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We propose a rN-consistent estimator for binary response panel data

where the indivídual specific effect may be correlated with the

regressors. The estimator is asymptotically normal with a simple

variance matrix. The estimator does not require specifying the error

term distributíon nor depends on a smoothing parameter as ín other

nonparametric methods; it, however, puts restrictions on the

relatíonship between the level of the regression function and its

increment over time. Extensions to fixed effect ordered response panel

data are considered.
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1. Introduction.

Consider a"fixed-effect" binary response panel data (Yit'xit )'~
where Yit-1(yit ~0] with 1(A1-1 if the event A holds and 0 otherwise,

~
(1.1) yit - xit ~} ai . uit' i-1...N, t-1,2,

xit is a kxl regressor vector and ai is an unobserved unit-specific

effect possibly correlated with xi-(xil',xi2')'. Chamberlain (1980)

proposed a parametric estimator for ~ under the independence of

ui-(uil,ui2)' from xi and uil and ui2 being iid Logistic. Manski (1987)

proposed a semiparametric estimator ("panel maximum score" estimator

(PMSE)) for S without specifying the distribution of the error terms

under the following restrictions: with xi2-xli - ~xi -(~xil' ~xik)' ,

(1.2) uil~(ai,xi') and ui2~(ai,xi') follow the same distribution,

and the support of uil~(ai,xl') is R1 for a.e. (ai,xi')'.

(1.3) E{(~xi-EAxi)(Axi-EAxi)}' is p.d., and there is a regressor, say

the kth, such that (3kx0 and Axik~(~xil' " Oxi,k-1) has an everywhere

positive Lebesque density for a.e. (~xil" ~~xi,k-1)'

Charlier et al. (1995) and Kyriazidou (1994) smooth PMSE as Horowitz

(1992) smooths the (cross-section) maximum score estimator (MSE) of

Manski (1985). MSE is N1~3-consistent with no practical asymptotic

distribution (Kim and Pollard (1990)); PMSE is likely to have a similar

asymptotic behavior. The smoothed PMSE is asymptotically normal, but

still short of being rN-consistent and depends on a smoothing parameter.

In this paper, we propose a rN-consistent semiparametric estimator

for (1.1). In the semiparametric econometric literature, it has been

difficult to extend various JN-consistent estimators for single equation
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models to fixed-effect panel, with the only exception being Honoré

(1992) for panel Tobit models. In addition to being useful for (1.1)

ítself, our estimator can be used also as a first stage estimator for

panel sample selection models with a fixed effect in the selection

equation, the kind of model analyzed in Kyriazidou (1994). There however

ís a price to pay: the estimator restrains the relationship between the

level of the regression function and its increment over time; also

certain restriction on the relatlon between a and x is necessary.

In Section 2, the estimator is introduced. In Section 3, the

identification and consistency are shown. In Section 4, its asymptotic

distribution is derived. In Section 5, efficiency and other interesting

aspects of the distribution are discussed. In Section 6, two extensíons

are considered: (1.1) with more than two waves, and fixed effect ordered

response panel data. Fínally, in Section 7, conclusions are drawn.

2. The Estimator.

Uef ine

(2.1) ~yi - yi2-yil (and recall Axí - x12-x11).

PMSE is obtained by maximizing

(2.2) (lIN)Eisgn(~xí b) Dyi

wíth respect to (wrt) b, and its consistency is based upon

(2.3) Med(Ay11xi.AyimO) - sgn(Gxi'S),

where Med(ylA) is the median of y conditional on A, and sgn(B)-1 if B~O,

0 Sf B-0 and -1 if B~O. Note that Ayí given ~y1x0 can take only !1.

Our estimator is obtained by maximizíng
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(2.4) {N(N-1)}-lElx,sgn(~xi'b-~x~'b)~(4yi-4y~)~~yi2~y~2

(2.5) - (2)-lEi~J.Dyix~y~.~YixO.Ay~xO sgn(Oxi'b-Ax~'b)~(~yi-~y~)

wrt b, and its consistency is based on the following key equation

(2.6) Med(~yi-4y~ I~xi,4x~.~Yix~y~,~yix0,~y~x0) - 2~sgn(Oxi'R-~x~'s).

The step from (2.3) to ( 2.6) is not trivial, for median is not a linear

functional; even if so, we would get sgn(Axi'R)-sgn(~x~'~), not the

right-hand side of (2.6).

Although Ayi-~y~ can take five values (O,tl,t2), the conditioning

event in (2.6) excludes the middle three values ( O,tl) to make ~yi-Dy~

binary, which is one of the key ideas behind (2.6). The main impetus for

the rN-consistency of our estimator is the double sums where one sum

turns the non-smooth optimand into the smooth function

(2.7) E{sgn(4x'b-~x~'b)-(Ay-~y~)~~y24y~21~x~,~y~}.

Then the usual extremum estimator theory is applicable to (llrN)E~(2.7);

this is not exactly true, for the form of E{~14x~,~y~) is a nuisance

parameter (Newey and McFadden (1994,p.2200-2202)), resulting in variance

four times larger than that of the maximizer of (1~rN)E~(2.7) as shown

in Theorem 2 below. Interpersonal comparison in the double sums provides

more information than that used in PMSE, leading to the rN-consistency.

For a latent linear cross-section model

(2.8) zi' - wi'S t ui,

Han (1987)'s "maximum rank correlation estimator" (RCE) maximizes

(2.9) {N(N-1)}-lEix~l(wi'b~w~'b).i[zi~z~1
r

wrt b under the independence of u and x where z-T(z ) with r being a

non-decreasing transformation. Sherman (1993) proved the asymptotic
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normality of RCE and derived the variance, despite the apparent

non-smoothness of the maximand.

The summand in (2.4) takes t2 depending on whether the sign of

Axi'b-Ax~'b agrees with that of eyi-ey~ gíven {eyix0,ey~x0}. Adding 2 to

the summand and dividing it by 4, the summand takes 1 or 0. Then

maximizing (2.4) is equivalent to maximizing

(2.10) {N(N-1)?-lEix~llexi'b~ex~'bl-1[eyi~ey,1-eyl2ey~2.

From this, our estimator may be viewed as a panel data analog of RCE,

but the analogy holds only for bínary response. For any non-decreasing

transformation t(.) for which RCE is good, (2.10) is not applicable

since ey-i(y2')-i(yl')M(ey') in general; the appearance of lleyi~ey~)

in (2.1n) is an artifact due to the event {eyi~ey~,eyl~o,Ay~xO).

3. Identification and Consistency.

In this section, we state assumptíons and díscuss identification of

our estimator from which its consistency easily follows. Since S is

identífied only up to a scale, normalize s by settíng Sk1, which

requires skx0 a priori; from now on, we use

S - (~1...~k-1~1)' - (f3c',1)'. b - (bl...bk-1~1)' a (bc',1)'.

In practice, one has to try both ~k-1 and Sk-1, for sgn(~k) is unknown.

But since sgn(~k) is estimated at a faster rate than ~N, the remainder

of the paper is not affected by omltting the case sk-1; see Horowitz

(1992) for thís poínt.

. Correspondíng to ~c, define exic as the components of Axí other

than the last one exik. Time-invariant variables (e.g. intercept) drop

out in exi, and time-variant but "unit-invarlant" variables (e.g. time
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dummies and macro-economic shocks common to all units) drop out in

~x.-~x., which can reduce the dimension of the parameters further belowi ~
k-1; to simplify the notation, however, we will ignore this. Let

IH12-EiE~hi~2 for a matrix H-[hi~1.

Assumption 1:

(a) The parameter space B is a compact subset of Rk-1

(b) (yil'yi2'xil 'xi2')', i-1...N, are iid.

(c) (1.3).

(d) (ul,u2)la is independent of (xl',x2')la and the support of

(ul,u2)la is R2 for a.e. a.

(e) P(~y-11~x's) is an increasing functíon of ~x'(3 and P(~y--1~4x'(3)

is a decreasing function of Ax'S for a.e. 4x'(3.

(f) "Index increment sufficiency" of (xl'(3,a):

P(xl'(3,al~x) - P(xl's,al~x'(3) for a.e. 4x

where P(-I~) denotes the conditional distributions.

(a) and (b) are self-explanatory. The second part of (c) involving

~xikl(-) is in fact stronger than necessary, for what we need is

(c)' the kth component of ~xi-Ax~ has an everywhere positive Lebesque

density conditional on the other components of ~xi-4x~ a.e.

To see this (and to simplify notations), let

(3.1) exi - wi - (wil...wik)' - (wic ,wik) ,

where wic(-~xic) is the first k-1 components of wi, and observe

(3.2) f (a ) - ff (a tw. )-f (w. )dw(wik-w~kllwic'wjc o wk~wic o ~k wk~wjc ~k ~k

where falb(ao) denote a conditional density of alb at a-ao. From (3.2),
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we can see that the second part of (c) ímplies (c)', but not necessarily

the other way around; the second part of (c) is however more primitive.

The assumption (d) is weaker than (1.2) in that (d) does not

restrict the marginal distributíons, while (d) is stronger than (1.2) in

that it requires the conditional independence. In PMSE, only one person

i matters, which makes ít possible to prove (2.3) by condítioning on xi

and ai. For our estimator, however, two persons with different x and a

appear, so we cannot condition on xi,ai,x~,a~ in proving (2.6); (d) ís

used to leave only Axi'~ and Gx~'s in the conditioníng set. (d) allows

correlation between ul and u2 as well as between (ul,u2) and a.

The conditional independence in (d) does not necessarily imply the

unconditíonal independence; e.g. ul, u2, xl and x2 may be independently

drawn from N(O,lta2). This example shows that ul and u2 can have

heteroskedasticity of an unknown form, so long as the conditional

varíance depends only on a. Considering that RCE requires independence

between the error term and the regressor, (d) is the natural analog for

panel data, and looks difficult to relax. Fínally, (d) does not allow

the lagged dependent variable as a regressor, for having yl in x2

implies a correlatíon between ul and x2.

As for Assumption (e), observe that

(3.3) P(~y-11x1'~.Ax'S.a) - P(ulc-xl'S-a.u2~-xl'S-Ax'S-a Ixl'~.Ax'S.a)

is an increasing function of Ax's for a given xl'S and a. Integrate this

wrt (xl'S,a)IAx'á to get the "weighted average" P(Ay-11Ax'S):

(3.4) fP(Ay-11x1'~.Ax'~,a)'fxl'SI(a.Ax'á)(xl ~) FalAx'S(da).d(xl'S)

where the weight is the product of fxl,sl(a Ax,s) and FalOx,s, a

conditional density for xl'SI(a,Ax'S) and conditional dístribution for
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alAx'~ respectively. Since a is time-invariant and 4x'~ is an increment

over time, a can be independent of 4x's, in which case (3.4) becomes

(3.5) fP(Ay-11x1'R,Ax'S.a)'fxl'RI(a,Ax'R)(xl'~)~Fa(da).d(xl'R).

Thus one overly sufficient condition for Assumption (e) is

(e)' a is independent of Ax'~, and fxl,s~(a Ax,~) is a

non-decreasing function of Ax'S for a.e. (a,Ax'S)'.

Note that fxl,sl(a Ax,~) is in fact allowed to be decreasing in Ax'~ for

some Ax'S so long as fx1,R~(a Ax,S) is increasing in Ax'a for some other

Ax'~ such that the weighted average P(Ay-11Ax'S) remains increasing in

4x'R. A similar argument holds for P(Ay--1~4x'~).

To understand the second part of (e)' better, consider a labor

force participation decision where x consists of age, age2, yearly

job-experience, the other household income, marital-status (dummy), and

the number of dependents. Assume that unemployment is voluntary to call

xl'~ "desire to work" at time 1. If a higher Ox'~ implies the lower

desire to work for a.e. a, then (e)' fails. If a higher Ax'~ implies the

higher desire to work for a.e. a, then (e)' holds. In mixed-cases, (e)

depends on which case dominates in the weighted average (3.4). If xl'~

and x2'S are iid for a.e. a, then xl'S and Ox'S-xZ's-xl'~ are negatively

related, leading to a failure of (e)'. But iid is an exception rather

than a rule for micro panel data.

The following is sufficient for (e)' (and so (e)):

(e)" a is independent of Ax'~, and each component of Ax is

independent of its level at t-1 for a.e. a,

which can be easier to check than (e)'. Recall the labor example ahead.
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First, Aage-1 and it ís independent of the age satisfying (e)", but

Aage-1 violates (1.3). Second, Aage2-(agelfl)Z-age12-2.ageltl; the

increment is positívely related to the level, whích is good for (e) and

(e)'. Thírd, if income increases by 5'I., then income-0.O5.incomel; the

increment is positively related to the level (íf log(income) is used,

the increment would be índependent of the level). Fourth, Ajob

(increment in job experience) is 0 or 1; Ojob ís likely to be positively

correlated wíth the level (seniority). Fifth, for marital status dummy

(m-1 if married), ~m is negatívely related with ml when ~mx0, for Om-1

(-1) is associated with m1-0 (1), but P(Am-O) is far greater than

P(Am~O) so that Am may weigh little for Ax's. Sixth, as for the number

of dependents d, the relation between Ad and dl is not clear. If x

íncludes only those varíables whose increment is independent of its

level at t-1 for a.e. a, then (e)" holds.

Assumption (f) is used to prove Lemma 1 below: P(Ay-11Axc,Ax'S) -

P(Dy-11Ax's) for a.e. Ax. Without Lemma 1, Ax'S would not be the only

determinant for ~y: our estimator would not be then valid. Since a is

time-invariant and Ox is increment over time, we may assume that a is

independent of Ax, as we argued analogously for Assumption (e) ahead.

The following (f)' is sufficíent for (f) and easier to grasp:

(f)' a is independent of Ax, and (integrating out a in (f)),

P(xl'SIAx) (-P(xl'~IAxc,Ax'S)) - P(xl'SIAx's) for a.e. Ax.

In the labor example, (f)' dictates that, given the increment in

the desire to work, no other increments should give information for the

level of desire at t-1. First, since Aage-1 always, Aage does not give

any information for xl'S; but as mentioned ahead, age violates (1.3).

Second, Gage2-2.ageltl shows agel and this may give information about
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xl'R, if the desire to work depends on age. Third, if ~income-SÍ for

everybody, then Aincome does not give any information for xl'~. Fourth,

it is not clear whether Ajob gives any information on x~'~; one could

argue for both negative and positive relations with xl'~. Fifth, if Om-1

or Ad-1, then this may imply relatively higher xl'~ for males and lower

xl'S for females. Overall, this example illustrates that, while some of

Oxc may be related to xl'S (so violating (f)'), it is not clear whether

the relations are positive or negative, in which case (f)' may not be

too farfetched.

The proofs for the follouing two lemmas are in the appendix.

Lemma 1: Under Assumption 1, 6y is independent of Oxc given Ax'~:

P(Ay IAxc.Ax'~) - P(4YIAx't3). a.e. Ox.

The lemma is a panel analog of index (increment) sufficiency: with

Ax'S(-w'S) given, 4xc(-wc) does not provide any new information for

Ay(-z). In cross-section models as (2.8) with the same notation w and z,

index sufficiency is an assumption, while Lemma 1 is a derived result,

for 1[Ay-1] depends on xl'R and x2'~ (and others) not just on Ox'S.

Lemma 2: Under Assumption 1, (2.6) holds.

In essence, (2.6) "identifies" (4xi-Axj)'S. To separate R from

~xi-~x., P(Xid)~0 is sufficient whereJ

Xid -{(xi',xj'): sgn(4xi'R-Oxj'S)ssgn(Axi'b-4xj'b) for any bxR,beB).

P(Xid)~0 can be proven under Assumption 1, following Manski (1985). With

the identifícation, the a.s. consistency follows from the uniform

convergence of U-processes in Sherman (1994) and the continuity of the
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population version of (2.4). We state this as a theorem:

Theorem 1: Under Assumption 1, S is identified, and the estimator

maximizing (2.4) is a.s. consistent for S.

4. The Asymptotic Diatribution.

The asymptotic distribution is deríved following Sherman (1993) who

builds on the techniques in Pollard (1984) and Pakes and Pollard (1989);

see also Arcones et al. (1994). It may be done as well following Honoré

and Powell (1994) with the technique of Huber (1967).

The key expressíon ís (recall the definitions in (3.1))

(4.1) t(z~.w~,by) - Eilj{sgn(wi'b-w~'b).(zi-z')~zi2z~2}. í~.),

where i ~j means that the integral is wrt (zi,wi') conditional on

(z~,w~'). Denote the gradient of t(z~,w~,bc) wrt bc as O11(z3,w~,bc).

Denote the second order derivative matrix wrt bc as VZr(z~,w~,bc). We

need the following Assumption 2; near the end of this section, we

provide a more primitive Assumption 3 that implies Assumption 2.

Assumption 2:

(a) OZT(z~,w',bc) exists for a.e. (z~,w~')' in a neíghborhood NS of ~c.

(b) There is an integrable function M(z~,w~) such that for all bceNS

IVZr(z~,w~,bc)-VZt(z~.w~.sc)I S M(z~,w3)-Ibc-scl.

(c) E141t(z~,w,,~c)IZ~oo.

(d) E02r(z~,w~,sc) is n.d.

Let E-1(a)~{E(A)}-1. Denoting the estimator as bcN and omitting z~,
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w, and S in r, Sherman (1993) proves (for RCE)~ c

(4.2) ~N(bcN-Rc) -d N(0, 22,E-102r-E(O1rOlr')-E 102r )

under Assumption 2, consistency of Sc, the a.s. continuity of the W(b) -

1[wi'b~wj'b)-1[zi~zjl wrt the product measure for "i and j", and that

{~(b),beB) is a"Euclidean class" in the sense of Pakes and Pollard

(1989). Since the Euclidean property easily holds for our estimator and

Assumption 1 and 2 are sufficient for the other conditions, (4.2) can be

used for our estimator. 22 in (4.2) is due to the order of the U-process

(2.4) being 2; if the order were 3, we would get 32.

Deriving Olr and 02r in the appendix, we obtain

Theorem 2: Under the assumptions 1 and 2, JN(bcN-Rc) is asymptotically

normal with the variance matrix 4.E-102r.E(~1rOlr').E 102r,

EV2r - -8-E[ {wc-E(wclw'R)){wc-E(wclw'~)}'~8o(w'~)~n(w'~) 1,

E(O1r01r') - 16~E[ {wc-E(wclw'R)){wc-E(wclw'~)}'-go(w'R)2

-P(z--lIw'R)P(z-1lw'R)-{P(z--llw'~)tP(z-11w'~)} 1

where g(-) is a Lebesque density of w'S,0

(4.3) n(w'~) - P'(z-11w'R)P(z--llw'S) - P'(z--llw'R)P(z-11w'~),

and P'(-Iw'S)-dP(z-11w'S)~d(w'R) which exists as shown in the proof for

the sufficiency of Assumption 3 for Assumption 2.

E02r is n.d. because, due to Assumption 1(e),

(4.4) P'(z-11w'R) ~ 0 ~ P'(z--l~w'R).

. ~
The variance of RCE for the binary response model z-1(z ~0) with z in

(2.8) has the same format as in (4.2) with (Sherman (1993,p.134))
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(4.5) EV2z - -4.E( {wc-E(wclw'S)}{wc-E(wclw'S)}'-So(w'R).P'(z-11w's) 1.

E(V1tVli') - 16-E[ {WC-E(wClw'S)}{wc-E(wc~w'S)}'.go(w'~)2

.P(z-01w'~)P(z-11w'S)~{P(z-01w'S)tP(z-11w's)) 1.

These are almost the same as those of our estimator except at four

aspects. Fírst, z-0 occurs in RCE while z--1 occurs in our case. Second,

P(z-01w'~)'P(z-11w'S)-1 for RCE, while P(z--llw'H)tP(z-11w'S)~1 for our

estimator, which is a"normalizing factor" since only z-t1 is used for

our estimator. Third, P'(z-11w'~) appears ín RCE ínstead of n(w'S). To

see n(w'~)-P'(z-11w'S) for the binary case, replace z--1 with z-0 to get

(4.6) D(w'S) - P'(z-11w'S)P(z-01w'R) - P'(z-01w'S)P(z-11w'R)

- P'(z-11w'R){P(z-01w'S)tP(z-11w'S)} - P'(z-1lw'S)

due to P'(z-11w'R)--P'(z-01w'~) in the binary response. Fourth, EV2i in

(4.5) has 4 while E02i in Theorem 2 has 8-4x2: the number 4 in RCE is an

error which should be 8(Sherman agrees with this error (personal

communication)). Having 2 multiplied into 4 in EV2T of Theorem 2 gets

rids of 22 in (4.2). In Example 3.3 of Arcones et al. (1994,p.1472)

where 32 appears for a third order U-process, 32 is cancelled by 3 in

Ep2i, which supports our argument.

In E(DiTOli') of Theorem 2, it looks as if the variance becomes

larger as P(z- l~w'S)tP(z-11w'R) Soes up, whích is counter-intuitive for

z-31 is the informative part of z. To see that this is not the case,

define

(4.7) P1-P(z-11w's). P-1-P(z--llw'S), P1'-P'(z-11w'~),

p-1'-P' ( z--llw'~). pt1-p1}p-1.

Then it ís shown in the appendíx that
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(4.8) n(w'~) - [81n{(P1IPt1)I(P-llP~l)}I8(w'~)1.(P llPtl)~(P1IP~1)P~12.

Also rewrite P1P-1Pt1 in E(V1rOli') as (P1IP~1)(P-llPtl).P}13.

Substituting this and ( 4.8) into the variance of our estimator (i.e.,

replacing P1 and P-1 with the normalized versions P1IPt1 and P llPtl

respectively), overall we get Ptl-1 in the variance heuristically,

implying that a larger Ptl can lead to a smaller variance.

The variance matrix can be estimated by plugging in nonparametric

estimates for E(wclw'S). go(w'S), P(z-11w'~), P(z--llw'~), P'(z-11w'ti)

and P'(z--llw'S) and invoking theorems in Andrews (1995) as done in Lee

(1996) for instance. But this requires many regularity conditions. A

theoretically easier way is using numerical derivatives twice to

estimate Olt and OZz, because one sum in the double sums already plays

the role of a nonparametric estimate for the smooth summand in (2.7).

Only new condition needed is the speed of the bandwidth parameter e in

the numerical derivatives: N1IZe~o for ~lz and N1I4e~oo for OZr; see

Section 7 of Sherman (1993).

To be specific, for a given i, estimate Olr(zi,wi,(ic) with

O1N7(zi'wi'bcN) which is a numerical first derivative vector of

(4.9) (lIN)E~Nl,~xisgn(4xi bcN-Ax~'bcN)(4yi-Dy~)4yi24y~Z,

and then estimate E(Olt~lr') with

(4.10) (lIN)EiNl O1N7(zi'wi'bcN) O1N7(zi'wi'bcN

Denoting a numerical second order derivative matrix for (4.9) as

02NT(zi,wi,bcN), EOZi can be estimated by (lIN)Eiv2NT(zi'wi'bcN)'

Although we proposed numerical derivatives, this does not

necessarily mean that they will work better in practice than a variance
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estimate with conditíonal means replaced by kernel estimates. Note that

both ídea require smoothing parameters. For numerical derivatives, it Ss

hard to choose a proper one unless the derívatives tend to get

"stabilized" as the smoothíng parameter gets smaller. On the other hand,

for the kernel-based method, since the condítioning varíable is

one-dimensional, one can choose a bandwídth easíly using graphs, which

can be an important advantage in practice.

The following Assumptíon 3 implies Assumption 2; the proof is in

the appendix.

Assumption 3: There exists a Lebesque density h(wklwc.z) for wk~(wc',z)

whích is everywhere positive for a.e. (wc',z)' and satisfies:

(a) h(wklwc,z). 8h(wklwc,z)~8wk, 82h(wklwc,z)IBwkZ are respectively

bounded by MQ, M1 and M2 a.e. ( wc',z); M~, M1, MZ are constants

not depending on (w',z).

(b) 18h(wklwc,z)y8wk~~h(wklwc,z)~~1 where {1 is a constant not

depending on (w',z).

(c) IahZ(wklwc,z)~8wk21~h(wklwc,z)'{Z where {Z is a constant not

depending on (w',z).

(d) EIwl3~~.

What we actually need for Assumption 2 is various differentiability

and Lípschitz continuity conditions wrt w'S for P(zlw'R) and a density

g(w'Slwc) for w'Slwc. But because 1[z-1) depends on xl'S and xZ'~ (and

on others), assumptions put directly on P(zlw'~) can be diffícult to

check. Instead, observe the following three facts. First,
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(4.1]) P(z~w'R) - f(w'R~z)-P(z)Igo(w'R)

where f(w'Rlz) is a density for w'Rlz. Second,

(4.72) h(t-wc'Rclwc,z) - ~(tlwc,z)

where ~(w'Rlwc,z) is a density for w'RI(wc',z). Third, f(w'R~z),

g(w'Rlwc) and go(w'R) are derived from ~(w'Rlwc,z) (thus from h) by

integrating out some variables. This explains why we choose to impose

assumptions on h. The everywhere positivity of h is not necessary; it is

sufficient for f(w'Rlz) to be so a.e. z, but we chose the former to be

coherent. (b) and (c) are used only once in proving a Lipschitz

continuity of P'(zlw'R) which is used for Assumption 2(b).

5. More on Asymptotic Distribution.

Chamberlain (1992) shows that,

(5.1) if ul and u2 are iid given ( x',a)'

and if the support of x is all of R2k,

then only logistic distributions for the distribution of ull(x,a) are

allowed for any JN-consistent "pure fixed-effect" estímator for R, which

makes the conditional logit of Chamberlain (1980) attractive. For this,

we make the following three remarks, the last of which is further

díscussed (in relation to efficiency of our estimator) later.

First, Assumption 1(e) and (f) restrict the relation between a and

x somewhat, deviating from the pure fixed-effect assumed by Chamberlain

(1992). This seems to give enough information for our ~N-consistency

despite the unknown distribution of (ul,u2). Thus, Chamberlain (1992)'s

and our results are not contradictory under (5.1).
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Second, Chamberlain (1992) does not address the case of ul and u2

given (x,a) being dependent. With the lagged dependent variable not

allowed in the regressor, seríal correlation is more líkely than not,

and ul and u2 are highly unlikely to be logistic in this case. Although

our estimator does not allow for the lagged dependent varíable, it does

allow for serial correlation that is excluded by (5.1).

Thírd, consider maximizing a conditional log-likelihood function:

(5.2) (lIN)Ei( 1[z1--1).ln(P-l~t) t 1[z1-1)-ln(Pllt) }

which includes the conditional logit as a special case, where (recall

the notatíons in (4.7))

~P(z--11z~0,w 'b) - P IP P -P(z-11zx0,w.'b) - P IPP-llt i -1 tl' llt i 1 tl'

In the appendix, it is shown that the variance matrix for the

conditíonal maximum likelihood estimator (I~D..E) is

(5.3) E i[ ww'~~(w's)2-(P-iPiPtl)-1 ].

Later, we show heuristically that this variance with w replaced by

wc-E(wclw'~) can be attained by takíng one-step from our estimator. That

is, even if (5.1) holds, asymptotically there is not much to lose using

our estimator, if Assumption 1 and 2 hold.

As well known, the asymptotic variance matríx of an estimator bN

maximizing an objectíve function QH(b)-(lIN)Eiq(9i,b) where 91 are íid

has the form H 1GH-1 where

G-E(qbqb'). qbm8q(~)IBb, H~-E(qbb.). 4bb.-8qbl8b'.

If H-G as ín 69..E, then the remainíng H 1 is often an efficiency bound

for some models. One intuítíve way to achieve the simplifícation from

H-iGH-1 to H 1 is maximizing (lIN)Eí~iq(8i,b) where wi is a weight to be
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chosen such that -E-1(w'4bb')-E(~Zqbqb ). The weighting is just "taking

one step" from the first estimator, and an elementary example is a

weighted least squares estimator.

If we apply this intuition to our estimator, we get the asymptotic

variance matrix ( with w-{go(w R) P-1P1P31}-1-n(w'~))

(5.4) E-1[ {wc-E(wclw'S)}{wc-E(wclw'S)}'-n(w'~)Z-(P-1P1Pt1) 1 );

compare this to (5.3).

For the cross-section binary response model (2.8), using (4.6) and

replacing z--1 with z-0, ( 5.4) becomes (note that Pt1-1 now)

(5.5) E-1[ {wc-E(wclw'~)}{wc-E(wclw'R)}'~(P1')z~(P~P1) 1 1.

which is the semiparametric efficiency bound (under independence between

the error term and the regressors) derived by Chamberlain (1986) and

Cosslett (1987); Klein and Spady (1993) show an estimator attaining this

bound. This suggests that (5.4) may be an efficiency bound for some

model with (1.1). In fact, it is not difficult to show that (S.5) is

attained also by taking one step (weighting) from RCE.

Taking one step from our estimator to get a new estimator with the

variance (5.4) may improve efficiency in view of the above discussion,

but this will ruin one nice feature of our estimator: since the weight w

depends go(w'S) and p(w'S), estimating ~ requires smoothing, and hence

the one-step "improved" estimator will depend on a bandwidth. This was

the main reason not to pursue this line of extension seriously; but it

will be still interesting to find out whether (5.4) is indeed the

semiparametric efficiency bound for (1.1) under Assumption 1 and 2.
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6. Extensions to Multiple Waves and Fized Effect Ordered Aesponse.

Ne consider two ways to extend (1.1) for more than two periods

("waves"). One is using a mínimum distance estímation idea after each

adjacent two periods are used. For instance, if t-1,2,3, then S can be

estimated by b12 using t-1,2 and by b23 usíng t-2,3. Since the

population parameters for b12 and b13 should be equal, this leads to a

minimum distance estimation; see Lee f1995) to see how these can be

implemented in practice. The other way is to follow Charlier et al

(1995): maximize

(6.1) Es~tEíxjsgn(nxist~b-~`jst b) (~yíst-~yjst) ~yist2~yjst2

where s runs 1 to T(the last period), t runs 2 to T and

(6.2) ~xíst - xit-xis' and ~Yist - '~it-yis'

If the panel is unbalanced, then we can attach a product of dummy

variables, say distdjst' to the summand ln (6.1), where dist-1 if i is

observed at s and t, and 0 otherwise.

We consider two ways to extend our estimator to fixed effect

ordered response panel data. One is a minimum distance estimation after

the ordered response has been collapsed into binary responses around

different thresholds. But this requires getting the influence functions

that depend on smoothing parameters, and the estimate itself will depend

on smoothing parameters. The other, explained in the following, avoids

this problem and is simple ín deríving its asymptotic variance.

Suppose that yit takes three values 0, 1, and 2, and yit-2 if
~

yit ~~~0, where T ís a( un)known threshold. There are two kinds of

adjacent moves in Yit'
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0 to 1, or 1 to 0 and 1 to 2, or 2 to 1.

Define indicator functions for these two as dOli and d12i respectively.

Maximize

(6.3) {N(N-1)}-l~i~jsgn(~xi'b-~xj'b).(dyi-~yj) (dOlidOlj}d12id12j)

wrt b. If there are M categories, then this estimator can be extended

straightforwardly by considering all adjacent moves (0 to 1, 1 to 2, ..

M-2 to M-1); namely, there will be M-1 terms in the maximand.

The estimator for (6.3) is JN-consistent and asymptotically normal.
Due to no overlap between the moves from 0 to 1 and 1 to 2, the

variance matrix is simple: it is 4.E 102r~E(017a1i').E 1~27, where

E02r - -8-E[ {wc-E(wclw'~)}{wc-E(wclw'~)}'.go(w'R).n(w'~) 1,

E(~iTO1T') - 16.E( {wc-E(wc~w'~)}{wc-E(wclw'~))'~go(w~~)2

-[P(1 to Olw'~)~P(O to l~w'~)-{p(1 to O~w'R)tP(0 to llw'~)}

t P(2 to l~w'S).P(1 to 2~w'S)-{P(2 to llw'~)tP(1 to 2~w'~)}] ),

n(w'~) - P'(0 to llw'R)-P(1 to O~w'~) - P'(1 to O~w's).P(0 to l~w'~)

t P'(1 to 21w'S)~P(2 to llw'R) - P'(2 to llw'(3)-P(1 to 2Iw'~).

It may be possible to design a more efficient estimator because two

types of information are not used in (6.3). One is non-adjacent moves

such as 0 to 2. The other is the information on the thresholds. For

instance, when the thresholds are equally spaced in the M category case,

~x's for a move 0 to M-1 should be larger than that for a move 0 to 1;

Lee (1992) considers other intermediate possibilities for thresholds. It

seems difficult to accommodate these pieces of information in our

framework which is critically built on binary response.
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7 Conclusions.

We proposed a semiparametric rN-consistent estimator for fixed

effect binary response panel data which was then extended to fixed

effect ordered response. The estimator does not depend on a smoothing

parameter and is asymptotícally normal with a simple variance matrix.

The estimator, however, imposes restrictíons on the relationship between

the level of regression function and its íncrement, and on the

relationship between the indivídual-specífic term and regressors.
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Appendix

Proof of Lemma 1 and Lemma 2.

(xl',x2') is one-to-one to (xlc',xl's,x2c',x2'(3) which is in turn

one-to-one to (xic',xl'(3,4xc',4x'(3) where the index i is omitted,

xtc - (xtl...xt k-1)', t-1,2

Observe

and 4xc - x2c xlc'

(a.l) P(4y-11x,a) - P(ul~-xl'R-a,u2~-xl'(3-4x'(3-alxlc',xl'(~,4xc',4x'(3,a).

Under the independence of (ul,u2)la from (xl',x2')la, this becomes

(a.2) P(ul~-xl's-a, u2~-xl's-4x'(3-a Ixl'R.4x'R,a).

Integrate (a.2) wrt (xl'~,a)I(4xc,4x'(3) and invoke Assumption I(f) to

get Lemma 1.

Turning to Lemma 2, on C-(4xi,4xj,4yix0,4yj~0,4yi~4yj}, 4yi can take

only tl and 4yi-4yj can take only t2. We need to prove

(a.3) P(4yi~4yjlC) ~(~) P(4yi~4yjlC) iff 4xi'(3 ~(~) 4x.'(3.
J

P(4yi~4yjlC) is

(a.4) P(4y.-1,4Y.--1 14x 4x 4y x0 4y s0 4y x4y )

(a.5)

where

Likewise,

1 ~ i' j' i ' j ~ i j

- P(4yi-1,4yj--1.4yix4yj 14xi,4xj,4yi~o,4yj~0)~n

- P(4yi-1,4yj--1 14xi,4xj,4yix0,4yjx0)In

- P(4yi-114xi,4yix0)-P(4yj--114x~,4yjs0)~n

n - P(4yiz4yj 14xi.4xj,4yis0,4yjx0).

(a.6) P(4yi~4yjlC) - P(4yi--114xi,4yix0).P(4yj-114xj,4yjso)~n.

Since n appears in both ( a.5) and ( a.6), it can be ignored. Also instead

22



of comparing (a.5) and (a.6), we can compare

(a.7) P(Ay1-11Ax1)~P(Ay~--11Ax~) vs. P(Ayi--11Axi)~P(Ay~-11Ax~)

due to P(Ayi-11~x1,Ay1x0) - P(Ay1-11~xi)~P(~Y1x0I~x1) and the appearance

of P(Ay1x01~xi) in both terms in (a.7). Furthermore, due to Lemma 1, we

can compare as well

(a.8) P(Gy1-11Axi~s)~P(Ay~--IIAx~'~) vs. P(~yi--11Ax1'S)-P(Gy~-11Ax~'S).

The two terms in (a.8) are equal whenever Axi'S-Ax~'~. In (a.2),

P(Ay-1 Ixl'~,Ax'S,a) is increasing in Ox'S for all given xl'S and a.

Either combining this with Assumption 1(e)' or simply ínvoking

Assumption 1(e), P(Ay-11Ax'R) i s increasing in Ax'S. Likewise,

(a.9) P(Ay--11Ax'S) - P(ul~-xl'S-a. u2~-xl's-Ax'S-a IAx'S)

which is decreasing in Ax'S. This proves Lemma 2.

Proof for Theorem 2.

Using wk-w'S-wc'Sc. rewríte t(z~,w~,bc) as

(b.l) Ewl~(
llwc'(bc-Rc)tw'S~w~c'(bc-Rc)tw~'~].E(z~2z-z~z2lw.z~)

-1[wc'(bc-Rc)tw'~~w'c'(bc-ác)tw~'s1~E(z~2z-z~z2lw,z~) 1:

note that (z-z~)-z2z~2 - z3z~2-z'3z2 - z,2z-z,z2. Recalling that g(~I~)

is the density of w'~Iwc. T(z~,w~.bc) Ss

(b.2) E [ ,fm E(z~2z-z~z21w'~.z~)~8(w'Rlwc)d(w'~)
wcl.) (w,c-wc)'(bc-~c)tw~'R

-.f (w~c-wc)'(bc-Sc)tw~~~E(z~2z-z~z21w'S.z~).8(w'Rlwc)d(w'S) 1
-~,

where .I,1 means that z~ and w~ are fixed. Differentiating this wrt bc,

(b.3) Vlr(z~.w'.bc) - 2'Ew I.1(
E{z~2z-z~z21(w~c-wc)'(bc-~c);w~'R.z~)

c
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'g{(wjc-wc)'(bc-Rc)twj'R)Iwc}.(wc-wjc) 1.
With bc-Rc'

v1T(zj,wj,Rc) - 2~Ewclj[E(zj2z-zjz2~w'R-wj'R.zj)-g(wj'Rlwc)(wc-wjc)]

(b.4) - 2'Ewcljl {E(zlwj'R)zjz-zjE(zz~wj'R)}.g(wj'R~wc)wc 1

(b.5) -2~Ewclj[ {E(zlwj'R)zj2-zjE(zZ~wj'R)1-g(wj'Rlwc)wjc 1.

The term wj'R in E(.) and g(.) takes the place of w'R and thus should be
regarded as w'R-wj'R here and below.

Due to Ewcljg(wj'R~wc) - go(wj'R), rewrite (b.5) as

(b.6) -2-{E(zlwj'R)zj2-zjE(z21wj'R)}~go(wj'R).wjc.

Examine (b.4). Multiplying and dividing by go(wj'R), the first term is

- 2zj2go(wj'R).E(zlwj'R)-fwcs(wj'R~wc)dF(wc)~go(wj'R)

- 2zjZgo(wj'R)-E(zlwj'R)fwcdF(wciwj'R) - 2zj2go(wj'R)E(zlwj'R)E(wc~wj'R)

where F(wc) and F(wclw'R) denote respectively the distribution of w andc
w Iw'R. Doing analogously for the second term of (b.4), (b.4) becomesc

(b.7) 2-{E(zlwj'R)zj2-zjE(z2~wj'R)}.go(wj'R)~E(wclwj'R).

Thus, putting (b.6) to (b.7) together,

(b.8) vlr(zj~wj.Rc) - -2.{wjc-E(wjc~wj'R)}-go(wj'R)

~{zjZE(zlwj'R) - zjE(z2~wj'R)}.

Note that

(b.9) E(zlw'R)-P(z-11w'R)-P(z--llw'R) and E(z21w'R)-P(z-tllw'R).

From vlr, (now drop the subscript j and denote {E(~)}Z as E2(~))

E(vltvlr') - EI 4{go(w~R)}Z-{wc-E(wclw'R)}{wc-E(wclw'R)}'
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.{z2E2(zlw'S) t z2E2(z21w'~) - 2zE(zlw'S)E(z21w't3)} 1

for z takes only 0 and tl. Define W, a function of wc and w'~, as

W - 4{go(w'~)}2{wc-E(wclw'~)}{wc-E(wclw'~))'.

Then

E(DizOli'Iw'~) - E(z2Wlw'~).E2(zlw'~) t E(z2Wlw'~)~E2(z21w'á)

-2E(zWlw'~).E(zlw'R).E(z21w'S)

- E(Wlw'R).E(z21w's)~E2(zlw'S) t E(Wlw's).E3(z21w'S)

- 2E(Wlw'~).E(z21w's).E2(zlw'S) due to Lemma 1

- E(Wlw'S).{E3(z21w'S) - E(z21w'S)-E2(zlw'S)}.

The term {-~~} is (recall (b.9))

(P1tP-1)3 - (P1tP-1)~(P1-P-1)2 - 4(Pltp-i)P1P-i.

Hence,

E(DitVlt') - E{ E(ViTVli'Iw'S) }- E{ E(Wlw'~).4(Pltp-1)plp-1}

- E[ E{W.4(P1tP-1)P1P-llw'S} 1- E[ W.4(Pltp-i)PlP-1 ]

(b.10) - 16-E[ {wc-E(wclw'~)}{wc-E(wclw'S)}'~{8o(w~~)}2

.P(z--llw'á)P(z-11w'~).{P(z--llw'~)tP(z-11w'S)} 1.

Turning to EV2i, observe that

02i(zj.wj,bc) -

-2-Ew Ij[ 8E{zj2z-zjz2l w'~-(wjc-wc)'(bc-~c)twj'S.zj}I8(w'~)
c

'g{(wjc-MC)'(bc-~c)tWj'~IWC}'(wc-Wjc)(MC-wjc)'

t E{zj2z-zjz21 w'~-(wjc-wc)'(bc-Bc)twj'S,zj}

-eg{w'~-(wjc-wc)'(bc-Sc)twj'Slwc}Ie(w'B).(wc-wjc)(wc-wjc)' 1.

With bc-~c'
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(b.ll) 02i(z~,w~,Rc) -

-2Ewc~~[ aE(z~2z-z~z21w'R-w~'R,z~)Ia(w'R)-g(w~'(3lwc).(wc-w~c)(wc-w~c)'

t E(z~2z-z~z21w~'R,z~)-a8(w'R-w~'Rlwc)~a(w'(3).(wc-w~c)(wc-w~c)' ].

The second term can be ignored as far as E02-c is concerned for it

becomes zero due to E(z~2z-z~z2~w~'R,z~) and Lemma 1. As for the first

term of (b.ll), it is

(b.12) -2.aE(z.2z-z.z21w'R-w-'R.z.)~a(w'R)J J J J

'Ew ~~{g(w~'Rlwc)-(wc-w~c)(wc-w~c)'}.
c

Taking Ez I w ,R on ( b.12), the second term that depends only on
J J

w~'R can be taken out of the expectation. As for the first term, we get

(b.13) -2~E(z~2~w~'(3)-aE(zlw'(3-w~'R)~a(w's)

t 2~E(z~lw~'(3).aE(z2~w'(3-w~'(3)~a(w'(3)

(b.14) - -2.(P1tP-i) (PI -P-1 ) t 2-(P1-P-1)-(P1'fP

- -2P1P1' t2P1P-1' -2P-1P1 t2P-1P-1 t2P1P1' -2P-1P1' t2P1P-1'
-2P-1P-1

- -4.(P-1P1'-P1P 1') - -4p(w.'R).J
Hence

(b.15) EzJIwJ.R((b.12)} - -4n(w~'R)~Ewcl~{8(w~'Rlwc)-(wc-w~c)(wc-w~c)'}.

Rewrite Ew ~~{ .} in (b.15) as
c

(b.16) EwcIwJ,R{g(w~'(31wc).(wcwc'-w~cwc'-wcw~c'tw~cw~c')}

which has four terms. The first term of (b.16) is

(b.17) .fwcwc'g(w~'Rlwc)-F(dwc)

- go(w~'R)-fwcwc'g(w~'Rlwc).F(dwc)~go(w~'(3)
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- é~(W~'~)'fWCWC'F(dwclw~'~) - Sp(w~'S)'E(wewC'~WS's).

Analogously, the last three terms in (b.16) are respectively

(b.18) -go(w~'S)-wSc.E(wc'Iw3'S). -go(w~'S)~E(wclw~'~)w~c'.

g~(Wi'S)'w`Cw`C' -

Insert (b.17) aJnd (b.J18)Jinto ( b.15) and take Ew ,s on (b.15) to get
~

(b.19) E02r - -8.E( n(w'S)go(w'B).{E(wcwc'Iw'á)-E(wclw'S)E(wc'Iw'B)} 1:

note that 4 in (b.15) is replaced by 8 at this step.

As the final step, we show that (b.19) is the same as E02r in

Theorem 2 which is

(b.20) -8-E[ n(w'(3)Bo(w'S)-{wc-E(wclw'S)}{wc-E(wclw'R)}' 1

--8E[n(w'(~)So(w'S){wcwc'-E(wclw'S)wc'-wcElwc'Iw"R)tE(wclw's)E(wc'Iw'R)I

- -8.E[ n(w'S)go(w'~)~{E(wcwc'Iw'R)-E(wclw'S)E(wc'Iw'R)} 1.~

Proof for the aufficiency of Assumption 3 for Assumption 2.

Assumption 2(d) was already proven. 2(c) ís implied by 3(a). For

2(a), it is enough for the following to be bounded for any bceN~:

(c.l) aP{z-11 w'R-(w~c-wc)'(bc-Rc)tw~'S}~a(w'S).

Before we proceed, recall (4.12) implying the followings. First,

g(w's~wc)' go(w'S) and f(w'Slz) are bounded by MO when h is bounded by

M0; the same can be said for the first derívatives ah~awk, g'-ag~a(w'S),

go'-agoia(w'(3), f'-af~a(w'~) and the bound M1 for ah~awk. Second,

g(w's~wc), go(w'S) and f(w'Slz) are Lipschitz continuous wrt w'~ with

the Lipschitz constant M1, when h(wklwc,z) is so wrt wk. Third, since

(c.2) S(w'Slwc) - .fz(w'Rlwc.z)F(dz). So(w'S) - .f2'(w'Slwc.z)F(dwc,dz).
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reversing the order of integration and differentiation, ~, g and g are0
twice differentiable wrt w'R. Fourth, because 8h(wklwc,z)~8wk is

Lipschitz-continuous wrt wk with the Lipschitz-constant MZ, g', f' and

g' are so as well wrt w'R.0
Take log on (4.11) and differentiate wrt w'R to get

(c.3) P'(zlw'R) - P(zlw'R)

.{ f'(w'Rlz)~f(w'Rlz) - go'(w'R)~Bo(w'R) }.

Under 3(b),

If'(w'Rlz)I s fle~(w'Rlwc,z)Ie(w'R)IF(dwc) s ~1-fh(wklwc,z)F(dwc)

~ If'(w'Rlz)I~f(w'Rlz) ~ ~1 for all z.

Also

IS '(w'R)I ~ E 1 If'(w'Rlz-q)IP(z-q) ` C g(w'R)o q--1 1 0

Igo'(w'R)I~Bo(w'R) ~ ~1.

Therefore

(c.4) IP'(zlw'R)I ~ 2~1 for a.e. w'R,

proving that (c.l) is bounded for any b eNR.c

Before turning to 2(b), we establish a Lipschitz continuity of

P'(zlw's) wrt w'R. Differentiate P'(zlw'R) in (c.3) wrt w'R to get

P'fzlw'R)-{f'(w'Rlz)~f(w'Rlz) - go'(w'R)~So(w'R)}

t P(zlw'R)-a{ f'(w'Rlz)~f(w'Rlz) - go'(w'R)~So(w'R) }~a(w'R)

~ 4~12 t ZS1'18{ f'(w'Rlz)~f(w'Rlz) - go'(w'R)~8o(w'R) }~a(w'R)I.

Focus on the last term, which is (use " to denote second derivatives)

f~~(w'Rlz)~f(w'Rlz) - {f'(w'Rlz)~f(w'Rlz)}2

- [ So"(w'8)ISo(w'R) - {go'(w'R)~So(w'R)}2 l.
Under 3(c),

If„(w~Rlz)I ~ fla2~(w'Rlwc,z)Ie(w'R)zIF(dwc) s ~Z.fh(wklwc,z)F(dwc)
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Also

~ If"(w'slz)I~f(w'Rlz) ~ S2 for all z.

Igo,~(w~i)I ~ EQi-llf"(w'RIz-4)IP(z-q) `- S2go(w'R).

~ Igo,~(w'R)Ilgo(w'R) ~ S2-

Therefore

(c.5) IP~~(zlw'R)I t 4512 t 4{1(S2tS12) for a.e. w'R.

This implies that P'(zlw'R) is Lipschitz continuous wrt w'R.

Turning to

(c.6) -2-Ew Ij(c

~g{wj'Rlwc}.(wc-wjc)(wc-wjc)' ]

(c.7) -2.Ew Ij~ 8E{z2zj-zj2zl w'R-(wjc-wc)'(bc-Rc)twj'R,zj}~8(w'R)
c

~g{wj'Rlwc}.(wc-wjc)(wc-wjc)' ]

(c.8)

(c.9)

2(b), rewrite 02T(zj,wj,bc)-02r(zj,wj,sc) as

8E{z2zj-zj2zl w'R-(wjc-wc)'(bc-sc)twj'R.zj}~e(w'R)

-g{(wjc-wc)'(bc-Rc)twj'R)Iwc}-(wc-wjc)(wc-wjc)' )

t2 Ew Ij~ 8E{z2zj-zj2zl w'á-(wjc-wc)'(bc-Rc)twj'R,zj}I8(w'R)
c

t2-Ew Ij( aE{z2zj-zj2zl w'R-wj'R.zj}~a(w'R)
c

~g{wj'Rlwc}-(wc-wjc)(wc-wjc)' ]

t 2-Ew IJ( E{z2zj-zj2zl w'R-(wjc-wc)'(bc-Rc)twj'R,zj}
c

-8g{w'6-(wjc-wc)'(bc-Rc)twj'R)Iwc}~8(w'R)~(wc-wjc)(wc-wjc)' )

- 2~Ew Ij~ E{z2zj-zj2zl w'R-wj'R,zj)
c

~eg{w'R-(wjc-wc)'(bc-ic)twj'R)Iwc}~e(w'R).(wc-wjc)(wc-wjc)' ]

t 2 Ew Ij~
E{z2zj-zj2zl w'R-wj'R,zj)

c
.8g{w'R-(wjc-wc)'(bc-Rc)twj'R)Iwc}I8(w'R).(wc-wjc)(wc-wjc)' 1
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- 2'Ew Ij[ E{z2zj-zj2zl w'8-wj'R.Zj}
c

.eg{wj'Rlwc}I2(w'R)-(wc-wjc)(wc-wjc)' ]

~(c.6)I to I(c.9)I are less than respectively

(c.10) 12-~1M1~Ew Ijlwc-wjcl3'Ibc-Rcl,
c

2-{4{12t4~1(~2t~12)}~MO~Ewclj~wc-wjcl3'Ibc-RcI,

4~1M1.Ewcljlwc-wjcl3-Ibc-Rcl.

6 M2 Ew Ij~wc-wjcl3'Ibc-RcI.
c

which proves 2(b). ~

Proof for (4.8).

Rewrite n- P1 P-1 P-1 P1 as

(d.l) {(P1'IP~1)(P llPtl)-(P 1'IPtl)(P1IPt1)}~Pt12.

Observe that, with t-w'R,

(d.2) 8(P1IPt1)I8t - P1'IPtl - (P1IP~1).{(P1'tP 1')IPtl},

(d.3) 8(P-llPtl)I8t - P-1'IP~1 - (P-llPtl).{(P1'tP-1')IPtl}.

Multiplying (d.2) by P-llPtl and (d.3) by P1IPt1, and taking the

difference, the second terms in (d.2) and (d.3) are eliminated, and

~ - I{8(P1IP~1)I8t}-(P-llPtl) - {8(P llP~l)I8t}.(P1IP~1)1.Pt12.

- I {81n(P1IPt1)I8t}-(P1IPt1)P-1IPt1

-{81n(P llPtl)I8t}~(P-llPtl)P1IPt1 ].p}12

(d.4) - {81n(P1IP-1)I8t)~(P-llP~l)~(P1IP~1)~P}12.~

Proof for (5.3).
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The score vector is

w.{ 1(z--]1'P-llt ~P-l~t i lIz-11'Pllt ~p11Y }.

2
pll~' - 8(P1IP41)I8b - (P1 P-1 P1P-1')~Ptl

p-l~t ' 8(P-1~Pt1)I8b - (P-1'P1-P-1P1')IPt12 - -Pllt'.

Using this, P-11~-P-1~Pt1 and Pil;-P1IPt1, the score vector Ss

(e.3) w.{ -1[z--11~P -1 t 1[z-11-P 1 }.(P 'P -P P ')IPt-1 1 1 -1 1 -1 1

- w~{ -llz--11-P-1-i f 1[z-1J.p1-1 }.n~Ptl.

Thus, the outer product is

(e.4) ww'-{ llz--11~P-1-2 t 1[z-11-P1-2 }.n2~Pt12.

Take E(~Iw) to get

(e.5)
ww'-{p-1-1tP1-1},n2~P}1z

- ww'.n2~(P 1P1Pt1) 1.

Take E (.) to get (5.3).~M

,,n,,~.{Ptl~(P-1P1)}.n2~Pt12
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