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Wc study the exact finite-sample behaviour of the mean-square forecast error (MSFE) of
multi-period least-squares forecasts in the normal autoregressive model y, -a t~y,-~ f u,. We
obtain necessary aad su:ficier,t conditiolis fur ihe existence of the MSFE and give an exact
expression which we use to obtain numerical results [or both the stationary and the fixed start-up
model. We conclude, inter alia, that the behaviour of the MSFE in the model with intercept can
be very di(Terent from that in the model without intercept, especially when ~ is close to unity.

1. Introduction

This paper is a further attempt to analyze the mean-square forecast error
(MSFE) of multi-period least-squares forecasts in dynamic models. While
Hoque, Magnus, and Pesaran (1988) considered the MSFE arising from a
first-order autoregression without intercept,

Y~-QY~-t } u~, {1)

where ~Q~ ~ 1 and {u~} is a sequence of independent and identically dis-
tributed N(0, a2) random variables, we now go one step further and study the
model with an intercept,

Y~ -(Y f Í3Yt-1 f ur. (2)

We shall see that the behaviour of the MSFE in the AR(1) model with an
intercept can be very difïerent from that in the model without an intercept,
and that thís is particularly true for ~3 close to unity.

In the no-intercept model (1), let ~ denote the least-squares (LS) estimator
of Q based on n observations yl,..., y,,. The s-periods-ahead LS forecast is
then y~,r -~sy,,. Malinvaud (1970) showed that the forecast bias E(y„;, -
y~~,) vanishes, if it exists. Hoque, Magnus, and Pesaran (1988) showed that

0304-4076~89~S3.SOm1989, Elsevier Science PubGshers B.V. (North-Holland)
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the forecast bias exists if and only if s S n- 2. They also showed that the
MSFE exists if and only if s 5 [(n - 2)~2], and they obtained an exact
expression for the MSFE which they used to obtain exact results~by numerical
integration. Their two main conclusions were (i) that for ~~~ close to 1 the
MSFE is very sensitive to the specification of the initial observation and
(ii) that it is not generally true that the MSFE is an increasing function of s
and that, indeed, for ~ close to zero the MSFE is decreasing in s.

The latter result is counterintuitive, so it may be useful to provide some
analytical evidence in addition to the exact results. First, we may write the
asymptotic approximation up to order n-1 as

I1-~2' 1
MSFE-aZI

1-52 }
n-lsZ~u~-t~

[see, e.g., Maekawa (11987)], and one verifies easily that the same counterintu-
itive phenomenon occurs here. Secondly, at ~- 0, we have

MSFE ~ a2~1 -t- E~~'y„)~). (3)

If we consider (3) for a moment as a continuous function of s, then

d MSFE
ds -a2E~~'y~)Z1og~2,

and this expectation is negative because log ~Z is negative with probability
almost equal to one.t

In the model (2) with an intercept, Fuller and Hasza (1980) proved that the
forecast bias is zero if it exists and if the process is mean-stationary. Magnus
and Pesaran (1987) showed that the forecast bias in this case exists if and only
if s 5 n- 3 and they provided an exact expression for the forecast bias which
is applicable whether the process is mean-stationary or not. The results for the
not mean-stationary case show that the forecast bias is not, in general, a
monotone function of either ~, n, or s, and that the covariance-stationarity of
the process is only relevant when ~B is close to -1.

In this paper we study the MSFE in the model with an intercept (2). We
show that the MSFE exists if and only if s 5[(n - 3)~2J and provide an exact
expression for the MSFE in this case. The exact results are compared with the
asymptotic approximation and with Monte Carlo results obtained by Orcutt
and Winokur (1969) and Fuller and Hasza (1980). The paper highlights the
importance of the specification of the initial observation. If ~~ 0, then we find

~There is a small but positive probabiliry that I~I ~ 1 even though I~I ~ 1. 7Lis probability is
particularly small when the true ~ is uro. The exaption (n - 10, s- 4) to the monotonic
behaviour o[ the MSFE at ~- 0 noted in Hoque, Magnus, and Pesaran (1988, section 4 and table
1) is explained by the fact ihat this case lies on the boundary of the atisteacx regioa of the MSFE.
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it is important to know whether the process is mean-stationary or not, but
almost irrelevant to have information about the covariance-stationarity of the
process. If Q ~ 0, the opposite is true. Then it is important to know whether
the process is covariance-stationary or not, but almost useless to know whether
the process is mean-stationary or not.

In section 2 we present the model and the precise assumptions concerning
the initial observation. The main theorem is stated in section 3. Sections 4 and
5 discuss the exact results. An appendix containing the proof of the theorem
concludes the paper.

2. The model

We shall be exclusively concerned with the first-order autoregressive process
{ yl, yZ, .. . } with an intercept term,

y~-a-~Qy,-ifu~~ t-2,3,..., (4)

where both ~ and Q are unknown and {u,, u,,... } is a sequence of i,i,d.
N(0, a `) random variables. Regarding the initial observation yi we postulate

yi - F~i -~ Su~, (5)

where ui - N(0, aZ) is independent of u2, u3,..., and S~ 0. In finite samples
the actual values of ~~ and S are important and we shall return to their
specihcation shortly.

Let y-( yl, yZ, ..., yn )' be an n x 1 vector of observations generated by (4)
and (5). Then y is normally distributed with mean

1 1
1 ~

z
Y~- 1~Ig 1 f!~1- 1 a~) ~

1 Qn-1

and positive definite covariance matrix LFL'', where

S 0 0 .-. 0 0
S~3 1 0 ... 0 0

(6)

I gR 2 ~ 1 ... p p I
L - a (7)

lsrn-2
Rn-~

Yn-`
... 1 OJS~n-1 Yqn-2 Rn-7 ~ 1
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Given the vector of observations y-( yl, y2, ..., y„)', the least-squares
estimators of a and ~, obtained by minimizing ~;-2 (y, - a- ~By,-~)2, are
given by

á - Ys. - I~Y.

n n
and

(g)

~- ~. (Yr-Y..)(Yr-~-Y.)I ~ (Yr-t-Ys)~, (9)
r-2 t-2

where
n n

y. - (lr( n -1)) ~ Yr-i, l'ss - (lr(n - 1)) ~ Y,.
,-~ t-z

Defining the n x n matrices

A- 2( D;MD„ -~ D~,MD.), B- D~MD,, (10)

where M is the idempotent (n -1) x(n - 1) matrix

M- I„-1 - (1~(n - 1))ii', i - (1,1,...,1)',

and D, and D„ are the (n - 1) x n selection matrices

D~ - ~h-1:0), Da z (0: I„-1),

we can write the least-squares estimator ~ in (9) as a ratio of two quadratic
forms in normal variables,

~ s Y'AYrY'BY.

The s-periods-ahead forecast is defined recursively as

Y~. i - á -1- ~Y,,.

Y~t~ ~ a f ~Yri~:-t.

so that

s-2,3,... ,

,-t
Y~t:~á~~~f~'y,,, s-1,2,....

j-o

From ( 4) and (11) we obtain the forecast error

s-t s s ,-t ,-t
Ynts -Y~ti ~ ~ ~ Pj f ( Pr - ~'~Y~ - a ~ ~~ - ~ ~juetr-j. (12)

j-0 j-0 j-0
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and the expected value of ( y14J - y„~,)2, if it exists, is the mean-square
forecast error of the forecast y„t,. In the next section we shall obtain an exact
expression for the MSFE and show that it exists if and only if s 5[(n - 3)~2].

Let us now return to the specification of p.~ and 8. The following choices
seem the most natural ones to consider. As to the mean component ~l we
assume either

Assumption la. pl - a~(1 - ~B),

in which case { yl, yZ, ... } is mean-stationary (Ey, - pt, t- 1, 2, ...), or

Assumption Ib. }~1 - a,

which, if we assume that (4) also holds for t- 1, is equivalent to assuming that
yo is distributed symmetrically about zero, but imp(ies that the process is not
mean-stationary (except when ~3 - 0).

As to the variance component 8, we assume either

Assumption 2a. S - (1 - ~32)-1~2,

in which case the series { yl, yZ,... } is covariance-stationary ( cov(y, ~,, y,) is
independent of s), or

Assumption 26. S - 1,

which is equivalent to assuming that yo is a nonrandom constant, but implies
of course that the process is not covariance-stationary (except again when
Q-0).

If Assumptions la and 2a are both satisfied, then { yl, y2,... } is a normal
strictly stationary time series; if Assumptions Ib and 2b are both satisfied,
then yo - o.

3. The mean-square torecast error ot y„ t,

In order to obtain an exact expression for the mean-square forecast error
( MSFE), E( y~t, - y„t,)Z, we need some additional notation.

Let A and B be the n x n matrices (n z 5) defined in (10) and let fa and L
be the n x 1 vector and n X n matrix defined in (6) and ( 7), respectively. Let P
be an orthogonal n X n matrix and A a diagonal n X n matrix such that

P'L'BLP - A, P'P- 1,,,
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and define the n x n matrix and n x 1 vectors

A' ~ P'L'ALP, ~` ~ P'L-'~,

1
w~ - n - 1 (- 1,0,...,0,1)',

w2 -

n-1

For i, j- 1, 2, 3, let Wj- 2( w; w~ f wj w; ) and denote by e, the bias of the
forecast y"~,, that is, EJ- E(y"ts-j'nts).

Let { Ck,,, l 5 k 5 2s } be symmetric n x n matrices defined by

(ktl)Wi,-2~'W~jf2(1-~')W~~ if k-1,...,s-1,
(s-1)W~~t2W12-2~'W22t2(1-~')W27 if k~s,

C~.. , ~ (2s-k-1)W11t2WiZ i[ k-st1,...,2s-1,

{y22 if k - 2s,

and, for any symmetric n x n matrix C, let

exP~ - i!~'~F~' ~
3'k[C]-

where

k

-F.4 ~ j2n j(nj - 1)rj'wj~~'RjTRj~)
j-1

t8 ~ w;j(in;r;)( jnjrj)(~'R'TRj~).
i~j

(13)

The summation in (13) is over all 1 x k vectors v-(nl, nZ,..., nk) whose
elements nj are nonnegative integers satisfying ~~-1 jnj - k. Further,

1
n-1

(-1,-1,...,-1,n-1)',

1
w3 - (1,1,...,1,0)'.

(k- 1)! ~Yrc(v)f~tk-'~a~exp~i~'~~Sk(f)dt~

k

8k(t) - c,~(tr T f~'T~) -~ 2 ~ jnjrjrvj(trR~T f 2~'R~T~~
i-i

Ya(Y)-k!2k~ { nj!(2j)"~1-1
j-1

1
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4 is a diagonal positive definite n x n matrix, R and I' symmetric n x n
matrices, and f an n x 1 vector, defined as

4-(I„}2tA~-1i2~ Ra~A'4,

I' - d P'L'CLPd , ~~G p` ,

and the scalars rv, svj, rv;j, rj, and rj' are defined by

k

~ - ~ ~j', ~j - trRj f j1:~R~;;,
i-1

1 if k-1,
k

~j -~ q~"~ if k z 2,

Wii

k
if k-1,

if k ~ 2,

~ 1 if nj - 0,1,

r'- q~~~-t if njz2,

- (1 if nj-0,1,2,

r~' {I qz~~- 2 if n j z 3.

With all notation explained we can now state Theorem 1.

Theorem 1. The mean-square jorecast error oj y„t, exists ij and only ij
1 5 s S[(n - 3)~2], in which case

s-1 ,- t j1 2 :-t

E(Ynts -Ynfr ~2 ~ a2 ~ ~Zk - aZ~ ~ ~k 1 - 2afs L h'k
k-0 k-0 k-0

t(wi-~3'wZf (1-~`)w3~'

x ( LL' f F~F~') ( wl - ~'wz f (1 - ~3' ) w3 ~
zr

} L ~k~Ck.s~~ (l4~
k-t

Proof. See appendix.
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4. Ezact restilts: The mean-stationary case

Let us begin by noticing that, as in the model without an intercept [see
Hoque, Magnus, and Pesaran (1988)], the mean-square forecast et-ror (MSFE)
satisfies

MSFE Z aZ and lim MSFE- aZ~l - QZ'),(1 - ~(iZ~,
n~oo

and that these results are independent of assumptions regarding the initial
observation, that is, independent of ftt, a, and S. However, unlike the model
without intercept we now have that the MSFE is not proportional to 02
(unless the process is mean-stationary) and that the MSFE is not an even
function of Q.

The exact MSFE of the least-squares (LS) forecast y„ f, was calculatedz
using Theorem 1 under Assumptions la or lb and 2a or 2b for the following
selected values of Q, n(the number of observations), and s ( the number of
periods ahead):

Q - - 0.99, - 0.98, - 0.95, - 0.90, - 0.80, . . . ,
0.80,0.90,0.95,0.98,0.99

n - 10,15,20,
s - 1,2,3,4.

In this section we shall discuss the results for the mean-stationary case
(Assumption la) where ~t - a~(1 - Q). The results for the not mean-
stationary case (Assumption lb) are discussed in the following section.
If the process is mean-stationary we know that (i) the LS forecast is unbiased,
(ii) the MSFE is independent of the values of a and pl, and (iii) the
MSFE is proportional to a2. The first property follows from Fuller atid
Hasza (1980) and Magnus and Pesaran (1987), while properties (ii) and (iii)
follow from the fact that, under Assumption la, eq. (4) can be written as

Yr - EYr - Q~Yr-1 - Eyr-t) } u,.

Hence in the mean-stationary case there is no loss of generality by assuming
a- ft, - 0 and o 2- 1. Tables 1 and 2 contain the exact numerical results for
this case under Assumptions 2a (table 1) and 2b (table 2), respectively.

Let us first discuss the results for the strictly stationary case (table 1) where
ftt - a~(1 -~3) and 8 3(1 - Q~)-l~Z. Fig. 1 illustrates as expected thst the

'Application of Theorem 1 involves numerical integratioa We used the Numerical Algorithms
Group (1984) (the so-called NAG) subroutiae DOlAMF [or Ihis purpose. This subroutiae also
gives an estímate of the absolute error in the integration. For all results reported in this paper the
absolute error was less than 10-s. 7lte eigenvalues and eigenvectors in A and P were calculated
using thc NAG subroutine FOZABF.



Table I
Fxact MSFE of leazt-squares forecast y ,,: a- Wi ~ 0, E-(1 -~2)- 1jz, o~ 1.

~

n s -0.99 -0.90 - 0.80 -0.60 -0.40 - 0.20 0.00 0.20 0.40 O.trO 0.80 0.90 0.99

10 1 1.2701 1.2848 1.2774 1.2682 1.2664 1.2698 1.2781 1.2922 1.3144 1.3468 1.3781 1.3740 1.3 3 70
10 2 2.5232 2.3386 2.0616 1.6353 13601 1.2122 1.1845 ;.280"v I.SiOï 1.8977 2.4297 2.6861 2.8174
i0 3 4.a33U 3.8255 3.0456 2.0246 1.4936 1.2541 1.2093 1.3359 1.6846 2.3918 3.6201 4.3631 4.8912
15 1 1.1616 1.1703 1.1629 1. I 562 I.15 50 1.1564 1.1599 1.1661 I . 1763 1.1939 1.2224 1. 2318 1.2102
15 2 2.3102 2.0936 1.8514 1.4903 1.2518 1.1198 1.0908 1.1658 1.3505 1.é599 2.1202 2.3835 2.5349
IS 3 3.7687 3.1030 2.4672 1.6856 1.2895 1.1152 1.0822 1.1674 1.4032 1.8909 2.8233 3.4794 3.9781
15 4 5.2487 3.9279 2.8337 1.7172 1.2701 1.1033 1.0770 1.1641 1.4174 2.0172 3.4152 4.5789 5.6157
20 1 1.1208 1.1200 1.1149 1.1111 1.1105 1.1113 1.1133 1.1169 1.1228 1.1336 1.1551 1.1683 1.1560
20 2 2.2222 2.0045 1.7829 1.4474 1.2208 1.0929 1.0619 1.1285 1.2962 1.5746 1.9914 2.2526 2.4229
20 3 3.5393 2.8797 2.3132 1.G098 1.2487 1.0888 1.0563 1.1290 1.3357 1.7642 2.5950 3.2276 3.7503
20 4 4.8320 3.5610 2.tí089 1.6329 1.2346 1.0818 1.0539 1.1270 1.3439 1.8515 3.0467 4.1204 5.1518
00 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
00 2 1.9801 1.8100 1.6400 1.3600 1.1600 1.0400 1.0000 1.0400 1.1600 1.3600 1.6400 1.8100 1.9801
00 3 2.9407 2.4661 2.0496 1.4896 1.1856 1.0416 1.0000 1.0416 1.1856 1.4896 2.0496 2.4661 2.9407
00 4 3.8822 2.9975 2.3117 1.5363 1.1897 1.0417 1.0000 1.0417 1.1897 1.5363 2.3117 2.9975 3.8822

P
~



Table 2
F~cact MSFE o[ least-squares [orecazt y,,: a- p~ - 0, d- o- 1.

~

n s - 0.99 - 0.90 - 0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.90 0.99
10 1 1.3699 1.3311 1.3035 1.2774 1.2695 1.2705 1.2781 1.2929 1.3170 1.3516 1.3783 1.3636 1.3319
10 2 2.9611 2.5159 2.1465 1.6566 1.3653 1.2129 1.1845 1.2804 1.5110 1.8916 2.3835 2.6022 2.790d
10 3 5.7928 4.3458 3.2766 2.0752 1.5041 1.2555 1.2093 1.3368 1.6870 2.3818 3.4974 d.1334 4.8183
15 1 1.2263 1.1933 1.1735 1.1594 1.1560 1.1566 1.1599 1.1663 1.1774 1.1967 1.2259 1.2298 1.2060
15 2 2.5189 2.160R 1.8781 1.4958 1.2530 1.1200 1.0908 1.1658 1.3506 1.6596 2.1096 2.3490 2.5132
15 3 4.3082 3.2G06 2.5229 1.6945 1.2909 1.1153 1.0822 1.1675 1.4034 1.8895 2.7928 3.3871 3.9244
15 4 6.3215 4.2160 2.9251 1.7287 1.2715 1.1034 1.0770 1.1641 1.4176 2.0152 3.3592 4.4004 5.5120
20 1 1.1578 1.1320 1.1203 1.1128 1.1110 1.1114 1.1133 1.1170 1.1234 1.1353 1.1584 1.1692 1.1523
20 2 2.3566 2.0409 1.7958 1.4499 1.2213 1.0930 1.0619 1.1286 1.2963 1.5750 1.9898 2.2380 2.4042
20 3 3.8419 2.9544 2.3365 1.6132 1.2492 1.0888 1.0563 1.1290 1.3357 1.7640 2.5854 3.1828 3.7041
20 4 5.4091 3.6879 2.6437 1.6367 1.2350 1.0818 1.0539 1.1270 1.3439 1.8510 3.0279 4.0328 5.0647

P
O~
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1.6

1.5 -I

1.4 -7

1.3 -I

1.2 -I

n~10
- - - n~15
------- n-20

~
ii - V

-------------------------------'~~~~~' '-`~,

1.0 i i ~
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

~

Fig. 1. MSFE of LS forecast for s- 1: strictly stationary case.

MSFE decreases with increasing n. (This is true for all n Z 2s i- 3; if n ~ 2s -~
3, then the MSFE does not exist, see Theorem 1.) It also shows that the
MSFE is not a monotone function of ~a~, at least when s- 1, since the
MSFE falls when ~3 approaches f 1. The drop is particularly significant for Q
close to f 1. Finally, fig. 1 shows that the MSFE is not symmetric about
(3 - 0. In the strictly stationary case we always have

MSFE(~Q~ ) z MSFE( - I QI )~

but we shall see that this inequality no longer holds if different assumptions
are made regarding the initial observation.

For s ~ 2 these conclusions remain unaltered except that the MSFE is now
monotone in ~Q~. However, as in the model without intercept, the increase in
the MSFE is much less for values of ~Q~ close to 1, especially when n is small.

The asymptotic approximation of the MSFE up to order n-1 is [Fuller and
Hasza (1981, p. 157)]

MCFF - nz
Q Z' I S' ZI- RZ } 1 1~SiR~J-il f( 1- Q)

1~1- n- 1-
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In particular, for s- 1,

2
MSFE-a2~lf ~.n-1

The agreement between our exact results and the asymptotic approximation is
quite good, but of course the interesting behaviour of the MSFE for ~~~ close
to 1 is not captured by the approximation.

In case the true value of a is zero and we know thrs, then we estimate of
course the no-intercept model y, -~y,.l f u~. But if a- 0 and we don't know
this, t:ten we estimate the model with an intercept. This ignorance about the
truth will lead to a higher MSFE. A comparison of table 1 with the corre-
sponding table in Hoque, Magnus, and Pesaran (1988) confirms this. The
asymptotic approximations show that the increase in the MSFE up to order
n -1 will be

1 I1-~js12

n-l l` 1-~ II '

and this agrees quite well with our exact results.
The most striking result found in Hoque, Magnus, and Pesaran (1988) was

that in the no-intercept model and for ~ close to zero the MSFE decreases
when s increases. Some analytic evidence for this counterintuitive result was
given in section 1 of this paper. Fig. 2 illustrates that, in the model with an
intercept, the situation is almost the same; almost, because for n-10, MSFE
(s - 3) ~ MSFE ( s - 2) when ~ is close to zero. It is easy to see analytically
why the MSFE is not now strictly decreasing in s for all n, since, at
a-~3-~1-0,

dMSFE ( J á(1 - 2~'~ Z á 2 2
ds -E I~Y~f 2(1- ) ) -(2(1- ~, log~'

and the sign of the derivative is not unambiguous.
Some Monte Carlo results for the strictly stationary case were obtained by

Fuller and Hasza (1980, table 1). These results aze reasonably accurate for
values of ~~8) not too close to 1. For ~~~ close to 1, however, the Monte Carlo
results are quite poor. (This is a consequence of their method, where the same
number of replications was used for each ~, while for ~~~ close to 1 many
more replications are needed to obtain the same accuracy.) For example, for
n- 10, ~~ 0.99, and s~ 1, 2, 3, Fuller and Hasza find 1.31, 2.70, and 4.46,
whereas the exact results are 1.34, 2.82, and 4.89.
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Fig. 2. MSFE of LS torecast tor n- 15: strictly stationary case.
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The strictly stationary case is based on Assumptions la and 2a. Let us now
consider what happens if Assumptions la and 2b hold. This is a fixed start-up
case with yo - a~(1 - ~) so that the process is mean-stationary but not
covariance-stationary. The results are given in table 2. Comparing tables 1 and
2 we see that the MSFE dces not seem to be affected by the choice of S if ~ is
positive, but that there is a big difíerence in MSFE if a is close to - 1. Fig. 3
illustrates this. For ~ ~ 0 the MSFE is now a monotone function of S and it is
larger than in the covariance-stationary case. It is interesting that exactly the
same kind of result was found in Magnus and Pesaran ( 1987) for the bias of
the forecast error in the not mean-stationary process. For a detailed analysis
and explanation of this phenomenon, see Magnus and Rothenberg (1988).

Some Monte Carlo results are available for this case in Orcutt and Winokur
(1969, table 7), but unfortunately only for ~ Z 0 and based on only one
thousand replications. The Monte Carlo results are not very trustworthy, but
they are in general agreement with our exact results.

5. Exact results: The not mean-stationary case

The forecast error of the least-squares forecast y~}, depends on seven
parameters: a, ~, a, ~1, S, n, s. It is easy to see from (12) that the forecast
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Fig. 3. MSFE ot LS forecast for n- 10, s- 1: mean-stationary case.

error is linearly homogeneous in a, ~tl, and o, so that

MSFE(a,~.l,a) a ~,1
-MSFE~- -,1).

02 `a' a

In the mean-stationary case discussed in the previous section we have

MSFE(a, ~l, a)
Z -MSFE(0,0,1),

a

(15)

which depends only on ~B, S, n, and s. If, however, the process is not
mean-stationary, then the MSFE will depend on all seven parameters.3 In
particular, and in contrast to the mean-stationary case, ( i) the LS forecast will
be biased, (ii) the MSFE will depend on the values of a and ~1, and (iii) the
MSFE will not be proportional to aZ.

~In fact, MSFE~o'- depends on a, pr, and a only through [a -~r(1 -~)]~o. See Magnus and
Rothenberg (1988).
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It is clear from (15) that the mean-stationary process is a limiting case of the
not mean-stationary process, since

lim
u -~ eo

MSFE (a, ~t, a )
Z aMSFE(0,0,1).

a

Furthermore, the MSFE is an even function of a and }~l:

MSFE(a, ~,1, a) 3 MSFE(-a, - ~1, a).

(16)

In this section we only consider the case a-~1 which implies that yo is
distributed symmetrically about zero. Then MSFE~aZ depends only on ~, S,
n, s, and the ratio a~a. From (16) we know the behaviour of MSFE~a2 when
a is large relative to a. When a is small relative to a one can show that

MSFE

a2
- í'i(1) t U(a`). (17)

[Compare Magnus and Pesaran (1987, theorem 4).] In this section we study
the case where a and a are of the same order of magnitude. More specifically
we set

so that

MSFE(a,~i,a)
2 - MSFE(1,1,1).

a

No results from the literature are available for this case, either exact or Monte
Carlo.

Table 3 presents the results for the case where the process is covariance-sta-
tionary but not mean-stationary. If we compare these results with the strictly
stationary case (table 1), we find that the MSFE is hazdly aH'ected by the
choice of ~1 if ~ is negative, but that there is a big difference in MSFE for ~B
close to f 1. For ~ ~ 0 the MSFE is now a monotone function of ~, and it is
larger than in the mean-stationary case. Thus, we obtain exactly the opposite
results as in table 2. Apparently for ~~ 0 the specification of pl is important,
but the specification of 8 not, whereas for ~6 ~ 0 the specification of S is
important, but not the specification of ~t!

In table 4 we present the zero start-up case, where yo s 0 and the process is
neither mean-stationary nor covariance-stationary. We know from our previ-



Table 3

Exact MSFE of least-squares forecast y ~,: a~~i - 1, S-(1 -~z )- ~~z, o- I.'

R
n s - 0.99 - 0.90 - 0.80 -0.60 -0.40 - 0.20 0.00 0.20 0.40 0.60 O.RO 0.90 0.99

10 1 1.2700 1.2834 1.2753 1.2662 1.2651 1.2693 1.2781 1.2913 1.3086 1.3298 1.3645 1.4256 1.5470
10 2 2.5228 2.3339 2.OS53 1.6308 1.3581 1.2117 1.1845 1.2796 I.S099 1.9137 2.6378 3.3292 4.3843
10 3 4.4319 3.8125 3.0294 2.0144 1.4895 1.2532 1.2093 1.3347 1.6791 2.4104 4.1150 6.0352 9.2824

15 1 1.1628 1.1696 1.1619 1.1555 1.1545 1.1562 I.1S99 1.1657 1.1739 1.1843 1.1995 1.2305 1.3199
15 2 2.2977 2.0915 1.8491 1.4891 1.2513 1.1197 1.0908 1.1657 1.3502 1.tí603 2.1622 2.6042 3.3401
15 3 3.7069 3.0983 2.4627 1.6836 1.2889 1.1151 1.0822 1.1674 1.4030 1.8946 2.9558 4.1069 6.2305
1S 4 "" 3.9195 2.8265 1.7147 1.2695 1.1032 1.0770 1.1640 1.4171 2.0223 3.6496 5.7760 10.2338

20 1 1.1208 1.1196 1.1144 1.1108 1.1103 1.1112 1.1133 1.1167 1.1215 1.1276 1.1351 1.1518 1.2238
20 2 2.2220 2.0032 1.7818 1.4469 1.2205 1.0929 1.0619 1.1285 1.2959 1.5728 1.9926 2.3285 2.9171
20 3 3.5390 2.8772 2.3111 1.6090 1.2485 1.0888 1.0563 1.1290 1.3356 1.7644 2.6350 3.5028 5.1545
20 4 "" 3.5568 2.6060 1.6321 1.2345 1.0818 1.0539 1.1270 1.3439 1.8529 3.1294 4.6759 8.0278

'For n - 15 and n- 20 the integral did not converge for ~-- 0.99 and s- 4.

J
N



Table 4

Fxact MSFE ot least-squares forecast y{,: Q- p~ - E- o ~ 1.

~

n s -0.99 - 0.90 - 0.80 - 0.60 - 0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.90 0.99

10 1 1.3645 1.3262 1.2993 1.2747 1.2681 1.2700 1.2781 1.2919 1.3108 1.3326 1.3tí67 1.4296 1.5475
10 2 2.9347 2.4956 2.1322 1.6504 1.3629 1.2124 1.1845 1.2799 1.5103 1.9143 2.6589 3.3655 4.3905
10 3 5.7007 4.2816 3.2355 2.0600 1.4993 1.2545 1.2093 1.3355 1.6813 2.4162 4.1782 6.1364 9.3016
IS 1 1.2237 1.1912 1.1722 1.1585 1.1554 1.1566 1.1599 1.1663 1.1743 1.1860 1.1997 1.2308 1.3196
15 2 2.5102 2.1540 1.8737 1.4943 1.2526 1.1194 1.0908 1.1659 1.3504 1.6606 2.1674 2.6162 3.3411
15 3 4.2834 3.2448 2.5139 1.6925 1.2907 1.1153 1.0822 1.1674 1.4029 1.8950 2.9691 4.1893 6.2350
15 4 6.2678 4.1868 2.9111 1.7256 1.2708 1.1034 1.0770 1.1643 1.4172 2.0227 3.6745 5.8392 10.2451
20 1 1.1566 1.1311 1.1195 1.1123 1.1108 1.1113 1.1133 1.1168 1.1220 1.1286 1.1348 1.1512 1.2237
20 2 2.3521 2.0378 1.7940 1.4492 1.2210 1.0929 1.0619 1.1285 1.2960 1.5732 1.9946 2.3326 2.9171
20 3 3.8311 2.9479 2.3332 1.6123 1.2490 1.0888 1.0563 I.1290 1.3356 1.7645 2.6396 3.5166 5.1556
20 4 5.3874 3.6766 2.6386 1.6356 1.2348 1.0818 1.0539 1.1270 1.3439 1.8528 3.1372 4.7032 8.0310

J
W
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Fig. 4. MSFE of LS forecast for s- 1: uro stazt-up case.

7.0

ous analysis that going from mean-stationary to not mean-stationary affects
the values of the MSFE for ~ ~ 0, while going from covariance-stationary to
not covariance-stationary affects the values for ~ ~ 0. T'he zero start-up case,
being a combination of the two, gives a combination of the two results.l"his is
clearly illustrated by comparing fig. 4 with fig. 1. The MSFE is now monotone
in ~Q~, but still not symmetric about ~~ 0.

Further results (not reported here) show, for all cases considered, that the
MSFE is strictly decreasing in n, also for small values of n, in spite of the fact
that the absolute value of the forecast bias is not strictly decreasing in n[see
Magnus and Pesaran (198~J. The reason is that the bias is small relative to the
variance of the forecast error and that the latter is strictly decreasing in n.

Appendix: Proof ot ZLeorem 1

The proof is in two parts. In the first part we show that the mean-square
forecast error (MSFE), if finite, is given by (14). In the second part we show
that the MSFE is finite if and only if s 5 [(n - 3)~2].
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From (12) we obtain the MSFE:

j-0 j-0

s-1
f E ~ Y~unts-j

j-0

2

2a L s~1~' J EIIX ~1~'{ ~~'-~'~Yn JJ-0 L j~0

r-1
- Eá2 ~ ~

j-0 i~ f E(~'-Q')ZYá

s-1 Is-1

Tt~ayn fPS-l~"~ Ll3~'~-a`I ~~
j~0 j-0

,Z

1
s-1 s-1 s-1

fQ2~~Z~-2a ~~~ e,-~a~~~
j-0 j-0 j-0

I J I 1 2
~ Ki } QZsEY~ f Eázl ~~j l } E~z,Y~I J-0 1

T-I
-2NsE~sYn f 2Eayn~~s - Ns~ L.~ ~~r

where

s-1 Z s-1

E(ynts-Yn~:)2-E~C1! ~ ~~} `~s-YsIYn) ~a2~ ~ ~j

s-1 I s-1 2 s-1
Kl - 02 ~ ~Z~ - a2I ~ ~3~) - 2ae, ~

j-0 I j~O j-0

We now define the n x 1 vectors

1

vl- n-1
(0,1,...,1,1)',

j-0

1u2 - (1,1,...,1,0)',n-1
v3 - (0,0,...,0,1)',
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so that

IX- UíY -~UíY and y„ - o3y.

Then, using the relationship

z

we get

:-t J-i 2J-z
~ ~' - ~ ( j f 1)~3~ f ~ (2s - j - 1)~3i,
j-o j-o j-J

z
E(YntJ -YnfJ)z - Kl f ~3zJE(~íY)z } E~uíY - ~~iY)

J i zJ-z
x ~ (I f 1)~' } ~ (2s -~ - 1)~')

j-o j-J

f E( ~íY )z~zs - 2QJE( ~íY )zaJ

J-1

~-2E(víY-~~íY)(~sY)~~J-QJ) ~ ~'
j-0

- Kl -~ Rz,E(~3Y)z ~- E(~íY)z

(A.2)

zJ
-2~i'E(~iY)(~íY) f E ~ ~j~', (A.3)

j-1

where the random variables nl,...,nz, are quadratic forms in y defined as
follows:

for j-1,...,s-1,

n; - (j ~-1)(UíY)2 } (j -1)(U~Y)Z - 2j(~íY)(~~Y)

-2Q'((~i - ~z)~Y)~íY,
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for j - s,

~J~ (s- 1)(víY)2} (s- 1)(víY)Z- 2s(víY)(víY)

t 2( viY )( viY )- 2Ql(( v3 - vz )~Y ) viY,

for j- s t 1,...,2s - 1,

~; - (2s -j - 1)(viY)2 t (2s -j t 1)(vzY)Z - 2(2s -j)(v4Y)(UíY)

t2((vi - vz)'Y)víY,

and for j - 2s,

z
~2s - (( U3 - V2)~Y ) -

Now notice that

vl - w~ t w3, v2 - w3, U3 - W2 t W3.

Thus the r~; variables can be expressed in terms of wi, w2, and w3 as follows:

for j - 1,...,s - 1,

TI; -(j t 1)( wíY)Z - 2i(3'(wíY)(wiY) t 2(1 - f3')(wíY)(wsY),

for j - s,

~1, -(s - 1)( wíY)2 t 2( wív)(wiY) - 2Qf (wiY)Z

t2(1 - (3')(wíY)(wíY),

for j- s t 1,...,2s - I,

r~; - (2s -j- 1)(wíY)Z t 2(wíY)(wzY),

and for j - 2s,

n2f- (wíY)Z.
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As a result we obtain

z. z: z..
E ~ n;~i'-E ~ (Y~C~.,Y)~'- ~ 3';~C;,~~,
l-1 j-l j-1

(A.4)

where the matrices C~,, (1 5 j 5 2s) are defined in section 3, and the second
equality follows from Theorem 5(b) of Magnus (1988).

Next,

~zrE(uíY)zf E(uíY)z-2~JE(uíY)(uiY)

- E{( ut- Q'u3 )'Y } z

- E { ( wt - ~' wz -F (1 - if3' ) w3 )'y } z

- ( wt - Qrwz t (1 - QJ) ws)~(1-L~ } Ftlr~)( wt - ~'wz i- (1 - ~s) w~ ).

(A.5)

Inserting (A 1), (A.5), and (A.4) in (A.3) completes the first part of the proof.
To prove the second part we need to show that the MSFE exists if and only

if s 5 [(n - 3)~2]. It is clear that the MSFE exists if and only if e, and

E(Y'AYrY'BY)A(Y'Ck.~Y). k-1,...,2s,

both exist. Now, by Magnus and Pesaran (1987, theorem 1), e, exists if and
only if s ~ n- 2. Further, since the matrix B, given in (10), has rank n- 2,
there exists an n x 2 matrix Q, namely Q-( uz, u3), with full column-rank
such that BQ - 0. We have

Q'AQ - 0, AQ ~ 0, Q'Ck.1Q ~ 0.

so that, by Theorem 3(iv) of Magnus ( 1988), E(y'Ay~y'By)k(y'Ck.,y) exists
for all 1 5 k ~ 2s if and only if 2s ~ n- 2. Hence the MSFE exists for
1 5 s 5[(n - 3)~2] and dces not exist for s z ((n - 1)~2]. This concludes the
proof of Theorem 1.
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