## Tilburg University

## The exact multi-period mean-square forecast error for the first-order autoregressive model with an intercept

Magnus, J.R.; Pesaran, B.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Magnus, J. R., \& Pesaran, B. (1990). The exact multi-period mean-square forecast error for the first-order autoregressive model with an intercept. (Reprint series / CentER for Economic Research; Vol. 21). Unknown Publisher.

## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal


## Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

for
omic Research

The Exact Multi-period Mean-square Forecast Error for the First-order Autoregressive Model with an Intercept
by
Jan R. Magnus and Bahram Pesaran

## CENTER FOR ECONOMIC RESEARCH

## Research Staff

Anton Barten
Eric van Damme
John Driffill
Frederick van der Ploeg
Board

Anton Barten, director
Eric van Damme
John Driffill
Arie Kapteyn
Frederick van der Ploeg
Scientific Council

Eduard Bomhoff
Willem Buiter
Jacques Drèze
Theo van de Klundert
Simon Kuipers
Jean-Jacques Laffont
Merton Miller
Stephen Nickell
Pieter Ruys
Jacques Sijben
Residential Fellows

Philippe Deschamps
Jan Magnus
Neil Rankin
Arthur Robson
Andrzej Wrobel
Liang Zou

## Doctoral Students

Roel Beetsma
Hans Bloemen Chuangyin Dang
Frank de Jong
Hugo Keuzenkamp
Pieter Kop Jansen
Ploter Kop Jansen

Erasmus University Rotterdam
Yale University
Université Catholique de Louvain Tilburg University Groningen University Université des Sciences Sociales de Toulouse University of Chicago University of Oxford Tilburg University Tilburg University

Université de Fribourg London School of Economics Queen Mary College, London University of Western Ontario London School of Economics C.O.R.E., Université Catholique de Louvain

Address: Hogeschoollaan 225, P.0. Box 90153, 5000 LE Tilburg. The Netherlands Phone : +31 13663050
Telex : 52426 kub nl
Telefax: +31 13663066
E-mail : "centerehtikub5.bitnet"
 for
Economic Research

# The Exact Multi-period Mean-square Forecast Error for the First-order Autoregressive Model with an Intercept 

by<br>Jan R. Magnus and Bahram Pesaran

Reprinted from Journal of Econometrics Vol. 42, No. 2, 1989

## Reprint Series

no. 21

# THE EXACT MULTI-PERIOD MEAN-SQUARE FORECAST ERROR FOR THE FIRST-ORDER AUTOREGRESSIVE MODEL WITH AN INTERCEPT 

Jan R. MAGNUS<br>London School of Economics, London WC2A 2A E, England<br>Bahram PESARAN<br>National Institute of Economic \& Social Research, London SWIP 3HE, England

Received April 1988, final version received October 1988


#### Abstract

We study the exact finite-sample behaviour of the mean-square forecast error (MSFE) of multi-period least-squares forecasts in the normal autoregressive model $y_{t}=\alpha+\beta y_{t-1}+u_{r}$. We obtain necessary and sufficient conditions for the existence of the MSFE and give an exact expression which we use to obtain numerical results for both the stationary and the fixed start-up model. We conclude, inter alia, that the behaviour of the MSFE in the model with intercept can be very different from that in the model without intercept, especially when $\beta$ is close to unity.


## 1. Introduction

This paper is a further attempt to analyze the mean-square forecast error (MSFE) of multi-period least-squares forecasts in dynamic models. While Hoque, Magnus, and Pesaran (1988) considered the MSFE arising from a first-order autoregression without intercept,

$$
\begin{equation*}
y_{t}=\beta y_{t-1}+u_{t}, \tag{1}
\end{equation*}
$$

where $|\beta|<1$ and $\left\{u_{t}\right\}$ is a sequence of independent and identically distributed $\mathrm{N}\left(0, \sigma^{2}\right)$ random variables, we now go one step further and study the model with an intercept,

$$
\begin{equation*}
y_{t}=\alpha+\beta y_{t-1}+u_{t} \tag{2}
\end{equation*}
$$

We shall see that the behaviour of the $M S F E$ in the $\operatorname{AR}(1)$ model with an intercept can be very different from that in the model without an intercept, and that this is particularly true for $\beta$ close to unity.

In the no-intercept model (1), let $\hat{\beta}$ denote the least-squares (LS) estimator of $\beta$ based on $n$ observations $y_{1}, \ldots, y_{n}$. The s-periods-ahead LS forecast is then $\hat{y}_{n+s}=\hat{\beta}^{s} y_{n}$. Malinvaud (1970) showed that the forecast bias $\mathrm{E}\left(\hat{y}_{n+s}-\right.$ $y_{n+s}$ ) vanishes, if it exists. Hoque, Magnus, and Pesaran (1988) showed that
the forecast bias exists if and only if $s \leq n-2$. They also showed that the $M S F E$ exists if and only if $s \leq[(n-2) / 2]$, and they obtained an exact expression for the MSFE which they used to obtain exact results by numerical integration. Their two main conclusions were (i) that for $|\beta|$ close to 1 the $M S F E$ is very sensitive to the specification of the initial observation and (ii) that it is not generally true that the MSFE is an increasing function of $s$ and that, indeed, for $\beta$ close to zero the MSFE is decreasing in $s$.

The latter result is counterintuitive, so it may be useful to provide some analytical evidence in addition to the exact results. First, we may write the asymptotic approximation up to order $n^{-1}$ as

$$
M S F E=\sigma^{2}\left(\frac{1-\beta^{2 s}}{1-\beta^{2}}+\frac{1}{n-1} s^{2} \beta^{2(s-1)}\right)
$$

[see, e.g., Maekawa (1987)], and one verifies easily that the same counterintuitive phenomenon occurs here. Secondly, at $\beta=0$, we have

$$
\begin{equation*}
M S F E=\sigma^{2}\left(1+\mathrm{E}\left(\hat{\beta}^{s} y_{n}\right)^{2}\right) \tag{3}
\end{equation*}
$$

If we consider (3) for a moment as a continuous function of $s$, then

$$
\frac{\mathrm{d} M S F E}{\mathrm{~d} s}=\sigma^{2} \mathrm{E}\left(\hat{\beta}^{s} y_{n}\right)^{2} \log \hat{\beta}^{2}
$$

and this expectation is negative because $\log \hat{\beta}^{2}$ is negative with probability almost equal to one. ${ }^{1}$

In the model (2) with an intercept, Fuller and Hasza (1980) proved that the forecast bias is zero if it exists and if the process is mean-stationary. Magnus and Pesaran (1987) showed that the forecast bias in this case exists if and only if $s \leq n-3$ and they provided an exact expression for the forecast bias which is applicable whether the process is mean-stationary or not. The results for the not mean-stationary case show that the forecast bias is not, in general, a monotone function of either $\beta, n$, or $s$, and that the covariance-stationarity of the process is only relevant when $\beta$ is close to -1 .

In this paper we study the MSFE in the model with an intercept (2). We show that the MSFE exists if and only if $s \leq[(n-3) / 2]$ and provide an exact expression for the MSFE in this case. The exact results are compared with the asymptotic approximation and with Monte Carlo results obtained by Orcutt and Winokur (1969) and Fuller and Hasza (1980). The paper highlights the importance of the specification of the initial observation. If $\beta>0$, then we find

[^0]it is important to know whether the process is mean-stationary or not, but almost irrelevant to have information about the covariance-stationarity of the process. If $\beta<0$, the opposite is true. Then it is important to know whether the process is covariance-stationary or not, but almost useless to know whether the process is mean-stationary or not.

In section 2 we present the model and the precise assumptions concerning the initial observation. The main theorem is stated in section 3. Sections 4 and 5 discuss the exact results. An appendix containing the proof of the theorem concludes the paper.

## 2. The model

We shall be exclusively concerned with the first-order autoregressive process $\left\{y_{1}, y_{2}, \ldots\right\}$ with an intercept term,

$$
\begin{equation*}
y_{t}=\alpha+\beta y_{t-1}+u_{t}, \quad t=2,3, \ldots, \tag{4}
\end{equation*}
$$

where both $\alpha$ and $\beta$ are unknown and $\left\{u_{2}, u_{3}, \ldots\right\}$ is a sequence of i.i.d. $\mathrm{N}\left(0, \sigma^{2}\right)$ random variables. Regarding the initial observation $y_{1}$ we postulate

$$
\begin{equation*}
y_{1}=\mu_{1}+\delta u_{1} \tag{5}
\end{equation*}
$$

where $u_{1} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ is independent of $u_{2}, u_{3}, \ldots$, and $\delta>0$. In finite samples the actual values of $\mu_{1}$ and $\delta$ are important and we shall return to their specification shortly.

Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\prime}$ be an $n \times 1$ vector of observations generated by (4) and (5). Then $y$ is normally distributed with mean

$$
\mu=\frac{\alpha}{1-\beta}\left(\begin{array}{c}
1  \tag{6}\\
1 \\
1 \\
\vdots \\
1
\end{array}\right)+\left(\mu_{1}-\frac{\alpha}{1-\beta}\right)\left(\begin{array}{c}
1 \\
\beta \\
\beta^{2} \\
\vdots \\
\beta^{n-1}
\end{array}\right)
$$

and positive definite covariance matrix $L L^{\prime}$, where

$$
L=\sigma\left(\begin{array}{cccccc}
\delta & 0 & 0 & \cdots & 0 & 0  \tag{7}\\
\delta \beta & 1 & 0 & \cdots & 0 & 0 \\
\delta \beta^{2} & \beta & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\delta \beta^{n-2} & \beta^{n-3} & \beta^{n-4} & \cdots & 1 & 0 \\
\delta \beta^{n-1} & \beta^{n-2} & \beta^{n-3} & \cdots & \beta & 1
\end{array}\right)
$$

Given the vector of observations $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\prime}$, the least-squares estimators of $\alpha$ and $\beta$, obtained by minimizing $\sum_{t-2}^{n}\left(y_{t}-\alpha-\beta y_{t-1}\right)^{2}$, are given by

$$
\begin{equation*}
\hat{\alpha}=\bar{y}_{* *}-\hat{\beta} \bar{y}_{*} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\beta}=\sum_{t=2}^{n}\left(y_{t}-\bar{y}_{* *}\right)\left(y_{t-1}-\bar{y}_{*}\right) / \sum_{t=2}^{n}\left(y_{t-1}-\bar{y}_{*}\right)^{2}, \tag{9}
\end{equation*}
$$

where

$$
\bar{y}_{*}=(1 /(n-1)) \sum_{t=2}^{n} y_{t-1}, \quad \bar{y}_{* *}=(1 /(n-1)) \sum_{t=2}^{n} y_{t} .
$$

Defining the $n \times n$ matrices

$$
\begin{equation*}
A=\frac{1}{2}\left(D_{*}^{\prime} M D_{* *}+D_{* *}^{\prime} M D_{*}\right), \quad B=D_{*}^{\prime} M D_{*}, \tag{10}
\end{equation*}
$$

where $M$ is the idempotent $(n-1) \times(n-1)$ matrix

$$
M=I_{n-1}-(1 /(n-1)) i i^{\prime}, \quad i=(1,1, \ldots, 1)^{\prime}
$$

and $D_{*}$ and $D_{* *}$ are the $(n-1) \times n$ selection matrices

$$
D_{*}=\left(I_{n-1}: 0\right), \quad D_{* *}=\left(0: I_{n-1}\right),
$$

we can write the least-squares estimator $\hat{\beta}$ in (9) as a ratio of two quadratic forms in normal variables,

$$
\hat{\beta}=y^{\prime} A y / y^{\prime} B y
$$

The $s$-periods-ahead forecast is defined recursively as

$$
\begin{aligned}
& \hat{y}_{n+1}=\hat{\alpha}+\hat{\beta} y_{n}, \\
& \hat{y}_{n+s}=\hat{\alpha}+\hat{\beta} \hat{y}_{n+s-1}, \quad s=2,3, \ldots
\end{aligned}
$$

so that

$$
\begin{equation*}
\hat{y}_{n+s}=\hat{\alpha} \sum_{j=0}^{s-1} \hat{\beta}^{j}+\hat{\beta}^{s} y_{n}, \quad s=1,2, \ldots \tag{11}
\end{equation*}
$$

From (4) and (11) we obtain the forecast error

$$
\begin{equation*}
\hat{y}_{n+s}-y_{n+s}=\hat{\alpha} \sum_{j=0}^{s-1} \hat{\beta}^{j}+\left(\hat{\beta}^{s}-\beta^{s}\right) y_{n}-\alpha \sum_{j=0}^{s-1} \beta^{j}-\sum_{j=0}^{s-1} \beta^{j} u_{n+s-j} \tag{12}
\end{equation*}
$$

and the expected value of $\left(\hat{y}_{n+s}-y_{n+s}\right)^{2}$, if it exists, is the mean-square forecast error of the forecast $\hat{y}_{n+s}$. In the next section we shall obtain an exact expression for the MSFE and show that it exists if and only if $s \leq[(n-3) / 2]$.

Let us now return to the specification of $\mu_{1}$ and $\delta$. The following choices seem the most natural ones to consider. As to the mean component $\mu_{1}$ we assume either

Assumption la. $\quad \mu_{1}=\alpha /(1-\beta)$,
in which case $\left\{y_{1}, y_{2}, \ldots\right\}$ is mean-stationary ( $\mathrm{E} y_{t}=\mu_{1}, t=1,2, \ldots$ ), or
Assumption 1b. $\mu_{1}=\alpha$,
which, if we assume that (4) also holds for $t=1$, is equivalent to assuming that $y_{0}$ is distributed symmetrically about zero, but implies that the process is not mean-stationary (except when $\beta=0$ ).

As to the variance component $\delta$, we assume either
Assumption 2a. $\delta=\left(1-\beta^{2}\right)^{-1 / 2}$,
in which case the series $\left\{y_{1}, y_{2}, \ldots\right\}$ is covariance-stationary $\left(\operatorname{cov}\left(y_{s+1}, y_{s}\right)\right.$ is independent of $s$ ), or

Assumption $2 b . \quad \delta=1$,
which is equivalent to assuming that $y_{0}$ is a nonrandom constant, but implies of course that the process is not covariance-stationary (except again when $\beta=0$ ).

If Assumptions 1a and 2a are both satisfied, then $\left\{y_{1}, y_{2}, \ldots\right\}$ is a normal strictly stationary time series; if Assumptions Ib and 2 b are both satisfied, then $y_{0}=0$.

## 3. The mean-square forecast error of $\hat{\boldsymbol{y}}_{\boldsymbol{n}+\mathrm{s}}$

In order to obtain an exact expression for the mean-square forecast error (MSFE), $\mathrm{E}\left(\hat{y}_{n+s}-y_{n+s}\right)^{2}$, we need some additional notation.

Let $A$ and $B$ be the $n \times n$ matrices ( $n \geq 5$ ) defined in (10) and let $\mu$ and $L$ be the $n \times 1$ vector and $n \times n$ matrix defined in (6) and (7), respectively. Let $P$ be an orthogonal $n \times n$ matrix and $\Lambda$ a diagonal $n \times n$ matrix such that

$$
P^{\prime} L^{\prime} B L P=\Lambda, \quad P^{\prime} P=I_{n},
$$

and define the $n \times n$ matrix and $n \times 1$ vectors

$$
\begin{aligned}
& A^{*}=P^{\prime} L^{\prime} A L P, \quad \mu^{*}=P^{\prime} L^{-1} \mu \\
& w_{1}=\frac{1}{n-1}(-1,0, \ldots, 0,1)^{\prime}, \\
& w_{2}=\frac{1}{n-1}(-1,-1, \ldots,-1, n-1)^{\prime}, \\
& w_{3}=\frac{1}{n-1}(1,1, \ldots, 1,0)^{\prime}
\end{aligned}
$$

For $i, j=1,2,3$, let $W_{i j}=\frac{1}{2}\left(w_{i} w_{j}^{\prime}+w_{j} w_{i}^{\prime}\right)$ and denote by $\varepsilon_{s}$ the bias of the forecast $\hat{y}_{n+s}$, that is, $\varepsilon_{s}=\mathrm{E}\left(\hat{y}_{n+s}-y_{n+s}\right)$.

Let $\left\{C_{k, s}, 1 \leq k \leq 2 s\right\}$ be symmetric $n \times n$ matrices defined by

$$
C_{k, s}= \begin{cases}(k+1) W_{11}-2 \beta^{s} W_{12}+2\left(1-\beta^{s}\right) W_{13} & \text { if } k=1, \ldots, s-1, \\ (s-1) W_{11}+2 W_{12}-2 \beta^{s} W_{22}+2\left(1-\beta^{s}\right) W_{23} & \text { if } k=s, \\ (2 s-k-1) W_{11}+2 W_{12} & \text { if } k=s+1, \ldots, 2 s-1, \\ W_{22} & \text { if } k=2 s,\end{cases}
$$

and, for any symmetric $n \times n$ matrix $C$, let

$$
\begin{equation*}
\zeta_{k}[C]=\frac{\exp \left(-\frac{1}{2} \mu^{* \prime} \mu^{*}\right)}{(k-1)!} \sum_{\nu} \gamma_{k}(\nu) \int_{0}^{\infty} t^{k-1}|\Delta| \exp \left(\frac{1}{2} \xi^{\prime} \xi\right) g_{k}(t) \mathrm{d} t \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
g_{k}(t)= & \omega\left(\operatorname{tr} \Gamma+\xi^{\prime} \Gamma \xi\right)+2 \sum_{j=1}^{k} j n_{j} r_{j} \omega_{j}\left(\operatorname{tr} R^{j} \Gamma+2 \xi^{\prime} R^{j} \Gamma \xi\right) \\
& +4 \sum_{j=1}^{k} j^{2} n_{j}\left(n_{j}-1\right) r_{j}^{*} \omega_{j}\left(\xi^{\prime} R^{j} \Gamma R^{j \xi}\right) \\
& +8 \sum_{i<j} \omega_{i j}\left(i n_{i} r_{i}\right)\left(j n_{j} r_{j}\right)\left(\xi^{\prime} R^{i} \Gamma R^{j} \xi\right)
\end{aligned}
$$

The summation in (13) is over all $1 \times k$ vectors $\nu=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ whose elements $n_{j}$ are nonnegative integers satisfying $\sum_{j=1}^{k} j n_{j}=k$. Further,

$$
\gamma_{k}(\nu)=k!2^{k} \prod_{j=1}^{k}\left\{n_{j}!(2 j)^{n_{j}}\right\}^{-1}
$$

$\Delta$ is a diagonal positive definite $n \times n$ matrix, $R$ and $\Gamma$ symmetric $n \times n$ matrices, and $\xi$ an $n \times 1$ vector, defined as

$$
\begin{array}{ll}
\Delta=\left(I_{n}+2 t \Lambda\right)^{-1 / 2}, & R=\Delta A^{*} \Delta, \\
\Gamma=\Delta P^{\prime} L^{\prime} C L P \Delta, & \xi=\Delta \mu^{*},
\end{array}
$$

and the scalars $\omega, \omega_{j}, \omega_{i j}, r_{j}$, and $r_{j}{ }^{*}$ are defined by

$$
\begin{aligned}
& \omega=\prod_{j=1}^{k} \varphi_{j}^{n_{j},} \quad \varphi_{j}=\operatorname{tr} R^{j}+j \xi^{\prime} R^{j \xi}, \\
& \omega_{j}=\left\{\begin{array}{lll}
1 & \text { if } & k=1, \\
\prod_{i=1}^{k} \varphi_{i}^{n_{i}} & \text { if } & k \geq 2,
\end{array}\right. \\
& \omega_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & k=1, \\
\prod_{h=1}^{k} \varphi_{i, 1}^{n} \varphi_{h}^{n_{h}} & \text { if } & k \geq 2,
\end{array}\right. \\
& r_{j}=\left\{\begin{array}{lll}
1 & \text { if } & n_{j}=0,1, \\
\varphi_{j}^{n,-1} & \text { if } & n_{j} \geq 2,
\end{array}\right. \\
& r_{j}^{*}=\left\{\begin{array}{lll}
1 & \text { if } & n_{j}=0,1,2, \\
\varphi_{j}^{n,-2} & \text { if } & n_{j} \geq 3 .
\end{array}\right.
\end{aligned}
$$

With all notation explained we can now state Theorem 1.
Theorem 1. The mean-square forecast error of $\hat{y}_{n+s}$ exists if and only if $1 \leq s \leq[(n-3) / 2]$, in which case

$$
\begin{align*}
\mathrm{E}\left(\hat{y}_{n+s}-y_{n+s}\right)^{2}= & \sigma^{2} \sum_{k=0}^{s-1} \beta^{2 k}-\alpha^{2}\left(\sum_{k=0}^{s-1} \beta^{k}\right)^{2}-2 \alpha \varepsilon_{s} \sum_{k=0}^{s-1} \beta^{k} \\
& +\left(w_{1}-\beta^{s} w_{2}+\left(1-\beta^{s}\right) w_{3}\right)^{\prime} \\
& \times\left(L L^{\prime}+\mu \mu^{\prime}\right)\left(w_{1}-\beta^{s} w_{2}+\left(1-\beta^{s}\right) w_{3}\right) \\
& +\sum_{k=1}^{2 s} \zeta_{k}\left[C_{k, s}\right] . \tag{14}
\end{align*}
$$

Proof. See appendix.

## 4. Exact results: The mean-stationary case

Let us begin by noticing that, as in the model without an intercept [see Hoque, Magnus, and Pesaran (1988)], the mean-square forecast error (MSFE) satisfies

$$
M S F E \geq \sigma^{2} \text { and } \lim _{n \rightarrow \infty} M S F E=\sigma^{2}\left(1-\beta^{2 s}\right) /\left(1-\beta^{2}\right)
$$

and that these results are independent of assumptions regarding the initial observation, that is, independent of $\mu_{1}, \alpha$, and $\delta$. However, unlike the model without intercept we now have that the $M S F E$ is not proportional to $\sigma^{2}$ (unless the process is mean-stationary) and that the MSFE is not an even function of $\beta$.

The exact $M S F E$ of the least-squares (LS) forecast $\hat{y}_{n+s}$ was calculated ${ }^{2}$ using Theorem 1 under Assumptions 1 a or lb and 2 a or 2 b for the following selected values of $\beta, n$ (the number of observations), and $s$ (the number of periods ahead):

$$
\begin{aligned}
& \beta=-0.99,-0.98,-0.95,-0.90,-0.80, \ldots, \\
& \quad 0.80,0.90,0.95,0.98,0.99 \\
& n=10,15,20 \\
& s=1,2,3,4
\end{aligned}
$$

In this section we shall discuss the results for the mean-stationary case (Assumption 1a) where $\mu_{1}=\alpha /(1-\beta)$. The results for the not meanstationary case (Assumption 1b) are discussed in the following section. If the process is mean-stationary we know that (i) the LS forecast is unbiased, (ii) the $M S F E$ is independent of the values of $\alpha$ and $\mu_{1}$, and (iii) the $M S F E$ is proportional to $\sigma^{2}$. The first property follows from Fuller and Hasza (1980) and Magnus and Pesaran (1987), while properties (ii) and (iii) follow from the fact that, under Assumption 1a, eq. (4) can be written as

$$
y_{t}-\mathrm{E} y_{t}=\beta\left(y_{t-1}-\mathrm{E} y_{t-1}\right)+u_{t} .
$$

Hence in the mean-stationary case there is no loss of generality by assuming $\alpha=\mu_{1}=0$ and $\sigma^{2}=1$. Tables 1 and 2 contain the exact numerical results for this case under Assumptions 2a (table 1) and 2 b (table 2), respectively.

Let us first discuss the results for the strictly stationary case (table 1) where $\mu_{1}=\alpha /(1-\beta)$ and $\delta=\left(1-\beta^{2}\right)^{-1 / 2}$. Fig. 1 illustrates as expected that the

[^1]Table 1
Exact MSFE of least-squares forecast $\hat{y}_{n+s}: \alpha=\mu_{1}=0, \delta=\left(1-\beta^{2}\right)^{-1 / 2}, \sigma=1$.

| $\beta$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $s$ | -0.99 | -0.90 | -0.80 | -0.60 | -0.40 | -0.20 | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 0.90 | 0.99 |
| 10 | 1 | 1.2701 | 1.2848 | 1.2774 | 1.2682 | 1.2664 | 1.2698 | 1.2781 | 1.2922 | 1.3144 | 1.3468 | 1.3781 | 1.3740 | 1.3370 |
| 10 | 2 | 2.5232 | 2.3386 | 2.0616 | 1.6353 | 1.3601 | 1.2122 | 1.1845 | 1.2800 | 1.5107 | 1.8977 | 2.4297 | 2.6861 | 2.8174 |
| 10 | 3 | 4.4330 | 3.8255 | 3.0456 | 2.0246 | 1.4936 | 1.2541 | 1.2093 | 1.3359 | 1.6846 | 2.3918 | 3.6201 | 4.3631 | 4.8912 |
| 15 | 1 | 1.1616 | 1.1703 | 1.1629 | 1.1562 | 1.1550 | 1.1564 | 1.1599 | 1.1661 | 1.1763 | 1.1939 | 1.2224 | 1.231 | 1.2102 |
| 15 | 2 | 2.3102 | 2.0936 | 1.8514 | 1.4903 | 1.2518 | 1.1198 | 1.0908 | 1.1658 | 1.3505 | 1.6599 | 2.1202 | 2.3835 | 2.5349 |
| 15 | 3 | 3.7687 | 3.1030 | 2.4672 | 1.6856 | 1.2895 | 1.1152 | 1.0822 | 1.1674 | 1.4032 | 1.8909 | 2.8233 | 3.4794 | 3.9781 |
| 15 | 4 | 5.2487 | 3.9279 | 2.8337 | 1.7172 | 1.2701 | 1.1033 | 1.0770 | 1.1641 | 1.4174 | 2.0172 | 3.4152 | 4.5789 | 5.6157 |
| 20 | 1 | 1.1208 | 1.1200 | 1.1149 | 1.1111 | 1.1105 | 1.1113 | 1.1133 | 1.1169 | 1.1228 | 1.1336 | 1.1551 | 1.1683 | 1.1560 |
| 20 | 2 | 2.2222 | 2.0045 | 1.7829 | 1.4474 | 1.2208 | 1.0929 | 1.0619 | 1.1285 | 1.2962 | 1.5746 | 1.9914 | 2.2526 | 2.4229 |
| 20 | 3 | 3.5393 | 2.8797 | 2.3132 | 1.6098 | 1.2487 | 1.0888 | 1.0563 | 1.1290 | 1.3357 | 1.7642 | 2.5950 | 3.2276 | 3.7503 |
| 20 | 4 | 4.8320 | 3.5610 | 2.6089 | 1.6329 | 1.2346 | 1.0818 | 1.0539 | 1.1270 | 1.3439 | 1.8515 | 3.0467 | 4.1204 | 5.1518 |
| $\infty$ | 1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| $\infty$ | 2 | 1.9801 | 1.8100 | 1.6400 | 1.3600 | 1.1600 | 1.0400 | 1.0000 | 1.0400 | 1.1600 | 1.3600 | 1.6400 | 1.8100 | 1.9801 |
| $\infty$ | 3 | 2.9407 | 2.4661 | 2.0496 | 1.4896 | 1.1856 | 1.0416 | 1.0000 | 1.0416 | 1.1856 | 1.4896 | 2.0496 | 2.4661 | 2.9407 |
| $\infty$ | 4 | 3.8822 | 2.9975 | 2.3117 | 1.5363 | 1.1897 | 1.0417 | 1.0000 | 1.0417 | 1.1897 | 1.5363 | 2.3117 | 2.9975 | 3.8822 |

Table 2
Exact MSFE of least-squares forecast $\hat{y}_{n+s}: \alpha=\mu_{1}=0, \delta=\sigma=1$.

| $n$ | $s$ | $\beta$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -0.99 | -0.90 | -0.80 | -0.60 | -0.40 | -0.20 | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 0.90 | 0.99 |
| 10 | 1 | 1.3699 | 1.3311 | 1.3035 | 1.2774 | 1.2695 | 1.2705 | 1.2781 | 1.2929 | 1.3170 | 1.3516 | 1.3783 | 1.3636 | 1.3319 |
| 10 | 2 | 2.9611 | 2.5159 | 2.1465 | 1.6566 | 1.3653 | 1.2129 | 1.1845 | 1.2804 | 1.5110 | 1.8916 | 2.3835 | 2.6022 | 2.7904 |
| 10 | 3 | 5.7928 | 4.3458 | 3.2766 | 2.0752 | 1.5041 | 1.2555 | 1.2093 | 1.3368 | 1.6870 | 2.3818 | 3.4974 | 4.1334 | 4.8183 |
| 15 | 1 | 1.2263 | 1.1933 | 1.1735 | 1.1594 | 1.1560 | 1.1566 | 1.1599 | 1.1663 | 1.1774 | 1.1967 | 1.2259 | 1.2298 | 1.2060 |
| 15 | 2 | 2.5189 | 2.1608 | 1.8781 | 1.4958 | 1.2530 | 1.1200 | 1.0908 | 1.1658 | 1.3506 | 1.6596 | 2.1096 | 2.3490 | 2.5132 |
| 15 | 3 | 4.3082 | 3.2606 | 2.5229 | 1.6945 | 1.2909 | 1.1153 | 1.0822 | 1.1675 | 1.4034 | 1.8895 | 2.7928 | 3.3871 | 3.9244 |
| 15 | 4 | 6.3215 | 4.2160 | 2.9251 | 1.7287 | 1.2715 | 1.1034 | 1.0770 | 1.1641 | 1.4176 | 2.0152 | 3.3592 | 4.4004 | 5.5120 |
| 20 | 1 | 1.1578 | 1.1320 | 1.1203 | 1.1128 | 1.1110 | 1.1114 | 1.1133 | 1.1170 | 1.1234 | 1.1353 | 1.1584 | 1.1692 | 1.1523 |
| 20 | 2 | 2.3566 | 2.0409 | 1.7958 | 1.4499 | 1.2213 | 1.0930 | 1.0619 | 1.1286 | 1.2963 | 1.5750 | 1.9898 | 2.2380 | 2.4042 |
| 20 | 3 | 3.8419 | 2.9544 | 2.3365 | 1.6132 | 1.2492 | 1.0888 | 1.0563 | 1.1290 | 1.3357 | 1.7640 | 2.5854 | 3.1828 | 3.7041 |
| 20 | 4 | 5.4091 | 3.6879 | 2.6437 | 1.6367 | 1.2350 | 1.0818 | 1.0539 | 1.1270 | 1.3439 | 1.8510 | 3.0279 | 4.0328 | 5.0647 |



Fig. 1. $M S F E$ of LS forecast for $s=1$ : strictly stationary case.

MSFE decreases with increasing $n$. (This is true for all $n \geq 2 s+3$; if $n<2 s+$ 3, then the MSFE does not exist, see Theorem 1.) It also shows that the $M S F E$ is not a monotone function of $|\beta|$, at least when $s=1$, since the $M S F E$ falls when $\beta$ approaches $\pm 1$. The drop is particularly significant for $\beta$ close to +1 . Finally, fig. 1 shows that the MSFE is not symmetric about $\beta=0$. In the strictly stationary case we always have

$$
\operatorname{MSFE}(|\beta|) \geq \operatorname{MSFE}(-|\beta|)
$$

but we shall see that this inequality no longer holds if different assumptions are made regarding the initial observation.

For $s \geq 2$ these conclusions remain unaltered except that the $M S F E$ is now monotone in $|\beta|$. However, as in the model without intercept, the increase in the $M S F E$ is much less for values of $|\beta|$ close to 1 , especially when $n$ is small.

The asymptotic approximation of the MSFE up to order $n^{-1}$ is [Fuller and Hasza (1981, p. 157)]

$$
M S F E=\sigma^{2}\left\{\frac{1-\beta^{2 s}}{1-\beta^{2}}+\frac{1}{n-1}\left(s^{2} \beta^{2(s-1)}+\left(\frac{1-\beta^{s}}{1-\beta}\right)^{2}\right)\right\}
$$

In particular, for $s=1$,

$$
M S F E=\sigma^{2}\left(1+\frac{2}{n-1}\right) .
$$

The agreement between our exact results and the asymptotic approximation is quite good, but of course the interesting behaviour of the MSFE for $|\beta|$ close to 1 is not captured by the approximation.

In case the true value of $\alpha$ is zero and we know this, then we estimate of course the no-intercept model $y_{t}=\beta y_{t-1}+u_{t}$. But if $\alpha=0$ and we don't know this, then we estimate the model with an intercept. This ignorance about the truth will lead to a higher MSFE. A comparison of table 1 with the corresponding table in Hoque, Magnus, and Pesaran (1988) confirms this. The asymptotic approximations show that the increase in the MSFE up to order $n^{-1}$ will be

$$
\frac{1}{n-1}\left(\frac{1-\beta^{s}}{1-\beta}\right)^{2}
$$

and this agrees quite well with our exact results.
The most striking result found in Hoque, Magnus, and Pesaran (1988) was that in the no-intercept model and for $\beta$ close to zero the MSFE decreases when $s$ increases. Some analytic evidence for this counterintuitive result was given in section 1 of this paper. Fig. 2 illustrates that, in the model with an intercept, the situation is almost the same; almost, because for $n=10$, MSFE $(s=3)>\operatorname{MSFE}(s=2)$ when $\beta$ is close to zero. It is easy to see analytically why the MSFE is not now strictly decreasing in $s$ for all $n$, since, at $\alpha=\beta=\mu_{1}=0$,

$$
\frac{\mathrm{d} M S F E}{\mathrm{~d} s}=\mathrm{E}\left[\left(\hat{\beta}^{s} y_{n}+\frac{\hat{\alpha}\left(1-2 \hat{\beta}^{s}\right)}{2(1-\hat{\beta})}\right)^{2}-\left(\frac{\hat{\alpha}}{2(1-\hat{\beta})}\right)^{2}\right] \log \hat{\beta}^{2},
$$

and the sign of the derivative is not unambiguous.
Some Monte Carlo results for the strictly stationary case were obtained by Fuller and Hasza (1980, table 1). These results are reasonably accurate for values of $|\beta|$ not too close to 1 . For $|\beta|$ close to 1 , however, the Monte Carlo results are quite poor. (This is a consequence of their method, where the same number of replications was used for each $\beta$, while for $|\beta|$ close to 1 many more replications are needed to obtain the same accuracy.) For example, for $n=10, \beta=0.99$, and $s=1,2,3$, Fuller and Hasza find 1.31, 2.70, and 4.46, whereas the exact results are $1.34,2.82$, and 4.89 .


Fig. 2. $M S F E$ of LS forecast for $n=15$ : strictly stationary case.
The strictly stationary case is based on Assumptions 1a and 2a. Let us now consider what happens if Assumptions 1a and 2 b hold. This is a fixed start-up case with $y_{0}=\alpha /(1-\beta)$ so that the process is mean-stationary but not covariance-stationary. The results are given in table 2. Comparing tables 1 and 2 we see that the MSFE does not seem to be affected by the choice of $\delta$ if $\beta$ is positive, but that there is a big difference in MSFE if $\beta$ is close to -1 . Fig. 3 illustrates this. For $\beta<0$ the MSFE is now a monotone function of $\beta$ and it is larger than in the covariance-stationary case. It is interesting that exactly the same kind of result was found in Magnus and Pesaran (1987) for the bias of the forecast error in the not mean-stationary process. For a detailed analysis and explanation of this phenomenon, see Magnus and Rothenberg (1988).

Some Monte Carlo results are available for this case in Orcutt and Winokur (1969, table 7), but unfortunately only for $\beta \geq 0$ and based on only one thousand replications. The Monte Carlo results are not very trustworthy, but they are in general agreement with our exact results.

## 5. Exact results: The not mean-stationary case

The forecast error of the least-squares forecast $\hat{y}_{n+s}$ depends on seven parameters: $\alpha, \beta, \sigma, \mu_{1}, \delta, n, s$. It is easy to see from (12) that the forecast


Fig. 3. $M S F E$ of LS forecast for $n=10, s=1$ : mean-stationary case.
error is linearly homogeneous in $\alpha, \mu_{1}$, and $\sigma$, so that

$$
\begin{equation*}
\frac{\operatorname{MSFE}\left(\alpha, \mu_{1}, \sigma\right)}{\sigma^{2}}=\operatorname{MSFE}\left(\frac{\alpha}{\sigma}, \frac{\mu_{1}}{\sigma}, 1\right) \tag{15}
\end{equation*}
$$

In the mean-stationary case discussed in the previous section we have

$$
\frac{\operatorname{MSFE}\left(\alpha, \mu_{1}, \sigma\right)}{\sigma^{2}}=\operatorname{MSFE}(0,0,1)
$$

which depends only on $\beta, \delta, n$, and $s$. If, however, the process is not mean-stationary, then the MSFE will depend on all seven parameters. ${ }^{3}$ In particular, and in contrast to the mean-stationary case, (i) the LS forecast will be biased, (ii) the $M S F E$ will depend on the values of $\alpha$ and $\mu_{1}$, and (iii) the $M S F E$ will not be proportional to $\sigma^{2}$.

[^2]It is clear from (15) that the mean-stationary process is a limiting case of the not mean-stationary process, since

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \frac{\operatorname{MSFE}\left(\alpha, \mu_{1}, \sigma\right)}{\sigma^{2}}=\operatorname{MSFE}(0,0,1) \tag{16}
\end{equation*}
$$

Furthermore, the $M S F E$ is an even function of $\alpha$ and $\mu_{1}$ :

$$
\operatorname{MSFE}\left(\alpha, \mu_{1}, \sigma\right)=\operatorname{MSFE}\left(-\alpha,-\mu_{1}, \sigma\right)
$$

In this section we only consider the case $\alpha=\mu_{1}$ which implies that $y_{0}$ is distributed symmetrically about zero. Then $M S F E / \sigma^{2}$ depends only on $\beta, \delta$, $n, s$, and the ratio $\alpha / \sigma$. From (16) we know the behaviour of $M S F E / \sigma^{2}$ when $\sigma$ is large relative to $\alpha$. When $\sigma$ is small relative to $\alpha$ one can show that

$$
\begin{equation*}
\frac{M S F E}{\sigma^{2}}=\mathrm{O}(1)+\mathrm{O}\left(\sigma^{2}\right) \tag{17}
\end{equation*}
$$

[Compare Magnus and Pesaran (1987, theorem 4).] In this section we study the case where $\alpha$ and $\sigma$ are of the same order of magnitude. More specifically we set

$$
\alpha=\mu_{1}=\sigma
$$

so that

$$
\frac{\operatorname{MSFE}\left(\alpha, \mu_{1}, \sigma\right)}{\sigma^{2}}=\operatorname{MSFE}(1,1,1)
$$

No results from the literature are available for this case, either exact or Monte Carlo.

Table 3 presents the results for the case where the process is covariance-stationary but not mean-stationary. If we compare these results with the strictly stationary case (table 1), we find that the MSFE is hardly affected by the choice of $\mu_{1}$ if $\beta$ is negative, but that there is a big difference in $M S F E$ for $\beta$ close to +1 . For $\beta>0$ the $M S F E$ is now a monotone function of $\beta$, and it is larger than in the mean-stationary case. Thus, we obtain exactly the opposite results as in table 2. Apparently for $\beta>0$ the specification of $\mu_{1}$ is important, but the specification of $\delta$ not, whereas for $\beta<0$ the specification of $\delta$ is important, but not the specification of $\mu_{1}$ !

In table 4 we present the zero start-up case, where $y_{0}=0$ and the process is neither mean-stationary nor covariance-stationary. We know from our previ-

Table 3
Exact MSFE of least-squares forecast $\hat{y}_{n+s}: \alpha=\mu_{1}=1, \delta=\left(1-\beta^{2}\right)^{-1 / 2}, \sigma=1 .{ }^{\text {a }}$

| $n$ | $s$ | $\beta$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | -0.99 | -0.90 | -0.80 | -0.60 | -0.40 | -0.20 | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 0.90 | 0.99 |
| 10 | 1 | 1.2700 | 1.2834 | 1.2753 | 1.2662 | 1.2651 | 1.2693 | 1.2781 | 1.2913 | 1.3086 | 1.3298 | 1.3645 | 1.4256 | 1.5470 |
| 10 | 2 | 2.5228 | 2.3339 | 2.0553 | 1.6308 | 1.3581 | 1.2117 | 1.1845 | 1.2796 | 1.5099 | 1.9137 | 2.6378 | 3.3292 | 4.3843 |
| 10 | 3 | 4.4319 | 3.8125 | 3.0294 | 2.0144 | 1.4895 | 1.2532 | 1.2093 | 1.3347 | 1.6791 | 2.4104 | 4.1150 | 6.0352 | 9.2824 |
| 15 | 1 | 1.1628 | 1.1696 | 1.1619 | 1.1555 | 1.1545 | 1.1562 | 1.1599 | 1.1657 | 1.1739 | 1.1843 | 1.1995 | 1.2305 | 1.3199 |
| 15 | 2 | 2.2977 | 2.0915 | 1.8491 | 1.4891 | 1.2513 | 1.1197 | 1.0908 | 1.1657 | 1.3502 | 1.6603 | 2.1622 | 2.6042 | 3.3401 |
| 15 | 3 | 3.7069 | 3.0983 | 2.4627 | 1.6836 | 1.2889 | 1.1151 | 1.0822 | 1.1674 | 1.4030 | 1.8946 | 2.9558 | 4.1069 | 6.2305 |
| 15 | 4 | **** | 3.9195 | 2.8265 | 1.7147 | 1.2695 | 1.1032 | 1.0770 | 1.1640 | 1.4171 | 2.0223 | 3.6496 | 5.7760 | 10.2338 |
| 20 | 1 | 1.1208 | 1.1196 | 1.1144 | 1.1108 | 1.1103 | 1.1112 | 1.1133 | 1.1167 | 1.1215 | 1.1276 | 1.1351 | 1.1518 | 1.2238 |
| 20 | 2 | 2.2220 | 2.0032 | 1.7818 | 1.4469 | 1.2205 | 1.0929 | 1.0619 | 1.1285 | 1.2959 | 1.5728 | 1.9926 | 2.3285 | 2.9171 |
| 20 | 3 | 3.5390 | 2.8772 | 2.3111 | 1.6090 | 1.2485 | 1.0888 | 1.0563 | 1.1290 | 1.3356 | 1.7644 | 2.6350 | 3.5028 | 5.1545 |
| 20 | 4 | *** | 3.5568 | 2.6060 | 1.6321 | 1.2345 | 1.0818 | 1.0539 | 1.1270 | 1.3439 | 1.8529 | 3.1294 | 4.6759 | 8.0278 |

[^3]Table 4
Exact MSFE of least-squares forecast $\hat{y}_{n+s}: \alpha=\mu_{1}=\delta=\sigma=1$.



Fig. 4. $M S F E$ of $L S$ forecast for $s=1$ : zero start-up case.
ous analysis that going from mean-stationary to not mean-stationary affects the values of the MSFE for $\beta>0$, while going from covariance-stationary to not covariance-stationary affects the values for $\beta<0$. The zero start-up case, being a combination of the two, gives a combination of the two results. This is clearly illustrated by comparing fig. 4 with fig. 1. The MSFE is now monotone in $|\beta|$, but still not symmetric about $\beta=0$.

Further results (not reported here) show, for all cases considered, that the MSFE is strictly decreasing in $n$, also for small values of $n$, in spite of the fact that the absolute value of the forecast bias is not strictly decreasing in $n$ [see Magnus and Pesaran (1987)]. The reason is that the bias is small relative to the variance of the forecast error and that the latter is strictly decreasing in $n$.

## Appendix: Proof of Theorem 1

The proof is in two parts. In the first part we show that the mean-square forecast error (MSFE), if finite, is given by (14). In the second part we show that the MSFE is finite if and only if $s \leq[(n-3) / 2]$.

From (12) we obtain the MSFE:

$$
\begin{aligned}
\mathrm{E}\left(\hat{y}_{n+s}-y_{n+s}\right)^{2}= & \mathrm{E}\left(\hat{\alpha} \sum_{j=0}^{s-1} \hat{\beta}^{j}+\left(\hat{\beta}^{s}-\beta^{s}\right) y_{n}\right)^{2}+\alpha^{2}\left(\sum_{j=0}^{s-1} \beta^{j}\right)^{2} \\
& +\mathrm{E}\left[\sum_{j=0}^{s-1} \beta^{j} u_{n+s-j}\right]^{2} \\
& -2 \alpha\left[\sum_{j=0}^{s-1} \beta^{j}\right] \mathrm{E}\left[\hat{\alpha} \sum_{j=0}^{s-1} \hat{\beta}^{j}+\left(\hat{\beta}^{s}-\beta^{s}\right) y_{n}\right] \\
= & \mathrm{E} \hat{\alpha}^{2}\left(\sum_{j=0}^{s-1} \hat{\beta}^{j}\right)^{2}+\mathrm{E}\left(\hat{\beta}^{s}-\beta^{s}\right)^{2} y_{n}^{2} \\
& +2 \mathrm{E} \hat{\alpha} y_{n}\left(\hat{\beta}^{s}-\hat{\beta}^{s}\right) \sum_{j=0}^{s-1} \hat{\beta}^{j}+\alpha^{2}\left(\sum_{j=0}^{s-1} \beta^{j}\right)^{2} \\
& +\sigma^{2} \sum_{j=0}^{s-1} \beta^{2 j}-2 \alpha\left(\sum_{j=0}^{s-1} \beta^{j}\right)\left(\varepsilon_{s}+\alpha \sum_{j=0}^{s-1} \beta^{j}\right) \\
= & K_{1}+\beta^{2 s} \mathrm{E} y_{n}^{2}+\mathrm{E} \hat{\alpha}^{2}\left(\sum_{j=0}^{s-1} \hat{\beta}^{j}\right)^{2}+\mathrm{E} \hat{\beta}^{2 s} y_{n}^{2} \\
& -2 \beta^{s} \mathrm{E} \hat{\beta}^{s} y_{n}^{2}+2 \mathrm{E} \hat{\alpha} y_{n}\left(\hat{\beta}^{s}-\beta^{s}\right) \sum_{j=0}^{s-1} \hat{\beta}^{j}
\end{aligned}
$$

where

$$
\begin{equation*}
K_{1}=\sigma^{2} \sum_{j=0}^{s-1} \beta^{2 j}-\alpha^{2}\left(\sum_{j=0}^{s-1} \beta^{j}\right)^{2}-2 \alpha \varepsilon_{s} \sum_{j=0}^{s-1} \beta^{j} \tag{A.1}
\end{equation*}
$$

We now define the $n \times 1$ vectors

$$
\begin{aligned}
& v_{1}=\frac{1}{n-1}(0,1, \ldots, 1,1)^{\prime} \\
& v_{2}=\frac{1}{n-1}(1,1, \ldots, 1,0)^{\prime}, \\
& v_{3}=(0,0, \ldots, 0,1)^{\prime},
\end{aligned}
$$

so that

$$
\hat{\alpha}=v_{1}^{\prime} y-\hat{\beta} v_{2}^{\prime} y \quad \text { and } \quad y_{n}=v_{3}^{\prime} y .
$$

Then, using the relationship

$$
\begin{equation*}
\left(\sum_{j=0}^{s-1} \hat{\beta}^{j}\right)^{2}=\sum_{j=0}^{s-1}(j+1) \hat{\beta}^{j}+\sum_{j=s}^{2 s-2}(2 s-j-1) \hat{\beta}^{j} \tag{A.2}
\end{equation*}
$$

we get

$$
\begin{align*}
\mathrm{E}\left(\hat{y}_{n+s}-y_{n+s}\right)^{2}= & K_{1}+\beta^{2 s} \mathrm{E}\left(v_{3}^{\prime} y\right)^{2}+\mathrm{E}\left(v_{1}^{\prime} y-\hat{\beta} v_{2}^{\prime} y\right)^{2} \\
& \times\left(\sum_{j=0}^{s-1}(j+1) \hat{\beta}^{j}+\sum_{j=s}^{2 s-2}(2 s-j-1) \hat{\beta}^{j}\right) \\
& +\mathrm{E}\left(v_{3}^{\prime} y\right)^{2} \hat{\beta}^{2 s}-2 \beta^{s} \mathrm{E}\left(v_{3}^{\prime} y\right)^{2} \hat{\beta}^{s} \\
& +2 \mathrm{E}\left(v_{1}^{\prime} y-\hat{\beta} v_{2}^{\prime} y\right)\left(v_{3}^{\prime} y\right)\left(\hat{\beta}^{s}-\beta^{s}\right) \sum_{j=0}^{s-1} \hat{\beta}^{j} \\
= & K_{1}+\beta^{2 s} \mathrm{E}\left(v_{3}^{\prime} y\right)^{2}+\mathrm{E}\left(v_{1}^{\prime} y\right)^{2} \\
& -2 \beta^{s} \mathrm{E}\left(v_{1}^{\prime} y\right)\left(v_{3}^{\prime} y\right)+\mathrm{E} \sum_{j=1}^{2 s} \eta_{j} \hat{\beta}^{j}, \tag{A.3}
\end{align*}
$$

where the random variables $\eta_{1}, \ldots, \eta_{2 s}$ are quadratic forms in $y$ defined as follows:
for $j=1, \ldots, s-1$,

$$
\begin{aligned}
\eta_{j}= & (j+1)\left(v_{1}^{\prime} y\right)^{2}+(j-1)\left(v_{2}^{\prime} y\right)^{2}-2 j\left(v_{1}^{\prime} y\right)\left(v_{2}^{\prime} y\right) \\
& -2 \beta^{s}\left(\left(v_{1}-v_{2}\right)^{\prime} y\right) v_{3}^{\prime} y
\end{aligned}
$$

for $j=s$,

$$
\begin{aligned}
\eta_{s}= & (s-1)\left(v_{1}^{\prime} y\right)^{2}+(s-1)\left(v_{2}^{\prime} y\right)^{2}-2 s\left(v_{1}^{\prime} y\right)\left(v_{2}^{\prime} y\right) \\
& +2\left(v_{1}^{\prime} y\right)\left(v_{3}^{\prime} y\right)-2 \beta^{s}\left(\left(v_{3}-v_{2}\right)^{\prime} y\right) v_{3}^{\prime} y
\end{aligned}
$$

for $j=s+1, \ldots, 2 s-1$,

$$
\begin{aligned}
\eta_{j}= & (2 s-j-1)\left(v_{1}^{\prime} y\right)^{2}+(2 s-j+1)\left(v_{2}^{\prime} y\right)^{2}-2(2 s-j)\left(v_{1}^{\prime} y\right)\left(v_{2}^{\prime} y\right) \\
& +2\left(\left(v_{1}-v_{2}\right)^{\prime} y\right) v_{3}^{\prime} y
\end{aligned}
$$

and for $j=2 s$,

$$
\eta_{2 s}=\left(\left(v_{3}-v_{2}\right)^{\prime} y\right)^{2}
$$

Now notice that

$$
v_{1}=w_{1}+w_{3}, \quad v_{2}=w_{3}, \quad v_{3}=w_{2}+w_{3} .
$$

Thus the $\eta_{j}$ variables can be expressed in terms of $w_{1}, w_{2}$, and $w_{3}$ as follows: for $j=1, \ldots, s-1$,

$$
\eta_{j}=(j+1)\left(w_{1}^{\prime} y\right)^{2}-2 \beta^{s}\left(w_{1}^{\prime} y\right)\left(w_{2}^{\prime} y\right)+2\left(1-\beta^{s}\right)\left(w_{1}^{\prime} y\right)\left(w_{3}^{\prime} y\right),
$$

for $j=s$,

$$
\begin{aligned}
\eta_{s}= & (s-1)\left(w_{1}^{\prime} y\right)^{2}+2\left(w_{1}^{\prime} y\right)\left(w_{2}^{\prime} y\right)-2 \beta^{s}\left(w_{2}^{\prime} y\right)^{2} \\
& +2\left(1-\beta^{s}\right)\left(w_{2}^{\prime} y\right)\left(w_{3}^{\prime} y\right),
\end{aligned}
$$

for $j=s+1, \ldots, 2 s-1$,

$$
\eta_{j}=(2 s-j-1)\left(w_{1}^{\prime} y\right)^{2}+2\left(w_{1}^{\prime} y\right)\left(w_{2}^{\prime} y\right)
$$

and for $j=2 s$,

$$
\eta_{2 s}=\left(w_{2}^{\prime} y\right)^{2}
$$

As a result we obtain

$$
\begin{equation*}
\mathrm{E} \sum_{j=1}^{2 s} \eta_{j} \hat{\beta}^{j}=\mathrm{E} \sum_{j=1}^{2 s}\left(y^{\prime} C_{j, s} y\right) \hat{\beta}^{j}=\sum_{j=1}^{2 s} \zeta_{j}\left[C_{j, s}\right], \tag{A.4}
\end{equation*}
$$

where the matrices $C_{j, s}(1 \leq j \leq 2 s)$ are defined in section 3, and the second equality follows from Theorem 5(b) of Magnus (1988).

Next,

$$
\begin{align*}
& \beta^{2 s} \mathrm{E}\left(v_{3}^{\prime} y\right)^{2}+\mathrm{E}\left(v_{1}^{\prime} y\right)^{2}-2 \beta^{s} \mathrm{E}\left(v_{1}^{\prime} y\right)\left(v_{3}^{\prime} y\right) \\
& =\mathrm{E}\left\{\left(v_{1}-\beta^{s} v_{3}\right)^{\prime} y\right\}^{2} \\
& =\mathrm{E}\left\{\left(w_{1}-\beta^{s} w_{2}+\left(1-\beta^{s}\right) w_{3}\right)^{\prime} y\right\}^{2} \\
& =\left(w_{1}-\beta^{s} w_{2}+\left(1-\beta^{s}\right) w_{3}\right)^{\prime}\left(L L^{\prime}+\mu \mu^{\prime}\right)\left(w_{1}-\beta^{s} w_{2}+\left(1-\beta^{s}\right) w_{3}\right) . \tag{A.5}
\end{align*}
$$

Inserting (A 1), (A.5), and (A.4) in (A.3) completes the first part of the proof.
To prove the second part we need to show that the MSFE exists if and only if $s \leq[(n-3) / 2]$. It is clear that the MSFE exists if and only if $\varepsilon_{s}$ and

$$
\mathrm{E}\left(y^{\prime} A y / y^{\prime} B y\right)^{k}\left(y^{\prime} C_{k, s} y\right), \quad k=1, \ldots, 2 s,
$$

both exist. Now, by Magnus and Pesaran (1987, theorem 1), $\varepsilon_{s}$ exists if and only if $s<n-2$. Further, since the matrix $B$, given in (10), has rank $n-2$, there exists an $n \times 2$ matrix $Q$, namely $Q=\left(v_{2}, v_{3}\right)$, with full column-rank such that $B Q=0$. We have

$$
Q^{\prime} A Q=0, \quad A Q \neq 0, \quad Q^{\prime} C_{k, s} \Omega \neq 0
$$

so that, by Theorem 3(iv) of Magnus (1988), $\mathrm{E}\left(y^{\prime} A y / y^{\prime} B y\right)^{k}\left(y^{\prime} C_{k, s} y\right)$ exists for all $1 \leq k \leq 2 s$ if and only if $2 s<n-2$. Hence the MSFE exists for $1 \leq s \leq[(n-3) / 2]$ and does not exist for $s \geq[(n-1) / 2]$. This concludes the proof of Theorem 1 .

## References

Fuller, W.A. and D.P. Hasza, 1980, Predictors for the first-order autoregressive process, Journal of Econometrics 13. 139-157.
Fuller, W.A. and D.P. Hasza, 1981, Properties of predictors for autoregressive time series, Journal of the American Statistical Association 76, 155-161.

Hoque, A., J.R. Magnus, and B. Pesaran, 1988, The exact multi-period mean-square forecast error for the first-order autoregressive model, Journal of Econometrics 39, 327-346.
Maekawa, K., 1987, Finite sample properties of several predictors from an autoregressive model, Econometric Theory 3, 359-370.
Magnus, J.R., 1986, The exact moments of a ratio of quadratic forms in normal variables, Annales d'Economie et de Statistique 4, 95-109.
Magnus, J.R., 1988, On certain moments relating to ratios of quadratic forms in normal variables: Further results, submitted for publication.
Magnus, J.R. and B. Pesaran, 1987, The bias of forecasts from a first-order autoregression, submitted for publication.
Magnus, J.R. and T.J. Rothenberg, 1988, Least-squares autoregression with near-unit root, submitted for publication.
Malinvaud. E., 1970, Statistical methods of econometrics, 2nd ed. (North-Holland, Amsterdam). Numerical Algorithms Group, 1984, NAG Fortran Library Manual, Mark 11, Oxford, NAGLIB.
Orcutt, G.H. and H.S. Winokur, 1969, First order autoregression: Inference, estimation, and prediction, Econometrica 37, 1-14.

Reprint Series, CentER, Tilburg University, The Netherlands:

No. 1 G. Marini and F. van der Ploeg, Monetary and fiscal policy in an optimising model with capital accumulation and finite lives, The Economic Journal, Vol. 98, No. 392, 1988, pp. $772-786$.

No. 2 F. van der Ploeg, International policy coordination in interdependent monetary economies, Journal of International Economics, Vol 25, 1988, pp. 1 - 23 .

No. 3 A.P. Barten, The history of Dutch macroeconomic modelling (1936-1986), in W. Driehuis, M.M.G. Fase and H. den Hartog (eds.), Challenges for Macroeconomic Modelling, Contributions to Economic Analysis 178, Amsterdam: North-Holland, 1988, pp. 39-88.

No. 4 F. van der Ploeg, Disposable income, unemployment, inflation and state spending in a dynamic political-economic model, Public Choice, Vol. 60, 1989, pp. 211 - 239.

No. 5 Th. ten Raa and F. van der Ploeg, A statistical approach to the problem of negatives in input-output analysis, Economic Modelling, Vol. 6, No. 1, 1989, pp. 2 - 19.

No. 6 E. van Damme, Renegotiation-proof equilibria in repeated prisoners ' dilemma, Journal of Economic Theory, Vol. 47, No. 1, 1989, pp. 206 - 217 .

No. 7 C. Mulder and F. van der Ploeg, Trade unions, investment and employment in a small open economy: a Dutch perspective, in J. Muysken and C. de Neubourg (eds.), Unemployment in Europe, London: The MacMillan Press Ltd, 1989, pp. 200-229.

No. 8 Th. van de Klundert and F. van der Ploeg, Wage rigidity and capital mobility in an optimizing model of a small open economy, De Economist 137, nr. 1, 1989, pp. 47-75.

No. 9 G. Dhaene and A.P. Barten, When it all began: the 1936 Tinbergen model revisited, Economic Modelling, Vol. 6, No. 2, 1989, pp. 203 - 219.

No. 10 F. van der Ploeg and A.J. de Zeeuw, Conflict over arms accumulation in market and command economies, in F. van der Ploeg and A.J. de Zeeuw (eds.), Dynamic Policy Games in Economics, Contributions to Economic Analysis 181, Amsterdam: Elsevier Science Publishers B.V. (North-Holland), 1989, pp. 91 - 119.

No. 11 J. Driffill, Macroeconomic policy games with incomplete information: some extensions, in F. van der Ploeg and A.J. de Zeeuw (eds.), Dynamic Policy Games in Economics, Contributions to Economic Analysis 181, Amsterdam: Elsevier Science Publishers B.V. (North-Holland), 1989, pp. 289 - 322.

No. 12 F. van der Ploeg, Towards monetary integration in Europe, in P.
De Grauwe e.a., De Europese Monetaire Integratie: vier visies, Wetenschappelijke Raad voor het Regeringsbeleid V 66, 's-Gravenhage: SDU uitgeverij, 1989. pp. 81 - 106.

No. 13 R.J.M. Alessie and A. Kapteyn, Consumption, savings and demography, in A. Wenig, K.F. Zimmermann (eds.), Demographic Change and Economic Development, Berlin/Heidelberg: Springer-Verlag, 1989, pp. 272 - 305.

No. 14 A. Hoque, J.R. Magnus and B. Pesaran, The exact multi-period meansquare forecast error for the first-order autoregressive model, Journal of Econometrics, Vol. 39, No. 3, 1988, pp. 327 - 346.

No. 15 R. Alessie, A. Kapteyn and B. Melenberg, The effects of liquidity constraints on consumption: estimation from household panel data, European Economic Review 33. No. 2/3, 1989, pp. 547 - 555.

No. 16 A. Holly and J.R. Magnus, A note on instrumental variables and maximum likelihood estimation procedures. Annales d'Économie et de Statistique, No. 10, April-June, 1988, pp. 121-138.

No. 17 P. ten Hacken, A. Kapteyn and I. Woittiez, Unemployment benefits and the labor market, a micro/macro approach, in B.A. Gustafsson and N. Anders Klevmarken (eds.), The Political Economy of Social Security, Contributions to Economic Analysis 179, Amsterdam: Elsevier Science Publishers B.V. (North-Holland), 1989, pp. 143-164.

No. 18 T. Wansbeek and A. Kapteyn, Estimation of the error-components model with incomplete panels, Journal of Econometrics, Vol. 41, No. 3 , 1989. pp. 341 - 361.

No. 19 A. Kapteyn, P. Kooreman and R. Willemse, Some methodological issues in the implementation of subjective poverty definitions, The Journal of Human Resources. Vol. 23. No. 2, 1988, pp. $222-242$.

No. 20 Th. van de Klundert and F. van der Ploeg, Fiscal policy and finite lives in interdependent economies with real and nominal wage rigidity, Oxford Economic Papers, Vol. 41, No. 3, 1989, pp. 459 489.

No. 21 J.R. Magnus and B. Pesaran, The exact multi-period mean-square forecast error for the first-order autoregressive model with an intercept, Journal of Econometrics, Vol. 42, No. 2, 1989. pp. 157 - 179.
P.O RกX $0 \cap 15250 \cap \cap$ I F TII RIIRG THF NFTHFRI ANDS Bibliotheek K. U. Brabant


17000011696862


[^0]:    ${ }^{1}$ There is a small but positive probability that $|\hat{\beta}|>1$ even though $|\beta|<1$. This probability is particularly small when the true $\beta$ is zero. The exception ( $n=10, s=4$ ) to the monotonic behaviour of the MSFE at $\beta=0$ noted in Hoque, Magnus, and Pesaran (1988, section 4 and table 1 ) is explained by the fact that this case lies on the boundary of the existence region of the MSFE.

[^1]:    ${ }^{2}$ Application of Theorem 1 involves numerical integration. We used the Numerical Algorithms Group (1984) (the so-called NAG) subroutine D01AMF for this purpose. This subroutine also gives an estimate of the absolute error in the integration. For all results reported in this paper the absolute error was less than $10^{-5}$. The eigenvalues and eigenvectors in $\Lambda$ and $P$ were calculated using the NAG subroutine F02ABF.

[^2]:    ${ }^{3}$ In fact, $M S F E / \sigma^{2}$ depends on $\alpha, \mu_{1}$, and $\sigma$ only through $\left[\alpha-\mu_{1}(1-\beta)\right] / \sigma$. See Magnus and Rothenberg (1988).

[^3]:    ${ }^{2}$ For $n=15$ and $n=20$ the integral did not converge for $\beta=-0.99$ and $s=4$.

