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Abstract

This paper introduces three methodological advances to study the optimal design of
static and dynamic markets. First, we apply a mechanism design approach to characterize
all incentive-compatible market equilibria. Second, we conduct a normative analysis, i.e.
we evaluate alternative competition and innovation policies from a welfare perspective.
Third, we introduce a reliable way to measure competition in dynamic markets with non-
linear pricing. We illustrate the usefulness of our approach in several ways. We reproduce
the empirical finding that innovation levels are higher in markets with lower price-cost
margins, yet such markets are not necessarily more competitive. Indeed, we prove the
Schumpeterian conjecture that more dynamic markets characterized by higher levels of
innovation should be less competitive. Furthermore, we demonstrate how our approach
can be used to determine the optimal combination of market regulation and innovation
policies such as R&D subsidies or a weakening of the patent system. Finally, we show
that optimal markets are characterized by strictly positive price-cost margins.
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1. Introduction

Recent antitrust legislation, including the Microsoft and Intel cases and the Glaxo/Wellcome

merger, has rekindled the controversy whether dynamic sectors, where firms invest in R&D to

improve products and production processes, should be treated differently from static sectors,

where products and technologies are more or less given. Specifically, the question is whether

mergers and anti-competitive conduct by firms, e.g. the use of exclusive contracting, tying, and

bundling, should be evaluated more leniently for dynamic sectors. This question dates back

to Schumpeter (1942) – the main reason no consensus has emerged is the lack of a tractable

framework in which (i) the welfare effects of competition and innovation can be evaluated and

(ii) competition can be measured in a reliable way.

Regarding (i), the current literature that studies the effects of competition on innovation is

positive, not normative, in nature: if an industry becomes more competitive, does innovation

increase? Schumpeter (1942) argued that monopoly power is needed to foster innovation. An

opposing viewpoint was first expressed by Arrow (1962), who formalized the idea that competi-

tion stimulates innovation. Many subsequent theoretical papers surveyed by Vives (2008) and

Schmutzler (2010) indeed find a positive relation between competition and innovation (although

exceptions exist). This suggests that competition policy should be more aggressive for dynamic

sectors: as in static sectors, more intense competition leads to lower prices and, hence, less

deadweight loss, and, in addition, competition stimulates innovation. However, this inference

is logically incorrect – a normative conclusion cannot follow from a positive observation.

The correct normative question is whether the welfare-maximizing competition intensity

is higher in dynamic sectors. To underline that normative and positive implications need

not coincide, below we introduce a model where more intense competition, in the sense of

lower price-cost margins, leads to more innovation.1 Yet, the welfare-maximizing competition

intensity is lower in dynamic sectors.

Regarding (ii), how should competition intensity be measured in dynamic sectors? Evans

& Schmalensee (2001), Gilbert & Tom (2001), Hahn (2001), Katz & Shelanski (2005), and

Katz & Shelanski (2007) provide arguments why standard competition measures, including

concentration, profits, and price-cost margins, are misleading in dynamic sectors. That is,

high concentration, high profits, and a high price-cost margin do not necessarily imply a lack of

1Although the empirical evidence is also somewhat mixed, recent papers that document a positive effect of
competition on innovation/productivity include Aghion, Bloom, Blundell, Griffith & Howitt (2005), Bassanini
& Ernst (2002), Galdon-Sanchez & Schmitz (2002), Nickell (1996), Symeonidis (2002), and Porter (1990).
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competition. In order to measure competition in a meaningful and reliable way, we introduce an

alternative index that applies to both static and dynamic industries. The intuitive idea behind

our competition index is that more competitive industries exhibit more payoff inequality, i.e.

profit differences across firms of varying efficiency levels grow when competition increases.

The main contribution of this paper is to introduce a framework in which the welfare effects

of competition can be analyzed, taking into account the effects of competition on innovation.

To allow for a general yet tractable analysis, we use a mechanism design approach to describe

the set of market equilibria. We prove Schumpeter’s conjecture that dynamic markets should

be less competitive, even when more intense competition leads to more innovation. We further

illustrate the usefulness of our approach by considering the interaction between competition

regulation and innovation policies.2 Finally, we show that optimal markets are characterized

by strictly positive price-cost margins.

Our paper adds to a large and growing theoretical literature that considers the relation be-

tween competition and innovation, see, for instance, the surveys by Vives (2008) and Schmut-

zler (2010) and references therein. Compared to previous literature, our approach has several

distinguishing features that we detail below: (i) we apply a mechanism design approach to

characterize market equilibria, (ii) we evaluate alternative competition and innovation policies

from a welfare perspective, and (iii) we introduce a novel way to measure competition. Im-

portantly, we allow for the possibility of non-linear pricing since this is common practice in

many dynamic sectors, e.g. the telecom, pharmaceutical, semi-conductor, software, PC, cable,

and petroleum-refining industries. Also many static sectors, including the airline and cereal

industries, frequently employ non-linear pricing. In contrast to prior literature, we therefore do

not assume that firms are restricted to use linear prices.

This paper is organized as follows. Section 2 details the methodological advances of our

approach. In Section 3 we reproduce the positive finding that innovation levels are higher in

markets with lower price-cost margins. We define the planner’s welfare-maximization problem

and derive the optimal market structure. In Section 4 we consider implications for regulatory

design and prove Schumpeter’s conjecture that more dynamic markets should be less compet-

itive. For ease of exposition we make a number of simplifying assumptions to establish these

results, which are relaxed in Section 5. Section 6 concludes. All proofs are in the Appendix.

2Segal & Whinston (2007) analyze how innovation is affected by antitrust policies that restrict incumbent
behavior, e.g. the use of exclusive contracts or predatory behavior. The basic tradeoff is that the protection
of entrants raises their profits initially but lowers their profits once they become incumbents. In general, the
effect of entrant protection on their (discounted) profits and innovation levels is not clear cut but cases can be
identified where it results in higher levels of innovation.
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2. Methodological Advances

In this section we introduce three methodological innovations to study the design of static and

dynamic markets. First, we conduct a normative analysis whereas most policy conclusions are

currently derived from positive results, e.g. whether or not competition stimulates innovation.

Second, to study the impact of competition on innovation and welfare in a general yet tractable

way, we employ a mechanism design approach to characterize all market equilibria. Third, we

introduce a robust measure of competition. Many papers that study the correlation between

competition and innovation use the price-cost margin as a measure of competition. As we argue

below, when firms can reduce their production costs and use non-linear pricing, the price-cost

margin is not a reliably measure. We end this section with a simple example to illustrate why

the informational rents needed to ensure incentive compatibility preclude perfectly-competitive

market outcomes.

2.1. Normative Approach

The discussion whether competition policy should be less or more strict in dynamic sectors

typically focuses on the positive question whether more intense competition stimulates inno-

vation. For example, the “Schumpeterian school,” e.g. Katz & Shelanski (2005) and Ahlborn,

Denicolo, Geradin & Padilla (2006), argues that competition policy should be more permissive

in dynamic sectors because market power fosters innovation. However, a normative analysis is

needed to justify this conclusion, i.e. competition policy should be more permissive only if the

welfare-maximizing level of competition is lower in dynamic sectors. To underline the impor-

tance of a normative approach, below we introduce a model that replicates the finding of most

theoretical papers that more intense competition (in the sense of lower price-cost margins) leads

to more innovation. Yet, we show that the welfare-maximizing competition intensity should

be lower in dynamic sectors compared to static ones, and, hence, competition policy should be

less (not more) strict.

2.2. Mechanism Design

The effect of competition on innovation is typically analyzed for specific market environments.

For instance, a common approach is to assume Cournot or Betrand competition and determine

the effects of increased product substitutability, see, e.g., Vives (2008), and references therein.

Since a change in the substitution elasticity between products affects utilities, a welfare analysis
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is not meaningful in this context. More importantly, even if we change the degree of competi-

tion without affecting utilities, e.g. by changing conduct in the market, the analysis typically

becomes intractable without providing general insights.

To facilitate a more general analysis, we employ a mechanism design approach to charac-

terize the set of market equilibria. Myerson’s (1981) revelation principle implies that for each

market form there is an equivalent direct mechanism in which it is optimal for a firm to reveal

its true type θ, e.g. the firm’s marginal cost, to receive equilibrium revenue, R(θ), and produce

equilibrium output, q(θ). By specifying a welfare function that takes into account the costs and

benefits of innovation, the mechanism design approach allows us to derive the optimal revenue

and output schedules {R(·), q(·)}. Admittedly, a competition authority or regulator typically

cannot dictate arbitrary output and revenue schedules. However, instruments that implement

incremental changes are possible and the mechanism design approach allows the regulator to

choose such adjustments in an optimal manner. This would not be possible by analyzing only

two (or more) specific market forms such as Bertrand and Cournot competition.3

Indeed, as a consequence of comparing only two specific market forms, the current literature

comes with ambiguous predictions regarding the effects of competition on innovation. For

example, in a recent survey, Schmutzler (2010) stresses that some theoretical papers find that

more competition leads to more innovation while others conclude the opposite. Because the

models in the survey differ in a number of aspects it is hard to grasp what drives these opposite

conclusions. In contrast, as we show below, the mechanism design approach employed in

this paper provides clear-cut predictions about how the optimal level of competition varies in

response to changes in underlying market parameters. Furthermore, it allows us to study the

interaction between market regulation and innovation policies such as R&D subsidies.

2.3. Competition Measure

There are several reasons why the familiar price-cost margin is not suitable as a competition

measure in dynamic markets. First, it may dramatically underestimate market power when

firms can use non-linear pricing. To illustrate, consider a monopolist who uses a two-part tariff

with marginal price equal to marginal cost and a fixed fee to appropriate consumer surplus. To

conclude there is no market power simply because the price-cost margin is zero is incorrect.4

3Suppose for certain parameters, Bertrand competition leads to higher welfare than Cournot competition. If
the current level of competition is somewhere in between Bertrand and Cournot competition, it does not follow
that a small step towards Bertrand competition will increase welfare.

4Calculating the price-cost margin with the fixed fee included does not resolve the problem – it would result
in a positive price-cost margin suggesting there is a deadweight loss. However, depending on the model, there
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Second, in dynamic markets, firms can innovate to reduce their costs. Typically, conditional

on cost, a high price-cost margin is interpreted as evidence of market power. However, condi-

tional on price, a high price-cost margin signals efficiency. In other words, in dynamic markets,

the price-cost margin is an ambiguous measure that cannot differentiate between market power

and efficiency differences.

Third, standard competition measures can be misleading in dynamic industries where com-

petition is often for the market rather than on the market.5 That is, firms compete fiercely

in terms of R&D and the firm with the best product is likely to capture most of the market.

Hence, in terms of market shares, the product market is (very) concentrated. But this does not

imply a lack of competition. Further, as mentioned above, in many dynamic industries (such as

the software and pharmaceutical industries), marginal costs are close to zero resulting in price-

cost margins close to 1. Finally, because R&D involves high risks, the return on a successful

product will be high. Hence, profits in dynamic markets tend to be high, but, again, this does

not imply a lack of competition since the ex ante expected return on R&D investments may be

modest. Thus traditional competition measures such as concentration, price-cost margins, and

profits can be misleading in dynamic sectors.

We therefore employ an alternative measure of competition, which is based on the idea that

competition raises payoff inequality across different types of firms. Our competition measure

is not restricted to markets and can also be applied to other environments, e.g. contests,

auctions, tax schemes, etc. Let F (θ) denote the distribution of firms’ types, with support [θ, θ̄]

and associated density f(θ), and let ΠA(θ) and ΠB(θ) denote the profit of a firm of type θ in

environments A and B respectively. Throughout we use the convention that a higher θ reflects

a more efficient type, e.g. a firm with lower production costs, so that Π′(θ) > 0.

Definition 1. Environment B is more competitive than environment A when ΠB(θ) is a convex

transformation of ΠA(θ), or, equivalently, when IB(θ) ≥ IA(θ) for all θ, where6

I(θ) ≡ Π′′(θ)

Π′(θ)
(2.1)

Note that I(θ) is unaffected when a constant is added to all payoffs, i.e. lump sum taxes have

need not be such inefficiency.
5See, for instance, Ahlborn et al. (2006), Evans & Schmalensee (2001), Gilbert & Tom (2001), Katz &

Shelanski (2005), and Katz & Shelanski (2007).
6To see that these are equivalent definitions, let φ : IR+ → IR+ denote an increasing function and let

ΠB(θ) = φ(ΠA(θ)). Then IB = IA + (φ′′/φ′)Π′, so IB ≥ IA if and only if φ is convex.
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no effect. Likewise, I(θ) is unaffected when all payoffs are multiplied by a constant, i.e. it is

invariant with respect to changes in the unit of measurement.

To see how Definition 1 relates to payoff inequality, consider the familiar Lorenz curve

L(θ) =

∫ θ

θ
Π(θ)dF (θ)

∫ θ̄

θ
Π(θ)dF (θ)

(2.2)

which is increasing in θ with L(θ) = 0 and L(θ̄) = 1. The basic idea behind our notion of more

competition is that it results in an increase in payoff inequality, which means that the Lorentz

curve shifts down.7

Proposition 1. A more competitive environment results in more payoff inequality, i.e. LB(θ) ≤
LA(θ) for all θ.

The next two examples demonstrate how I(θ) can be used to define an increase in competition.

The first example shows that, unlike the price-cost margin, our measure of competition can be

applied to non-market contexts.8

Example 1 (progressive taxes). Consider an education-signaling model à la Spence, where

workers make take-it-or-leave-it offers to firms consisting of an education level, e, and a wage,

w. If the offer is accepted, the worker’s payoff is Πw = (1 − τw)w − e/(2θ) and the payoff of

the firm is Πf = θ − w, otherwise the worker’s payoff is Πw = −e/(2θ) and the firm’s payoff

is Πf = 0. Here θ ∈ [0, 1] is the workers type or “ability,” which is uniformly distributed and

privately known, and τ < 3/4 plays the role of a progressive tax. It is straightforward to derive

the separating equilibrium for this setup: e(θ) = θ2(1− 4
3
τθ) and w(θ) = θ, resulting in worker

profits of Πw = θ(1
2
− 1

3
τθ). Hence, our competition measure is

I(θ) =
1

θ − 3
4τ

which is decreasing in τ , i.e. more progressive taxation corresponds to less intense competition

between workers.
7It should be stressed that a similar argument does not apply to the firms’ profits directly. Indeed, an increase

in competition does not preclude higher profits for (some) firms. Consider a homogeneous good duopoly with
linear demand p = 1−q1−q2, where firm i = 1, 2 has constant marginal costs ci. It is routine to verify that for c1

substantially below c2, firm 1 has higher profits under Bertrand competition than under Cournot competition,
even though Bertrand is typically seen as more competitive.

8Boone (2008, p. 1250) defines the index I(n) = ln(Cn(q, n)) where C denotes production costs, q output
and n a firm’s efficiency level. For the case of a market context, this index is related to the one of Definition 1.

6



Example 2 (Bertrand competition). Consider a model of Bertrand competition with

n ≥ 1 firms. A firm’s constant marginal cost is given by c = 1− θ where θ ∈ [0, 1] is uniformly

distributed and privately known. Demand is D(p) = (1− p)α where α ≥ 0 reflects the demand

elasticity (α = 0 corresponds to the standard example of completely inelastic demand for 1

unit). It is straightforward to show that equilibrium prices are given by9

p(θ) = 1 − n+ α− 1

n + α
θ

with associated profits

Π(θ) =
(n+ α− 1)α

(n+ α)α+1
θn+α

The competition index is readily calculated as

I(θ) =
n+ α− 1

θ

i.e. an increase in the number of firms (n) or in the elasticity of demand (α) raises competition.

2.4. Informational Rents

In the mechanism design approach of this paper, an important role is played by firms’ informa-

tional rents needed to ensure incentive compatibility. In this section we illustrate with a simple

example why these informational rents preclude perfectly-competitive outcomes.

Consider a homogeneous good industry with two firms, where each firm is equally likely to

have an efficient cost function cl(q) or an inefficient cost function ch(q), where ch(q) ≥ cl(q)

and c′h(q) > c′l(q) for all possible output levels, q. Hence, there are three market constellations,

(cl, cl), (cl, ch), (ch, ch), which occur with probability 1/4, 1/2, and 1/4 respectively. In each

case, the market equilibrium specifies the total level of output, Qll > Qlh > Qhh, which is split

evenly between symmetric firms while in the asymmetric case the efficient firm has a larger

market share x > 1/2.

Suppose the social planner wants to implement equilibrium outcomes that maximize con-

sumer welfare. Standard intuition suggests this can be accomplished by imposing the following

9The profit of a firm of type θ who acts as if of type θ′ is given by

Π(θ′, θ) = (1 − p(θ′))α(p(θ′) − (1 − θ))θ′n−1

Using the first order condition for θ′ evaluated at θ′ = θ, yields the optimal prices given in Example 2.
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perfect-competition properties: (i) marginal costs are equalized between firms and (ii) price, or

marginal utility, is set equal to marginal cost. However, this intuition is incorrect because it

overlooks the informational rents needed to implement these properties in equilibrium.

Let tl (th) denote the expected transfers to an efficient (inefficient) firm, where the expecta-

tion is taken over the competitor’s type. The relevant constraints are the individual-rationality

constraint for the inefficient firm

th − 1
2
ch((1 − x)Qlh) − 1

2
ch(

1
2
Qhh) ≥ 0

and the incentive-compatibility constraint for the efficient firm

tl − 1
2
cl(

1
2
Qll) − 1

2
cl(xQlh) ≥ th − 1

2
cl((1 − x)Qlh) − 1

2
cl(

1
2
Qhh)

The planner’s problem can be written as

max
Qll,Qlh,Qhh,x

{

1
4
U(Qll) + 1

2
U(Qlh) + 1

4
U(Qhh) − th − tl

}

subject to the above two constraints. To maximize consumer surplus, transfers are minimized

and chosen such that the above constraints hold with equality. Solving for the transfers in this

manner, the first-order conditions for Qll, Qlh, Qhh, x can be written as

U ′(Qll) = c′l(
1
2
Qll)

U ′(Qlh) = xc′l(xQlh) + (1 − x)c′h((1 − x)Qlh) + (1 − x)
{

c′h((1 − x)Qlh) − c′l((1 − x)Qlh)
}

U ′(Qhh) = c′h(
1
2
Qhh) +

{

c′h(
1
2
Qhh) − c′l(

1
2
Qhh)

}

c′l(xQlh) = c′h((1 − x)Qlh) +
{

c′h((1 − x)Qlh) − c′l((1 − x)Qlh)
}

Note that the terms between the curly brackets are strictly positive. Hence, unless both firms

are efficient, price does not equal marginal cost. Moreover, when there is an efficient and

inefficient firm, the market is not split efficiently, i.e. marginal costs are not equalized. In other

words, equilibrium outcomes with the aforementioned perfect-competition properties are not

optimal, i.e. they do not maximize consumer surplus. The reason is that implementing these

outcomes requires high transfers, or informational rents, which lowers consumer surplus.

Generalizing the example to more than two firms and more than two efficiency levels quickly

becomes intractable. This is not the case for the model discussed below, which assumes a

continuum of types.
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3. A Mechanism Design Approach

We use a two-stage model of R&D and market competition. In the first stage, firms invest in

R&D, which determines their efficiency levels, or production costs, for the second stage in which

there is market competition. In particular, the cost to a firm of type θ to achieve efficiency level

n is given by Ψ(n−θ), where Ψ : IR+ → IR+ is increasing so that, ceteris paribus, a higher type

corresponds to a lower R&D cost. In the market-competition stage, firms choose outputs given

their efficiency levels. In particular, when a firm with efficiency level n produces an output q,

its production costs are C(q− n), where C : IR+ → IR+ is increasing so that, ceteris paribus, a

higher efficiency level corresponds to a lower production cost.

Let q(θ) denote the amount of output that consumers purchase from a firm with type θ.

Then consumers’ (gross) utility is given by
∫

U(q(θ))dF (θ), with U(0) = 0, U ′(q) > 0, and

U ′′(q) ≤ 0. If U ′′(q) < 0 then products are differentiated and consumers value variety, while

the linear case U ′′(q) = 0 means products are perfect substitutes.

Assumption 1. Marginal production costs, C ′(·), and marginal R&D costs, Ψ′(·), are increas-

ing and convex. Or, equivalently, the “supply functions” ψ(·) ≡ Ψ′(−1)(·) and c(·) ≡ C ′(−1)(·)
are increasing and concave.

Note that, roughly speaking, the requirement is that R&D and production costs are quadratic

or more convex.

Assumption 2. The hazard rate f(θ)/(1 − F (θ)) is non-decreasing.

A non-decreasing hazard-rate is equivalent to log-concavity of the density f(·), and, hence, the

distribution function, F (·). The class of log-concave densities includes many well-known and

commonly-used densities, e.g. the normal, uniform, and exponential densities.

Assumptions 1 and 2 can be relaxed considerably, see the discussion in Section 5. They are

imposed here to streamline the presentation, in particular, to ensure uniqueness and regularity

of the optimal market structure.

The output a firm chooses depends not only on its efficiency level but also on the market

structure the regulator offers, as characterized by the revenue-output menu, {R(·), q(·)}. So

when a firm chooses a production level q its revenue is R(q), where R(·) can be non-linear,

as is the case, for instance, with two-part or multi-part pricing. Since firms’ types, their

R&D investments, and their efficiency levels are unobservable, the regulator needs to take into
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account firms’ incentive constraints at both the innovation and market-competition stages when

choosing the market structure {R(·), q(·)}.10

To analyze firms’ incentive constraints, we invoke the revelation principle and consider the

direct mechanism where instead of choosing an efficiency level and output, a firm of type θ

simply reports θ1 (θ2) in the first (second) stage to maximize:

Π(θ) = max
θ1,θ2

{

R(q(θ2)) − C(q(θ2) − n(θ1)) − Ψ(n(θ1) − θ)
}

(3.1)

This yields the first-order conditions

0 = R′(q(θ)) − C ′(q(θ) − n(θ)) (3.2)

0 = C ′(q(θ) − n(θ)) − Ψ′(n(θ) − θ) (3.3)

The first-order condition (3.2) can be simplified by differentiating a firm’s net profit

Π(θ) = R(q(θ)) − C(q(θ) − n(θ)) − Ψ(n(θ) − θ) (3.4)

with respect to θ, which together with the first-order condition (3.3) yields Π′(θ) = Ψ′(n(θ)−θ).
Note that this also follows more directly from an Envelope Theorem argument applied to Π(θ)

in (3.1). Firms’ incentive constraints (3.2) and (3.3) can thus be neatly summarized as:

Π′(θ) = Ψ′(n(θ) − θ) = C ′(q(θ) − n(θ)) (3.5)

These incentive constraints can easily be inverted to derive the equilibrium R&D and output

levels. To simplify notation we define the marginal profit schedule π(θ) ≡ Π′(θ).

Proposition 2. Incentive-compatible R&D and market outputs are characterized by

n(θ) = θ + ψ(π(θ)) (3.6)

q(θ) = θ + c(π(θ)) + ψ(π(θ)) (3.7)

and are non-decreasing in θ.

Note that firms’ innovation and output levels are uniquely determined by the marginal profit

10In most regulation models, e.g. Laffont & Tirole (1993), it is assumed that the regulated firm reveals its
type θ after which efficiency n, output q, and revenue R are determined. In a market context this assumption
is less appealing. Below we therefore allow a firm with efficiency n(θ1) to choose output q(θ2).
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schedule π(θ). Furthermore, setting the profit of the lowest type, θ, to zero,11 the marginal

schedule determines firms’ net profits as Π(θ) =
∫ θ

θ
π(t)dt and, hence, revenues as

R(θ) =

∫ θ

θ

π(t)dt+ Ψ(ψ(π(θ))) + C(c(π(θ))) (3.8)

To summarize, the market mechanism {R(·), q(·)} is uniquely characterized by the marginal

profit schedule. We show below how to choose π(·) to maximize welfare.

First, we demonstrate that our model reproduces the positive relation between competition

and innovation typically reported in the empirical literature where competition is measured

using the price-cost margin.

Proposition 3. Innovation levels are higher in markets with lower price-cost margins.

With linear pricing, a lower price-cost margin implies more competition and higher consumer

surplus. With non-linear pricing this is not necessarily the case, e.g. when a monopolist uses a

two-part tariff both the price-cost margin and consumer surplus may be zero. The correct way

to measure competition in this case is to use Definition 1. As we show in the next section this

results in the opposite conclusion, i.e. innovation levels are higher with less competition.

3.1. A Normative Approach

Consider the regulator’s problem of maximizing some welfare standard subject to the incentive

constraints in (3.5). We assume the regulator puts less weight, β ≤ 1, on producer surplus

than on consumer surplus.12 As a consequence, the regulator will optimally set the profit of

the lowest-type firm to zero as assumed above. The planner’s problem is to maximize welfare:

W =

∫ θ

θ

{

U(q(θ)) − R(q(θ)) + β(R(q(θ)) − C(q(θ) − n(θ)) − Ψ(n(θ) − θ))
}

dF (θ)

+

∫ θ

θ

λ(θ)
(

R′(q(θ)) − C ′(q(θ) − n(θ))
)

dθ

+

∫ θ

θ

µ(θ)
(

Ψ′(n(θ) − θ) − C ′(q(θ) − n(θ))
)

dθ

+ ηΠ(θ) (3.9)

11We show below that it is welfare maximizing to do so.
12To illustrate, the DOJ and FTC explicitly state that their “fundamental goals” are “enhancing consumer

welfare and promoting innovation,” see DOJ & FTC (2007).
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with respect to {R(·), q(·)}. The multipliers λ(·), µ(·) implement the firms’ incentive constraints

and η implements the zero-profit condition for the lowest type, θ.

In the proof of Proposition 4, see the Appendix, we derive the necessary first-order conditions

by optimizing (3.9). Here we follow a simpler approach by using the incentive-compatible

outcomes of Proposition 2 and the expression for revenue in (3.8), which enables us to write

welfare as

W =

∫ θ

θ

W (θ, π(θ))dF (θ)

where

W (θ, π) = U(θ + c(π) + ψ(π)) − C(c(π)) − Ψ(ψ(π)) − (1 − β)
1 − F (θ)

f(θ)
π (3.10)

Note that W (θ, 0) > 0,13 i.e. there is a social gain even when a firm does not innovate, n(θ) = θ.

Here we focus on the case where firms of all types are R&D active,14 i.e. n(θ) > θ, and discuss

extensions in Section 5.

Assumption 3. Firms of all types are R&D active.

The optimal marginal profit schedule follows by maximizing W (θ, π) with respect to π, taking

into account the incentive-compatibility constraints that R&D and market outputs be increas-

ing, see Proposition 2. Note that outputs are increasing if the marginal profit schedule is, a

condition that is readily established when goods are substitutes.

Assumption 4. Products are substitutes, U(q) = q.

As we show in the proof of Proposition 4, with substitutes, the necessary first-order condition

for welfare maximization implies that the marginal profit is increasing.

Proposition 4. Under Assumptions 1-4, the optimal market mechanism is characterized by

the marginal profit schedule, π(θ), that is the unique solution to

(

c′(π(θ)) + ψ′(π(θ))
)(

1 − π(θ)
)

= (1 − β)
1 − F (θ)

f(θ)
(3.11)

Furthermore, π(θ) is positive and increasing.

13Here we assume that C(0) = C′(0) = 0 and Ψ(0) = Ψ′(0) = 0. In particular, there are no fixed costs.
14This condition is met, for instance, when also C′′(0) = Ψ′′(0) = 0.
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It is important to point out that the “standard” Assumptions 1-4 (convexity of costs, non-

decreasing hazard rate, all firms are R&D active, and substitute products) have been imposed

to simplify the analysis, not because they are necessary conditions for any of the results that

follow. In Section 5 we discuss extensions that relax Assumptions 1-4.

One easy corollary to Proposition 4 is that due to firms’ information rents needed to guar-

antee incentive compatibility, optimal markets are characterized by positive price-cost margins.

Proposition 5. Optimal markets have strictly positive price-cost margins.

To understand this result recall that the price-cost margin is (U ′(q)−C ′(q− n))/U ′(q), which,

using Assumption 4 and the incentive-compatible outputs of Proposition 2, can be written as

1 − π(θ). The necessary condition (3.11) then implies a strictly positive price-cost margin for

all θ < θ̄.15

Furthermore, (3.11) implies that price-cost margins are lower in dynamic than in static

markets for which ψ(π(θ)) ≡ 0. However, as we show next this implies that optimal dynamic

markets are less (not more) competitive, i.e. the price-cost margin provides the wrong infor-

mation about the degree of competition in a market.

4. Implications for Market Design

In this section, we explore several comparative statics properties of the optimal market struc-

ture. We first note a useful relation between the competition index of Definition 1 and the

price-cost margin.

Proposition 6. The marginal profit schedule is decreasing in the competition index

π(θ) = exp
(

−
∫ θ̄

θ

I(t)dt
)

(4.1)

where I(θ) ≥ 0 for all θ ≤ θ ≤ θ̄, and it is decreasing in the price-cost margin

π(θ) = 1 − PCM(θ) (4.2)

Hence, an increase (decrease) in the optimal marginal profit schedule, which reflects a decrease

(increase) in competition, results in a lower (higher) price-cost margin.

15Boone (2009) makes this point for static industries (possibly with a small number of firms) and shows how
the optimal price-cost margin varies with entry costs.
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In other words, the competition index of Definition 1 results in opposite predictions regarding

the degree of competitiveness in the market than the price-cost margin. The reason is that

with non-linear pricing, the price-cost margin overstates the positive effects of higher outputs

and understates the negative effects of higher firm profits. We illustrate this point in the next

section.

4.1. Consumer versus Producer Surplus

Intuitively, if the regulator puts more weight on producer surplus then firms will be better off

and consumers will be worse off. This comparative static exercise can be used to demonstrate

the shortcomings of the price-cost margin in markets with non-linear pricing. From (3.11), an

increase in β implies that the marginal profit schedule, π(θ), rises and the price-cost margin

therefore falls. In other words, when more weight is placed on producer surplus, the price-

cost margin erroneously indicates that the market becomes more competitive. In contrast, the

competition measure of Definition 1 predicts a decrease in competition.

To glean some intuition, it is useful to draw an analogy with the situation where a monopolist

sets price equal to marginal cost in a world with two-part tariffs. In our model, as β rises,

innovation levels and output levels go up since n(·) and q(·) are increasing in π. However, firms’

profits go up as well and consumer surplus falls, just as in the example where a monopolist

uses a two-part tariff.

To show that consumer surplus falls with β in our model, recall that consumer surplus is

given by

CS = W − β

∫ θ̄

θ

(1 − F (θ))π(θ)dθ

Differentiating with respect to β yields

dCS

dβ
= −β

∫ θ̄

θ

(1 − F (θ))
dπ(θ)

dβ
dθ

which is negative since π(θ) is increasing in β. The intuition is that while outputs rise, and,

hence, so does U(q(θ)), incentive compatibility requires that firms’ revenues R(q(θ)) rise even

faster, and overall consumer surplus falls.

The lower consumer surplus is the sign of a less competitive market, in contrast with the

prediction of the price-cost margin. The measure of competition in Definition 1 supports this

conclusion: an increase in β raises π(θ), which implies a lower index I(θ), see (4.1).
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Figure 1: Total welfare, W (θ, π), consumer welfare, CS(θ, π), and the price-cost margin,
PCM(θ, π), for fixed θ = 1/5 as a function of the marginal profit, π. The welfare-maximizing
marginal profit is denoted π(θ).

Example 3 (quadratic costs). Suppose R&D and production costs are quadratic, Ψ(z) =

C(z) = 1
2
z2, and firms’ types are uniform on [0, 1]. The optimal marginal profit schedule is

readily calculated as

π(θ) = 1 − 1

2
(1 − β)(1 − θ)

The conditions of Proposition 2 simplify to:

q(θ) = θ + 2 − (1 − β)(1 − θ)

n(θ) = θ + 1 − 1

2
(1 − β)(1 − θ)

and the price-cost margin is PCM(θ) = 1
2
(1− β)(1− θ). Note that an increase in β lowers the

price-cost margin and raises outputs. At the same time, an increase in β raises firms’ profits

and lowers consumer welfare. The correct measure of competition is

I(θ) =
1

1+β

1−β
+ θ

which is decreasing in β, i.e. a higher weight on producer surplus results in less competition.

The non-monotonic relationship between the price-cost margin and (consumer) welfare is

illustrated in Figure 1, which is based on the parameters of Example 3. For low values of π,

the price-cost margin falls with π and consumer welfare rises. However, for high enough values

of π, both the price-cost margin and consumer welfare fall with π. The intuition is that firms’

informational rents, which have to be paid for by the consumers, grow with π. In other words,
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while further increases in π result in more output, increasingly higher revenues are required to

keep these high outputs incentive compatible. The welfare-maximizing level of the marginal

profit is denoted by π(θ) in Figure 1. Note that at this level, the price-cost margin and consumer

welfare move in the same direction, i.e. a further decrease in the price-cost margin corresponds

to lower consumer welfare.

4.2. Hazard-Rate Dominance

As a second comparative static, suppose the type distribution F (·) hazard-rate dominates G(·),
i.e. f(θ)/(1 − F (θ)) ≤ g(θ)/(1 − G(θ)) for all θ. Recall that hazard-rate dominance implies

first-order stochastic dominance,16 so there is a shift towards higher types under F (·) compared

to G(·). In other words, the type distribution F (·) describes a more competitive situation.

Note that when the hazard rate falls, the right side of (3.11) increases and, hence, the

optimal marginal profit schedule falls. The price-cost margin PCM(θ) therefore predicts a

decrease in competition, while I(θ) correctly predicts an increase in competition, see (4.1).

4.3. Schumpeter’s Conjecture for Dynamic Markets

We say an industry is more dynamic when marginal R&D costs are lower. One tractable way

to parameterize this is to scale the R&D cost function Ψν(z) = ν Ψ(z/ν) where ν > 0, so that

Ψ′

ν(z) = Ψ′(z/ν), and an increase in ν lowers the marginal R&D costs (as Ψ is convex). In

other words, a higher ν corresponds to a more dynamic market and the limit ν = 0 corresponds

to a static market in which innovation is prohibitively costly. The necessary condition (3.11)

becomes:
(

ν ψ′(πν(θ)) + c′(πν(θ))
)(

1 − πν(θ)
)

= (1 − β)
1 − F (θ)

f(θ)
(4.3)

where we used that ψν(·) = ν ψ(·).

Proposition 7 (Schumpeter). More dynamic markets should be less competitive.

The logic is that for a more dynamic market with a higher ν, the marginal profit schedule,

πν(θ), has to rise in order to maintain the equality in (4.3) since the left side is decreasing in

πν(θ). Using (4.1) this implies that the competition index Iν(θ) has to fall with ν.

16Since
∫ θ

θ
f(x)/(1 − F (x))dx = log(1/(1 − F (θ))) ≤ log(1/(1 − G(θ))) so F (θ) ≤ G(θ) for all θ.
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Example 3 (continued). It is straightforward to solve for the optimal marginal profit schedule

πν(θ) =
β + ν + (1 − β)θ

1 + ν

which is increasing in ν, resulting in a competition index that is decreasing in ν

Iν(θ) =
1

ν+β

1−β
+ θ

4.4. Spillovers

Above we defined dynamic markets in terms of lower marginal R&D costs resulting in higher

levels of innovation. Another characteristic feature of dynamic markets is that spillovers are

important: knowledge or efficiency gains realized by one firm benefit others and have a positive

effect for the sector as a whole. Of course, spillovers may reduce a firm’s incentive to innovate

since others can free ride on its efforts. Another possible interpretation of knowledge spillovers

is therefore one of weak patents. The question we want to address is whether an industry with

more knowledge spillovers should be more (or less) competitive. Or, equivalently, should an

industry with weaker patent protection be more (or less) competitive?17

Let N ≡
∫ θ

θ
n(θ)dF (θ) denote the average knowledge generated by the industry. Then given

a firm’s efficiency level and the average knowledge in the sector, production costs are:

C
(

q − (1 − α)n− αN
)

Hence spillovers are increasing in α and the limit α = 0 corresponds to the case of no spillovers,

e.g. when patents offer perfect protection from imitation. The planner’s problem is to maximize

W =

∫ θ

θ

{

U(q(θ)) − (1 − β)Π(θ) − C(q(θ) − (1 − α)n(θ) − αN) − Ψ(n(θ) − θ))
}

dF (θ)

+

∫ θ

θ

λ(θ)
(

π(θ) − Ψ′(n(θ) − θ)
)

dθ

+

∫ θ

θ

µ(θ)
(

Ψ′(n(θ) − θ) − (1 − α)C ′(q(θ) − (1 − α)n(θ) − αN)
)

dθ

+ ξ
(

N −
∫ θ

θ

n(θ)dF (θ)
)

17See DOJ & FTC (2007) for a discussion about the interaction between competition policy and intellectual
property rights.
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Firms’ incentive constraints

π(θ) = Ψ′(n(θ) − θ) = (1 − α)C ′(q(θ) − (1 − α)n(θ) − αN)

can be inverted to derive the incentive-compatible market outputs (as in Proposition 2)

n(θ) = θ + ψ(π(θ))

q(θ) = (1 − α)(θ + ψ(π(θ))) + c
( π(θ)

1 − α

)

+ α

∫ θ

θ

(t+ ψ(π(t)))dF (t)

Using these, welfare can be simplified as W =
∫ θ̄

θ
W (θ, π(θ))dF (θ) with

W (θ, π) = θ + c
( π

1 − α

)

+ ψ(π) − C
(

c
( π

1 − α

))

− Ψ(ψ(π)) − (1 − β)
1 − F (θ)

f(θ)
π

where we used the substitutes assumption U(q) = q.

Proposition 8. With spillovers, the optimal market mechanism is characterized by the unique

solution to

ψ′(πα(θ))
(

1 − πα(θ)
)

+
1

1 − α
c′
(πα(θ)

1 − α

)(

1 − πα(θ)

1 − α

)

= (1 − β)
1 − F (θ)

f(θ)
(4.4)

with πα(θ) positive and increasing. Furthermore, weakening perfect (α = 0) patent protection

is socially beneficial.

The effect of increased spillovers (or weaker patents) on the optimal market structure is com-

plicated by the fact that the marginal profit is not fixed to 1 for the highest possible type,

θ̄. From (4.4) it is easy to see that 1 − α < π(θ̄) < 1, so the relation between the marginal

profit schedule and the competition index in (4.1) is no longer valid. For the specific setup of

Example 3, however, it is straightforward to determine the optimal combination of innovation

policy and market design.

Example 3 (continued). The optimal marginal profit schedule

πα(θ) =
(1 + β(1 − α))(1 − α)

1 + (1 − α)2
+

(1 − β)(1 − α)2

1 + (1 − α)2
θ
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is increasing in α, resulting in a competition index that is decreasing in α

Iα(θ) =
1

1

1−α
+β

1−β
+ θ

In other words, weaker patents should be accompanied with less aggressive market competition.

4.5. R&D Subsidies

Besides competition policy there are a number of other instruments the regulator can use to

stimulate innovation, e.g. R&D subsidies in the form of tax-breaks to firms that are paid for by

the consumers. Subsidizing a fraction σ of firms’ R&D costs changes firms’ incentive constraints

to π(θ) = (1 − σ)Ψ′(n− θ), and requires taxation on consumers:

W =

∫ θ

θ

{

U(q(θ)) − (1 − β)Π(θ) − C(q(θ) − n(θ)) − Ψ(n(θ) − θ)
}

dF (θ)

+

∫ θ

θ

λ(θ)
(

π(θ) − (1 − σ)Ψ′(n(θ) − θ)
)

dθ

+

∫ θ

θ

µ(θ)
(

(1 − σ)Ψ′(n(θ) − θ) − C ′(q(θ) − n(θ))
)

dθ

Firms’ incentive constraints

π(θ) = (1 − σ)Ψ′(n(θ) − θ) = C ′(q(θ) − n(θ))

can be inverted to simplify the welfare function to

W (θ, π) = θ + ψ
( π

1 − σ

)

+ c(π) − C(c(π)) − Ψ
(

ψ
( π

1 − σ

))

− (1 − β)
1 − F (θ)

f(θ)
π

where we used the substitutes condition as before.

Proposition 9. With subsidies, the optimal market mechanism is characterized by the unique

solution to

1

1 − σ
ψ′

(πσ(θ)

1 − σ

)(

1 − πσ(θ)

1 − σ

)

+ c′(πσ(θ))
(

1 − πσ(θ)
)

= (1 − β)
1 − F (θ)

f(θ)
(4.5)

with πσ(θ) positive and increasing. Furthermore, small subsidies are socially beneficial.
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Example 3 (continued). The optimal marginal profit schedule is given by

πσ(θ) =
(1 + β(1 − σ))(1 − σ)

1 + (1 − σ)2
+

(1 − β)(1 − σ)2

1 + (1 − σ)2
θ

which is everywhere decreasing in σ also for θ = θ̄. Indeed, ∂σ∂θπσ(θ) < 0, i.e. the decrease

in the marginal profit due to an increase in σ is largest for θ = θ̄. This implies that Iσ(θ)

must fall with σ, indicating that the market with subsidies should be less competitive. A direct

computation shows

Iσ(θ) =
1

1

1−σ
+β

1−β
+ θ

which is decreasing in σ, i.e. also subsidies should be accompanied by less aggressive market

competition.

5. Extensions

In this section we demonstrate via illustrative examples how our approach can be applied when

Assumptions 1-4 are not met. Importantly, the relaxation of any of the four assumptions

requires only minor changes in the derivation of the optimal market mechanism.

5.1. R&D Inactivity

Recall that a firm of type θ is R&D inactive when n(θ) = θ, which is socially optimal if the

cost of being active, i.e. the informational rents necessary to maintain incentive compatibility,

exceeds the benefit to consumers.18

Example 4. Suppose costs are quadratic as in Example 3 and the type density is f(θ) = 2θ

for 0 ≤ θ ≤ 1. Welfare is given by

W (θ, π) = θ + 2π − π2 − (1 − β)
1 − θ2

2θ
π

and the informational rent term dominates for small θ. Hence, low-type firms are R&D inactive.

Let 0 < θ0 < 1 be the threshold type for which ∂πW (θ0, π)|π=0 = 0. Then the optimal market

18Another reason for firms to be inactive is when there are fixed costs, i.e. when C(0) > 0 or Ψ(0) > 0. In
this case, it can be optimal to have an interval of types, [θ, θ0], that do not enter the industry.
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mechanism {R(·), q(·)} is given by

q(θ) =

{

θ if θ ≤ θ0

θ + 2π(θ) if θ > θ0

and

R(θ) =

{

0 if θ ≤ θ0
∫ θ

θ0

π(t)dt+ π(θ)2 if θ > θ0

where π(θ) = 1 − 1
4
(1 − β)(1/θ − θ) is positive and increasing for θ0 < θ ≤ 1.

To summarize, in the optimal market mechanism, firms with types 0 ≤ θ ≤ θ0 are R&D

inactive and earn zero net profits. For higher-type firms, the optimal marginal profit schedule

is determined as before.

5.2. Non-Convex Marginal Costs

The assumption of convex marginal R&D and production costs guarantees that the optimal

marginal profit schedule is unique. Consider instead the case where R&D and production costs

are convex but marginal costs are not.

Example 5. Suppose firms’ types are uniform on [0, 1] and costs are Ψ(x) = C(x) = 4
3
x
√
x.

The necessary first-order condition for welfare maximization (3.11) becomes

π(θ)(1 − π(θ)) = (1 − β)(1 − θ)

First, note that if β < 3/4 there is no solution for types θ ≤ 1 − 1/(4(1 − β)), i.e. low-type

firms are R&D inactive. Second, whenever a solution exists, there are actually two solutions:

either π(θ) ≤ 1/2 or π(θ) ≥ 1/2. The second-order condition for welfare maximization is that

1−2π(θ) ≤ 0, so only the solution where π(θ) ≥ 1/2 corresponds to a maximum. For example,

for β = 3/4, the optimal market mechanism {R(·), q(·)} is given by

q(θ) = θ +
π(θ)2

2

and

R(θ) =

∫ θ

0

π(t)dt+
π(θ)3

3

where π(θ) ≥ 1/2 is the larger solution to π(θ)(1 − π(θ)) = (1 − θ)/4.
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To summarize, when marginal costs are not convex, there may exist multiple solutions to

the necessary first-order condition (3.11). The second-order condition for welfare maximization

selects the solution for which π′(θ) ≥ 0, similar to the regular case of Section 3.19

5.3. Non-Monotone Hazard Ratio

When the hazard rate is not everywhere decreasing, the marginal profit schedule that solves

the necessary first-order condition (3.11) may not be everywhere non-decreasing. As a result,

R&D and production outputs may be decreasing, which conflicts with incentive compatibility.

The solution in this case is to “iron out” the marginal profit schedule, a well-known procedure

in the study of optimal auctions, see Myerson (1981).

Example 6. Suppose costs are quadratic and the type density is f(θ) = 1
12

+ 11(θ − 1
2
)2 for

0 ≤ θ ≤ 1. The solution to the first-order condition (3.11) is given by

π̃(θ) = 1 − 1

2
(1 − β)

1 − F (θ)

f(θ)

For β = 3/4, the marginal profit schedule and the associated outputs and revenues are shown

by the dashed lines in the left, middle, and right panels of Figure 2 respectively. Note that

output q̃(θ) = θ+2π̃(θ) is decreasing for some types and, hence, violates incentive compatibility

(see Proposition 2).

The correct solution for the optimal marginal profit schedule is shown by the solid line

in the left panel of Figure 2. To derive this solution, note that welfare is quadratic in π(θ)

so it is maximized by choosing π(θ) to minimize
∫ 1

0
(π(θ) − π̃(θ))2dF (θ) under the constraint

π′(θ) ≥ −1
2
. This is equivalent to choosing q(θ) = θ+ 2π(θ) to minimize

∫ 1

0
(q(θ)− q̃(θ))2dF (θ)

under the restriction that q′(θ) ≥ 0. The solid line in the middle panel of Figure 2 solves this

minimization problem since the weighted area between this line and the dashed line adds up

to zero. Finally, the optimal revenue schedule shown by the solid line in the right panel follows

from (3.8). Note that the optimal revenue schedule is flat when the optimal output is, since

(3.8) implies

R′(θ) = π(θ) q′(θ)

i.e. R′ = 0 when q′ = 0, so low-type firms that produce the same output all receive the same

revenue.
19Let SOCπ < 0 denote the second-order condition for welfare maximization. Then differentiating the first

order condition for π(θ) yields SOCπ π′(θ) = (1 − β)((1 − F (θ)/f(θ))′. This implies π′(θ) ≥ 0 since SOCπ < 0
and the inverse hazard rate is non-increasing.
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Figure 2: Ironing out the marginal profit schedule (left), output (middle), and revenue (right).

To summarize, when the hazard rate of the type distribution is non-monotone, the optimal

marginal profit schedule follows by applying standard “ironing” techniques to the solution of

the first-order condition for welfare maximization.

5.4. Taste for Variety

When consumers have a taste for variety, the utility function, U(q), is concave. The first-order

condition for welfare maximization

(

c′(π(θ)) + ψ′(π(θ))
)(

U ′(θ + c(π(θ)) + ψ(π(θ))) − π(θ)
)

= (1 − β)
1 − F (θ)

f(θ)

no longer implies that π(θ) is non-decreasing. Hence, the associated output q(θ) is not nec-

essarily non-decreasing, violating incentive compatibility (Proposition 2). As in the previous

example, the solution is to “iron out” the marginal profit schedule.

6. Conclusions

Every micro-economics text book lists the conditions under which perfect competition guaran-

tees welfare-maximizing outcomes. However, in many industries, perfect competition is not the

relevant benchmark. In oligopolistic settings, firms have market power and price-taking behav-

ior cannot realistically be assumed. For a competition authority in charge of regulating such a

sector the relevant question is: should the competition intensity in this industry be increased?

Or, more generally, what industry characteristics determine whether the welfare-maximizing

competition intensity should be low or high? In this paper, we have introduced a general and

tractable framework to analyze this question.
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As an application of our approach, we have confirmed Schumpeter’s conjecture that the

welfare-maximizing level of competition is lower in dynamic sectors compared to static ones.

In other words, it is socially desirable that firms in innovative sectors where R&D is important

enjoy more market power than firms in static industries. Our approach also enables us to

determine how market regulation interacts with policies aimed at stimulating innovation. In

many dynamic markets, firms generate knowledge that cannot be fully appropriated using

patents. Or governments use subsidy schemes to stimulate R&D investments. In an example

we showed that both a weakening of the patent system and the introduction of R&D subsidies

should be accompanied by less aggressive market regulation.

Importantly, our framework can be applied to analyze other sectors. Two examples that

currently have a high policy priority are the finance and health industry. Some people have

argued that the crisis in the banking sector was caused by (too) intense market competition,

which led banks to accept more and more risk in order to stay ahead of rivals. Could more

market power in the finance sector have mitigated the crisis by reducing incentives to take

risks? Since less intense competition reduces profit variability, would bankruptcies have been

less likely? The normative mechanism-design approach put forth in this paper allows us to

study whether optimal competition levels are lower in industries where moral-hazard problems

play an important role.

Another timely application concerns the study of markets with adverse selection such as

the health industry, where perfect competition does not necessarily result in Pareto-efficient

outcomes. Does this imply that less intense competition raises welfare? We intend to extend

our approach to this and other applications in future work.
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A. Appendix: Proofs

Proof of Proposition 1. Let φ : IR+ → IR+ denote a convex and increasing function and let

ΠB(θ) = φ(ΠA(θ)). Then

L′′

B(θ)

L′

B(θ)
− L′′

A(θ)

L′

A(θ)
=

(

φ′(Π(θ)) − φ(Π(θ))

Π(θ)

) π(θ)

φ(Π(θ))
≥ 0

i.e. LB(θ) is more convex than LA(θ). Since LA(θ) = LB(θ) = 0 and LA(θ̄) = LB(θ̄) = 1, a

more convex Lorenz curve implies a downward shift, i.e. LB(θ) ≤ LA(θ) for all θ. Q.E.D.

Proof of Proposition 2. Let θ1 < θ2, then incentive compatibility requires

R(q(θ̃1)) − C(q(θ̃1) − n(θ1)) − Ψ(n(θ1) − θ1) ≥ R(q(θ̃2)) − C(q(θ̃2) − n(θ2)) − Ψ(n(θ2) − θ1)

R(q(θ̃2)) − C(q(θ̃2) − n(θ2)) − Ψ(n(θ2) − θ2) ≥ R(q(θ̃1)) − C(q(θ̃1) − n(θ1)) − Ψ(n(θ1) − θ2)

for all θ̃1, θ̃2. Adding these inequalities yields

Ψ(n(θ2) − θ1) − Ψ(n(θ2) − θ2) ≥ Ψ(n(θ1) − θ1) − Ψ(n(θ1) − θ2),

so the result that n(·) is increasing follows if and only if Ψ(x− θ1) −Ψ(x− θ2) is increasing in

x. Equivalently, Ψ′(x− θ1) ≥ Ψ′(x− θ2), which holds if and only if Ψ′(·) is increasing, i.e. Ψ(·)
is convex. The proof that q(·) is increasing is similar. Q.E.D.

Proof of Proposition 3. The price-cost margin is given by

PCM(θ) ≡ U ′(q(θ)) − C ′(q(θ) − n(θ))

U ′(q(θ))
= 1 − π(θ)/U ′(θ + c(π(θ)) + ψ(π(θ))) (A.1)

Since U ′′ ≤ 0, the price-cost margin is decreasing in π(θ). Innovation levels, however, are

increasing in π(θ), see (3.6). Q.E.D.

Proof of Proposition 4. Using the expression for the firm’s net profit (3.4) we can reformulate

welfare as

W =

∫ θ

θ

{

U(q(θ)) − (1 − β)Π(θ) − C(q(θ) − n(θ)) − Ψ(n(θ) − θ))
}

dF (θ)

+

∫ θ

θ

λ(θ)
(

π(θ) − Ψ′(n(θ) − θ)
)

dθ

+

∫ θ

θ

µ(θ)
(

Ψ′(n(θ) − θ) − C ′(q(θ) − n(θ))
)

dθ

+ ηΠ(θ) (A.2)
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which now has to be maximized with respect to {Π(·), q(·)}. The first-order condition with

respect to Π(·), together with the transversality condition λ(θ̄) = 0, implies:

λ(θ) = (1 − β)(1 − F (θ)) (A.3)

The first-order condition with respect to q(·) is

(

U ′(q(θ)) − C ′(q(θ) − n(θ))
)

f(θ) − µ(θ)C ′′(q(θ) − n(θ)) = 0,

and the first-order condition for n(·) is

λ(θ)Ψ′′(n(θ) − θ) − µ(θ)
(

C ′′(q(θ) − n(θ)) + Ψ′′(n(θ) − θ)
)

= 0.

So µ(θ) = λ(θ)Ψ′′/(C ′′ + Ψ′′) and the first-order condition for q(·) can be rewritten as

U ′(q(θ)) − C ′(q(θ) − n(θ)) = (1 − β)
1 − F (θ)

f(θ)

C ′′(q(θ) − n(θ))Ψ′′(n(θ) − θ)

C ′′(q(θ) − n(θ)) + Ψ′′(n(θ) − θ)
(A.4)

Note that output is distorted compared to the first-best solution (U ′ = C ′) except at the top,

θ = θ, where the hazard ratio vanishes. Assumption 3 implies n(θ) > θ and thus π(θ) > 0.

Using the definitions of the supply functions ψ(z) = Ψ′(−1)(z) and c(z) = C ′(−1)(z) and the

incentive constraints in (3.5), the first-order condition (A.4) can be rewritten as

(

c′(π(θ)) + ψ′(π(θ))
)(

U ′(θ + c(π(θ)) + ψ(π(θ))) − π(θ)
)

= (1 − β)
1 − F (θ)

f(θ)

The left side is strictly decreasing in π(θ) since c(·), ψ(·) and U(·) are concave, so the solution

is unique. Moreover, U ′(q) = 1 when products are substitutes, in which case there is no explicit

θ dependence on the left side while the right side is decreasing in θ. Hence, π′(θ) ≥ 0. Q.E.D.

Proof of Proposition 5. From (A.1) and (A.4) we conclude that the price-cost margin is

proportional to (1 − β)(1 − F (θ))/f(θ) since Ψ′′ > 0, C ′′ > 0, and U ′ > 0. The inverse hazard

rate is positive for all θ < θ̄. Q.E.D.

Proof of Proposition 6. Note from (3.11) that π(θ̄) = 1. Recall that I(θ) = π′(θ)/π(θ) =

∂θ log(π(θ)), which, upon integration and using the boundary condition π(θ̄) = 1, yields (4.1).

Moreover, the ratio π′(θ)/π(θ) is positive since the optimal marginal profit schedule is positive

and increasing (see Proposition 4). Q.E.D.

Proof of Proposition 7. Let ν1 > ν2, and suppose, in contradiction, that Iν1
(θ) > Iν2

(θ) for

some θ. From (4.1) this implies that πν1
(θ) < πν2

(θ) for some θ, which yields a contradiction

since the left-side of (4.3) is decreasing in πν(θ). Q.E.D.

Proof of Proposition 8. Note that the left side of (4.4) is strictly decreasing in πα(θ) since
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c(·) and ψ(·) are concave, so the solution πα(θ) is unique. Furthermore, the left side of (4.4)

has no explicit θ dependence while the right side is non-increasing in θ, so π′

α(θ) ≥ 0. Using an

envelope argument shows that

dW

dα

∣

∣

∣

∣

α=0

=

∫ θ

θ

(1 − π(θ))π(θ)c′(π(θ))dF (θ) > 0

so welfare rises with α when α is small. Q.E.D.

Proof of Proposition 9. The proof that πσ(θ) is unique, positive, and increasing follows from

similar arguments as in the proof of Proposition 8. An envelope argument shows that

dW

dσ

∣

∣

∣

∣

σ=0

=

∫ θ

θ

(1 − π(θ))π(θ)ψ′(π(θ))dF (θ) > 0

so welfare rises with σ when σ is small. Q.E.D.
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