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can eliminate some implausible Nash equilibria.

Keyworde: Uncertainty aversion, Choquet integral,
non-additive probabilitiy, equilibrium concepts

JBL Clneeificatioa: C72, D81

Addrass for Corraepond~nca: J. Eichberger, Department of Economics,
The University of Melbourne, Parkville,
Victoria 3052, Australia



h:ir-hbc.ry~v~Ke2nc~y 7 BeIiefs and Camra Tlteory

NON-ADDITIVH BELISSS AND G)1MB THHORY
Jurgen Eichberger and David Kelseyl

1 Introduction

Experimental evidence indicates that preferences over uncertain acts cannot
be represented by expected utility functionals. In particular, Ellsberg
(1961} and others have pointed out that decision makera distinguish between
situations under certainty and uncertainty in a way that cannot be
represented by an additive probability diatribution. Recently, Schmeidler
(1989) and Gilboa (1987) have axiomatised a preference functional which does
not imply that beliefa are represented by additive probabilitiea.

with the exception of Dow and Werlang (1991), no attempt has been made to
inv~utig.ctc lhe implicatíons of a decision theory without additive
probabilities for game theory. Von Neumann and Morgenstern (1944) were among
the first to axiomatise a deciaion theory for known lotteries and, since
then, this has been the dominant paradigm for the analyais of games. Zn a
Nash equilibrium, beliefs about the behaviour of opponents were supposed to
coincide with the actual behaviour of these players. Znterestingly, von
Neumann and Morgenstern (1949) did not propose this equilibrium concept.
They worked with a decision theory of complete ignorance assuming that
players choose maximin strategies. According to this behavioural assumption
agents consider the worst outcome for all strategies available and chooae
the strategy which yielda the beat among these worat outcomes. Von Neumann
and Morgenstern (1949) could prove however that the value concept built on
maximín behaviour coincides with the equilibrium concept for the class of
zero-sum games.

Z The first discuasions on thís topics between the authors took place while
Jurgen Eichberger was visiting the University of Birmingham. The paper was
wi il ~.-n wlii I~~ .liir~~c~n RichlN-rgcrr watf viail iu~ fhe CrntER ~L Ti.lburg
University. Jurgen Eichberger would like to thank both institutions for
their hospitality which made this research possible. David Kelaey would like
to acknowledge a tzavel grant from the School of Social Sciences, Universíty
of Birmingham. We would like to thank seminar participants at Queens
University, The Inatitute of Advanced Studiea in Vienna, the univeraitiea of
Exeter, Oanabruck, and Birmingham for comments and discussion.



Eichberger~Kelsey 2 Beliefs and Game Theory

We will ::t,uw in tltis papet' how the theory of non-additive probabilities
allows to reconcile the maximin approach with the Nash equilibrium concept
for general games. The notion of a degree of confidence can be used to
relate the two approaches. If the degree of confidence in a subjective
probability representation of a belief is high players will behave like
expected utility maximisers whereas they will act as maximin players for a
hi~lli d~.~l,~.~. ~,f uuc~-rLainty. It c.u, hc r:huwu lh~C, in gencral, equilibrium
behaviour with non-additive beliefs will be as predicted by the Nash
equilibrium concept if this degree of confidence is high. For low levels of
confidence, however, equilibrium behaviour under uncertainty may be maximin
behaviour.

A further result is the observation that there is a generic class of games
where some lack of confidence in the probability asseasment will rule out
play of dominated strategies in equilibrium. This provides the possibility
of a refinement of Nash equilibrium that is weaker than perfectness but
still eliminates dominated strategy play in many games.

The paper is organised as follows. The next section introduces notation and
provides a definition of an equilibrium concept with non-additive
probabilities. Section 3 presents the concept of the degree of confidence,
proves existence of an equilibrium and shows the dependence of equilibrium
behaviour on this degree of confidence. Section 4 relates the equilibrium
notion to the concept of maximin strategies and the final section ahows how
robustness against lack of confidence may be used as a refinement of Nash
equilibrium.
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2 Equilibríum under uneartainty

Beliefs and Game Theory

Consider a game C -( I. (Sí)iEI'(pi)iEI) with a finite player set I, finite
pure strategy sets Si for each player and payoff functions pi(si,s i) which
describe the payoff of player i if a strategy combination ( s.,s ,) isi -i
played. The notation s-i '3 (81 "" ei-1'siil" " sI) indicates a strategy
combination for all playera exept player i. It ia convenient to denote by
s i:3 S1x...xSi lxSi}1x...xSI the set of strategy combinationa which
players othez than i could chooae.

Beliefs of players about opponenta' behaviour are represented by
non-additive probabilities (or capacities). A capacity assigns non-additive
probability weights to aubnets of a set of unknown states of the world. Let
ft be a aet of statea of the world, then one can formally define a capacity
as follows.

Dafiaitíoa 2.1: (capacíty)

A c..,p.u.ity un it iu ,~ re,,l v,,lued function v on the aubaets of tZ which

satisfies the following properties:

a) A s B ~ v (A) s v(B) ;

b) v(o) a 0, v(Q) . 1.

The capacity ia called convex if v(A) . v(B) s v(AUH) i v(AnB) holds.

Notice that, in contrast to an additive probability, it is not required
that v(A) 4 v(8) . v(AUB) t v(AnB). For a convex capacity it is posaible
that v(A) t v(t2`A) ~ 1 holds, implying that not all probability mass is
allocated to a set and ita complement. Thus, one can define the aupport of a
capacity either as the amallest aet of statea with measure one or the

smallest set with a complement of ineasure zero2. We will use the latter
nut i"n whi~rh r,ui b~~ Lorm,illy dcliund .~u Lulluwa:

Defiaitioa 2.2: aupport of a capacity

The support of the capacity v is an event E s i7 such that v(A`E) - 0 and

v(F) ~ 0 for all F, f!`E C F.

2 Compare Dow and Werlang (1991) for a diacussion and analysis of these two

notions of a aupport of a measure.
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Notice that the support of a capacity as defined in 2.2 is not unique in
general. This ia a problem which will be discussed in section 3. If the set
of subsets of i7 has a measurable structure, then one can use the concept of
a Choquet integral to determine the average value of ineasurable functions.

If n is finite and f: f! -~ Ft is a function that associates values to
atates of the wozld, then f(A) is a finite set of real numbers. Denote by fl
s max{f(~)~ ~ E R} and by Q1 z argmax{f(w)~ e E 4}. Let T1 - QI and define
iteratively,

Q~ a argmax{f(~r) ~ m E i1`T~-1}, f~ - max{f(m) ~ ~r E f1`T~-1}, and T~ ~ T~-1~Q..
Jwith the convention Qo z e, the Choquet integral can be formally defined as

follows:

Definition 2.3: (Choquet integral)
For a finite set of states of the world f1, the Choquet integral of a
rr.al-v,iluerd t.unction f with regard to the capacity v is

n
3(f,v) s l~lfi-(v(Ti)) - v(Ti-1)l.

Each player i E I is supposed to hold a belief about her opponents
behaviour, a strategy combination in S, which is repreaented by a capacity-i
vi. Given this belief, the expected payoff from a atrategy ai can be
determined by the Choquet integral pi(si'vi) '- 3(pi(ai'.)'vi). Playera are
assumed to chooae a best response given their beliefs about their opponenta'
behaviour. Denote by R,(v.) z azgmax{ P.(s.,v.) ~ s. E S.} the beat1 1 1 1 1 1 1response correspondence of player i given beliefa v..i

To determine an equilibrium, it is neceasary to relate players' beliefs to
the actual behaviour. In a Nash equilibrium of a game where players' beliefs
are cepicucnted by addilive probabilities, expectationa are asaumed to be
rational in the aenae that each player chooaes a (mixed) strategy which is a
beat response to the actual (mixed) atrategies played by the opponenta.
Thus, beliefs and actual behaviour are usually not distinguished3. In the
context of beliefs repreaented by non-additive probabilitiea, it is no
longer possible to identify beliefs with actual behaviour. An important
property of a Nash equilibrium is however the fact that all pure atrategies

3Crawford (1990) conaiders beliefs as additive probbaility distributionsover mixed strategy apacea.
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that are used in equilibrium with positive probability, i.e., that are in
the support of the equilibrium mixed strategy, form best responsea of the
reapective player.

The following definition of an equilibrium under uncertainty generalises the
notion used in Dow and werlang (1991) to gamea with an arbitrary finite
number of players.

Dafinition 2.4: equilibrium under uncertainty
A belief system (vi,....vÍ) is an equiZibrium under uncertainty if for all
i E I

supp va c II R.(Y!') .
1 isjEI ~ ~

In an equilibrium under uncertainty playera beliefa as repreaented by the
capacity v} put poaitive probability only on atrategies that are beat
responsea of the opponenta given their equilibrium beliefs. Equilibrium
beliefs can however no longer be interpreted as equilibrium mixed atrategies
because a player may believe that her opponents' strategy choicea are
correlated. The only conaistency required in an equilibrium under
uncertainty is each player chooaea a pure atrategy that is a beat reaponae
given her beliefs and beliefa give poaitive probability weight only to best
reaponsea. The following example will illustrate this equilíbrium concept.

Bacample 2.1:

Conaider a general 2x2 matrix game.

Player 2

Player 1
sl

s2

t1

a11'bll

a21'b21

a12'b12

a22,b22

t2

In this case, beliefs of each player can be represented by two numbera
indicating the probability that the opponent plays either of her two
strategies:

vl :(qtl'qt2) ' qtl } qt2 s 1,

v2 -(qsl'qa2) ' qal t qa2 s 1.
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Notice that these probabilities need not sum to one. The aupport of these
capacities is simply

{tl} for qt2 ~ 0
aupp vl z {tZ} for qtl ~ 0

{tl,t2} otherwiae
and

eupp
{sl}

v2 . {s2}
{sl,s2}

for qs2 ~ o

for q ~ 0sl
otherwise

Given beliefa vl and v2, it ia atraightforward to compute the following
Choquet expected payoff functions:

P1(si,vl)

PZ (ti, va)

i
{

ail qt1

ail

ai2 qt2

bli qsl
bli
b2i~qa2

qtl) for ail ~ ai2
for ai1 ~ ai2 '

qt2) for ail ` ai2

qa1) for bii ' b2i
for bli ~ b2i '
for bli ` b2i

Consider the caee4 where the game has two Naeh equilibria in pure and one in
mixed strategiea. Thie implies the following payoff parameter reatrictiona:

all ~ a12, aal ~ a22 and bll ~ bZl, bi2 ~ b22,

With theae reatrictiona, one derives the following best reaponae
corzspondencea:

R1(vi)

RZ(v2)

for qt1 ~ (a21 - a12) (a22 - aZi)
for qtl ~ (ali - alZ) } (all - aiZ) . qt2
for qt1 ~

for
for

for

qal '

qal -
qal ~

(b12 - bzl) (b22 - b12)
(bll - b21) } (bll - b21) qs2

4 The other generic payoff conatellations can be analysed mutatis mutandis.
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The following diagrams show the situation.

qsl
1

1

qtl

1

1 qa2 1- qt2

(b12 - b21) (a12 - a21)Bs i(bll - b21) At v(a22 - a21)

Notice that the parameter restrictiona given above guarantee that the
denominatora of Sa and At are positive. There is no reatriction, however, on
the sign of the numerators. The cases depicted in the diagram corresponds to
the additional parameter conatraints a12 - a21 ~ 0 and blz - b21 ~ 0.

A belief of player 1, vl, is a pair (qti'qt2) on or below the line (0,1) -
(1,0) in the right-hand diagram. Points in the left hand diagram represent
different beliefs of player 2. The broken upward sloping lines indicate the
loci where playera are indifferent between their two atrategiea. These lines
are upwazd aloping by the assumption on parametera made above but may have
positive or negative intercepte. Beliefa above these linea make it a best
reaponse for each player to chooee the first strategy; beliefa below theae
lines make the second atrategiea a beat response. It ia easy to check that
the following beliefa form equilibria of the game:

(i) ( i): vi .(qtl, 0), 0 s qt1 s 1'
v2 .(qal, o), Bs s qsl s 1'

(ii) ( -): vi .( 0, qtZ), At s qt2 s 1'
vZ z( 0, q92), 0 s qs2 S 1'

( i ii ) ( --.-...-
vl i( 0' qt2)' 0 s qt2 s At'
v2 ~(qsl, 0 ). 0 s qal s Ba;

vi -(qtl, 4t2), At s qt2 S 1'
vZ ~(qal, 4S2), Bs s qsl s 1.

(iv) (.---):

5 The other three casea are eaeily analyaed by dzawing the respective
diagrams.
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In an equilíbrium of type (i), (sl,tl) will be played. This is a Nash
equilibrium of this game under the assumed parameter restrictiona.
Similarly, type (ii) equilibria induce (sz,tZ) as equilibrium play which
corresponds to a second pure strategy Nash equilibrium of the game.
Equilibria of type (iii) however lead to (sl,t2) being played which is not a
Nash equilibrium. It is easy to check that (s1,t2) are the maximin
strategies of the players given the payoff parameter restiction of the
diagram. Finally, equilibria under uncertainty of type (iv) correapond to
the mixed strategy Nash equilibrium because players are indifferent about
their strategy choice. ~

Example 2.1 shows that, without further restrictions, there are many
equilibria under uncertainty. Some of these equilibria induce the same
equilibrium play as the Nash equilibria, while other equilibria are
incompatible with Nash equilibrium play. The following section suggests a
restriction on beliefa.

3 Simple capacitia~ and tha dagre~ of confid~ace

In the game-theoretic context, beliefs have traditionally been represented by
additive probability diatributions. Identifying beliefs with probability
distributiona over atates however makes it imposaible to accommodate
behaviour that distinguiehes between cases wheze the deciaion maker knowa
the probability distribution over atatea and casea where s~he is ignorant
about this diatribution. Capacitiea allow us to make auch a diatinction.

General capacitiea have however little in common with probability
distributiona. In particular, the capacity of a aet and the capacity of ita
complement need not aum to a number less or equal to one. Since capacities
are suppoaed to represent beliefs, one restricts attention to convex
capacities which have the property that v(A) t v(t1`A) s v(n) - 1 holds. Even
convex capacities can have the undesirable property of a non-unique aupport.
The following definition characteriaea a class of capacitiea which is easy
to interprete as beliefa and which doea not suffer from these problema.
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D~fiaitioa 3.1: A capacity v is called simple if there exiats an additive
probability distribution x and a real number y E(0,1) auch that for all
events E s S, v(E) s y.x(E).

A simple capacityó can be thought of as a contraction of an additive
probability distribution. This could be interpreted as a lack of confidence
that the decision-maker has in regard to her probability assesament. The
parameter y represents the degree of confidence that the agent has in the
probabilistic asaeasment given by the additive probability distribution x.
The smaller y, the degree of confidence, the more uncertain is the agent
about the situation. Uncertainty measured by y can be distinguished from
likelihood of a state represented by x(c,~).

A further advantage of the repreaentation of beliefs by simple capacities is
the particularly aimple form of the Choquet integral.

Proposition 3.1: Let v be a aimple capacity. For a finite set of states n,
n

3(f, v) . Y. [ F fi.x(Qi)] t(1 - y) .[min{f ( ~) ~ c~ E f2}] .
iLl

Proof: From definition 2.3 and definition 3.1, one computes:
n

3(f,v) - l~lfi.[v(Ti) - vlTi-1)]

n-1 n-1
~ 1Flfi'v(Qi) t fn-[v(n) - v(Tn-1)] ~ l~lfi-y.x(Qi) t fn.[1 - y.x(ft`Qn)1

n-1 n
~ y'1Flfi'x(Qi) t fn-[1 - y-(1 - x(Qn))] s y'1Flfi-x(4i) t fn-I1 - y) .

Noting that fn - min{f(~)~ ~ e fT} completes the proof. ~

Note that, for Qi .{u~i}, i- 1,...n, the Choquet integral aimplifiea to
n

3(f,v) - y.[1Elfi.x(si)] f (1 - Y)-fn .

6 Note that all simple capacities eatiafy constan[ uncertainty aversion as
defined in Dow and Werlang (1991). However, it is not the case that all
capacities which display conatant uncertainty aversion are simple. A special
case of a simple capacity has been used by Dow and Werlang (1992).
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The Choquet integral is a convex combination between the expected value of f
given the additive meaeure x and the worst outcome fn with weight Y E(0,1].
The full weight of the non-additivity falls on the worat outcome in this
case. If Y is cloae to zero, uncertainty dominates and the value of f is
close to the worat outcome. Thus, a decision-maker who chooses an action to
maximise the Choquet integral with reapect to a simple capacity will

- maximise expected utility with probability diatribution x for y a 1,
and

. chooae a maximin action for y a 0.
with beliefa characteriaed by a simple capacity with degree of confidence Y
E(0,1), a player ahows a deciaion-making behaviour which lies between
expected utility maximisation and the extremely uncertainty-averse maximin
behavíour.

Through a number of examplea, ~ow and Werlang (1991) have shown that the
support of a capacity is, in general, not unique. An important property of
simple capacities is therefore the fact that they have a unique support.

Propo~ition 3.]: For a aimple capacity the aupport ia unique and conaista of
all states with positive pzobability.

Proof: Let v be a aimple capacity on f1. Since v is simple there exiats an
additive pzobability w on A and Y E(0,1] such that for all E s S2, v(E) s
y.x(E). Let B~ A denote the set of all states with poaitive measure x. By
definition x(A`B) ~ 0, hence v(ít`B) L 0. Let C be an event auch that A`B c
C. Then there exists ~' E C`(O`B) C B. By monotonicity v(C) : v({w'}) a
y.x({c~'}) ~ 0. Thie demonatrates that B ia the aupport of v. ~

Applying the concept of a simple capacity to games, it can be shown that an
equilibrium under uncertainty exiats for any vector of exogenouly given
degrees of confidence that the playera may have~.

Propositioa 3.3: For any vector of parameters Y:' (Y1,...Y1) there exista a
Nash equilibrium under uncertainty.

~ Proposition 3.3 confirms a conjecture of Dow and werlang (1991) that a
Nash equilibrium under uncertainty will exist for any exogenously given
bound on the uncertainty averaion of players.
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Proof:
Let mi(si) .- min{pi(si,s i)~ s i E S-i} be the minimum payoff a player
obtains from playing strategy si. Define new payoff functiona

~Gi (si, s i) :~ pi (si,s i) t [ (1-Y1) IYi] -mi (si) .

The new game t' -(I, (Si)iEI'(~i)iEI) is well-defined and has a Nash
equilibrium a~ a(wi,...aÍ) in mixed strategies. Thus, for all i E I and all
s! E S, with x!(s?) ~ 0,

1 1 1 1

8 .ES ,
~i(si,S-i)'7f~(8-i) a

a
.ES .

~Í'i(Si.B-i)'A~(a-i)

-1 -i -i -1

for all s. E S, must hold, wherei i
als i) :~ al(sl)~x2(s2)....-xi-1(si-1).rial(siti)'...-aI(sI)

denotes the probability that s is played.-i

Let v?(s ): Y.-xt(s ) for all s E S denote the belief of playeri -i i -i -i -i
i E I with constant uncertainty averaion y,. It will be ahown that vt ~i
(vi,...vÍ) forms an equilibrium under uncertainty for the original game with

constant uncertainty aversion parameters Y.

Consider s'. E supp v!. By proposition 3.2 , v!(s'.) . y.-x;(s'.) ~-i 1 1 -1 1 -i
- Yi'(xi(sí)~x2(s~)~...-xi-1(si-i)~xiti(siti)'....aÍ(sÍ)l ~ 0.

Hence, for j x i, x~(s~) ~ 0 an,d
s~ E argmax{ E ~yj(sj,s j)-xt(s j)~ sj E Sj} (~)

8 ,ES .-] -J
by the definition of a Nash equilibrium.

Since the capacity v~ is símple,

Pj(e~,v~) . F pj(s~,s-j) v~(s j) i(1-Yi)-mj(s~)
a ,ES ,
-J -J

' Yj' F
(p](sj~8-])

t [(1-Yj)IYj]~mj(s~)]'x'(s-j)
e .ES .
-J -J

- Yj' F ~j(aj,e-j).rt(8-j)s .ES ,-J -J
2 Yj' E

~j(sJ~s-j) x.(s-j) - Pj(sj,vj)e ,ES ,-J -J
follows fzom ( ~). Thia provee that v~ ia an equilibrium under uncertainty. ~

For the case of 2x2 matrix gamea which was discusaed in example 2.1, the set
of equilibria for a given degree of confidence of the playera can be given a
simple geometric interpretation.
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Hxampl~ 3.1: (example 2.1 resumed)

Recall the diagrammatic representation of beliefs in example 2.1. The
exogenously given degrees of confidence yl and Y2 require beliefs to lie on
the lines (o,yl) -(y1,0) and (O,y2) -(y2,0) in the respective diagrams.

If yl and y2 are as given in the diagram above, then one checks easily that
the following three equilibria under uncertainty exist:

(i) ( ~ ) : vi . (Yl, 0) , vz ~ (y2, 0) :

(ii) ( -w- ) : vi . (0 , Y1) , v2 a (0, Y2) :

vl a(qtl' qt2)' v2 a(481' q82) with

(a21 - a12) (a22 - a21)
qtl t 4t2 ~ Y1, 4t1 -(aII - a12) }(aIl - a12) ~ qt2'

(b12 - b21) (b22 - b12)
4B1 f 482 ~ Y2, 481 '(bll - b21) }(bll - b21) qs2'

For high degrees of confidence, equilibrium behaviour for the pure strategy
equilibria (( i) and ( ii)) will be exactly as in the respective Nash
equilibria and the third equilibrium will have a support which coincidea
with the aupport of the mixed atrategy Nash equilibrium. On the other hand,
it is easy to see in this example that low8 values of yl and y2 lead to
maximin behaviour in an equilibrium under uncertainty. The following section

8 For Yl, y2 c min {At,SS}, behaviour in an equilibrium under uncertainty
is maximin behaviour.
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investigates whether this relatíonship between Nash equilibrium and

equilibrium under uncertainty holds for general games as well.

4 Hquilibrium under uncertainty and Nash equilibrium

This section relates equilibria under uncertainty with simple capacitiea to
Nash equilibria on the one hand and maximin strategies on the other. It is

well-known that, for zero-sum games, every Nash equilibrium atrategy

combination is a maximin strategy combination. This identity of prudent and

equilibrium behaviour is however lost for general games. The concept of an

equilibrium under uncertainty with simple capacities makes it possible to

relate these two traditional methods of determining the solution of a game

(compare Moulin (1986)). Indeed, the less confidence players have in their

beliefs about opponents' behaviour the more likely the pure strategy cbosen

in equilibrium will be a maximin strategy combination. If playera are

confident about their beliefs, then they will play as in a Nash equilibrium.

The notion of an equilibrium under uncertainty is however general enough to

allow for some players to play maximin strategies and for others to play

best responses.

First, low degrees of confidence in the pzobability asaeasment are
considered. Let

mi(ai) :~ min(pi(si,s-i)~ s-i E S-i)
be the worst payoff player i can obtain from playing etrategy si and let

M. : argmax{m.(s.) ~ s. E S.}.
1 1 1 1 1

be the strategies of player i that maximise these woret payoffa. Note that

any strategy combination s a(s1,...sl) E[I Mi is a maximin strategy
iEZ

combination. For two-player zero-sum games, any auch atrategy combination

leads to the same payoff vector.

Dafinition 4.1:
An equilibríum under uncertainty with simple capacities v~ - (vl" " vI)

induces maximán play if, for all i E Z,
R.(v!) ~ M. .1 1 1

The following result shows that, for low degreea of confidence, equilibria
under uncertainty are maximin strategy combinationa.
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Proposition 4.1: Given beliefs that are represented by simple capacities,
there exists e~ o such that, for y, E ( O,f] for all i E I, everyi
equilibrium under uncertainty inducea maximin play.

Pzoof:
Firatly, for M. . S., p,(s.,s ) ~ p.(s',s'.) for all e' E S, and all s' E1 1 1 1 -i 1 1 -1 1 y -i
S. Hence, P.(s.,v!) . P.(s',v~) for all s' E S. and R,(v!) . S..-i i i i i i i i i i i i

Secondly, for Mi r Si, consider any strategy ai E Ri(vi) auch that si ~ Mi,
then m.(s') ~ m.(s.) for all s' E M, and

i i i i i i

' Y.'( E P.(s.,s ).a.(s )l t (1Pi(si,vi) ' 1 s.ES . i i-i i-i - Yi).mi(ai)
-1 -1

: Y.~[ F p.(s',s )- a.(s )I t f1 - Y.).m.(s:) . P.(s',v!),
1 a ES

1 1 -i 1 -i 1 1 1 1 1 1
-1 -1

where a. is an additive probability distribution on S i auch that vi(s-i) -i
Yi-ai(s-i) for all s-i E S-i.

Since m,(s:) ~ m.(s.) holda, there is a poaitive e, small enough auch1 Z 1 1 1
that P.(s:,v!) ~ P.(s.,v!) for all y, s e, holda. For auch a y„ a. Ei i i i i i i i i i
R.(v~)nM,. Thus, E- min{E,~ iEI} provides an upper bound on the degree ofi i i i
confidence such that R.(v!) . M.. ~i i i

Example 3.1 suggeate that, for high degrees of confidence, equilibrium play
will ressemble a Nash equílibrium. There is, however, a complication if moze
than two players are conaidered. For games with three or more agenta, a
player may believe that the opponents' behaviour is correlated. In a Naeh
equilibrium, however, playera' behaviour muat be uncorrelated. Thia
motivates the following definition.

Dafinitioa ~.2:
Player i believes that the opponents act independently if

vi (s-i) . jj vi (sj )
jsi

holds for some aimple capacitiea vi(aj) - yi.xi(sj), jri.

It is one of the advantagea of aimple capacities that one can define product
measures uaing the additive atructure of the defining probability
distibution x. .(xl xi-i ritl .~I) gor general capacities, this is~ ~ ~' i ~
usually impossible.
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Definition 4.3:
A system of beliefa that all playera act independently ia called conaistent
if vi - v] for all i,j E I, i m j.

An equilibrium under uncertainty leads to actual play which is equivalent to
Nash equilibrium play if the equilibrium strategy combinations could result
from a Nash equilibrium.

Dafinition 4.l:
An equilibrium under uncertainty with simple capacitiea vt s(vi,...vÍ)
induces Nash equilibrium play if there is a Nash equilibrium ( in mixed
strategies) ~t -(~1,...yÍ) such that, for all i E I,

suPP ~! s R.(v!) with v~(s )-]~1~~(sj) for all s i E S-ii i i i -i

The following proposition relates play in an equilibrium under uncertainty
for high degrees of confidence to Nash equilibria.

Propoaition 4.2: If all playera believe that their opponents act
independently and if their beliefs are consistent, then there exiata e~ 0
such that, for yi E[1 - e, 1], i,j E I, i r j, every equilibrium under
uncertainty inducea Nash equilibrium play.

Proof:

Consider an equilibrium under uncertainty v~ where all players believe that
their opponents act independently and where beliefa are consistent, then
there exists a z(xl, ..,al) such, that for all i E I and all a E S.

-i -1,
vi(s i) z R Yl-xJ(s.), i,~j .

jsi ]
By proposition 3.2, supp vi(s-i} .~ supp x](sj), for all i E I. Since

jsi
v~ is an equilibrium under uncertainty, one has

sj E aupp aJ impliea sj E Rj(v~) foz all j E I.
Therefore, with yj :~ n Y~ and x(s-j) . R xl(ai),

isj L i,ej

P, s.,v.) at Y.' [ F P. [s.,s ) -x(s )l f (1 - Y.) -m. (s.)J ] 7 J
s.ES , J J -J -J J J ]

-J -]
2 Y.-[ F P.(s',s )-xla )] t(1 - Y.)-m.(s') . P.(s'.,vt)

J s.ES , J J -J -J J ] J J J ]
-] -]

for all s' E S..] 7
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Such an equilibrium under uncertainty exiata for all degrees of confidence y
(proposition 3.3). Hence, there must be an Ej such that, for all yj : 1-ej
and the associated probability diatribution x,

[ F Pjlsj,a-j) . x(s j)] : [ F Pj(aj~s-]) ~ a(s-j)] .
S jES-j 9-jES-j

Thus, a is a Nash equilibrium (in mixed strategíes) and p~ : 3 w satiafiea
the claim of the proposition. ~

In two-player games, the consistency and independence condition of
proposition 4.2 are trivially satisfied.

5 Robustaaas agaiast lack of coafidoncs

As the previous section has ahown, for yi close to 1 for all i E Z,
equilibrium behaviour under uncertainty is the same as in a Nash
equilibrium. This raiaea the question whether all Nash equilibria have a
nearby equilibrium under uncertainty with the same equilibrium play. If thia
is the case for high degrees of confidence, then one can conaider the Nash
equilibrium as robust against aome lack of confidence. On the other hand, if
there are games where, for some Nash equilibrium, there is no equilibrium
under uncertainty inducing this Nash equilibrium play, then such a Nash
equilibrium is not robuat againat aome lack of confidence.

The following proposition ahows that there are gamea with Naah equilibria
whose equilibrium play occura in no equilibrium under uncertainty.

Propoeition 5.1:
Consider games such that m.(s.) .e m.(e') for all s. K s: holda. if beliefsi i i i i i
are represented by aimple capacities, then an equilibrium under uncertainty
does not use dominated strategies.

Proof:

Let V~ -(Yi,....vÍ) be an equilibrium under uncertainty. Since v! are
J

simple capacitiea there muat be an additive probability distribution a~ on
S j such that v~ . yj.a~ for all j E I. Let ai be a strategy of some player
i s j which forma part of a atrategy combination a-j E aupp v~. Sy the
definition of an equilibrium under uncertainty, one has
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Pi (si. ~i) - Yi' [ F Pi (si,s i) -a
s .ES .
-1 -]

z 7i'[ ~ pilsí,s i).ar
s ,ES .-1 -1

for all s' E S..] ]
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s i)) t (1-Yi)~mi(ai)

s-i) 1 t(1-Yi) - mi (ai) . Pi (aí, vi)

Suppose that si is dominated by strategy aï, i.e. pi(ai,s-i) z pi(ai's-i)
for all s i E S i with strict inequality for some a-i. Clearly,

s.ES .
p](aï,s-i)-a](s-i) z s.ES ,

pi(ei,s-i)-a](s-i)
-] -] -1 -1

and

P. (S'.'. V!) G ]] ] ] Yi.[e .ES ,
pi(si,s-i).a ( s i)] t (1-7i)-mi(aï)

-i -]

~ Yl [s .ES . p](s],s
i).a](s-i)] t( 1-Yi).mi(ai) ~ Pi(si,vi) in

-] -]
this case because

mi(ai) ~ pi(ai,s-i) z pi(ai,é-i) x mi(ai).
By Che premise m.(s.) e m,(s") and, hence,] ] ] i

m.(s") ~ m.(e,).] i ] ]
This contradicta the required optimality of s.. ~]

we conclude this aection with an example which illustrates the necesaity of
the condition m.(s,) s m.(e~).] ] ] ]

Sxampl~ 5.1:
Consider the followinq 2x2 matrix game.

Player 2

t 1

si 1,1
Player 1

az -1,0

t2

0,-1

0,0
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Zt is easy to check that

ml(sl) L 0 s mi(s2) --1 and
mZ (tl) ~ 0 e mz (tZ) ~ -1

holds. There are two Naeh equilibria in pure atrategiea (sl,tl) and (s2,t2).
The second Nash equilibrium (s~,t2) uses dominated atrategies. According to
proposition 5.1 there is therefore no equilibrium under uncertainty with
this support. To check thia claim, conaider player 1. The Choquet expected
payoff of strategy 1 is P1(81'vl) m qtl and for strategy 2 P1(s2,v1) e
qt2 - 1. For any degree of confidence lesa than 1, it ie impoasible that

Pi(si,vi) ~ qti s P1(s2,vi) - qtZ - 1 c l.
Since this is necessary for an equilíbrium under uncertainty with aupport
(s2,t2), no equilibrium under uncertainty can have thia Nash equilibrium
play.

Consider on the other hand the following modification of this game.

Player 2

Player 1
sl

s2

t 1

1,1

0,0

0,0

0,0

t2

Notice that this modification did not change the aet of pure Nash equilibria
nor the fact that s2 and t2 aze dominated atrategies. The condition of
proposition 5.1 is howevez no longer satisfied, since

ml (sl) ~ ml (s2) a 0 and m2 (tl) ~ m2 (tZ) . 0.

The condition on the Choquet expected utilitiea of player 1 for an
equilibrium under uncertainty is now

P1(sl'vl) ~ qtl s P1(aZ,vl) a o,
which can be satisfied for qtl 8 0. Similarly, one can show that for qal . 0
player ~ may find it optimal to chooae t~. Thus, in this case, there is an
equilibrium under uncertainty compatible with thia Nash equilibrium play. ~

Proposition 5.1 and the example ahow that 'robuatnesa against aome lack of
confidence', doea not coincide wíth refinements like perfectnesa or iterated
deletion of dominated stratégies. The necessary condition of proposition
5.1, that there be no ties between the minimum payoffa achieved with
different pure strategiea of a player, is however not a generic property for
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two-player games with finite pure strategy seta. Thus, there may be a closer
relationship between theae refinements for generic games.

The paper concludea with an example which illustratea how the notion of a
degree of confidence may be used to derive new resulta in economic
applications.

8xamplo 5.2:
Consider n communities that have to cooperate in the prevention of

pollution. The quality of the environment x dependa on the contribution of
each community vi, i- 1,....n, according to the production function
x- min{v.~ i- 1,...n}. Thus, the minimal care taken determines the overalli
outcome. Al1 communities have the same preferences over environmental
quality and effort given by the utility function ui(x,vi) - 2.x - vi. To
simplify the exposition assume that effort levels can only take the values
1 and 2.

For the case of two communitiea the following payoff matrix ariaea from this
scenario.

Player 2

Player 1
2,2 0,1

2 I 1

2

1, 0 1, 11

it is straightforward to compute the following Choquet integral of player i:
3(pi(2,-),Yi'wi) ~ Yi'[2.Ai(2) t O~xi(1)) t(1 - Yi).0 . 2-yi~xi(2)
3(P.(1,-),Y.~a.) a 1.i i i
Clearly, player i will choose effort level 2 if and only if yi.xi(2) : 0.5.

For an equilibrium under uncertainty where playere believe that the opponent
plays never strategy 1, i.e. with x. .(x.(2),x.(1)) ~(1,0), y, z 0.5 ia a1 1 1 1
necessary condition. in fact, it is easy to see that for yi ~ 0.5 there is a
unique equilibrium under uncertainty where both playera chooae a low effort
level, x. - (0,1).i
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Consider now the case where the number of players increases. For three
players the Choquet integral of player 1 becomes

3(P1(2,~),vl) - 71'Yl'[2.ai(2)-ai(2)J and 3(Pl(1,~),vl) - 1.
Assuming all players believe that opponents play independently and beliefs
that are consistent, an equilibrium under uncertainty in which (2,2) is
played requires now that y2.y3 : 0.5 holds. Asauming further the same degree
of confidence for each player, y x 05 ~ 0.5 ia required for
coordination on the equilibrium with contribution 2. Thus, one can see that
an increase in the number of participants reduces the poasibility of the
good coordination equilibrium (2,2).

In fact, it is easy to check that, with n players, yn 1 ~ 0.5 implies a
unique equilibrium under uncertainty with contribution level 1. Thus, for
any lack of confidence 1-y ~ 0, no matter how amall, there ia a number of
players N large enough to make contributing only one unit the only

n-1
equilibrium under uncertainty, aince lic~ [~ - 1. One can thereforen
conclude that the larger the number of players of this game the more likely

is the equilibrium with the amalleat poasible contribution level. ~

6 Concluding r~marke

This paper has introduced an equilibrium concept for games with a finite
number of players whose beliefs are repreaented by non-additive
probabilities. In general, relaxing the restrictiona impoaed on beliefs by
the probabilistic nature of mixed atrategies and the consistency of beliefs
required in a Nash equilibrium will increaee the number of equilibria
substantially. The minimal deviation from a probabiliatic representation of
beliefs that is implied by the concept of a aimple capacity makes it
possible to parametriae the degree of deviation. Thia degree of deviation
from a repreaentation of beliefs by a probability distribution can be
interpreted as a player's lack confidence in the assesament of the
opponents' play.

with the help of the concept of the degree of confidence, it is posaible to
parametrise equilibria under uncertainty. It could be shown that, without
further assumptions, equilibria under uncertainty will coincide with maximin
strategies of the playera if the degree of confidence of all players is low.
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On the other hand, for high degrees of confidence, equilibria under
uncertainty are similar to Nash equilibria only if all players believe that
their opponents act independently and if these beliefa are mutually
consistent. This reault shows the importance of these two properties for the
Nash equilibrium concept. In addition, the notion of an equilibrium under
uncertainty allows the analyat of a game to test the robuatneas of Nash
equilibrium in regard to theae two implicit asaumptiona.

It could be shown as well that robustness against small degreea of
uncertainty provides a refinement of the Nash equilibrium concept that does
not coincide with perfectness or robustness against iterated deletion of
dominated strategies. in this area, however, more research ia neceasary.

we conclude the paper with a brief discuasion of other game-theoretic
equilibrium concepts where the asaumption of expected-utility maximiaing
agenta is abandoned. Crawford (1990) introducea the notion of an equilibrium

in beliefs. In Crawford (1990), beliefa are probability diatributiona over
mixed strategiea, not capacities over pure strategiea as in thia paper.
Nevertheless, there is a noteworthy relationahip between the concept of an
equilibrium in beliefs and an equilibrium under uncertainty. An equilibrium
in beliefs requires a player's belief to be concentrated on the set of
best-reply mixed strategies of the other player given that player's beliefa.
In this regard, equilibria in beliefs are similar to equilibria under
uncertainty. In particular, atrategiea that are actually played need not
coincide with the strategy that the opponent expects as long ae it is part
of thê support of the opponent's belief. since Crawford (1990) introducea
the concept of an equilibrium in beliefa for two-player gamea only, the
issues of players' believing that their opponents act independently and of
consístency of beliefa do not ariae.
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