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We study the exact finite-sample behaviour of the mean-square forecast error (MSFE) of
multi-period least-squares forecasts in the normal autoregressive model y, =a+ By,_, + u,. We
obtain necessary and sufficient conditions for the existence of the MSFE and give an exact
expression which we use to obtain numerical results for both the stationary and the fixed start-up
model. We conclude, inter alia, that the behaviour of the MSFE in the model with intercept can
be very different from that in the model without intercept, especially when B is close to unity.

1. Introduction

This paper is a further attempt to analyze the mean-square forecast error
(MSFE) of multi-period least-squares forecasts in dynamic models. While
Hoque, Magnus, and Pesaran (1988) considered the MSFE arising from a
first-order autoregression without intercept,

yl=By1—l+uH (1)

where |B| <1 and {u,} is a sequence of independent and identically dis-
tributed N(0, 6%) random variables, we now go one step further and study the
model with an intercept,

yl=a+Byl—l+ul‘ (2)

We shall see that the behaviour of the MSFE in the AR(1) model with an
intercept can be very different from that in the model without an intercept,
and that this is particularly true for 8 close to unity.

In the no-intercept model (1), let B denote the least-squares (LS) estimator
of B based on n observations y,..., y,- The s-periods-ahead LS forecast is
then $,,,= B%,. Malinvaud (1970) showed that the forecast bias E(J,,, —
Y.+s) vanishes, if it exists. Hoque, Magnus, and Pesaran (1988) showed that

0304-4076,/89 /$3.50©1989, Elsevier Science Publishers B.V. (North-Holland)



158 J.R. Magnus and B. Pesaran, Mean-square forecast error for AR(1) model

the forecast bias exists if and only if s <n—2. They also showed that the
MSFE exists if and only if s<[(n—2)/2], and they obtained an exact
expression for the MSFE which they used to obtain exact results by numerical
integration. Their two main conclusions were (i) that for |B| close to 1 the
MSFE is very sensitive to the specification of the initial observation and
(ii) that it is not generally true that the MSFE is an increasing function of s
and that, indeed, for B close to zero the MSFE is decreasing in s.

The latter result is counterintuitive, so it may be useful to provide some
analytical evidence in addition to the exact results. First, we may write the

asymptotic approximation up to order n~! as

1-8% 1

—_—
1-82 n-1

MSFE = o? sB%sDH

[see, e.g., Maekawa (1987)], and one verifies easily that the same counterintu-
itive phenomenon occurs here. Secondly, at 8 =0, we have

MSFE = o*(1+E(£%,)). 3)

If we consider (3) for a moment as a continuous function of s, then

M - OZE(ﬁ’yH)z logﬁz,
ds
and this expectation is negative because log B2 is negative with probability
almost equal to one.!

In the model (2) with an intercept, Fuller and Hasza (1980) proved that the
forecast bias is zero if it exists and if the process is mean-stationary. Magnus
and Pesaran (1987) showed that the forecast bias in this case exists if and only
if s <n—3 and they provided an exact expression for the forecast bias which
is applicable whether the process is mean-stationary or not. The results for the
not mean-stationary case show that the forecast bias is not, in general, a
monotone function of either 8, n, or s, and that the covariance-stationarity of
the process is only relevant when B is close to —1.

In this paper we study the MSFE in the model with an intercept (2). We
show that the MSFE exists if and only if s < [(n — 3)/2] and provide an exact
expression for the MSFE in this case. The exact results are compared with the
asymptotic approximation and with Monte Carlo results obtained by Orcutt
and Winokur (1969) and Fuller and Hasza (1980). The paper highlights the
importance of the specification of the initial observation. If 8 > 0, then we find

“There is a small but positive probability that | 4] > 1 even though |B| < 1. This probability is
particularly small when the true B is zero. The exception (n=10, s=4) to the monotonic
behaviour of the MSFE at 8 = 0 noted in Hoque, Magnus, and Pesaran (1988, section 4 and table
1) is explained by the fact that this case lies on the boundary of the existence region of the MSFE.
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it is important to know whether the process is mean-stationary or not, but
almost irrelevant to have information about the covariance-stationarity of the
process. If B <0, the opposite is true. Then it is important to know whether
the process is covariance-stationary or not, but almost useless to know whether
the process is mean-stationary or not.

In section 2 we present the model and the precise assumptions concerning
the initial observation. The main theorem is stated in section 3. Sections 4 and
5 discuss the exact results. An appendix containing the proof of the theorem
concludes the paper.

2. The model

We shall be exclusively concerned with the first-order autoregressive process
{ 1> ¥3,-.. } with an intercept term,

y=a+By_,+u, L 10 . (4)

where both a and B are unknown and {u,, u,,...} is a sequence of iid.
N(0, 0%) random variables. Regarding the initial observation y, we postulate

»n=p+8u, (5)

where u; ~ N(0, o?) is independent of u,, Uy,..., and 8 > 0. In finite samples
the actual values of g, and & are important and we shall return to their
specification shortly.

Let y=(yy ¥3,---» ¥,) be an n X 1 vector of observations generated by (4)
and (5). Then y is normally distributed with mean

1
1
a 1 B
a
= 1] 4]m= B?
® 1= B 5 ("’l 1= B) . (6)
1 B';—l
and positive definite covariance matrix LL’, where
) 0 0 .« 0 O
o8 1 0 ssw Q0 D
5B B 1 w5 0 0
L=o| : : s @ (7)
8@:.—2 Bn-J Bn-d o 1 0
sﬁn-l Bn—z Bn—) B 1
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Given the vector of observations y=(y, y,,-..., y,), the least-squares
estimators of a and B, obtained by minimizing X]_, (y,— a — By,_,)% are

given by

& =Jus = BJs
and

f= £ (=301 =50) | £ =500,
where ’ '

G (A~ s Fee=0AE~1)) T

=2 t=2

Defining the n X n matrices
A=3(DiMD,, + D;,MD,),  B=D,MD,,
where M is the idempotent (n — 1) X (n — 1) matrix
M=I_,-Q1/(n-1))i’, i=(,1,...,1),
and D, and D,, are the (n — 1) X n selection matrices

D,=(I,_,:0), D= {031, ,),

(8)

©)

(10)

we can write the least-squares estimator ﬁ in (9) as a ratio of two quadratic

forms in normal variables,
B=yAy/y'By.
The s-periods-ahead forecast is defined recursively as

yAn-O-l = & +ﬁ}',.,

ﬁn+l-a+ﬁﬁn+:—1v 3-2,3,...,
so that
s—-1
ﬁn+:=&zﬁ}+ﬁ‘ynr -"-1,2,....
j=0

From (4) and (11) we obtain the forecast error

s—1

(11)

s—1 s—1
.)"\:Hr: —yu#:-& Z ﬁj+ (ﬁ‘_ﬂl)yn— a Z Bj- Z Bjun-o-:—j’ (12)

j=0 j=0 j=0
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and the expected value of (J,,, —¥,+s)% if it exists, is the mean-square
forecast error of the forecast j, ... In the next section we shall obtain an exact
expression for the MSFE and show that it exists if and only if s < [(n — 3)/2].

Let us now return to the specification of g, and 8. The following choices
seem the most natural ones to consider. As to the mean component pu, we
assume either

Assumption la. p,=a/(1-B),

in which case { y;, y,,...} is mean-stationary (Ey,=p,, t=1,2,...), or

Assumption 1b. p, =a,

which, if we assume that (4) also holds for ¢ = 1, is equivalent to assuming that
Yo is distributed symmetrically about zero, but implies that the process is not
mean-stationary (except when 8 = 0).

As to the variance component §, we assume either

Assumption 2a. 8= (1-B%)"1/2

in which case the series { y,, y,,...} is covariance-stationary (cov(y,,,, y;) is
independent of s), or

Assumption 2b. 8§ =1,

which is equivalent to assuming that y, is a nonrandom constant, but implies
of course that the process is not covariance-stationary (except again when

B =0).

If Assumptions 1a and 2a are both satisfied, then { y;, y,,...} is a normal
strictly stationary time series; if Assumptions 1b and 2b are both satisfied,
then y,=0.

3. The mean-square forecast error of p, .,

In order to obtain an exact expression for the mean-square forecast error
(MSFE), E($,.; — Vu+,)% we need some additional notation.

Let A and B be the n X n matrices (n > 5) defined in (10) and let p and L
be the n X 1 vector and n X n matrix defined in (6) and (7), respectively. Let P
be an orthogonal n X n matrix and A a diagonal n X n matrix such that

P'L'BLP=A, PP=1I,
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and define the n X n matrix and n X 1 vectors
A* =P'L'ALP, p*=P'L™ Y,

1
= ——(=1,0,..:;0,1),
L | n—-l( )

(-1,-1,...,-1,n=1),

L

n—1

(130001, 0F.

i n-—1
For i, j=1,2,3, let W,;= (w,w/ +w;w/) and denote by e, the bias of the
forecast .., thatis, e, =E(J,,; = Vass)-

Let {C, ,,1 <k <25} be symmetric n X n matrices defined by

(k+1)Wy, —28° W, +2(1 — B* )Wy, if k=1,...,5—1,
(s=1)Wy, + 20y, — 2B Wy + 2(1 — B*)Wsy  if k=35,

Cos= (2s—k—1)W; +2W, if k=s+1,...,28—1,
Wa, if k=2s,

and, for any symmetric n X n matrix C, let

AL —Mzn( ) [T alexp (i) () dr, (13)

where

k
g (1) =w(r T+ §TE)+2 L jn;rw(tr R'T + 2¢'RTE)
j=1

k
+4 Y j*n;(n;—1)r*w,(¢R'TRY)

Jj=1

+83 ‘*’i;‘(i"i’i)(j"j’j)(f’Riere)~

i<j

The summation in (13) is over all 1 X k vectors » = (ny, n,,..., n,) whose

elements n; are nonnegative integers satisfying X% _, jn = k. Further,
g g g j ]j 3

k

ve(v) = k12¢T] {n,-!(2j)"’}_ ,

Jj=1
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A is a diagonal positive definite n X n matrix, R and I' symmetric n X n
matrices, and £ an n X 1 vector, defined as

A=(I,+21A)"%,  R=AA*A,
I'=AP'L'CLPA, ¢=Ap",

and the scalars w, w;, @

» Wij» Ij and r;* are defined by

k
w=Tley, @=uR/ +ERE,

Jj=1
1 if k=1,
k
W= nq,;', if k=2,
=)
1 if k=1,
k
w;; = IT o if k>2,
heh(-i.l/)
1 if n;=0,1,
’}= n,—1 f 2
P’ 1 njz »
1 if n,=0,1,2,
r* =
o2 if n;23.

With all notation explained we can now state Theorem 1.

Theorem 1. The mean-square forecast error of y,., exists if and only if
1 <s<|[(n—3)/2], in which case

k=0

s—1 il 2 s—1
E()?n-u_)"n-n)z =o? E sz_ az( E Bk) —2ae, Z ﬂk
k=0 k=0

+(w, = Bwy + (1= B*)w,y)’
X(LL + pp’)(w, — B*wy + (1 = B*)wy)

2s
S z rk[ck.:]‘ (14)

Proof. See appendix.
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4. Exact results: The mean-stationary case

Let us begin by noticing that, as in the model without an intercept [see
Hoque, Magnus, and Pesaran (1988)], the mean-square forecast error (MSFE)
satisfies

MSFE >06? and lim MSFE =0%(1-8%)/(1- 82),
n-—* o0
and that these results are independent of assumptions regarding the initial
observation, that is, independent of p;, a, and 8. However, unlike the model
without intercept we now have that the MSFE is not proportional to o2
(unless the process is mean-stationary) and that the MSFE is not an even
function of B.

The exact MSFE of the least-squares (LS) forecast j,,, was calculated?
using Theorem 1 under Assumptions 1a or 1b and 2a or 2b for the following
selected values of B, n (the number of observations), and s (the number of
periods ahead):

B=—-0.99,-0.98, —0.95, —0.90, —0.80,...,

0.80,0.90,0.95,0.98,0.99
n=10,15,20,
s=1,2,3,4.

In this section we shall discuss the results for the mean-stationary case
(Assumption la) where p,=a/(1—B). The results for the not mean-
stationary case (Assumption 1b) are discussed in the following section.
If the process is mean-stationary we know that (i) the LS forecast is unbiased,
(ii) the MSFE is independent of the values of a and p,, and (iii) the
MSFE is proportional to o2 The first property follows from Fuller and
Hasza (1980) and Magnus and Pesaran (1987), while properties (ii) and (iii)
follow from the fact that, under Assumption 1la, eq. (4) can be written as

W= Ey:'_' B(yl—l = ny—l) +u,.

Hence in the mean-stationary case there is no loss of generality by-assuming
a=p, =0 and ¢’ =1. Tables 1 and 2 contain the exact numerical results for
this case under Assumptions 2a (table 1) and 2b (table 2), respectively.

Let us first discuss the results for the strictly stationary case (table 1) where
py=a/(1—B) and §=(1- B?)"'/2 Fig. 1 illustrates as expected that the

*Application of Theorem 1 involves numerical integration. We used the Numerical Algorithms
Group (1984) (the so-calleld NAG) subroutine DOIAMF for this purpose. This subroutine also
gives an estimate of the absolute error in the integration. For all results reported in this paper the
absolute error was less than 10~ °. The eigenvalues and eigenvectors in A and P were calculated
using the NAG subroutine FO2ABF.



Table 1
Exact MSFE of least-squares forecast 5,, :a=p, =0,8=(1-B2)"'/2 g=1.
B

n K -0.99 -0.90 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.90 0.99
10 1 1.2701 1.2848 1.2774 1.2682 1.2664 1.2698 1.2781 1.2922 1.3144 1.3468 1.3781 1.3740 1.3370
10 2 2.5232 2.3386 2.0616 1.6353 1.3601 1.2122 1.1845 1.2800 1.5107 1.8977 24297 2.6861 2.8174
i0 3 4.4330 3.8255 3.0456 2.0246 1.4936 1.2541 1.2093 1.3359 1.6846  2.3918 3.6201 4.3631 4.8912
15 1 1.1616 1.1703 1.1629 1.1562 1.1550 1.1564 1.1599 1.1661 1.1763 1.1939 1.2224 1.2318 12102 °
15 2 2.3102 2.0936 1.8514 1.4903 1.2518 1.1198 1.0908 1.1658  1.3505 1.6599  2.1202 2.3835  2.5349
15 3 3.7687 3.1030 24672 1.6856 1.2895 1.1152 1.0822 1.1674 1.4032 1.8909  2.8233 34794 39781
15 4 5.2487 3.9279 2.8337 1.7172 1.2701 1.1033 1.0770 1.1641 14174 20172 34152 45789  5.6157
20 1 1.1208 1.1200 1.1149 1.1111 1.1105 1.1113 1.1133 1.1169 1.1228 1.1336 1.1551 1.1683 1.1560
20 2 2.2222 2.0045 1.7829 1.4474 1.2208 1.0929 1.0619 1.1285 1.2962 1.5746 1.9914 22526 24229
20 3 3.5393 2.8797 23132 1.6098 1.2487 1.0888 1.0563 1.1290 1.3357 1.7642  2.5950 3.2276 3.7503
20 4 4.8320 3.5610 2.6089 1.6329 1.2346 1.0818 1.0539 1.1270 1.3439 1.8515 3.0467 4.1204 5.1518
00 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
] 2 1.9801 1.8100 1.6400 1.3600 1.1600 1.0400 1.0000 1.0400 1.1600 13600 1.6400 1.8100 1.9801
0 3 2.9407 2.4661 2.0496 1.4896 1.1856 1.0416 1.0000 1.0416 1.1856 1.4896 2.0496  2.4661 2.9407
-] 4 3.8822 29975 23117 1.5363 1.1897 1.0417 1.0000 1.0417 1.1897 1.5363 23117 2.9975 3.8822

12powt (1) v 40f 40413 j5DI2.40f 240MbS-uvapy ‘uvivsaq ‘g puv snuSopy Y[

$91



Table 2

Exact MSFE of least-squares forecast 7,,,:a=p, =0,8=0=1.

B

n s —0.99 -0.90 —-0.80 -0.60 —-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.90 0.99

10 1 1.3699 1.3311 1.3035 1.2774 1.2695 1.2705 1.2781 12929 13170 13516 1.3783 13636 1.3319
10 2 2.9611 2.5159 2.1465 1.6566 1.3653 12129  1.1845 12804 1.5110 1.8916 2.3835 26022 2.7904
10 3 5.7928 4.3458 3.2766 2.0752 1.5041 1.2555 1.2093 13368 16870 23818 34974 41334 4.8183
15 1 1.2263 1.1933 1.1735 1.1594 1.1560 11566  1.1599 11663 11774 11967 1.2259 12298 1.2060
15 2 2.5189 2.1608 1.8781 1.4958 1.2530 11200  1.0908 11658 13506 1.6596 2.1096 23490 2.5132
15 3 4.3082 3.2606 2.5229 1.6945 1.2909 1.1153 1.0822 11675 14034 1.8895 27928 33871 3.9244
15 4 63215 4.2160 2.9251 1.7287 1.2715 11034 10770 11641 14176 20152 3.3592 44004 5.5120
20 1 1.1578 1.1320 1.1203 1.1128 1.1110 11114 11133 11170 11234 1.1353 1.1584 11692 1.1523
20 2 23566 2.0409 1.7958 1.4499 1.2213 1.0930 1.0619 1.1286 12963 1.5750 1.9898 22380 2.4042
20 3 3.8419 2.9544 2.3365 1.6132 1.2492 1.0888  1.0563 1.1290 1.3357 1.7640 2.5854 3.1828  3.7041
20 4 5.4091 3.6879 2.6437 1.6367 1.2350 1.0818  1.0539 1.1270 1.3439 1.8510 3.0279 4.0328  5.0647

991

J12powu (1) v 40f 10443 1s022.40f 240mbs-upapy ‘uvivsay ‘g puv snuSop y'f
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1.6
n=10
— — — n=15
15| cmemm—- n=20
1.4 —
13! =
-
1.2 - _’// 1
(\\-___— ‘‘‘‘‘ = ’/”"“
o —_
1.1 =
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Fig. 1. MSFE of LS forecast for s = 1: strictly stationary case.

MSFE decreases with increasing n. (This is true forall n >2s+ 3; if n <2s +
3, then the MSFE does not exist, see Theorem 1.) It also shows that the
MSFE is not a monotone function of |B|, at least when s=1, since the
MSFE falls when B approaches + 1. The drop is particularly significant for 8
close to +1. Finally, fig. 1 shows that the MSFE is not symmetric about
B = 0. In the strictly stationary case we always have

MSFE(|B]) = MSFE(—|B|),

but we shall see that this inequality no longer holds if different assumptions
are made regarding the initial observation.

For s > 2 these conclusions remain unaltered except that the MSFE is now
monotone in |B|. However, as in the model without intercept, the increase in
the MSFE is much less for values of |B| close to 1, especially when n is small.

The asymptotic approximation of the MSFE up to order n~! is [Fuller and

Hasza (1981, p. 157)]
1-8% 1 1- g\’
MUy | R S
MSFE—O{I—B2+H—1 I—B))}'

(S2B2(:—l) 2
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In particular, for s =1,

2
MSFE=a’(1 + —)
n—1

The agreement between our exact results and the asymptotic approximation is
quite good, but of course the interesting behaviour of the MSFE for |f| close
to 1 is not captured by the approximation.

In case the true value of a is zero and we know this, then we estimate of
course the no-intercept model y, = By,_, + u,. But if a =0 and we don’t know
this, then we estimate the model with an intercept. This ignorance about the
truth will lead to a higher MSFE. A comparison of table 1 with the corre-
sponding table in Hoque, Magnus, and Pesaran (1988) confirms this. The
asymptotic approximations show that the increase in the MSFE up to order
n~! will be

1 {1—-p}
n—-1\1-8]"
and this agrees quite well with our exact results.

The most striking result found in Hoque, Magnus, and Pesaran (1988) was
that in the no-intercept model and for B close to zero the MSFE decreases
when s increases. Some analytic evidence for this counterintuitive result was
given in section 1 of this paper. Fig. 2 illustrates that, in the model with an
intercept, the situation is almost the same; almost, because for n = 10, MSFE

(s =3)> MSFE (s=2) when B is close to zero. It is easy to see analytically
why the MSFE is not now strictly decreasing in s for all n, since, at

a=B=p =0,
(5”" * &21.-25;) ) ) ( 20 = ) )2]‘”’;2’

and the sign of the derivative is not unambiguous.

Some Monte Carlo results for the strictly stationary case were obtained by
Fuller and Hasza (1980, table 1). These results are reasonably accurate for
values of |B| not too close to 1. For |B| close to 1, however, the Monte Carlo
results are quite poor. (This is a consequence of their method, where the same
number of replications was used for each B, while for |B| close to 1 many
more replications are needed to obtain the same accuracy.) For example, for
n=10, $=0.99, and s =1,2,3, Fuller and Hasza find 1.31, 2.70, and 4.46,
whereas the exact results are 1.34, 2.82, and 4.89.

dMSFE

E
ds
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Fig. 2. MSFE of LS forecast for n = 15: strictly stationary case.

The strictly stationary case is based on Assumptions 1a and 2a. Let us now
consider what happens if Assumptions 1a and 2b hold. This is a fixed start-up
case with y,=a/(1—B) so that the process is mean-stationary but not
covariance-stationary. The results are given in table 2. Comparing tables 1 and
2 we see that the MSFE does not seem to be affected by the choice of 8 if 8 is
positive, but that there is a big difference in MSFE if B is close to —1. Fig. 3
illustrates this. For 8 <0 the MSFE is now a monotone function of 8 and it is
larger than in the covariance-stationary case. It is interesting that exactly the
same kind of result was found in Magnus and Pesaran (1987) for the bias of
the forecast error in the not mean-stationary process. For a detailed analysis
and explanation of this phenomenon, see Magnus and Rothenberg (1988).

Some Monte Carlo results are available for this case in Orcutt and Winokur
(1969, table 7), but unfortunately only for >0 and based on only one
thousand replications. The Monte Carlo results are not very trustworthy, but
they are in general agreement with our exact results.

5. Exact results: The not mean-stationary case

The forecast error of the least-squares forecast §,,, depends on seven
parameters: a, B, o, p,, 8, n, 5. It is easy to see from (12) that the forecast
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Fig. 3. MSFE of LS forecast for n = 10, s = 1: mean-stationary case.

error is linearly homogeneous in a, p,;, and o, so that

MSFE(a, py,0)

a
; =MSFE(— L]

= = o‘ ,1). (15)

In the mean-stationary case discussed in the previous section we have

MSFE(a, by, 0
—i,u = MSFE(0,0,1),

which depends only on B, 8, n, and s. If, however, the process is not
mean-stationary, then the MSFE will depend on all seven parameters.’ In
particular, and in contrast to the mean-stationary case, (i) the LS forecast will
be biased, (ii) the MSFE will depend on the values of a and p,, and (iii) the
MSFE will not be proportional to ¢2.

*In fact, MSFE/q? depends on a, p,, and o only through [a — (1 — B)]/a. See Magnus and
Rothenberg (1988).
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It is clear from (15) that the mean-stationary process is a limiting case of the
not mean-stationary process, since

. MSFE(a,p,,0)
lim ———="""'— = MSFE(0,0,1). (16)

000
Furthermore, the MSFE is an even function of a and p,:
MSFE(a, p,,0) = MSFE(—a, —p,,0).

In this section we only consider the case a =p, which implies that y, is
distributed symmetrically about zero. Then MSFE /o? depends only on 8, 8,
n, s, and the ratio a/0. From (16) we know the behaviour of MSFE/0? when
o is large relative to a. When ¢ is small relative to a one can show that

MSFE & moc® T
7— =0(1) + O(e?). (17)

[

[Compare Magnus and Pesaran (1987, theorem 4).] In this section we study
the case where a and o are of the same order of magnitude. More specifically
we set

Q= [y =9y
so that

MSFE(a, p,,0)

02

= MSFE(1,1,1).

No results from the literature are available for this case, either exact or Monte
Carlo.

Table 3 presents the results for the case where the process is covariance-sta-
tionary but not mean-stationary. If we compare these results with the strictly
stationary case (table 1), we find that the MSFE is hardly affected by the
choice of p, if B is negative, but that there is a big difference in MSFE for 8
close to +1. For 8> 0 the MSFE is now a monotone function of 8, and it is
larger than in the mean-stationary case. Thus, we obtain exactly the opposite
results as in table 2. Apparently for 8 > 0 the specification of p, is important,
but the specification of 8 not, whereas for 8 <0 the specification of § is
important, but not the specification of p,!

In table 4 we present the zero start-up case, where y, = 0 and the process is
neither mean-stationary nor covariance-stationary. We know from our previ-



Table 3

Exact MSFE of least-squares forecast j,,,: a=p, =1,8=(1-82)""2 g=12

B

n s -099 -0.90 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.90 0.99

10 1 12700 12834 12753 12662 12651 12693 12781 12913 13086 1.3298 13645 14256 1.5470
10 2 25228 23339 20553  1.6308 13581 12117 11845 12796 15099 19137 26378 3.3292 4.3843
10 3 44319 38125 30294 20144 14895 12532 12093 13347 16791 24104 41150 6.0352 9.2824
15 1 11628 1169 11619 11555 11545 1.1562 1.1599 1.1657 11739 1.1843 11995 1.2305 1.3199
15 222977 20915  1.8491 1.4891 12513 11197 1.0908 11657 13502 1.6603 21622  2.6042 3.3401
15 3 37069  3.0983 24627 16836  1.2889  1.1151 1.0822 11674 14030 1.8946 29558 4.1069 6.2305
15 4 e 39195 28265 1.7147 12695 11032 10770 1.1640 14171 2.0223 3.6496 57760 10.2338
20 1 11208 11196 11144 11108 11103 1.1112 11133 11167 11215 11276 11351 1.1518 1.2238
20 222220 20032 17818 14469 12205 1.0929 1.0619 1.1285 1.2959 15728 1.9926  2.3285 29171
20 3 35390 28772 23111 1.6090 1.2485  1.0888 1.0563 1.1290 1.3356 1.7644 26350  3.5028 5.1545
20 4 eee 3.5568 26060  1.6321  1.2345 1.0818 1.0539 11270 1.3439 1.8529 3.1294 4.6759 8.0278

*For n=15 and n =20 the integral did not converge for 8= —0.99 and s =4.

(1A
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Table 4

Exact MSFE of least-squares forecast j,, i a=p, =8=0=1.

B

n s -0.99 -0.90 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.90 0.99

10 1 1.3645 13262 12993 12747  1.2681 12700 12781 12919 13108 13326 1.3667 1.429 1.5475
10 229347 24956 21322 1.6504 13629 12124 11845 12799 15103 19143 26589  3.3655 4.3905
10 3 57007 42816  3.2355 2.0600  1.4993 1.2545 12093 1.3355 1.6813 24162 4.1782 6.1364 9.3016
15 112237 11912 11722 11585 11554 1.1566 11599 11663 11743 11860 1.1997 1.2308 1.3196
15 2 25102 21540 18737  1.4943 12526 11194 10908 11659 13504 16606 2.1674 2.6162 33411
15 3 42834 32448 25139 16925 1.2907 11153 10822 11674 14029 1.8950 2.9691  4.1893 6.2350
15 4 62678 41868 29111 17256 12708  1.1034 10770 11643 14172 2.0227 36745 58392  10.2451
20 1 11566 11311 L1195 11123 11108 11113 11133 11168 1.1220 1.1286 1.1348 1.1512 1.2237
20 2 23521 20378 17940 14492 12210 1.0929 1.0619 11285 12960 1.5732 19946 2.3326 29171
20 3 381 29479 23332 - 1.6123 12490  1.0888 10563 1.1290 1.3356 1.7645 2.6396 3.5166 5.1556
20 4 53874 36766 26386 16356 12348 10818 1.0539 1.1270 1.3439 18528 3.1372 47032 8.0310

13pow ([ )Y v 40f 40443 15D32.40f 210mbs-uvapy ‘uvinsayq g puv snuSopy “y'f

€LT
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Fig. 4. MSFE of LS forecast for s = 1: zero start-up case.

ous analysis that going from mean-stationary to not mean-stationary affects
the values of the MSFE for B > 0, while going from covariance-stationary to
not covariance-stationary affects the values for 8 < 0. The zero start-up case,
being a combination of the two, gives a combination of the two results. This is
clearly illustrated by comparing fig. 4 with fig. 1. The MSFE is now monotone
in |B|, but still not symmetric about g = 0.

Further results (not reported here) show, for all cases considered, that the
MSFE is strictly decreasing in n, also for small values of n, in spite of the fact
that the absolute value of the forecast bias is not strictly decreasing in n [see
Magnus and Pesaran (1987)). The reason is that the bias is small relative to the
variance of the forecast error and that the latter is strictly decreasing in n.

Appendix: Proof of Theorem 1

The proof is in two parts. In the first part we show that the mean-square
forecast error (MSFE), if finite, is given by (14). In the second part we show
that the MSFE is finite if and only if s < [(n — 3)/2].
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From (12) we obtain the MSFE:

E(Fues = Pres): = E(a’i pr+ (ﬁ’—ﬁ’)y..) +a’(’>_:lﬁf)
Jj=0

Jj=0

s—1 ) 2
+E Z Bjun-i-:—j:l

J=n

—2a[’_>:::ﬁf]ﬁ axgﬁw (6’—3')»]

=Ea2(’>":‘ﬁf) CE(f - B2

Jj=0
+2Eéy, (- B°) goﬁ' +a (‘);:B’ |

=1 F=1 g=1
+o L p¥=2| T (e +a o)
j=0 j=0 j=0

2
s=1
=K1+Bz‘Ey,,2+E&2( Zﬁf) +Ef?

J=0

—2B°Ef*y} + 2Eay, (B - B)Zﬁf

Jj=0

where

s—1 s—1 2 s—1

- sv—az( 5 B") 20,3 B (A1)
j=0 j=0 j=0

We now define the n X 1 vectors
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so that
&=viy—fvsy and y,=uvjy.

Then, using the relationship

g 2 i 25-2
():ﬁf) SR G S Gsmi - (a2)

Jj=0 j=0 Jj=s
we get

O 5 ’ ’ ’ 2
E(yn+: -yn+:)2= Kl b BZ E(DBy)z * E(vly - ﬁvly)

=1 2s-2
x }_Zo(j+1)ﬁf+ r (2s—j-1p

+E(v5y)? A% — 2B°E(v3y)*f°

+2E(vjy - 31,”)(,,5”(,;:_,3:)’5@

j=0
= Ky + B¥E(03y)" + E(v}y)”
2s
—2B°E(viy)(v3y) + Ej)_:1 n,87, (a3)
where the random variables 7,,...,n,, are quadratic forms in y defined as

follows:

for j=1...;8=1;
m,= i+ 1)(viy)?+ (= 1)(v3y)* = 2(viy)(v5)

—ZB‘((UI = '-’2)')’)"5)’,
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for j=s,
n, = (s=1)(01y)’ + (s = 1)(v3r)" = 25(v{y)(v3)
+2(viy)(v3y) —2B°((vs—0,)'y) v3y,
for j=s+1,...,25s -1,
m,= (25 —j = 1)(0ip)’ + (25 —j + 1)(v3r)* - 2(25 = j)(viy)(v3¥)
+2((v, = v;)'y) v3y,
and for j=2s,
N = ((03 - Uz)'}’)z-

Now notice that

vy =w, +w;, Uy =w;, U3 =w, + w;.

Thus the 7, variables can be expressed in terms of w;, w,, and w; as follows:

for j=1,...,s—1,
n;=(J+ 1) (wiy)? = 2B°(wiy)(wiy) + 2(1 — B*)(w{y)(wiy),
for j=s5,
1= (s = 1)(w{y)? + 2(w(y)(wiy) — 2B*(wiy)?
+2(1 = B°)(wiy)(wiy),
for j=s+1,...,25-1,
n,= (25 —j = 1)(wiy)* + 2(wiy)(wiy),

and for j = 2s,

N2 = (Wzl)')2~
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As a result we obtain

2s 2s 2s
EX a8 =EY (yC ,y)B'= L [C.]. (A.4)
j=1 j=1 J=1

where the matrices C; ; (1 < < 2s) are defined in section 3, and the second
equality follows from Theorem 5(b) of Magnus (1988).

Next,

BYE(v3y)’ + E(viy) — 2B°E(v{y)(v3y)
= E{(v, - B%)»)’
=E{(w = Bwy + (1= B)w)'y)’
= (wy = B'wy + (1= B*)wy) (LL" + pp’) (w; — B'wy + (1 = B*)wy).
(AS)
Inserting (A 1), (A.5), and (A.4) in (A.3) completes the first part of the proof.

To prove the second part we need to show that the MSFE exists if and only
if s <[(n—3)/2]. Itis clear that the MSFE exists if and only if ¢, and

E(y’Ay/y’By)k(y’Ck_‘y), Y I

both exist. Now, by Magnus and Pesaran (1987, theorem 1), &, exists if and
only if s <n — 2. Further, since the matrix B, given in (10), has rank n — 2,

there exists an n X 2 matrix Q, namely Q = (v,, v;3), with full column-rank
such that BQ = 0. We have

Q'AQ=0, 4Q0+0, QC, ,0+0,

so that, by Theorem 3(iv) of Magnus (1988), E(y'Ay/y'By)*(y'C, ,y) exists
for all 1 <k <2s if and only if 2s <n—2. Hence the MSFE exists for

1 <s<[(n—3)/2] and does not exist for s > [(n — 1)/2]. This concludes the
proof of Theorem 1.
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