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TESTING FOR SELECTIVITY BIAS IN PANEI, DATA MODELS'

BY MARNO VERBEEK AND THEO NI1MANt

We discuss several tests to check for the presence of selectivity bias in
estimators based on panel data. One approach to test for selectivity bias is to

specify the selection mechanism explicitly and estimate it jointly with thc
model of interest. Alternatively, one can derive the asymptotically efíicíent

LM test. Both approaches are computationally demanding. In this paper, we
propose the use of simple variable addition and (quasi-) Hausman tcsts for

selectivity bias that do not require any knowledge o( the response process. We
compare the power o( these tests with the asymptotically efTicient test using
Monte Carlo methods.

I . INTRODUCTION

Missing observations are a rule rather than an exception in panel data sets. It is
common practice in applied economic analysis of panel data to analyze only the
observations on units for which a complete time series is available. Since the

seminal contributions of Heckman (1976, 1979) and Hausman and Wise (1979) it is

well known that inferences based on either the balanced sub-panel (with the

complete observations only) or the unbalanced panel without correcting for
selectivity bias, may be subject to bias if the nonresponse is endogenously

determined. Even if the response process is known, estimation of the full model

including a response equation explaining the missing observations, is, in general,

rather cumbersome (compare Ridder 1990, Verbeek 1990). Therefore, it is worth-
while to have some simple tests to check Cor the presence of selectivity bias which
can be performed first. An obvious choice for such a test is the Lagrange Multiplier
test, which requires estimation of the model under the null hypothesis only. As will

be shown in this paper, the computation of the LM test statistic is still rather
cumbersome and, in addition, its value is highly dependent on the specification of
the response mechanism and the distributional assumptions. In this paper we will

therefore consider scveral simpler tests to check for the presence of selectivity bias
without the necessity of having to estimate the full model or to specify a response
equation. A consequential advantage of these tests is that they can be performed in

a simple way in cases with wave nonresponse, where all observations on the
variables of the model are missing for some individuals in some periods, as well as
item nonresponse, where only information on the endogenous variable is missing.

For ease of presentation we will in this paper restrict attention to the linear

' Manuscript rcceived March 1990; flnal revision rcceived September 1491.
t Helpful comments of Bcrtrand Melenberg, Arie Kapteyn, Peter Koorcman, Arthur van Soest and

two anonymous referees are gratefully acknowledged. Thc authors have benetitted frnm flnancial support
of the Netherlands Organization for Scientific Research (N.W.O.) and the Royal Netherlands Academy
of Arts and Sciences (K.N.A.W.), respectivcly.

681



623? MARNO VENBELK AND THEO NIJMAN

regressiun model, althoubh scveral of the tests can straightforwardly be generalized
to nonlinear models. Cun~ider

(1) Y;, - xu f3 t a; t eu, t - 1, ., T; i- 1, .. , N,

where x;, is a k dimensional row vector of exogenous variables relating to the ith
cross sectional unit at period t, (i is a column vector of unknown parameters of
interest, a; and e;, are unobserved i.i.d. random variables with expectation zero
and variance Qá and o; , respectively, which are mutually independent. The
variables in x;, are assumed to be strictly exogenous, i.e., E{e;,lx;,} - 0 for all i,
s, t and E{a; ~x;,} - 0 for all i, t. For simplicity we assume that the model does not
contain an intercept term and that means have been removed from all data. T and
N denote the number of periods and the number of cross sectional units (individ-
uals, households, firms) in the panel, respectively.

Whether or not observations for y;, are available is denoted by the dummy
variable r;,, such that r;, - I if y;, is observed and r;, - 0 otherwise. ln addition,
we define c; - fI,T t r;,, so that c; - 1 if and only if y;, is observed for all t.
Observations on x;, are assumed to be available when r;, - l. A commonly used
assumption to describe the process generating r;, is based on a latent variable
specification. ln that case, r;, is determined by the sign of r'„ given by, for
example,

(2) r~i - zirY t F, t-F r!i„ t- l, .. , T; i- l, .. , N,

with z;, a row vector of exogenous variables, possibly containing (partly) the same
variables as x;,, and ~;, an unobserved random variable. The term ~' accounts for
unobscrved time-invariant individual-specific effects. Now, r;, - 1 if r', 1 0 and
zero utherwise. For the moment however, we shall not use additional assumptions
on the process tha[ determines r;,. Only in Section 4, where the LM test is
discusscd, we shall assume that specification (2) holds.

When estimating (3 in (1) using the available observations one is implicitly
conditiuning upon the outcome of the selection process, i.e., upon r;, - l. The
prublem uf selectivity bias arises frum the Cact that this conditioning may aH'ect the
unobserved determinan[s of y;,, in particulaz, this may occur if the indicator
variable r;, is not independent of the individual edect a; or the error term e;,.
Similar problems arise if une concentrates attention to the complete observations
unly, i.e., to those cross-sectional units for which a complete time series is available
(Curming a balanced sub-panel). In this case one is implicitly conditioning upon
c; - 1 (r;i - ... r;T - l).

In this paper attention will be paid to several simple testing procedures [hat can
be used to check whether selectivity bias is seriously present. First, in Section 2,
we analyze two well known estimators, the fixed eflects (FE) and the random
et3~ects (RE) estimator, and discuss the conditions for no selectivity bias in these
estimators. It appears that the condition that r;, is independent of both a; and e;,
in ( I) is not necessary (though su[ficient) for consistency. Moreover, it is shown that
the fixed e[Tects estimator is more robust for selectivity bias than [he random efIects
e,timatur. Section 3 shows how ditíerences between the FE and RE estimators
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from a balanced and unbalanced design can be used to construct simple (quasi-)
Hausman tests of selectivity bias. Moreover, some simple variable addition tests
are suggested. Neither of these tests does require knowledge of the process that
determines r;t.

In Section 4 we introduce and specify a latent variahle specification to descrihe
the selection process r;,. [f this description is correct and data are availahle to
identify its unknown parameters, the Lagrange Multiplier test for independence oC
rt, and a; f e;, can be computed and is asymptotically efFcient. Moreover, it is
possible to use a two step estimation and testing procedure based on the results of
Heckman (1976, 1979). Both of these tests are computationally not very attractive.
To illustrate the findings of Section 2 and to obtain some idea about the power oC
the tests proposed in Section 3, we perform a Monte Carlo study, the results of
which are reported in Sections 5 and 6. Finally, Section 7 eontains some concluding
remarks.

2. SELECTIVITY BIAS IN THE FIXED AND RANDOM EFFECTS ESTIMATORS

In this section we derive conditions for consistency of the fixed effects (or
"within") estimator for the regression coefficients R in (I). Subsequently, we
consider the random effects estimator. Since most panel data sets are characterized
by a large number of cross sectional observations covering a fairly short timc

period, we shall concentrate on consistency for N--i ~ and keep T fixed. T is

assumed to be strictly larger than one.
If we deFine xtr as the value of x;, in deviation from its (observed) individual

mean, i.e.

(3)
r I r r

xtr - xir -~ xlrrlJ ~ rrJ, if ~ r;J 1 0
J~ t J~ I J~ t

- O OtherwiSe,

and analogously for y";r, the FE estimator based on the unbalanced panel is given
by (compare Hsiao 198tí, p. 31)~

-t
N T N T

(4) PFE(U) - ~ ~ ~ir~irrtr~ ~ ~ x~rynrir

1~I r~1 I i-I r~I

and the one based on the balanced sub-panel by
-I

N T N T

(5) PFE(B) - ~ ~ ~irxirCi ~ ~ xir~irCi

(i-tr~l i~lr~l

i This estimator is only defined if at least one individual is ohserved morc then once: for flnite samples
there will generally tx a small but nonzero probahility that this is nrn the case, but for practical pur~OSes

this can be ignorcd. Similar remarks hold for all other estimatorx presented below.
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Obviuusly, R FE(.) is unbiased and consistent~ for p if selection is determined
independently of a; and e;,. Using y;, - x;, p t é;,, one immediately sees that this
condition is too strong, since independence of r; -(r;t, .. , r;r)' and the
transformed error term é;, also guarantees unbiasedness and consistency. !t is
straightforward to show that an even weaker condition for consistency of ~FE(U)
and ~3FE(B) is that~

(6) E{ar;r~r;}r;, - 0, t- l, ... , T; i- l,... , N

or
(~) E{éu~c;}c; - 0, t- 1. .. , T; i- l, .. , N,

respectively. Consequently, a sufficient conditions for both conditions (6) and (7) to
huld is that

(8) E{é;,~r;} - 0 t- I, ... , T; i- 1, ... , N.

Ficst of all, it should be no[ed tha[ (8) does not involve n;. Thus, the fact [hat
selection (indicated by r;,) depends upon the individual effects a; in the model of
interest does not introduce a selectivity bias in the fixed eflècts estimators. In
addition, if selection affects the conditional expectation of each of [he error terms
e;t ,... , e;r in the same way, selectivity bias will also not occur. In all these cases
selectivity may have an effect on the structural equation (I), but since this effect is
fixed for a given individual over all periods in which its dependent variable is
observed, it is absorbed in the fixed edect and no consistency problems arise for the
FE estimator. In Section 4 some more attention to condition (8) will be paid in the
context oC lhe latent variable equation (2) explaining r;r.

Next we consider the jandom effects estimator (compare Hsiao 1986, p. 34 ff.).
First, we stack the observations for each cross sectional unit into vectors and
matrices, i.e.

Yn l xn fn
y;- : J .x~- : ,E;- :

Y;r srr E;r

Let T; denote the number of periods unit i is observed, i.e. T; - ErT t r;,. For each
cross sectional unit we define a T; x T matrix R; transforming y; into the
T;-dimensional vector of observed values y;"b', say. This matrix R; is obtained by
deleting the rows of the T-dimensional identity matrix corresponding to the
unobserved elemcnts. Now we can write y;b' - R;y;. Defining ~ -(I, 1, ... , t)'

~ Thruughuut the p~per, we assume that the usual rcgulariry cundiuuns are met.
~ l he cunJitiunal expcctat~uns m the scyuel are alsu cunJttiunal un the exugenuus vrriables, but fur

thr ~~Ae uf nutrtion these nre omined.
5 A case in which eha suóicient condiuun is not necessanly met, but condition (6) holds, is the

situatwn whcre ubscrvauuns are missing dcterministicalty (given .r„) (E{r„~i„1 - r„ - O), fur example,
if bemg un vacattun imphes nonrespunse.
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of dimension T, the variance covariance matrix of the error term in (I) can be
written as

f2 - V{taj f e;} - oátt' f v~l.

Writing i2; - R;S~R; and X;~' - R;X;, the random effects estimator based on the
unbalanced panel is given byb

N -I N 1

(9) QRE(U)- ~ Xohr'(~i)-IXoA.r t` Xo6t~(.f~.;)-tynFal.

1-1 i-GI
II

If only the complete observations in the panel are used the random effects estimator
is given by

N I N

(Í~) sQRE(R) -~~ Xi~-IX(Ci I- ~ J~ Xi~-lyiCi I,,-I I .-I I
Note that these estimators can easily be computed using OLS on transformed data
even if the unbalanced panel is used (see, e.g., Baltagi 1985 or Wansbcck and
Kapteyn 1989).

The estimators RRE(.) are consistent if

(I1) E{a; t e;,~r;} - 0, ~- 1, .. , T; r- I. .. , N.

Clearly, this condition is stronger than condition (8) needed for consistency of the
fixed efïects estimator and consequently, we can conclude that the fixed efTects
estimator is more robust with respect to nonrandom selectivity than the random
effects estimator. This may be a reason to prefer the fixed effects estimator although
of course some efliciency is lost by this choice if in fact condition (1I) holds.
Assuming normality of the error terms in (1) and a probit model to describe the
selection process r;,, this point is further elaborated in Section 4.

Before we propose several simple tests to check for the presence of selectivity
bias, it is important to note two things. First, the conditions for consistency of the
fixed effects and random effects,estimators are different and, second, there is no
reason why the inconsistencies in estimators based on the balanced sub-panel and
those on the unbalanced panel would coincide. These two points enable us to
construct tests for the presence ofselectivity bias (or, in fact, for consistency of the
FE of RE estimators) using only the four simple estimators presented above. This
will be the main theme of the next section.

3. SIMPLE TESTS FOR SELECTIVITY BIAS

In Section 2 four estimators of Q have been presented which are all consistent in
the absence of nonrandom selection (i.e. if rr, is independent of a; and e;, ), namely

6 For expository purposes we ignorc the fact that in practice unknown variances have to be rcplaced

by consistcnt estimatcs.
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the fixed etTects estimators based on the balanced sub-panel and the unbalanced
panel and the random effects estimators based on the balanced and unbalanced
panel. In general, it is quite unlikely that the pseudo true values, i.e. the probability
limits under the true data generating process, of either two estimators are identical,
unless bo[h estimators are consistent. Therefore, it is possible to construct a test for
selectivity bias based on the diderences between either two, three or four
estimators.

Let us stack all four estimators into a 4k dimensional vector ~i as follows.

(I2) )3 - (RFE(B)'. ~FE(U)'. ~RE(B)~, PRE(U)')'.

Under weak regularity assumptions ~ is asymptotically normally distributed
according to

(13) V,v(~ - f9) -r N(0. V ).

where ~i denotes the vector of pseudo true values. Ft-om ( l3) it immediately follows
that the hypothesis DQ - 0 can be tested using

(14) ~o -N~i'D'(Di~D')-D~i,

which is asymptotically distributed as a central Chi-square with d degrees of
freedom under the null hypothesis Dp - 0, where A- denotes a generalized
inverse of A and d is lhe rank of DVD'.

!n order to be able lo compute the test statistics in (l4) for appropriate choices
of D, an estimator for the full matrix V is needed. Using the definitions of the four
estimators given in (4), (5), ( 9) and ( l0), it is a straightforward exercise to determine
their variances and their covariances. Denoting Vtt - V{~3FE(B)}, V2z -
V{(3FE(U)}, V33 - V{pRE(B)] and Vqq - V{RRE((J)}, it follows that all blocks in
the matrix V are a function of the variance covariance malrices of the four
estimators in f3 only. In particular, it holds that

Vii VZ2 V~i V~q
V2Z VZZV~i~V~~ V~q

V~3 Vo~ ~

Using (15) any test slatistic given in (14) can easily be computed. Two obvious

candidates from the tests that compare two out of four possible estimators, are

those comparing the fixed or random eó~ects estimators from the balanced sub-panel

and the unbalanced panel, where D- Dt -[I - I 0 0] or D- DZ -[0 0 I- Ij,

respectively. Two other choices, D3 -[I 0 - I O] and Dq -[0 I 0- I], result
in the standard Hausman specification tes[ for uncorrelated individual edects (see,

e.g.. Hsiao 1986, p. 48) and its generalization to an unbalanced panel, respectively.
A fifth test compares the FE estimator in the balanced sub-pane) and the RE
estimator in lhe unbalanced panel (DS -[I 0 0-!]), while for the last possible
test D6 -[0 I- 1 OJ. Obviously, alternative tests which compare three or more
estimators of f3 are possible.

V is
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Since the tests proposed above are based on the comparison of two estimators for
the same parameter vector and since some special cases correspond to well known
Hausman tests in the literature we shall refer to them as (quasi-) Hausman tests.
Unlike in the standard case our tests are based on estimators which are all
inconsistent under the alternative. In the very unlikely case where all estimators
would have identical asymptotic biases these tests will have no power at all.
Keeping this in mind the null hypotheses (Hó : D; p- 0) of the tests ahove can be
translated into hypotheses in terms of estimator consistency.

Let us define

HóE: E{éu~r;} - 0~(the fixed effects estimators are consistent),

and

HóE:E{~; f e;,~r;} - 0 (the RE and FE estimators are consistent).

The null hypothesis (denoted by Hp) of nonrandom selection, i.e. the hypothesis
that r;, and a; and e;, are independent, is the strongest hypothesis (since it implies
all the others). However, for conducting inferences it is not relevant whether Ho is
true or not, but whether HóE or HóE are correct, since inferences will be based on
either the random effects or the fixed effects estimator. Notice that the latter
hypothesis is implied by the former, i.e. whenever the random effects estimator is
consistent, the fixed effects estimator is consistent as well. The (quasi-) Hausman
tests may be appropriate instrvments for checking the consistency of these
estimators, although they are only able to test for the weakcr hypotheses Hó.
Consequently, a rejection of Hó (for some i~ 1, .. , 6) by the corresponding
Hausman test, implies that HóE should be rcjected. If Hó is rejected, Hó E should
be rejected as well. However, the converse is not true.

Note that if both HáE and HáE are false, all estimators are inconsistent. In that
case knowledge of the selection process can be used to model selection simulta-
neously with model (1) to obtain consistent random effects or fixed eH'ects
estimators correcting for selectivity. However, the joint estimation of a selection
process and model (I) may be computationally demanding, unless some simplifying
distributional assumptions are made. See, for example, Ridder (1990) or Verbeek
(1990). In addition, the restrictions needed to identify p may be stronger than one
would like, while the resulting estimates will depend hcavily on the available prior
information (comparc Manski 1989, 1990).

Note that only the first test statistic (based on D~) is appropriate for checking
HóE, while any other test statistic can be used for HóE. The optimal testing
procedure seems to be to test for the stronger hypothesis first (HóE), and, if this
test rejects, test subsequently for the weaker one (HóE). Of course, it is preferable
to use the most powerful test out of all possible tests for the hypothesis Hó E
However, the analysis of statistical power is extremely difficult if not impossible,
not only because the test statistics are not mutually independent, but also because
we are working with Hausman specification tests for which the null hypotheses Hó
cannot be written down in a simple parametric form. Therefore, standard results on
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the power of Hausman tests (compare Holly 1982) and on seyuential testing (see,
e.g., Mizon 1977, Holly 1987) are not directly applicable in this situation.

Of cuurse alternative tests for selectivity can be constructed. Remember that
selectivity bias in model ( I) occurs because the conditional expec[ation ot the error
term a; t e;, does not equal zero. If this conditional expectation E{a; t e;,~r;}
were known ( possibly apart from one or more proportionality factors) one could.
add it as an extra regressor (or combination of regressors) in (1) such that the new
error term has expectation zero (given s;, and r;). Subsequently, the parameters in
the extended model can be estimated consistently using standard methuds. This is
the essence of the well known two step estimation procedure in the cross sectional
sample selection model proposed by Heckman ( 1976, 1979) and the sirnple two step
estimators for models with censored endogenous regressors and sample selection
suggested by Vella ( 1990). An application for the case of nonresponse in panel data
is presented by Nijman and Verbeek ( 1990).

Of course, the conditional expectation E{a; t e;,~r;} is not known (or identifi-
able) unless the selection process is known ( or identifiable), and therefore this
procedure will have the same drawbacks as joint estimation of the model and lhe
selection process, although the computational burden may be somewhat less. As a
testing procedure it may be worthwhile to try to approximate the conditional
expectation in a simple way and to check whether it enters model (l) significantly.
Since E{a; t e;,~r;} will be a function of r;, the functional form of which depends
upon the joint distribution of a; t e;, and r;, one can think of two more or less
distinct ways of approximating i[. Firstly, one can have one or more variables, z;,,
say, that are likely to determine the probability of selection ( i.e. aH'ect the
distribution of r;), and enter these variables in a convenient form, for example as
a low order polynomial. The resulting test would then be a joint test of the
hypothesis that, conditional on x;,, y;, does not depend on (this function of) z;, and
the hypothesis of no selectivity bias. Alternatively, one can choose some function
of r; itself, from which it is known that it should not enter the model significantly
untler thc hypothesis of no selectivity bias. The resulting test is a test of the
selectivity bias hypothesis only. In the sequel we shall concentra[e on this second
approach and consider three possible variables that can be included in the
regression equation. First, T; - E; t r;,, the number of waves individual i
participates, second c; - Il; i r;s, a 0-I variable equal to 1 if and only if individual
i is obscrved in all periods and third, r;,,-t, indicating whether individual i is
observed in the previous period or not. Note that r;,o - 0 by assumption. To test
the significance of these variables in (1) we are forced to use the unbalanced panel
since in the balanced panel the added variables are identical for all individuals and
thus incorporated in the intercept term. Since the additional variables are coustant
over time for each individual in the first two cases, the corresponding parameters
are nut identified in the case where the individual edects a; are treated as fixed. We
shall therefore concentrate attention to random edects estimators.

Althuugh one could expect that the added variables have an influence on the
rclationship between y;, and x;, if there is selective nonresponse, there is no reason
why this efl~ect would be linear and thus the power of the tests may be doubtful. If
we denute the coetficient for the added variable w, say, by yw then the null
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hypothesis of the variable addition test is Hó :y,,, - 0. Note that N~ implies Hó
but that the converse is not true.

4. SPECiFICATION OF THE RESPONSE MECHANISM AND THE LM TEST FOR SEI.ECTIVITY

BIAS

In this section we assume that response r;, is determined by a random effects
probit model, an assumption which is often made in empirical applications
(compare Hausman and Wise 1979, Nijman and Verbeek 1990, Ridder 1990). Under
this assumption and assuming normality of the error terms in (I) it is possible to
derive the LM test statistic for the null hypothesis that r;, is independent of the
unobserved determinants of y;, ( a; and e;,). Furthermore, we pay some more
attention to the conditions for consistency of the FE and RE estimators in the
context of this example.

Suppose r;, is determined by the sign of a latent variable r'„ which is generated
by

(16) r~ - zuY f~~ } nu, t- 1. .. , T; r- 1, ., N,

where z;, is a row vector ofexogenous variables, usually containing partly the same
variables as z;,, ,t;, denotes an unobserved random variable and ~` is an
individual-specific effect. In order to account for possible correlation between r`'
and thc explanatory variables z;,, we follow Chamberlain (1984) in assuming that,

(17) ~t- z;l ~rrl } z;zvrz
f... ~ z;rnr f~r.

where ~; is independent of all z;,'s. Substitution in (ltí) yields

(18) r~ - Z;~Y } zrl ~rl f zrz~rrz t... f z;r~r }~r } n~~-

To be able to identify the parameters in (18) it is essential to assume that
observations on z;, are available for both r;, - 1 and rf, - 0. Note that this
assumption is not required when performing the (quasi-) Hausman tests or variable
addition tests proposed in Section 3. The unobserved random variables in (1) and
(18) are assumed to be normally distributed according to

(19)

zE~ 0~1
zé i .ia i.a-, soni .... N 0, a`"f o~~ z

~; 0 0 o f
a; 0 0 o,f

where E; -(E;I. ... . e;r)' and ~! -(~rt, ... , n;r)'. For identification of the
probit model we will impose ( as usual) o~ f of - 1. Of course, one can test the
model assumptions implied by (18) and ( 19) along the lines discussed in, for
example, Lee (1984) and Lee and Maddala (1985). .

Under these assumptions the expectation of E;, given selection is given by (see
the Appendix)
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(20) E{e;,~r;} -
2 7

0~2 E{fr t nu~r~} - z aE 2~ E{f~ t n~,~r;} .
Q,~ Q,~ t ToE ,- i

while the conditional expectation of a; given selection is given by ( see the
Appendix)

r
(21) E{ar~r;} - oz t TaZ ~ E{~; t n;,~r;}.

n f r-t

The conditional expectation E{~; t~;,~r;} is a complicated function (see the
Appendix) of the varíables in z;, and reduces to "Heckman's (1979) lambda" if
there is no individual effect in the probit model ( QÉ - 0).

Under the normality assumption the independence of r; and ( al, s;,) is
equivalent to oaE - aE,; - 0. Clearly, this condition implies that (11) holds,
implying consistency of both the random edec[s and the fixed effects estimators.
For the transformed error term é;, (2U) implies that

~ r r~
(22) E{è;,~r;} - 2 E{f; f n~r~r~} - ~ r~,E{~r t n~~~r~} ~ r~,

av ,-i ,-i

From this it immediately follows that condition (8) is fulfilled and the fixed effects
estimator is consistent if either o~n - 0 or E{~; t n;,~r;} does not vary over time.
The latter condition implies (see the Appendix) that there is no selectivity bias if the
probability uf an individual of being observed is constant over time, even if v~,~ ~,
0. This will occur when z;, y is constant over time. Since (22) does not contain aaf,
a correlation between the,individual effects in the structural equation (1) and lhe
probi[ equation (l8) does not result in a bias in the fixed effects estimator.

The condition that E{~; t q;,~r;} does not vary with t is clearly not sufficient for
consistency of (3RE. For the latter we either need that E{~; t n;~~r;} is constant and
T-~ ~ (since the FE-estimator and the RE-estimator are equivalent when T tends
to infinity)' or that E{~; t n;,~r;} is constant and oaf t a,,; - 0, which dces not
seem to be very likely in practice.

The actual magnitude of the inconsistencies of the estimators is determined by
the prujection of the conditional expectations derived above on the (transformed)
z;,'s. Although it is possible to analyze the eH~ects of changes in model parameters
un the conditional expectatiun of the (transformed) error term analytically (com-
pare Ridder (990), it is, in general, virtually impossible to give analytical expres-
siuns in terms of the model parameters for projections of these expectations on the
explanatory variables, i.e. of the biases in the estimators. To obtain sume insight in
the numerical importance of the bias in the four estimators discussed aboye, we will
prescnt some numerical results in the next section.

Given the model in (I) and (I8) and the assumed normality of the error terms in
(19) is it pwsible to write down the likelihood Cunetion (compare Ridder 1990) and

~ Thu tywvalenct also hoWs when the muAel is not corcectly speafied, as in our case.
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to derive the Lagrange Multiplier test statistic for the null hypothesis H~:Qr~ -
oQE - 0. The loglikefihood function involves the joint distribution of the observed
y-values in y;b` and the response indicator r;. ]n particular, the loglikelihood
contribution of individual i is given by

(23) L; - IOg.~ynb~. ri) - IoB.iYri~Yobr) f IOB~Yobr).

where we are usíng f(.) as generic notation for any densitylmass function. The
second term in the right-hand side of ( 23) is the log of a T;-variate normal density
function, while the first term is the loglikelihood function of a(conditionap
T-variate probit model ( see the Appendix for details).

Denoting the full vector of parameters involved in ( 23) (including oo~ and o„~) by
B, the Lagrange Multiplier test statistic is given by

t
N aL; N aL; aL; N aL;

(Z4) ~LM - ~ - ~ -- ~ ~ -,. ~ ae i., ae ae ,. ~ ae e-Ao

where 6o is the ML estimate for B under Ho:aQf - Qr,~ - 0. Since there does not
appear to be any form of block diagonality of the Fisher information matrix under
the null, the scores with respect lo all parameters in the model are required to
compute this test statistic from the first derivatives of the loglikelihood. For the
cross sectional case the LM test for selectivity is discussed in Lee and Maddala
(1985).

Because under Ho the two terms in the right-hand side of (23) depend on
nonoverlapping subsets of the vector oC parameters, the score contributions with
respect to the parameters in (1) can be found in Hsiao (1986, p. 39),e while those for
the parameters in (18) can be derived from a standard random effects probit
likelihood ( see the Appendix). The most difficult score contributions are those with
respcct to the two covariances aQf and a~,~; the latter even requires double
numerical integration ( see the Appendix). Because estimation under Ha requires
numerical integration ( for each indivídual) for the probit part of the model and
computation of each score contribution also requires numerical integration over
one or two dimensions, the LM test is rather unattractive in applied work.

For the cross sectional sample selection model Heckman ( 1976, 1979) proposed
a simple way to test for selectivity bias and to obtain consistent estimators. As
discussed in Ridder ( 1990) this method can be generalized to the case of panel data,
where two correction terms to equation ( 1) are added instead of just the one
variable known as Heckman's lambda (or the inverted Mill's ratio). These two
correctíon terms are the conditional expectations of the two error terms ( a; and e;,) .
given the sampling scheme, as given in (20) and ( 21) evaluated at the (consistent)
parameter estimates of the probit model under the null hypothcsis ( see Nijman and
Verbeek 1990 for an application). The two unknown covariances o,~ and or,~ are
not included in these correction terms but are the corresponding true coefficients in

~ Note that (3.3.20) in Hsiao ( 19R61 contains a printing ermr the first - sign on the second line should
rcad a f sign.
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equation (I). Obviously, consistent estimation of these coefficients oQf and aE,~
allows one to check whether nonresponse is selective or not. Since estimation of
the parameters in the response equation as well as computation of the conditional
expectation of f; t ,);, in (20) and ( 21) requires numerical integration, these
generalized Heckman ( 1979) method is siill computationally unattractive. There-
fore, it may be worthwhile to have some simple variables that can be used instead
to approximate the true correction terms to check for selective nonresponse, for
example those suggested in the previous section.

If the specification of the response process in (18) is correct, the Lagrange
Multiplier test is known to be asymptotically e8'icient for testing the null hypothesis
Ho. To obtain some idea about the power of the alternative simple tests we
performed a Monte Carlo study under this assumption, the results of which are
presented in the next two sections. ln Section 5 we introduce the Monte Carlo
model and present estimates for the pseudo true values of the four estimators in
(12), giving insight in the importance of the selectivity bias in these estimators. In
Section 6 some aumerical results on the power of the simple tests in comparison
with the Lagrange Multiplier test are presented.

S. NUMERICAL RESULTS ON THE PSEUDO TRUE VALUES OF THE RE AND FE

ESTIMATORS

In this section we will present some numerical results on the pseudo true values
of (3FE and (3KE, defined as the probability limits of these estimators under the true
data generating process. For exposi[ory purposes we consider a simple model
consisting of equations (t) and (IS) with only one exogenous variable included
besides the constant term.

This exogenous variable (z;, - x;,) is assumed to be generated by a Gaussian
AR(1) process with mean zero, autocorrelation coefficient p~ and variance v,~ . For
simplicity we have imposed equality of all ~rr,'s in (17). The model used for
simulation is thus given by

(25)
(26)

y;,-~3ix;,ta; te;,

.
rir - Yo t Ylxir t 17Xi t~; t 71;,

where x; is the averuge value of the x;,'s over time. We concentrate on a model
with only one explanatory variable, since it elucidates the discussion most clearly.
Including an addilional variable in ( 25) tha[ is uncorrelated with x;, essentially
would not change the resutts, while inclusion of a variable that is correlated with
x;, would result in biases that depend heavily on the sign and magnitude of this
correlation. Similar remarks hold for the inclusion of additional variables in (26).

We consider two possible specifications Cor the selection equation, one in which
~r is a priori set to zero (in which case the probabilily of selection in period t is
determined by x;,), and one in which y~ is a priori set to zero such that the average
value of x;, over time determines the selection probability. Given this choice of
specificatiun, the relative biases of the estimators for ~3i in this model, defined as
(~3i - Qi )~~3i , where (3~ is the pseudo true value.of the respective estimators Cor ~ii,
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TABLE I
RELATIVE INCONSISTENCIES (IN PERCENT) IN THE FE AND RE ESTIMATORS FROM A BALANCED AND

UNBALANCED PANEL

Rckrence situation (REF): T- 3, R~ - 0.1, R; a 0.9, p, ~ 0.1, p, - 0.7, po - 0.5,
pf ~ 0.1 and pof - 0.5

R~' R: ~ Pa - P, z Po - P- Pat -
estimalor REF ~.9 0.1 0.9 0.3 Q'(I) ~.9 0.9

A: traO.P.n s0.9
FE(B) -78 -8 -19 -25 - 90 -tíl -28 -77
RE(B) -79 - 9 -49 -27 - 93 -61 -39 -81
FE(U) -48 - 10 -SO -33 -101 -77 -37 -98
RE(U) -tló -13 -53 -39 - 115 -88 -56 -121

B: ~sO.P.~ LO
RE(B) -6 - I -S -2 -6 -6 - t7 - I I
RE(U) -6 -1 -4 -6 -7 -5 -19 -12

C: YI ~O.P.~ a0.9
RE(B) -34 -3 -38 -I -17 -27 -17 -35
RE(U) -74 -7 -44 -4 -41 ' -61 -32 -75

1. Relative inconsistency of an estimator is defined as its pseudo true vatue minus the true value
divided by the true value ( multiplied by 100 percent).

2. The number of replications in each situation is chosen such that all (Monte Carlo) standard
etrors arc smaller than 0.5 percent.

3. All simulation rcsults are obtained using the NAG-library subroutines GOSCCF and GOSDDF.
1. From the analytical rcsults we know that the fixed effects estimators ere consistent in panels

B and C, which was confirmed by the Monte Carlo results.

depend on T, the number of time periods, and the following eight hyper-
parameters.

pa s vá(vQ f~;)-1, the importance of the individual eB'ect in equation (25);
pE s of, the importance of the individual effect in the selection equation;
pr, the autocotrelation coeH'icient of s;,;
Po -~(YO). the (unconditional) probabilíty of observation when z;t - 0 for
all t;
RY - pioj(~io~ f aQ f vé)-t, the (theoretical) RZ of equation (I);
R; , the (theoretical) R2 of the solection equation;

R? - yi a: (Yi ~x } I)-t if ~r - 0, or
R? --rrZVx(~rrZO,~ f I)-I if Yt - 0, with vj - ox(3 f 4PI f 2Px)!9
(the variance of z;);

p~,~ - or,~lo~o,~, the correlation between the error shocks in (25) and (26);
pof, the correlation between the individual effects in (25) and (26).

If we assume that al) correlations are nonnegative, all of the hyperparameters arc
restricted to the interval [0, 1], so that one has some more feeling what "small" and
"large" values for these parameters mean. Without loss of generality, it is assumed
that yl z 0 or a z 0. In Table 1 estimated relative biases (relative difTerences
between the estimated pseudo true values and the true values) of the Cour
estimators discussed above are given for several combinations of parameter values
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and T- 3. The number of replicatiuns is chosen in such a way that all (Munte
Carlo) standard errors are smaller than O.WS. !n the table the parameter values are
chosen as follows. There is one "reference situation" characterized by T- 3,
Ry -O.I,R? -0.9,Pa -0.1,Pj -0.7,Po ~O.S,pE-O.landpof-0.5.
Three alternative combinations of ,r and p~,r are considered given in panels A, B
and C. The columns in the table correspond to the reference situation (REF) or this
situation with only one of the parameter values changed. For example, the column
with heading p, - 0.3 refers to [he reference situation given above with pj - 0.3
instead of 0.7. lf ~rr - 0 and p~,r - 0.9 (panel A) we see in this column that the óxed
effects estimator based on the balanced panel suflers from an inconsistency of -90
percent, while the same figure for the random effects estimator from the unbalanced
panel is -1 IS percent. The standard errors implied by the Monte Carlo experiment
are such that the true relative inconsistencies are with a 95 percent probability
within a 1 percent point range of the reported values.

Although, as always, it is did5cult to draw definitive conclusions from results for
specific parameter values the results in Table 1 suggest the following points.

The biases in the estimators can be substantial. !n some cases it is even possible
that the sign of the pseudo true value is opposite to the sign of the true value of (3t .
Moreover, like other simulation results (not reported in this paper) suggest, if the
true Qr parameter is equal to zero (which implies that RY - 0), a significant ed'ect
of the explanatory variable on y;, can be found. This phenomenon is also known
from the standard (cross section) sample selection model of Heckman (1979). ~

Although the fact that the conditions for the fixed effects estimator to be
consistent are weaker than those for the random effects estimator does not
necessarily imply that the bias in the latter is always larger than that in the first, our
simulations show that this is in fact the case. If there is a diderence between the RE
and FE pseudo true values, it is in favor of the latter estimator. This result is caused
by [he Cact that we have assumed that paF ~ 0. !n the not very likely situation where
paf G 0 and p~,r 1 0, the bias in the random edects estimator may in fact be smaller.
If the amuunt of bias is used as criterion for choosing an estimator, it is obvious
from our analytical and numerical results that the fixed eflects estimator is likely to
be preferable to the random effects estimator.

For almost all situations we consider, the bias in the estimator based on the
unbalanced panel is larger (in absolute value) than that in the same estimator based
on the balanced panel; if it is smaller the diderence between the two estimates is
negligible given the size of the Monte Carlo experiment. This somewhat surprising
result suggests that a balanced panel may be preferred to an unbalanced panel. A
possible explanation for this result might be that the individuals that are not
observed in all periods have on average a lower probability of being observed, thus
also a lower prubability in thuse periuds they are observed, implying a larger
corrcctiun term in the regression eyuation. In the standard sample selection model
of Neckman this would mean that Cor those individuals Heckman's lambda deviates
more frum zero.

Kecping all parameters fixed at some level except one, it may be possible to say
surn~thing abuut the ch~nge of the bias if that one parameter is changcd. It is
evidcnt frum the analytical results and also frum the numerical results abuve thal a
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rise in R 2 will cause a decrease in the absolute value of the bias, simply hecause a
rising R ~diminishes the role of the error terms a; and e;,. On the other hand, a rise
in R; increases the absolute value of the bias, since it increases the correlation
between the probabilities ofbeing observed and the explanatory variable(s) x;,. For
po ? 2(y~ ~ 0), an increase in po diminishes this correlation and therefore
decreases the absolute value of the bias. Obviously, increasing the (absolute values
of the) correlation coefficients p~,~ or poE (already being nonnegative) causes a rise
in the absolute value of the bias ofall estimators. A more important individual effect
in equation (25), p„ seems to reduce the absolute value of the bias; the effect of pj
and pf is ambiguous.

G. NUMERICAL RESULTS ON THE POwER OF THE TESTS

In Section 3 a number of tests were proposed which can be used to check
whether selectivity bias is present or not. In this section we present numerical
results on the power properties of tho quasi-Hausman tests, the variable addition
tests and the LM test of Section 4 for the Monte Carlo model introduced in Section
S. We shall not consider the generalized Heckman test because it is as hard to
compute but asymptotically less powerful than the asymptotically optimal La-
grange Multiplier test.

For simplicity we restrict ourselves to an analysis of the asymptotic local power.
That is, we consider the power of our tests under a sequence of local alternatives,

in general B- Bp f Sl~ for some vector b, where Bo denotes the parameter
value under the null hypothesis (compare Engle 1984 or Holly 1987). Under such a
sequence of local alternatives our tests (or their XZ equivalents) are asymptotically
noncentrally XZ distributed, with a decentrality parameter A determined by b. For
the (quasi-) Hausman tests, for example, and a sequence of local alternatives given

by ~- Q t Sl~ it holds that

(27) fR - Ná'R'(R~R')'R~ ~ Xá(d'R'(RVR')-R~ - Xé(AR). N-a ~.

Since the power ofa test is a direct function of its decentrality parameter, we report
decentrality parameters only.

Wo interpret the particular alternative implied by the Monte Carlo model as being
one in a sequence of local alternatives. For all cases in the Monte Carlo set-ap we
choose a sample size' of N- 25,000 to estimate the pseudo true values 6 by B. We
estimate S by S-~(9 - Bo), which gives us (an estimate for) the decentrality
parameter for sample size n. in Table 2 deccntrality parameters for n- 500 are
reported. From these decentrality parameters one can compute the probability of
rejection of the null hypothesis in a sample of 500 observations based on an
approximation by the asymptotíc distribution. Considering, for example, the
reference situation in panel A(~rr a 0, p~~ ~ 0.9), we see that the Hausman test
comparing the RE estimators from the unbalanced panel and the balanced sub-

, Sample size refers to the number of individuals in the penel, including thosc that are observed only

once or twice.



~ÏAtlLE 2
DECENTRALITY PARAMETERS OF TME CHI-SQUwRE DISTRIBUTIONS OF SEVEIiAL TESTS FOR

SELECTIVITY BIwS AT n~ S00 AND T a 3

Reference situation (REF): T~ 3, RY s 0.1, R; ~ 0.9, pa a 0.1, p, ~ 0.7, po - 0.5,
pf ~ 0.l and p,E ~ 0.5

R~ ~
test DF REF ~.9

R? ' Pa ' P. ' Do z P' Paf '
0.1 0.9 0.3 m(!) ~.9 0.9

A: a- 0. P.,t ~ 0.9
Quasi-Hausman tests:
I I 1.41 1.27 0.07 2.00 0.31 1.32 0.26 I.OS
2 I 7.23 6.00 0.06 3.35 1.53 7.48 1.84 7.33
3 I 0.83 0.72 0.03 1.76 0.60 0.43 1.13 0.72
4 I 2.07 1.81 0.01 3.53 0.85 1.43 1.37 1.66
5 2 2.04 1.64 0.04 2.02 0.89 1.83 1.39 2.49
6 2 7.27 6.04 0.10 4.21 1.69 7.48 2.44 7.34
Variable addition tests:
7 I 0.01 0.01 0.04 0.14 0.03 0.11 0.10 0.04
8 I 0.03 0.03 0.00 0.24 0.04 0.04 0.17 0.14
9 1 0.02 0.01 0.01 0.02 0.00 0.14 0.03 0.02
Lagrange Multiplier test:
LM 2 SS.1 49.2 5.46 31.3 38.5 37.3 14.1 66.3

B: naO.P.w'0
Quasi-Hausman tests:
2 1 0.07 0.06 0.00 0.02 0.00 0.02 0.00 0.00
3 1 0.12 0.35 0.06 0.72 0.09 0.01 0.81 0.41
4 I 0.06 0.45 0.04 0.18 0.04 0.00 0.81 0.38
S 2 0.17 0.44 0.00 0.79 0.12 0.02 0.98 0.57
6 2 0.15 0.36 0.07 0.73 0.11 0.03 0.84 0.46
Variable addition tests:
7 I 0.09 0.07 1.88 0.6! 0.32 0.22 1.23 0.39
8 1 0.06 0.09 1.31 0.39 0.17 0.21 0.98 0.64 .
9 I 0.00 0.12 0.16 0.00 0.14 0.04 0.27 0.13
Lagrange Multiplier test:
LM 21 1.33 0.13 4.12 4.93 1.06 1.15 3.92 3.74

C: ~ YI ' 0, P.n ` 0.9
Quasi-Hausman tests:
2 1 19.6 19.4 0.10 1.47 11.4 20.7 8.96 17.7
3 1 19.9 18.3 3.73 6.6ES 22.4 IS.2 4.35 19.3
4 1 Ití.O 14.7 I.S6 2.50 IS.I 12.7 3.93 15.3
S 2 30.6 29.3 3.73 7.60 27.1 28.3 11.9 29.2
6 2 29.4 28.4 3.74 6.86 24.5 27.3 11.4 27.9

Variable addition tests:
7 1 29.9 27.6 0.09 3.92 36.7 27.0 16.0 24.9
8 I 22.7 21.6 0.08 3.16 30.6 2I.6 t3.9 18.5
9 1 2.80 2.29 0.05 0.04 5.83 2.10 0.59 2.19
Lagrange Multiplicr test:
LM 2 75.9 73.6 13.7 20.1 83.8 66.8 12.1 83.0

1. Fixed EtTects (Balanced vs. Unbalanced)
2. Random Edects (Balanced vs. Unbalanced)
3. Unbalanced (Random Edects vs. Fixcd Effects)
4. Fixed Edects, Balanced vs. Random Edects, Unbalanced
S. Balanced (FE vs. RE) and Unbalanccd (FE vs. RE)
6. RE (Balanced vs. Unbalanced) and FE, Balanced vs. RE, Unbalanced

7. Fr r,~
8. Íl~ r,r
9. ri. ~- I
tlf the restriction p,~ - 0 is imposed a priori, this test has one degree of freedom.
Estimated decentrality parameters are based on 23,000 individual observations. Estimates for

decentrality Darameters for sample sizc n can be obtained by multiplying the numbers by nI500.
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TABLE 3
PROBABILITIFS OF REJECTION (AT S PERCENT) FOR SEVERAL DECENTRALITY PARAMFTFRS

Decentrality parameter

DF 0 I 2 3 4 S 10 20

I 0.05 0.17 0.29 0.41 0.52 0.61 O.R9 0.99
2 0.05 0.13 0.23 0.32 OA2 O.SO O.R2 0.99

panel has a decentrality parameter of 7.23, implying a 77 percent probability of
rejection at a nominal size of S percent (if n- 500). If the available sample contains
1000 individuals, the decentrality parameter is twice as large (14.46) corresponding
to a 97 percent probability of rejection. Similarly, the implied probabilities of
rejection (at a nominal size of 5 percent) for six (quasi-) Hausman tests, three
variable addition tests and the LM test for any number of observations can be
computed using Table 3.

Note that the estimated decentrality parameters in 7'able 2 are not normally but
(noncentrally) Chi-square distributed, which makes computation of confidence
intervals di(Rcult. Based on the asymptotic normality of the parameter estimalors
the variance of ~ approximately satisfies

(28) V{Q} - N2 ~d f ~ O J
where d is the number of degrees of freedom, and where we use the fact that Nln~
is Chi-square distributed. It is important to note that this variance increases with
the true value A. Forlarge enough 0 the corresponding standard error for N-
25,000 and n- 500 is (approximately) given by 0.283~.

Looking at panel A of Table 2 first, where both Há E and Hó E are false, we see
that in this case none of the variable addition tests has any power. Obviously, these
variables are under these data generating processes not capable of approximating
the Heckman ( 1979) like correction terms. This is probably due to the fact that our
simple variables are not capable of capturing the time variation in these correction
terms (due to zlr y). With regard to the Hausman tests, the results in Table 2 suggest
that the test based on comparison of the random effects estimators in the balanced
and the unbalanced panel (the second test) is more powerful than all other tests
based on comparison of two estimators. Looking at the tests that compare two pairs
of estimators ( the fifth and the sixth test in Table 2), the latter seems to períorm
relatively well, although it is not performing uniformly better than the best one
degree of freedom test. The test statistic based on comparing all four estimators
(which is not reported in the Table) does not result in a very powerful test compared
to those tests based on two pairs of estimators, since the additional degree of
freedom has a much more dominant etTect on the power than a (fairly small) rise in
the decentrality parameter. For panel A of Table 2, the LM test is obviously far
more powerful then any Hausman test. Note that the power of all tests reduces
substantially if the R Z of the selection equation is reduced from 0.9 to 0.1; the bias
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in the estimators is however still substantial (53 percent for the random effects
estimator (rom the unbalanced panel).

If o~~ - 0, i.e. if the error shocks in the structural equation and the selection
equation are uncorrelated, but QaE ~ 0(so HóE is true and HóE is not; pancl E3) all
tcsts seem to have IimileJ power only. Even lhe puwer of the LM test is very
limited in this case, in which, of course, the null hypothesis Ho is only violated in
one direction vaE ~ 0). Since the bias in the fixed effects estimators is zero in this
case, while that in the random effects estimators is small (compare Table I), this
does not seem to be a situation to worry about.

As shown in panel C of Table 2, the power of all tests appears to be larger in the
case where the response is determined by an individual effect which is correlated
with the regressor (~r ~ 0 and yl - 0) than in the case where the regressor itself
determines the response (a - 0 and yl ~ 0). Note that for the Hausman tests
comparing FE and RE estimators we have a standard situation in which one of the
estimators in the test statistic is consistent even if the null hypothesis does not hold.
Remarkably, the variable addition tests have fairly good power properties as well,
especially the one based on adding the number of waves an individual is partici-
pating (E, r;,). The one based on including r;,~-I has only very limited power.
Concerning the Hausman tests, the one comparing the RE and FE estimator in the
unbalanced panel, which is the standard Hausman test for uncorrelated individual
eH'ects, has the largest power of the one degree of freedom tests. In some cases it
is worthwhile to combine two restrictions and perform a two degrees of freedom
test. It should be clear from the simulation results in the table that it is well possible
that the standard Hausman (1978) specification test for testing the hypothesis that
the individual etíects are uncorrelated with the explanatory variables rejects due to
the presence of selectivity bias.

Unfortunately, none of the simple tests seems to have uniformly better power
properties than the others, so we cannot recommend one particular test. The power
of all tests seems to depend crucially on the fact whether HóE ís false or, if it is
true, why HpE is true (v~,~ L 0 or yl z 0?). In the latter case (yl - 0) the power
of most simple tests is quite reasonable, while it is not if v~,; - 0. In line with the
Monte Carlo results abovc, we are te,t~nr~i ed to say that both the second and the third
Hausman test (RE, balanced versus unbalanced, and unbalanced, FE versus RE,
respectively) perform relatively well and may be a good choice in applied work.
The best choice for a variable addition test seems to be to include E, r;, in the
structural equation.

So far, we have only considered numerical analyses for a three wave panel (T ~
3). If T increases, the number of individuals in the balanced subpanel (keeping all
parameters fixed) will decrease, which may increase the differences found between
the estimators from the balanced and the unbalanced panel. Moreover, the
difference between the fixed effects estimator and the random effects estimator for
a given sample will get smaller, since the weight of the between estimator in the
random effects estimator is inversely related with T(compare Hsiao 1986, p. 36).
This suggests that the power of the Hausman tests comparing estimators from the
balanced and unbalanced panel will increase with T and that of the standard
Hausman specification tests will decrease with T. For larger T the second Hausman
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test (comparing the random effects estimators from the balanced and unbalanced
panel) is probably the most attractive way to test hypothesis Hó E

i. CONCLUDING REMARKS

In this paper we suggested several simple tests to check the presence of selective
nonresponse in a panel data model. We considered the selectivity bias of the fixed
and random effects estimators and showed that the FE estimator is more robust to
nonresponse biases than the RE estimator. Several simple Hausman tests have
been suggested which are based on the differences in the pseudo true values of
these estimators. Furthermore, some variable addition tests are proposed which
can be used to test for selectivity bias. Neither of these tests requires estimation of
the model under selectivity nor a specification of the response mechanism.

Our theoretical results show that the conditions for consistency ofa fixed effects
estimator are weaker than that for a consistent random effects estimator. In
addition, a Monte Carlo study shows that the bias of the FE estimator is likely to
be smaller than that of the RE estimator in cases where both estimators are
inconsistent. The numerical results also indicate that the bias resulting from a
balanced sub-panel is likely to be smaller than that from the unbalanced panel.

Although the proposed Hausman and variable addition tests have poor power
properties in some cases, they may be a good instrumcnt for checking the
importance of the selectivity problem. In particular when response is partly
determined by an individual effect which is correlated with the regressor the power
of several Hausman tests and variable addition tests is quite reasonable in
comparison with the Lagrange Multiplier test. For practical purposes at least two
Hausman tests can be recommended: the one comparing the random effects
estimators from the balanced and unbalanced panel, and the one comparing the RE
and FE estimators in the unbalanced panel (the standard Hausman test for
correlated individual effects). A test that is even simpler is the variable addition test
including T; - E, r;, in the specification of equation (I). This test also seems to
perform quite reasonable in practice.

For ease of presentation attention in this paper was restricted to the linear
regression model, although several of the tests can straightforwardly be generalized
to nonlinear models. For example, for any model that is identified from both the
unbalanced panel and the balanced sub-panel, it is possible to compute a simple
Hausman test comparing the corresponding two estimators. Moreover, adding T;
or c; as an additional explanatory variable is possible in virtually any kind of model
and consequently, its significance can be tested straightforwardly, yielding very
simple checks for the presence of selectivity bias.

Tilburg Universiry, The Netherlortds
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APPENDIx

SOME TECHNICAL DETAILS

The Derivation of (20) ond (2l). From (19) it is readily verified that

za; oa 0 oat~,

e; ... J~I 0, 0;1 a,nl

~~i t ~; v~ f afir'

z
~n t

E{er~~;r f~li) - vZ f- Ta t Q2 ~~' (f~r } n~).
n E n

and proves (20) and (22) if we use the definition of é;, and take expectations
conditional upon r;l, ... , r;T. It also foUows that

i
af r f

(31) E{arl~~r t n;}- a2 r'I!-
TQ t~~

rr' (~~r f rl~).
n ` t n

which proves (21) after taking conditional expectations upon r;l , ... , r;T.
Moreover, since E{~;~r;} is fixed over time and since (dropping the z;rns terms

for notational convenience)

~(zuY } f~~

I` vn
(32) E{~1~~~r~} - ~~zuY f ~~l

~~~~ri) dfr if ru - 1

v ~ jl

where ~ and d' are the standard normal density and distribution function,
respectively, andJ(~;~r;) is the conditional density of f; given selection ( see Ridder
1990), it is evident that there is no selectivity bias if z;; Y is constant over time, i.e.
if the probability of an individual of being observed is constant for all r.

The Lagrange Multiplier Test Staristic for Selectivity Bias. The Ioglikelihood

contribution of an individual i in the full model is given by

(33) Lj - IoB1YrrIRrYt)nRiyr)

whereJïr;~R;y;) is the likelihood function of a(conditional) T-variate probit model

and JíR;y;) is the likelihood function of a T;-dimensional linear error components

model (compare Hsiao 1986, p. 38). The second term is simple and can be written
as

(34) log J(R;Y;) - - Zj log 2~r - T~ 2 1 log o; - 2 log (a; f T; a;)
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1 ~ p z - Ti !~ z- Zaé r- 1 Tlr(ytr - X UY) Z(o` } 7, aQ) (yi --CiF~) .

The first term in (33) is somewhat more complicated because we have to derive the
conditional distribution of the error term in the probit model. From ( 19) and
defining v;, - r„(a; t e;,) (where r;, is treated as nonstochastic), the conditional
expectation of the error term a;; f n;, is given by

o,,,
(35) E{~; f~I,r~Ull ,... , vlr} - Tir Z vrr -v,

oz0 r
G vlr

o~fT;vá,-1

ro,f ~
t vif - Cir, say.

o; f T;Q; , - i

Using ( 19) the conditional variance of ~; t,1;, can also be derived. It is
straightforward to show that the conditional distributión of ~; t n;, given v;t ,... ,
v;T corresponds with the ( unconditional) dístribution of the sum of three normal
variables u;, f vt; t r;, vzi whose distribution is characterized by

E{vl;} - E{vzi} - 0, E{u;,} - c;r,

V{uu} - a~ - r;,Q;,~IQ; - s;. saY

V{v~;} - aÉ - T;v;f(o; t T;oá)'~ - m~, saY

V{vz;} - vi,~v;o;z(Q; t T;v;)-~ -~z, say

cov {vu, vzr} --oafQ.,,(a; f T;Qá)-~ -~iv saY

and all other covariances equal to zero. For notational convenience we do not
explicitly add an index i to the (co)variances s, and m. Note that c;, - 0, s; - on,
wl - af and I„z - 0 under Ho. Like in the unconditional error components probit
model (compare Heckman 1981), the likelihood function can be written as (drop-
ping the z;s-rr, terms for notational convenience)

(36)
T

zlr y f Cit t ~ li f rir V 2i
.I~~i~RiYi) - Ee ~ ~ dir

, ~ r Sr

where the expectation is taken over vl; and vz;, and d;, - 2r;, - I. It is this
likelihood function that has to be differentiated w.r.t. the unknown parameters y,
~f ~ ar:f and o~,~. However, the expectation operator depends on the unknown
parameter vector B (because the density of v~; and vzi is not defined with respect
to the same measure under Ho and the alternative), implying that the order of
taking expectations and difTerentiating is not interchangeable. This prohlem can
easily be solved by defining two new integration variables that are both standard
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normally distributed ( under the null and the alternative), rl and rz, say. Then we
obtain

jj r r ZirY f Cir } airrl f birr2
(37) f(r;~R;Yi) JJ n~1d;r ~(rr)~(rz) drr drz

r-I ` Sr

where

n-mintr~, ~,-UZ and b - r.(m -r.,z~ t uz
n I u Iz z rr u z Iz I)

Since j(R;y;) does not depend on o~,~ and vaf, di0'erentiating the log of the
expression above and evaluating the result under Ho yields the scores w.r.t. the
two covariances. Using the fact that for any element ~r of the parameter vector (y,

zo,r, or~, ~rrf).

(38)

with

(39)

at; aJTr,IRiY,)
d~ - a~ .~r,~RiYi)

aj(r,~R;Y;)
-

J J ~ n
a~'(.)a~ ~r(.) a~ ~(rl)~(rz) drr drz.

,-I r-I.rr,

[he score w.r.t. vof can easily be derived using the following equality (under No)

(40)
ad'r(.) z,rY } ofrl d„ ac;, arv~n

f rd~ l I
aQ,f -~( u o~r I on avaf a~af

Similarly, for a6,~, we use

adlr(.) r ZirY } o(T I

(41) dv~
- ~I d,r ~

~r ` ~

d;r ~ aC;,
~,f rrrrzQ;v,z(v` t T~QQ)-I

o,r ao~,r

from which lhe score w.r.t. ot,; under Hp can easily be derived. Note that both rt
and rZ occur in the integrand such that numerical integration over lwo dimensions
will be required.

For the scores w.r.t. y and vf - 1- v~ it su6'ices under Ho to look at aJ(r;)!ay
and aj(r;)ldof, where (compare Heckman 1981)

j T Z,rY t Qfrl
(42) !(ri) - J n ~~du ~~(rl) drr.

,-r ~n

Both scores will require numerical integration over one dimension.
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