Tilburg University

Scale Returns of a Random Matching Model

Kultti, K.K.

Publication date:
1997

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kultti, K. K. (1997). Scale Returns of a Random Matching Model. (CentER Discussion Paper; Vol. 1997-71).
CentER, Center for Economic Research.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Tilburg University

Center
 for
 Economic Research

No. 9771

SCALE RETURNS OF A RANDOM MATCHING MODEL

By Klaus Kultti

July 1997

Scale returns of a random matching model

Klaus Kultti
Center for Economic Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Abstract

This note considers a random matching model in which the meeting probabilities can be derived from the basics of the model. We determine conditions for the matching technology to exhibit decreasing, constant, and increasing returns to scale.

Keywords: Random matching, scale returns

JEL classification: C78, J41

1. Introduction

Random matching and search models are popular ways to model the economy when Walrasian paradigm of complete markets is tou restrictive. There are a multitude of applications ranging from job search and labour markets (eg. Mortensen, 1986), price formation in markets (eg. Rubinsteins and Wolinsky, 1985; Wolinsky, 1988; Gale, 1987), endogenous money (eg. Kiyotaki and Wright, 1993; Burdett et al., 1995), to stability analysis of various trading institutions (Lu and McAfee, 1996). Typically it is postulated that there are two types of agents in the economy, and that they are pairwise matched. A recurrent theme with the matching models is speculation about the matching technology. Results are often sensitive to whether the technology exhibits decreasing, constant, or increasing returns to scale; for instance, the results in Mac Namara and Collins (1990), and Bloch and Ryder (1997) hinge on a technology with increasing returns to scale. In this case the decisions to search or to get matched are omplementary. However, one can easily think of situations in which increasing the number of agents who search results in congestion that reduces the number of matches.

Since usually the environment where the agents operate, and consequently the manner matches come about, is not specified the modeller is free to choose the technology he wishes. Even though the actual process of matching is often left unspecified it is common to offer a verbal description about the process. For instance, Burdett et al. (1995) who study the decision to wait or search give two ways to picture the origin of matching probabilities. First it can be thought that agents who wait are in fixed locations, and searchers visit these locations. Second, one may imagine that the agents are colliding
to each other like particles, and collisions indicate matches. If one is to model the matching technologies along either of these lines it is not immediately clear what kind of scale returns one should expect.

The aim of this note is to present a well known and well specified random matching model (see Lu and McAfee, 1996) and show that it exhibits constant returns to scale. We also present a variation of the model, and determine the conditions under which it exhibits decreasing, constant, and increasing returns to scale. The matching model itself is attractive since it is amenable to applications, and because the meetings are not restricted to be pairwise; an agent can meet any number of other agents. In applications that focus on price determination this means that both bargaining and auctions can be used.

2. The model

In the basic set-up there are B buyers and S sellers. The sellers are in fixed locations, and the buyers are randomly distributed on the sellers. Consequently, the number of buyers any particular seller expects to meet is binomially distributed with parameters B and $1 / S$. Since binomial distributions are awkward to deal with we assume that B and S are large numbers, and approximate the binomial with a Poisson distribution with a parameter $\theta=\frac{B}{S}$. The approximation is exact if the numbers approach infinity while their ratio stays fixed.

To determine the number of matches that result from this matching technology it is enough to focus on one type of agents only, since a match is by definition a pairing of two agents. We study the sellers, and assume that the agents only objective is to get paired with an agent of the opposite type. The probability that a seller meets k buyers is $e^{-\theta} \frac{\theta^{k}}{k!}$, and as long as a seller meets any buyers a match comes about. We assume that if two or more buyers are distributed on any particular seller the seller chooses any one of them with equal probabilities. The probability that the seller is matched is then $1-e^{-\theta}$, i.e. one minus the probability of not meeting any buyers. As there are S sellers the expected number of matches is $S\left(1-e^{-\theta}\right)$.

Let f be the function that determines the expected number of matches $f: R_{+} \times R_{+} \rightarrow R_{+}$such that $(S, B) \mapsto S\left(1-e^{-\theta}\right)$. The following result follows almost immediately.

Claim 1. Function f is homogenous of degree one.
Proof. Consider $\alpha>0 . f(\alpha S, \alpha B)=\alpha S\left(1-e^{-\frac{\alpha B}{\alpha S}}\right)=\alpha S\left(1-e^{-\theta}\right)=\alpha f(S, B)$

Thus, the matching technology exhibits constant returns to scale. The sellers and buyers are treated asymmetrically in this set-up, and it is not immediately clear whether agents would prefer to stay in fixed positions or to be distributed on the positions. Next we consider a slightly more complicated structure in which buyers and sellers can decide whether to stay or search. It is probably useful to think that there are two separate markets or locations; in the sellers' market sellers are in fixed positions and buyers are distributed on them, and in the buyers' market buyers are in fixed locations and sellers are distributed on them. In equilibrium both types of agents have to be indifferent between the markets.

We need to calculate the probability that a buyer is matched in the market where they are distributed on waiting sellers. A buyer always meets a seller for certain because buyers are distributed on the sellers. Thus, the probability that he is the only buyer is the same as the probability that no other buyers arrive at the same location, which is the same as the probability of a seller meeting no buyers, i.e $e^{-\theta}$. If k other buyers arrive at the location, an event that takes place with probability $e^{-\theta} \frac{\theta^{k}}{k!}$, any buyer is selected by the seller with probability $\frac{1}{k+1}$. Thus, a buyer is matched with probability
$e^{-\theta}\left(1+\frac{1}{2} \theta+\frac{1}{3} \frac{\theta^{2}}{2!}+\frac{1}{4} \frac{\theta^{3}}{3!}+\ldots\right)=\frac{e^{-\theta}}{\theta} \sum_{i=1}^{\infty} \frac{\theta^{i}}{i!}=\frac{e^{-\theta}}{\theta}\left(e^{\theta}-1\right)=\frac{1-e^{-\theta}}{\theta}$

From (1) we immediately see that when there are more buyers than sellers the buyers are better-off if they are in fixed positions and wait, and if there are less buyers than sellers the buyers prefer to be distributed on sellers.

In equilibrium proportion x of buyers and proportion y of sellers are in the sellers' market. The rest of the agents are in the buyers' market. Let us denote the rate in the sellers' market by $\phi=\frac{x B}{y S}=\frac{x}{y} \theta$ and the rate in the buyers' market by $\varphi=\frac{(1-y) S}{(1-x) B}=\frac{(1-y)}{(1-x) \theta}$. The buyers are indifferent between markets if
$1-e^{-\phi}=\frac{1-e^{-\phi}}{\phi}$, and the sellers are indifferent if $1-e^{-\phi}=\frac{1-e^{-\phi}}{\varphi}$. The equations are valid only if $\phi=\frac{1}{\varphi}$ which is equivalent to $x=y$. This means that $\phi=\theta$ and $\varphi=\frac{1}{\theta}$. Inserting this to either equilibrium condition yields $1-e^{-\theta}-\theta+\theta e^{-\frac{1}{\theta}}=0$. This equation has two solutions $\theta_{1}=1$ and $\theta_{0} \in(0,1)$. If the proportion of buyers to sellers happens to be either one of these, then there is an infinite number of equilibria with $x=y$. Otherwise both markets cannot exist simultaneously in equilibrium. Exactly as above we get the following result.

Claim2. When there are two active markets in equilibrium the matching technology exhibits constant returns to scale.

Two active markets can exists only for a set of parameters that is of measure zero. Thus, we ignore this case in the sequel. Either market by itself constitutes an equilibrium in the sense that no agent finds it profitable to go to the other market where he would be alone. As we are not that interested in equilibrium selection, we shall consider the variant where sellers are in fixed locations.

Unlike in many random matching models the buyers always meet a seller; they do not always end up in a match though. One may want to consider a situation where both buyers and sellers may end up without meeting anybody. The obvious way to accomplish this is to postulate that there may be more locations than there are sellers. If the buyers are distributed on the locations then some of them may end up in an empty location. Let us denote the number of locations by $L=L(S, B) \geq S$. Notice that since the important parameters of this model are the numbers of buyers and sellers we allow for the possibility that the number of locations depends on the number of both of them. However, not all cases about the number of locations turn out to be easy to interprete economically.

We denote the rate of the Poisson distribution by $\omega=\frac{B}{L}$. The expected number of matches is $f(S, B)=S\left(1-e^{-\alpha}\right)$, and for $\alpha>0 \quad f(\alpha S, \alpha B)=\alpha S\left(1-e^{-\frac{a B}{L(\alpha S, \alpha B)}}\right)$. Now the matching technology exhibits constant returns to scale if $\alpha S\left(1-e^{-\frac{a B}{L(\alpha S, a B)}}\right)=\alpha S\left(1-e^{-\omega}\right)$ which is equivalent to $\frac{\alpha}{L(\alpha S, \alpha B)}=\frac{1}{L(S, B)}$ or $L(\alpha S, \alpha B)=\alpha L(S, B)$. But this is the
condition for L to be a function homogenous of degree one. Similarly, the matching technology exhibits decreasing returns to scale if $\alpha S\left(1-e^{-\frac{a B}{L(a S, a B)}}\right)<\alpha S\left(1-e^{-\omega}\right)$ which is equivalent to $L(\alpha S, \alpha B)>\alpha L(S, B)$. Increasing returns to scale requires $L(\alpha S, \alpha B)<\alpha L(S, B)$. This proves

Claim3. Let $L(S, B) \geq S$ be the number of locations. The matching technology has decreasing, constant, or increasing returns to scale if function L is homogenous of degree greater than one, one, or less than one, respectively.

The simplest choice in this framework is to equal the number of locations and the number of sellers so that the matching technology has constant returns to scale. If something else is wanted one has to say something about the function L. Both decreasing and increasing returns to scale are formally equally easy to implement, but we find only for the latter case an economically interesting interpretation.

Assume that L is constant, and the waiters in our model are firms, and the searchers are workers. Assume further that L is the total number of firms while S is the number of vacancies and B is the number of unemployed workers. If workers search firms, i.e. are distributed on firms, rather than vacancies then the matching technology exhibits increasing returns to scale. Of course, this happens only for a certain range of values since there cannot be more vacancies than there are firms. The job search interpretation seems to be in agreement with the observation that when both the number of vacancies and unemployed increase there are more matches, i.e. it is easier to find a job or an employee.

Motivating L to exhibit increasing returns to scale, and the matching technology decreasing returns to scale, requires a story for the number of locations to increase proportionately more than the number of agents. We do not know any plausible ones.

Acknowledgements

I thank Mikko Huhtamies and a referee for useful comments. Financial support by Yrjo Jahnsson Foundation, and in a form of a TMR grant from the European Commission is gratefully acknowledged.

References

Bloch, F. and H. Ryder, 1997, Two-sided search, marriages and matchmakers, manuscript.

Burdett, K., M. Coles, N. Kiyotaki and R. Wright, 1995, Buyers and sellers: should I stay or should I go?, American Economic Review 85, 281-286.

Gale, D., 1987, Limit theorems for markets with sequential bargaining, Journal of Economic Theory 43, 20-54.

Kiyotaki, N. and R. Wright, 1993, A search theoretic approach to monetary economics, American Economic Review 83(1), 63-77.
Lu, X and R.P. McAfee, 1996, The evolutionary stability of auctions over bargaining, Games and Economic Behavior 15, 228-254.

Mac Namara J. and E. Collins, 1990, The job search problem as an employer-candidate game, Journal of Applied Probability, 28, 815-827.

Mortensen, D., 1986, Job search and labor market analysis in: O. Ashenfelter and R. Layard, eds., Handbook of labor economics, Vol. 2. (North-Holland, Amsterdam) 849-919.

Rubinstein, A. and A. Wolinsky, 1985, Equilibrium in market with sequential bargaining, Econometrica 53, 1133-1150.

Wolinsky, A., 1988, Dynamic markets with competitive bidding, Review of Economic Studies LV, 71-84

No.	Author(s)	Title
9689	T. ten Raa and E.N. Wolff	Outsourcing of Services and the Productivity Recovery in U.S. Manufacturing in the 1980s
9690	J. Suijs	A Nucleolus for Stochastic Cooperative Games
9691	C. Seidl and S.Traub	Rational Choice and the Relevance of Irrelevant Alternatives
9692	C. Seidl and S.Traub	Testing Decision Rules for Multiattribute Decision Making
9693	R.M.W.J. Beetsma and	Inflation Targets and Contracts with Uncertain Central Banker Preferences
9694	M. Voorneveld	Equilibria and Approximate Equilibria in Infinite Potential Games
9695	F.B.S.L.P. Janssen and	A Two-Supplier Inventory Model
	A.G. de Kok	Catching up with the Keynesians
9696	L. Ljungqvist and H. Uhlig	Dynamic Programming Solution of Incentive Constrained
9697	A. Rustichini	Problems

| No. | Author(s) | Title |
| :--- | :--- | :--- | :--- |
| | | Optional Engine Power on Automobiles |
| 96110 | D. Granot, H. Hamers
 and S. Tijs | Weakly Cyclic Graphs and Delivery Games |
| 96111 | P. Aghion, P. Bolton and | Financial Restructuring in Transition Economies |
| | S. Fries | |

No.	Author(s)	Title
9712	M. Dufwenberg and W. Güth	Indirect Evolution Versus Strategic Delegation: A Comparison of Two Approaches to Explaining Economic Institutions
9713	H. Uhlig	Long Term Debt and the Political Support for a Monetary Union
9714	E. Charlier, B. Melenberg and A. van Soest	An Analysis of Housing Expenditure Using Semiparametric Models and Panel Data
9715	E. Charlier, B. Melenberg and A. van Soest	An Analysis of Housing Expenditure Using Semiparametric Cross-Section Models
9716	J.P. Choi and S.-S. Yi	Vertical Foreclosure with the Choice of Input Specifications
9717	J.P. Choi	Patent Litigation as an Information Transmission Mechanism
9718	H.Degryse and A. Irmen	Attribute Dependence and the Provision of Quality
9719	A. Possajennikov	An Analysis of a Simple Reinforcing Dynamics: Learning to Play an "Egalitarian" Equilibrium
9720	J. Jansen	Regulating Complementary Input Supply: Cost Correlation and Limited Liability
9721	J. ter Horst and M. Verbeek	Estimating Short-Run Persistence in Mutual Fund Performance
9722	G. Bekaert and S.F. Gray	Target Zones and Exchange Rates: An Empirical Investigation
9723	M. Slikker and A. van den Nouweland	A One-Stage Model of Link Formation and Payoff Division
9724	T. ten Raa	Club Efficiency and Lindahl Equilibrium
9725	R. Euwals, B. Melenberg and A. van Soest	Testing the Predictive Value of Subjective Labour Supply Data
9726	C. Fershtman and U. Gneezy	Strategic Delegation: An Experiment
9727	J. Potters, R. Sloof and F. van Winden	Campaign Expenditures, Contributions and Direct Endorsements: The Strategic Use of Information and Money to Influence Voter Behavior
9728	F.H. Page, Jr.	Existence of Optimal Auctions in General Environments
9729	M. Berliant and F.H. Page, Jr.	Optimal Budget Balancing Income Tax Mechanisms and the Provision of Public Goods
9730	S.C.W. Eijffinger and Willem H. Verhagen	The Advantage of Hiding Both Hands: Foreign Exchange Intervention, Ambiguity and Private Information
9731	A. Ridder, E. van der Laan and M. Salomon	How Larger Demand Variability may Lead to Lower Costs in the Newsvendor Problem
9732	K. Kultti	A Model of Random Matching and Price Formation

No.	Author(s)	Title
9733	J. Ashayeri, R. Heuts and B. Tammel	Applications of P-Median Techniques to Facilities Design Problems: an Improved Heuristic
9734	M. Dufwenberg, H. Norde, H. Reijnierse, and S. Tijs	The Consistency Principle for Set-valued Solutions and a New Direction for the Theory of Equilibrium Refinements
9735	P.P. Wakker, R.H. Thaler and A. Tversky	Probabilistic Insurance
9736	T. Offerman and J. Sonnemans	What's Causing Overreaction? An Experimental Investigation of Recency and the Hot Hand Effect
9737	R. Kabir	New Evidence on Price and Volatility Effects of Stock Option Introductions
9738	M. Das and B. Donkers	How Certain are Dutch Households about Future Income? An Empirical Analysis
9739	R.J.M. Alessie, A. Kapteyn and F. Klijn	Mandatory Pensions and Personal Savings in the Netherlands
9740	W. Güth	Ultimatum Proposals - How Do Decisions Emerge? -
9741	I. Woittiez and A. Kapteyn	Social Interactions and Habit Formation in a Model of Female Labour Supply
9742	E. Canton and H. Uhlig	Growth and the Cycle: Creative Destruction Versus Entrenchment
9743	T. Feenstra, P. Kort and A. de Zeeuw	Environmental Policy in an International Duopoly: An Analysis of Feedback Investment Strategies
9744	A. De Waegenaere and P. Wakker	Choquet Integrals with Respect to Non-Monotonic Set Functions
9745	M. Das, J. Dominitz and A. van Soest	Comparing Predicitions and Outcomes: Theory and Application to Income Changes
9746	T. Aldershof, R. Alessie and A. Kapteyn	Female Labor Supply and the Demand for Housing
9747	S.C.W. Eijffinger, M. Hoeberichts and E. Schaling	Why Money Talks and Wealth Whispers: Monetary Uncertainty and Mystique
9748	W. Güth	Boundedly Rational Decision Emergence -A General Perspective and Some Selective Illustrations-
9749	M. Lettau	Comment on 'The Spirit of Capitalism and Stock-Market Prices' by G.S. Bakshi and Z. Chen (AER, 1996)
9750	M.O. Ravn and H. Uhlig	On Adjusting the HP-Filter for the Frequency of Observations
9751	Th. v.d. Klundert and S. Smulders	Catching-Up and Regulation in a Two-Sector Small Open Economy

No.	Author(s)	Title
9752	J.P.C. Kleijnen	Experimental Design for Sensitivity Analysis, Optimization, and
Validation of Simulation Models		

P.O. BOX 90153. 5000 I F TII RIIRE THE nICturni ANDS Bibliotheek K. U. Brabant

17000013949731

