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Westudygraphswithspectral radiusatmost 3
2

√
2andrefineresults

byWooandNeumaier [R.Woo, A.Neumaier, Ongraphswhose spec-

tral radius is boundedby 3
2

√
2,GraphsCombin. 23 (2007) 713–726].

We study the limit points of the spectral radii of certain families of

graphs, andapply the results to theproblemofminimizing the spec-

tral radius among the graphs with a given number of vertices and

diameter. In particular, we consider the cases when the diameter is

about half the number of vertices, and when the diameter is near

the number of vertices. We prove certain instances of a conjecture

posed by Van Dam and Kooij [E.R. Van Dam, R.E. Kooij, Theminimal

spectral radius of graphswith a givendiameter, LinearAlgebraAppl.

423 (2007) 408–419] and show that the conjecture is false for the

other instances.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In [6], the problem was raised to determine the minimal spectral radius of graphs with a given

number of vertices anddiameter.While the case ofminimizing the spectral radius (given thenumber of
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vertices and diameter) seems a hard problem, Van Dam [5] and independently Hansen and Stevanović

[7] solved the analogous maximization problem completely. In order to tackle theminimization prob-

lem,we study graphswith spectral radius atmost 3
2

√
2. Properties of such graphswere first studied by

Woo and Neumaier [12], and some recent work is done byWang et al. [11]. In Section 3, we shall refine

the results of Woo and Neumaier. In particular, we shall show that the graphs under consideration are

subgraphs of so-calledm-Laundry graphs andm-Urchin graphs. Related to thiswe study limit points of

the spectral radii of certain graph sequences, using methods developed already in the seminal papers

of Hoffman and Smith [8,9]. Some special attention is given to graph sequences whose spectral radii

have limit point

√
2 + √

5.

In Section 4, we shall apply the obtained refinement to (partly) solve the problem of minimizing

the spectral radius of graphs with given number of vertices and diameter in case the diameter is about

half the number of vertices. In Section 5 we do the same for the case that the diameter D is near

the number of vertices n. We prove a conjecture of Van Dam and Kooij [6] for the cases e = 4 and 5,

where e = n − D, whereas we show that the conjecture is false for larger e. Instead, we pose some

new conjectures. We remark that the case e = 4 was independently solved by Yuan et al. [13].

2. Preliminaries

All the graphs considered in this paper are undirected and simple. By V(G) and E(G)we denote the

vertex set and edge set, respectively, of a graph G. Let Φ(G) denote the characteristic polynomial of

G, where whenever necessary we use an indeterminate x, so that Φ(G)(x) = det(xI − A), where A is

the adjacency matrix of G. By ρ(G) we denote the spectral radius of G, i.e., the largest root of Φ(G). By
D(G) we denote the diameter of G.

If e = uv is an edge ofG, wedenote byG \ e the graphobtained fromG bydeleting e andbyG \ {u, v}
the graph obtained from G by deleting the vertices u and v and all the edges incident to at least one of

u and v. In general for a vertex subset W of V(G), we denote by G \ W the graph obtained from G by

deleting the vertices in W and all the edges incident to at least one vertex in W . An edge uv is called

a bridge if the deletion of uv causes an increase of the number of components of G. We say a graph H

is a subgraph of G if V(H) ⊂ V(G) and E(H) ⊂ E(G); it is a proper subgraph if at least one of these

inclusions is proper. The following three lemmas are well-known. The first is a consequence of the

theory of Perron–Frobenius, cf. [1, Theorem 3.1.1.v], while the latter two were proven by Schwenk, cf.

[3, 2.7.9].

Lemma 2.1. If H is a proper subgraph of a connected graph G, then ρ(H) < ρ(G).

Lemma 2.2. Let u be a vertex of degree 1 in a graph G where the only neighbor of u is v. Then

Φ(G) = xΦ(G \ {u}) − Φ(G \ {u, v}).
Lemma 2.3. If uv is a bridge of a graph G, then

Φ(G) = Φ(G \ uv) − Φ(G \ {u, v}).
A path of length l from a vertex u to a vertex v in G is a sequence of l + 1 distinct vertices starting

with u and ending at v such that consecutive vertices are adjacent. A path P is called a pendant path of

G if one of the end vertices of P is connected to a vertex w in G \ P and the others are not connected

on any vertex in G \ P.

If uv is an edge of a graph G, denote by Gu,v the graph obtained from G by subdividing the edge uv

by one vertex. More precisely, the vertex set of Gu,v is V(G) ∪ {w}, where w /∈ V(G) is a new vertex

which will be adjacent to both u and v. Also, all the edges of G will be kept in Gu,v with the exception

of the edge uv.

An internal path of G is a sequence of distinct (except possibly x1 = xk) vertices x1, . . . , xk such that

xixi+1 ∈ E(G) for each 1� i � k − 1, and where x1 and xk have degrees at least 3, and each of the other

vertices has degree 2.
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Let D̃n be the graph obtained from a path 0 ∼ 1 ∼ · · · ∼ n − 2 by adding a pendant vertex at

vertex 1 and a pendant vertex at vertex n − 3. Hoffman and Smith [9] proved the following result

about subdividing an edge on an internal path.

Lemma 2.4. Let uv be an edge of a connected graphG. If uv is onan internal path ofG, thenρ(Gu,v) < ρ(G)
unless G = D̃n.

We remark that subdividing an edge on an internal path of D̃n does not change its spectral radius,

which equals 2.

Next, we recall some results on graphs with small spectral radius. The first two are classical results

by Smith [10], and the third result is by Brouwer and Neumaier [2]. The results require the following

definitions. We denote by Tk,l,m the graph with k + l + m + 1 vertices consisting of three paths with

k, l, and m edges, respectively, where these paths have one end vertex in common. These graphs are

called T-shape trees. The graphHi,j,k , i, k � 2, j � 1 is the graph on i + j + k + 1 vertices, obtained from

a path of i + j + k − 1 vertices, by adding pendant vertices at the ith and i + jth vertex. These are

examples of H-shape trees.

Theorem 2.5. The only connected graphs on n vertices with spectral radius smaller than 2 are the path Pn,

the graph Dn = T1,1,n−3, and the graphs E6 = T1,2,2 (n = 6), E7 = T1,2,3 (n = 7), and E8 = T1,2,4 (n =
8).

Theorem 2.6. The only connected graphs on n nodes with spectral radius equal to 2 are the n-gon Cn, the

graph D̃n−1 = H2,n−5,2, and the graphs Ẽ6 = T2,2,2 (n = 7), Ẽ7 = T1,3,3 (n = 8), and Ẽ8 = T1,2,5 (n =
9).

Theorem 2.7. Let G be a connected graph. Then 2 < ρ(G) �
√
2 + √

5(≈ 2.0582) if and only if G is

one of the graphs T1,2,m, m� 6; T1,3,m, m� 4; T1,l,m, m� l � 4; T2,2,m, m� 3; T2,3,3; Hi,j,k , j � i +
k � 5; H3,j,k , j � k + 2; H2,j,k , j � k − 1� 2; H2,1,3; H3,4,3; H3,5,4; H4,7,4; H4,8,5.

AfterWoo andNeumaier [12], we call a treewithmaximumdegree 3 such that all vertices of degree

3 lie on a path an open quipu; a closed quipu is a connected graphwithmaximum degree 3 such that all

vertices of degree 3 lie on a circuit, and no other circuit exists; and a dagger T0(n) is obtained from a

pathwith n + 1 vertices by adding three pendant vertices at one of its end vertices.Woo andNeumaier

[12] introduced this terminology for the following result.

Theorem 2.8. A graph G whose spectral radius ρ(G) satisfies 2 < ρ(G) � 3
2

√
2(≈ 2.1213) is either an

open quipu, a closed quipu, or a dagger.

Like in [6], we let Pm1,m2,...,mt
n1,n2,...,nt ,p

denote the graph with diameter p − 1 obtained from a path P : 0 ∼
1 ∼ · · · ∼ p − 1 on p vertices with pendant paths of ni vertices added at vertexmi of the path P. This

implies that n1 �m1 and nt � p − mt − 1.Wewill call the pendant paths of ni vertices added at vertex

mi of the path P inner pendant paths for 2� i � t − 1. The other two pendant paths of n1 and nt vertices

added at vertex m1 and mt , respectively, and another two pendant paths: 0 ∼ 1 ∼ · · · ∼ m1, and

mt ∼ mt + 1 ∼ · · · ∼ p − 1 onm1 + 1 and p − mt vertices, respectively will be called outer pendant

paths. Note that these graphs are open quipus.

Similarly, let Cm1,m2,...,mt
n1,n2,...,nt ,p

denote the graph obtained from a cycle C : 0 ∼ 1 ∼ · · · ∼ p − 1 ∼ 0 on

p vertices with pendant paths of ni vertices added at vertex mi of the cycle C. These graphs are closed

quipus. In particular, we let Ĉn denote the graph C0
1,n.

For the purpose of this paper, we are going to call the graph P
2,3,4,...,n−4,n−3
2,1,1,...,1,2,n the Laundry graph on

2n − 2 vertices, denoted by L2n−2 and to call the graph C
0,1,2,...,n−1
1,1,1,...,1,n the Urchin graph on 2n vertices,

denotedbyU2n.More generally,wewill define them-Laundry graph and them-Urchin graph for integers
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Fig. 1. 2-Laundry graph and 1-Urchin graph.

m� 1. Them-Laundry graph is obtained from the Laundry graph by replacing all inner pendant paths

(of length one) by pendant paths of length m and the four outer pendant paths (of length two) by

pendant paths of length m + 1. In other words, the m-Laundry graph is P
m+1,m+2,...,n−m−3,n−m−2
m+1,m,...,m,m+1,n .

Note that the 1-Laundry graph is the usual Laundry graph. Similarly, the m-Urchin graph is obtained

from the Urchin graph by replacing all pendant paths of length one by pendant paths of lengthm, i.e.,

it is C0,1,2,...,n−1
m,m,m,...,m,n (see Fig. 1).

3. Refinement of Woo and Neumaier’s theorem

In this section we are going to refine Theorem 2.8 using the m-Laundry graphs and the m-Urchin

graphs. We define

ρm := lim
n→∞ ρ(Tm,n,n) and θk,m := lim

n→∞ ρ(Tk,m,n).

Note that these limits exist because the sequences are increasing (by Lemma 2.1) and bounded (by

the largest degree (3) for example; note however that the next lemma implies that the spectral radius

of every T-shape tree is at most 3
2

√
2). For notational purpose we define λ := λ(x) = x+√

x2−4
2

. The

following lemma will be used to show our main results. Recall that T0(n) is a dagger graph, and Ĉn
denotes the graph C0

1,n.

Lemma 3.1. The following statements hold:

(a) limn→∞ ρ(T0(n)) = 3
2

√
2,

(b) ρ1 =
√
2 + √

5,

(c) ρ(Tm,n+1,n+1) = ρ(Tm+1,m+1,n) for all positive integers m and n,

(d) ρm = θm+1,m+1,

(e) limm→∞ ρ(Tm,m,m) = 3
2

√
2,

(f) limm→∞ ρ
(
C
0,2m+1
m,m,4m+2

)
= 3

2

√
2,

(g) limn→∞ ρ(Ĉn) =
√
2 + √

5.

(h) limn→∞ ρ
(
P
n,n+2
1,1,2n+3

)
= 3

2

√
2.

Proof. (a): By [8, Lemma 3.4], limn→∞ ρ(T0(n)) is the largest root of the polynomial λ(x2 − 3) − x,

and this is 3
2

√
2. Alternatively, see [12, Lemma 3].
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(b): See [8, Proposition 3.6].

(c): From Lemma 2.3, we obtain that

Φ(Tm,n+1,n+1) = Φ(Pm+n+2)Φ(Pn+1) − Φ(Pm)Φ(Pn+1)Φ(Pn) and

Φ(Tm+1,m+1,n) = Φ(Pm+n+2)Φ(Pm+1) − Φ(Pm)Φ(Pm+1)Φ(Pn)

by taking u to be the vertex of degree three and v a neighbor of u on a path of length n + 1 (for the

first equation) orm + 1 (for the second equation). It follows that the spectral radius of both graphs is

the largest root of Φ(Pm+n+2) − Φ(Pm)Φ(Pn).
(d): Immediate from (c).
(e): See [12, Lemma 3].

(f): The graph C
0,2m+1
m,m,4m+2 has two internal paths. We obtain as a subgraph Tm,m,m ∪ Tm,m,m, by

removing the edges joining the middle vertices on these internal paths. Similar as in the proof of

[9, Lemma 3.3], we have

ρ(Tm,m,m) = ρ(2Tm,m,m) � ρ
(
C
0,2m+1
m,m,4m+2

)
� ρ(2Tm,m,m) + 2

m
= ρ(Tm,m,m) + 2

m
.

Now it follows immediately from (e).
(g): Similar as (f ), using (b).
(h): Similar as [12, Lemma 3]. �

Proposition 3.2. For positive integers k �m,

θk,m < θk,m+1 < θk+1,k+1 <
3

2

√
2.

Proof. Because Tk,m,n is a subgraph of Tk,m+1,n, it follows that θk,m � θk,m+1.Moreover, θk,m is the largest

root of the polynomial λΦ(Pk+m+1) − Φ(Pk)Φ(Pm) by [8, Lemma 3.4]. Similarly, θk,m+1 is the largest

root of the polynomial λΦ(Pk+m+2) − Φ(Pk)Φ(Pm+1). Now we claim that the two polynomials have

no common root, which implies θk,m < θk,m+1 (which is to be proven). To prove the claim, assume

that there exists a common root x, so that

0 =x λΦ(Pk+m+1) − Φ(Pk)Φ(Pm) and (1)

0 =x λΦ(Pk+m+2) − Φ(Pk)Φ(Pm+1), (2)

where =x indicates that the polynomials are the same when evaluated at x. By combining these two

equations we obtain that

Φ(Pk+m+2)Φ(Pm) =x Φ(Pk+m+1)Φ(Pm+1).

Since Φ(Pm+1) = xΦ(Pm) − Φ(Pm−1) and Φ(Pk+m+2) = xΦ(Pk+m+1) − Φ(Pk+m), it follows that

Φ(Pk+m+1)Φ(Pm−1) =x Φ(Pk+m)Φ(Pm).

Repeating this procedure, we obtain

Φ(Pk+3)Φ(P1) =x Φ(Pk+2)Φ(P2).

This implies (xΦ(Pk+2) − Φ(Pk+1))x =x Φ(Pk+2)(x
2 − 1) which means that Φ(Pk+2) =x

xΦ(Pk+1). Because Φ(Pk+2) = xΦ(Pk+1) − Φ(Pk), it follows that x is a root of Φ(Pk). But then it

follows from Eqs. 1 and 2 that x is a root of both Φ(Pk+m+1) and Φ(Pk+m+2), which is impossible

(because it follows easily by induction and the equation Φ(Pl+2) = xΦ(Pl+1) − Φ(Pl) that paths of

consecutive lengths have no common eigenvalue). Thus the claim, and the inequality θk,m < θk,m+1 is

proven.

The inequality θk,m+1 < θk+1,k+1 easily follows from the inequalities θk,m < θk,m+1 and the fact

that θk+1,k+1 = ρk = limn→∞ ρ(Tk,n,n).

From Lemma 3.1(e) it follows thatρk is atmost 3
2

√
2. The above inequalities imply that ρk is strictly

increasing, so that θk+1,k+1 < 3
2

√
2. �
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Lemma 3.3. For m� 1, we have ρm = λ + λ−1, where λ is the largest root of the equation λ2m+4 −
2λ2m+2 + 1 = 0.

Proof. As before, ρm = θm+1,m+1, which is the largest root of the polynomial λΦ(P2m+3) −
Φ(Pm+1)Φ(Pm+1) by [8, Lemma 3.4]. From the characteristic polynomial of the path in [3, p. 73],

we deduce that Φ(Pm) = λm+1−λ−m−1

λ−λ−1 . From this, and the fact that x = λ + λ−1, the required result

can be obtained. �

For m = 1, the equation λ2m+4 − 2λ2m+2 + 1 = 0 has largest root

√
1+√

5
2

, giving ρ1 = θ2,2 =√
2 + √

5 ≈ 2.0582. We further remark that θ2,3 ≈ 2.0763, ρ2 = θ3,3 ≈ 2.0936, θ3,4 ≈ 2.1013, and
3
2

√
2 ≈ 2.1213.

Theorem 3.4. For a positive integer m, let μ be a real number such that μ < θm+1,m+2. Then any graph

G on n vertices with spectral radius at most μ is a subgraph of an m-Laundry graph or a subgraph of an

m-Urchin graph, for n large enough.

Proof. By Theorems 2.5 and 2.6, any graph with spectral radius at most 2 is a subgraph of Cn or

a subgraph of D̃n if n� 9. So we may assume that the spectral radius of G is greater than 2. Since

μ < θm+1,m+2, there exists a positive integer N1 such that μ < ρ(Tm+1,m+2,n) for all n�N1. And by

Lemma 3.1(a), there exists a positive integer N2 such that the spectral radius of a dagger graph with n

vertices is strictly greater thanμ for all n�N2. LetN := max{N1,N2}. Since ρ(G) < 3
2

√
2, the graph G

is either an open quipu or a closed quipu, or a dagger, by Theorem 2.8. However, if we take n �N, then

G cannot be a dagger graph. Hence we have two cases, namely either G is an open quipu or a closed

quipu.

Case 1. The graph G is an open quipu.

Letp − 1denote thediameterofG. Ifn�(2N + m + 2)2, thenG canbeexpressedasG = Pm1,m2,...,mt
n1,n2,...,nt ,p

with p� 2N + m + 2. We have that n1 �m1 and n1 �m + 1; if n1 > m + 1 then Tm+1,m+2,N is a

subgraph of G, and this means ρ(G) � ρ(Tm+1,m+2,N), a contradiction. If n1 = m + 1, thenm1 = m +
1; otherwise G contains Tm+1,m+2,N as a subgraph. By the same argument, it holds nt � p − mt − 1

and nt �m + 1. If nt = m + 1, then mt = p − m − 2.

Now we are going to consider inner pendant paths of G. Suppose that the inner pendant path at

vertex mi has length at least m + 1 for some 2� i � t − 1. Since p� 2N + m + 2, and G cannot have

Tm+1,m+2,N as a subgraph, without loss of generality it satisfies i = 2,m1 = n1 = m,m2 = m + 1 and

n2 �m + 1.However, subdividing the edgem1m2 gives a graphwith smaller spectral radius containing

asa subgraphTm+1,m+2,N whichgivesa contradiction. Therefore it follows that thegraphG is a subgraph

of anm-Laundry graph.

Case 2. The graph G is a closed quipu.

Since G is a closed quipu, it can be written as Cm1,m2,...,mt
n1,n2,...,nt ,p

. If necessary we subdivide edges on

internal paths of G to get a similar graph G′ = C
m′

1,m
′
2,...,m

′
t

n1,n2,...,nt ,p′ with p′ �N + m + 3. Then the length

of any pendant path should have length at most m, i.e. ni �m for all 1� i � t, since, if there ex-

ists a pendant path with length at least m + 1, then G′ contains Tm+1,m+2,N as a subgraph, so that

ρ(G) � ρ(G′) � ρ(Tm+1,m+2,N), a contradiction. Therefore the graph G is a subgraph of an m-Urchin

graph. �

Let {Gi}i � 1 be a sequence of quipus. Let ti := ti(Gi) be the number of vertices of degree three in Gi

and �i := �i(Gi) be the minimal length of all maximal internal paths in Gi.

Proposition 3.5. Let {Gi}i � 1 be a sequence of graphs such that Gi is a subgraph of a Laundry graph and

ti � 2, or Gi is a subgraph of an Urchin graph and ti � 1. Then limi→∞ ρ(Gi) =
√
2 + √

5 implies that

�i → ∞(i → ∞).
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Proof. First observe that

√
2 + √

5 cannot be an eigenvalue of a graph, so the number of vertices of

Gi must tend to infinity. Suppose that there is a constant h such that �i � h for all i. The idea of the

proof is to show that there is a graph H that is a subgraph of Gi whenever i is large enough, and that

has spectral radius larger than

√
2 + √

5. This would settle the proof. In fact, we will not exactly show

the above, as we may assume without loss of generality that �i = h for all i, because we can always

subdivide edges on internal paths. The graph H will also depend on whether Gi is open or closed, as

follows. If Gi is a subgraph of a Laundry graph, then there is a k such that Gi contains P
1,h+1
1,1,2+h+k as a

subgraph for large enough i, where k is much larger than h. If Gi is a subgraph of an Urchin graph, then

it contains Ĉh as a subgraph. The spectral radii ρ(P
1,h+1
1,1,2+h+k) and ρ(Ĉh) are indeed strictly larger than√

2 + √
5 by Theorem 2.7. �

We think that in general the converse of Proposition 3.5 does not hold. It is also not so easy to extend

Proposition 3.5 to m-Laundry graphs and m-Urchin graphs. However, we get the following results by

adding a stronger condition.

Lemma 3.6. Let Qm(t, l) be the open quipu with t vertices of degree three, for which its four outer pendant

paths have length m + 1, all of its inner pendant paths have length m, and all of its internal paths have

length 2l + 1. Let {ti}i � 1 and {li}i � 1 be integer sequences such that ti � 2 for all i. Then limi→∞ ti
li

= 0

implies that limi→∞ Qm(ti, li) = ρm.

Proof. Let Q̃m(ti, li) be the graph obtained from Qm(ti, li) by deleting the edges joining the middle

vertices of each internal path. Then it is obvious that ρ(Q̃m(ti, li)) � ρ(Qm(ti, li)). Moreover, each

component of Q̃m(ti, li) is of the form Tm,li ,li or Tm+1,m+1,li . Because limi→∞ ti
li

= 0 implies that li →
∞(i → ∞), it therefore follows by Lemma 3.1(d) that limi→∞ ρ(Q̃m(ti, li)) = ρm. By the method of

the proof of [9, Lemma 3.3] (notice a small typo therein), we have

ρ(Qm(ti, li)) � ρ(Q̃m(ti, li)) + 2(ti − 1)

li
.

Since ti/li → 0(i → ∞), we obtain that

lim
i→∞ ρ(Qm(ti, li)) = lim

i→∞ ρ(Q̃m(ti, li)) = ρm. �

Lemma 3.7. Let Cm(t, l) be the closed quipu with t vertices of degree three, for which all of its pendant

paths have length m, and all of its internal paths have length 2l + 1. Let {ti}i � 1 and {li}i � 1 be integer

sequences such that ti � 1 for all i. Then limi→∞ ti
li

= 0 implies that limi→∞ Cm(ti, li) = ρm.

Proof. Similar as that of Lemma 3.6. �

For a closed quipu G with at least one vertex of degree 3, we define the depth, denoted by r(G), as
the minimal value r such that it is a subgraph of an r-Urchin graph. For open quipus, the definition of

depth is more complicated because of the special role of the outer pendant paths.

For an open quipuGwith at least two vertices of degree 3,we define the inner depth ofG, denoted by

ir(G), as the maximal length of its inner pendant paths; if there are no inner pendant paths, we define

it as −∞. To define the outer depth, we notice that the four outer pendant paths come in two pairs

(each pair consists of two paths attached to the same vertex of degree three). If (k1,m1) and (k2,m2)
denote the lengths of the paths in the two pairs, with k1 �m1 and k2 �m2, then the lexicographically

largest of these pairs is called the outer depth or(G). We say G has depth r, denoted by r(G), if its outer
depth is (r + 1, r + 1) and its inner depth is at most r, or its inner depth equals r and its outer depth

is (k,m) with k � r.
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Theorem 3.8. Let {Gi}i � 1 be a sequence of quipus of depth r(Gi) = m, such that ti � 2 if Gi is open and

ti � 1 if Gi is closed. Then limi→∞ ti
�i

= 0 implies that limi→∞ ρ(Gi) = ρm.

Proof. First, let us consider the case that all the graphs Gi are open. Consider the graph Hi obtained

from Gi by replacing all internal paths of Gi by paths of length �i (so Gi can be obtained by subdividing

edges on internal paths of Hi). Then ρ(Gi) � ρ(Hi). Without loss of generality we may assume that �i
is odd. Then Hi is a subgraph of Qm(ti,

�i−1
2

). Hence by Lemma 3.6 we have lim supi→∞ ρ(Gi) � ρm.

Consider the graph G̃i obtained from Gi by deleting, on each internal path, the edge joining the

middle vertices. Then ρ(G̃i) � ρ(Gi) as G̃i is a subgraph of Gi. By considering the components of G̃i, we

find that limi→∞ ρ(G̃i) = ρm because r(Gi) = m. Hence limi→∞ ρ(Gi) = ρm.

For the case that the graphs Gi are subgraphs ofm-Urchin graphs, we similarly obtain the result by

deleting the edge connecting the middle vertices on each internal path. �

Theorem 3.9. Let {Gi}i � 1 be a sequence of open quipus with ti � 2, of outer depth od(Gi) = (k,m), with

k �m, and inner depth id(Gi) < k. Then limi→∞ ti
�i

= 0 implies that limi→∞ ρ(Gi) = θk,m.

Proof. Similar as that of Theorem 3.8. �

Form = 1 we have the following two corollaries:

Corollary 3.10. Let {Gi}i � 1 be a sequence of graphs such that Gi is a subgraph of a Laundry graph.

(a) If ti = 1 for all i, then limi→∞ ρ(Gi) =
√
2 + √

5 if and only if for all n there exists an integer I

such that for all i � I, Gi is either T1,ni ,ki or T2,2,ni for some ni � n and ki � n.

(b) If ti = 2 for all i, then limi→∞ ρ(Gi) =
√
2 + √

5 if and only if for all n there exists an integer I

such that for all i � I, Gi is either P
2,�i+2
2,2,�i+5, P

2,�i+2
2,1,�i+βi+3, or P

αi ,αi+�i
1,1,�i+αi+βi+1 for some �i � n, αi � n, and

βi � 1.

(c) If ti � 2 for all i and limi→∞ ti/�i = 0, then limi→∞ ρ(Gi) =
√
2 + √

5.

Proof. (a): A subgraph of a Laundry graph with one vertex of degree three is of the form T2,2,n or T1,k,n.

The result now follows from the facts that limn→∞ ρ(T2,2,n) = limn,k→∞ ρ(T1,k,n) =
√
2 + √

5, and

limn→∞ ρ(T1,k,n) <

√
2 + √

5 for fixed k.

(b): Since Gi is a subgraph of a Laundry graph and ti = 2, the graph Gi has only one internal path,

with length �i, so that it is P
αi ,�i+αi

n1,n2,�i+αi+βi+1 for some positive integers αi, βi, n1, and n2 such that

αi � n1,βi � n2 and (n1, n2) ∈ {(1, 1), (2, 1), (2, 2)}.Moreover, ifn1 = 2 (n2 = 2) thenαi = 2 (βi = 2).

Therefore Gi is of the form P
2,�i+2
2,2,�i+5, P

2,�i+2
2,1,�i+βi+3, or P

αi ,αi+�i
1,1,�i+αi+βi+1, where αi � 1 and βi � 1. Without

loss of generality me may also assume that αi � βi.

Suppose that limi→∞ ρ(Gi) =
√
2 + √

5. By Proposition 3.5, �i → ∞ (i → ∞). On the other

hand, if �i → ∞, then ρ(P
2,�i+2
2,2,�i+5) →

√
2 + √

5 and ρ(P
2,�i+2
2,1,�i+βi+3) →

√
2 + √

5 by Theorem 3.8,

whereas by Theorem 3.9, ρ(P
αi ,αi+�i
1,1,�i+αi+βi+1) converges to a value smaller than

√
2 + √

5 if αi and βi

are bounded. If also αi → ∞, then ρ(P
αi ,αi+�i
1,1,�i+αi+βi+1) →

√
2 + √

5 because Gi contains a subgraph

T1,αi ,�i .

(c): This follows immediately from Theorem 3.8. �
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Corollary 3.11. Let {Gi}i � 1 be a sequence of graphs such that Gi is a subgraph of an Urchin graph. If ti � 1

for all i and limi→∞ ti/�i = 0, then limi→∞ ρ(Gi) =
√
2 + √

5.

Proof. See Theorem 3.8. �

4. Application to diameter D near
n
2

From now on we will consider graphs which have minimal spectral radius among the graphs with

n vertices and diameter D. Such a graph is called aminimizer graph. For n > D� 1, we define ρD(n) :=
min{ρ(G)| G has n vertices and diameter D}.

Van Dam and Kooij [6] determined ρD(n) for D ∈ {1, 2, � n
2

, n − 3, n − 2, n − 1}. They observed

that for n� 7, the unique minimizer graph with n vertices and diameter D = � n
2

 is the n-gon Cn.

Now we will apply Theorem 3.8 to determine ρD(n) for D = n−e
2

with fixed e� 2 and show that

a minimizer graph is a member of one of four families of graphs as described below. Let C(t)
s be the

family of graphs obtained from the cycle Cs by adding pendant vertices at t distinct vertices. Clearly,

each member of C(t)
s has n = s + t vertices, is a subgraph of the Urchin graph U2s, and has diameter

between � s
2

 + 1 and � s

2

 + 2 (if t � 1).

Theorem 4.1. Forgiven integer e� 2, ρD(2D + e) →
√
2 + √

5asD → ∞.Moreover,aminimizergraph

with diameter D and n = 2D + e vertices is in one of the four families C(t)
n−t , e + 1� t � e + 4, for n large

enough.

Proof. Let e� 2 be fixed. For n� 6(e + 2) such that n − e is even, take the graphHn = C
0,l,2l,...,(e+1)l
1,1,...,1,n−(e+2)

in C(e+2)
n−e−2, where l = � n−e−2

4(e+2)

. The graph Hn has diameter n−e

2
. By Corollary 3.11, limn→∞ ρ(Hn) =√

2 + √
5 as t(Hn)/�(Hn) = (e + 2)/� n−e−2

4(e+2)

 → 0 (n → ∞). Let Gn be a minimizer graph with n

vertices and diameter D = n−e
2

. Since ρ(Gn) � ρ(Hn) we can take ε > 0 such that ρ(Gn) � ρ1 + ε <
θ2,3 for n large enough. By Theorem 3.4, Gn is a subgraph of a Laundry graph or an Urchin graph, for

n large enough. However, Gn cannot be a subgraph of a Laundry graph because D(Gn) = n−e
2

. Hence

for n large enough, Gn is in C(t)
n−t , for some t. Therefore, the diameter of Gn is between � n−t

2

 + 1

and � n−t
2


 + 2, hence it follows that e + 1� t � e + 4. To finish the proof, we observe that ρ(Gn) >√
2 + √

5 by Theorem 2.7. �

Next, we consider the cases where n
2

�D� 2n
3
. In these cases, the graph C(n,D) :=

C
0,n−D

D−� n
2

,D−� n

2
�,2(n−D)

with n vertices and diameter D is a good candidate for a minimizer graph. We

observe that for every ε > 0 there exists a positive integer N such that for all n�N and n
2

�D� 2n
3
,

we have ρ(C(n,D)) < 3
2

√
2 + ε. This observation, which provides a natural upper bound on ρD(n),

can be shown in a similar way as in the proof of Lemma 3.1(f).

For fixed e = 2D − nwecanget better upper bounds becauseρ(C(2D − e,D)) → ρ� e
2
� asD → ∞

by Theorem 3.8. We even conjecture that this is optimal.

Conjecture 4.2. Let e� 1. For n large enough and such that n + e is even, the unique minimizer graph Gn

with n vertices and diameter n+e
2

is C(n, n+e
2

) = C
0, n−e

2

� e
2

,� e

2
�,n−e

.
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We shall prove this conjecture for e� 4. Some more evidence for the conjecture is given by the

following lemma.

Lemma 4.3. Let e� 1, n� e + 4 and such that n + e is even. If a minimizer graph with n vertices and

diameter n+e
2

is a subgraph of an � e
2
�-Urchin graph but not of an � e

2
�-Laundry graph, then it is C0, n−e

2

� e
2

,� e

2
�,n−e

.

Proof. Suppose the minimizer graph Gn is a subgraph of an � e
2
�-Urchin graph and contains a cycle of

length s. Then on one hand n+e
2

= D(Gn) �� s
2

 + n − s and on the other hand n+e

2
= D(Gn) �� s

2

 +

2� e
2
�. By combining these inequalities, it follows that s = n − e for e even, and that in this case

C
0, n−e

2

� e
2

,� e

2
�,n−e

is the only graph possible. For odd e, it follows that n − e − 2� s� n − e, and that there

are three types of candidate graphs: C
0, n−e

2

� e
2

,� e

2
�,n−e

, C
0,� n−e−1

2



� e
2
�,� e

2
�,n−e−1

, and C
0,h, n−e−2

2

� e
2
�,1,� e

2
�,n−e−2

for some h. By

applying Lemmas 2.1 and 2.4, it follows that of these candidates, C
0, n−e

2

� e
2

,� e

2
�,n−e

has the smallest spectral

radius. �

To prove the cases e� 4 we use the following lemma.

Lemma 4.4. Let e� 1,m = � e
2
�, and n be such that n + e is even. Let G be a subgraph of an m-Laundry

graph, with n vertices and diameter D = n+e
2

. Then, possibly after subdividing edges on internal paths, G

contains P
s,s+m
1,1,2s+m+1 as a subgraph, for some s = s(n), with s → ∞ as n → ∞.

Proof. Let t be the number of vertices of degree 3 in G. Then by counting vertices one obtains that

n�D + 1 + tm + 2, fromwhich it follows that t � n−6
2m

− 1. Consider the vertices of degree 3 in their

natural order on the path, and let τ be the number of consecutive pairs of such vertices at distance

at mostm. Then it follows that n
2

+ m�D� 2 + τ + (t − 1 − τ)(m + 1), fromwhich we derive that

τ � τ0(n) for some τ0(n) for which τ0(n) → ∞ as n → ∞. The statement now follows by taking

s(n) = � 1
2
τ0(n)
. �

Theorem 4.5. For n large enough and odd, the unique minimizer graph Gn with n vertices and diameter

D = n+1
2

is Ĉn−1 = C(n, n+1
2

). For n large enough and even, the uniqueminimizer graphGn with n vertices

and diameter D = n+2
2

is C
0, n−2

2

1,1,n−2. Moreover, ρD(2D − 1) →
√
2 + √

5 and ρD(2D − 2) →
√
2 + √

5

as D → ∞.

Proof. Weshall only prove thefirst case (e = 1). Theother case (e = 2) is similar. Asmentionedbefore,

limn→∞ ρ(Ĉn−1) =
√
2 + √

5according toTheorem3.8. Sinceρ(Gn) � ρ(Ĉn−1) → ρ1 (n → ∞),we

have that ρ(Gn) < θ2,3 for n large enough. Then by Theorem 3.4, Gn is a subgraph of a Laundry graph

or an Urchin graph, for n large enough. If Gn is a subgraph of a Laundry graph, and has diameter n+1
2

,

then for n large enough, Gn contains P
s,s+1
1,1,2s+2 as a subgraph by Lemma 4.4, where s = s(n) → ∞ as

n → ∞. But then ρ(Gn) � ρ(P
s,s+1
1,1,2s+2) � ρ(P

s,s+2
1,1,2s+3) → 3

2

√
2 (n → ∞) according to Lemma 3.1(h),

which gives a contradiction. Thus Gn cannot be a subgraph of a Laundry graph, for n large enough. The

result now follows from Lemma 4.3. �

For n = 11, 13, 15, 17, 19, it was checked by computer that the unique minimizer graph with n

vertices and diameter n+1
2

is Ĉn−1, see [6, Table 2]. For n = 9 and D = 5, a minimizer graph is either

Ĉ8 or P
1,3
1,2,6.
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Itwas also checked that forn = 16, 18, 20, the uniqueminimizer graphwithn vertices anddiameter

n+2
2

is indeed C
0, n−2

2

1,1,n−2, see [6, Table 2]. For n = 14 and diameter 8, a minimizer graph is either C
0,6
1,1,12

or C0
2,12.

We finish this section with the cases e = 3 and 4 of Conjecture 4.2.

Theorem 4.6. For n large enough and odd, a minimizer graph Gn with n vertices and diameter n+3
2

is

C
0, n−3

2

1,2,n−3, while for n large enough and even, a minimizer graph Gn with n vertices and diameter n+4
2

is

C
0, n−4

2

2,2,n−4. Moreover, ρD(2D − 3) → ρ2 and ρD(2D − 4) → ρ2 as D → ∞.

Proof. Similar as that of Theorem 4.5. �

5. Application to diameter D near n

For 2n
3

�D� n − 1, the graph T(n,D) := T� D
2

,� D

2
�,n−D−1 has n vertices, diameter D and spectral

radius ρ(T(n,D)) < 3
2

√
2 (because any T-shape tree has spectral radius smaller than 3

2

√
2), which

gives a natural upper bound on ρD(n) for these cases. Like in the previous section, we will be able to

improve on this under certain assumptions.

In [6], the following conjecture was made regarding the graphs of diameter D minimizing the

spectral radius for D = n − e, where e is fixed and n is large enough.

Conjecture 5.1. For fixed e, the graph P
� e−1

2

,n−e−� e−1

2
�

� e−1
2


,� e−1
2

�,n−e+1
is aminimizer graphwith n vertices and diameter

D = n − e, for n large enough.

As mentioned earlier, the cases e = 1, 2, 3 were settled in [6]. After making some observations for

general e, we shall give a short proof of the case e = 4, which was solved independently by Yuan et

al. [13]. More precisely, we will prove that for n� 11, the unique minimizer graph with n vertices and

diameter n − 4 is P
1,n−6
1,2,n−3. Finally, we prove the case e = 5.

It follows from Theorem 3.8 that for the conjectured minimizer graphs we have that

limn→∞ ρ(P
� e−1

2

,n−e−� e−1

2
�

� e−1
2


,� e−1
2

�,n−e+1
) = ρ� e−1

2
�. Here we shall show that Conjecture 5.1 is false for e� 6,

by showing that ρD(D + e) →
√
2 + √

5 as D → ∞, and that a minimizer graph must be in one of

the families we will describe now.

For e� 5, let Pn,e be the family of graphs of the form P
m1,...,me−3

n1,...,ne−3,n−e+1, with n1 = ne−3 = 2, ni =
1 for 1 < i < e − 3, m1 = 2, me−3 = n − e − 2. Also, for e� 4, P ′

n,e consists of graphs of the form

P
m1,...,me−2

n1,...,ne−2,n−e+1, with n1 = 2, ni = 1 for 1 < i, m1 = 2, me−2 = n − e − 1, and P ′′
n,e of graphs of the

formP
m1,...,me−1

n1,...,ne−1,n−e+1,withni = 1 forall i,m1 = 1,me−1 = n − e − 1.All graphs in these three families

have n vertices and diameter D = n − e.

Theorem 5.2. For given integer e� 4, ρD(D + e) →
√
2 + √

5 asD → ∞.Moreover, aminimizer graph

with diameterD andn = D + e vertices is in one of the three familiesPn,e,P ′
n,e, andP ′′

n,e, for n large enough.

Proof. Lete� 4befixed. Forn� 2e, take thegraphHn = P
m1,...,me−1

n1,...,ne−1,n−e+1,withni = 1 forall i,mi = 1 +
(i − 1)l for i < e − 1, me−1 = n − e − 1 in P ′′

n,e, where l = � n−e−2
e−2


. By Corollary 3.10c,

limn→∞ ρ(Hn) =
√
2 + √

5 as �(Hn) = � n−e−2
e−2


 → ∞ (n → ∞) and t(Hn) = e − 1. Let Gn be a
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minimizer graph with n vertices and diameter D = n − e. Since ρ(Gn) � ρ(Hn) we can take ε > 0

such that ρ(Gn) � ρ1 + ε < θ2,3 for n large enough. By Theorem 3.4, Gn is a subgraph of a Laundry

graph or an Urchin graph, for n large enough. It then follows that Gn must be a subgraph of a Laundry

graph because D(Gn) = n − e. Hence Gn is of the form P
m1,...,me−3

n1,...,ne−3,n−e+1, with n1 = ne−3 = 2, ni = 1

for 1 < i < e − 3, m1 � 2, me−3 � n − e − 2, or of the form P
m1,...,me−2

n1,...,ne−2,n−e+1, with n1 = 2, ni = 1

for 1 < i, m1 � 2, me−2 � n − e − 1, or of the form P
m1,...,me−1

n1,...,ne−1,n−e+1, with ni = 1 for all i, m1 � 1,

me−1 � n − e − 1. It then follows from Lemmas 2.1 and 2.4 that the inequalities for the mi should

be equalities, i.e., Gn is in one of the families Pn,e, P ′
n,e, and P ′′

n,e, for n large enough. To finish the proof,

we observe that ρ(Gn) >

√
2 + √

5 by Theorem 2.7. �

Instead of Conjecture 5.1 we pose the following.

Conjecture 5.3. For fixed e� 5, a minimizer graphwith n vertices and diameter D = n − e is in the family

Pn,e, for n large enough.

Computational results comparing the three families of graphs Pn,e, P ′
n,e, and P ′′

n,e for e = 5, . . . , 9
support Conjecture 5.3. For e = 6 and e = 7 we can be more specific as follows.

Conjecture 5.4. The graph P
2,�(D−1)/2�,D−2
2,1,2,n−5 is the unique minimizer graph with n vertices and diameter

D = n − 6, for n large enough.

Conjecture 5.5. The graph P
2,�(D−2)/3
,D−�(D−2)/3
,D−2
2,1,1,2,n−6 is the uniqueminimizer graphwith n vertices and

diameter D = n − 7, for n large enough.

Next, we shall prove Conjecture 5.1 for the case e = 4. For this, we use the following lemma.

Lemma 5.6. ρ
(
P
k,k+m
k,1,k+m+2

)
= ρ

(
P
1,m+2,2m+3
1,k−1,1,2m+5

)
for k � 2 and m� 1.

Proof. We rewrite the characteristic polynomials of the two graphs as follows. Using Lemma 2.3 with

u being the vertex of degree 3 incident to two paths of length k, we obtain that

Φ(P
k,k+m
k,1,k+m+2) = Φ(Pk)

[
Φ(T1,1,m+k) − Φ(Pk−1)Φ(T1,1,m−1)

]
.

Since Pk is a proper subgraph of P
k,k+m
k,1,k+m+2, it follows that ρ

(
P
k,k+m
k,1,k+m+2

)
is the largest root of

Φ(T1,1,m+k) − Φ(Pk−1)Φ(T1,1,m−1).
Similarly, using Lemma 2.3 with u being the middle vertex of degree 3, we obtain that

Φ
(
P
1,m+2,2m+3
1,k−1,1,2m+5

)
= Φ(T1,1,m)

[
Φ(T1,1,m+k) − Φ(Pk−1)Φ(T1,1,m−1)

]
.

Since T1,1,m is a proper subgraph of P
1,m+2,2m+3
1,k−1,1,2m+5, it follows that ρ

(
P
1,m+2,2m+3
1,k−1,1,2m+5

)
is also the largest

root of Φ(T1,1,m+k) − Φ(Pk−1)Φ(T1,1,m−1). This finishes the proof. �

Theorem 5.7. For n� 11, the graph P
1,n−6
1,2,n−3 is the unique minimizer graph with n vertices and diameter

n − 4.

Proof. Let Gn denote a minimizer graph with n vertices and diameter n − 4, for n� 11. Lemma 2.4

implies that the spectral radius of P
1,n−6
1,2,n−3 is decreasing with n, so that

ρ(Gn) � ρ(P
1,n−6
1,2,n−3) � ρ(P

1,5
1,2,8) ≈ 2.0684.
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Thus, by Theorem 2.8, Gn is a dagger, a closed quipu, or an open quipu. However, if Gn is a dagger, then

ρ(Gn) = ρ(T0(n − 4)) � ρ(T0(7)) ≈ 2.1203, which is a contradiction. Also, if Gn is a closed quipu,

then it contains as a subgraph Ĉs, where s� 8 because the diameter of Gn is n − 4. Thus, in that case

ρ(Gn) � ρ(Ĉs) � ρ(Ĉ8) ≈ 2.0840, which is a contradiction too. So Gn must be an open quipu. If Gn is

a T-shape tree, then it contains T3,3,3 as a subgraph, hence ρ(Gn) � ρ(T3,3,3) ≈ 2.0743, which is again

a contradiction.

Thus, it follows that Gn is either of the form P
m1,m2

1,2,n−3, with m1 � 1 and m2 � n − 6, or of the form

P
m1,m2,m3

1,1,1,n−3 , with m1 � 1 and m3 � n − 5. Lemmas 2.1 and 2.4 then imply that equality should hold in

the inequalities for themi. Thus, Gn is P
1,n−6
1,2,n−3 or of the form P

1,m2,n−5
1,1,1,n−3 for somem2. However, by Lem-

mas 2.4 and 5.6
(
for k = 2,m = n − 7; note that P

1,n−6
1,2,n−3 = P

2,n−5
2,1,n−3

)
, we have that ρ

(
P
1,m2,n−5
1,1,1,n−3

)
>

ρ
(
P
1,n−5,2n−11
1,1,1,2n−9

)
= ρ

(
P
1,n−6
1,2,n−3

)
, which finishes the proof. �

For the case e = 5, the computations in [6] show that P
2,n−7
2,2,n−4 is the unique minimizer graph with

n vertices and diameter D = n − 5, for 14� n� 20. For the proof of the conjecture for this case, we

use the following lemmas to eliminate two families of candidates.

Lemma 5.8. Let k � 3. Then ρ
(
P
2,2k−2,3k−2
2,1,1,3k

)
= ρ

(
P
2,2k−2
2,2,2k+1

)
= ρ

(
P
1,k−1,2k−3
1,1,1,2k−1

)
.

Proof. DefineG = P
2,2k−2,3k−2
2,1,1,3k andH = P

2,2k−2
2,2,2k+1. ByapplyingLemma2.3 (withbridge2k − 2 ∼ 2k −

1), we obtain that

Φ(H) = Φ(P2)[Φ(T2,2,2k−2) − xΦ(T2,2,2k−5)]
= Φ(P2)[Φ(P3)Φ(T2,2,2k−5) − Φ(P2)Φ(T2,2,2k−6) − xΦ(T2,2,2k−5)]
= Φ(P2)[(x3 − 3x)Φ(T2,2,2k−5) − (x2 − 1)Φ(T2,2,2k−6)].

By a different application of Lemma 2.3 (with bridge k − 1 ∼ k), we derive that

Φ(H) = Φ(T2,2,k−3)[Φ(T2,2,k−2) − Φ(T2,2,k−4)]
= Φ(T2,2,k−3)Φ(P2)[Φ(Pk+1) − xΦ(Pk−2) − Φ(Pk−1) + xΦ(Pk−4)]
= Φ(T2,2,k−3)Φ(P2)

[
1

x
Φ(T1,1,k−1) − Φ(T1,1,k−4)

]
.

Now it follows that

Φ(H) · Φ(T1,1,k+1)Φ(T2,2,k−3) + xΦ(T2,2,2k−6)

Φ(P2)Φ(T2,2,k−3)

=
[
(x3 − 3x)Φ(T2,2,2k−5) − (x2 − 1)Φ(T2,2,2k−6)

]
Φ(T1,1,k+1)

+
[
1

x
Φ(T1,1,k−1) − Φ(T1,1,k−4)

]
xΦ(T2,2,2k−6)

= (x3 − 3x)
[
Φ(T2,2,2k−5)Φ(T1,1,k+1) − xΦ(T2,2,2k−6)Φ(T1,1,k−1)

]
= (x3 − 3x)Φ(G).

The last equality follows from applying Lemma 2.3 (with bridge 2k − 3 ∼ 2k − 2), whereas the one-

but-last follows from the recursive relations of Φ(T1,1,i) that follow from Lemma 2.2.

Because the largest root ofH is larger than the largest root ofΦ(P2)(x
3 − 3x)Φ(T2,2,k−3), it follows

that ρ(G) = ρ(H).
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From Φ
(
P
1,k−1,2k−3
1,1,1,2k−1

)
= Φ(T1,1,k−3)[Φ(T1,1,k−1) − xΦ(T1,1,k−4)], it finally follows that ρ(H) =

ρ
(
P
1,k−1,2k−3
1,1,1,2k−1

)
. �

Lemma 5.9. Let 2�m2 � 2k − 4. Then ρ
(
P
1,m2,2k−3
1,1,1,2k−1

)
� ρ

(
P
1,k−1,2k−3
1,1,1,2k−1

)
with equality if and only if

m2 = k − 1.

Proof. Let r = m2 − 2and s = 2k − 4 − m2.Without loss of generalitywemayassume thatm2 � k −
1, so that r � s. Then

Φ
(
P
1,m2,2k−3
1,1,1,2k−1

)
= xΦ

(
P
1,2k−3
1,1,2k−1

)
− Φ(T1,1,r)Φ(T1,1,s)

= xΦ
(
P
1,2k−3
1,1,2k−1

)
− x2 [Φ(Pr+2) − Φ(Pr)] [Φ(Ps+2) − Φ(Ps)] .

Assume that m2 < k − 1, so that r � s − 2. It follows that

Φ
(
P
1,m2+1,2k−3
1,1,1,2k−1

)
− Φ

(
P
1,m2,2k−3
1,1,1,2k−1

)
= x [Φ(Pr+2) − Φ(Pr)]

[
(x2 − 2)Φ(Ps+1) − 2Φ(Ps−1)

]
−x

[
(x2 − 2)Φ(Pr+2) − 2Φ(Pr)

]
[Φ(Ps+1) − Φ(Ps−1)]

= x(x2 − 4) [Φ(Pr+2)Φ(Ps−1) − Φ(Pr)Φ(Ps+1)] .

Because Φ(Pm) = λm+1−λ−m−1

λ−λ−1 , one can obtain easily that Φ(Pr+2)Φ(Ps−1) � Φ(Pr)Φ(Ps+1) for any

x � 2 with equality if and only if r + 1 = s. This implies the desired results. �

Lemma 5.10. Let n� 15 and 3�m2 � n − 7. Then ρ
(
P
2,n−7
2,2,n−4

)
< ρ

(
P
2,m2,n−6
2,1,1,n−4

)
.

Proof. Let G′ = P
2,m2,n−6
2,1,1,n−4 for some 3�m2 � n − 7.

First, let n = 2k + 5 be odd. In this case, P
2,n−7
2,2,n−4 = P

2,2k−2
2,2,2k+1 =: H and G′ = P

2,m2,2k−1
2,1,1,2k+1 . Recall from

the previous lemma that ρ(H) is the largest root of Φ(T2,2,k−2) − Φ(T2,2,k−4).

If m2 � k − 1, then ρ(G′) > ρ
(
P
2,m2

2,1,m2+2

)
� ρ

(
P
2,k−1
2,1,k+1

)
= ρ(x[Φ(T2,2,k−2) − Φ(T2,2,k−4)]) =

ρ(H). If k �m2 � n − 7 = 2k − 2, then subdividing an appropriate number of edges on the internal

paths of G′ gives the graph P
2,2k−2,3k−2
2,1,1,3k . Thus, ρ(G′) > ρ

(
P
2,2k−2,3k−2
2,1,1,3k

)
. From the previous lemmawe

have that ρ
(
P
2,2k−2,3k−2
2,1,1,3k

)
= ρ(H) which implies ρ(G′) > ρ(H) in this case as well. This proves the

assertion for n odd.

Next, let n = 2k + 6 be even. Ifm2 = n − 7, thenG′ is obtained from P
2,n−7
2,2,n−4 by replacing one edge

and it follows easily (cf. [4, Thm. 6.4.7]) that ρ
(
P
2,n−7
2,2,n−4

)
< ρ(G′). Assume finally that m2 � n − 8 =

2k − 2, and let H = P
2,2k−2
2,2,2k+1. Because n > 2k + 5, it follows that ρ(H) > ρ

(
P
2,n−7
2,2,n−4

)
. Similar as in

the case where n is odd, one can now show that ρ(G′) > ρ(H), which finishes the proof. �

Lemma 5.11. Let n� 15 and 2�m2 < m3 � n − 7. Then ρ
(
P
2,n−7
2,2,n−4

)
< ρ

(
P
1,m2,m3,n−6
1,1,1,1,n−4

)
.

Proof. If m2 = 2, then P
1,m2,m3,n−6
1,1,1,1,n−4 is obtained from P

2,m3,n−6
2,1,1,n−4 by replacing one edge, and as before,

it follows that ρ
(
P
1,m2,m3,n−6
1,1,1,1,n−4

)
> ρ

(
P
2,m3,n−6
2,1,1,n−4

)
. The required result now follows from the previous

lemma. Similarly, the result follows if m3 = n − 7.

Assume now that n = 2k + 5 is odd. Since we may assume that m3 � n − 8 = 2k − 3, we obtain

that
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ρ
(
P
1,m2,m3,n−6
1,1,1,1,n−4

)
> ρ

(
P
1,m2,m3

1,1,1,m3+2

)
� ρ

(
P
1,m2,2k−3
1,1,1,2k−1

)
� ρ

(
P
1,k−1,2k−3
1,1,1,2k−1

)
= ρ

(
P
2,n−7
2,2,n−4

)
,

among others by using Lemmas 5.9 and 5.8.

Assume next that n = 2k + 6 even. If m3 � n − 9, then similar as above, we obtain that

ρ
(
P
1,m2,m3,n−6
1,1,1,1,n−4

)
> ρ

(
P
1,m2,m3

1,1,1,m3+2

)
� ρ

(
P
1,m2,2k−3
1,1,1,2k−1

)
� ρ

(
P
1,k−1,2k−3
1,1,1,2k−1

)
= ρ

(
P
2,n−8
2,2,n−5

)
> ρ

(
P
2,n−7
2,2,n−4

)
.

By symmetry, the result follows if m2 � 4.

The only case left is whenm2 = 3 andm3 = n − 8. For this case, we claim that ρ
(
P
1,3,n−8,n−6
1,1,1,1,n−4

)
>

ρ
(
P
2,n−8,n−6
2,1,1,n−4

)
, which together with the previous lemma settles the proof. To prove the claim, we note

that by Lemma 2.3, we have that

Φ
(
P
1,3,n−8,n−6
1,1,1,1,n−4

)
= Φ(T1,1,3)Φ

(
P
1,3
1,1,n−8

)
− xΦ(T1,1,1)Φ

(
P
1,3
1,1,n−9

)
,

Φ
(
P
2,n−8,n−6
2,1,1,n−4

)
= Φ(T2,2,1)Φ

(
P
1,3
1,1,n−8

)
− Φ(P5)Φ

(
P
1,3
1,1,n−9

)
.

After working out the technical details, we obtain that

Φ
(
P
2,n−8,n−6
2,1,1,n−4

)
− Φ

(
P
1,3,n−8,n−6
1,1,1,1,n−4

)
= −Φ

(
P
1,3
1,1,n−8

)
+ (x3 − 3x)Φ

(
P
1,3
1,1,n−9

)
.

For x � ρ
(
P
2,n−8,n−6
2,1,1,n−4

)
> 2, it follows that

Φ
(
P
2,n−8,n−6
2,1,1,n−4

)
− Φ

(
P
1,3,n−8,n−6
1,1,1,1,n−4

)
> −Φ

(
P
1,3
1,1,n−8

)
+ xΦ

(
P
1,3
1,1,n−9

)
= Φ

(
P
1,3
1,1,n−10

)
> 0,

and the claim follows. �

Theorem 5.12. For n� 18, the graph P
2,n−7
2,2,n−4 is the unique minimizer graph with n vertices and diameter

n − 5.

Proof. Let Gn denote a minimizer graph with n vertices and diameter n − 5, for n� 18. Similar as

before, we have that

ρ(Gn) � ρ
(
P
2,n−7
2,2,n−4

)
� ρ

(
P
2,11
2,2,14

)
≈ 2.0710.

Thus, by Theorem2.8,Gn is a dagger, a closedquipu, or an openquipu. By the samearguments as in The-

orem5.7,Gn cannotbeadaggeror aT-shape tree. IfGn is a closedquipu, then it containsasa subgraph Ĉs,

where s� 10 because the diameter of Gn is n − 5. Thus, in that case ρ(Gn) � ρ(Ĉs) � ρ(Ĉ10) ≈ 2.0743,
which is a contradiction. So Gn must be an open quipu, but not a T-shape tree.

Similar as before, it follows that Gn is P
2,n−7
2,2,n−4 or of the form P

1,m2,n−6
1,2,1,n−4 for some m2, or of the form

P
2,m2,n−6
2,1,1,n−4 for somem2, or of the form P

1,m2,m3,n−6
1,1,1,1,n−4 for somem2 andm3.

However, by Lemmas 2.4, 5.6 (for k = 3,m = n − 8), and 2.1, we have that ρ
(
P
1,m2,n−6
1,2,1,n−4

)
>

ρ
(
P
1,n−6,2n−13
1,2,1,2n−11

)
= ρ

(
P
3,n−5
3,1,n−3

)
> ρ(T3,3,3) ≈ 2.0743, so Gn cannot be of the form P

1,m2,n−6
1,2,1,n−4 .

By Lemma 5.10, Gn cannot be of the form P
2,m2,n−6
2,1,1,n−4 , and by Lemma 5.11, it cannot be of the form

P
1,m2,m3,n−6
1,1,1,1,n−4 . Thus, Gn must be P

2,n−7
2,2,n−4. �
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