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Constacyclic codes are generalizations of the familiar linear cyclic

codes. In this paper constacyclic codes over a finite field F are re-

garded as invariant subspaces of Fn with respect to a suitable linear

operator. By applying standard techniques from linear algebra one

can derive properties of these codes which generalize several well-

known results for cyclic codes, such as the various lower bounds for

the minimum distance.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Constacyclic codes were introduced in [2] as generalizations of linear cyclic codes. A q-ary con-

stacyclic code of length n can be defined by an n × n-generator matrix with the property that each

row (apart from the last one) (c0, c1, . . . , cn−1), ci ∈ GF(q), defines the next row as (acn−1, c1, . . . , cn−2),

where a is some fixed element from GF(q) \ {0}. Special subclasses are the cyclic codes (a = 1) and the

negacyclic codes (a = −1). In [3] an alternative point of view is taken by regarding constacyclic codes

as a certain kind of contractions of cyclic codes.

Cyclic codesare traditionallydescribedbyusingmethodsof commutativealgebra (cf. e.g. [1, Chapter

7]). In this approach a codeword (c0, c1, . . . , cn−1) corresponds to a polynomial c0 + c1x + · · · + cn−1x
n−1
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which is in Rn[x], the ring of polynomials in xmod xn − 1. A cyclic shift of a codeword then corresponds

to multiplication of the polynomial by x, and hence the theory of linear cyclic codes comes down to

studying principal ideals in Rn[x] generated by some generator polynomial.

This standard approach of cyclic codes seemsnot very appropriate for generalization to constacyclic

codes in general. Since linear codes have the structure of linear subspaces of GF(q)n, an alternative

description of constacyclic codes in terms of linear algebra appears to be another quite natural setting.

In this paper we develop such an approach. Our starting point will be the characteristic polynomial

of the matrix which represents the constacyclic transformation with respect to a in the linear space

GF(q)n. Anothermajor tool is an application of the theoremof Cayley–Hamilton. This approach enables

us to derive some properties for the corresponding idempotent matrices of constacyclic codes and to

obtain lower bounds for the minimum distance of constacyclic codes that are generalizations of the

well-known BCH, Hartmann–Tzeng and Roos bounds for cyclic codes (cf. [1]).

Throughout this paper we require that (n, q) = 1, which is common practice in the theory of cyclic

codes.

2. Linear constacyclic codes as invariant subspaces

Let F = GF(q) and let Fn be the n-dimensional vector space over F with the standard basis e1 =
(1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let a be a nonzero element of F and let

ψa :
{
Fn → Fn

(x1, x2, . . . , xn) �→ (axn, x1, . . . , xn−1).
(2.1)

Then ψa ∈ HomFn and it has the following matrix:

A(n, a) = A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · a

1 0 0 · · · 0

0 1 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.2)

with respect to the basis e = (e1, e2, . . . , en). Note that the relations A−1 = At and An = aE hold. The

characteristic polynomial of A is

fA(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 0 0 · · · a

1 −x 0 · · · 0

0 1 −x · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · −x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n(xn − a). (2.3)

In the next we shall denote (2.3) by f (x). For our purposes we need the following well-known fact.

Proposition 1. Letϕ ∈ HomV and letU be aϕ-invariant subspace of V anddimFV = n. Then fϕ|U (x)divides
fϕ(x). In particular, if V = U ⊕ W and W is a ϕ-invariant subspace of Fn then fϕ(x) = fϕ|U (x)fϕ|W (x).

Let f (x) = (−1)nf1(x) · · · ft(x) be the factorization of f (x) into irreducible factors over F . According to

the Theorem of Cayley–Hamilton the matrix A of (2.2) satisfies

f (A) = O. (2.4)

We assume that (n, q) = 1. In that case f (x) has distinct factors fi(x), i = 1, . . . , t, which are monic.

Furthermore, we consider the homogeneous set of equations

fi(A)x = 0, x ∈ Fn (2.5)
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for i = 1, . . . , t. If Ui stands for the solution space of (2.5), then we may write Ui = Kerfi(ψa).

Theorem 1. The subspaces Ui of F
n satisfy the following conditions:

(1) Ui is a ψa-invariant subspace of F
n;

(2) if W is a ψa-invariant subspace of F
n and Wi = W ∩ Ui for i = 1, . . . , t, then Wi is ψa-invariant and

W = W1 ⊕ · · · ⊕ Wt;
(3) Fn = U1 ⊕ · · · ⊕ Ut;
(4) dimFUi = deg fi(x) = ki;
(5) fψa|Ui (x) = (−1)ki fi(x);
(6) Ui is a minimal ψa-invariant subspace of F

n.

The proofs for the various statements of Theorem 1 are elementary and straightforward. For the

details we refer to [6].

Proposition 2. Let U be a ψa-invariant subspace of Fn. Then U is a direct sum of some of the minimal

ψa-invariant subspaces Ui of F
n.

Proof. This follows immediately from property (2) of Theorem 1. �

Definition 1. A linear code of length n and rank k is a linear subspace C with dimension k of the vector

space Fn.

Definition 2. Let a be a nonzero element of F . A code C with length n over F is called constacyclic with

respect to a, if whenever x = (c1, c2, . . . , cn) is in C, then so is y = (acn, c1, . . . , cn−1).

The following statement will be clear from the definition.

Proposition 3. A linear code C of length n over F is constacyclic iff C is a ψa-invariant subspace of F
n.

Theorem 2. Let C be a linear constacyclic code of length n over F . Then the following facts hold.

(1) C = Ui1
⊕ · · · ⊕ Uis for someminimalψa-invariant subspaces Uir of F

n and k := dimFC = ki1 + · · · +
kis , where kir is the dimension of Uir ;

(2) fψa|C (x) = (−1)kfi1 (x) · · · fis (x) = g(x);
(3) c ∈ C iff g(A)c = 0;
(4) the polynomial g(x) has the smallest degree with respect to property (3);
(5) rank(g(A)) = n − k.

Proof. (1) This follows from Proposition 2.

(2) Let (g(ir )
1

, . . . ,g
(ir )
kir
) be a basis of Uir over F , r = 1, . . . , s, and let Air be the matrix of ψa|Uir

with

respect to that basis. Let f̃i(x) = fψa|Uir (x). Then (g
(i1)
1

, . . ., g
(i1)

ki1
, . . . ,g

(is)
1

, . . . ,g
(is)
kis
) is a basis of C over F and

ψa|C is represented by the following matrix:⎛
⎜⎜⎜⎝
Ai1

Ai2

. . .

Ais

⎞
⎟⎟⎟⎠

with respect to that basis. Hence,

fψa|C (x) = f̃i1 (x) · · · f̃is (x) = (−1)
ki1

+···+kis fi1 (x) · · · fis (x).
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(3) Let c ∈ C. Then c = ui1
+ · · · + uis for some uir ∈ Uir , r = 1, . . . , s, and g(A)c = (−1)k[(fi1 · · · fis )

(A)ui1
+ · · · + (fi1 · · · fis )(A)uis ] = 0.

Conversely, suppose that g(A)c = 0 for some c ∈ Fn. According to Theorem 1 we have that c =
u1 + · · · + ut , ui ∈ Ui. Then g(A)c = (−1)k[(fi1 · · · fis )(A)u1 + · · · + (fi1 · · · fis )(A)ut ] = 0, so that g(A)(uj1

+
· · · + ujl

) = 0, where {j1, . . . , jl} = {1, . . . , t}\{i1, . . . , is}. Let v = uj1
+ · · · + ujl

and

h(x) = (−1)n(xn − a)

g(x)
= f (x)

g(x)
.

Since (h(x), g(x)) = 1, there are polynomials a(x), b(x) ∈ F[x] such that a(x)h(x)+ b(x)g(x) = 1. Hence

v = a(A)h(A)v + b(A)g(A)v = 0 and so c ∈ C.

(4) Suppose that b(x) ∈ F[x] is a nonzero polynomial of smallest degree such that b(A)c = 0 for all

c ∈ C. By the division algorithm in F[x] there are polynomials q(x), r(x) such that g(x) = b(x)q(x)+ r(x),

where deg r(x) < deg b(x). Then for each vector c ∈ C we have g(A)c = q(A)b(A)c + r(A)c and hence,

r(A)c = 0. But this contradicts the choice of b(x) unless r(x) is identically zero. Thus, b(x) divides g(x).

If deg b(x) < deg g(x), then b(x) is a product of some of the irreducible factors of g(x), and without loss

of generality we may assume that b(x) = (−1)
ki1

+···+kim fi1 · · · fim and m < s. Let us consider the code

C ′ = Ui1
⊕ · · · ⊕ Uim ⊂ C. Then b(x) = fψa|C′ (x) and by the equation g(A)c = 0 for all c ∈ C we obtain that

C ⊆ C ′. This contradiction proves the statement.

(5) By property (3) C is the solution space of the homogeneous set of equations g(A)x = 0. Then

dimFC = k = n − rank(g(A)), which proves the statement. �

Definition 3. Let x = (x1, . . . , xn) and y = (y1 . . . , yn) be two vectors in Fn. We define an inner product

over F by 〈x, y〉 = x1y1 + · · · + xnyn. If 〈x, y〉 = 0, we say that x and y are orthogonal to each other.

Definition 4. Let C be a linear code of length n over F . We define the dual of C (which is denoted by

C⊥) to be the set of all vectors which are orthogonal to all codewords in C, i.e.,

C⊥ = {v ∈ Fn|〈v, c〉 = 0 ∀ c ∈ C}.

It is well known that if C is k-dimensional, then C⊥ is an (n − k)-dimensional subspace of Fn, so C⊥
is a linear code again.

Proposition 4. The dual of a linear constacyclic code with respect to a is a constacyclic code with respect

to a−1.

Proof. The proof follows from the equality

〈ψa(c),h〉 = 〈A(n, a)c,h〉 = 〈c,A(n, a)th〉

=
〈
c,A

(
n,

1

a

)−1

h

〉
= a

〈
c,ψn−1

1
a

(h)

〉
= 0

for every c ∈ C and h ∈ C⊥. �

Proposition 5. The matrix H the rows of which constitute an arbitrary set of n − k linearly independent

rows of g(A), is a parity check matrix of C.

Proof. The proof follows from the equation g(A)c = 0 for every vector c ∈ C and from the fact that

rank(g(A)) = n − k. �

3. Idempotent matrices for linear constacyclic codes

Let C be a linear constacyclic code of length n over F . Then g(x) = fψa|C (x) (cf. Theorem 2) and

h(x) = f (x)
g(x) . Since (g(x),h(x)) = 1, by the Euclidean algorithm there are unique polynomials u(x), v(x) ∈
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F[x], such that

u(x)g(x)+ v(x)h(x) = 1, deg u(x) < deg h(x), deg v(x) < deg g(x). (3.1)

It follows that

v(x)h(x)[u(x)g(x)+ v(x)h(x)] = v(x)h(x) (3.2)

and hence

v(A)h(A)[u(A)g(A)+ v(A)h(A)] = v(A)h(A).

We next introduce the polynomial e(x) = v(x)h(x) and the corresponding matrix

e(A) = v(A)h(A). (3.3)

Because of h(A)g(A) = f (A) = O (Cayley–Hamilton) it follows that

e2(A) = e(A). (3.4)

Now let C = Ui. Then g(x) = (−1)ki fi(x) and h(x) = (−1)n−ki f̂i(x), where ki = dimFUi. Let us denote

ei(A) = (−1)n−ki vi(A)f̂i(A), i = 1, . . . , t.

Theorem 3. The matrices ei(A), i = 1, . . . , t, satisfy the following relations:

(1) e2
i
(A) = ei(A);

(2) ei(A)ej(A) = O for j /= i;
(3) c ∈ Ui iff ei(A)c = c;
(4) ei(A)c = 0 for all c ∈ Uj , j /= i;
(5)

∑t
i=1 ei(A) = E;

(6) the columns of ei(A) generate Ui.

Proof. (1) It follows immediately from the definition of the matrices ei(A).

(2) ei(A)ej(A) = (−1)2n−(ki+kj)vi(A)vj(A)f̂i(A)f̂j(A) = u(A)f (A) = O fora suitablepolynomialu(x) ∈ F[x].
(3) Let c ∈ Ui. Then from the equality (−1)kiui(x)fi(x)+ (−1)n−ki vi(x)f̂i(x) = 1 it follows that (−1)ki

ui(A)fi(A)c + (−1)n−ki vi(A)f̂i(A)c = ei(A)c = c. Conversely, suppose that ei(A)c = c for some c ∈
Fn. Then

fi(A)c = fi(A)ei(A)c = (−1)n−ki vi(A)f (A)c = 0,

so that c ∈ Ui. Here, we applied again the theorem of Cayley-Hamilton, i.e., f (A) = O.

(4) Let c ∈ Uj , j /= i. Then

ei(A)c = (−1)n−ki vi(A)f̂i(A)c = u(A)fj(A)c = 0

for a suitable polynomial u(x) ∈ F[x].
(5) Let u ∈ Fn, then u = u1 + · · · + ut , where ui ∈ Ui, i = 1, . . . , t. Then according to properties (3)

and (4) we have that

t∑
i=1

ei(A)u =
t∑

i=1

ei(A)u1 + · · · +
t∑

i=1

ei(A)ut = u1 + · · · + ut = u.

Hence,
∑t

i=1 ei(A)u = u for all u ∈ Fn, so

t∑
i=1

ei(A) = E.

(6) Since fi(A)ei(A) = O, the columns of ei(A) are vectors in Ui. From the equality ei(A)c = c for all

c ∈ Ui it follows that
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e
(i)
11
c1 + e

(i)
12
c2 + · · · e(i)

1n
cn = c1,

e
(i)
21
c1 + e

(i)
22
c2 + · · · e(i)

2n
cn = c2,

.

.

.

e
(i)
n1
c1 + e

(i)
n2
c2 + · · · e(i)nncn = cn,

where ei(A) = (e
(i)
kl
) and c = (c1, . . . , cn). If we denote by Ei the ith vector-column of ei(A), the last

equalities give us that c1E1 + · · · + cnEn = c, i.e., every vector c ∈ Ui is a linear combination of

the columns of ei(A). Therefore the columns of ei(A) generate Ui. �

Definition 5. The idempotentmatrices from theprevious theoremwill be called primitive idempotent

matrices.

Theorem 4. The primitive idempotent matrix ei(A), i = 1, . . . , t, is the only idempotent matrix satisfying

ei(A)c = c for all c ∈ Ui and ei(A)x = 0 for all x ∈ ∑j /=i Uj.

Proof. Let E be some matrix with E2 = E and c ∈ Ui iff Ec = c. It follows that ImE = Ui. For each

x ∈ Fn we can write

x = Ex + x −Ex.

Now Ex ∈ ImE and x −Ex ∈ KerE, since E(x −Ex) = Ex −E2
x = 0. It is also obvious that Fn =

ImE⊕ KerE, and hence it follows that KerE = ∑
j /=i Uj . So, for all x ∈ Fn we have Ex = ei(A)x, or

equivalently E = ei(A) is the matrix projecting Fn on Ui. �

Remark. ei(A) is not a unique idempotent matrix satisfying the only if-part of property (3). Indeed, let

us consider the matrix ei(A)+ ej(A), j /= i. Then

(ei(A)+ ej(A))
2 = e2i (A)+ e2j (A) = ei(A)+ ej(A)

and for all vectors c ∈ Ui we have

(ei(A)+ ej(A))c = ei(A)c + ej(A)c = c + 0 = c.

Now let C = Ui1
⊕ · · · ⊕ Uis be an arbitrary linear constacyclic code of lengthn over F . Then fψa|C (x) =

(−1)kfi1 (x) · · · fis (x) = g(x) and

h(x) = f (x)

g(x)
= (−1)n−kfj1 (x) · · · fjl (x), (3.5)

where {j1, . . . , jl} = {1, . . . , t}\{i1, . . . , is}.

Theorem 5. Let C = Ui1
⊕ · · · ⊕ Uis be a linear constacyclic code of length n over F . Then the following facts

hold:

(1) c ∈ C iff e(A)c = c;
(2) the columns of e(A) generate C;
(3) e(A) = ei1 (A)+ · · · + eis (A);
(4) the constacyclic code C ′ = Uj1

⊕ · · · ⊕ Ujl
has the idempotent matrix E − e(A).

Proof. (1) Let c ∈ C. Then from the equality u(x)g(x)+ v(x)h(x) = 1 it follows that u(A)g(A)c +
v(A)h(A)c = e(A)c = c. Conversely, suppose that e(A)c = c for some c ∈ Fn. Then g(A)c = g(A)e(A)c =
v(A)f (A)c = 0, so c ∈ C.
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(2) The proof is analogous to the proof of property (6) of Theorem 3.

(3) Let us denote by E(A) the idempotentmatrix ei1 (A)+ · · · + eis (A). Since e(A) and E(A) are polyno-

mials in A, the equality e(A)E(A) = E(A)e(A) holds. If c ∈ C, then c = ui1
+ · · · + uis , where uir ∈ Uir , r =

1, . . . , s, and so

E(A)c = [ei1 (A)+ · · · + eis (A)](ui1
+ · · · + uis ) = ui1

+ · · · + uis = c,

according to Theorem3. Therefore, the columns of E(A) are in C and e(A)E(A) = E(A). On the other hand,

the columns of e(A) generate C, so E(A)e(A) = e(A). Finally, we conclude that

e(A) = E(A)e(A) = e(A)E(A) = E(A).

(4) Let C ′ = Uj1
⊕ · · · ⊕ Ujl

, then fψa|C′ (x) = (−1)n−kfj1 (x) . . . fjl (x) = h(x), which satisfies (3.5). Then

according to Theorem 3 and the previous property we have that the idempotent of C ′ is

e′(A) = ej1 (A)+ · · · + ejl (A) = E −
s∑

r=1

eir (A) = E − e(A)(= u(A)g(A)),

which proves the statement. �

4. Bounds for constacyclic codes

Let K = GF(qm) be the splitting field of the polynomial f (x) = (−1)n(xn − a) over F = GF(q), where

0 /= a ∈ F . Let the eigenvalues of ψa be α1, . . . ,αn, with αi = n
√
aαi, i = 1, . . . ,n, where α is a primitive

nth root of unity and n
√
a is a fixed, but otherwise arbitrary zero of the polynomial xn − a. Let vi be the

respective eigenvectors, i = 1, . . . ,n. More in particular we have

Avti = αiv
t
i , vi = (αn−1

i
,αn−2

i
, . . . ,αi, 1), i = 1, . . . ,n, (4.1)

where A is the matrix of (2.2).

Let us consider the basis v = (v1, . . . , vn) of eigenvectors of ψa. With respect to this basis we have

c ∈ C iff g(A)c = 0. We carry out the basis transformation e → v, and obtain

D =

⎛
⎜⎜⎜⎝
α1 0 . . . 0

0 α2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . αn

⎞
⎟⎟⎟⎠ = T−1AT , (4.2)

with

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

αn−1
1

αn−1
2

· · · αn−1
n

αn−2
1

αn−2
2

· · · αn−2
n

.

.

.
.
.
.

. . .
.
.
.

α1 α2 · · · αn
1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.3)

The columns of T are the transposed of the eigenvectors vi = (αn−1
i

, . . . ,αi, 1), i = 1, . . . ,n.

Let ui = (αi,α
2
i
, . . . ,αn−1

i
,αn

i
), i = 1, . . . ,n. Then

〈vi,uj〉 = a

n∑
k=1

(
αi

αj

)k

= a

n∑
k=1

(αi−j)k =
{
anwith i = j,

0 otherwise.

From this it follows immediately that

T−1 = 1

an

⎛
⎜⎜⎜⎝
u1

u2

.

.

.

un

⎞
⎟⎟⎟⎠ = 1

an

⎛
⎜⎜⎜⎜⎝
α1 α2

1
· · · αn−1

1
αn
1

α2 α2
2

· · · αn−1
2

αn
2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

αn α2n · · · αn−1
n αn

n

⎞
⎟⎟⎟⎟⎠ . (4.4)
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Since D is a diagonal matrix, the matrices g(D) and h(D) are also diagonal:

g(D) =

⎛
⎜⎜⎜⎝
g(α1) 0 · · · 0

0 g(α2) . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . g(αn)

⎞
⎟⎟⎟⎠ , h(D) =

⎛
⎜⎜⎜⎝
h(α1) 0 . . . 0

0 h(α2) . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . h(αn)

⎞
⎟⎟⎟⎠ .

(4.5)

Let deg h(x) = n − k = r, and let its r zeros be αi1 ,αi2 , . . . ,αir and its k nonzeros αj1 ,αj2 , . . . ,αjk . It is

obvious that the zeros of g(x) are the nonzeros of h(x) and vice versa.

Assume that c = (c1, c2, . . . , cn) ∈ Fn and let c′ = T−1c. We know c ∈ C iff g(A)c = 0. The latter con-

dition is equivalent to g(D)c′ = T−1g(A)TT−1c = T−1g(A)c = 0, which, in its turn, is equivalent to c′
i1

=
c′
i2

= · · · = c′
ir

= 0.Hence,weget the followingnecessary and sufficient condition for c to be a codeword

in C:

uil
c = 0, l = 1, . . . , r. (4.6)

We next shall derive a bound for the minimum distance of constacyclic codes, which is similar to

the so-called Roos bound for cyclic codes in [5]. Our proof and notation are also very close to the proof

and notation in [5].

Let K be any finite field and A = [a1, a2, . . . , an] any matrix over K with n columns ai, 1 � i � n.

Let CA denote the linear code over K with A as parity check matrix. The minimum distance of CA
will be denoted as dA.

For any m × n matrix X = [x1,x2, . . . ,xn] with nonzero columns xi ∈ Km for 1 � i � n, we define

the matrixA(X) as

A(X) :=

⎛
⎜⎜⎜⎝
x11a1 x12a2 . . . x1nan
x21a1 x22a2 . . . x2nan
.
.
.

.

.

.
. . .

.

.

.

xm1a1 xm2a2 . . . xmnan

⎞
⎟⎟⎟⎠ .

The following lemma describes how the parity checkmatrixA for a linear code can be extended with

new rows in such a way that the minimum distance increases. A proof of this result is given by Roos

(cf. [5]).

Lemma 1. If dA � 2 and everym × (m + dA − 2) submatrix of X has full rank, then dA(X) � dA + m − 1.

Definition 6. A setM = {αj1 ,αj2 , . . . ,αjl } of zeros of the polynomial xn − a in K = GF(qm)will be called

a consecutive set of length l if a primitive nth root of unity β and an exponent i exist such that M =
{βi,βi+1, . . . ,βi+l−1}, with βs = n

√
aβs, i � s � i + l − 1. In particular, one says that M is a consecutive

set of nth roots of unity if there is some primitive nth root of unity β in K such that M consists of

consecutive powers of β.

Definition 7. If N = {αj1 ,αj2 , . . . ,αjt } is a set of zeros of the polynomial xn − a, we denote by UN or by

U(αj1 ,αj2 , . . . ,αjt ) the matrix of size t by n over K that has (αjs ,α
2
js
, . . . ,αn

js
) as its sth row. If N is a set of

nth roots of unity, the similar matrix over K will be denoted as HN .

So, it is clear that UN is a parity check matrix for the constacyclic code C over F having N as a set of

zeros of h(x). Let CN be the constacyclic code over K with UN as parity check matrix, and let this code

have minimum distance dN . So, the minimum distance of C is at least dN , since C is a subfield code of

CN (cf. [5]).

Theorem 6. If N is a nonempty set of zeros of the polynomial xn − a and if M is a set of nth roots of unity

such that |M| � |M| + dN − 2 for some consecutive set M containing M, then dMN � dN + |M| − 1.
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Proof. Let us defineA := UN and X := HM . Then onemay easily verify thatA(X) = UMN , whereMN is

the set of all productsmn, m ∈ M, n ∈ N. SinceN is nonempty, dA = dN � 2.Hence, the assertion of the

theorem follows from the lemma above if in the matrix HM every |M| × (|M| + dN − 2) submatrix has

full rank. It is sufficient to show that this is the case if |M| � |M| + dN − 2 for some consecutive set M

containingM. Observe thatHM is a submatrix ofHM , and that in thematrixHM every |M| × |M| subma-

trix is nonsingular, since the determinant of such a matrix is of Vandermonde type. So, it immediately

follows that every |M| × |M| submatrix of HM has full rank. Since |M| � |M| + dN − 2, this implies that

also every |M| × (|M| + dN − 2) submatrix of HM has full rank, which proves the theorem. �

Corollary 1. Let N, M andM be as in Theorem 6,with N consecutive. Then |M| < |M| + |N| implies dMN �
|M| + |N|.

Proof. This follows immediately from the fact that dN = |N| + 1 if N is a consecutive set. �

By taking for M the set {1} in Corollary 1 we obtain a generalization for constacyclic codes of the

well-known BCH bound (cf. [2]).

Corollary 2. Let C be a linear constacyclic code of length n over F , g(x) = fψa|C (x) and h(x) = f (x)
g(x) . Let for

some integers b � 1, δ � 1 the following equalities

h(αb) = h(αb+1) = · · · = h(αb+δ−2) = 0

hold, i.e., the polynomial h(x) has a string of δ − 1 consecutive zeros. Then the minimum distance of the

code C is at least δ.

If we take forM also a consecutive set, Corollary 1 yields a generalization of the Hartmann–Tzeng–

Roos bound (cf. [4]).

Corollary 3. Let C be a constacyclic code of length n over F , g(x) = fψa|C (x),h(x) = f (x)
g(x) , and let α be a

primitive nth root of unity in K = GF(qm). Assume that there exist integers s, b, c1 and c2 where s � 0, b �
0, (n, c1) = 1 and (n, c2) < δ, such that

h(αb+i1c1+i2c2
) = 0, 0 � i1 � δ − 2, 0 � i2 � s.

Then the minimum distance d of C satisfies d � δ + s.

Example. Letn = 25, q = 7and a = −1and letμbe aprimitive 50th root of unity. Thenμ is a zero of the

polynomial x25 + 1. In order to classify these zeros with respect to the various irreducible polynomial

divisor of x25 + 1, we first determine the cyclotomic cosets of 7 mod 50, containing the odd integers.

These are

C1 = {1, 7, 49, 43}, C3 = {3, 21, 47, 29}, C5 = {5, 35, 45, 15}, C25 = {25},
C9 = {9, 13, 41, 37}, C11 = {11, 27, 39, 23}, C17 = {17, 19, 33, 31},

Let the zeros of h(x) be μi with i ∈ C1 ∪ C5 ∪ C17. Since μ is a primitive 50th root of unity, it follows

that α := μ2 is a primitive 25th root of unity. In terms of αi the zeros of h(x) can be written as

α2,α3; α7,α8,α9;α15,α16,α17;α21,α22;α24,α25. Since h(x) has a string of three consecutive zeros, the

linear constacyclic code C defined by h(x) has a minimum distance d � 4 according to Corollary 2.

Let us consider the following two sets of three consecutive zeros: α7,α8,α9; α15,α16,α17. We have

c1 = 1, c2 = 8 and (25, 8) = 1, and so δ = 4 and s = 1. Therefore, Corollary 3 yields a lower bound 5 for

the minimum distance d of the constacyclic code C.

Now take N = {αi|i = 15, 16} and M = {β j|j = 0, 2, 3, 4} with β = α3. Then the elements of MN are

zeros of h(x). Since dN = 3 and |M| = 5 � |M| + dN − 2 = 4 + 3 − 2, Theorem6 implies that d � dMN �
|M| + dN − 1 = 4 + 3 − 1 = 6.
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