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Refinements of Nash Equilibrium~`

Eric van Daanmet

1 Introduction

Noncooperative game theory studies the question of what constitutes rational behavior in

situationa of atrategic interaction in which players cannot communicate nor aign binding

agreements. The traditional answer to this question centers around the notion of Nash

equilibrium. Such an equilibrium ia a vector of etrategiea, one for each player in the

game, with the property that no aingle player can increase his payoff by changing to a

different atrategy as long as the opponents do not change their atrategies. The Nash

equilibrium concept ie motivated by the idea that a theory of rational deciaion making

should not be a self-destroying prophecy that creates an incentive to deviate for those

who believe in it. To quote from Luce and R.aiffa (1957, p. 173)

"if our non-cooperative theory is to lead to an n-tuple of strategy choicea and

if it ia to have the property that knowledge of the theory dces not lead one to

make a choice different from that dictated by the theory, then the strategies

isolated by the theory muat be equilíbrium pointa."

In other words, for a(commonly known) norm of behavior to be self-enforcing it is

necessary that the norm (agreement) constitutes a Nash equilibrium.

'Paper preeented at the óth World Congreea of the Econometric Society, Barcelona, 22-28 August,

1990. The author thanke Belmut Beater, Larry Samueleon and Jonathan Thomae for commente on an

earlier veraion.

1CentER for Economic Reeearch, Tilburg Univereity, the Netherlande
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The increased use of noncooperative game theory in economica in the last decades

has led to an increased awarenesa of the fact that not every Nash equilibrium can be

conaidered as a self-euforcing norm o[ behavior. Very roughly, the Nash conccpt ia unsat-

isfactory since it may preacribe irrational behavior in contingencies that arise when some-

body has deviated from the norm. In applicationa, one typically finds many equilibria

and intuitive, context depending arguments havebeen used to exclude the `unreasonable'

ones. At the same time game theorists have tried to formalize and unify the intuitions

conveyed by applications and examples by means of general refined equilibrium notions.

The aim of thia paper is to describe, and comment on the moat important concepts that

have been put forward as being necessary for aelf-enforcingnesa. Although the literature

offers a wide variety of different refinements, it will be aeen that all of them are based on

a small number of basic ideas. (These main ideas are also described in Kohlberg (1989)

from which I borrowed the term "norm of behaviorT.)

Ever since Luce and R.aiffa (1957) the intuitive justification oí equilibria and the rel-

evance of equilibria to the analysis of a game have been questioned. It has been realised

that it is not evident that Nash equilibrium is a necessary consequence of strategic rea-

soning by rational playera, that it is not clear how players would arrive at an equilibrium

or how they would select one from the set of equilibria. I do not wiah to enter a discussion

on these topics here, rather I refer to Aumann (1987a, 1988), Bernheim (1986), Binmore

(1990), Brandenburger and Dekel (1987) and Tan and Werlang (1988) for extensive dis-

cussions on the epistemic foundations of equilibria, i.e. on what the players must know

about each other's atrategiea and each other's rationality for equilibria to make sense. In

this author's opinion some of the confuaion aurrounding the Nash concept can be traced

to the fact that the mathematical formalism of noncooperative game theory allows inul-

tiple interpretationa and to the fact that the different aspects of noncooperative analysis

are not clearly separated.

Noncooperative game theoretic analysis has several aspects:

(i) (The equilibrium definition problem.) Which agreements are self-enforcing?



3

(ii) (The equilibrium attainment problem.) How, or under which conditiona will the

playera reach an agreement?

(iii) (The equilibrium selection problem.) Which agreement is likely to be concluded?

Except for the last aection I deal excluaively with the firat topic. I do not discusa how

self-enforcing norma cotne to be establiahed nor how the aelection among theae takes

place. The motivation for etudying the first queation independently ia that knowing ite

answer aeema a prerequisite for being able to anawer the other questions. (For example,

one might hope that in gamea with a unique aelf-enforcing equilibrium playera will always

coordinate on that equilibrium.) I reatrict attention to refinements of Nash equilibrium

that try to capture further necesaary conditiona for self-enforcing norms of behavior.

Hence, I inveatigate which conditions Nash equilibria ahould satisfy such that rational

playera would have no incentive to deviate from them. Uaing the terminology of Binmore

(1987) I, therefore, remain in the eductive context.

Nash equilibria also admit other interpretations than as self-enforcing norms and in

other (non-eductive) contexta different conaiderationa, leading to alternative refinements,

may be appropriate. For example, in biology an equilibrium is seen as the outcome of a

dynamic procesa of natural eelection rather than as the conaequence of reasoning by the

players. The basic equilibrium concept in that branch of game theory, viz. the notion

of evolutionarily atable atrategies or ESS (Maynard Smith and Price (1973), Maynard

Smith (1982)) may formally be viewed as a refinement of Nash equilibrium but it is not

[urther diacusaed here since it ie motivated completely differently. (Although, mathemat-

ically it is related to several concepte diacusaed below, aee Van Damme (1987, Chapter

9).) Similarly I will not deal with the interpretation of Nash equilibria as atable states

of learning proceasea in a context in which the same game ie played repeatedly, but

each time with different active playera who can use obaervations from the past to guide

their behavior. (On learning models, aee, for example, Canning (1989, 1990), Fudenberg

and Krepa (1988), Kalai and Lehrer (1990) and Milgrom and Roberta (1989, 1990)).)

Of courae, this doea not imply that I conaider such contexta to be unimportant, they

simply fall outside the ecope of this paper. Perhaps in economic aituations learning and
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evolution are even more importsnt than reasoning. Finally, I rule out any correlation

between playera' actiona that ia not explicitly allowed by the rules, hence, I do not con-

sider correlated equilibria (Aumann (1974), Forgea (1986), Myerson (1986)).

Space limitatione do not allow an exteneive diecuseion on the applications of the var-

ious refinements. Yet, the proof of the pudding ie in the eating, it is the applications

and the insights derived from them that lend the refinementa their validity. As Aumann

(1987b) writes

"My main thesis is that a solution concept ahould be judged more b,-y what

it dcea than by what it is; more by ita succeas in establishing relationships

and providing insighta into the workings of the social proceases to which it is

applied than by conaideratione of a priori plausibility based on its definiti~~,

alone.~

The remainder of the paper is organised as follows. In Section 2 I discuss the principle

of backward induction, i.e. the idea that an equilibrium strategy ahould also make sense

in contingencies that do not ariae during the actual play. Special emphasis is on the

concepta of aubgame perfect and sequential equilibria, on the definition oí consist.enc y of

beliefs and on the assumption of pereistent rationality. Section 3 deals with utremblir,g

hand perfectn equilibria as well as the related notions of properness and persistPncy. All

three concepte require that the equilibrium etill makes sense if with a small probabilit~-

each player makea a miatake. Thia section also briefly investigates what kind of refinP-

ments reault if it is required that an equilibrium be robuat against slight pertnrh~ti~ns

in the payoffa or in the atructure of the game. Iseues related to the Kohlberg~Mert~~ns

concept of stable equilibria are diacusaed in aection 4. Stability is a set-valued snlution

concept and it will be ahown that aet-valuedneas ie a natural consequence of ~ev:~ral

desirable propertiea. The topic of Section 5 ie forward induction, i.e. thc idea ~hat a

player's past behavior may signal either this player's private information or h:~w thc

player intends to play in the future. For the apecial clasa of signalling games scveral
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intuitive refinement criteria are reviewed that are all related to Kohlberg~Mertena sta-

bility. In Section 6 we move from equilibrium refinement to equilibrium selection and

briefly discuea a model (originslly due to Carleaon and Van Damme) in which alight

payoff uncertainty forces players to coordinate on a specific `focal' equilibrium in each

2 x 2 bimatrix game.

This introduction ia concluded by apecifying the notational conventions that will be

used for extensive form gsmee. Attention will be confined to finite games with perfect

recall and for the definition of such a game T the reader ia referred to Selten (1975) or

to Kreps and Wilson (1982a). X denotea the set of deciaion points in I', Z is the set

of endpoints and u;(z) is player i's payoff when z is reached. We depict the endpoints

by row-vectors, the first component of which is the payoff to player 1, etc. The origin

of the game tree is depicted by an open circle. H; denotea the set of information sets

of player i(with typical element h). We depict an information aet by a dashed line

that connecta the pointa in the set. A behavior strategy s; of player i asaigna a local

strategy s;~ (i.e. a probability distribution on the set of choices at h) to each h E H;.

If s ia a (behavior) etrategy vector, s-(91, ..., s„), then p', the outcome of s, is Lhe

probability distribution that s inducea on the aet of endpointa of I'. If A is a set of nodes,

we also write p'(A) for the probability that A is reached when s ia played. Player i's

expected payoff reaulting from s ie denoted by u;(s), hence, u;(s) -~s p'(z)u;(z). For

a decision point x E X, denote by ps the probability diatribution that s would induce

on Z if the game were started at x, and write u;s(s) -~s p~(z)u;(z). If p specifies a

probability distribution on the decision points in the information set h E H;, then we

write uh(s) -~rEh ~(x)u;y(s). If s is a etrategy vector and s; ia a atrategy of player i,

then s`sj denotea the strategy vector ( 91i ...,s;-1, 9„ 9;}1, ..., s,~), We uae S; to denote

the set of all atrategiea of player i and S ia the set of etrategy vectors.

2 Backward Induction

A atrategy vector s ia a Nash equilibrium (Nash (1950a)) of an extensive form game I' if
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u;(a) ~ u;(a`a;) for all i and all s; E S;. (2.1)

If we interpret a atrategy vector s ae a(fully apecified) norm of behavior then (2.1) ia a

necessary condition for a commonly known norm to be self-enforcing, i.e. for the norm

to be such that no player has an incentive to deviate from it. In thia interpretation, a;h

(the local atrategy of player i at h) may be viewed botó as player i's intended action at

h as well as the common prediction of all the opponenta of what í will do at h. (For

further comments on the interpretation of strategies, see Rubinstein (1988).) Hence,

Nash equilibrium requirea common and correct conjecturea. It is important to note that,

for a Nash equilibrium, it is neceasary that different playera conjecture the same response

even at information seta that are not reached when a is played. (Cf. the discussion on

the game of Figure 11 in Section 5.2.) In extensive form games, taking atrategy vectors

as the primitive concept in particular impliea that a player's predictiona do not change

during the game: Player j's conjecture about the action chosen at h ia a;~ both at the

beginning of the game ae well as at any information aet k E H„ even if it is the case that

k cannot be reached when s; is played. Hence, taking attategy vectors as the primitive

concept implies an assumption of "no strategy updatingn, i.e. that at each point in time

each player believea that in the `future' all playere will behave according to the norm

even though he may have seen that playera did not observe the norm in the past. We

make theae remarka to show that aome criticiams that have been leveled against subgame

perfect equilibria are actually criticisms against using strategy vectors as the primitive

concept of a theory.

2.1 Subgame perfect equilibria

Selten (1965) provided an example aimilar to the game from Figure la to point out that

not every Nash equilibrium can be conaidered a self-enforcing norm of behavior: (D, d) is

a Nash equilibrium (player 1 optimiaea by choosing D if player 2 chooses d and, if player

1 indeed chooses D then player 2's choice is irrelevant since he doesn't have to move).
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However, eince player 2 cannot commit himaelf to his choice of d(the game is asaumed

to be noncooperative), he will deviate to a if he ie actually called to play. Even if there

is a prior agreement to play (D, d), player 1 anticipatea that player 2 will deviate and he

deviates as well, thereby increaaing hie payoff: The agreement ia not self-enforcing.

[Insert Figure 1 hete]

Nash equilibrium requirea that each player's sttategy be optimal from the ex ante point

of view. Ex ante optimality implies that the strategy is also optimal in each contingency

that ariaes with poaitive probability but, as the example ahowa, a Nash equilibrium strat-

egy need not be a beat reply at an information set that initially is asaigned probability

zero. A natural auggeation is to impoae ex poat optimality as a necessary requirement

for self-enforcingneas. For gamea with perfect information (i.e. gamea in which all infor-

mation seta are aingletona) this requirement of sequential rationality is mathematically

meaningful and may be formalized aa in (2.2).

u;~,(s) ~ u;~(s`s;) for all i, all s; E S;, all h E H;, (2.2)

hence, at each information set h player i's equilibrium atrategy maximizes the player's

expected payoff conditional on having reached h as long as the opponenta play their

equilibrium atrategiea in the future. Clearly, equilibria satiafying (2.2) can be found

by rolling back the game tree in a dynamic programming fashion. Selten (1965) noted

that the azgument leading to (2.2) can be extended to a wider class of games. Define

a suógame as a part of the tree of an extensive form game that constitutes a game in

itself. Selten argued that a self-enforcing norm should induce a self-enforcing norm in

each aubgame since otherwise aome player might find it advantageous to deviate from the

norm and thereby reach a subgame with an outcome that benefita him. Selten defined
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a aubgame perject equilébriurra as a Nash equilibrium that inducea a Nash equilibrium in

every aubgame.

In condition (2.2) it is assumed that each player at each point in time believes that

in the future all players will try to maximize their payoffs. A player is required to have

such beliefB even in situations in which he hae already aeen that some playera did not

maximize in the past: The information aet h may be reached only if a deviation from s

has occurred. This asaumption of persistent rationality has been extensively criticized

in the literature (aee, for example, Basu (1988, 1990), Binmore (1987), Reny (1988a, b)

and Rosenthal (1981)). The critique may be illustrated by means of the game of Fig.

l.b. Aa long as x 1 1, the unique atrategy vector satisfying (2.2) ia (A, Dsa). However,

if x- 4, then Az is atrictly dominated so that player 1 only has to move after player 2

haa taken an irrational action. In auch a aituation it ia not compelling to force player 1

to believe that player 2 will certainly behave rationally and play a at his second move.

There seems no convincing argument why player 1 could not believe that player 2 will

choose d, and in the latter case he would prefer D. R.eny (1988a) proposes to weaken

(2.2) by demanding optimising behavior of player i only at information sets h that are

not excluded by player i's own strategy, i.e. that do not contradict the rationality of

player i. Reny's concept of `weak aequential equilibrium' doea not put any restrictions

on the conjecturea about player i's behavior at information seta h E H; that can be

reached only when player i deviates from s;. In the game I'z(x) with x~ 1 there are

multiple weakly sequential equilibria but they all lead to the outcome (x, x). If, how-

ever, the game would be modified auch that the payoff after AzAa would be (4,4) rather

than (3,1), then (D,Dsd) would be a weak sequential equilibrium of I'~(1.5) and this

producea an outcome that differa from the aubgame perfect equilibrium outcome. (In

the modified game R.eny's concept allows player 1 to believe that player 2 will choose d

after a defection to Az.)

In Kohlberg and Mertens (1986) it is aleo proposed to weaken requirement (2.2).

These authors take the poaition that requiring a theory of rationality to specify a unique
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choice in every contingency is unduly restrictive and they propoae (certain) aeta of atrat-

egy vectors (rather than single atrategy vectora) as the primitive concept of a theory.

Hence, according to Kohlberg and Mertens, a self-enforcing norm need not completely

pin down the players' behavior and beliefa in thoae contingenciea that will not be reached

when the norm is obeyed; we may be satiafied if we can identify the self-enforcing out-

comea, i.e. the outcomea that result when everybody obeys the norm. For example, in

I'~(4) the norm that saye "player 2 ahould play Dzn (without specifyíng what player 1

should do) ia self-enforcing in the more liberal aense. In I'~(2), Kohlberg and Mertens

also identify player 2 choosing D~ aa the self-enforcing outcome but now player 1's behav-

ior cannot be completely arbitrary: A aelf-enforcing norm epecifies that player I ehould

chooae D with a probability of at moat'~z since otherwiae player 2 will violate the norm.

We will return to the Kohlberg~Mertens atability concept in Section 5. In that aection

it will be seen that several desirable properties that we might want aelf-enforcing norms

to possesa can only be satisfied by norma that allow some freedom of choice in aome

circumstances.

The example from Figure l.b makes clear that the assumptions that players are

perfectly rational and that the game ia exactly as apecified imply that counterfactuals

arise naturally in game theory. Ae Selten and Leopold ( 1982) write

4In order to see whether a certain courae of action is optimal it is often

neceasary to look at aituationa which would arise if aomething non-optimal

were done. Since in fact a rational deciaion maker will not take a non-optimal

choice, the examination of the consequence of such choices will necessarily

invoke counterfactuals.r

In the game I'~(4), to determine his optimal choice, player 1 has to evaluate the coun-

terfactual uif player 2 would chooae A~, my beat response would be A". Philosophers

(Lewia (1973) and Stalnaker (1969)) have euggeated evaluating auch a counterfactual by

investigating whether in a world (or model) that is moat aimilar to the one under con-

sideration and in which player 2 chooaea Az it is indeed true that the best response is A.
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Selten and Leopold (1982) auggest a pazameter theory of counterfactuals, a slight varia-

tion of thia idea. To implement this idea, game theoriata have suggeated to formalize the

similazity relation by means of perturbed games: the original game ia embedded into a

larger perturbed game (in which all information aets are reached) and is approximated by

letting the perturbations vaniah. Two possible perturbationa readily suggest themselves,

one may either give up the asaumption that the playera are perfectly rational (this is the

approach taken in Selten's perfectness concept, see subsection 3.1) or one may give up

the asaumption that the game model fully deacribea the situation. Some consequences

of the latter approach will be invedtigated in aubaection 3.2. Not aurprisingly, it will be

seen that different approachea may yield different outcomes.

Before turning to perturbationa, however, we firat discuae the concept of sequential

equilibria.

2.2 Sequential Equilibria

The ex post optimality requirement (2.2) cannot be applied at non-aingleton information

sets since there the conditional expected payoff need not be well-defined. As a conse-

quence, the requirement of aubgame perfection doea not suffice to rule out all non-self

enforcing equilibria. For example, change the game from Figure l.a such that player 1

choosea between D, A and A' with player 2 moving after A and A' but without knowing

whether A or A' was chosen and with the payoffa after A' being the same as those after

A. Then (D, d) is a subgame perfect equilibrium of the modified game (since the latter

admits no aubgamea), but it clearly is not aelf-enforcing.

Kreps and Wilson (1982a) suggeat extending the applicability of (2.2) by explicitly

apecifying beliefa ( i.e. conditional ptobabilities) at every information aet so that posterior

expected payoffe can alwaya be computed and they propoee to make theae beliefs a fortnal

part of the definition of an equilibrium. Of courae theae beliefs should not be completely

arbitrary, they should respect the information atructure of the game and they ahould

be consiatent with the equilibrium strategiea whenever poasible. Formally, a system of
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beliefa is a mapping p thet assigna a probability diatribution to the nodea in h for any

information set h and a sequential equiliórium is defined as a pair (s,p) consisting of a

strategy vector a and a syetem of beliefa p aatisfying the following two conditiona:

s is sequentiaUy rational given p, i.e.

u,~,(s) ~ u,k(s`s;) for all i, all s; E S;, all h E H;, and (2.3)

p is consistent with s, i.e. there existe a sequence sk

of completely mixed behavior strategy vectors with sk ~ s(k -. oo)

such that p(x) - limk~ p'~(x)~p'i(h) for each information set h

and each x in h.

(sk ia said to be completely mixed if s,ti(c) 1 0 for all i, h E H; and all choices at h).

Condition (2.3) expressea that, gíven the beliefs p, the player maximizes his payoff at h

by playing according to s aa long ae the opponenta play according to s as well. The con-

sistency requirement meana that, at an information set which a player doea not expect to

be reached, the beliefa can be explained by means of amall tremblea from the equilibrium

strategiea. (At other information aets the beliefs coincide with those induced by the

equilibrium.) This consistency requirement is inspired by Selten's concept of trembling

hand perfect equilibria (see the next section) but it is not completely intuitive on its own

and Kreps~Wilson expreas some doubte about whether consistency actually "ought" to

be defined as in (2.4). In fact Kreps and Wilson'a intuitive motivation for where the

beliefa come from doea not involve any tremblea. They argue that at information aeta h

t}iat are initially aeaigned probability zero (p'(h) - 0), it is plausible to asaume that the

player will construct aome alternative hypothesis s' as to how the game has been played

that is consistent with hia obaervation (i.e. p'~(h) 1 0) and then use s' and Bayea' rule to

compute his beliefa. Formally, define a system of beliefs to be structurally consistent if

for each information aet h there exists some s' with p'~(h) ~ 0 and p(x) - p'~(x)~p'~(h)
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for each x in h. (Kreps~Wilson then go on to atrengthen this condition by requiring that

altemative hypotheses at different information seta be related in certain ways.)

Although this etructural consistency requirement seems intuitive at firat, further re-

flection reveals that it actually is not. Firat, the idea of reassessing the game (i.e. to

conatruct alternative hypotheaea) runa contrary to the idea that a rational player can

foresee and evaluate all contingenci~ in advance. (Recall the remazka on atrategy vec-

tora from the beginning of this section.) Secondly, atructural conaiatency conflicts with

the sequential rationality requirement (2.3). The latter requirea believing that from h

on play will be in accordance with s while the former requirea believing that play has

been in accordance with a'. Although theae requirementa are not conflicting in games

with a atage atructure (in theae the past can be aeparated from the future) they may be

incompatible in games in which the iníormation aeta cross, aince in theae deviations in

the past are sutomatically accompanied by deviations in the future. An explicit exam-

ple ia contained in Kreps and Rsmey (1987). That paper also contains an example of a

game in which there does not exist a sequential equilibrium (s, p) in which in addition

p is structurally conaiatent, hence, atructural consistency may conflict with consistency.

Since, as seen above, atructural conaiatency doea not aeem a compelling requirement,

one should not be bothered by this diacrepancy. Of course there remains the questíon

of whether the conaiatency requirement (2.4) can be expresaed directly in terms of the

basic data (i.e. the choices and information seta) of the extensive form of the game. The

affirmative answer to thia question is given in Kohlberg and R.eny (1991).

The literature offers a variety of equilibrium concepts (usually under the common

name of "perfect Bayesian equilibriumT) that are related to the sequential equilibrium

concept but in which milder reatrictions are impoaed on the way in which beliefs are

formed in zero probability eventa. The weakest of these do not impose any conditions off

the equilibrium path and allow, for example, that different playera with "identicaln infor-

mation explain an unexpected deviation in different ways. (Note that (2.4), according to

the usual "common knowledge" assumption underlying Nash equilibrium, assumes that
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all players have a common theory to explain deviations.) For further details the reader

is referred to Fudenberg and Tirole (1989) and Weibull (1990).

Other authors have propoaed to impose additional requirements on the way beliefs are

revised. In applications, such ae the etudy of dynamic games with incomplete informa-

tion, frequently the so-called support restriction is imposed. (For example, the concept

of perfect sequential equilibrium (PSE, Grosaman and Perry (1986)) that ia often used

in applicationa imposes thie reetriction.) Thia reatriction requires that, if at a certain

point in time a player aseigns probability zero to a certain type of the opponent, then

from that time on he continues to aeaign probability zero to that type. The restriction

enables analysis by means of a dynamic programming procedure in which the beliefs

are used as a etate variable. However, Madrigal, Tan and Werlang (1987) have shown

that impoeing this restriction may lead to nonexistence: The support restriction may be

incompatible with the (very mild) requirement that the beliefs be derived from the equi-

librium strategies on the equilibrium path. The following example (taken from Nóldeke

and Van Damme (1990)) demonstrates why thia ia the case and makea clear that the

support reatriction has nothing compelling to it. (For a more economic example, see

Vincent (1990).)

[Insert Figure 2.a and 2.b here]

Consider the signalling game from Figure 2.a: Nature first selecta a type of player 1,

both possibilities being equally likely. If player 1 chooses L the game enda, otherwise

player 2 has to choose between l and r. (Figure 2.6 gives a convenient matrix represen-

tation of this game following the conventiona outlined in Banks and Sobel (1987): The

matrices correspond to the choice~ of player 1, the rowa represent the types of this player

and the columns are the choices of player 2.) The game has a unique Nash equilibrium,
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viz. (L, R, r). Now conaider the two-fold repetition of this game: Player 1's type is

drawn once and for all at the beginning of the game, and before the beginning of round

2 only the actions from the previoua round, but not the payoffs, are revealed. We claim

that this game has a unique Nash equilibrium outcome, viz. type tl chooses L twice

and type tz chooaes R twice. (Proof: Strict dominance impliea that type tl chooses L in

both rounds and that type t~ chooaea R in the last round. Hence, type t2 will choose LR

or RR, or a mixture of theae. LR cannot be type iz's equilibrium strategy since (when

player 2 playa hia best reaponse) it yielda lesa than the payoff that type tz can guarantee

himself by playing LL. Type ts cannot mix, aince then player 2's unique best response

ia to choose r whenever R is chosen and this impliea that RR ia strictly better.) To

support the unique equilibrium outcome, player 2 should choose r with a probability of

at least b~e in the aecond round after having observed L in the firat round and R in the

second. However, auch behavior ia not optimal if beliefs are required to be consistent

with the equilibrium atrategies as well as to satiafy the support reatriction. Namely, these

requirementa force player 2 to believe that he is facing type tl for aure if he observea LR

(aince only tl chooaes L in the firet round in equilibrium) and if he has auch beliefs he

should play !. Hence, the beliefs asaociated with any Nash equilibrium necessarily violate

the support reatriction. The example make8 clear that euch a violation is actually quite

natural: After having obaerved L in the firat round, player 2 has no evidence that play

is not in agreement with the equilibrium ao he adopta equilibrium beliefa. After having

obaerved LR, however, he has sucó evidence and he corrects i iis initial beliefa aince after

all it is only tz who might have had an incentive to try to mislead him.

3 Perturbed games

Selten (1975) proposes to eacape from countcrfactuale assoc:iated with irrational movca

of rational playera by giving up the assumption that playera are perfectly rational and

he introducea a model of elight imperfect rationality that ia based on the idea that with

some very small probability a player will make a mistake. He writes (Selten (1975, p.

35))
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"There cannot be any mietakea if the playere are abeolutely rational. Never-

theless a satisfsctory interpretation of equilibrium pointa in extenaive gamea

aeems to require that the posaibility of miatakes is not completely excluded.

Thia can be achieved by a point of view which looka at complete rationality

as a limiting case of incomplete rationality.n

Selten's approach ia reviewed in subsection 3.1

Alternatively, one may eacape from the counterfactuals by giving up the asaumption

that the game fully describes the real aituation. One may argue that the model ia

overabatracted, that there are alwaya some aspecta that are not incorporated and that,

if a complete model were built, the difficulties asaociated with unreached information

seta would vanish. That there are rewards associated with not taking the deacription

of the game too literally is already known aince Harsanyi (1973) in which it was ehown

that if the slight uncertainty that each player has about the payoffa of his opponents is

actually taken into account, the usual inatabilities (and interpretational difíiculties) of

mixed atrategy equilibria vanieh. (At least thie holda for generic normal form games).

In aubsection 3.2 we briefly diacuss aeveral varianta of the idea that a self-enforcing

equilibrium should atill make aenae when the aspects that were abstracted away from

(auch as payoff uncertainty) are explicitly taken into account. It will turn out, that the

results depend crucially on which story that one tells, and that even Nash equilibria that

are not aubgame perfect can make senae in certain contexts. Hence, a main conclusion

to be drawn from subsection 3.2 ia that, if the game model ia not complete, it may not

be appropriate to apply equilibrium refinements.

3.1 Perfect equilibria

In Selten (1975) incomplete rationality is modelled by the assumption that at each of his

information aeta a player will, with a small (independent) probability suffer from "mo-

mentary insanity" and make a mistake. Selten asaumea that in the caee of a mistake at

the informatioa set h the player's behavior at h ia governed by some unepecified psycho-

logical mechanism which selecta each choice at h with a strictly positive probability. Since
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in such a perturbed game there sre no unreached information sete, a Nash equilibrium

preacribea the playing of a best responae everywhere. Selten proposea to reatrict atten-

tion to thoee equilibria of the original game that can be obtained as a limit of a sequence

equilibria of perturbed aames as the ttemblea vanish and he calls these perfect equilibria.

It is convenient to define perfect equilibria firat for normal form games, i.e. games in

which each player has to make juat one choice and in which choicea are simultaneous.

Let G- (S;, u;)~1 be auch a game, let a be a completely mixed atrategy vector (with a;

representing the choice of player i if he makes a miatake) and let E be a positive n-vector

of miatake probabilitiea. Denote by s`A the atrategy vector that resulta if each player

intenda to play s and players make independent mistakes according to (E, o). (Hence,

s;'' is the convex combination ofs; and o; that assigna weight E; to o;.) In the perturbed

game G`~' (i.e. the game in which the playera take the miatakea explicitly into account),

the strategy vector s is an equilibrium if

u;(9`A`s;) ~ u;(s`'"`s;) for all i and all s; E S;. (3.1)

The strategy vector s is said to be a perfect equilibrium of G if s is a limit of a sequence

s(E,,, vn) of equilibria of perturbed games G`~A~ Wlth E„ -i 0. Note that for s to be per-

fect it ia aufficient to find one mistake aequence that justifies s. Selten (1975) proved that

perfect equilibria exiat and he showed that the strategy vector s is a perfect equilibrium

if and only if s is a best response to a sequence of completely mixed strategy vectors

that converges to s. In particular it follows that a perfect equilibrium ia undominated

(admisaible).

Now let us return to an extenaive form game T. Selten's assumption that trembles

at different information sete are independent impliea that one may think of different

information aets of the same player as being adminiatrated by different agents. The

agent ih controlling the information aet h E H; has the same payoff as the original

player t but this is the only link betweeu agents, the agent ih cannot directly control



1?

the actiona of agent ik. Each agent maximiz~ for himself, counting on the rationality

of the other agenta, but incorporating the fact that they may make mietakes. It is now

natural to look at the normal form game in which the agenta are the playera. This game

(S~n, utA): i, AEH; ("'ith, of courae, u;A - u; for sll i and all h E H;) is called the agent

normal jorm of I'. A perfect equilibrium of the exteneive for game I' ia defined as a

perfect equilibrium of the agent normal form of I'. Note that equilibria of a perturbed

agent normal form game can be characteriaed by a condition similar to (3.1). Thia time

we should satisfy the local condition

u;(s`~'`s;A) ~ u;(s`A`s;h) for all i and all h E H;, (3.2)

where o is a completely mixed behavior atrategy vector. It is easy to see that each

perfect equilibrium is a sequential equilibrium; Kreps and Wilson (1982a) proved that

the converse holds for generic gamea.

A perfect equilibrium of the extenaive form need not be perfect in the normal form.

(Although this property doea hold for generic extensive forms.) In Figure 3 the equilib-

rium (DLI, Lz) is perfect in the extensive form: If player 1 feara that he ia more likely to

tremble than player 2 is, then hia choice of D is optimal. The normal form assumea that

each player can control hie own actiona completely. Obviously, in the normal form only

(ULI, L~) ia perfect. Note that in the normal form we repreaent the `duplicate atrategiea'

DLl and DRl by their `equivalence class' D. Thia convention will be followed through-

out the remainder of the paper. Hence, our normal form strategiea will not specify what

a player should do after he himaelf has deviated. The reader may fill in these actions in

any way he wanta without affecting the validity of any atatements we make below about

normal form strategiea.

[Inaert Figure 3 here]
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The game from Figure 4 ahowe that, on the other hand, equilibria that are perfect in

the normal form need not even be subgame perfect in the extenaive form: (D~, Dz) is

perfect in the normal form since D~ is player 2's best atrategy if he believes that player 1

is more likely to tremble to A~d than to Ata. In the extensive form, perfectness excludes

such beliefs: Even if player 1 trembled at his first move, player 2 should still consider it

very likely that player 1 will play rationally (i.e. chooee a) at his second move, hence,

he ahould play A~. Only (AIa, As) is (subgame) perfect in the extensive form. (Note

that the above conclusion would remain valid if the payoffs would be alightly perturbed

so as to make the game generic. Reny (1988a) has shown that a normal form perfect

equilibrium is always `weakly sequential' in the extensive form.)

[Insert Figure 4 here]

Myerson (1978) argued that also in the normal form of Figure 4 it is nonsensical to

believe that A~d is more likely than Ala. He argued that A~d is a more costly mistake

than Ala, that a player will try harder to prevent more costly mistakes and that as a

result these will occur much lesa often. Formally, he defined an E-proper equilibrium of

a normal form game as a completely mixed atrategy vector s having the property that,

if a pure strategy k of player i is a worse response againat s than a pure strategy !, then

the probability that s; asaigns to k is at most s times the probability that s; assigns

to 1. A limit of a sequence e-proper equilibria ( as E tend to zero) is called a proper

equiliórium Such an equilibrium exists and is obviously perfect. An important property

is that pmper equilibria of a normal form game induce sequential equilibrium outcomes

in every extensive form game with that normal form. Formally, if I' is an extensive form

game with normal form G and if s is a proper equilibrium of G, then there exista a

sequential equilibrium ( s',p) of I' such that p' - p'~. ( Kohlberg and Mertens ( 1986),
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Van Damme (1984)).

Another refinement that ie related to the perfectneae concept is the peraietent equi-

librium (Kalai and Samet (1984)). If G- (S;,u;);1 is a normal form game and R;

is a compact convex eubset of S; for each i, then R- X;R; ie said to be sn eeeential

retract if there exiata a neighborhood R' of R auch that for each s' in R' there is aome

s in R that is a beat reply against a'. (Roughly this definition atrengthena perfectneas

by requiring atability againat all perturbationa; simultaneoualy it weakens perfectness

by allowing sets of solutiona, this in order to guarantee exiatence.) A minimal esaential

retract ia called a persiatent retract and an equilibrium that lies in auch a retract ia said

to be a persistent equilibrium. Peraiatency doea not seem to be a necessary requirement

for self-enforcingneas. For example, in the Battle of the Sexea Game of Figure 7.a only

the pure equilibria are persistent, hence, a symmetric game need not have symmetric

peraistent equilibrium. Similarly, in the coordination problem of Figure 5 the outcome in

which player 1 chooses D aeems perfectly aelf-enforcing if playera cannot communicate.

(Note that player 2 has no incentive whatevec to communicate.) However, only the two

equilibria with payoff (3,3) are peraistent in thia game. From these examplea it appears

that persistency is more re;evant in an evolutionary or in a learning context, rather than

in a pure eductive context.

[Inaert Figure 5 here~

3.2 Correlated Z~embles

Selten's asaumption that miatakes are uncorrelated acroas different information seta has

been criticized and it has been argued (for example, in Binmore (1987)) that in some

contexta it may be more natural to allow correlated trembles. Obviously, if perturba-

tiona in a more general clasa are allowed and if only etability againat one sequence of

perturbed gamea ia required, then typically lesa outcomes will be eliminated. Correlated

tremblea ariae naturally if there is initial uncertainty about the payoffs and we will now
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give some examplea to illustrate that less equilibria can be eliminated in this context, in

fact, that in aome casea no Nash equilibrium can be eliminated. The reason is that, when

there is initial payoff uncertainty, the playera beliefa may change drastically during the

game. Poesibilitiea which are unlikely ex ante may have large effects ex post when they

actually happen. Consequently, it ie by no meana obvious that the perturbations like the

onea diacussed below ahould be considered slight perturbatione. (That a small amount of

payoff uncertainty may have a large effect ia also known from the `applications' in Kreps

and Wilson (1982b), Krepa et al. (1982) and Fudenberg and Maskin (1986). The results

below are different since they ahow that even vanishing uncertainty may have drastic

consequencea. )

Conaider once more the game Ts(2) from Figure l.b but auppose now that player

1 initially has some doubta about the objectivea of player 2. He believes that with

probability I- e player 2 is `rational' and has payoffs as in I'~(2) and that with proba-

bility E this player is `irrational' and triea to minimize player 1's payoffs (hence, in this

case u~ --ur). Player 2 knows hie own objectivea. The subgame perfect equilibrium

(A, D~a) of the original game ia no longer viable in this context: If player 2 believes

that player 1 choosea A, then he is facing the irrational type of player 2, hence, player

1 should deviate to D. The reader easily verifies that the perturbed game has a unique

subgame perfect equilibrium and that in this equilibrium player 1 chooses both A and

D with probability '~~ while the rational type of player 2 chooses Az with probability

2e~(1 - e). Hence, with this story, although we obtain the subgame perfect equilibrium

outcome of the game I'~(2) in the limit, we rationalize a strategy for player 1 that is not

this player's aubgame perfect equilibrium atrategy.

By uaing a conatruction as above, Fudenberg et al. (1988, Proposition 4) have shown

that, for every extensive form game, each equilibrium that is (strictly) perfect in the

normal form can be aimilarly rationalized by a sequence of alightly perturbed games in

which each player has aome private, independent, information about his own payoffs.

Hence, also outcomea that are not aubgame perfect can be `rationalized' by means of
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slight payoff uncertainty. This reault can be illuatrated by meana of the extensive form

game of Figure 4 which haa (Ala, A~) as ita unique aubgame perfect equilibrium out-

come. Suppoae that player 2 believee that with a amall but positive probability player 1

hae the ~ayoff 4 if Dz or d is played. (All other payoffa remain as in Figure 4 and it ia

assumed that player 1 knowa whicn payoffs prevail.) Thia perturbed game has a atrict

Nas;~ equilibrium (i.e. each agent chooaes his unique best reaponse) in which player 2

choosea D~ while player 1 chooaea Dl if his payoffs are aa in Figure 4. In thia equilibrium

player 2 correctly infera from the choice of A1 at player 1's firat information aet that this

player will chooae d at this aecond move, this inducea him to chooae Dz which in turn

makea Dl atrictly optimal for the `regular type' of player 1. Hence, in the limit, as the

uncertainty vanishea we obtain the (normal form perfect) equilibrium (Dl, D~).

Fudenberg et al. (1988) also show that if the information of different players may be

correlated one can rationalize the larger aet of normal form "correlated perfect" equilib-

ria, and that, if it is posaible that some player i may have information about the payoffs

of player j that ia auperior to j's information, then one may even rationalize the entire

set of pure atrategy Naeh equilibria. (Formally, if a ie a pure etrategy Naeh equilibrium

of game I' then there exiats a eequence of alightly perturbed gamea in which each player

has aome private information and an assocíated aequence of atrict equilibria that con-

verges to s(Fudenberg et al. (1988, Propoaition 3)). This result may be illustrated by

meana of the game of Figure l.a. Asaume that with a small probability E the payoffs

associated with (A, d) are (2,2) rather than (0,0) and that only player 1 knowa what

the actual payoffs are. In thia perturbed game it makea perfectly good sense for player

1 to choose D if the payoffs are as in Figure l.a, since he may fear that player 2 may

interpret the choice of A as a aignal that the payoffs are (2,2) and continue with d after A.

The driving force behind the previous example was that the playera could correlate

their strategiea. Of course, payoff uncertainty is not necessary for correlation to be pos-

sible (Aumann (1974)) and, consequently, conatructions like the above may be posaible if

the payoffs are known but there is uncertainty about the game structure. As an example
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conaider the game from Figure 6 in which the simultaneous move subgame is played

between the playera 1 and 2(player 3 ia a dummy in that game). Since the subgame

has a unique Nash equilibrium with value (3,3,4), the unique subgame perfect equilib-

rium yielda each player the payoff 5. Note, however, that the eubgame alao admita a

correlated equilibrium c in which each of the nonzero entries is played with probability

~~e. If player 3 believea ex ante that there ia an e probability that the players 1 and 2

have a correlation device available that enables them to play c, then he can interpret

the choice of A1 ae a aignal that thie device ia available. This interpretation leads hím

to chooae A3 which in turn inducea player 1 to choose Dl if the correlation device is not

available. Hence, thia atory juatifiea the outcome (4,4,8). (For an elaboration on this

example, and an in-depth study of `sequential correlated equilibria' the reader is urged

to consult Myerson (1986) and Forgea (1986).)

[Insert Figure 6 here]

The point of this subsection has been to ahow that if the game model is incomplete,

then one cannot tell which equilibria are aelf-enforcing without knowing where the in-

completenesa of the model conaista of, i.e. without knowing the context in which the

game is played. Consequently, in the next aection we return to the classical point of view

that

~the game under consideration fully describea the real situation, - that

any (pre)commitment poasibilities, any repetitive aspect, any probabilities of

error, or any possibility of jointly obaerving some random event, have already

been modelled in the game tree~ (Kohlberg and Mertens (1986, Fn. 3).
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4 Stable equilibria

The game of Figure 7.b ahowa that the concepta introduced thua far do not provide

sufEcient conditiona for aelf-enforcing equilibris. In this game player 1 has to chooae

between an outside option yielding both playera the payoff of 2 or to play the Battle of

the Sexes gamea from Figure 7.a. One equilibrium has player I chooaing D while the

playera continue with (w, a) if the BS-aubgame is reached. The equilibrium ia perfect

since perfectnees allowe player 2 to interpret the move A of player 1 as an unintended

miatake which doea not affect player 1's behavior at his aecond move. However, there

clearly exiats a much more convincing explanation for why the deviation occurred. Player

2 should realize that player 1(being a rational player) will never play Aw since this is

strictly dominated by D. Hence, he ehould conclude that the deviation signala that

player 1 intenda to play s in the aubgame and he should reapond by playing w. Clearly,

this chain of reasoning upaets the equilibrium.

(Inaert Figures 7.a and 7.b here~

Note that the above argument involved the normal form of the game, we discussed

atrategies for the entire game rather than independent actiona at different information

seta. (Formally, the argument amounts to the observation that, by eliminating domi-

nated strategiea, one can reduce the game to the outcome (As, w). Hence, the example

shows that perfect equilibria are not robuat to the elimination of dominated strategies.)

What ia involv~ed is an argument of Forward Induction: Player 2's beliefa and actions

should not only be consistent with deductiona based on player 1's rational behavior in

the future (thia ia the sequential rationality requirement captured by perfectnesa) but

they ahould also incorporate (at least as much as posaible) rational behavior of player 1

in the past. It seems that the latter type of conaiderationa can only be incorporated by

taking a global picture, i.e. by looking at the normal form.
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Kohlberg and Mertena (1986) azgue forcefully (and convincingly) that the normal

form of a game containa aufficient information to find the self-enforcing equilibria of

this game. The azgument ia simply that rational players can and ahould always fully

anticipate what they would do in every contingency; a theory of rationality that would

tell a player at the beginning of the game to choose c if the information aet h were to

be reached and that would simultaneoualy advise the player to take a different action c'

if h is actually reached ia hardly conceivable. Thia clasaical point of view implies that

self-enforcing equilibria can only depend on the normal form of the game and entails that

(subgame) perfect and sequential equilibria are unsatiafactory. (The two games in Figure

4 have the same normal form but they have different sets of perfect (resp. sequential)

equilibria. Note that in a normal form game every Nash equilibrium is sequential.)

Kohlberg and Mertena argue further that one even needs less information than is con-

tained in the normal form to find the self-enforcing equilibria: Since players are always

explicitly allowed to randomize over pure strategies, adding such mixtures explicitly as

pure atrategies in the game should not change the solutione. Thia requirement implies

that the solutions of a game can only depend on the so-called reduced normal form, i.e.

on the normal form that reaulta when all pure atrategies that are convex combinations

of other pure etrategies have been deleted. It turna out that this invariance requirement

is incompatible with the requirement that the solution of an extensive form game be

a subgame perfect equilibrium: There exiat two games with the same reduced normal

form that have disjoint aets of subgame perfect equilibria. An illustration is provided by

the game of Figure 8.a. Thie ia the ( reduced) normal form of an extenaive form game in

which player 1 chooaea between an outaide option 1 yielding 2 or Lo play a 2 x 2 subgame

of the matching penniea type, and the unique subgame perfect equilibrium of this game

has player 2 choosing 1~zL-~1~zR. If we add the mixture s - l~zl~-'~2m explicitly as a pure

strategy of player 1 then we obtain the normal form fiom Figure 8.6 which corresponds

to an extensive form game in which player 1 chooses between an outaide option or to

play a 3 x 2 subgame ( with strategies s, m and r for player 1 and L and R for player 2).
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The reduced normal form of thie game is ae in Figure 8.s, however, the unique subgame

perfect equilibrium of the game requires player 2 to chooee R.

[Ineert Figurea 8.a and 8.b here~

The incompatibility of the two requirements calls again into queetion of whether

subgsme perfectneas ia really neceaaary for self-enforcingneae. Like the examplea in Sec-

tion 2, this example suggeate that one adopte a more liberal point of view and allowa

multiple beliefe and multiple recommendations for player 2. There ie certainly no need

to specify a unique action for this player since his choice doesn't matter anyway when

he playe againat a rational opponent. Hia choice may matter if hie opponent playe ir-

rationally but then the optimal choice probably dependa on the way in which player

1 is irrational and eince no theory of irrationality ie provided, the analyst ehould be

content to remain eilent. Generalizing from this example one might argue that we may

be satisfied if we can identify the outcomea reaulting from rational play, i.e. if we can

specify which actions a player ahould take aa long as the opponenta' behavior doea not

contradict their rationality. A aelf-enforcing norm of behavior should not necessarily pin

down the players' behavior and beliefa in those inetancea which cannot be observed when

the norm ie in effect.

Kohlberg and Mertena also argue that, beaidea failing to eatiefy invariance, a second

rea.aon [or why perfect (and eequential) equilibria are not eatiafactory concepte is that

they may allow equilibria in dominated etrategies. (Perfectnesa impliea that all moves

are undominated, however, the overall strategy may be dominated, cf. the equilibrium

(DL~, L~) in Figure 3.) Kohlberg and Mertens consider admisaibility of the equilibrium

strategiea (i.e. these atrstegies not being weaidy dominated) to be a fundamental re-

quirement. Furthermore, as we have aeen when discussing the game from Figure 7.b, yet

another drawback of per[ect (and aequential) equilibria ie that they are not robuat to
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the (iterative) elimination of dominated atrategiea. Kohlb~.rg~Mertens a.g. c',.~:.: ~~...

(weakly) dominated etrategiee are never actuxl~y choaen by rational players and sirce al~

players know lhie, auch etrategiea can have no impact on whether or not an equilibriu~o i5

seli-enforcing. This requirement of "independence of dominated atrategies" again } oie! s

to s aet-valued aolution concept, eince, ae ie well-known, the outcome of the elin:inatio ~

proceas may depend on the order in which the ytrategiee are eliminated. Foc exampte, in

the game of Figure 8.a, the elimination order m, R, r leada to the conclusion that pla~e.

2 ahould play L, while the order r, L, vrs leada to the conclusion that he should play .'Z.

Again one eeea thst multiplicity ie natural: If player 2 eliminatea a dorninated strategy oi

pla,yer 1 he attributea rationality to this playec, but he msy have to move only if playe:

1 actually is itrational. We simply recon.`'irm : hat the way in which player 1 is irrati.,nal

determine~ player 2's cboíce and that, if one .'oea not apecify what irrational behavi.~:

looka like, one should not necesaarily specify a unique choice for player 2.

[inaert F;gure 9 here~

A more intereating example, in which different elimination ordere actually produce differ-

ent outcomee ie provided by the game from Figure 9. In thia game the notions of forv. ard

and bacjcward induction are conflicting. Backward induction (or the eliminacio. uider

al, AL, d, AR) leads to the concluaion that player 1 ahould choose D and that the pa~~ofT~

wiil be (2,0). Forward induction, or more preciaely lhe fact that player 2 interprets the

choice of A ae a eignal that plsyer 1 will not piay R, yielda as a posaible elimination c: der

AR,a~,D,dl, which givee the concluaion that plsyer 1 ahould play AL and that ploye:

'l should choose d reaulting in the payoffa (2,2). (This game is noageneric since both

C aud d yield player 1 the payoff 2, however note that, when one does the backwarè

induction, there are never ties.) Thia szample showa that, if we indeed insist on tl, ~

requirement that aelf-enforcing norma ehould be "independent of dominated stcategio."
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then, in nongeneric gamea, we cannot identify norma with outcomes and thia raiaea the

queation of how to define norma in thia caee. Kohlberg and Merteas show that the aet

of Nash equilibria of a game consista of finitely many connected components and they

suggest :ia candidates for self-enforcing norma (connected aubsets of) auch componenta.

Since generic extenaive form gamea have only finitely many Nash equilibrium outcomea

(Krepa and Wilson (1982a)) it followa that for generic gamea all equilibria in the same

component induce the same outcome, so that for such games the Kohlberg~Mertena aug-

gestion is only a telatively minor departure from the traditional notion of a single-valued

solution.

The requirement that the solution be "independent from dominated strategiea" is a

global requirement: Strategies that are `bad' from an overall point of view will not be

chosen, hence, they ahould play no role. Once a specific norm is under consideration

one can be more apecific. If the norm ia really self-enforcing then a player will certainly

not choose a strategy that, as long as the others obey the norm, yielda him stríctly less

than he geta by obeying the norm. Hence, for a norm to be aelf-enforcing it is necessary

that it remains self-enforcing after a strategy has been eliminated that ia not a best

reply against the norm. The power of thia requirement of "independence of non-best

reaponsean (INBR) will be illuatrated in the next section. The game I'z(2) from Figure

1 showa that this INBR requirement is not satisfied by the subgame perfect equilibrium

concept: atrategy Aza of player 2 ia not a best reaponse againat player 1's equilibrium

strategy A, but if Aza is deleted from the game, player 1 will awitch to D. Hence, if one

wants to satisfy INBIi as well ae some form of sequential rationality one ie again forced

to accept a set-valued solution concept.

Having specified aeveral necessary conditiona for self-enforcingness, the obvious ques-

tion, of course, is whether it ia posaible to satisfy all these requirements. The answer is

yes: There exist norma satisfying the propertiea diacussed above as well as some other

desirable properties.
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Theorem: (Mtrtena (1988, 1989a, 1990).) There exists a cornspondence that as-

signs to each game a collection of so-called staóle aeta oj equilibria such that

(i) (connexity and admiasibility) each stable aet is a connected aet of normal form per-

fect (hence, undominated) equilibria.

(ii) (invariance) stable aet9 depend only on the reduced normal form.

(iii) (backwa~d induction) each staóle set containa a proper (hence, sequential) equilib-

rium.

(iv) (iterated dominanoc) each atable set containa a stable set of a game obtained by

deleting a (weakly) dominated strategy.

(v) (lNBR) each stable set contains a staóle set oj a game oótained by deleting a strategy

that is not a óest response againat any element in the set.

(vi) (player splitting property) atable aets do not change when a player is split into two

agenta provided fhat there ia no path in the game tree én which !he agents act after each

other.

(vii) (amall worlda property) If there exists a subaet N' of the player set N such that the

payoffs to the players in N' only depend on the actions of the players in N', then the

staóle seta oj the game óetween the players in N' are exactly the projections of the stable

sets of the Jarger game.

The properties (i) -(v) have already been discuased. Property (vi) implies that it dces

not matter whether a signalling game (see the next section) is analyzed in normal form (2

players) or in agent normal form, or in any intermediate game form. Note that this prop-

erty does not hold if two agents of the same playet move after each other: The outcome

(2,2) is stable in the agent normal form of the game of Figure 7.b: If player 1 consists of

two separate agenta then the firat has no control over the second and he cannot signal

this agent's intentiona. Property (vii) is a decompoaition property that guarantees that

the solutiona of a game do not depend on things that have nothing to do with the game.

Note that we naturally have `containa' rather than `ie' in (iv) and (v): atable sets may

shrink if `inferior' strategies are deleted. Intuitively, atable sets have to be large since

they must incorporate the possibility of irrational play (and there seems no unique best
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way to play against irrational opponenta); however, by eliminating dominated strategies

one attributea more rationality to the playera, makea them more predictable and this

leads to a smaller set of optimal actiona, hence, to smaller stable sets. The game I'~(2)

of Figur~ 1 provides an illuatration. The aet of normal form perfect equilibria oí this

game consiats of the atrategy vectors s-(sl, sz) with sl - pA f(1 - p)D, s~ - Dz and

p C'~z, hence, (by (i)) each atable set is a subset of this set. Let S' be a atable set.

Since the strategy Asd ia not a beat responae against S' and since, in the game in which

A~d is deleted, the unique atable set is (A, Dz) (by admisaibility), we have that (A, Dal

belonga to S'. Similarly the strategy'~zA t'~zD of player 1 must belong to S', for, if

this would not be the case, then ATa would be `inferior' so that (by (i) and (v)) (D, AZd)

should belong to S' but this is impoasible. Hence, it follows by (i) that in I'z(2) the

unique stable set is the aet of all normal form perfect equilibria.

Note that the Theorem ia atated as an exiatence theorem, it doea not say how to

find stable seta. Kohlberg and Mertena (1986) initially defined a atable set of a game

G as a"minimal cloaed set S of equilibria of G with the property that each perturbed

game G`~' (see Section 4) with sufficiently small e has an equilibrium cloae to Sr. This

definition is easentially the same aa that for perfect equilibria except that one works

with the normal form and that one has to look at all perturbationa rather than just

one aequence. However, it turntd out that thia concept failed to satiafy some essential

properties from the Theorem (auch as (iii)). Mertens (1988, 1989a) refined the definition

to remedy this deficiency and proved the Theorem. For the purpose of this paper the

exact definition ia not ao relevant, aince in the applicationa to be discuased next, the

propertiea from the Theorem will suffice to single out the atable outcomes. Finally,

Hillas (1990) defines a atable aet of a game G as "a minimal closed aet S of equilibria of

G with the property that for each game G' with the same reduced normal form as G and

[or each upper-hemicontinuoua compact convex valued correapondence that ia pointwiae

close to the best reply correapondence of G' there exiata a fixed point that is closed to

S". Such atable aets exiat and satisfy the properties (i) -(v) from the Theorem.
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5 Forward induction

In this aection we briefly diacusa eome applicationa of fotward induction, i.e. of the idea

that the inferences playera draw about a player's future behavior should be consistent

with rational behavior of thia player in the past. Informally stated, forward induction

amounta to the requirement that for an equilibrium to be self-enforcing there ahould not

exist a nonambiguoua deviation from the equilibrium that, when interpreted in the ap-

propriate way, makea the deviator better off. This attractive idea has proved elusive and,

consequently, aeveral formalizationa have been proposed in the literature. It has turned

out, however, that atability (and in patticular uindependence of dominated strategies

and~or non-best reaponses" ) capturea at least some of the forward induction logic. In

thie aection we first illuetrate aome applicationa of atability in gamea of complete infor-

mation, thereafter, we indicate how powerful that concept is to eliminate implausible

equilibria in signalling gamea. Along the way aeveral other formalizations of forward

induction that are in some way related to atability will be encountered. Throughout the

section attention will be confined to generic gamea, i.e. to gamea that have finitely many

Nash equilibrium outcomea. We will call an outcome of auch a game stable if there exists

a stable aet of which all elementa induce this outcome. (Recall that in generic games all

elementa in a same stable aet yield the same outcome.)

5.1 Signalling intentions

Consider the following modification of the game of Figure 7.b: First chance determines

whether player 1 or player 2 will have an outaide option available. If a player takes up

the outaide option each player has the payoff 2. If player i is aelected by chance but

he doea not take hia option then players play the Battle of the Sexes. It is easily seen

that in the unique stable outcome the option ie not taken up, that the player who has

the option available choosea to play BS and gets the payoff 3. (Abdalla et al. (1989)

provide experimental evidence on the euccesa of forward induction in similar gamea). In

particular, we aee that the hiatory oí the game determinea the way in which the aubgame

is played: The player'a ezpectations in the aubgame are not endogenoua i.e. they are
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not determined by the aubgame alone but depend on the context in which the aubgame

arises. (See Mertena (1989b) for an informal diacusaion on this topic.) The equilibrium

selection theory of Harsanyi and Selten (1988) is based on the asaumption of endogenous

expectationa: Harsanyi and Selten impoae the requirement of subgame conaiatency, i.e.

a subgame ehould alwaye be played in the aame way no matter how it aroae. The exam-

ple shows that subgame conaietency conflicta with atability. Similarly, it may be ahown

that also other concepta that require history independence, auch aa Markov perfection

(Maskin and Tirole (1989)) or stationarity conflict with atability.

Suppose that the playera have to play the Battle of the Sexes Game from Figure 7.a

but that before playing this game player 1 has the option of burning one unit of utility

and that when BS is played it is common knowledge whether or not player 1 burned

utility. It is easily seen that iterative elimination of dominated atrategies reduces the

normal form to the payoff (3,1), óence, only the outcome in which player 1 does not burn

utility and geta his most preferred outcome ia stable. Uaing this argument, Ben-Porath

and Dekel (1987) have shown that in gamea of "mutual intereat", the players will aucceed

in coordinating on the Pareto beat equilibrium if one player has the ability to destroy

utility. In Van Damme (1989) it ia ahown that `in the Battle of the Sexes' all atable

outcomes are inefficient (i.e. involve aome burning) if both players have the opportunity

to aimultaneoualy burn utility. Applicatione of these ideae to more economic contexts

are found in Bagwell and Ramey (1990), Dekel (1989) and Glazer and Weisa (1990).

The deletion of dominated atrategiea in the BS with one-eided burning of utility cor-

responds to the following intuitive atory: If player 2 obaerves that player 1 burns utility

he should conclude that player 1 will continue with s; asauming that player 1 will play w

dces not make senae since burning followed by w yielda at most the payoff zero, hence,

is strictly dominated by not burning and randomizing between s and w. This conclusion

leads player 2 to play w if burning ie obaerved and burning utility is sure to yield player

1 the payoff 2. At this atage of the reasoning procesa we are back to a game like that

in Figure 7.b and we can continue reasoning as in that example to reach the conclusion



32

that (s, w) ahould also be played if player 1 does not burn utility. A little reflection re-

veals that the argument above ia not intuitive at all: It is not clear why player 2 should

respond to the buming by playing w aince, given the concluaion we just reached, burning

is a signal that player 1 is not rational, at least it aignals that he did not follow the above

reasoning. At this point the reader ahould be reminded of the discussion of counterfac-

tuala in Section 2, so it is not necessary to go into detaila here. Let us just remark that

atability doea not force player 2 to play w after player 1 has burned utility: The stable

set includes both ww and ws for player 2(tr~ denotes that player 2 reaponda to not

burning by a and to buming by ~). Namely, property (iv) of the Theorem implies that

(-s, ww) belonga to the atable eet. (-s denotes the etrategy of not burning and playing

s.) Furthermore, given that player 2 plays a mixture of ww and ws in any element of

the atable set, the etrategiee 6s (i.e. burning and then playing s) and -w are inferior for

player 1. If these strategies are eliminated, ws becomes dominated for player 2 and the

normal form is reduced to (-s, ws), so that the Theorem implies that this strategy pair

also has to belong to the atable set.

When a game with multiple equilibria ia repeated the set of subgame perfect equi-

librium payoffa expands until in the limit it covers, at least under a mild regularity

condition, the entire set of feasible and individually rational payoff vectora. This is the

content of the "Folk Theoremr ( Benoit and Krishna (1985)). Hence, in repeated games

the problem of multiplicity of equilibria ia ubiquitous. Considerationa of forward induc-

tion may eliminate some of theae equilibria as the twice repeated battle of the sexes may

ahow. As an illuatration, let us ahow that the outcome (path) in which the one-shot

equilibrium (s, w) ia played twice is not atable. Namely, INBR impliea that player 1

should interpret a deviation of player 2 to s in the first round as a signal that player 2

will also play s in the eecond round. ( If he would plan to play w then his payofí is at

most 1, which is less than the equilibrium payoff, hence, such a strategy is not a best

reaponae.) Consequently, after the deviation player 1 ahould play w but then player 2

gaina by deviating (his payoff ia 3 rather than 2), so that the outcome is not stable.

Stable outcomes are altemating between (1,3) and (3,1), as well as playing the mixed
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equílibrium twice, and aome other mixturea in which the continuation at time 2 dependa

on the outcome of stage 1. It aeema that atability forcea payoffe to move closer to the

45' line but whether thia property remains for repetitions with longer duration remains

to be in~~eatigated.

To this author's knowkdge no general results are available for stable equilibrium pay-

offa of repeated games: mathematically stability is not very easy to work with. Some

preliminazy resulta on repeated coordination games are contained in Oaborne (1990). In

particular, Oaborne showa that in a clasa of repeated coordination gamea, patha that

conaiat of pure Nash equilibria of the atage game can be atable only if they yield payoffs

that are nearly Pareto optimal. This reatriction on paths is unfortunate since for more

general gamea no such path need be atable (Van Damme (1989)). Osborne doea not use

the full power of stability, he works with a weaker criterion of ~immunity to a convinc-

ing deviation~ (which is akin to the Cho and Kreps (1987) intuitive criterion (aee the

next aubsection) and to the formalization of forward induction propoaed in Cho (1987)).

Oue negative result that ie known is that stability conflicta with ideas of renegotiation-

proofnesa: there may not exist a stable equilibrium that is also renegotiation-proof (Van

Damme (1988)). (Renegotiation-proofnesa requires that at each atage of the game players

continue with an equilibrium that ia Pareto efficient within the set of the available equi-

libria, see Pearce (1990) for an overview of the varioua concepts formalizing thia idea).

In an interesting application Ponasard (19906) showa that forward induction leads to

the conclusion that long term competition in a market with increasing returns to acale

forcea firms to use average coat pricing. Ponssard, however, develops his own concept of

forward induction (also aee Ponasard (1990a, c)) and it ia not clear that atable equilibria

satiafy Ponssard's conditiona.

An alternative (preliminary) formulation of forward induction based on an idea origi-

nally developed in McLennan (1985) was proposed in Van Damme (1989). In that paper

it was argued that, in a generic 2-plsyer game in which player 1 hae the choice between

an outaide option o or to play a aubgame ry of which a unique viable (say stable) equilib-
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rium e yielde player 1 more than his option, only the outcome in which player 1 chooses

to play ry and e is played in ry ia sensible. The justification for this requirement is that by

chooaing to play ry player 1 can unambiguously signal that he will play according to e in

ry. Alternatively one may imagine a context in which there ia initial atrategic uncertainty

about whether the norm o or the norm rye ia in effect: Even if player 2 originally believes

that he ia in a world in which o ia obeyed, he concludes from the fact that he has to

move that the norm must be rye and he reaponde appropriately. (Telling the story in

thia way makes clear that thia type of forward induction ia related to the riak domi-

nance concept from Harsanyi and Selten (1988). Another paper dealing with thia type

of aituatione ie Suehiro (1990). Also Binmore (1987) has auch a context in mind when

he preaente an argument in favor of the imperfect equilibrium in Selten's `horse' game.)

Van Damme (1989) conatructa an example to show that atable outcomes as originally

defined by Kohlberg and Mertena do not necessarily conform to this forward induction

logic. It is unknown to this author whether Mertens' refined atability concept satisfies

this forward induction requirement.

5.2 Signalling private information

A signalling game is a 2-player game in which player 1, who has private information takes

an action (`aends a signal') that ie observable to player 2 who thereupon takes an action

and in which the payoffa depend on both playera' actiona and the type (i.e. the informa-

tion) of player 1. (Formally, a aignalling game ia a tuple I' - (T,M,(R,,,)n„ ul,uz,A)

where T ia the (finite) set of types of player 1, M is the (finite) set of inessages that can

be send, R,,, is the (finite) set of responaea to m, u; - u;(t, m, r) is the payoff function

of player i, and x ia a probability diatribution on T repreaenting the initial beliefs of

player 2. An example of a signalling game ia the game in Figure 2.a; from now on we

will use a matrix representation as in Figure 2.b. to depict signalling games). Signalling

games were introduced by Spence (1974) and they provide stylized models of many in-

teresting economic aituationa (aee Cho and Krepa (1987) and Krepa and Sobel (1991)).

These gamea typically have large numbera of equilibria and reaearchers have used in-

tuitive, context dependent arguments to eliminate equilibria. Although a great variety
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of refinements exiat, they all incorporate some form of forward induction, hence, they

can be related to the stability concept from the previous aection. Next we briefly dis-

cuas these relationa. (The reader ia referred to Cho and Krepe (198?), Banke and Sobel

(1987), Kreps and Sobel (1991) and Sobel et al. (1991) for more detaila.) Before atarting

to discusa the relationahipa it ahould however be noted that the "intuitive criterian aze

based on a somewhat different point of view, viz. economiats have tried to directly define

"plausible beliefa" and propoaed to restrict attention to the ("plausibler) equilibria that

can be aupported by "plauaible beliefs". Such a requirement is stronger than the onea

conaidered previously which were baeed on the idea that a candidate equilibrium should

be rejected if it can be upeet by "plauaible" beliefa. The difference is that there may not

exiat equilibria that can be sustained by "plauaibler beliefa since "plausiblen beliefa may

not exist (cf. the discussion on burning utility in the battle of the sexea game).

Let an equilibrium s of a signalling game be given. Typically the intuitive criteria

that are used to judge the "plauaibility" of this equilibrium atart out by assuming that,

if player 1 doea not deviate fmm his equilibrium atrategy, player 2 will not deviate ei-

ther, hence, that playing the equilibrium atrategy guarantees each type of player 1 his

equilibrium payoff. (This asaumption certainly makes aense: If the equilibrium is really

self-enforcing, then no player will deviate. However, see the discussion in the Figures 12

and 13.) Next, aseume that m ia a message that ia not sent if s is played. If choosing m

ia sure to yield a certain type t of player 1 less than what the equilibrium guaranteea this

type, then it is not "plausible" to aaeume that t will choose m and it ahould be posaible

to auatain the original equilibrium by beliefs that asaign zero weight to t. Depending

on how one definea "to sustain" in the previous sentence, the reaulting teat ia known as

"the intuitive criterionn or ae `equiliórinm dominance" (Cho and Krepa (1987)). The

equilibrium s satiafies the intuitive criterion if for each type t of player 1 there exiats a

belief in the reatricted set (of beliefe that puta zero weight on the typea for which m is

dominated) and an asaociated beat response for player 2 at m that makes type t prefer

to choose s rather than m. The test poaed by equilibrium dominance ia more restric-

tive and requirea that there exists a belief in the reatricted aet and an asaociated beat
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response of player 2 such that no type of player 1 wants to deviate to m if that response

ia taken at m. Hence, the latter test requirea that different types conjecture the same

response after m, the former allows different typea to have diffetent conjectures. In the

signalling game of Figure 10 the outcome in which both typea of player 1 choose L doea

not survive application of the intuitive critetion aince the latter requirea that, after R,

player 2 ahould put weight 1 on type tl and play (. In the game of Figure 11, the outcome

in which all typea choose L survivea the intuitive criterion (this requires that player 2

puts weight zero on t3 but it allows that the conjectures of tl and tz are mismatched, i.e.

that tl believea that player 2 will play m and that tz believes that he will play l), but

it doea not pass the equilibrium dominance test, since if tl and tz conjecture the same

(mixed) atrategy of player 2, at least one of them will deviate. (Note that the game of

Figure 11 (with t3 deleted) demonatrates the claim made at the beginning of Section 2

that the Nash equilibrium concept depends in an essential way on the assumption that

different players (here t~ and tz) conjecture the same out-of-equilibrium responses.)

(Inaert Figurea 10 and 11 here]

The above tests may be applied repeatedly. Formally, this repeated procedure runs

as followa. Given an equilibrium s and an unsent message m, one first constructs the

auxiliary aignalling game in which player 1 has the choicea s and m, where s guaran-

teea the equilibrium payoffe and where the payoffs after m are the same as those in the

original game. Next one atarte eliminating etrictly dominated atrategies in the agent

normal form of this game (hence, the typea of player 1 are conaidered as independent

players). If during the process the action s vanishea for some type t, then s does not

satiafy the intuitive criterion. If the game that one obtains at the end of process does

not have a as an equilibrium, then s fails the equilibrium dominance test. Since only

actions are eliminated that aze not a beat reaponae against any equilibrium in the same

component as s, the Theorem implies that equilibria failing any of these tests cannot
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belong to stable aeta.

[Insert Figure 12 here]

Alternatively, one might construct the normal form of the auxiliary signalling game

and eliminate dominated strategiea in that game form. Thís poaea a atricter teat since

more dominance relationshipa exist in the normal form. Consider the equilibrium s of the

3-message signalling game of Figure 12 in which both types choose L and the auxiliary

game corresponding to the message M. (Hence, for the moment we completely neglect

the message R.) Then s survives the equilibrium dominance test since choosing M is

not dominated for either type. In the normal form, however, the strategy LM (i.e. tl

chooses L and tz chooaes M) is dominated (by a combination of ML and MM) and after

this strategy has been eliminated one sees that player 2 should play l, thereby upset-

ting s. The intuitive argument corresponding to the elimination of dominated atrategies

in the normal form is known in the literature under the name of co-divinity (Sobel et

al. (1991)), a criterion that is alightly weaker than that of divinéty (Banks and Sobel

(1987)). These criteria may also be described as follows. Assume that (the types of)

player 1 conjecture that player 2 will reply to m with the reaponae r. Letting u'(t)

denote the equilibrium payoff of type t, the propensity a(t, r) for type t to deviate from

s is given by

0 if u'(t) ) u(t,m,r)

a(t,r) - E(0, 1] if u'(t) - u(t,m,r)

1 if u'(t) G u(f, m, r)

Hence, if player 2 knowa that player 1 conjectures that he will play r, then his beliefs

will be in the set
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8(x,r) -{x E ~(T); x' - aa(~,r) for some a as in (5.1)}. (5.2)

If there exiats a possible conjecture r for which B(A, r) is not empty (i.e. if there exists a

type that would not lose from deviating to m), then divinity and co-divinity require that

the equilibrium s can be sustained by beliefs that belong to U,B(A, r) where r ranges

over the possible conjectures. Divinity is a slightly stronger concept since it allows only

conjecturea r that are (mixed) best responses while co-divinity allows the larger set of

all mixtures of (pure) best response~. Banks and Sobel (1987) ahow that every stable

component containa a divine equilibrium.

It will be clear that, because of (5.1), the divinity concepta force the updating to be

monotoníc: If type tl has a`greater incentive to deviateT to m than type tz has, then

player 2 should not reviae downward the probability that he is dealing with t~ after m

has been chosen. For example, in the game of Figure 12 both tl and tz could possibly

gain by deviating from L to M but tl has the ~greater incentiven to do so (the range

of responses where tl gains is strictly larger than the range where tz gains) so that co-

divinity requires that the posterior probability of t~ after M ia at least l~z; hence, player

2 should choose ! thereby upsetting the equilibrium.

Note that divinity inveatigatea each unsent message aeparately. (For each such mes-

sage a separate aux~liary game ia constructed, and s is eliminated if it fails the test in

at least one auxiliary game.) In Figure 12, for example, it is thus required that player

2 plays ! after M and t' after R. If player 1 foresees this reaction and plays his best

reaponse (R if tl and M if t~) beliefs are induced that are incompatible with those of

divinity. In fact, player 2's best reaponse against this best reaponse (viz. playing r after

M and r' after R) austains the original equilibrium. (Formally what happens is tt~at,

by including the third message, LM becomea undominated in the normal form.) Some

readera might conclude from this that divinity is not an intuitive requirement aíter all.

In the author's opinion the above argument simply shows that we do not know what will

happen when the pooling equilibrium at L is recommended. However, this should not
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bother us: we also do not know what wiU happen if, in an ordinary normal form game,

a strategy vector ia recommended that ia not a Nash equilibrium. Queationa concerning

"disequilibrium dynamica", i.e. queationa dealing with what will happen when a non-

self-enforcing equilibrium is proposed, cannot be anewered by equilibrium analyeis. (Cf.

Von Neumann and Morgenstern (1948, Section 4.8.'l.).)

The ao-called "Stiglitz critique" (Cho and Kreps (1987, p. 203)) on the intuitive crite-

rion (or more precisely on the seaumption that not deviating guaranteea the equilibrium

payoff) also involves such "diaequilibrium dynamics". The critique may be illustrated

by means of the game of Figure 13. In one equilibrium of this game, the typea of player

1 pool at L and player 2 reaponds to L with J. The intuitive criterion eliminatea this

equilibrium: Type tl will deviate to R since he foreacea that player 2 will ewitch to 1' at

R. According to the critique one should not stop the analyeis with this diaequilibrium

outcome. Rather player 2 should realize that only tz can have choaen L and he should

switch to r after L. But then tz also finds it better to deviate to R, whereafter player 2

finds it better to play r' after R, which in turn induces tl to choose L again. Continuing

the argument two more stepe we are back at the original equilibrium choices, hence,

according to the critique no type of player 1 might have an incentive to deviate from L

after all. Thia author's opinion is that the pooling outcome at L ehould not be considered

aelf-enforcing: There are players that have an incentive to deviate. What the critique

shows is that we do not know what will happen if it is suggested to the players to pool

at L, but, as already seen above, equilibrium analyais cannot answer thia question.

[Insert Figure 13 here]

In this author's opinion, the intuitive criteria that were discussed above may be criti-

cized for the fact that they treat reached and unreached information aets asymmetrically:

It is assumed that player 2 follows the recommendation after any measage that is chosen
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in equilibrium whereas he completely neglecta the recommendation , and reoptimizes,

after any unexpected message. To check self-enforcingneas it is more appropriate to fol-

low the symmetric procedure of first assuming that the recommendatíon is self-enforcing,

that player 2 will always, i.e. after every measage follow the recommendation, and then

reject the recommendation if this asaumption leada to a contradiction. Of course, this

latter requirement is simply the INBR condition from the previous section. It is illus-

trated by meana of the game of Figure 14. Cho and Krepa (1987) provide a similar

example and claim that the elimination of the pooling equilibrium at L ia not intuitive

in this game.

[Inaert Figure 14 here~

Consider the equilibrium outcome in which the typea of player 1 pool at L. If we

insist that recommendationa be admieaible ( i.e. undominated) strategiea, then to sus-

tain pooling at L we ehould recommend that player 2 randomizes betwecn m and r after

R, putting at least half of the weight on r. Given thia set of posaible recommendations,

choosing R is not a best response for type tz, and after having eliminated this action,

we see that player 2 prefers to chooae 1, hence, he wanta to deviate from the recommen-

dation. Conaequently, if we insiat on admisaibility and INBR, then pooling at L cannot

be self-enforcing. Note that none of the previous arguments discussed in this subsection,

nor INBR alone, eliminates this outcome. ( If the dominated atrategy ~~31 -}.1~3r is allowed

as a recommendation for player 2, then sending R is not inferior for type tz.)

The literature also offera refined equilibrium notions that are not implied by stabil-

ity. One such concept, that is frequently used in applications is that of perJect sequential

equilióriumor PSE (Grosaman and Perry ( 1986)). It is convenient to describe the slightly

stronger notion of PSE" ( Van Damme (1987)). Roughly, an equilibrium s fails to be a

PSE' if there exiata an unsent meseage m, a aubset T' of types of player I and a response
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r at m such that (i) if r is chosen at m then T' ia exactly the set of types that prefer m to

s and (ii) r ia a beat reaponse againat the conditional diatribution of x on T'. (The formal

definition ia elightly different aince typee may be indifferent between deviating or not;

such indifferences are handled as in (5.1), (5.2). The PSE concept ia defined similarly

but it is weaker aince it allows player 1 to conjecture the `wrong' response at m.) Hence,

roughly, s fails to be a PSE' if there exista some measage m and an equilibrium s' of the

suxiliary game determined by s and m such that at least one type of player 1 prefers s' to

s. Clearly, this concept is cloaely related to the forward induction requirement that was

discussed at the end of the previoua eubaection. The difference is that there we required

that there be a unique equilibrium that improvea upon s, whereas here we allow there

to be multiple improvementa.

[Inaert Figure 15 here]

Grossman and Perry (1986) have given an example to show that PSE need not exist.

The game from Figure 15 showa that a stable aet need not contain a PSE. In this game,

pooling at L is atable but it ia not a PSE. The outcome is atable eince (roughly) stability

allows player 2 to believe that any type might have deviated, hence, it allows player 2 to

randomize in such a way that actually neither tl nor tz wanta to deviate. The outcome

is not a PSE since this concept forces player 2 to put weight 1 on either il or t~, hence,

to chooae either ! or r. Clearly in either case at least one type of player 1 will want

to deviate from L. Thia example makes clear that the PSE concept assumes that the

players can coordinate their actiona, i.e. that communication is poasible and that com-

munication indeed takea place. (However, note that player 2 has no incentive whatscever

to communicate.) Hence, PSE is not a purely noncooperative aolution concept. In this

author's opinion it is preferable to model communication explicitly by the rules of the

game rather than indirectly by means of the solution concept. Such `cheap talk' games
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typically also have many equilibria and etability is not effective in reducing this set since

every equilibrium outcome can be obtained by `babbling', i.e. by using each message

with positive probability. We will not consider cheap talk games any further; we juat

note that from the seminal papera Farrell (1985, 1990) and Groasman (1981) an exten-

sive literature has aprung up, and that Matthewa et al. (1990) survey the refinements

used in this area. All theae refinements assume that players will always accept the literal

meaning of each statement unless it ia logically contradictory, and the real challenge in

this area seems to be to derive this assumption as a conclusion.

6 Equilibrium selection

Up to now we have dealt exclusively with the self-enforcingness aspect of equilibria,

we did not discuss how self-enforcing norms come to be established nor how the selec-

tion among these takes place. We have aeen, however, that considerations concerning

self-enforcingnesa already lead to some concluaion concerning equilibrium selection: The

~ basic idea of forward induction is that the equilibrium that is selected may depend on the

context in which the game ia played (cf. Figure 7.b). In this section we briefly discuss

the approach to equilibrium selection and equilibrium attainment that is proposed in

Carlason and Van Damme (1990) (henceforth CD). CD picture players in the context in

which the payoffs of the game are only "almoat common knowledgeT and they show that

when a 2 x 2 game is played in thia context, playere reason themselves to the risk domi-

nant equilibrium (Harsanyi and Selten, (1988)). (CD obtain results only for the class of

2 x 2 gamea. For general attacks on the equilibrium selection problem, see Harsanyi and

Selten (1988) and Guth and Kalkofen (1989).)

[Insert Figure 16.a and 16.b here)

In the coordination game of Figure 16.a the equilibrium (Ll, Lz) satisfies the most strin-
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gent requirementa for aelf-eaforcingnesa that have been diacuased thus far: (Ll, Lz) is a

atrict equilibrium eo that each player atrictly loosee by deviating if he expecta the op-

ponent to obey the recommendation to play thie equilibrium. Of courae, the question is

whether a rational player will indeed expect his opponent to obey this recommendation.

There ia some evidence that at least human players do not conaider such recommen-

dations credible. Van Huyck et al. (1988) report on an experiment conducted with a

3 x 3 coordination game with (diagonal) payoffs (in dollarcenta) of (90,90), (50,50), and

(10,10) in which only 1 pair of playera (out of 30) follows the recommendation to play

(10,10): If (10,10) ie recommended, then 47 of the 60 individuals (and 18 of the 30 pairs)

deviate to the payoff dominant equilibrium (90,90). It is very likely that eimilar behav-

ior would be obaerved in the game of Figure 15.a. One explanation for this behavior is

that players are firmly convinced right from the atart that only R makes sense in this

game, that they conaider any suggestion to play something else as being irrelevant and

that such a suggestion can safely be ignored aince it will be ignored by the opponent as

well. The obvious queation of courae is how players can know that only R makea sense,

and basically the anawer that CD give ia that playera know this from reasoning through

aimilar gamea. CD argue that the aame from Figure 16.a ahould not be analyzed in

isolation: Playera know what to do in this game aince they know that it ia optimal to

play the Pareto best equilibrium in each coordination game with Pareto ranked payoffs.

CD auggest to analyze classes of gamea with the same structure aimultaneously and they

show that self-enforcing norms for how to play classes of games may prescribe a apecific

equilibrium of each element of the clasa, roughly becauae of the fact that norma will

require that aimilar gamee be played similarly. (Fudenberg and Kreps (1988) present

another approach to aimilarity in games. Of course the idea that a solution of a game

should be part of a plan that ia consiatent across a larger domain occurs already in the

seminal work of Nash (1950b) on bargaining and that of Schelling (1960) on focal points.)

The CD approach will now be illuatrated by means of the game I'(B) from Figure

16.b. (The reader himself can aupply the detaila for how the argument would run if the

coordination game from Figure 16.a would be embedded in a one-dimensional parame-
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ter of coordination games.) The game I'(7) has been extenaively discuased in Aumann

(1989). Aumann argues that if the players are convinced that they should play R then

no amount of preplay communication can convince them to switcó to L aince each player

knows that also a player who intends to play R will try to induce his opponent to awitch

to L. In I'(7) both L and R are atrict equilibria and each one has something going for

it: L Pareto dominatea R but R is much safer. Hence, in this game there is a conflict

between the intuitive notions of payoff dominance and risk dominance (Harsanyi and

Selten (1988)). Formally, in a 2 x 2 game G, R is said to risk dominate L if the stability

region of R (i.e. the set of all atrategy vectora e againat which R is a best reply) has

a larger azea than the atability region of L. Hence, in Figure 16.b, R risk dominates L

if and only if 9 1 4. In their theory, Harsanyi and Selten resolve the conflict between

the two intuitive notions in favor of payoff dominance; the reader should consult the

postacript to their book for the arguments in favor of this choice.

Now imagine that the players are in the context in which they know that they have

to play a game I'(6) as in Figure 16.b but they do not yet know which one. Hence, they

know that they have to play a game in which the conflict between risk dominance and

payoff dominance exists. (The reader may argue that the parametrízation from Figure

16.b is not natural; We have choaen this parametrization to simplify the presentation.

The asaumptiona to be diacusaed next are motivated aimilarly; the results from Carlsson

and Van Damme (1990) aze more general.) The reader will probably agree that as 9

increases playing L becomea lese and leas attractive and that a natural way to play this

game ia by specifying a cutoff value B and play L if and only if B is less than B. CD

show that, if the players can observe the actual parameter value B only with some slight

noise, then the value of B ia uniquely determined in equilibrium. In fact B - 4, hence, the

playera always chooae the risk dominant equilibrium. (Note that some noise is essential

to derive uniquenesa, if B could be perfectly obaerved, then each game I'(8) would occur

as a simple subgame and the cutoff value may lie anywhere, in fact, in this case the

equilibrium strategies need not be stepfunctions.)
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To formally derive the above reault let us aeaume that the set 6 of all posaible param-
eter valuea is fmite, that initially all valuea of B are equally likely and that 9 includea

valuea B with B c 0(which makea L; atrictly dominant) as well as values with B 1 8
(auch that R; ia etrictly dominant). Furthermore, asaume that, if the actual parameter
value ia B, then one player receivea the aignal Bt (i.e. the amalleat value in 9 that is
larger than B) while the other geta to hear B- (i.e. the largeat value in 9 thst is emaller
than 6) with both poesibilitiea being equally likely (witó the appropriate modifications
at the endpoint of 9). Since the obaervationa are noisy no player knowa exactly which

`game' he ia playing, however, if the grid of 9 ie fine then each player has fairly accurate
information about the payoffa in the game. Furthermore, in thia case each player also has
good knowledge about the information of his opponent and the playera know that their
perceptions of what the payoffa are, do not differ too much. Hence, if the grid of 9 ia fine,
the game with noiey obaervationa may be viewed aa a emall perturbation of the game in

which obeervations are perfect and in the latter r(B) occurs as a subgame for each value

of B. However, it ahould be noted that from the point of view of common knowledge

(Aumann (1976)), the games aze completely different. Namely, in the unperturbed if a

player receivea the aignal8, then it is common knowledge that the game ia r(B), i.e. both

playera know that both players know ... that both playera know that the game is r(B).
However, in the game with noiae, if a player receives the signal B, then he knowa that
the payoffa either are se in r(B-) or as in r(9t) and that his opponent either received
the aignal B-- or Btt. Hence, he aleo knowa that the opponent believea that the game ia
either I'(6---) or r(9-) or r(et) or r(Btft) , with all probabilitiea being equally likely,
and that the opponent believes that hia aignal is either B'---, or 9tttt or B with the

latter having probability 1~~. Continuing inductively it is therefore aeen that no matter

how fine the grid size of 6 is, baaically the only information that ia common knowledge

is that aome game r(B) with B in 9 has to be played. This lack of common knowledge

forcea the players to take a global perapective in order to solve the perturbed game: To

know what to do if one receivea the signal B one ahould also inveatigate what to do at

parameter valuea B' that are far away from 9. It ia thia phenomenon that drives the CD

results. (A similaz "action from a distancen also drives the reaulta in Rubinstein's (1989)
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electronic mail game.)

The analysis of the perturbed game is simple. Let 6; be the observation of player i. If

B; G 0(resp. 9; 1 8) then player i chooses L; (resp. R;) aince he knowa that this action

is atrictly dominant. Asaume that it has already been ahown by iterative elimination of

atrictly dominated atrategiea that Ll and Lz (resp. Rl and Rs ) are etrictly dominant at

each obaervation B with B C o(resp. B 1~3). Hence, the iterative procedure starts with

a- 0" and ~1 - Stt. Consider B; - at, so that player i knowa that either 9~ - a- or

B~ - ottt, hence, player i knows that player j will chooae L~ with a probability p that is

at least 1~~. Choosing L; yielda an expected payoff of 9p while R; yielda at most att } p,

so that player i will find it atrictly dominant to choose L; if ott G 4. Consequently, L;

is iteratively dominant for player i at 6; if B; G 4' and similarly R; is iteratively dom-

inant at 9; if B; 1 4t. We aee that the perturbed game is almost dominance solvable:

For all but a small set of parameter valuea (viz. the interval [4-,4}]) unique iteratively

dominant actiona exiat. By playing these dominant strategies playera coordinate on the

riak dominant equilibrium of the actual game that was aelected by chance, hence, by just

relying on rationalizability (Bernheim (1984), Pearce (1984)) in the perturbed game we

obtain equilibrium selection according to the risk dominance criterion for every game

I'(8) with B ~ [4', 4}].

Binmore ( 1990) has argued that in order to make progreas in game theory it is nec-

easary to model the way players think; that attention should be focused more on equi-

libriating procesaea rather than on equilibria. Although the model outlined above is

rudimentary I believe that it captures some relevant aspects of reasoning processes. Cer-

tainly I do not want to claim the model's universal applicability; in some contexts the

model may be relevant, in other contexta playera may reason differently. The point,

however, is that classical game theory is rich enough so as to provide models of the ways

playera might think.
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