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Refinements of Nash Equilibrium*

Eric van Damme

1 Introduction

Noncooperative game theory studies the question of what constitutes rational behavior in
situations of strategic interaction in which players cannot communicate nor sign binding
agreements. The traditional answer to this question centers around the notion of Nash
equilibrium. Such an equilibrium is a vector of strategies, one for each player in the
game, with the property that no single player can increase his payoff by changing to a
different strategy as long as the opponents do not change their strategies. The Nash
equilibrium concept is motivated by the idea that a theory of rational decision making
should not be a self-destroying prophecy that creates an incentive to deviate for those

who believe in it. To quote from Luce and Raiffa (1957, p. 173)

“if our non-cooperative theory is to lead to an n-tuple of strategy choices and
if it is to have the property that knowledge of the theory does not lead one to
make a choice different from that dictated by the theory, then the strategies
isolated by the theory must be equilibrium points.”

In other words, for a (commonly known) norm of behavior to be self-enforcing it is

necessary that the norm (agreement) constitutes a Nash equilibrium.

*Paper presented at the 6th World Congress of the Econometric Society, Barcelona, 22-28 August,
1990. The author thanks Helmut Bester, Larry Samuelson and Jonathan Thomas for comments on an

earlier version.
tCentER for Economic Research, Tilburg University, the Netherlands



The increased use of noncooperative game theory in economics in the last decades
has led to an increased awareness of the fact that not every Nash equilibrium can be
considered as a self-enforcing norm of behavior. Very roughly, the Nash concepl is unsat-
isfactory since it may prescribe irrational behavior in contingencies that arise when some-
body has deviated from the norm. In applications, one typically finds many equilibria
and intuitive, context depending arguments have been used to exclude the ‘unreasonable’
ones. At the same time game theorists have tried to formalize and unify the intuitions
conveyed by applications and examples by means of general refined equilibrium notions.
The aim of this paper is to describe, and comment on the most important concepts that
have been put forward as being necessary for self-enforcingness. Although the literature
offers a wide variety of different refinements, it will be seen that all of them are based on
a small number of basic ideas. (These main ideas are also described in Kohlberg (1989)

from which I borrowed the term “norm of behavior”.)

Ever since Luce and Raiffa (1957) the intuitive justification of equilibria and the rel-
evance of equilibria to the analysis of a game have been questioned. It has been realised
that it is not evident that Nash equilibrium is a necessary consequence of strategic rea-
soning by rational players, that it is not clear how players would arrive at an equilibrium
or how they would select one from the set of equilibria. I do not wish to enter a discussion
on these topics here, rather I refer to Aumann (1987a, 1988), Bernheim (1986), Binmore
(1990), Brandenburger and Dekel (1987) and Tan and Werlang (1988) for extensive dis-
cussions on the epistemic foundations of equilibria, i.e. on what the players must know
about each other’s strategies and each other’s rationality for equilibria to make sense. In
this author’s opinion some of the confusion surrounding the Nash concept can be traced
to the fact that the mathematical formalism of noncooperative game theory allows mul-
tiple interpretations and to the fact that the different aspects of noncooperative analysis

are not clearly separated.

Noncooperative game theoretic analysis has several aspects:

(i) (The equilibrium definition problem.) Which agreements are self-enforcing?



(ii) (The equilibrium attainment problem.) How, or under which conditions will the

players reach an agreement?

(iii) (The equilibrium selection problem.) Which agreement is likely to be concluded?

Except for the last section I deal exclusively with the first topic. I do not discuss how
self-enforcing norms come to be established nor how the selection among these takes
place. The motivation for studying the first question independently is that knowing its
answer seems a prerequisite for being able to answer the other questions. (For example,
one might hope that in games with a unique self-enforcing equilibrium players will always
coordinate on that equilibrium.) I restrict attention to refinements of Nash equilibrium
that try to capture further necessary conditions for self-enforcing norms of behavior.
Hence, I investigate which conditions Nash equilibria should satisfy such that rational
players would have no incentive to deviate from them. Using the terminology of Binmore

(1987) I, therefore, remain in the eductive context.

Nash equilibria also admit other interpretations than as self-enforcing norms and in
other (non-eductive) contexts different considerations, leading to alternative refinements,
may be appropriate. For example, in biology an equilibrium is seen as the outcome of a
dynamic process of natural selection rather than as the consequence of reasoning by the
players. The basic equilibrium concept in that branch of game theory, viz. the notion
of evolutionarily stable strategies or ESS (Maynard Smith and Price (1973), Maynard
Smith (1982)) may formally be viewed as a refinement of Nash equilibrium but it is not
further discussed here since it is motivated completely differently. (Although, mathemat-
ically it is related to several concepts discussed below, see Van Damme (1987, Chapter
9).) Similarly I will not deal with the interpretation of Nash equilibria as stable states
of learning processes in a context in which the same game is played repeatedly, but
each time with different active players who can use observations from the past to guide
their behavior. (On learning models, see, for example, Canning (1989, 1990), Fudenberg
and Kreps (1988), Kalai and Lehrer (1990) and Milgrom and Roberts (1989, 1990)).)
Of course, this does not imply that I consider such contexts to be unimportant, they

simply fall outside the scope of this paper. Perhaps in economic situations learning and



evolution are even more important than reasoning. Finally, I rule out any correlation
between players’ actions that is not explicitly allowed by the rules, hence, I do not con-

sider correlated equilibria (Aumann (1974), Forges (1986), Myerson (1986)).

Space limitations do not allow an extensive discussion on the applications of the var-
ious refinements. Yet, the proof of the pudding is in the eating, it is the applications
and the insights derived from them that lend the refinements their validity. As Aumann
(1987b) writes

“My main thesis is that a solution concept should be judged more by what
it does than by what it is; more by its success in establishing relationships
and providing insights into the workings of the social processes to which it is
applied than by considerations of a priori plausibility based on its definition

alone.”

The remainder of the paper is organised as follows. In Section 2 I discuss the principle
of backward induction, i.e. the idea that an equilibrium strategy should also make sense
in contingencies that do not arise during the actual play. Special emphasis is on the
concepts of subgame perfect and sequential equilibria, on the definition of consistency of
beliefs and on the assumption of persistent rationality. Section 3 deals with “trembling
hand perfect” equilibria as well as the related notions of properness and persistency. All
three concepts require that the equilibrium still makes sense if with a small probability
each player makes a mistake. This section also briefly investigates what kind of refine-
ments result if it is required that an equilibrium be robust against slight perturbations
in the payoffs or in the structure of the game. Issues related to the Kohlberg/Mertens
concept of stable equilibria are discussed in section 4. Stability is a set-valued solution
concept and it will be shown that set-valuedness is a natural consequence of several
desirable properties. The topic of Section 5 is forward induction, i.e. the idea that a
player’s past behavior may signal either this player’s private information or how the

player intends to play in the future. For the special class of signalling games several



intuitive refinement criteria are reviewed that are all related to Kohlberg/Mertens sta-
bility. In Section 6 we move from equilibrium refinement to equilibrium selection and
briefly discuss a model (originally due to Carlsson and Van Damme) in which slight
payoff uncertainty forces players to coordinate on a specific ‘focal’ equilibrium in each

2 x 2 bimatrix game.

This introduction is concluded by specifying the notational conventions that will be
used for extensive form games. Attention will be confined to finite games with perfect
recall and for the definition of such a game I' the reader is referred to Selten (1975) or
to Kreps and Wilson (1982a). X denotes the set of decision points in T', Z is the set
of endpoints and u;(z) is player i’s payoff when z is reached. We depict the endpoints
by row-vectors, the first component of which is the payoff to player 1, etc. The origin
of the game tree is depicted by an open circle. H; denotes the set of information sets
of player i (with typical element k). We depict an information set by a dashed line
that connects the points in the set. A behavior strategy s; of player ¢ assigns a local
strategy s; (i.e. a probability distribution on the set of choices at k) to each h € H;.
If s is a (behavior) strategy vector, s = (s1,...,9,), then p*, the outcome of s, is the
probability distribution that s induces on the set of endpoints of I'. If A is a set of nodes,
we also write p®(A) for the probability that A is reached when s is played. Player i’s
expected payoff resulting from s is denoted by u;(s), hence, u;(s) = ¥, p*(2)ui(z). For
a decision point z € X, denote by p? the probability distribution that s would induce
on Z if the game were started at z, and write uiz(s) = ¥, p2(z)ui(2). If p specifies a
probability distribution on the decision points in the information set h € H;, then we
write uf,(8) = Toen p#(z)uiz(8). If s is a strategy vector and s! is a strategy of player i,
then s\s! denotes the strategy vector (si,...,8i-1, 8}, 8it1,...,3,), We use S; to denote

the set of all strategies of player i and S is the set of strategy vectors.

2 Backward Induction

A strategy vector s is a Nash equilibrium (Nash (1950a)) of an extensive form game T' if



u;(s) > u;(s\s!) for all i and all s! € S;. (2.1)

If we interpret a strategy vector s as a (fully specified) norm of behavior then (2.1) is a
necessary condition for a commonly known norm to be self-enforcing, i.e. for the norm
to be such that no player has an incentive to deviate from it. In this interpretation, s;
(the local strategy of player ¢ at h) may be viewed both as player i’s intended action at
h as well as the common prediction of all the opponents of what ¢ will do at h. (For
further comments on the interpretation of strategies, see Rubinstein (1988).) Hence,
Nash equilibrium requires common and correct conjectures. It is important to note that,
for a Nash equilibrium, it is necessary that different players conjecture the same response
even at information sets that are not reached when s is played. (Cf. the discussion on
the game of Figure 11 in Section 5.2.) In extensive form games, taking strategy vectors
as the primitive concept in particular implies that a player’s predictions do not change
during the game: Player j’s conjecture about the action chosen at h is s;;, both at the
beginning of the game as well as at any information set k € Hj, even if it is the case that
k cannot be reached when s; is played. Hence, taking strategy vectors as the primitive
concept implies an assumption of “no strategy updating”, i.e. that at each point in time
each player believes that in the ‘future’ all players will behave according to the norm
even though he may have seen that players did not observe the norm in the past. We
make these remarks to show that some criticisms that have been leveled against subgame
perfect equilibria are actually criticisms against using strategy vectors as the primitive

concept of a theory.

2.1 Subgame perfect equilibria

Selten (1965) provided an example similar to the game from Figure 1a to point out that
not every Nash equilibrium can be considered a self-enforcing norm of behavior: (D, d) is
a Nash equilibrium (player 1 optimises by choosing D if player 2 chooses d and, if player

1 indeed chooses D then player 2’s choice is irrelevant since he doesn’t have to move).



However, since player 2 cannot commit himself to his choice of d (the game is assumed
to be noncooperative), he will deviate to a if he is actually called to play. Even if there
is a prior agreement to play (D, d), player 1 anticipates that player 2 will deviate and he

deviates as well, thereby increasing his payoff: The agreement is not self-enforcing.

[Insert Figure 1 here]

Nash equilibrium requires that each player’s strategy be optimal from the ex ante point
of view. Ex ante optimality implies that the strategy is also optimal in each contingency
that arises with positive probability but, as the example shows, a Nash equilibrium strat-
egy need not be a best reply at an information set that initially is assigned probability
zero. A natural suggestion is to impose ex post optimality as a necessary requirement
for self-enforcingness. For games with perfect information (i.e. games in which all infor-
mation sets are singletons) this requirement of sequential rationality is mathematically

meaningful and may be formalized as in (2.2).

u;;.(a) = u.-;.(s\sﬁ) for all ¢, all 35 € S;,all h € H;, (2.2)

hence, at each information set h player i’s equilibrium strategy maximizes the player’s
expected payoff conditional on having reached h as long as the opponents play their
equilibrium strategies in the future. Clearly, equilibria satisfying (2.2) can be found
by rolling back the game tree in a dynamic programming fashion. Selten (1965) noted
that the argument leading to (2.2) can be extended to a wider class of games. Define
a subgame as a part of the tree of an extensive form game that constitutes a game in
itself. Selten argued that a self-enforcing norm should induce a self-enforcing norm in
each subgame since otherwise some player might find it advantageous to deviate from the

norm and thereby reach a subgame with an outcome that benefits him. Selten defined



a subgame perfect equilibrium as a Nash equilibrium that induces a Nash equilibrium in

every subgame.

In condition (2.2) it is assumed that each player at each point in time believes that
in the future all players will try to maximize their payoffs. A player is required to have
such beliefs even in situations in which he has already seen that some players did not
maximize in the past: The information set h may be reached only if a deviation from s
has occurred. This assumption of persistent rationality has been extensively criticized
in the literature (see, for example, Basu (1988, 1990), Binmore (1987), Reny (1988a, b)
and Rosenthal (1981)). The critique may be illustrated by means of the game of Fig.
1.b. As long as z > 1, the unique strategy vector satisfying (2.2) is (A, D;a). However,
if = 4, then Aj; is strictly dominated so that player 1 only has to move after player 2
has taken an irrational action. In such a situation it is not compelling to force player 1
to believe that player 2 will certainly behave rationally and play a at his second move.
There seems no convincing argument why player 1 could not believe that player 2 will
choose d, and in the latter case he would prefer D. Reny (1988a) proposes to weaken
(2.2) by demanding optimising behavior of player i only at information sets A that are
not excluded by player i’s own strategy, i.e. that do not contradict the rationality of
player i. Reny’s concept of ‘weak sequential equilibrium’ does not put any restrictions
on the conjectures about player ¢’s behavior at information sets A € H; that can be
reached only when player i deviates from s;. In the game I';(z) with z > 1 there are
multiple weakly sequential equilibria but they all lead to the outcome (z,z). If, how-
ever, the game would be modified such that the payoff after A;Aa would be (4,4) rather
than (3,1), then (D, Dod) would be a weak sequential equilibrium of I';(1.5) and this
produces an outcome that differs from the subgame perfect equilibrium outcome. (In
the modified game Reny’s concept allows player 1 to believe that player 2 will choose d

after a defection to A,.)

In Kohlberg and Mertens (1986) it is also proposed to weaken requirement (2.2).
These authors take the position that requiring a theory of rationality to specify a unique



choice in every contingency is unduly restrictive and they propose (certain) sets of strat-
egy vectors (rather than single strategy vectors) as the primitive concept of a theory.
Hence, according to Kohlberg and Mertens, a self-enforcing norm need not completely
pin down the players’ behavior and beliefs in those contingencies that will not be reached
when the norm is obeyed; we may be satisfied if we can identify the self-enforcing out-
comes, i.e. the outcomes that result when everybody obeys the norm. For example, in
I';(4) the norm that says “player 2 should play D,” (without specifying what player 1
should do) is self-enforcing in the more liberal sense. In I';(2), Kohlberg and Mertens
also identify player 2 choosing D; as the self-enforcing outcome but now player 1’s behav-
ior cannot be completely arbitrary: A self-enforcing norm specifies that player 1 should
choose D with a probability of at most !/; since otherwise player 2 will violate the norm.
We will return to the Kohlberg/Mertens stability concept in Section 5. In that section
it will be seen that several desirable properties that we might want self-enforcing norms
to possess can only be satisfied by norms that allow some freedom of choice in some

circumstances.

The example from Figure 1.b makes clear that the assumptions that players are
perfectly rational and that the game is exactly as specified imply that counterfactuals
arise naturally in game theory. As Selten and Leopold (1982) write

“In order to see whether a certain course of action is optimal it is often
necessary to look at situations which would arise if something non-optimal
were done. Since in fact a rational decision maker will not take a non-optimal
choice, the examination of the consequence of such choices will necessarily

invoke counterfactuals.”

In the game I';(4), to determine his optimal choice, player 1 has to evaluate the coun-
terfactual “if player 2 would choose Az, my best response would be A”. Philosophers
(Lewis (1973) and Stalnaker (1969)) have suggested evaluating such a counterfactual by
investigating whether in a world (or model) that is most similar to the one under con-

sideration and in which player 2 chooses A; it is indeed true that the best response is A.
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Selten and Leopold (1982) suggest a parameter theory of counterfactuals, a slight varia-
tion of this idea. To implement this idea, game theorists have suggested to formalize the
similarity relation by means of perturbed games: the original game is embedded into a
larger perturbed game (in which all information sets are reached) and is approximated by
letting the perturbations vanish. Two possible perturbations readily suggest themselves,
one may either give up the assumption that the players are perfectly rational (this is the
approach taken in Selten’s perfectness concept, see subsection 3.1) or one may give up
the assumption that the game model fully describes the situation. Some consequences
of the latter approach will be investigated in subsection 3.2. Not surprisingly, it will be

seen that different approaches may yield different outcomes.

Before turning to perturbations, however, we first discuss the concept of sequential

equilibria.

2.2 Sequential Equilibria

The ex post optimality requirement (2.2) cannot be applied at non-singleton information
sets since there the conditional expected payoff need not be well-defined. As a conse-
quence, the requirement of subgame perfection does not suffice to rule out all non-self
enforcing equilibria. For example, change the game from Figure 1.a such that player 1
chooses between D, A and A’ with player 2 moving after A and A’ but without knowing
whether A or A’ was chosen and with the payoffs after A’ being the same as those after
A. Then (D,d) is a subgame perfect equilibrium of the modified game (since the latter

admits no subgames), but it clearly is not self-enforcing.

Kreps and Wilson (1982a) suggest extending the applicability of (2.2) by explicitly
specifying beliefs (i.e. conditional probabilities) at every information set so that posterior
expected payoffs can always be computed and they propose to make these beliefs a formal
part of the definition of an equilibrium. Of course these beliefs should not be completely
arbitrary, they should respect the information structure of the game and they should

be consistent with the equilibrium strategies whenever possible. Formally, a system of
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beliefs is a mapping x that assigns a probability distribution to the nodes in A for any
information set h and a sequential equilibrium is defined as a pair (s, u) consisting of a

strategy vector s and a system of beliefs y satisfying the following two conditions:

8 is sequentially rational given u, i.e.

ufy(8) > ufy(s\s;) for all ¢, all s} € S;, all h € H;, and (2.3)

4 is consistent with s, i.e. there exists a sequence s*

of completely mixed behavior strategy vectors with s* — s(k — o)

such that p(z) = limg—o p** (z)/p"" (k) for each information set h

and each z in h. (2.4)

(s* is said to be completely mixed if s5(c) > 0 for all i,k € H; and all choices at k).
Condition (2.3) expresses that, given the beliefs y, the player maximizes his payoff at h
by playing according to s as long as the opponents play according to s as well. The con-
sistency requirement means that, at an information set which a player does not expect to
be reached, the beliefs can be explained by means of small trembles from the equilibrium
strategies. (At other information sets the beliefs coincide with those induced by the
equilibrium.) This consistency requirement is inspired by Selten’s concept of trembling
hand perfect equilibria (see the next section) but it is not completely intuitive on its own
and Kreps/Wilson express some doubts about whether consistency actually “ought” to
be defined as in (2.4). In fact Kreps and Wilson’s intuitive motivation for where the
beliefs come from does not involve any trembles. They argue that at information sets A
that are initially assigned probability zero (p*(h) = 0), it is plausible to assume that the
player will construct some alternative hypothesis s’ as to how the game has been played
that is consistent with his observation (i.e. p*(k) > 0) and then use s’ and Bayes’ rule to
compute his beliefs. Formally, define a system of beliefs to be structurally consistent if
for each information set h there exists some s’ with p*'(k) > 0 and u(z) = p*(z)/p"' (h)
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for each z in h. (Kreps/Wilson then go on to strengthen this condition by requiring that

alternative hypotheses at different information sets be related in certain ways.)

Although this structural consistency requirement seems intuitive at first, further re-
flection reveals that it actually is not. First, the idea of reassessing the game (i.e. to
construct alternative hypotheses) runs contrary to the idea that a rational player can
foresee and evaluate all contingencies in advance. (Recall the remarks on strategy vec-
tors from the beginning of this section.) Secondly, structural consistency conflicts with
the sequential rationality requirement (2.3). The latter requires believing that from A
on play will be in accordance with s while the former requires believing that play has
been in accordance with s’. Although these requirements are not conflicting in games
with a stage structure (in these the past can be separated from the future) they may be
incompatible in games in which the information sets cross, since in these deviations in
the past are automatically accompanied by deviations in the future. An explicit exam-
ple is contained in Kreps and Ramey (1987). That paper also contains an example of a
game in which there does not exist a sequential equilibrium (8, p) in which in addition
u is structurally consistent, hence, structural consistency may conflict with consistency.
Since, as seen above, structural consistency does not seem a compelling requirement,
one should not be bothered by this discrepancy. Of course there remains the question
of whether the consistency requirement (2.4) can be expressed directly in terms of the
basic data (i.e. the choices and information sets) of the extensive form of the game. The

affirmative answer to this question is given in Kohlberg and Reny (1991).

The literature offers a variety of equilibrium concepts (usually under the common
name of “perfect Bayesian equilibrium™) that are related to the sequential equilibrium
concept but in which milder restrictions are imposed on the way in which beliefs are
formed in zero probability events. The weakest of these do not impose any conditions off
the equilibrium path and allow, for example, that different players with “identical” infor-
mation explain an unexpected deviation in different ways. (Note that (2.4), according to

the usual “common knowledge” assumption underlying Nash equilibrium, assumes that
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all players have a common theory to explain deviations.) For further details the reader
is referred to Fudenberg and Tirole (1989) and Weibull (1990).

Other authors have proposed to impose additional requirements on the way beliefs are
revised. In applications, such as the study of dynamic games with incomplete informa-
tion, frequently the so-called support restriction is imposed. (For example, the concept
of perfect sequential equilibrium (PSE, Grossman and Perry (1986)) that is often used
in applications imposes this restriction.) This restriction requires that, if at a certain
point in time a player assigns probability zero to a certain type of the opponent, then
from that time on he continues to assign probability zero to that type. The restriction
enables analysis by means of a dynamic programming procedure in which the beliefs
are used as a state variable. However, Madrigal, Tan and Werlang (1987) have shown
that imposing this restriction may lead to nonexistence: The support restriction may be
incompatible with the (very mild) requirement that the beliefs be derived from the equi-
librium strategies on the equilibrium path. The following example (taken from Néldeke
and Van Damme (1990)) demonstrates why this is the case and makes clear that the
support restriction has nothing compelling to it. (For a more economic example, see

Vincent (1990).)

[Insert Figure 2.a and 2.b here]

Consider the signalling game from Figure 2.a: Nature first selects a type of player 1,
both possibilities being equally likely. If player 1 chooses L the game ends, otherwise
player 2 has to choose between [ and r. (Figure 2.b gives a convenient matrix represen-
tation of this game following the conventions outlined in Banks and Sobel (1987): The
matrices correspond to the choices of player 1, the rows represent the types of this player

and the columns are the choices of player 2.) The game has a unique Nash equilibrium,
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viz. (L,R,r). Now consider the two-fold repetition of this game: Player 1’s type is
drawn once and for all at the beginning of the game, and before the beginning of round
2 only the actions from the previous round, but not the payoffs, are revealed. We claim
that this game has a unique Nash equilibrium outcome, viz. type t; chooses L twice
and type t; chooses R twice. (Proof: Strict dominance implies that type ¢; chooses L in
both rounds and that type ¢; chooses R in the last round. Hence, type t; will choose LR
or RR, or a mixture of these. LR cannot be type t2’s equilibrium strategy since (when
player 2 plays his best response) it yields less than the payoff that type ¢; can guarantee
himself by playing LL. Type t; cannot mix, since then player 2’s unique best response
is to choose r whenever R is chosen and this implies that RR is strictly better.) To
support the unique equilibrium outcome, player 2 should choose r with a probability of
at least 5/g in the second round after having observed L in the first round and R in the
second. However, such behavior is not optimal if beliefs are required to be consistent
with the equilibrium strategies as well as to satisfy the support restriction. Namely, these
requirements force player 2 to believe that he is facing type t; for sure if he observes LR
(since only t; chooses L in the first round in equilibrium) and if he has such beliefs he
should play I. Hence, the beliefs associated with any Nash equilibrium necessarily violate
the support restriction. The example makes clear that such a violation is actually quite
natural: After having observed L in the first round, player 2 has no evidence that play
is not in agreement with the equilibrium so he adopts equilibrium beliefs. After having
observed LR, however, he has such evidence and he corrects his initial beliefs since after

all it is only ¢; who might have had an incentive to try to mislead him.

3 Perturbed games

Selten (1975) proposes to escape from counterfactuals associated with irrational moves
of rational players by giving up the assumption that players are perfectly rational and
he introduces a model of slight imperfect rationality that is based on the idea that with
some very small probability a player will make a mistake. He writes (Selten (1975, p.
35))
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“There cannot be any mistakes if the players are absolutely rational. Never-
theless a satisfactory interpretation of equilibrium points in extensive games
seems to require that the possibility of mistakes is not completely excluded.
This can be achieved by a point of view which looks at complete rationality

as a limiting case of incomplete rationality.”

Selten’s approach is reviewed in subsection 3.1.

Alternatively, one may escape from the counterfactuals by giving up the assumption
that the game fully describes the real situation. One may argue that the model is
overabstracted, that there are always some aspects that are not incorporated and that,
if a complete model were built, the difficulties associated with unreached information
sets would vanish. That there are rewards associated with not taking the description
of the game too literally is already known since Harsanyi (1973) in which it was shown
that if the slight uncertainty that each player has about the payoffs of his opponents is
actually taken into account, the usual instabilities (and interpretational difficulties) of
mixed strategy equilibria vanish. (At least this holds for generic normal form games).
In subsection 3.2 we briefly discuss several variants of the idea that a self-enforcing
equilibrium should still make sense when the aspects that were abstracted away from
(such as payoff uncertainty) are explicitly taken into account. It will turn out, that the
results depend crucially on which story that one tells, and that even Nash equilibria that
are not subgame perfect can make sense in certain contexts. Hence, a main conclusion
to be drawn from subsection 3.2 is that, if the game model is not complete, it may not

be appropriate to apply equilibrium refinements.

3.1 Perfect equilibria

In Selten (1975) incomplete rationality is modelled by the assumption that at each of his
information sets a player will, with a small (independent) probability suffer from “mo-
mentary insanity” and make a mistake. Selten assumes that in the case of a mistake at
the information set h the player’s behavior at h is governed by some unspecified psycho-

logical mechanism which selects each choice at h with a strictly positive probability. Since
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in such a perturbed game there are no unreached information sets, a Nash equilibrium
prescribes the playing of a best response everywhere. Selten proposes to restrict atten-
tion to those equilibria of the original game that can be obtained as a limit of a sequence

equilibria of perturbed games as the trembles vanish and he calls these perfect equilibria.

It is convenient to define perfect equilibria first for normal form games, i.e. games in
which each player has to make just one choice and in which choices are simultaneous.
Let G = (Si,u;)%, be such a game, let o be a completely mixed strategy vector (with o;
representing the choice of player i if he makes a mistake) and let € be a positive n-vector
of mistake probabilities. Denote by s*° the strategy vector that results if each player
intends to play s and players make independent mistakes according to (¢,0). (Hence,
s is the convex combination of s; and o; that assigns weight ¢; to 0;.) In the perturbed
game G*° (i.e. the game in which the players take the mistakes explicitly into account),

the strategy vector s is an equilibrium if

ui(s°7\8;) = ui(s*°\s}) for all i and all s} € S;. (3.1)

The strategy vector s is said to be a perfect equilibrium of G if s is a limit of a sequence
3(€n, 0a) of equilibria of perturbed games G*~*~ with €, — 0. Note that for s to be per-
fect it is sufficient to find one mistake sequence that justifies s. Selten (1975) proved that
perfect equilibria exist and he showed that the strategy vector s is a perfect equilibrium
if and only if s is a best response to a sequence of completely mixed strategy vectors
that converges to s. In particular it follows that a perfect equilibrium is undominated

(admissible).

Now let us return to an extensive form game I'. Selten’s assumption that trembles
at different information sets are independent implies that one may think of different
information sets of the same player as being administrated by different agents. The
agent ih controlling the information set h € H; has the same payoff as the original

player ¢ but this is the only link between agents, the agent ih cannot directly control
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the actions of agent ik. Each agent maximizes for himself, counting on the rationality
of the other agents, but incorporating the fact that they may make mistakes. It is now
natural to look at the normal form game in which the agents are the players. This game
(Sin, win)or, nenr; (With, of course, u;, = u; for all ¢ and all h € H;) is called the agent
normal form of I'. A perfect equilibrium of the extensive for game I' is defined as a
perfect equilibrium of the agent normal form of I'. Note that equilibria of a perturbed
agent normal form game can be characterized by a condition similar to (3.1). This time

we should satisfy the local condition

u;(8%7\sin) > u;(s*°\s!,) for all i and all A € H;, 32
A

where o is a completely mixed behavior strategy vector. It is easy to see that each
perfect equilibrium is a sequential equilibrium; Kreps and Wilson (1982a) proved that

the converse holds for generic games.

A perfect equilibrium of the extensive form need not be perfect in the normal form.
(Although this property does hold for generic extensive forms.) In Figure 3 the equilib-
rium (DL, L,) is perfect in the extensive form: If player 1 fears that he is more likely to
tremble than player 2 is, then his choice of D is optimal. The normal form assumes that
each player can control his own actions completely. Obviously, in the normal form only
(UL, L) is perfect. Note that in the normal form we represent the ‘duplicate strategies’
DL, and DR, by their ‘equivalence class’ D. This convention will be followed through-
out the remainder of the paper. Hence, our normal form strategies will not specify what
a player should do after he himself has deviated. The reader may fill in these actions in
any way he wants without affecting the validity of any statements we make below about

normal form strategies.

[Insert Figure 3 here]
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The game from Figure 4 shows that, on the other hand, equilibria that are perfect in
the normal form need not even be subgame perfect in the extensive form: (D, D,) is
perfect in the normal form since D, is player 2’s best strategy if he believes that player 1
is more likely to tremble to A;d than to A;a. In the extensive form, perfectness excludes
such beliefs: Even if player 1 trembled at his first move, player 2 should still consider it
very likely that player 1 will play rationally (i.e. choose a) at his second move, hence,
he should play A;. Only (A;a, A;) is (subgame) perfect in the extensive form. (Note
that the above conclusion would remain valid if the payoffs would be slightly perturbed
so as to make the game generic. Reny (1988a) has shown that a normal form perfect

equilibrium is always ‘weakly sequential’ in the extensive form.)

[Insert Figure 4 here]

Myerson (1978) argued that also in the normal form of Figure 4 it is nonsensical to
believe that A;d is more likely than A a. He argued that A,d is a more costly mistake
than A;a, that a player will try harder to prevent more costly mistakes and that as a
result these will occur much less often. Formally, he defined an e-proper equilibrium of
a normal form game as a completely mixed strategy vector s having the property that,
if a pure strategy k of player i is a worse response against s than a pure strategy [, then
the probability that s; assigns to k is at most ¢ times the probability that s; assigns
to I. A limit of a sequence e-proper equilibria (as ¢ tend to zero) is called a proper
equilibrium. Such an equilibrium exists and is obviously perfect. An important property
is that proper equilibria of a normal form game induce sequential equilibrium outcomes
in every extensive form game with that normal form. Formally, if I" is an extensive form
game with normal form G and if s is a proper equilibrium of G, then there exists a

sequential equilibrium (s’, ) of T such that p* = p*’. (Kohlberg and Mertens (1986),
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Van Damme (1984)).

Another refinement that is related to the perfectness concept is the persistent equi-
librium (Kalai and Samet (1984)). If G = (S;,u;)™, is a normal form game and R;
is a compact convex subset of S; for each i, then R = X;R; is said to be an essential
retract if there exists a neighborhood R’ of R such that for each s’ in R’ there is some
s in R that is a best reply against s’. (Roughly this definition strengthens perfectness
by requiring stability against all perturbations; simultaneously it weakens perfectness
by allowing sets of solutions, this in order to guarantee existence.) A minimal essential
retract is called a persistent retract and an equilibrium that lies in such a retract is said
to be a persistent equilibrium. Persistency does not seem to be a necessary requirement
for self-enforcingness. For example, in the Battle of the Sexes Game of Figure 7.a only
the pure equilibria are persistent, hence, a symmetric game need not have symmetric
persistent equilibrium. Similarly, in the coordination problem of Figure 5 the outcome in
which player 1 chooses D seems perfectly self-enforcing if players cannot communicate.
(Note that player 2 has no incentive whatever to communicate.) However, only the two
equilibria with payoff (3,3) are persistent in this game. From these examples it appears
that persistency is more relevant in an evolutionary or in a learning context, rather than

in a pure eductive context.

[Insert Figure 5 here]

3.2 Correlated Trembles

Selten’s assumption that mistakes are uncorrelated across different information sets has
been criticized and it has been argued (for example, in Binmore (1987)) that in some
contexts it may be more natural to allow correlated trembles. Obviously, if perturba-
tions in a more general class are allowed and if only stability against one sequence of
perturbed games is required, then typically less outcomes will be eliminated. Correlated

trembles arise naturally if there is initial uncertainty about the payoffs and we will now
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give some examples to illustrate that less equilibria can be eliminated in this context, in
fact, that in some cases no Nash equilibrium can be eliminated. The reason is that, when
there is initial payoff uncertainty, the players beliefs may change drastically during the
game. Possibilities which are unlikely ex ante may have large effects ex post when they
actually happen. Consequently, it is by no means obvious that the perturbations like the
ones discussed below should be considered slight perturbations. (That a small amount of
payoff uncertainty may have a large effect is also known from the ‘applications’ in Kreps
and Wilson (1982b), Kreps et al. (1982) and Fudenberg and Maskin (1986). The results
below are different since they show that even vanishing uncertainty may have drastic

consequences.)

Consider once more the game I';(2) from Figure 1.b but suppose now that player
1 initially has some doubts about the objectives of player 2. He believes that with
probability 1 — ¢ player 2 is ‘rational’ and has payoffs as in I'z(2) and that with proba-
bility € this player is ‘irrational’ and tries to minimize player 1’s payoffs (hence, in this
case uz = —u;). Player 2 knows his own objectives. The subgame perfect equilibrium
(A, Dza) of the original game is no longer viable in this context: If player 2 believes
that player 1 chooses A, then he is facing the irrational type of player 2, hence, player
1 should deviate to D. The reader easily verifies that the perturbed game has a unique
subgame perfect equilibrium and that in this equilibrium player 1 chooses both A and
D with probability /; while the rational type of player 2 chooses A; with probability
2¢/(1 — €). Hence, with this story, although we obtain the subgame perfect equilibrium
outcome of the game I'3(2) in the limit, we rationalize a strategy for player 1 that is not

this player’s subgame perfect equilibrium strategy.

By using a construction as above, Fudenberg et al. (1988, Proposition 4) have shown
that, for every extensive form game, each equilibrium that is (strictly) perfect in the
normal form can be similarly rationalized by a sequence of slightly perturbed games in
which each player has some private, independent, information about his own payoffs.

Hence, also outcomes that are not subgame perfect can be ‘rationalized’ by means of
4
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slight payoff uncertainty. This result can be illustrated by means of the extensive form
game of Figure 4 which has (A,a, A;) as its unique subgame perfect equilibrium out-
come. Suppose that player 2 believes that with a small but positive probability player 1
has the payoff 4 if D, or d is played. (All other payoffs remain as in Figure 4 and it is
assumed that player 1 knows which payoffs prevail.) This perturbed game has a strict
Nash equilibrium (i.e. each agent chooses his unique best response) in which player 2
chooses D, while player 1 chooses D, if his payoffs are as in Figure 4. In this equilibrium
player 2 correctly infers from the choice of A, at player 1’s first information set that this
player will choose d at this second move, this induces him to choose D; which in turn
makes D, strictly optimal for the ‘regular type’ of player 1. Hence, in the limit, as the
uncertainty vanishes we obtain the (normal form perfect) equilibrium (Dy, D).

Fudenberg et al. (1988) also show that if the information of different players may be
correlated one can rationalize the larger set of normal form “correlated perfect” equilib-
ria, and that, if it is possible that some player i may have information about the payoffs
of player j that is superior to j’s information, then one may even rationalize the entire
set of pure strategy Nash equilibria. (Formally, if s is a pure strategy Nash equilibrium
of game I then there exists a sequence of slightly perturbed games in which each player
has some private information and an associated sequence of strict equilibria that con-
verges to s (Fudenberg et al. (1988, Proposition 3)). This result may be illustrated by
means of the game of Figure 1.a. Assume that with a small probability € the payoffs
associated with (A,d) are (2,2) rather than (0,0) and that only player 1 knows what
the actual payoffs are. In this perturbed game it makes perfectly good sense for player
1 to choose D if the payoffs are as in Figure 1.a, since he may fear that player 2 may

interpret the choice of A as a signal that the payoffs are (2,2) and continue with d after A.

The driving force behind the previous example was that the players could correlate
their strategies. Of course, payoff uncertainty is not necessary for correlation to be pos-
sible (Aumann (1974)) and, consequently, constructions like the above may be possible if

the payoffs are known but there is uncertainty about the game structure. As an example
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consider the game from Figure 6 in which the simultaneous move subgame is played
between the players 1 and 2 (player 3 is a dummy in that game). Since the subgame
has a unique Nash equilibrium with value (3,3,4), the unique subgame perfect equilib-
rium yields each player the payoff 5. Note, however, that the subgame also admits a
correlated equilibrium ¢ in which each of the nonzero entries is played with probability
6. 1f player 3 believes ex ante that there is an € probability that the players 1 and 2
have a correlation device available that enables them to play ¢, then he can interpret
the choice of A; as a signal that this device is available. This interpretation leads him
to choose Az which in turn induces player 1 to choose D, if the correlation device is not
available. Hence, this story justifies the outcome (4,4,8). (For an elaboration on this
example, and an in-depth study of ‘sequential correlated equilibria’ the reader is urged
to consult Myerson (1986) and Forges (1986).)

[Insert Figure 6 here]

The point of this subsection has been to show that if the game model is incomplete,
then one cannot tell which equilibria are self-enforcing without knowing where the in-
completeness of the model consists of, i.e. without knowing the context in which the
game is played. Consequently, in the next section we return to the classical point of view

that

“the game under consideration fully describes the real situation, — that
any (pre)commitment possibilities, any repetitive aspect, any probabilities of
error, or any possibility of jointly observing some random event, have already

been modelled in the game tree” (Kohlberg and Mertens (1986, Fn. 3).
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4 Stable equilibria

The game of Figure 7.b shows that the concepts introduced thus far do not provide
sufficient conditions for self-enforcing equilibria. In this game player 1 has to choose
between an outside option yielding both players the payoff of 2 or to play the Battle of
the Sexes games from Figure 7.a. One equilibrium has player 1 choosing D while the
players continue with (w,s) if the BS-subgame is reached. The equilibrium is perfect
since perfectness allows player 2 to interpret the move A of player 1 as an unintended
mistake which does not affect player 1’s behavior at his second move. However, there
clearly exists a much more convincing explanation for why the deviation occurred. Player
2 should realize that player 1 (being a rational player) will never play Aw since this is
strictly dominated by D. Hence, he should conclude that the deviation signals that
player 1 intends to play s in the subgame and he should respond by playing w. Clearly,

this chain of reasoning upsets the equilibrium.

[Insert Figures 7.a and 7.b here]

Note that the above argument involved the normal form of the game, we discussed
strategies for the entire game rather than independent actions at different information
sets. (Formally, the argument amounts to the observation that, by eliminating domi-
nated strategies, one can reduce the game to the outcome (As,w). Hence, the example
shows that perfect equilibria are not robust to the elimination of dominated strategies.)
What is involved is an argument of Forward Induction: Player 2’s beliefs and actions
should not only be consistent with deductions based on player 1’s rational behavior in
the future (this is the sequential rationality requirement captured by perfectness) but
they should also incorporate (at least as much as possible) rational behavior of player 1
in the past. It seems that the latter type of considerations can only be incorporated by
taking a global picture, i.e. by looking at the normal form.
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Kohlberg and Mertens (1986) argue forcefully (and convincingly) that the normal
form of a game contains sufficient information to find the self-enforcing equilibria of
this game. The argument is simply that rational players can and should always fully
anticipate what they would do in every contingency; a theory of rationality that would
tell a player at the beginning of the game to choose c if the information set A were to
be reached and that would simultaneously advise the player to take a different action ¢
if h is actually reached is hardly conceivable. This classical point of view implies that
self-enforcing equilibria can only depend on the normal form of the game and entails that
(subgame) perfect and sequential equilibria are unsatisfactory. (The two games in Figure
4 have the same normal form but they have different sets of perfect (resp. sequential)
equilibria. Note that in a normal form game every Nash equilibrium is sequential.)

Kohlberg and Mertens argue further that one even needs less information than is con-
tained in the normal form to find the self-enforcing equilibria: Since players are always
explicitly allowed to randomize over pure strategies, adding such mixtures explicitly as
pure strategies in the game should not change the solutions. This requirement implies
that the solutions of a game can only depend on the so-called reduced normal form, i.e.
on the normal form that results when all pure strategies that are convex combinations
of other pure strategies have been deleted. It turns out that this invariance requirement
is incompatible with the requirement that the solution of an extensive form game be
a subgame perfect equilibrium: There exist two games with the same reduced normal
form that have disjoint sets of subgame perfect equilibria. An illustration is provided by
the game of Figure 8.a. This is the (reduced) normal form of an extensive form game in
which player 1 chooses between an outside option [ yielding 2 or to play a 2 x 2 subgame
of the matching pennies type, and the unique subgame perfect equilibrium of this game
has player 2 choosing /2L +/2 R. If we add the mixture s = /,/+/,m explicitly as a pure
strategy of player 1 then we obtain the normal form from Figure 8.b which corresponds
to an extensive form game in which player 1 chooses between an outside option or to

play a 3 x 2 subgame (with strategies s,m and r for player 1 and L and R for player 2).
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The reduced normal form of this game is as in Figure 8.a, however, the unique subgame
perfect equilibrium of the game requires player 2 to choose R.

[Insert Figures 8.a and 8.b here]

The incompatibility of the two requirements calls again into question of whether
subgame perfectness is really necessary for self-enforcingness. Like the examples in Sec-
tion 2, this example suggests that one adopts a more liberal point of view and allows
multiple beliefs and multiple recommendations for player 2. There is certainly no need
to specify a unique action for this player since his choice doesn’t matter anyway when
he plays against a rational opponent. His choice may matter if his opponent plays ir-
rationally but then the optimal choice probably depends on the way in which player
1 is irrational and since no theory of irrationality is provided, the analyst should be
content to remain silent. Generalizing from this example one might argue that we may
be satisfied if we can identify the outcomes resulting from rational play, i.e. if we can
specify which actions a player should take as long as the opponents’ behavior does not
contradict their rationality. A self-enforcing norm of behavior should not necessarily pin
down the players’ behavior and beliefs in those instances which cannot be observed when

the norm is in effect.

Kohlberg and Mertens also argue that, besides failing to satisfy invariance, a second
reason for why perfect (and sequential) equilibria are not satisfactory concepts is that
they may allow equilibria in dominated strategies. (Perfectness implies that all moves
are undominated, however, the overall strategy may be dominated, cf. the equilibrium
(DLy, L,) in Figure 3.) Kohlberg and Mertens consider admissibility of the equilibrium
strategies (i.e. these strategies not being weakly dominated) to be a fundamental re-
quirement. Furthermore, as we have seen when discussing the game from Figure 7.b, yet

another drawback of perfect (and sequential) equilibria is that they are not robust to



26

the (iterative) elimination of dominated strategies. Kohlbarg/Mertens a.gee that s
(weakly) dominated strategies are never actualiy chosen by rational players and sirce al!
players know this, such strategies can have no impact on whether or not an equilibriura is
selt-enforcing. This requirement of “independence of dominated strategies” again points
to a set-valued solution concept, since, as is well-known, the outcome of the elimination
process may depend on the order in which the strategies are eliminated. For example, in
the game of Figure 8.a, the elimination order m, R, r leads to the conclusion that plaver
2 should play L, while the order r, L,m leads to the conclusion that he should play .?
Again one sees that multiplicity is natural: If player 2 eliminates a dominated strategy of
player 1 he attributes rationality to this player, but he may have to move only if playe:
1 actually is irrational. We simply reconfirm that the way in which player 1 is irrativnal
determines player 2’s choice and that, if one loes not specify what irrational behavior

looks like, one should not necessarily specify a unique choice for player 2.

[insert Figuie 9 here]

A more interesting example, in which different climination orders actually produce differ-
ent outcomes is provided by the game from Figure 9. In this game the notions of forward
and backward induction are conflicting. Backward induction (or the eliminatior otder
al, AL,d, AR) leads to the conclusion that player 1 should choose D and that the pavoffs
will be (2,0). Forward induction, or more precisely the fact that player 2 interprets the
choice of A as a signal that player 1 will not piay R, yields as a possible elimination order
AR, ar, D, di, which gives the conclusion that player 1 should play AL and that playe:
2 should choose d resulting in the payoffs (2,2). (This game is nongeneric since both
D and d yield player 1 the payoff 2, however note that, when one does the backwarc
induction, there are never ties.) This examgle shows that, if we indeed insist on tli-

requirement that self-enforcing norms should be “independent of dominated strategie:”
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then, in nongeneric games, we cannot identify norms with outcomes and this raises the
question of how to define norms in this case. Kohlberg and Mertens show that the set
of Nash equilibria of a game consists of finitely many connected components and they
suggest as candidates for self-enforcing norms (connected subsets of) such components.
Since generic extensive form games have only finitely many Nash equilibrium outcomes
(Kreps and Wilson (1982a)) it follows that for generic games all equilibria in the same
component induce the same outcome, so that for such games the Kohlberg/Mertens sug-
gestion is only a relatively minor departure from the traditional notion of a single-valued

solution.

The requirement that the solution be “independent from dominated strategies” is a
global requirement: Strategies that are ‘bad’ from an overall point of view will not be
chosen, hence, they should play no role. Once a specific norm is under consideration
one can be more specific. If the norm is really self-enforcing then a player will certainly
not choose a strategy that, as long as the others obey the norm, yields him strictly less
than he gets by obeying the norm. Hence, for a norm to be self-enforcing it is necessary
that it remains self-enforcing after a strategy has been eliminated that is not a best
reply against the norm. The power of this requirement of “independence of non-best
responses” (INBR) will be illustrated in the next section. The game I';(2) from Figure
1 shows that this INBR requirement is not satisfied by the subgame perfect equilibrium
concept: strategy Aja of player 2 is not a best response against player 1’s equilibrium
strategy A, but if Aja is deleted from the game, player 1 will switch to D. Hence, if one
wants to satisfy INBR as well as some form of sequential rationality one is again forced

to accept a set-valued solution concept.

Having specified several necessary conditions for self-enforcingness, the obvious ques-
tion, of course, is whether it is possible to satisfy all these requirements. The answer is
yes: There exist norms satisfying the properties discussed above as well as some other

desirable properties.
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Theorem: (Mertens (1988, 1989a, 1990).) There ezists a correspondence that as-
signs to each game a collection of so-called stable sets of equilibria such that
(i) (connezity and admissibility) each stable set is a connected set of normal form per-
fect (hence, undominated) equilibria.
(ii) (invariance) stable sets depend only on the reduced normal form.
(iii) (backward induction) each stable set contains a proper (hence, sequential) equilib-
rium.
(iv) (iterated dominance) each stable set contains a stable set of a game obtained by
deleting a (weakly) dominated strategy.
(v) (INBR) each stable set contains a stable set of a game obtained by deleting a strategy
that is not a best response against any element in the set.
(vi) (player splitting property) stable sets do not change when a player is split into two
agents provided that there is no path in the game tree in which the agents act after each
other.
(vii) (small worlds property) If there ezists a subset N’ of the player set N such that the
payoffs to the players in N’ only depend on the actions of the players in N', then the
stable sets of the game between the players in N’ are ezactly the projections of the stable
sets of the larger game.

The properties (i) — (v) have already been discussed. Property (vi) implies that it does
not matter whether a signalling game (see the next section) is analyzed in normal form (2
players) or in agent nor;rxnl form, or in any intermediate game form. Note that this prop-
erty does not hold if two agents of the same player move after each other: The outcome
(2,2) is stable in the agent normal form of the game of Figure 7.b: If player 1 consists of
two separate agents then the first has no control over the second and he cannot signal
this agent’s intentions. Property (vii) is a decomposition property that guarantees that
the solutions of a game do not depend on things that have nothing to do with the game.
Note that we naturally have ‘contains’ rather than ‘is’ in (iv) and (v): stable sets may
shrink if ‘inferior’ strategies are deleted. Intuitively, stable sets have to be large since

they must incorporate the possibility of irrational play (and there seems no unique best
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way to play against irrational opponents); however, by eliminating dominated strategies
one attributes more rationality to the players, makes them more predictable and this
leads to a smaller set of optimal actions, hence, to smaller stable sets. The game I'z(2)
of Figurz 1 provides an illustration. The set of normal form perfect equilibria of this
game consists of the strategy vectors s = (s;,3;) with s; = pA+ (1 — p)D, s3 = D; and
p < ', hence, (by (i)) each stable set is a subset of this set. Let S* be a stable set.
Since the strategy Aad is not a best response against S* and since, in the game in which
Aad is deleted, the unique stable set is (A, D;) (by admissibility), we have that (A4, D;)
belongs to S*. Similarly the strategy /24 + Y/2D of player 1 must belong to S*, for, if
this would not be the case, then Aza would be ‘inferior’ so that (by (i) and (v)) (D, Azd)
should belong to S* but this is impossible. Hence, it follows by (i) that in I';(2) the

unique stable set is the set of all normal form perfect equilibria.

Note that the Theorem is stated as an existence theorem, it does not say how to
find stable sets. Kohlberg and Mertens (1986) initially defined a stable set of a game
G as a “minimal closed set S of equilibria of G with the property that each perturbed
game G*° (see Section 4) with sufficiently small € has an equilibrium close to S”. This
definition is essentially the same as that for perfect equilibria except that one works
with the normal form and that one has to look at all perturbations rather than just
one sequence. However, it turned out that this concept failed to satisfy some essential
properties from the Theorem (such as (iii)). Mertens (1988, 1989a) refined the definition
to remedy this deficiency and proved the Theorem. For the purpose of this paper the
exact definition is not so relevant, since in the applications to be discussed next, the
properties from the Theorem will suffice to single out the stable outcomes. Finally,
Hillas (1990) defines a stable set of a game G as “a minimal closed set S of equilibria of
G with the property that for each game G’ with the same reduced normal form as G and
for each upper-hemicontinuous compact convex valued correspondence that is pointwise
close to the best reply correspondence of G’ there exists a fixed point that is closed to
S7. Such stable sets exist and satisfy the properties (i) — (v) from the Theorem.
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5 Forward induction

In this section we briefly discuss some applications of forward induction, i.e. of the idea
that the inferences players draw about a player’s future behavior should be consistent
with rational behavior of this player in the past. Informally stated, forward induction
amounts to the requirement that for an equilibrium to be self-enforcing there should not
exist a nonambiguous deviation from the equilibrium that, when interpreted in the ap-
propriate way, makes the deviator better off. This attractive idea has proved elusive and,
consequently, several formalizations have been proposed in the literature. It has turned
out, however, that stability (and in particular “independence of dominated strategies
and/or non-best responses”) captures at least some of the forward induction logic. In
this section we first illustrate some applications of stability in games of complete infor-
mation, thereafter, we indicate how powerful that concept is to eliminate implausible
equilibria in signalling games. Along the way several other formalizations of forward
induction that are in some way related to stability will be encountered. Throughout the
section attention will be confined to generic games, i.e. to games that have finitely many
Nash equilibrium outcomes. We will call an outcome of such a game stable if there exists
a stable set of which all elements induce this outcome. (Recall that in generic games all

elements in a same stable set yield the same outcome.)

5.1 Signalling intentions

Consider the following modification of the game of Figure 7.b: First chance determines
whether player 1 or player 2 will have an outside option available. If a player takes up
the outside option each player has the payoff 2. If player ¢ is selected by chance but
he does not take his option then players play the Battle of the Sexes. It is easily seen
that in the unique stable outcome the option is not taken up, that the player who has
the option available chooses to play BS and gets the payoff 3. (Abdalla et al. (1989)
provide experimental evidence on the success of forward induction in similar games). In
particular, we see that the history of the game determines the way in which the subgame

is played: The player’s expectations in the subgame are not endogenous i.e. they are
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not determined by the subgame alone but depend on the context in which the subgame
arises. (See Mertens (1989b) for an informal discussion on this topic.) The equilibrium
selection theory of Harsanyi and Selten (1988) is based on the assumption of endogenous
expectations: Harsanyi and Selten impose the requirement of subgame consistency, i.e.
a subgame should always be played in the same way no matter how it arose. The exam-
ple shows that subgame consistency conflicts with stability. Similarly, it may be shown
that also other concepts that require history independence, such as Markov perfection
(Maskin and Tirole (1989)) or stationarity conflict with stability.

Suppose that the players have to play the Battle of the Sexes Game from Figure 7.a
but that before playing this game player 1 has the option of burning one unit of utility
and that when BS is played it is common knowledge whether or not player 1 burned
utility. It is easily seen that iterative elimination of dominated strategies reduces the
normal form to the payoff (3,1), hence, only the outcome in which player 1 does not burn
utility and gets his most preferred outcome is stable. Using this argument, Ben-Porath
and Dekel (1987) have shown that in games of “mutual interest”, the players will succeed
in coordinating on the Pareto best equilibrium if one player has the ability to destroy
utility. In Van Damme (1989) it is shown that ‘in the Battle of the Sexes’ all stable
outcomes are inefficient (i.e. involve some burning) if both players have the opportunity
to simultaneously burn utility. Applications of these ideas to more economic contexts

are found in Bagwell and Ramey (1990), Dekel (1989) and Glazer and Weiss (1990).

The deletion of dominated strategies in the BS with one-sided burning of utility cor-
responds to the following intuitive story: If player 2 observes that player 1 burns utility
he should conclude that player 1 will continue with s; assuming that player 1 will play w
does not make sense since burning followed by w yields at most the payoff zero, hence,
is strictly dominated by not burning and randomizing between s and w. This conclusion
leads player 2 to play w if burning is observed and burning utility is sure to yield player
1 the payoff 2. At this stage of the reasoning process we are back to a game like that

in Figure 7.b and we can continue reasoning as in that example to reach the conclusion
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that (s, w) should also be played if player 1 does not burn utility. A little reflection re-
veals that the argument above is not intuitive at all: It is not clear why player 2 should
respond to the burning by playing w since, given the conclusion we just reached, burning
is a signal that player 1 is not rational, at least it signals that he did not follow the above
reasoning. At this point the reader should be reminded of the discussion of counterfac-
tuals in Section 2, so it is not necessary to go into details here. Let us just remark that
stability does not force player 2 to play w after player 1 has burned utility: The stable
set includes both ww and ws for player 2 (af denotes that player 2 responds to not
burning by a and to burning by 3). Namely, property (iv) of the Theorem implies that
(—s, ww) belongs to the stable set. (—s denotes the strategy of not burning and playing
s.) Furthermore, given that player 2 plays a mixture of ww and ws in any element of
the stable set, the strategies bs (i.e. burning and then playing s) and —w are inferior for
player 1. If these strategies are eliminated, ws becomes dominated for player 2 and the
normal form is reduced to (—s, ws), so that the Theorem implies that this strategy pair
also has to belong to the stable set.

When a game with multiple equilibria is repeated the set of subgame perfect equi-
librium payoffs expands until in the limit it covers, at least under a mild regularity
condition, the entire set of feasible and individually rational payoff vectors. This is the
content of the “Folk Theorem” (Benoit and Krishna (1985)). Hence, in repeated games
the problem of multiplicity of equilibria is ubiquitous. Considerations of forward induc-
tion may eliminate some of these equilibria as the twice repeated battle of the sexes may
show. As an illustration, let us show that the outcome (path) in which the one-shot
equilibrium (s,w) is played twice is not stable. Namely, INBR implies that player 1
should interpret a deviation of player 2 to s in the first round as a signal that player 2
will also play s in the second round. (If he would plan to play w then his payoff is at
most 1, which is less than the equilibrium payoff, hence, such a strategy is not a best
response.) Consequently, after the deviation player 1 should play w but then player 2
gains by deviating (his payoff is 3 rather than 2), so that the outcome is not stable.

Stable outcomes are alternating between (1,3) and (3,1), as well as playing the mixed
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equilibrium twice, and some other mixtures in which the continuation at time 2 depends
on the outcome of stage 1. It seems that stability forces payoffs to move closer to the
45° line but whether this property remains for repetitions with longer duration remains
to be investigated.

To this author’s knowledge no general results are available for stable equilibrium pay-
offs of repeated games: mathematically stability is not very easy to work with. Some
preliminary results on repeated coordination games are contained in Osborne (1990). In
particular, Osborne shows that in a class of repeated coordination games, paths that
consist of pure Nash equilibria of the stage game can be stable only if they yield payoffs
that are nearly Pareto optimal. This restriction on paths is unfortunate since for more
general games no such path need be stable (Van Damme (1989)). Osborne does not use
the full power of stability, he works with a weaker criterion of “immunity to a convinc-
ing deviation” (which is akin to the Cho and Kreps (1987) intuitive criterion (see the
next subsection) and to the formalization of forward induction proposed in Cho (1987)).
One negative result that is known is that stability conflicts with ideas of renegotiation-
proofness: there may not exist a stable equilibrium that is also renegotiation-proof (Van
Damme (1988)). (Renegotiation-proofness requires that at each stage of the game players
continue with an equilibrium that is Pareto efficient within the set of the available equi-
libria, see Pearce (1990) for an overview of the various concepts formalizing this idea).
In an interesting application Ponssard (1990b) shows that forward induction leads to
the conclusion that long term competition in a market with increasing returns to scale
forces firms to use average cost pricing. Ponssard, however, develops his own concept of
forward induction (also see Ponssard (1990a, c)) and it is not clear that stable equilibria

satisfy Ponssard’s conditions.

An alternative (preliminary) formulation of forward induction based on an idea origi-
nally developed in McLennan (1985) was proposed in Van Damme (1989). In that paper
it was argued that, in a generic 2-player game in which player 1 has the choice between

an outside option o or to play a subgame ~ of which a unique viable (say stable) equilib-
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rium e yields player 1 more than his option, only the outcome in which player 1 chooses
to play 7 and e is played in v is sensible. The justification for this requirement is that by
choosing to play v player 1 can unambiguously signal that he will play according to e in
v. Alternatively one may imagine a context in which there is initial strategic uncertainty
about whether the norm o or the norm ~e is in effect: Even if player 2 originally believes
that he is in a world in which o is obeyed, he concludes from the fact that he has to
move that the norm must be ye and he responds appropriately. (Telling the story in
this way makes clear that this type of forward induction is related to the risk domi-
nance concept from Harsanyi and Selten (1988). Another paper dealing with this type
of situations is Suehiro (1990). Also Binmore (1987) has such a context in mind when
he presents an argument in favor of the imperfect equilibrium in Selten’s ‘horse’ game.)
Van Damme (1989) constructs an example to show that stable outcomes as originally
defined by Kohlberg and Mertens do not necessarily conform to this forward induction
logic. It is unknown to this author whether Mertens’ refined stability concept satisfies

this forward induction requirement.

5.2 Signalling private information

A signalling game is a 2-player game in which player 1, who has private information takes
an action (‘sends a signal’) that is observable to player 2 who thereupon takes an action
and in which the payoffs depend on both players’ actions and the type (i.e. the informa-
tion) of player 1. (Formally, a signalling game is a tuple I' = (T, M, (R )m, u1,u2,7)
where T is the (finite) set of types of player 1, M is the (finite) set of messages that can
be send, R,, is the (finite) set of responses to m,u; = u;(t,m,r) is the payoff function
of player i, and = is a probability distribution on T' representing the initial beliefs of
player 2. An example of a signalling game is the game in Figure 2.a; from now on we
will use a matrix representation as in Figure 2.b. to depict signalling games). Signalling
games were introduced by Spence (1974) and they provide stylized models of many in-
teresting economic situations (see Cho and Kreps (1987) and Kreps and Sobel (1991)).
These games typically have large numbers of equilibria and researchers have used in-

tuitive, context dependent arguments to eliminate equilibria. Although a great variety
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of refinements exist, they all incorporate some form of forward induction, hence, they
can be related to the stability concept from the previous section. Next we briefly dis-
cuss these relations. (The reader is referred to Cho and Kreps (1987), Banks and Sobel
(1987), Kreps and Sobel (1991) and Sobel et al. (1991) for more details.) Before starting
to discuss the relationships it should however be noted that the “intuitive criteria” are
based on a somewhat different point of view, viz. economists have tried to directly define
“plausible beliefs” and proposed to restrict attention to the (“plausible”) equilibria that
can be supported by “plausible beliefs”. Such a requirement is stronger than the ones
considered previously which were based on the idea that a candidate equilibrium should
be rejected if it can be upset by “plausible” beliefs. The difference is that there may not
exist equilibria that can be sustained by “plausible” beliefs since “plausible” beliefs may

not exist (cf. the discussion on burning utility in the battle of the sexes game).

Let an equilibrium s of a signalling game be given. Typically the intuitive criteria
that are used to judge the “plausibility” of this equilibrium start out by assuming that,
if player 1 does not deviate from his equilibrium strategy, player 2 will not deviate ei-
ther, hence, that playing the equilibrium strategy guarantees each type of player 1 his
equilibrium payoff. (This assumption certainly makes sense: If the equilibrium is really
self-enforcing, then no player will deviate. However, see the discussion in the Figures 12
and 13.) Next, assume that m is a message that is not sent if s is played. If choosing m
is sure to yield a certain type t of player 1 less than what the equilibrium guarantees this
type, then it is not “plausible” to assume that ¢ will choose m and it should be possible
to sustain the original equilibrium by beliefs that assign zero weight to t. Depending
on how one defines “to sustain” in the previous sentence, the resulting test is known as
“the intuitive criterion” or as “equilibrium dominance” (Cho and Kreps (1987)). The
equilibrium s satisfies the intuitive criterion if for each type ¢ of player 1 there exists a
belief in the restricted set (of beliefs that puts zero weight on the types for which m is
dominated) and an associated best response for player 2 at m that makes type ¢ prefer
to choose s rather than m. The test posed by equilibrium dominance is more restric-

tive and requires that there exists a belief in the restricted set and an associated best
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response of player 2 such that no type of player 1 wants to deviate to m if that response
is taken at m. Hence, the latter test requires that different types conjecture the same
response after m, the former allows different types to have different conjectures. In the
signalling game of Figure 10 the outcome in which both types of player 1 choose L does
not survive application of the intuitive criterion since the latter requires that, after R,
player 2 should put weight 1 on type ¢, and play l. In the game of Figure 11, the outcome
in which all types choose L survives the intuitive criterion (this requires that player 2
puts weight zero on ¢3 but it allows that the conjectures of ¢; and t; are mismatched, i.e.
that ¢; believes that player 2 will play m and that ¢, believes that he will play ), but
it does not pass the equilibrium dominance test, since if ¢; and t; conjecture the same
(mixed) strategy of player 2, at least one of them will deviate. (Note that the game of
Figure 11 (with ¢3 deleted) demonstrates the claim made at the beginning of Section 2
that the Nash equilibrium concept depends in an essential way on the assumption that

different players (here ¢; and ¢;) conjecture the same out-of-equilibrium responses.)

[Insert Figures 10 and 11 here]

The above tests may be applied repeatedly. Formally, this repeated procedure runs
as follows. Given an equilibrium s and an unsent message m, one first constructs the
auxiliary signalling game in which player 1 has the choices s and m, where s guaran-
tees the equilibrium payoffs and where the payoffs after m are the same as those in the
original game. Next one starts eliminating strictly dominated strategies in the agent
normal form of this game (hence, the types of player 1 are considered as independent
players). If during the process the action s vanishes for some type ¢, then s does not
satisfy the intuitive criterion. If the game that one obtains at the end of process does
not have s as an equilibrium, then s fails the equilibrium dominance test. Since only
actions are eliminated that are not a best response against any equilibrium in the same

component as s, the Theorem implies that equilibria failing any of these tests cannot
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belong to stable sets.

[Insert Figure 12 here]

Alternatively, one might construct the normal form of the auxiliary signalling game
and eliminate dominated strategies in that game form. This poses a stricter test since
more dominance relationships exist in the normal form. Consider the equilibrium s of the
3-message signalling game of Figure 12 in which both types choose L and the auxiliary
game corresponding to the message M. (Hence, for the moment we completely neglect
the message R.) Then s survives the equilibrium dominance test since choosing M is
not dominated for either type. In the normal form, however, the strategy LM (i.e. t;
chooses L and t; chooses M) is dominated (by a combination of ML and M M) and after
this strategy has been eliminated one sees that player 2 should play I, thereby upset-
ting s. The intuitive argument corresponding to the elimination of dominated strategies
in the normal fon.n is known in the literature under the name of co-divinity (Sobel et
al. (1991)), a criterion that is slightly weaker than that of divinity (Banks and Sobel
(1987)). These criteria may also be described as follows. Assume that (the types of)
player 1 conjecture that player 2 will reply to m with the response r. Letting u*(t)
denote the equilibrium payoff of type t, the propensity A(t,r) for type t to deviate from

s is given by

0 if u*(t) > u(t,m,r)
At,r) =1 €[0,1] ifu’(t) = u(t,m,r) (5.1)
1 if u*(t) < u(t,m,r)

Hence, if player 2 knows that player 1 conjectures that he will play r, then his beliefs

will be in the set
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B(w,r) = {x' € A(T); =’ = xA(-,r) for some A asin (5.1)}. (5.2)

If there exists a possible conjecture r for which B(x,r) is not empty (i.e. if there exists a
type that would not lose from deviating to m), then divinity and co-divinity require that
the equilibrium s can be sustained by beliefs that belong to U,B(x,r) where r ranges
over the possible conjectures. Divinity is a slightly stronger concept since it allows only
conjectures r that are (mixed) best responses while co-divinity allows the larger set of
all mixtures of (pure) best responses. Banks and Sobel (1987) show that every stable

component contains a divine equilibrium.

It will be clear that, because of (5.1), the divinity concepts force the updating to be
monotonic: If type t; has a “greater incentive to deviate” to m than type ¢, has, then
player 2 should not revise downward the probability that he is dealing with t; after m
has been chosen. For example, in the game of Figure 12 both ¢; and ¢ could possibly
gain by deviating from L to M but t; has the “greater incentive” to do so (the range
of responses where t; gains is strictly larger than the range where ¢, gains) so that co-
divinity requires that the posterior probability of ¢, after M is at least /; hence, player
2 should choose [ thereby upsetting the equilibrium.

Note that divinity investigates each unsent message separately. (For each such mes-
sage a separate auxiliary game is constructed, and s is eliminated if it fails the test in
at least one auxiliary game.) In Figure 12, for example, it is thus required that player
2 plays ! after M and !’ after R. If player 1 foresees this reaction and plays his best
response (R if t; and M if t3) beliefs are induced that are incompatible with those of
divinity. In fact, player 2’s best response against this best response (viz. playing r after
M and v’ after R) sustains the original equilibrium. (Formally what happens is that,
by including the third message, LM becomes undominated in the normal form.) Some
readers might conclude from this that divinity is not an intuitive requirement after all.
In the author’s opinion the above argument simply shows that we do not know what will

happen when the pooling equilibrium at L is recommended. However, this should not
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bother us: we also do not know what will happen if, in an ordinary normal form game,
a strategy vector is recommended that is not a Nash equilibrium. Questions concerning
“disequilibrium dynamics”, i.e. questions dealing with what will happen when a non-
self-enforcing equilibrium is proposed, cannot be answered by equilibrium analysis. (Cf.
Von Neumann and Morgenstern (1948, Section 4.8.2.).)

The so-called “Stiglitz critique” (Cho and Kreps (1987, p. 203)) on the intuitive crite-
rion (or more precisely on the assumption that not deviating guarantees the equilibrium
payoff) also involves such “disequilibrium dynamics”. The critique may be illustrated
by means of the game of Figure 13. In one equilibrium of this game, the types of player
1 pool at L and player 2 responds to L with I. The intuitive criterion eliminates this
equilibrium: Type t; will deviate to R since he foresees that player 2 will switch to I’ at
R. According to the critique one should not stop the analysis with this disequilibrium
outcome. Rather player 2 should realize that only ¢; can have chosen L and he should
switch to r after L. But then t; also finds it better to deviate to R, whereafter player 2
finds it better to play r’ after R, which in turn induces ¢, to choose L again. Continuing
the argument two more steps we are back at the original equilibrium choices, hence,
according to the critique no type of player 1 might have an incentive to deviate from L
after all. This author’s opinion is that the pooling outcome at L should not be considered
self-enforcing: There are players that have an incentive to deviate. What the critique
shows is that we do not know what will happen if it is suggested to the players to pool

at L, but, as already seen above, equilibrium analysis cannot answer this question.

[Insert Figure 13 here]

In this author’s opinion, the intuitive criteria that were discussed above may be criti-
cized for the fact that they treat reached and unreached information sets asymmetrically:

It is assumed that player 2 follows the recommendation after any message that is chosen
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in equilibrium whereas he completely neglects the recommendation , and reoptimizes,
after any unexpected message. To check self-enforcingness it is more appropriate to fol-
low the symmetric procedure of first assuming that the recommendation is self-enforcing,
that player 2 will always, i.e. after every message follow the recommendation, and then
reject the recommendation if this assumption leads to a contradiction. Of course, this
latter requirement is simply the INBR condition from the previous section. It is illus-
trated by means of the game of Figure 14. Cho and Kreps (1987) provide a similar
example and claim that the elimination of the pooling equilibrium at L is not intuitive

in this game.

[Insert Figure 14 here]

Consider the equilibrium outcome in which the types of player 1 pool at L. If we
insist that recommendations be admissible (i.e. undominated) strategies, then to sus-
tain pooling at L we should recommend that player 2 randomizes between m and r after
R, putting at least half of the weight on r. Given this set of possible recommendations,
choosing R is not a best response for type t;, and after having eliminated this action,
we see that player 2 prefers to choose I, hence, he wants to deviate from the recommen-
dation. Consequently, if we insist on admissibility and INBR, then pooling at L cannot
be self-enforcing. Note that none of the previous arguments discussed in this subsection,
nor INBR alone, eliminates this outcome. (If the dominated strategy %/3/+'/3r is allowed

as a recommendation for player 2, then sending R is not inferior for type t,.)

The literature also offers refined equilibrium notions that are not implied by stabil-
ity. One such concept, that is frequently used in applications is that of perfect sequential
equilibriumor PSE (Grossman and Perry (1986)). It is convenient to describe the slightly
stronger notion of PSE* (Van Damme (1987)). Roughly, an equilibrium s fails to be a

PSE* if there exists an unsent message m, a subset 7" of types of player 1 and a response
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r at m such that (i) if r is chosen at m then T" is exactly the set of types that prefer m to
s and (ii) r is a best response against the conditional distribution of = on 7”. (The formal
definition is slightly different since types may be indifferent between deviating or not;
such indifferences are handled as in (5.1), (5.2). The PSE concept is defined similarly
but it is weaker since it allows player 1 to conjecture the ‘wrong’ response at m.) Hence,
roughly, s fails to be a PSE” if there exists some message m and an equilibrium s’ of the
auxiliary game determined by s and m such that at least one type of player 1 prefers s’ to
s. Clearly, this concept is closely related to the forward induction requirement that was
discussed at the end of the previous subsection. The difference is that there we required
that there be a unique equilibrium that improves upon s, whereas here we allow there

to be multiple improvements.

[Insert Figure 15 here]

Grossman and Perry (1986) have given an example to show that PSE need not exist.
The game from Figure 15 shows that a stable set need not contain a PSE. In this game,
pooling at L is stable but it is not a PSE. The outcome is stable since (roughly) stability
allows player 2 to believe that any type might have deviated, hence, it allows player 2 to
randomize in such a way that actually neither ¢; nor ¢; wants to deviate. The outcome
is not a PSE since this concept forces player 2 to put weight 1 on either ; or t;, hence,
to choose either [ or r. Clearly in either case at least one type of player 1 will want
to deviate from L. This example makes clear that the PSE concept assumes that the
players can coordinate their actions, i.e. that communication is possible and that com-
munication indeed takes place. (However, note that player 2 has no incentive whatsoever
to communicate.) Hence, PSE is not a purely noncooperative solution concept. In this
author’s opinion it is preferable to model communication explicitly by the rules of the

game rather than indirectly by means of the solution concept. Such ‘cheap talk’ games
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typically also have many equilibria and stability is not effective in reducing this set since
every equilibrium outcome can be obtained by ‘babbling’, i.e. by using each message
with positive probability. We will not consider cheap talk games any further; we just
note that from the seminal papers Farrell (1985, 1990) and Grossman (1981) an exten-
sive literature has sprung up, and that Matthews et al. (1990) survey the refinements
used in this area. All these refinements assume that players will always accept the literal
meaning of each statement unless it is logically contradictory, and the real challenge in

this area seems to be to derive this assumption as a conclusion.

6 Equilibrium selection

Up to now we have dealt exclusively with the self-enforcingness aspect of equilibria,
we did not discuss how self-enforcing norms come to be established nor how the selec-
tion among these takes place. We have seen, however, that considerations concerning
self-enforcingness already lead to some conclusion concerning equilibrium selection: The
basic idea of forward induction is that the equilibrium that is selected may depend on the
context in which the game is played (cf. Figure 7.b). In this section we briefly discuss
the approach to equilibrium selection and equilibrium attainment that is proposed in
Carlsson and Van Damme (1990) (henceforth CD). CD picture players in the context in
which the payoffs of the game are only “almost common knowledge” and they show that
when a 2 x 2 game is played in this context, players reason themselves to the risk domi-
nant equilibrium (Harsanyi and Selten, (1988)). (CD obtain results only for the class of
2 x 2 games. For general attacks on the equilibrium selection problem, see Harsanyi and

Selten (1988) and Giith and Kalkofen (1989).)

[Insert Figure 16.a and 16.b here]

In the coordination game of Figure 16.a the equilibrium (L;, L,) satisfies the most strin-
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gent requirements for self-enforcingness that have been discussed thus far: (L, L;) is a
strict equilibrium so that each player strictly looses by deviating if he expects the op-
ponent to obey the recommendation to play this equilibrium. Of course, the question is
whether a rational player will indeed expect his opponent to obey this recommendation.
There is some evidence that at least human players do not consider such recommen-
dations credible. Van Huyck et al. (1988) report on an experiment conducted with a
3 x 3 coordination game with (diagonal) payoffs (in dollarcents) of (90,90), (50,50), and
(10,10) in which only 1 pair of players (out of 30) follows the recommendation to play
(10,10): If (10,10) is recommended, then 47 of the 60 individuals (and 18 of the 30 pairs)
deviate to the payoff dominant equilibrium (90,90). It is very likely that similar behav-
ior would be observed in the game of Figure 15.a. One explanation for this behavior is
that players are firmly convinced right from the start that only R makes sense in this
game, that they consider any suggestion to play something else as being irrelevant and
that such a suggestion can safely be ignored since it will be ignored by the opponent as
well. The obvious question of course is how players can know that only R makes sense,
and basically the answer that CD give is that players know this from reasoning through
similar games. CD argue that the game from Figure 16.a should not be analyzed in
isolation: Players know what to do in this game since they know that it is optimal to
play the Pareto best equilibrium in each coordination game with Pareto ranked payoffs.
CD suggest to analyze classes of games with the same structure simultaneously and they
show that self-enforcing norms for how to play classes of games may prescribe a specific
equilibrium of each element of the class, roughly because of the fact that norms will
require that similar games be played similarly. (Fudenberg and Kreps (1988) present
another approach to similarity in games. Of course the idea that a solution of a game
should be part of a plan that is consistent across a larger domain occurs already in the

seminal work of Nash (1950b) on bargaining and that of Schelling (1960) on focal points.)

The CD approach will now be illustrated by means of the game I'(f) from Figure
16.b. (The reader himself can supply the details for how the argument would run if the

coordination game from Figure 16.a would be embedded in a one-dimensional parame-
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ter of coordination games.) The game I'(7) has been extensively discussed in Aumann
(1989). Aumann argues that if the players are convinced that they should play R then
no amount of preplay communication can convince them to switch to L since each player
knows that also a player who intends to play R will try to induce his opponent to switch
to L. In I'(7) both L and R are strict equilibria and each one has something going for
it: L Pareto dominates R but R is much safer. Hence, in this game there is a conflict
between the intuitive notions of payoff dominance and risk dominance (Harsanyi and
Selten (1988)). Formally, in a 2 x 2 game G, R is said to risk dominate L if the stability
region of R (i.e. the set of all strategy vectors s against which R is a best reply) has
a larger area than the stability region of L. Hence, in Figure 16.b, R risk dominates L
if and only if & > 4. In their theory, Harsanyi and Selten resolve the conflict between
the two intuitive notions in favor of payoff dominance; the reader should consult the

postscript to their book for the arguments in favor of this choice.

Now imagine that the players are in the context in which they know that they have
to play a game I'(9) as in Figure 16.b but they do not yet know which one. Hence, they
know that they have to play a game in which the conflict between risk dominance and
payoff dominance exists. (The reader may argue that the parametrization from Figure
16.b is not natural; We have chosen this parametrization to simplify the presentation.
The assumptions to be discussed next are motivated similarly; the results from Carlsson
and Van Damme (1990) are more general.) The reader will probably agree that as ¢
increases playing L becomes less and less attractive and that a natural way to play this
game is by specifying a cutoff value 0 and play L if and only if 8 is less than 6. CD
show that, if the players can observe the actual parameter value 8 only with some slight
noise, then the value of 6 is uniquely determined in equilibrium. In fact 6 = 4, hence, the
players always choose the risk dominant equilibrium. (Note that some noise is essential
to derive uniqueness, if 8 could be perfectly observed, then each game I'(#) would occur
as a simple subgame and the cutoff value may lie anywhere, in fact, in this case the

equilibrium strategies need not be stepfunctions.)
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To formally derive the above result let us assume that the set © of all possible param-
eter values is finite, that initially all values of # are equally likely and that © includes
values 8 with < 0 (which makes L; strictly dominant) as well as values with § > 8
(such that R; is strictly dominant). Furthermore, assume that, if the actual parameter
value is 6, then one player receives the signal 8 (i.e. the smallest value in © that is
larger than @) while the other gets to hear 6~ (i.e. the largest value in © that is smaller
than @) with both possibilities being equally likely (with the appropriate modifications
at the endpoint of ©). Since the observations are noisy no player knows exactly which
‘game’ he is playing, however, if the grid of © is fine then each player has fairly accurate
information about the payoffs in the game. Furthermore, in this case each player also has
good knowledge about the information of his opponent and the players know that their
perceptions of what the payoffs are, do not differ too much. Hence, if the grid of © is fine,
the game with noisy observations may be viewed as a small perturbation of the game in
which observations are perfect and in the latter I'(f) occurs as a subgame for each value
of §. However, it should be noted that from the point of view of common knowledge
(Aumann (1976)), the games are completely different. Namely, in the unperturbed if a
player receives the signal 8, then it is common knowledge that the game is I'(d), i.e. both
players know that both players know ... that both players know that the game is I'(6).
However, in the game with noise, if a player receives the signal 8, then he knows that
the payoffs either are as in I'(6~) or as in I'(§+) and that his opponent either received
the signal 6=~ or #**. Hence, he also knows that the opponent believes that the game is
either I'(6~~") or I'(6~) or I'(6*) or I'(6**+) , with all probabilities being equally likely,
and that the opponent believes that his signal is either =~~~ or §*++* or @ with the
latter having probability !/;. Continuing inductively it is therefore seen that no matter
how fine the grid size of © is, basically the only information that is common knowledge
is that some game I'(#) with # in © has to be played. This lack of common knowledge
forces the players to take a global perspective in order to solve the perturbed game: To
know what to do if one receives the signal 8 one should also investigate what to do at
parameter values ¢’ that are far away from 6. It is this phenomenon that drives the CD

results. (A similar “action from a distance” also drives the results in Rubinstein’s (1989)
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electronic mail game.)

The analysis of the perturbed game is simple. Let 6; be the observation of player i. If
0} < 0 (resp. 67 > 8) then player i chooses L; (resp. R;) since he knows that this action
is strictly dominant. Assume that it has already been shown by iterative elimination of
strictly dominated strategies that L, and L, (resp. R, and R; ) are strictly dominant at
each observation 8 with 8 < o (resp. 8 > ). Hence, the iterative procedure starts with
a =0~~ and B = 8**+. Consider §; = at, so that player i knows that either §; = a~ or
0; = at**, hence, player i knows that player j will choose L; with a probability p that is
at least ¥/;. Choosing L; yields an expected payoff of 9p while R; yields at most a** + p,
so that player i will find it strictly dominant to choose L; if a** < 4. Consequently, L;
is iteratively dominant for player i at 6; if 6; < 4~ and similarly R; is iteratively dom-
inant at 6; if §; > 4+. We see that the perturbed game is almost dominance solvable:
For all but a small set of parameter values (viz. the interval [4~,4%]) unique iteratively
dominant actions exist. By playing these dominant strategies players coordinate on the
risk dominant equilibrium of the actual game that was selected by chance, hence, by just
relying on rationalizability (Bernheim (1984), Pearce (1984)) in the perturbed game we
obtain equilibrium selection according to the risk dominance criterion for every game

I'(8) with 8 ¢ [4-,4%).

Binmore (1990) has argued that in order to make progress in game theory it is nec-
essary to model the way players think; that attention should be focused more on equi-
libriating processes rather than on equilibria. Although the model outlined above is
rudimentary I believe that it captures some relevant aspects of reasoning processes. Cer-
tainly I do not want to claim the model’s universal applicability; in some contexts the
model may be relevant, in other contexts players may reason differently. The point,
however, is that classical game theory is rich enough so as to provide models of the ways

players might think.
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