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NON-ADDITIVE BELIEFS AND GAME THEORY
Jirgen Eichberger and David Kelsey1

1 Introduction

Experimental evidence indicates that preferences over uncertain acts cannot
be represented by expected utility functionals. In particular, Ellsberg
(1961) and others have pointed out that decision makers distinguish between
situations under certainty and uncertainty in a way that cannot be
represented by an additive probability distribution. Recently, Schmeidler
(1989) and Gilboa (1987) have axiomatised a preference functional which does

not imply that beliefs are represented by additive probabilities.

With the exception of Dow and Werlang (1991), no attempt has been made to
investigate the implications of a decision theory without additive
probabilities for game theory. Von Neumann and Morgenstern (1944) were among
the first to axiomatise a decision theory for known lotteries and, since
then, this has been the dominant paradigm for the analysis of games. In a
Nash equilibrium, beliefs about the behaviour of opponents were supposed to
coincide with the actual behaviour of these players. Interestingly, von
Neumann and Morgenstern (1944) did not propose this equilibrium concept.
They worked with a decision theory of complete ignorance assuming that
players choose maximin strategies. According to this behavioural assumption
agents consider the worst outcome for all strategies available and choose
the strategy which yields the best among these worst outcomes. Von Neumann
and Morgenstern (1944) could prove however that the value concept built on
maximin behaviour coincides with the equilibrium concept for the class of

Zero-sum games.

5 The first discussions on this topics between the authors took place while
Jirgen Eichberger was visiting the University of Birmingham. The paper was
written while Jirgen Eichberger was visiting the CentER at Tilburg
University. Jargen Eichberger would like to thank both institutions for
their hospitality which made this research possible. David Kelsey would like
to acknowledge a travel grant from the School of Social Sciences, University
of Birmingham. We would like to thank seminar participants at Queens
University, The Institute of Advanced Studies in Vienna, the universities of
Exeter, Osnabrick, and Birmingham for comments and discussion.
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We will show in this paper how the theory of non-additive probabilities
allows to reconcile the maximin approach with the Nash equilibrium concept
for general games. The notion of a degree of confidence can be used to
relate the two approaches. If the degree of confidence in a subjective
probability representation of a belief is high players will behave like
expected utility maximisers whereas they will act as maximin players for a
high degrec of uncertainty. Tt can be shown that, in general, equilibrium
behaviour with non-additive beliefs will be as predicted by the Nash
equilibrium concept if this degree of confidence is high. For low levels of
confidence, however, equilibrium behaviour under uncertainty may be maximin

behaviour.

A further result is the observation that there is a generic class of games
where some lack of confidence in the probability assessment will rule out
play of dominated strategies in equilibrium. This provides the possibility
of a refinement of Nash equilibrium that is weaker than perfectness but

still eliminates dominated strategy play in many games.

The paper is organised as follows. The next section introduces notation and
provides a definition of an equilibrium concept with non-additive
probabilities. Section 3 presents the concept of the degree of confidence,
proves existence of an equilibrium and shows the dependence of equilibrium
behaviour on this degree of confidence. Section 4 relates the equilibrium
notion to the concept of maximin strategies and the final section shows how
robustness against lack of confidence may be used as a refinement of Nash

equilibrium.
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2 Equilibrium under uncertainty

Consider a game I' = (I, (si)ieI'(pi)ieI

pure strategy sets si for each player and payoff functions pi(si,s_i) which

) with a finite player set I, finite

describe the payoff of player i if a strategy combination (Si's i) is

played. The notation 8_; = (8., ""SI) indicates a strategy

- J—
1 1~1"" 1+l
combination for all players exept player i. It is convenient to denote by
1= 5 2 < i
s-i Slx Xsi-l*sx+1x xSI he set of strategy combinations which
players other than i could choose.

Beliefs of players about opponents’ behaviour are represented by

non-additive probabilities (or capacities). A capacity assigns non-additive
probability weights to subsets of a set of unknown states of the world. Let
Q be a set of states of the world, then one can formally define a capacity

as follows.

Definition 2.1: (capacity)
A capacity on Q ig a real-valued function v on the subsets of Q which
satisfies the following properties:

a) AsB = v(A) s v(B);

b) v(e) =0, v(Q) = 1.

The capacity is called convex if v(A) + v(B) = v(AUB) + v(AnB) holds.

Notice that, in contrast to an additive probability, it is not required

that v(A) + v(B) = v(AUB) + v(ANB). For a convex capacity it is possible
that v(A) + v(Q\A) < 1 holds, implying that not all probability mass is
allocated to a set and its complement. Thus, one can define the support of a
capacity either as the smallest set of states with measure one or the
smallest set with a complement of measure zeroz. We will use the latter

notion which can be formally defined as tollows:

Definition 2.2: support of a capacity
The support of the capacity v is an event E € Q such that v(Q\E) = 0 and
v(F) > 0 for all F, Q\E C F.

2 Compare Dow and Werlang (1991) for a discussion and analysis of these two

notions of a support of a measure.
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Notice that the support of a capacity as defined in 2.2 is not unigque in
general. This is a problem which will be discussed in section 3. If the set
of subsets of Q has a measurable structure, then one can use the concept of

a Choquet integral to determine the average value of measurable functions.

If @ is finite and f: @ — R is a function that associates values to
states of the world, then f£(Q) is a finite set of real numbers. Denote by f1

= max{f(w) | w € 9} and by Q = argmax{f(w) | v € Q}. Let T = Q, and define

1
iteratively,

. = ar x{f(w) | w € Q\T, , £, = max{f(w)| w € Q\T ,and T, = T, %
Q = argmax(f (w) | AT £y {gtw ] 3-2) T o e
With the convention Qo = @, the Choquet integral can be formally defined as

follows:

Definition 2.3: (Choquet integral)
For a finite set of states of the world @, the Choquet integral of a
real-valued function f with regard to the capacity v is

n
J(f,v) = i)-:lfi~[y('1‘i)) = vAT s

Each player i € I is supposed to hold a belief about her opponents
behaviour, a strategy combination in S-i' which is represented by a capacity
vy Given this belief, the expected payoff from a strategy s; can be
determined by the Choquet integral Pi(si,vi) = 3(pi(si,-),vi). Players are
assumed to choose a best response given their beliefs about their opponents’
behaviour. Denote by Ri(yi) = argmax({ Pi(si,vi) | s; € si) the best

response correspondence of player i given beliefs vi.

To determine an equilibrium, it is necessary to relate players’ beliefs to
the actual behaviour. In a Nash equilibrium of a game where players’ beliefs
are represented by additive probabilities, expectations are assumed to be
rational in the sense that each player chooses a (mixed) strategy which is a
best response to the actual (mixed) strategies played by the opponents.
Thus, beliefs and actual behaviour are usually not distinguisheds. In the
context of beliefs represented by non-additive probabilities, it is no
longer possible to identify beliefs with actual behaviour. An important
property of a Nash equilibrium is however the fact that all pure strategies

3Crawford (1990) considers beliefs as additive probbaility distributions
over mixed strategy spaces.
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that are used in equilibrium with positive probability, i.e., that are in
the support of the equilibrium mixed strategy, form best responses of the

respective player.
The following definition of an equilibrium under uncertainty generalises the
notion used in Dow and Werlang (1991) to games with an arbitrary finite

number of players.

Definition 2.4: equilibrium under uncertainty

A belief system (v;,....vi) is an equilibrium under uncertainty if for all
ie1x
supp v* € o R, (v¥)
izjer

In an equilibrium under uncertainty players beliefs as represented by the
capacity v* put positive probability only on strategies that are best
responses of the opponents given their equilibrium beliefs. Equilibrium
beliefs can however no longer be interpreted as equilibrium mixed strategies
because a player may believe that her opponents’ strategy choices are
correlated. The only consistency required in an equilibrium under
uncertainty is each player chooses a pure strategy that is a best response
given her beliefs and beliefs give positive probability weight only to best

responses. The following example will illustrate this equilibrium concept.

Example 2.1:

Consider a general 2x2 matrix game.

Player 2
t1 t2
s a..,b a__,b
Player 1 i 11712 22712
S | 3210P2 332'P22

In this case, beliefs of each player can be represented by two numbers
indicating the probability that the opponent plays either of her two
strategies:

e ® Qe qy) - Gy * 9ea
e | = (qal,qsz) i g3 * 9o = 1.
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Notice that these probabilities need not sum to one. The support of these

capacities is simply

(tl) for g™ ©
supp v, = {tz} for 9, =0,
{tl,tz) otherwise
and
(sl) for 9., =0
supp v, = {52) for q_, =0
{sl,sz} otherwise

Given beliefs vy and Vo it is straightforward to compute the following

Choquet expected payoff functions:

851 Ty * 850 12 - qy) for @ &R,
Pl(si,vl) = ai1 for ail = ai2 5
3279 * 35,1 - qy) e TR
Dii'dgy * Py - q,) for By ey
Pz(ti,vz) = bli for b1i = b2i .
Do 9 * Byl -yl  for B, <k,

Consider the case‘I where the game has two Nash equilibria in pure and one in

mixed strategies. This implies the following payoff parameter restrictions:

Brg ® Sygr Bgy <y, 8 by, 3 DByse Byg © by,
With these restrictions, one derives the following best response
corrspondences :
(81) . qtl = (a -a__) (a - a_.)
B s fo, 0} ok i = 21 12 22 21 a
1% (31) 2 B qtl (a11 - alz) (a11 - a12) t2
2 tY <
{e,} il T A .. = b.)
R_(v)) = fe. €] for q . = s 2. 22 L2 q
232 1'"2 sl (b -b_) (b - b_.) 52
{t.) Fax o 11 21 11 21
2 8l <

4 The other generic payoff constellations can be analysed mutatis mutandis.
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The following diagrams show the situation.

i - (by, - by,) o = (315 - 35!
® By, - Byl B (ayy = 3y

Notice that the parameter restrictions given above guarantee that the
denominators of Bs and At are positive. There is no restriction, however, on
the sign of the numerators. The cases depicted in the diagram corresponds to

>0andb12-b S 0%

the additional parameter constraints a - a o

12 21

A belief of player 1, vy is a pair (q ) on or below the line (0,1) -

q
(1,0) in the right-hand diagram. Pointzlin:ihe left hand diagram represent
different beliefs of player 2. The broken upward sloping lines indicate the
loci where players are indifferent between their two strategies. These lines
are upward sloping by the assumption on parameters made above but may have
positive or negative intercepts. Beliefs above these lines make it a best
response for each player to choose the first strategy; beliefs below these

lines make the second strategies a best response. It is easy to check that

the following beliefs form equilibria of the game:
(i) (=) : yi - (qtl' 0 )., 0 = qtl s 1,
v; = (qsl’ 0 ) Bs < qsl g 1
(ii) ( o—) : v;-(olqtz): At‘qtz‘l'
va = .0 5 qu)' 0 s q52 & A3
(iii) (—3): 9@ = (0, qtz)' 0 = q, = ALy
vt = (qsl, o), 0 = d,, € Bs.
(iv) i (qtll qt2)' At £9.. = 1,
3= (qsl' qsz)' B, Gy %2

s The other three cases

diagrams.

are easily analysed by drawing the respective
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In an equilibrium of type (i), (sl,tl) will be played. This is a Nash
equilibrium of this game under the assumed parameter restrictions.
Similarly, type (ii) equilibria induce (sz,tz) as equilibrium play which
corresponds to a second pure strategy Nash equilibrium of the game.
Equilibria of type (iii) however lead to (sl,tz) being played which is not a
Nash equilibrium. It is easy to check that (sl,tz) are the maximin
strategies of the players given the payoff parameter restiction of the
diagram. Finally, equilibria under uncertainty of type (iv) correspond to
the mixed strategy Nash equilibrium because players are indifferent about

their strategy choice. ®

Example 2.1 shows that, without further restrictions, there are many
equilibria under uncertainty. Some of these equilibria induce the same
equilibrium play as the Nash equilibria, while other equilibria are
incompatible with Nash equilibrium play. The following section suggests a

restriction on beliefs.

3 Simple capacities and the degree of confidence

In the game-theoretic context, beliefs have traditionally been represented by
additive probability distributions. Identifying beliefs with probability
distributions over states however makes it impossible to accommodate
behaviour that distinguishes between cases where the decision maker knows

the probability distribution over states and cases where s/he is ignorant

about this distribution. Capacities allow us to make such a distinction.

General capacities have however little in common with probability
distributions. In particular, the capacity of a set and the capacity of its
complement need not sum to a number less or equal to one. Since capacities
are supposed to represent beliefs, one restricts attention to convex
capacities which have the property that v(A) + v(Q\A) s v(Q2) = 1 holds. Even
convex capacities can have the undesirable property of a non-unique support.
The following definition characterises a class of capacities which is easy

to interprete as beliefs and which does not suffer from these problems.
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Definition 3.1: A capacity v is called simple if there exists an additive
probability distribution 7 and a real number y € (0,1) such that for all

events E € S, v(E) = y-7(E).

A simple z:apac.i.t:ys can be thought of as a contraction of an additive
probability distribution. This could be interpreted as a lack of confidence
that the decision-maker has in regard to her probability assessment. The
parameter y represents the degree of confidence that the agent has in the
probabilistic assessment given by the additive probability distribution .
The smaller y, the degree of confidence, the more uncertain is the agent
about the situation. Uncertainty measured by y can be distinguished from

likelihood of a state represented by = (w).

A further advantage of the representation of beliefs by simple capacities is

the particularly simple form of the Chogquet integral.

Proposition 3.1: Let v be a simple capacity. For a finite set of states Q,

n
J(£,v) = ¥y L ¥ £,om@)] + (1 - 7)-[min{f(w)| w € Q}].
i=1

Proof: From definition 2.3 and definition 3.1, one computes:

n
3(f,v) = .Z fi-[v(Ti) - v(Ti_l)]
i=1
n-1 n-1
= 2 E,v(Q) 4 £ -Iv(@ - v(T )] = T EcyewlQy) + £ DL - yew(aNQ )]
i=1 i=1
n-1 n
= v-iglfi~w(oi) + €01 -y Q- Q)] = y-iglfi-r(oi) + £ <01 -]

Noting that £, min{f(w) | w € @} completes the proof. HW

Note that, for Qi = (wi), i =1,...n, the Choquet integral simplifies to

n
J(£,v) = 7‘[i§1fi~!(si)] ® (1 = 7)-fn .

J Note that all simple capacities satisfy constant uncertainty aversion as
defined in Dow and Werlang (1991). However, it is not the case that all
capacities which display constant uncertainty aversion are simple. A special
case of a simple capacity has been used by Dow and Werlang (1992).
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The Choquet integral is a convex combination between the expected value of f
given the additive measure 7 and the worst outcome fn with weight y € (0,1].
The full weight of the non-additivity falls on the worst outcome in this
case. If y is close to zero, uncertainty dominates and the value of f is
close to the worst outcome. Thus, a decision-maker who chooses an action to
maximise the Choquet integral with respect to a simple capacity will
maximise expected utility with probability distribution v for ¥ = A,
and
choose a maximin action for y = 0.
With beliefs characterised by a simple capacity with degree of confidence ¥y
€ (0,1), a player shows a decision-making behaviour which lies between
expected utility maximisation and the extremely uncertainty-averse maximin

behaviour.

Through a number of examples, Dow and Werlang (1991) have shown that the
support of a capacity is, in general, not unique. An important property of
simple capacities is therefore the fact that they have a unique support.

Proposition 3.2: For a simple capacity the support is unique and consists of
all states with positive probability.

Proof: Let v be a simple capacity on Q. Since v is simple there exists an
additive probability 7 on Q@ and y € (0,1] such that for all E € Q, v(E) =
v-7(E). Let B = Q denote the set of all states with positive measure 7. By
definition w(Q\B) = 0, hence v(Q\B) = 0. Let C be an event such that Q\B C
C. Then there exists w’ € C\(Q\B) C B. By monotonicity v(C) 2 v({w’'}) =
y'm({w'}) > 0. This demonstrates that B is the support of v. W

\

Applying the concept of a simple capacity to games, it can be shown that an
equilibrium under uncertainty exists for any vector of exogenouly given

degrees of confidence that the players may have7

Proposition 3.3: For any vector of parameters y := (71,...71) there exists a

Nash equilibrium under uncertainty.

Proposition 3.3 confirms a conjecture of Dow and Werlang (1991) that a
Nash equilibrium under uncertainty will exist for any exogenously given
bound on the uncertainty aversion of players.
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Proof:

Let mi(si) f= mxn{pi(si,s_i)l s,

obtains from playing strategy s, - Define new payoff functions

€ S_i} be the minimum payoff a player

Wi(si,s_i) 1= pi(si,s_i) + [(l-yi)/yi]-mi(si)

The new game I'" = (I, (Si)ieI'(w') ) is well-defined and has a Nash

i’ iez
equilibrium 7* = (11,...1;) in mixed strategies. Thus, for all i € I and all

s* € S, with wn*(s*) > 0,
i i i

2 V;(st,s_j)-mv(s_ ) = z Vi(s;.8_ ;) -mx(s_,)

8 ,€S . s .€ES ,
=i - =i -4

for all s, € Si must hold, where

"(s~i) 1= 11(51)-12(52)-...- (. .)em, _ila, )-...~wI(sI)

f T I B i+l i+l
denotes the probability that 8 5 is played.

Let v;(s-i) 1= 1i~1'(s_i) for all s~ie s_i denote the belief of player
i € I with constant uncertainty aversion yi. It will be shown that v* =
(v;,...vi) forms an equilibrium under uncertainty for the original game with

constant uncertainty aversion parameters 7.

i ’ * iti * (g’ - “m* (g’ =
Consider s’y € supp vi. By proposition 3.2 , vi(s_i) Yi L (s_i)

= yi-[n;(si)-ws(sé)-...-w;_l(si_ )~w;+l(si+ )-...-wi(si)] = 10k
Hence, for j = i, ’3(53) > 0 and
{ & (s, R ad &) ; € 8, *
sJ argmax(s és wJ sJ s_]) w (s_J | sJ J} (*)
=33
by the definition of a Nash equilibrium.
Since the capacity v; is simple,
P.(s’,v¥) := b3 p.(s%,8 .)-v*(s .) + (1-y,)-m, (s8%)
g di' 3 a 5. 3 3 -3 =3 i3
=) =)
= i (85,8 o) + [(1-v,)/y.1-m.(85)]-7w*(s _
vy . Es lpy (8] -3 vy /YJ] j(85)1-7(s_))
=3, =
i P V.(si,s_.)-m*(s_.)
3 g eg., & 3 -3 ~3
=3 =)
2 Yo X V.(s.,8 .)-m*(s_.) = P.(s,,v%)
3 s_jes < JE T 3 o

follows from (*). This proves that v* is an equilibrium under uncertainty. B

For the case of 2x2 matrix games which was discussed in example 2.1, the set
of equilibria for a given degree of confidence of the players can be given a

simple geometric interpretation.
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Example 3.1: (example 2.1 resumed)
Recall the diagrammatic representation of beliefs in example 2.1. The
exogenously given degrees of confidence 7, and 7, require beliefs to lie on

the lines (0,71) - (71,0) and (0,72) - (72,0) in the respective diagrams.

Al . N
0 Ac 71 1 t2

TE 7, and 72 are as given in the diagram above, then one checks easily that

the following three equilibria under uncertainty exist:

(i) (=0==) : - (11, 0), vy = (72, 0);
(ii) ( ——) : v;_ = (0 , 71), v; = (0, 12);
(iii) vi = (qtl' qtz)' v; = (qsl, qsz) with
B e e B (@1~ 35! . (3 - 35! .
5 t2 b § tl (a11 - alz) (a11 - alz) t2
et e (b, - b,) . (byy - Byp) . "
s1 52 2 s1 (b11 - b21) (b11 - bzl) 852

For high degrees of confidence, equilibrium behaviour for the pure strategy
equilibria ((i) and (ii)) will be exactly as in the respective Nash
equilibria and the third equilibrium will have a support which coincides
with the support of the mixed strategy Nash equilibrium. On the other hand,
it is easy to see in this example that low8 values of 73 and 7, lead to

maximin behaviour in an equilibrium under uncertainty. The following section

For v, 1, < min (At,Bs), behaviour in an equilibrium under uncertainty

is maximin behaviour.
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investigates whether this relationship between Nash equilibrium and

equilibrium under uncertainty holds for general games as well.

4 Equilibrium under uncertainty and Nash equilibrium

This section relates equilibria under uncertainty with simple capacities to
Nash equilibria on the one hand and maximin strategies on the other. It is
well-known that, for zero-sum games, every Nash equilibrium strategy
combination is a maximin strategy combination. This identity of prudent and
equilibrium behaviour is however lost for general games. The concept of an
equilibrium under uncertainty with simple capacities makes it possible to
relate these two traditional methods of determining the solution of a game
(compare Moulin (1986)). Indeed, the less confidence players have in their
beliefs about opponents’ behaviour the more likely the pure strategy cbosen
in equilibrium will be a maximin strategy combination. If players are
confident about their beliefs, then they will play as in a Nash equilibrium.
The noticn of an equilibrium under uncertainty is however general enough to
allow for some players to play maximin strategies and for others to play

best responses.

First, low degrees of confidence in the probability assessment are
considered. Let

mi(si) 1= mxn(pi(si,s_i)| s_; € s_i}
be the worst payoff player i can obtain from playing strategy si and let
M, = argmax(mi(si) | s
be the strategies of player i that maximise these worst payoffs. Note that

€ si).

any strategy combination s = (81""31) € n Mi is a maximin strategy
ier
combination. For two-player zero-sum games, any such strategy combination

leads to the same payoff vector.

Definition 4.1:

An equilibrium under uncertainty with simple capacities v* = (vi,...vi)

induces maximin play if, for all i € I,
Ri(v;) = Mi

The following result shows that, for low degrees of confidence, equilibria

under uncertainty are maximin strategy combinations.
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Proposition 4.1: Given beliefs that are represented by simple capacities,
there exists € > 0 such that, for Y; € [0,€] for all i € I, every

equilibrium under uncertainty induces maximin play.

Proof:

; - - 0wl ' '
Firstly, for Mi si' pi(si,s_i) pi(si,s_i) for all si € Si and all s-i €

S .. Hence, P_.(s,,v*) = P .(s!,v*) for all s’ € S, and R, (v*) = S .
-i i L0 B - Sk T | i i - Sl | i

Secondly, for Mi » Si, consider any strategy si € Ri(v;) such that s, "3 Mi'
then m, (s!) > m,(s,) for all s! € M, and
11 B f i 3
Pi(si,v;) = yi-[ ¥ pi(si,s_i)-ai(s_i)] + (1 - Yi)~mi(ai)
8 €8 .
-i -4
2 7i~(s Es Py(si,8 ;)-ai(s ;)] + (1 - v,) m(si) =P (sf,vh),
-i -1

where ai is an additive probability distribution on S_. such that v;(s_i) =

- 3
Y.'a.(s .) for all s , € §
| s S § -i -

i
Since mi(si) > mi(si) holds, there is a positive Ei small enough such
that P, (s!,v*) > P.(s,,v*) for all y, s €., holds. For such a Vi By €

- et it B | i i i -
Ri(v;)nMi. Thus, € = min{eil i€I} provides an upper bound on the degree of

confidence such that Ri(v;) = Mi' =

Example 3.1 suggests that, for high degrees of confidence, equilibrium play
will ressemble a Nash equilibrium. There is, however, a complication if more
than two players are considered. For games with three or more agents, a
player may believe that the opponents’ behaviour is correlated. In a Nash
equilibrium, however, players’ behaviour must be uncorrelated. This

motivates the following definition.

Definition 4.2:

Player i believes that the opponents act independently if

3
Fyilat = N wiley)
A Jud . 3
holds for some simple capacities vz(sj) = yz-ri(sj), i

It is one of the advantages of simple capacities that one can define product

measures using the additive structure of the defining probability
distibution LI (11,...1;'1,11*1,...1i). For general capacities, this is

usually impossible.
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Definition 4.3:
A system of beliefs that all players act independently is called consistent

if v) - V) foralli,jer, i=j.

An equilibrium under uncertainty leads to actual play which is equivalent to
Nash equilibrium play if the equilibrium strategy combinations could result

from a Nash equilibrium.

Definition 4.4:
An equilibrium under uncertainty with simple capacities v* = (v;,...v;)

induces Nash equilibrium play if there is a Nash equilibrium (in mixed

strategies) pu* = (ui,...y;) such that, for all i € I,
* * i * = *
supp u¥ < Ri(vi) with vi(s_i) jI;]iuj(sj) for all s_; € s_i

The following proposition relates play in an equilibrium under uncertainty

for high degrees of confidence to Nash equilibria.

Proposition 4.2: If all players believe that their opponents act

independently and if their beliefs are consistent, then there exists e¢ > 0

J
i
uncertainty induces Nash equilibrium play.

such that, for y; € [1 - ¢, 1], i,j € I, i = j, every equilibrium under

Proof:
Consider an equilibrium under uncertainty v* where all players believe that

their opponents act independently and where beliefs are consistent, then

there exists 7 = (11,...,11) such, that for all i € I and all sy € S-i’
n [ 4
v;(s_i) _". yi T (sj), i=j
=i j
By proposition 3.2, supp v;(s_i) = ] supp 7 (sj), for all i € I. Since
=i
v* is an equilibrium under uncertainty, one has
sj € supp ) implies sj € Rj(v;) for all j € I1.
Therefore, with y. := ] 1; and n(s_.) := 7] wi(si),
J ixj J ixj
P.lw.,ve % 8..,8 ;) (s _ 1 -9,)ms,
J(sJ vj) = 7] [s Es p]( 5 -J) m( -J)] + ( YJ) J(SJ)
;™ (8%,8 ) w(s .) T - ) dm, (@) P, (g, ve
= [s Es By IRgel ) WS Q) B -] = B iR
3

for all s, € 8S,.
J J
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Such an equilibrium under uncertainty exists for all degrees of confidence y
(proposition 3.3). Hence, there must be an Ej such that, for all Yj = 1-ej
and the associated probability distribution =,

[ 3 piils;.8_.) -®m(s )] = [ 3 p.(si,s_.) -w(s_.)]
8 .€s . 20 J ] s .€S i3 3

e il =4 =1
Thus, 7 is a Nash equilibrium (in mixed strategies) and u* := = satisfies

the claim of the proposition. W

In two-player games, the consistency and independence condition of

proposition 4.2 are trivially satisfied.

5 Robustness against lack of confidence

As the previous section has shown, for v close to 1 for all i € I,
equilibrium behaviour under uncertainty is the same as in a Nash
equilibrium. This raises the question whether all Nash equilibria have a
nearby equilibrium under uncertainty with the same equilibrium play. If this
is the case for high degrees of confidence, then one can consider the Nash
equilibrium as robust against some lack of confidence. On the other hand, if
there are games where, for some Nash equilibrium, there is no equilibrium
under uncertainty inducing this Nash equilibrium play, then such a Nash

equilibrium is not robust against some lack of confidence.

The following proposition shows that there are games with Nash equilibria

whose equilibrium play occurs in no equilibrium under uncertainty.

Proposition 5.1:

Consider games such that mi(ai) # mi(si) for all s, * ui holds. If beliefs

are represented by simple capacities, then an equilibrium under uncertainty

does not use dominated strategies.

Proof:

Let v* = (vi,....vi) be an equilibrium under uncertainty. Since v; are

simple capacities there must be an additive probability distribution o’ on

S_j such that v* = 7j-a] for all j € I. Let s, be a strategy of some player

3

i # j which forms part of a strategy combination 8_. € supp v;. By the

3

definition of an equilibrium under uncertainty, one has
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i
P.s;ovt) = v, [ 3% p;(s;,s_)-a(s )] + (1-
s .€5 .
=3 =% i
z 7i-[ z pi(si,s_i)-a (s_i

s _.€S .
=% =d

for all s € S;.
i i

Suppose that s; is dominated by strategy s;,

Beliefs

7i)~mi(si)

and Game Theory

)] (l-yi)-mi(ai) = pi(si’vi)

for all s_; € S_i with strict inequality for some

i.e. pi(s;,s_i) 2 pi(si,s_.)

1

8 ;- Clearly,

i i
5 py(ay.8_.)-da (8 ;) = z P;(s;,8_.):a (s )
8 €8 S . b B €8 . R =%
= =i =i -1
and
Pi(syv) = 7ol I pysfs_)-a’(s_)) + (1-v))-m, (s])
s_.E€S_
i :
> vi-[s Es P;(s;.8 j)-a(s_;)) + (1-y;)-m ,(s;) = P ,(s,,v?) in
-i-d

this case because

mi(s;) = pi(s;,s_i) z pi(si,s_i) 2 mi(si).

By the premise mi(si) » mi(s;) and, hence,

mi(a;) > mi(si).

This contradicts the required optimality of 8- | |

We conclude this section with an example which illustrates the necessity of

the condition m (s,) = m, (s7).
174 174

Example 5.1:

Consider the following 2x2 matrix game.

Player 2
t-'1 t2
s, 1,1 0,-1
Player 1
32 -1,0 0,0
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It is easy to check that

ml(sl) =0 = ml(sz) = -1 and

mz(tl) = 0 o mz(tz) = -1
holds. There are two Nash equilibria in pure strategies (Bl,tl) and (sz,tz).
The second Nash equilibrium (sz,tz) uses dominated strategies. According to
proposition 5.1 there is therefore no equilibrium under uncertainty with
this support. To check this claim, consider player 1. The Choquet expected
payoff of strategy 1 is Pl(sl,yl) = qtl and for strategy 2 Pl(sz,vl) =
q - 1. For any degree of confidence less than 1, it is impossible that

t2

Pl(sl,vl) = qtl s Pl(sz,vl) = qt:2 = 1'% 2s
Since this is necessary for an equilibrium under uncertainty with support
(sz,tz), no equilibrium under uncertainty can have this Nash equilibrium

play.

Consider on the other hand the following modification of this game.

Player 2
t1 t2
sl 1,1 0,0
Player 1
92 0,0 0,0

Notice that this modification did not change the set of pure Nash equilibria
nor the fact that 52 and t2 are dominated strategies. The condition of
proposition 5.1 is however no longer satisfied, since

ml(sl) = ml(sz) = 0 and mz(tl) = mz(tz) = 0.
The condition on the Choquet expected utilities of player 1 for an
equilibrium under uncertainty is now

Pl(sl.vl) =Gy % Pl(sz,vl) =0,

which can be satisfied for qtl = 0. Similarly, one can show that for qsl =0

player 2 may find it optimal to choose t_. Thus, in this case, there is an

2
equilibrium under uncertainty compatible with this Nash equilibrium play. ®

Proposition 5.1 and the example show that ’‘robustness against some lack of
confidence’, does not coincide with refinements like perfectness or iterated
deletion of dominated strategies. The necessary condition of proposition
5.1, that there be no ties between the minimum payoffs achieved with

different pure strategies of a player, is however not a generic property for
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two-player games with finite pure strategy sets. Thus, there may be a closer

relationship between these refinements for generic games.

The paper concludes with an example which illustrates how the notion of a
degree of confidence may be used to derive new results in economic

applications.

Example 5.2:

Consider n communities that have to cooperate in the prevention of
pollution. The quality of the environment x depends on the contribution of
each community v., i = 1,....n, according to the production function

i
x = min{vil i = 1,...n}. Thus, the minimal care taken determines the overall

outcome. All communities have the same preferences over environmental
quality and effort given by the utility function ui(x,vi) = 2:x - v, To
simplify the exposition assume that effort levels can only take the values

1 and 2.

For the case of two communities the following payoff matrix arises from this

scenario.

Player 2
2 1
2 2,2 0,1
Player 1
1 1,0 1;1

It is straightforward to compute the following Choquet integral of player i:
3(pi(2,-),1i-wi) = 1i-(2~ri(2) + O-Ii(l)] + (1 - yi)-O = 2-7i-ri(2)
3(pi(1,-),yi-ﬂi) = 1.

Clearly, player i will choose effort level 2 if and only if yi-ri(z) & 0.5,
For an equilibrium under uncertainty where players believe that the opponent
plays never strategy 1, i.e. with " o= (li(2),Ii(1)) = (1,0); Y= 0.5 is a
necessary condition. In fact, it is easy to see that for Yi < 0.5 there is a
unique equilibrium under uncertainty where both players choose a low effort

level, w, = (0,1).
i
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Consider now the case where the number of players increases. For three
players the Choquet integral of player 1 becomes
2 3 2 3
3(p1(2,-),v1) = 71-71~[2-wl(2)-11(2)] and J(pl(l.-),vl) = 1.
Assuming all players believe that opponents play independently and beliefs
that are consistent, an equilibrium under uncertainty in which (2,2) is

played requires now that y_-y, = 0.5 holds. Assuming further the same degree
Y 2773 g

of confidence for each player, y = V 0.5 > 0.5 is required for
coordination on the equilibrium with contribution 2. Thus, one can see that
an increase in the number of participants reduces the possibility of the

good coordination equilibrium (2,2).

In fact, it is easy to check that, with n players, yn_l < 0.5 implies a
unique equilibrium under uncertainty with contribution level 1. Thus, for
any lack of confidence 1-y > 0, no matter how small, there is a number of

players N large enough to make contributing only one unit the only
n-1

equilibrium under uncertainty, since %{gﬂV(o.S] = 1 . One can therefore
conclude that the larger the number of players of this game the more likely

is the equilibrium with the smallest possible contribution level. B

6 Concluding remarks

This paper has introduced an equilibrium concept for games with a finite
number of players whose beliefs are represented by non-additive
probabilities. In general, relaxing the restrictions imposed on beliefs by
the probabilistic nature of mixed strategies and the consistency of beliefs
required in a Nash equilibrium will increase the number of equilibria
substantially. The minimal deviation from a probabilistic representation of
beliefs that is implied by the concept of a simple capacity makes it
possible to parametrise the degree of deviation. This degree of deviation
from a representation of beliefs by a probability distribution can be
interpreted as a player‘'s lack confidence in the assessment of the

opponents’ play.

With the help of the concept of the degree of confidence, it is possible to
parametrise equilibria under uncertainty. It could be shown that, without
further assumptions, equilibria under uncertainty will coincide with maximin

strategies of the players if the degree of confidence of all players is low.
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On the other hand, for high degrees of confidence, equilibria under
uncertainty are similar to Nash equilibria only if all players believe that
their opponents act independently and if these beliefs are mutually
consistent. This result shows the importance of these two properties for the
Nash equilibrium concept. In addition, the notion of an equilibrium under
uncertainty allows the analyst of a game to test the robustness of Nash

equilibrium in regard to these two implicit assumptions.

It could be shown as well that robustness against small degrees of
uncertainty provides a refinement of the Nash equilibrium concept that does
not coincide with perfectness or robustness against iterated deletion of

dominated strategies. In this area, however, more research is necessary.

We conclude the paper with a brief discussion of other game-theoretic
equilibrium concepts where the assumption of expected-utility maximising
agents is abandoned. Crawford (1990) introduces the notion of an equilibrium
in beliefs. In Crawford (1990), beliefs are probability distributions over
mixed strategies, not capacities over pure strategies as in this paper.
Nevertheless, there is a noteworthy relationship between the concept of an
equilibrium in beliefs and an equilibrium under uncertainty. An equilibrium
in beliefs requires a player’'s belief to be concentrated on the set of
best-reply mixed strategies of the other player given that player’s beliefs.
In this regard, equilibria in beliefs are similar to equilibria under
uncertainty. In particular, strategies that are actually played need not
coincide with the strategy that the opponent expects as long as it is part
of the support of the opponent’s belief. Since Crawford (1990) introduces
the concept of an equilibrium in beliefs for two-player games only, the
issues of players’ believing that their opponents act independently and of

consistency of beliefs do not arise.
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