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BLOCK-DIAGONAL SEMIDEFINITE PROGRAMMINGHIERARCHIES FOR 0/1 PROGRAMMING
NEBOJ�SA GVOZDENOVI�C, MONIQUE LAURENT, AND FRANK VALLENTINAbstrat. Lov�asz and Shrijver, and later Lasserre, proposed hierarhiesof semide�nite programming relaxations for general 0/1 linear programmingproblems. In this paper these two onstrutions are revisited and two new,blok-diagonal hierarhies are proposed. They have the advantage of be-ing omputationally less ostly while being at least as strong as the Lov�asz-Shrijver hierarhy. Our onstrution is applied to the stable set problem andexperimental results for Paley graphs are reported.1. IntrodutionA basi approah in ombinatorial optimization onsists of formulating the prob-lem at hand as a 0/1 linear programming problem, typially of the formmax�Tx j Ax � b; x 2 f0; 1gn	 ;where  2 Rn , b 2 Rm and A 2 Rm�n . Then the task is to �nd an eÆientlyomputable outer approximation of the polytope P , de�ned as the onvex hull ofthe 0/1 solutions to Ax � b.On the one hand, extensive researh has been done for �nding (partial) lin-ear inequality desriptions for many polyhedra arising from spei� ombinatorialoptimization problems. On the other hand, researhers foused on developing gen-eral purpose methods for arbitrary 0/1 linear programming problems. Here letus mention the method of Gomory for generating uts strengthening the initiallinear relaxation fx 2 Rn j Ax � bg of P and its various extensions for gener-ating strong utting planes (see e.g. [14, 18℄), the lift-and-projet method [1℄, thereformulation-linearization tehnique [17℄, the matrix-ut method of Lov�asz andShrijver [13℄, and the sums of squares and moment method of Lasserre [8℄. Someof these methods are ompared in [9℄; see also [11℄. A ommon feature of the meth-ods of Lov�asz-Shrijver and of Lasserre is that they onsider hierarhies involvingsemide�nite relaxations of P : Convex sets Qt (t = 1; : : : ; n + 1) are onstrutedwhih an be desribed by semide�nite onditions and whih form a hierarhy ofinreasingly stronger relaxations:fx 2 Rn j Ax � bg � Q1 � Q2 � : : : � Qn+1 = P:The two hierarhies are related; it is shown in [9℄ that the hierarhy of Lasserrere�nes the hierarhy of Lov�asz-Shrijver.Date: August 19, 2008.1991 Mathematis Subjet Classi�ation. 90C22, 90C27.Key words and phrases. 0/1 linear programming, semide�nite programming, stable sets, Pay-ley graphs.This work was supported by the Netherlands Organization for Sienti� Researh under grantNWO 639.032.203. The third author was partially supported by the Deutshe Forshungsgemein-shaft (DFG) under grant SCHU 1503/4. 1



2 N. Gvozdenovi�, M. Laurent, F. VallentinIn this note we revisit these hierarhies and propose two new ones, whih di�erin the way of enoding the linear onstraints de�ning the starting linear relaxationof P . Moreover one of them (introdued in Setion 2.4) an also be de�ned whenthe starting relaxation of P is an arbitrary onvex body, as is the ase for theLov�asz-Shrijver onstrution. The new hierarhies are nested between the Lasserreand Lov�asz-Shrijver hierarhies, but they are less ostly to ompute. So they areespeially well-suited for implementations. E.g., at given order t, the new hierarhyfrom Setion 2.4 involves 1=(t+ 1)!nt+1 +O(nt) variables ompared to 2t�2nt+1 +O(nt) variables for the Lov�asz-Shrijver hierarhy and to O(n2t) variables for theLasserre hierarhy. The new hierarhies an be seen as a variation of the Lasserrehierarhy, where one replaes a large matrix of order O(nt) by smaller bloks oforder n+1 arising by blok-diagonalizing suitably de�ned prinipal submatries ofthe original large matrix. The motivation for onsidering blok matries is that it isomputationally easier to solve a semide�nite program involving many small bloksrather than one large matrix. Most urrently available interior-point algorithms forsemide�nite programming are indeed designed to exploit blok-diagonal matries.While the hierarhy of Lov�asz and Shrijver is originally de�ned reursively, wegive an expliit desription obtained by \unfolding" the reursion. In this way, theonnetion to the new hierarhies beomes transparent (see Setion 2 for details).When applied to the stable set problem, our new onstrution gives a blok-diagonal hierarhy whose �rst two steps were already used in the literature. The�rst order relaxation gives the Lov�asz theta number and the seond order one givesparameters onsidered in [4, 10℄ for the stable set problem and in [6, 7℄ for theoloring problem. In these appliations the omputational advantage of the newhierarhy was of ruial importane.Contents of the paper. In Setion 2 we �rst briey introdue the onstrutionsof Lov�asz-Shrijver and of Lasserre. Then we give the new onstrution and showhow to derive more ompat formulations by blok-diagonalization. In Setion 3 weapply it to the stable set problem and in Setion 4 we present some omputationalresults illustrating the behavior of the new hierarhy for approximating the stabilitynumber of Paley graphs.Notation. Given a �nite set V , we denote the olletion of all subsets of V byP(V ). Given a non-negative integer r, set Pr(V ) := fI 2 P(V ) j jIj � rg andP=r(V ) := fI 2 P(V ) j jIj = rg. By 0 we denote the empty set. Sometimes weidentify P=1(V ) with V , i.e., we write i instead of fig. Furthermore, we sometimeswrite ij instead of fi; jg and ijk instead of fi; j; kg, et. The standard unit vetorsin RP1 (V ) are denoted by e0, ei for i 2 V .2. Semidefinite programming hierarhiesSuppose we are given a onvex one K ontained in the homogenized unit ubefx 2 RP1 (V ) j 0 � xi � x0 (i 2 V )g. SetPK := onv�x 2 f0; 1gV j �1x� 2 K� ;CK := R+ ��1x� 2 K with x 2 f0; 1gV� :



Blok-diagonal semide�nite programming hierarhies 3The general objetive is to �nd the linear inequality desription of the polytope PKor, equivalently, of the one CK . In Setion 2.1 we reall the onstrution of Lov�asz-Shrijver whih applies to any onvex one K. While the original onstrutionis reursive we propose an expliit semide�nite programming reformulation. InSetion 2.2 we reall the onstrution of Lasserre whih applies to the ase whenK is represented by polynomial inequalities. Here we fous on polyhedral ones Kof the form K = fx 2 RP1 (V ) j aTl x � 0 (l = 1; : : : ;m)g; (1)where a1; : : : ; am 2 RP1 (V ). In Setion 2.3 we introdue our new onstrution, whihan be seen as a variation of the previous methods. We disuss two new hierarhies.The �rst one applies to polyhedral onesK as in (1) and is more eonomial than theLasserre hierarhy while still re�ning the Lov�asz-Shrijver hierarhy. The seondone applies to any onvex one K and an be seen as a non-reursive analogue ofthe Lov�asz-Shrijver hierarhy having a more ompat and expliit formulation.2.1. The Lov�asz-Shrijver hierarhy. In this setion we reall basi fats aboutthe Lov�asz-Shrijver hierarhy. For proofs and more details we refer to [13℄. SetM+;V := fY 2 RP1 (V )�P1(V ) j Y � 0; Yii = Y0i (i 2 V )g;where \� 0" stands for \is positive semide�nite". For a onvex one K � RP1 (V )de�ne M+(K) := fY 2M+;V j Y ei 2 K; Y (e0 � ei) 2 K (i 2 V )g;N+(K) := fY e0 j Y 2M+(K)g:The t-th iterate of the Lov�asz-Shrijver hierarhy is N t+(K) := N+(N t�1+ (K)) fort � 1, where N1+(K) := N+(K) and N0+(K) := K. It lies between K and CK andN t+1+ (K) � N t+(K). We have N t+(K) = CK for t = jV j. Moreover, for any �xed t,if one an optimize over K in polynomial time then the same holds for N t+(K).In the following proposition we \unfold" the reursive de�nition of N t+(K) andgive an expliit semide�nite programming formulation. Its proof is straightforwardand thus omitted.Proposition 2.1. A vetor x 2 RP1 (V ) lies in N t+(K) if and only if there exist amatrix Y 2M+;V and matries Y �1;:::;�si1;:::;is 2M+;V , with s = 1; : : : ; t�1, i1; : : : ; is 2V and �1; : : : ; �s 2 f�1g satisfying the following onditions:(a) x = Y e0.(b) For all s = 1; : : : ; t� 1, i1; : : : ; is 2 V , and �1; : : : ; �s�1 2 f�1g:Y �1;:::;�s�1i1;:::;is�1 eis = Y �1;:::;�s�1;+1i1;:::;is e0;Y �1;:::;�s�1i1;:::;is�1 (e0 � eis) = Y �1;:::;�s�1;�1i1;:::;is e0;where Y �1;:::;�s�1i1;:::;is�1 = Y for s = 1.() For all i1; : : : ; it 2 V and �1; : : : ; �t�1 2 f�1g:Y �1;:::;�t�1i1;:::;it�1 eit 2 K;Y �1;:::;�t�1i1;:::;it�1 (e0 � eit) 2 K;where Y �1;:::;�t�1i1;:::;it�1 = Y for t = 1.



4 N. Gvozdenovi�, M. Laurent, F. VallentinThe above formulation allows to estimate the ost of optimizing over N t+(K)in terms of n = jV j and t. Set h(n; t) : Pt�1s=0(2n)s = 2t�1nt�1 + O(nt�2). Theformulation involves �n2�h(n; t) variables, h(n; t) matries of order n+ 1, and (2n)tonditions of type \x 2 K". Furthermore, it turns out that for 1 � r � s, the ir-tholumn of the matrix Y �1;:::;�si1;:::;is is identially zero whenever �r = �1 and it is equalto the 0-th olumn whenever �r = 1. Thus, Y �1;:::;�si1;:::;is an be assumed to have ordern� s+ 1.2.2. The Lasserre hierarhy. In this setion we reall some basi fats aboutthe Lasserre onstrution, applied to the ase when K is of the form (1); for moreinformation we refer to [8℄ and [9℄. The Lasserre hierarhy involves moment ma-tries: A matrix whose rows and olumns are indexed by a subset A of P(V )is said to be a moment matrix if the (I; J)-th entry depends only on the unionI [ J (for all I; J 2 A). In this de�nition one may allow A to be a multiset,whih orresponds to repeated rows and olumns in the moment matrix. For anon-negative integer t and a vetor y 2 RP2t (V ), de�ne the moment matrix of y oforder t by Mt(y) := (yI[J )I;J2Pt(V ). For a set T and a vetor y 2 RP(T ) , we writeMT (y) := (yI[J )I;J2P(T ); thus Mn(y) =MV (y) if jV j = n.The following fat, observed in [13, 9℄, explains the relevane of moment matriesto 0/1 polyhedra: For x 2 RV de�ne �x := (Qi2I xi)I2P(V ). Then we have fory 2 RP(V ) MV (y) � 0() y 2 R+ ��x j x 2 f0; 1gV 	() 8S � V : XS0:S�S0�V (�1)jS0nSjyS0 � 0: (2)
In Lemma 2.2 we give an extension of this result.Next we explain how to enode the linear onstraints aTl x � 0 desribing K.Given y 2 RP2t (V ) and a 2 RP1 (V ), de�ne the vetor ay 2 RP2t�1 (V ) by (ay)I :=a0yI +Pi2V aiyI[fig for I 2 P2t�1(V ). For t � 1 we de�ne the t-th iterate of theLasserre hierarhy byQt(K) := fx 2 RP1 (V ) j 9y 2 RP2t (V ) : y0 = x0; yi = xi (i 2 V );Mt(y) � 0; Mt�1(aly) � 0 (l = 1; : : : ;m)g: (3)It lies between K and CK and Qt+1(K) � Qt(K). The Lasserre hierarhy re�nesthe Lov�asz-Shrijver hierarhy, sine we have Qt+1(K) � N+(Qt(K)) whih impliesQt+1(K) � N t+(K) and Qn+1(K) = CK . The formulation (3) involves P2ti=0 �ni� =O(n2t) variables, one matrix of order Pti=0 �ni� = O(nt) and m matries of orderPt�1i=0 �ni� = O(nt�1).2.3. A new blok-diagonal hierarhy. One drawbak of the Lasserre hierarhyis that the omputational ost for optimizing overQt(K) is onsiderably higher thanthe ost for optimizing over N t�1+ (K). To de�ne a more eonomial variation of it,whih still re�nes the Lov�asz-Shrijver hierarhy, we onsider a suitable prinipalsubmatrix of the full matrix Mt(y).For a positive integer t and a subset T � V of ardinality t � 1, let M(T ; y)denote the prinipal submatrix of Mt(y) whose rows and olumns are indexed byA(T ) := [S�T AS ; where AS := fSg [ fS [ fig j i 2 V g: (4)



Blok-diagonal semide�nite programming hierarhies 5It will be onvenient to onsider A(T ) as a multiset: We keep possible repeatedourrenes, e.g. S and S [ fig if i 2 S. So stritly speaking the matrix M(T ; y)is a prinipal submatrix of Mt(y) only after removing repeated rows and olumns.We onsider multisets here beause it simpli�es the notation in Lemma 2.2. Notethat M(;; y) = M1(y), and observe that we only need to know the omponents ofy indexed by Pt+1(V ), instead of P2t(V ) as in the Lasserre hierarhy, in order tode�ne the matries M(T ; y) for all T 2 P=(t�1)(V ).De�ne the �rst iterate of the blok-diagonal hierarhy by L1(K) := Q1(K) and,for t � 2, de�ne its t-th iterate byLt(K) := fx 2 RP1 (V ) j9y 2 RPt+1 (V ) : y0 = x0; yi = xi (i 2 V );M(T ; y) � 0 (T 2 P=(t�1)(V ));M(T ; aly) � 0 (T 2 P=(t�2)(V ); l = 1; : : : ;m)g:Sine we used prinipal submatries of the Lasserre hierarhy, we obviously havethat the Lasserre hierarhy re�nes the blok-diagonal hierarhy. As we see in Se-tion 2.5 the blok-diagonal hierarhy still re�nes the Lov�asz-Shrijver hierarhy.Next we give a more ompat formulation for the set Lt(K), based on the fatthat the matrix M(T ; y) has a speial blok struture whih an be exploited toblok-diagonalize it. This property justi�es the name \blok-diagonal hierarhy".For a subset S of T , let AS(y) denote the prinipal submatrix ofM(T ; y) indexedby the set AS , whih is de�ned in (4). It is a (n + 1) � (n + 1) matrix lying inM+;V with entriesAS(y)0;0 = yS ; AS(y)0;i = yS[fig; AS(y)i;j = yS[fi;jg (i; j 2 V ):The submatrixM(T ; y)[S; S0℄ ofM(T ; y) with row indies in AS and olumn indiesin AS0 depends only on S [ S0: M(T ; y)[S; S0℄ = AS[S0(y).Lemma 2.2. The matrix M(T ; y) is positive semide�nite if and only if for allsubsets S of T the matrixA(S; T )(y) := XS0:S�S0�T(�1)jS0nSjAS0(y) (5)is positive semide�nite.Proof. The proof is a \blok-matrix version" of the one of (2) in [9℄. De�ne theblok-matrix Z indexed by A(T ), whose (S; S0)-th blok is the identity matrix I oforder n+1 if S � S0 and the zero matrix otherwise. Its inverse is the blok matrixwhose (S; S0)-th blok is (�1)jS0nSjI if S � S0 and the zero matrix otherwise. De�nethe blok diagonal matrix D with diagonal bloks A(S; T )(y) for S � T . Diretveri�ation shows that M(T ; y) = ZDZT . Therefore,M(T; y) � 0() D � 0() 8S � T : A(S; T )(y) � 0: �Example 2.3. For T = f1; 2g, A(T ) = A0 [A1 [ A2 [A12 and
M(T ; y) = 0BB�A0 A1 A2 A12A1 A1 A12 A12A2 A12 A2 A12A12 A12 A12 A12

1CCA � 0() 8>><>>:
A0 �A1 �A2 +A12 � 0A1 �A12 � 0A2 �A12 � 0A12 � 0where we wrote AS instead of AS(y).



6 N. Gvozdenovi�, M. Laurent, F. VallentinHene, in the formulation of Lt(K), eah ondition M(T ; y) � 0, whih involvesone matrix of order 2t�1(n+1), an be replaed by the 2t�1 onditions A(S; T )(y) �0, eah involving a matrix of order n + 1. Similarly, the ondition M(T ; aly) � 0an be replaed by the 2t�2 onditions A(S; T )(aly) � 0, eah involving a matrixof order n+ 1.2.4. A variation of the blok-diagonal hierarhy. The next lemma deals withother possible ways of enoding the linear onditions de�ning the set K. It moti-vates our seond variation ~Lt(K). It turns out that it has an expliit link to theLov�asz-Shrijver hierarhy. A main advantage of eLt(K) over Lt(K) is that we donot need an expliit linear desription of the set K in order to be able to de�neeLt(K). Hene eLt(K) enjoys the same omplexity property as N t+(K): If one anoptimize in polynomial time over K then the same holds for eLt(K) for any �xed t.Lemma 2.4. Let t � 1, y 2 RPt+1 (V ), K be as in (1) and A(S; T )(y) be as in (5).Then, the following two assertions are equivalent:(a) For all T 2 P=(t�1)(V ), S � T , i 2 V :A(S; T )(y)ei 2 K; A(S; T )(y)(e0 � ei) 2 K:(b) For all T 2 P=t(V ), l = 1; : : : ;m:MT (aly) � 0:Proof. Using the identitiesaTl AS(y)e0 = (aly)S ; aTl AS(y)ei = (aly)S[fig;the onditions A(S; T )(y)ei 2 K; A(S; T )(y)(e0 � ei) 2 K an be rewritten asXS0:S�S0�T(�1)jS0nSj(aly)S0[fig � 0 (l = 1; : : : ;m);XS0:S�S0�T(�1)jS0nSj((aly)S0 � (aly)S0[fig) � 0 (l = 1; : : : ;m):On the other hand, using (2), MT (aly) � 0 is equivalent toXS0:S�S0�T(�1)jS0nSj(aly)S0 � 0 (S � T ):From this one an verify the equivalene of (a) and (b). �Observe that for t = 1 property (a) is equivalent to A0(y)ei; A0(y)(e0 � ei) 2K for all i 2 V . Combined with the ondition A0(y) � 0, this haraterizesmembership in the set N+(K).This motivates replaing in the de�nition of Lt(K) the ondition \M(T ; aly) � 0for all T 2 P=(t�2)(V )" by property (a): For t � 1 de�neeLt(K) := fx 2 RP1 (V ) j9y 2 RPt+1 (V ) : y0 = x0; yi = xi (i 2 V );M(T ; y) � 0 (T 2 P=(t�1)(V ));A(S; T )(y)ei 2 K; A(S; T )(y)(e0 � ei) 2 K(T 2 P=(t�1)(V ); S � T; i 2 V )g:



Blok-diagonal semide�nite programming hierarhies 72.5. Comparisons. Another advantage is that eLt(K) an be diretly omparedto the Lov�asz-Shrijver hierarhy N t+(K). The next proposition shows that ourseond variation re�nes the Lov�asz-Shrijver hierarhy.Proposition 2.5. We have eL1(K) = N+(K) and eLt(K) � N t+(K) for t � 2.Proof. As noted above we have eL1(K) = N+(K). Now let t � 2 and x 2 eLt(K).Thus, there is a y 2 RPt+1 (V ) whih satis�es y0 = x0; yi = xi (i 2 V ), andM(T ; y) � 0 or, equivalently, A(S; T )(y) � 0 for all S � T � V with jT j = t � 1.Moreover property (a) of Lemma 2.4 holds. Set Y := M1(y). Then x = Y e0 andY 2 M+;V . Given 1 � s � t � 1, and i1; : : : ; is 2 V , and � 2 f�1gs, onsiderthe multisets T = fi1; : : : ; isg, S = fir j r = 1; : : : ; s; �r = 1g � T , and de�neY �1;:::;�si1;:::;is := A(S; T )(y). Here we extend the de�nition of A(S; T )(y) in (5) to thease when S and T are multisets by taking the summation over all multisets S0lying between S and T ; moreover, when S0 is a multiset with S00 as underlying set,we let AS0(y) := AS00(y). Now one an verify that the onditions from Proposition2.1 hold, whih implies x 2 N t+(K). �As one an see from the above proof, the main di�erene between eLt(K) andN t+(K) is that the matries Y �1;:::;�si1;:::;is share many ommon entries in the de�nitionof eLt(K). As a onsequene, one an desribe the set eLt(K) with less variablesompared to N t+(K). In Table 1 we ompare the omplexity of the formulations foreLt(K) and N t+(K). In both ases one has a semide�nite programming formulationinvolving a number of matries of size n + 1 required to be positive semide�niteand a number of onditions of the type \x 2 K".eLt(K) N t+(K)# variables Pt+1i=0 �ni� �n2�Pti=0(2n)i= 1(t+1)!nt+1 +O(nt) = 2t�2nt+1 +O(nt)# matries � nt�1�2t�1 Pti=0(2n)iof order n+ 1 = 2t�1(t�1)!nt�1 +O(nt�2) = 2t�1nt�1 +O(nt�2)# onditions 2t� nt�1� 2tnt\x 2 K" = 2t(t�1)!nt�1 +O(nt�2)Table 1. Complexity omparison for eLt(K) and N t+(K).Also, as already stated in Setion 2.3, the blok-diagonal hierarhy re�nes theLov�asz-Shrijver hierarhy. This an be seen by omparing Lt+1(K) with the seondvariation eLt(K).Proposition 2.6. For t � 1 the inlusion Lt+1(K) � eLt(K) holds.Proof. This follows diretly from the de�nitions, after noting that, for jT j = t, theindex set of MT (y) is ontained in the index set of M(T n fig; y), where i is anyelement of T . �3. Appliation to the stable set problemIn this setion we apply the new hierarhies to the stable set problem. LetG = (V;E) be a graph. A subset S � V is alled a stable set if none of its vertiesare adjaent. The inidene vetor of S is �S 2 f0; 1gV with �S(i) = 1 i� i 2 S.



8 N. Gvozdenovi�, M. Laurent, F. VallentinThe stability number �(G) is the maximum ardinality of a stable set. By SG wedenote the set of all stable sets of G. Then the stable set polytope isSTAB(G) := onvf�S j S 2 SGg;and the orresponding one isST(G) := R+ n� 1�S � j S 2 SGo :A linear relaxation of ST(G) is the frational stable set oneFR(G) := fx 2 RP1 (V ) j xi � 0 (i 2 V ); xi + xj � x0 (fi; jg 2 E)g:A semide�nite relaxation of ST(G) is the theta bodyTH(G) := fY e0 2 RP1 (V ) j Y 2M+;V ; Yij = 0 (fi; jg 2 E)g;whih is ontained in FR(G). Maximizing the linear funtion Pi2V xi over thetheta body TH(G) interseted with the hyperplane x0 = 1 equals the Lov�asz thetafuntion #(G) introdued by Lov�asz in [12℄. For details about these relaxations andthe stable set problem we refer e.g. to [11℄ and [15℄.In [9, Lemma 20℄ it was shown that when onstruting the Lasserre hierarhy forFR(G) one an onsiderably simplify the formulation. One an replae the ondi-tion \Mt�1(aly) � 0", where al runs through all linear inequalities de�ning FR(G),by the simpler equalities yij = 0, where fi; jg 2 E, the so-alled edge equalities.We want to apply the same simpli�ation to the de�nition of Lt(FR(G)) and de-�ne another variant Lt(G) of it. However, in ontrast to the Lasserre hierarhy,this simpli�ation weakens the blok-diagonal hierarhy a little bit sine we anonly laim the inlusion Lt(FR(G)) � Lt(G). Nevertheless the new variant Lt(G)still re�nes the Lov�asz-Shrijver hierarhy, as Lt(G) � N t�1+ (TH(G)) follows fromProposition 3.2 below ombined with Proposition 2.5. We de�neLt(G) := fx 2 RP1 (V ) j9y 2 RPt+1 (V ) : y0 = x0; yi = xi (i 2 V );M(T ; y) � 0 (T 2 P=(t�1)(V ));yij = 0 (fi; jg 2 E)g:Thus, L1(G) = TH(G) and one an easily verify the inlusions eLt(FR(G)) � Lt(G)when t � 1 and Lt(FR(G)) � Lt(G) when t � 2. Maximizing the objetive funtionPi2V xi over L2(G) interseted with the hyperplane x0 = 1 oinides with theparameter `(G) onsidered in [4, 6, 7, 10℄.The next lemma says that the edge onditions in the de�nition of Lt(G) implythat all variables indexed by non-stable sets are identially 0.Lemma 3.1. Let y 2 RPt+1 (V ) satisfy the onditions in the de�nition of Lt(G).Then yI = 0 for any subset I � V with jIj � t+ 1 and ontaining an edge.Proof. For jIj = 2 the statement is nothing else but the edge equalities. Assumethat jIj � 3, let i; j 2 I be adjaent verties, and let k be another vertex in I. De�neT := I n fi; jg. The matrix M(T ; y) is positive semide�nite and the sets fi; jg andT [ fkg our in the index set A(T ). As the (ij; ij)-th entry of M(T ; y) is yij = 0,we have by the positive semide�niteness of M(T ; y) that its (ij; T [ fkg)-th entryis 0 as well and the statement of the lemma follows. �Proposition 3.2. We have the inlusion Lt+1(G) � eLt(TH(G)) for t � 1.



Blok-diagonal semide�nite programming hierarhies 9Proof. Assume that y 2 RPt+2 (V ) satis�es the onditions of the de�nition of Lt+1(G).In the following we show that the vetor onsisting of the �rst n+1 oordinates ofy belongs to eLt(TH(G)).Fix T 2 Pt�1(V ), S � T and k 2 V . We show that A(S; T )(y)ek 2 TH(G) andA(S; T )(y)(e0 � ek) 2 TH(G). For this we onstrut matries Y k and Zk in M+;Vsatisfying Y kij = Zkij = 0 when i and j are adjaent, and satisfyingY ke0 = A(S; T )(y)ek; Zke0 = A(S; T )(y)(e0 � ek):We distinguish between three ases.(1) k 2 S: Then A(S; T )(y)e0 = A(S; T )(y)ek and de�ne Y k := A(S; T )(y),Zk := 0.(2) k 2 T n S: Then A(S; T )(y)ek = 0 and de�ne Y k := 0, Zk := A(S; T )(y).(3) k 2 V n T : Then we de�ne Y k = A(S [ fkg; T [ fkg)(y) and Zk : A(S; T [fkg)(y) = A(S; T )(y)�A(S [ fkg; T [ fkg)(y).In all ases we see by Lemma 2.2, 3.1 that Y k; Zk satisfy the desired onditions. �We summarize the inlusion relations between the various relaxations:ST(G) � Qt(FR(G)) � Lt(G) � eLt�1(TH(G)) � N t�1+ (TH(G)):Moreover, N t�1+ (TH(G)) = ST(G) holds for t � �(G) (see [5℄ for a proof).4. Experimental resultsIn this setion we present some omputational results for Paley graphs.Let Fq be the �nite �eld with prime power q whih is ongruent to 1 modulo4; then �1 is a square in Fq . The Paley graph Pq has Fq as vertex set and twodistint elements u; v 2 Fq are adjaent if u � v is a square in Fq . The Paleygraph is isomorphi to its omplementary graph, it is a strongly regular graph andits automorphism group ats doubly-transitive on the verties. It is known ([12,Theorem 8℄) that #(G)#(G) = jV (G)j when G is a vertex-transitive graph, whereG denotes the omplementary graph of G. Sine the Paley graph Pq is vertex-transitive and isomorphi to its omplementary graph, we have #(Pq) = #(P q) =pq (f. [2, Theorem 13.14℄). J.B. Shearer ([16℄) has omputed �(Pq) for all primesq � 7000. For more information about Pq we refer e.g. to [2, Chapter 13.2℄.In order to illustrate the quality of the new relaxations Lt(Pq), we have omputedthe bounds obtained by maximizingPv2V (Pq) xv over the sets Lt(Pq) (for t = 2; 3)and N+(TH(Pq)) interseted with x0 = 1. The results are given in Table 2. Therewe onsider all primes q ongruent to 1 modulo 4 between 61 and 337, as well as afew larger values of q up to 809. We have hosen the Payley graph here beause itsautomorphism group ats doubly-transitive on the vertex set and so our formulationfor Lt(Pq) (t � 3) and N+(TH(Pq)) onsiderably simpli�es. (See [5, Chapter 6.1℄ forimplementation details.) For instane, optimization over L3(P809) (resp., L2(P809),N+(TH(P809))) an be formulated via an SDP with 876 (resp., 36, 812) variablesand with four matries with sizes 808, 808, 404 and 202 (resp., two matries withsizes 809 and 405, three matries with sizes 810, 810 and 809). For the omputationswe used the program CSDP [3℄. Experiments were onduted on a single mahinewith an Intel(R) Pentium(R) proessor, 3Ghz and 1GB of RAM. To ompute thebounds from Table 2 we needed less than a minute when q � 100 and, for thelargest instane P809, around 45 minutes for L3(P809), 31 minutes for L2(P809) and



10 N. Gvozdenovi�, M. Laurent, F. Vallentin4.5 hours for N+(TH(P809)). Thus as expeted the relaxation L2(G) gives a sharperbound than N+(TH(G)), however at a muh smaller omputational ost.Finally note that one an strengthen the relaxation Lt(G) by adding the non-negativity onstraints y � 0. However this only gives a marginal improvement forPaley graphs, as the bounds di�er only in deimals.
q L1(Pq) = TH(Pq)#(Pq) = pq N+(TH(Pq)) L2(Pq) L3(Pq) �(Pq)61 7.810 5.901 5.465 5.035 573 8.544 6.377 5.973 5.132 589 9.434 7.155 6.304 5.391 597 9.849 7.948 7.398 6.596 6101 10.050 7.290 6.611 5.496 5109 10.440 8.007 7.366 6.578 6113 10.630 8.330 7.599 7.009 7137 11.705 8.829 8.200 7.047 7149 12.207 9.188 8.231 7.136 7157 12.530 9.695 8.707 7.485 7173 13.153 10.316 9.426 8.062 8181 13.454 10.324 9.112 7.606 7193 13.892 10.506 9.210 7.651 7197 14.036 10.652 9.226 8.064 8229 15.133 11.659 10.290 9.076 9233 15.264 12.382 10.182 8.245 7241 15.524 11.595 9.891 8.275 7257 16.031 11.558 10.247 8.131 7269 16.401 12.307 10.624 8.778 8277 16.643 12.469 10.340 8.670 8281 16.763 11.902 10.605 8.397 7293 17.117 13.127 10.937 9.183 8313 17.692 13.128 11.630 9.458 8317 17.804 13.861 12.377 10.375 9337 18.358 13.724 11.658 9.464 9401 20.025 14.927 12.753 10.023 9509 22.561 16.580 14.307 11.196 9601 24.515 17.999 16.077 12.484 11701 26.476 19.332 16.857 12.822 10809 28.443 20.636 17.371 13.499 11Table 2. Optimizing over Lt(Pq) and N+(TH(Pq)) for Paley graphs.
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