the applicability of method manifest

IIO in combination with coefficient HT . Tentative rules of thumb are suggested

to interpret the accuracy of the item ordering as expressed by coefficient HT .

In Chapter 3, different items are allowed to have different numbers of score

categories. For such items, the combination of monotone increasing item re-

sponse functions and IIO is investigated simultaneously. In this chapter, par-
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ticular emphasis is given to high stakes testing, where the interpretation of the

ordering of items has a serious impact on the decisions made about subjects.

Two methods are investigated that allow for monotone increasing nonintersect-

ing item response functions to be selected from a test, and the procedure for

IIO research is illustrated by an application of the methods to data collected

by means of an Alzheimers’ symptoms checklist.

In Chapter 4, an approach for testing monotonicity and IIO by means of

constrained latent class models is explored, where the latent variable is ap-

proximated by a small number of discrete latent classes. The Gibbs sampling

procedure is used to estimate the parameters of the ordinal constrained latent

class models. The constraints correspond to the assumptions of monotonicity

and IIO. Posterior checks are used to identify the items that do not agree with

the constraints corresponding to monotonicity and IIO. The procedure for se-

lecting items from the test that satisfy the imposed restrictions is illustrated

using a real data set.

In Chapter 5, the perspective on IIO is such that item response functions

are required to be distinguishable in the data before the conclusion of IIO is

drawn. For realistic sample sizes, it is shown that no more than six items

can be assumed to fulfill strict IIO. Another result is that for IIO research

most subjects need to be sampled from the extremes of the latent variable

distribution, which is where the fewest observations are located. The latter

finding explains the need for large samples to be able to reliably establish IIO.

In Chapter 6, a family of latent scales for polytomously scored items is

defined. Latent scales are item response theory models that imply IIO. The

different latent scales are shown to be hierarchically related, and for different

levels of the hierarchy testable consequences are derived, allowing the assess-

ment of different definitions of item difficulty ordering. The methodology of

Chapter 2 is used to select subsets of items that satisfy a particular latent scale

from larger sets. Two data examples illustrate the viability of the approach.



Samenvatting

Een invariante item ordening (IIO) betekent dat de items van een test dezelfde

ordening hebben met betrekking tot de moeilijkheden van de items, voor alle

personen voor wie de test bedoeld is. Het betekent ook dat voor elk persoon

de scores op de items naar verwachting afnemen als de items moeilijker wor-

den. Als zodanig maakt IIO de interpretatie van individuele testprestaties

en de vergelijkbaarheid van testprestaties van verschillende personen makke-

lijker. Echter, IIO is ook een strenge aanname waar moeilijk aan is te voldoen.

Aangezien slechts weinig modellen voor het analyseren van testgegevens IIO

impliceren, is er nog weinig bekend over IIO en zijn er slechts enkele methoden

en modellen beschikbaar om IIO te onderzoeken. In dit proefschrift worden

verschillende nieuwe modellen ontwikkeld die wel IIO impliceren en worden

methoden voor IIO onderzoek gegeneraliseerd naar een breder scala aan prak-

tische toepassingen.

In hoofdstuk 2 wordt methode manifest IIO voorgesteld voor het analy-

seren van polytoom gescoorde items. Deze methode inspecteert voor paren van

item response functies of ze snijden. Op basis van de resultaten van methode

manifest IIO, kunnen gevolgtrekkingen over IIO gemaakt worden voor zowel

de gehele test als voor een verzameling van items. Als wordt geconcludeerd dat

IIO geldt voor een (deelverzameling van items uit de) test, dan geeft de gege-

neraliseerde polytome coëfficiënt HT een uitdrukking voor de nauwkeurigheid

van deze itemordening. Een datavoorbeeld illustreert de toepasbaarheid van

de methode manifest IIO in combinatie met de coëfficiënt HT . Voorlopig

vuistregels worden voorgesteld voor de interpretatie van de nauwkeurigheid
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van de itemordening, zoals uitgedrukt in coëfficiënt HT .

In hoofdstuk 3 worden items beschouwd met verschillende aantallen score-

categorieën. Voor dergelijke items wordt tegelijkertijd gekeken naar monotone

stijging van de item response functies en IIO. In dit hoofdstuk wordt met name

aandacht besteed aan tests waarbij de interpretatie van de volgorde van de

items grote invloed heeft op de beslissingen over personen. Twee methoden

worden onderzocht die het mogelijk maken om monotone toenemende niet-

snijdende item response functies uit een test te selecteren en de procedure voor

IIO onderzoek wordt gëıllustreerd door een toepassing op symptomen van de

ziekte van Alzheimer.

In hoofdstuk 4 wordt een aanpak voor het toetsen van monotonie en IIO

onderzocht door middel van gerestricteerde latente klassenmodellen, waarbij

de latente variabele wordt benaderd door een klein aantal latente klassen. De

Gibbs sampler wordt gebruikt om ordinale restricties op te leggen aan de latente

klassenmodellen, waarbij de restricties overeen komen met de veronderstel-

lingen van monotonie en IIO. A posteriori controles worden gebruikt om de

items die niet overeenkomen met de aannamen van monotonie en IIO te iden-

tificeren.

In hoofdstuk 5 wordt IIO bekeken vanuit het perspectief dat item response

functies onderscheidbaar moeten zijn alvorens uitsluitsel te geven over IIO.

Voor een realistische steekproefomvang wordt aangetoond dat men een strikte

vorm van IIO niet zomaar kan aannemen voor meer dan zes items. Een ander

gevolg is dat voor IIO-onderzoek de meeste personen nodig zijn uit de staarten

van de latente verdeling waar de minste personen zich bevinden. Deze laatste

bevinding verklaart de noodzaak van grote steekproeven om IIO op betrouw-

bare wijze vast te kunnen stellen.

In hoofdstuk 6 wordt een familie van latente schalen gedefineerd voor poly-

toom gescoorde items. Latent schalen zijn item response theorie modellen die

IIO impliceren. De verschillende latente schalen blijken hiërarchisch gerela-

teerd te zijn en voor verschillende niveaus van de hiërarchie worden toetsbare

consequenties afgeleid, waardoor de latente schalen empirisch onderzocht kun-



115

nen worden. De methode van IIO-onderzoek uit hoofdstuk 2 wordt gebruikt

voor het selecteren van items die aan een bepaalde latente schaal voldoen.

Twee voorbeelden illustreren de procedure voor het onderzoek naar de latente

schalen.


