

Tilburg University

The risk properties of a pre-test estimator for Zellner's seemingly unrelated regression model

Özcam, A.; Judge, G.; Bera, A.K.; Yancey, T.

Publication date: 1991

Link to publication in Tilburg University Research Portal

Citation for published version (APA):

Özcam, A., Judge, G., Bera, A. K., & Yancey, T. (1991). The risk properties of a pre-test estimator for Zellner's seemingly unrelated regression model. (CentER Discussion Paper; Vol. 1991-59). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

No. 9159

THE RISK PROPERTIES OF A PRE-TEST ESTIMATOR FOR ZELLNER'S SEEMINGLY UNRELATED REGRESSION MODEL R46

by Ahmet Özcam, George Judge, ^{5/8.92} Anil Bera and Thomas Yancey

November 1991

ISSN 0924-7815

Revised, October 1991

THE RISK PROPERTIES OF A PRE-TEST ESTIMATOR FOR ZELLNER'S SEEMINGLY UNRELATED REGRESSION MODEL

Ahmet Özcam Research Division of Turkish Parliament Ankara, Turkey

George Judge University of California, Berkeley, U.S.A.

Anil Bera University of Illinois at Urbana-Champaign, U.S.A. and CentER, Tilburg University, Netherlands

Thomas Yancey University of Illinois at Urbana-Champaign, U.S.A.

ABSTRACT

In the case of Zellner's seemingly unrelated statistical model it is well known that the efficiency of the generalized least squares estimator (GLSE) relative to that of the least squares estimator (LSE) is conditional on the magnitude of the correlation between the equation errors. Using a relevant test statistic, we analytically evaluate the risk characteristics of a seemingly unrelated regressions pre-test estimator (SURPE) that is the GLSE if a preliminary test, based on the data at hand, indicates that the correlation between equation errors is significantly different from zero, and the LSE if we accept the null hypothesis of no correlation. The small sample distribution of the test statistic, used in defining SURPE is also derived. THE RISK PROPERTIES OF A PRE-TEST ESTIMATOR FOR ZELLNER'S SEEMINGLY UNRELATED REGRESSION MODEL*

1. Introduction

Since Zellner (1962) proposed the use of Aitken's generalized least squares estimator (GLSE) for a set of disturbance related regression equations, the efficiency of this estimator relative to that of the least squares estimator (LSE) has received much attention. For the uncorrelated regressors case, Zellner (1963) derived the small sample properties of the seemingly unrelated regression estimator (SURE) and noted that the distribution of the estimator converges rapidly toward a normal density. Mehta and Swamy (1976) derived the exact second moment matrix of Zellner's estimator conditional on an estimate of the variance-covariance matrix of the error terms and found that (i) the LSE is more efficient than Zellner's estimator if the correlation in the errors of the two equations is zero, or small and (ii) Zellner's estimator is better if the contemporaneous correlation is high (also see Kunitomo (1977)). They also indicate that the gain in efficiency in using Zellner's estimator is especially high when the equation error correlation coefficient is close to one, and the loss is small when the errors are mildly correlated and the degrees of freedom is greater than 12.

In this paper, we examine under a squared error loss measure the risk of the seemingly unrelated regression pre-test estimator (SURPE),

^{*}We are grateful to an anonymous referee for detailed comments and many helpful suggestions. We also wish to express our appreciation to David Giles and Helga Hessenius. This work was partially supported by National Science Foundation grant, SES-86-96152.

which is the GLSE if a preliminary test indicates that the correlation coefficient is significantly different from zero, and the LSE if we accept the null hypothesis of no correlation. The motivation for this research comes from Zellner's suggestion that it is possible to develop a decision procedure for deciding whether to use the LSE, or the GLSE.

In section 2, we present the statistical model and the various estimators. Our main interest is to derive the risk function of the SURPE with respect to the joint distribution of the test statistic $r = s_{12}/\sqrt{s_{11}s_{22}}$ and $v = s_{12}/s_{22}$, where the s_{ij} (i,j = 1,2), which are defined later, are consistent estimators of the variances and the covariances of the errors. The small sample distribution of r as a function of the population correlation coefficient ϕ is given in section 3. The marginal distribution of r is obtained from the joint distribution of r and v. In section 4, we derive the risk function of the SURPE and compare it with those of LSE and GLSE. Section 5 summarizes the discusses the implications of the paper.

2. Statistical Model and Estimators

Consider the following two sample regression model

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}, \text{ or } y = X\alpha + e$$
 (2.1)

where y_i is a (nx1) vector of observations, X_i is a (nxp) matrix of fixed regressors of rank p, α_i is a (px1) unknown location vector, and e_i is an (nx1) random error vector for i = 1,2. We make a simplifying assumption that $X_1 X_2 = X_2 X_1 = 0_0$. Let us further assume that the

equation errors are distributed as multivariate normal random variables with zero means and covariance matrix

$$\Sigma = E \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \begin{bmatrix} e_1' & e_2' \end{bmatrix} = E \begin{bmatrix} ee' \end{bmatrix} = \begin{bmatrix} \sigma_{11} I_n & \sigma_{12} I_n \\ \sigma_{21} I_n & \sigma_{22} I_n \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \bigotimes I_n$$
(2.2)

where \boldsymbol{I}_n is an identity matrix of dimension n. The LSE for this model is

$$\boldsymbol{\alpha}^{*}(1) = \begin{bmatrix} (X_{1}^{*}X_{1})^{-1}X_{1}^{*}y_{1} \\ (X_{2}^{*}X_{2})^{-1}X_{2}^{*}y_{2} \end{bmatrix}$$
(2.3)

The Zellner SUR estimator

$$\alpha^{*}(2) = (X^{*}\Sigma^{-1}X)^{-1}X^{*}\Sigma^{-1}y \qquad (2.4)$$

is obtained by applying Aitken's GLSE to the whole system (2.1). The estimator in (2.4) is not feasible since it depends on unknown parameters of the Σ matrix. Replacing Σ by a consistent estimator S produces Zellner's feasible GLSE, $\alpha^*(4)$. One choice for the elements of

$$S = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \text{ is } s_{ij} = \frac{1}{n} (y_i - X_i \alpha_i^*(1))^{\prime} (y_j - X_j \alpha_j^*(1)), \text{ i, j} = 1, 2.$$

Now the feasible GLSE is given by

$$\boldsymbol{\alpha}^{*}(4) = \begin{bmatrix} X_{1}^{\prime} & 0 \\ 0 & X_{2}^{\prime} \end{bmatrix} \begin{bmatrix} s^{11}I_{n} & s^{12}I_{n} \\ s^{21}I_{n} & s^{22}I_{n} \end{bmatrix} \begin{bmatrix} X_{1} & 0 \\ 0 & X_{2} \end{bmatrix}^{-1} \begin{bmatrix} X_{1}^{\prime} & 0 \\ 0 & X_{2}^{\prime} \end{bmatrix} \begin{bmatrix} s^{11}I_{n} & s^{12}I_{n} \\ s^{21}I_{n} & s^{22}I_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$$

$$= \begin{bmatrix} (X_{1}^{\prime}X_{1})^{-1} & X_{1}^{\prime}y_{1} + (s^{12}/s^{11}) & (X_{1}^{\prime}X_{1})^{-1}X_{1}^{\prime}y_{2} \\ (X_{2}^{\prime}X_{2})^{-1} & X_{2}^{\prime}y_{2} + (s^{12}/s^{22}) & (X_{2}^{\prime}X_{2})^{-1}X_{2}^{\prime}y_{1} \end{bmatrix}$$

$$(2.5)$$

where we have used the assumption $X_1'X_2 = X_2'X_1 = 0_p$ and the s^{ij} are the elements of $S^{-1} = \begin{bmatrix} S^{11} & S^{12} \\ S^{21} & S^{22} \end{bmatrix} \otimes I_n$. The estimates of the variances and the covariances are obtained from the restricted residuals, that are obtained from regressing y_i on X_i (i = 1,2), i.e., implicitly assuming $\phi = 0$.

The SUR pre-test estimator (SURPE) is based on the test statistic $r = s_{12}/\sqrt{s_{11}s_{22}}$ that is used to test the null hypothesis H_0 : $\phi = 0$ that the population correlation coefficient ϕ is zero, versus a one-sided alternative H_a : $\phi > 0$. We reject the null hypothesis if r > c, where c is the critical value chosen for the test. If we suspect a negative correlation then we reject the H_0 , if r < -c. A two-sided alternative can also be set up and this would of course have implications for the properties of the implied pretest estimator. This test statistic is similar to the locally best invariant test statistic given by Kariya (1981) and the Lagrange multiplier statistic of Breusch and Pagan (1980) and Shiba and Tsurumi (1988). The pretest estimator (Judge and Bock (1978)) is defined as follows: if we accept H_0 , the SURPE is the LSE, and otherwise it is the GLSE. This means the SURPE is

$$\alpha^{*}(3) = I_{[-1,c]}(r)\alpha^{*}(1) + I_{(c,*1]}(r)\alpha^{*}(4)$$
(2.6)

where $I_{(.)}(\cdot)$ is a zero-one indicator function.

3. The Small Sample Distribution of r

The distribution of SURPE $\alpha^*(3)$ and hence its risk depends on the distribution of r. Therefore, in this section we derive the small sample distribution of r. First, we find the joint distribution of the test statistic r and v. It is well known that $ns_{11}=x$, $ns_{22}=y$ and $ns_{12}=z$ are distributed according to the Wishart distribution with covariance matrix Σ , and degrees of freedom t = n-2p. The joint density of x, y an z is given by

$$W(\Sigma, t) = k(xy-z^2)^{(t-3)/2} \exp\left[-(x/\sigma_{11} - 2\phi z/\sqrt{\sigma_{11}\sigma_{22}} + y/\sigma_{22})/2(1-\phi^2)\right]$$
(3.1)

where $k = 1/[2^t |\Sigma|^{t/2} \sqrt{\pi} \Gamma(t/2)\Gamma((t-1)/2)]$. In the evaluation we made a transformation from the variables x, y and z to $r = z/\sqrt{xy}$, v = z/y and w = z. The density, in these new variables with Jacobian = $2w^2/vr^3$, is

$$f(r, v, w) = k(2w^2/vr^3)(w^2/r^2-w^2)^{(t-3)/2}$$

$$\exp\{-w(v/\sigma_{11}r^2 - 2\phi/\sqrt{\sigma_{11}\sigma_{22}} + 1/\sigma_{22}v)/2(1-\phi^2)\}$$
(3.2)

when w, v ϵ R, and $-1 \leq r \leq +1$.

Due to the nature of the transformation, the density in (3.2) is defined only when r, v, w are either all positive or all negative. As we see later, for our purpose, it is sufficient to consider only positive values of r. Therefore, from now on, we consider f(r,v,w) only when r, v, w are all positive and this means we assume a positive critical value.

Integrating (3.2) with respect to w, we have the following joint density of r and v

$$f(r, v) = 2k(1-r^2)^{(t-3)/2}\Gamma(t) / ((v/r^2\sigma_{11}-2\phi\sqrt{\sigma_{11}\sigma_{22}}+1/v\sigma_{22})/2(1-\phi^2))^t vr^t \quad (3.3)$$

To obtain the marginal density of r from (3.3), we define

$$g = 1/2(1-\phi^{2})\sigma_{11}$$

$$h = -\phi/(1-\phi^{2})\sqrt{\sigma_{11}\sigma_{22}}$$

$$q = 1/2(1-\phi^{2})\sigma_{22}$$

$$m = ((q/g) -h^{2}r^{2}/4g^{2})^{1/2}$$

$$s = v + hr^{2}/2g$$

$$s = rm \tan \Theta$$

$$I_{\sigma} = \int_{\Theta^{*}}^{\pi/2} (\sin \Theta)^{j} (\cos \Theta)^{s-j} d\Theta$$

$$= \sum_{i=1}^{j/2} (j-1)!!(-1)/(j-2i+1)!!$$

$$\times ((a-j-1)!!/(a-j-1+2i)!!)\sin(\Theta^{*})^{j+1-2i}\cos(\Theta^{*})^{s-j-1+2i}$$

$$+ (j-1)!!(a-j-1)!!/(a-1)!!\int_{\Theta^{*}}^{\pi/2} (\cos \Theta)^{s} d\Theta$$

and $I_o = \int_{\Theta^*}^{\pi/2} (\sin \Theta)^j (\cos \Theta)^{a-j} d\Theta$

$$= \sum_{i=1}^{j+1} ((-1)(j-1)!!(j-2i+1)!!)$$

$$\times ((a-j-1)!!/(a-j-1+2i)!!)\sin(\Theta^*)^{j+1-2i}\cos(\Theta^*)^{a-j-1+2i}$$

where Θ^* = arctg hr/2gm, !! means double factorial and a = 2t-2. Then the probability density function of r is given by

$$f(r) = \frac{2(1-r^2)^{(t-3)/2}\Gamma(t)(1-\Phi^2)^{t/2}\sum_{j=0}^{t-1} {t-j \choose j} (\Phi r)^{t-1-j} (I_o, I_o, j) / (1-\Phi^2 r^2)^{t-1/2-3/2}}{\sqrt{\pi} \Gamma(t/2) \Gamma((t-1)/2)}$$
(3.4)

where (I_e, I_o, j) means that we pick either I_e or I_o depending on whether j is even or odd.

In Figures 1 and 2, this distribution is plotted as a function of t=n-2p and ϕ . In Figure 1 where $\phi = 0$, the distribution is symmetric for t = 10, 15. The distribution for the larger t has more probability mass around zero, but goes to zero faster on either side as r differs from zero. In Figure 2, we show for t = 15, the same distribution with $\phi = .2$ and $\phi = .4$. Under this scenario, as ϕ gets larger there is more probability to the right. For example, $P(r>0|\phi=.2)=.72$, whereas $P(r>0|\phi=.4)=.88$.

4. The Risk of the Pre-test Estimator

Since the derivation is symmetric and the calculations for the second sample are exactly similar, we can reduce the dimensionality of the coefficient vectors by two without affecting the results. Therefore, henceforth $\alpha^*(1)$, $\alpha^*(3)$ and $\alpha^*(4)$ are (px1) vectors of estimators of the coefficients of the first sample only. Under squared error loss the risk of the SURPE is given by

FIG.1. THE SMALL SAMPLE DISTRIBUTION OF r (t=10, 15: $\phi=0$)

FIG.2. THE SMALL SAMPLE DISTRIBUTION OF r (t=15: \$=0.2, 0.4)

$$\rho(\alpha^{*}(3), \alpha_{1}) = trE||I_{[-1,c]}(r)\alpha^{*}(1) + I_{(c,*1]}(r)\alpha^{*}(4) - \alpha_{1}||^{2}$$

$$= trE||[I_{[-1,c]}(r)(X_{1}^{*}X_{1})^{-1}X_{1}^{*}y_{1} - I_{[-1,c]}(r)\alpha_{1}]$$

$$+ [I_{(c,*1]}(r)\{(X_{1}^{*}X_{1})^{-1}X_{1}^{*}y_{1} - v(X_{1}^{*}X_{1})^{-1}X_{1}^{*}y_{2}\}$$

$$- I_{(c,*1]}(r)\alpha_{1}]|^{2}$$
(4.1)

Using $(X_1 X_1)^{-1}X_1 Y_1 = \alpha_1 + (X_1 X_1)^{-1}X_1 e_1$ and $(X_1 X_1)^{-1}X_1 Y_2 = (X_1 X_1)^{-1}X_1 e_2$ we have

$$\rho(\alpha^{*}(3), \alpha_{1}) = trE||[I_{(-1, c)}(x)(X_{1}^{*}X_{1})^{-1}X_{1}^{*}e_{1} + I_{(c, +1]}(x)(X_{1}^{*}X_{1})^{-1}X_{1}^{*}e_{1} - I_{(c, +1]}(x)v(X_{1}^{*}X_{1})^{-1}X_{1}^{*}e_{2}]||^{2}$$

$$= trE||(X_{1}^{*}X_{1})^{-1}X_{1}^{*}e_{1} - I_{(c, +1]}(x)v(X_{1}^{*}X_{1})^{-1}X_{1}^{*}e_{2}||^{2}$$
(4.2)

where we can use the fact that $I_{[-1,c]}(r) + I_{(c,+1]}(r) = 1$, since r ϵ [-1,1]. Also, because the domains of the indicator functions are disjoint, this means that $I_{[-1,c]}(r)I_{(c,+1]}(r) = 0$ and we obtain

$$\rho(\alpha^{*}(3), \alpha_{1}) = \sigma_{11} tr(X_{1}^{'}X_{1})^{-1}$$

$$- 2 trE\{I_{(c, *1]}(r) v(X_{1}^{'}X_{1})^{-1}X_{1}^{'}e_{1}e_{2}^{'}X_{1}(X_{1}^{'}X_{1})^{-1}\}$$

$$+ trE\{I_{(c, *1]}(r) v^{2}(X_{1}^{'}X_{1})^{-1}X_{1}^{'}e_{2}e_{2}^{'}X_{1}(X_{1}^{'}X_{1})^{-1}\}$$

$$(4.3)$$

Using the independence of the following vectors, $(\alpha^*(1), (X_1, X_1)^{-1}X_1, Y_2, (X_2, X_2)^{-1}X_2, Y_1)$ and the scale parameter estimates (s_{11}, s_{22}, s_{12}) , yields

$$\rho(\alpha^{*}(3), \alpha_{1}) = \sigma_{11} tr(X_{1}^{'}X_{1})^{-1}$$

$$= 2E\{I_{(c, +1]}(r) v\} trE\{(X_{1}^{'}X_{1})^{-1}X_{1}^{'}e_{1}e_{2}^{'}X_{1}(X_{1}^{'}X_{1})^{-1}\}$$

$$+ E\{I_{(c, +1]}(r) v^{2}\} trE\{(X_{1}^{'}X_{1})^{-1}X_{1}^{'}e_{2}e_{2}^{'}X_{1}(X_{1}^{'}X_{1})^{-1}\}$$

$$= \sigma_{11} tr(X_{1}^{'}X_{1})^{-1} - 2\sigma_{12}E\{I_{(c, +1]}(r) v\} tr(X_{1}^{'}X_{1})^{-1}$$

$$+ \sigma_{22} tr(X_{1}^{'}X_{1})^{-1}E\{I_{(c, +1]}(r) v^{2}\}$$

$$(4.4)$$

In order to compare the risks of SURPE, Zellner's GLSE and LSE, all risk evaluations are made with respect to the LSE risk, $\sigma_{11}tr(X_1, X_1)^{-1}$. Therefore, the relative risk is

$$\frac{\rho(\alpha^{*}(3), \alpha_{1})}{\rho(\alpha^{*}(1), \alpha_{1})} = 1 - 2 E[I_{(c,+1)}(r)v](\sigma_{12}/\sigma_{11}) + E[I_{(c,+1)}(r)v^{2}](\sigma_{22}/\sigma_{11})$$
(4.5)

Here we should note that the r in the argument of the indicator function in (4.5) is positive unless we choose a negative value of c. That is why, in section 2 the joint distribution f(r,v,w) is considered only for the positive values of r, v and w [see equation (3.2)].

The relative risk values of the SURPE with respect to that of LSE are given as a function of the population correlation coefficient ϕ and the critical value of the test c, in Table 1, for t = 10, 15, and 20 respectively, when $\sigma_{11} = \sigma_{22} = 1$. These values are obtained by calculating the expectations in (4.5) with respect to the joint distribution of r and v given in equation (3.5). These expectations were solved numerically since analytical approach involved intractable algebraic computations.

т	A	В	L	Е	1	

Relative risk values of SURPE as a function of the population correlation coefficient ϕ and the critical value c

				φ		
	c	1_	3		7_	9
	.9	1.0004	1.0009	1.0002	0.9775	0.5551
	.8	1.0040	1.0072	0.9967	0.8753	0.3030
	.7	1.0133	1.0180	0.9803	0.7652	0.2413
t = 10	.6	1.0273	1.0273	0.9517	0.6837	0.2247
	.5	1.0425	1.0303	0.9187	0.6332	0.2196
	. 4	1.0552	1.0263	0.8887	0.6050	0.2179
	.3	1.0630	1.0178	0.8660	0.5907	0.2174
	.0	1.0648	0.9997	0.8426	0.5815	0.2172
	.9	1.0000	1.0000	1.0000	0.9924	0.5623
	.8	1.0001	1.0005	0.9870	0.8163	0.2563
	.7	1.0017	1.0041	0.9807	0.7554	0.2129
t = 15	.6	1.0064	1.0085	0.9436	0.6459	0.2128
	.5	1.0146	1.0085	0.8967	0.5880	0.2048
	. 4	1.0240	1.0011	0.8553	0.5626	0.2047
	.3	1.0310	0.9885	0.8271	0.5530	0.2046
	.0	1.0307	0.9651	0.8049	0.5491	0.2046
	.9	1.0000	1.0000	1.0000	0.9972	0.5665
	.8	1.0000	1.0002	0.9987	0.9192	0.2348
	.7	1.0004	1.0015	0.9848	0.7528	0.2200
t = 20	.6	1.0022	1.0040	0.9450	0.6266	0.2195
	.5	1.0070	1.0031	0.8979	0.5675	0.2135
	.4	1.0143	0.9942	0.8413	0.5465	0.2090
	.3	1.0207	0.9790	0.8107	0.5402	0.2088
	.0	1.0212	0.9524	0.7907	0.5376	0.2086

From the tabled values of the relative risk of SURPE, that is a function of ϕ and the critical value c used in the preliminary testing, we notice that over the range of the (ϕ ,c) parameter space, the relative risks of the pretest estimators cross. As larger and larger critical values are used, the LSE is used more frequently and this causes the relative risk of the SURPE to decrease for ϕ close to zero, and to increase for ϕ close to one. The effect of degrees of freedom on these results is minimal.

The critical values of the SURPE for significance levels .05 and .10 are respectively .60 and .45. The relative risks of LSE and Zellner's GLSE for t = 10 are presented in Figure 3. The risk values of Zellner's estimator are taken from Zellner (1963, p. 983). It should be noted that Zellner (1963) considers unrestricted residuals whereas in this paper we use restricted residuals. Revankar (1976) finds that in many practical situations there is little to choose between the feasible GLSE using the two definitions of the residuals on efficiency grounds. Therefore, our use of Zellner's results could be partially justified. Many earlier papers discussed properties of feasible GLSE and those are not repeated here. From Figure 3 we observe that the relative risk of the SURPE with c = .60, starts below that of c = .45, crosses the latter around $\phi = .3$, and remains above for all $\phi > .3$. This means that throughout the (c,v) parameters space, no one SURPE is risk superior to the other. The SURPE with c = .6 is risk superior to SURPE with c = .45, for ϕ close to zero. In turn it is risk inferior once ϕ exceeds .3. This relationship between the SURPE's with different critical values holds true throughout. In general, as can be observed

FIG.3. RISK VALUES OF SURPE ESTIMATORS (t=10)

from Table 1, the SURPE with a larger critical value has a small sampling variability when ϕ is small, but then performs worse after its risk crosses that of the SURPE with a smaller critical value.

The relative risk function of Zellner's GLSE is also presented in Figure 3. Its risk is highest for small ϕ , and then crosses the risks of LSE, SURPE (c=.6) and finally SURPE (c=.45) as ϕ gets larger. Therefore, under squared error loss, none of the estimators in Figure 3 dominates. However, it is interesting to note that there is a range of ϕ where SURPE is better than both LSE and GLSE. This is not the case in the regression coefficient pretesting. However, this result is observed in other pre-test situations, for example, see Toyoda and Wallace (1975), Ohtani and Toyoda (1978, 1980) and Ohtani (1988). A possible reason for this might be the fact that $0 \le \phi \le 1$ prevents the pretest from making any disastrous type I and type II errors. The SURPE with 0 < c < 1 at $\phi = 0$ starts with a risk in between that of the LSE and the GLSE. It ends with a risk in between these two estimators when $\phi = 1$. One can also see that the SURPE has a substantial risk gain over the LSE for large ϕ , and the risk loss is modest when ϕ is close to zero. When the critical value c takes on extreme values, the risk of SURPE approaches the risk of the LSE or the risk of the GLSE depending whether c tends to 1 or to -1. Similar comparisons can be made for the same estimators in Figure 4 with t = 10 where the critical values .5 and .35 correspond to significance levels .05 and .1 respectively. As t increases, Zellner's GLSE becomes more efficient, and in fact approaches asymptotic efficiency levels.

FIG.4. RISK VALUES OF SURPE ESTIMATORS (t=20)

5. Summary and Limitations

We have made risk comparisons between the SURPE, LSE and Zellner's GLSE in the two sample seemingly unrelated regression model and found that no one estimator is uniformly superior. However, we can now determine the risk gains that accrue when the pre-test estimator is used to take advantage of the risk superiority of LSE, when ϕ is close to zero, and the GLSE is used when ϕ is close to 1. Alternatively, we can determine the risk consequences of always using the pre-test rule. Our results suggest searching for an optimal critical value for the pre-test according to some optimality criterion. This is a major issue, and is enough for another paper in its own right. There are a number of studies which investigate this problem of finding optimal critical values for other pre-test problems, for example, Toyoda and Wallace (1975, 1976) and Ohtani and Toyoda (1980) derived optimal critical points using a minimum average relative risk criterion while Ohtani and Toyoda (1978) used a minimax regret criterion. Until an optimal critical value has been developed for SURPE, our results suggest that for sample sizes and critical values normally used in practice, if the applied researcher uses SURPE then (1) the risk consequences relative to GLSE will be minimal and (2) significant risk gain over LSE will accrue over much of the ϕ parameter space. Thus contrary to many other pre-testing situations, our risk results point to the normative content of SURPE in applied risk. We should also mention that our results have been obtained under some restrictive assumptions such as the regressors are orthogonal and the two regression equations have the same variance and the same number of regressors. It is not clear whether our results

will be still valid when these restrictions are relaxed. We leave these important issues for future research.

References

- Breusch, T. S. and A. P. Pagan (1980). "The Lagrange Multiplier Test and Its Applications to Model Specification in Econometrics," <u>The</u> <u>Review of Economic Studies</u>, 47, 239-254.
- Judge, G. G. and M. E. Bock (1978). "The Statistical Implications of Pretest and Stein-rule Estimators in Econometrics," Amsterdam: North-Holland.
- Kariya, T. (1981). "Tests for the Independence Between Two Seemingly Unrelated Regression Equations," <u>Annals of Statistics</u>, 9, 381-390.
- Kunitomo, N. (1977). "A Note on the Efficiency of Zellner's Estimator for the Case of Two Seemingly Unrelated Regression Equations," <u>Economic Studies Quarterly</u>, 28, 73-77.
- Mehta, J. S. and P. A. V. B. Swamy (1976). "Further Evidence on the Relative Efficiencies of Zellner's Seemingly Unrelated Regressions Estimator," <u>Journal of the American Statistical Association</u>, 71, 634-639.
- Ohtani, K. (1988). "Optimal Levels of Significance of a Pre-Test in Estimating the Disturbance Variance after the Pre-Test for a Linear Hypothesis on Coefficients in a Linear Regression," <u>Economic Letters</u>, 28, 151-156.
- Ohtani, K. and T. Toyoda (1978). "Minimax Regret Critical Values for a Preliminary Test in Pooling Variance," <u>Journal of the Japan</u> Statistical Society, 8, 15-20.
- Ohtani, K. and T. Toyoda (1980). "Estimation of Regression Coefficients after a Preliminary Test for Homoscedasticity," <u>Journal of</u> <u>Econometrics</u>, 12, 151-159.
- Revankar, N. S. (1976). "Use of Restricted Residuals in SUR Systems: Some Finite Sample Results," <u>Journal of the American Statistical</u> Association, 71, 183-188.
- Shiba, T. and H. Tsurumi (1988). "Bayesian and Non-Bayesian Tests of Independence in Seemingly Unrelated Regressions," <u>International</u> Economic Review, 20, 377-395.
- Toyoda, T. and T. D. Wallace (1975). "Estimation of Variance after a Preliminary Test of Homogeneity and Optimal Levels of Significance for the Pre-Test," Journal of Econometrics, 3, 395-404.

(1976). "Optimal Critical Values for Pre-Testing in Regression," Econometrica, 44, 365-375.

Zellner, A. (1962). "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests of Aggregation Bias," <u>Journal of</u> <u>the American Statistical Association</u>, 57, 348-368.

(1963). "Estimators of Seemingly Unrelated Regression Equations: Some Exact Finite Sample Results," <u>Journal of the</u> <u>American Statistical Association</u>, 58, 977-992.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
9041	M. Burnovsky and I. Zang	"Costless" Indirect Regulation of Monopolies with Substantial Entry Cost
9042	P.J. Deschamps	Joint Tests for Regularity and Autocorrelation in Allocation Systems
9043	S. Chib, J. Osiewalski and M. Steel	Posterior Inference on the Degrees of Freedom Parameter in Multivariate-t Regression Models
9044	H.A. Keuzenkamp	The Probability Approach in Economic Method- ology: On the Relation between Haavelmo's Legacy and the Methodology of Economics
9045	I.M. Bomze and E.E.C. van Damme	A Dynamical Characterization of Evolution- arily Stable States
9046	E. van Damme	On Dominance Solvable Games and Equilibrium Selection Theories
9047	J. Driffill	Changes in Regime and the Term Structure: A Note
9048	A.J.J. Talman	General Equilibrium Programming
9049	H.A. Keuzenkamp and F. van der Ploeg	Saving, Investment, Government Finance and the Current Account: The Dutch Experience
9050	C. Dang and A.J.J. Talman	The D ₁ -Triangulation in Simplicial Variable Dimension Algorithms on the Unit Simplex for Computing Fixed Points
9051	M. Baye, D. Kovenock and C. de Vries	The All-Pay Auction with Complete Information
9052	H. Carlsson and E. van Damme	Global Games and Equilibrium Selection
9053	M. Baye and D. Kovenock	How to Sell a Pickup Truck: "Beat-or-Pay" Advertisements as Facilitating Devices
9054	Th. van de Klundert	The Ultimate Consequences of the New Growth Theory; An Introduction to the Views of M. Fitzgerald Scott
9055	P. Kooreman	Nonparametric Bounds on the Regression Coefficients when an Explanatory Variable is Categorized
9056	R. Bartels and D.G. Fiebig	Integrating Direct Metering and Conditional Demand Analysis for Estimating End-Use Loads
9057	M.R. Veall and K.F. Zimmermann	Evaluating Pseudo-R ² 's for Binary Probit Models

No.	Author(s)	Title
9058	R. Bartels and D.G. Fiebig	More on the Grouped Heteroskedasticity Model
9059	F. van der Ploeg	Channels of International Policy Transmission
9060	H. Bester	The Role of Collateral in a Model of Debt Renegotiation
9061	F. van der Ploeg	Macroeconomic Policy Coordination during the Various Phases of Economic and Monetary Integration in Europe
9062	E. Bennett and E. van Damme	Demand Commitment Bargaining: - The Case of Apex Games
9063	S. Chib, J. Osiewalski and M. Steel	Regression Models under Competing Covariance Matrices: A Bayesian Perspective
9064	M. Verbeek and Th. Nijman	Can Cohort Data Be Treated as Genuine Panel Data?
9065	F. van der Ploeg and A. de Zeeuw	International Aspects of Pollution Control
9066	F.C. Drost and Th. E. Nijman	Temporal Aggregation of GARCH Processes
9067	Y. Dai and D. Talman	Linear Stationary Point Problems on Unbounded Polyhedra
9068	Th. Nijman and R. Beetsma	Empirical Tests of a Simple Pricing Model for Sugar Futures
9069	F. van der Ploeg	Short-Sighted Politicians and Erosion of Government Assets
9070	E. van Damme	Fair Division under Asymmetric Information
9071	J. Eichberger, H. Haller and F. Milne	Naive Bayesian Learning in 2 x 2 Matrix Games
9072	G. Alogoskoufis and F. van der Ploeg	Endogenous Growth and Overlapping Generations
9073	K.C. Fung	Strategic Industrial Policy for Cournot and Bertrand Oligopoly: Management-Labor Cooperation as a Possible Solution to the Market Structure Dilemma
9101	A. van Soest	Minimum Wages, Earnings and Employment
9102	A. Barten and M. McAleer	Comparing the Empirical Performance of Alternative Demand Systems
9103	A. Weber	EMS Credibility

•

No.	Author(s)	Title
9104	G. Alogoskoufis and F. van der Ploeg	Debts, Deficits and Growth in Interdependent Economies
9105	R.M.W.J. Beetsma	Bands and Statistical Properties of EMS Exchange Rates
9106	C.N. Teulings	The Diverging Effects of the Business Cycle on the Expected Duration of Job Search
9107	E. van Damme	Refinements of Nash Equilibrium
9108	E. van Damme	Equilibrium Selection in 2 x 2 Games
9109	G. Alogoskoufis and F. van der Ploeg	Money and Growth Revisited
9110	L. Samuelson	Dominated Strategies and Commom Knowledge
9111	F. van der Ploeg and Th. van de Klundert	Political Trade-off between Growth and Government Consumption
9112	Th. Nijman, F. Palm and C. Wolff	Premia in Forward Foreign Exchange as Unobserved Components
9113	H. Bester	Bargaining vs. Price Competition in a Market with Quality Uncertainty
9114	R.P. Gilles, G. Owen and R. van den Brink	Games with Permission Structures: The Conjunctive Approach
9115	F. van der Ploeg	Unanticipated Inflation and Government Finance: The Case for an Independent Common Central Bank
9116	N. Rankin	Exchange Rate Risk and Imperfect Capital Mobility in an Optimising Model
9117	E. Bomhoff	Currency Convertibility: When and How? A Contribution to the Bulgarian Debate!
9118	E. Bomhoff	Stability of Velocity in the G-7 Countries: A Kalman Filter Approach
9119	J. Osiewalski and M. Steel	Bayesian Marginal Equivalence of Elliptical Regression Models
9120	S. Bhattacharya, J. Glazer and D. Sappington	Licensing and the Sharing of Knowledge in Research Joint Ventures
9121	J.W. Friedman and L. Samuelson	An Extension of the "Folk Theorem" with Continuous Reaction Functions
9122	S. Chib, J. Osiewalski and M. Steel	A Bayesian Note on Competing Correlation Structures in the Dynamic Linear Regression Model

No.	Author(s)	Title
9123	Th. van de Klundert and L. Meijdam	Endogenous Growth and Income Distribution
9124	S. Bhattacharya	Banking Theory: The Main Ideas
9125	J. Thomas	Non-Computable Rational Expectations Equilibria
9126	J. Thomas and T. Worrall	Foreign Direct Investment and the Risk of Expropriation
9127	T. Gao, A.J.J. Talman and Z. Wang	Modification of the Kojima-Nishino-Arima Algorithm and its Computational Complexity
9128	S. Altug and R.A. Miller	Human Capital, Aggregate Shocks and Panel Data Estimation
9129	H. Keuzenkamp and A.P. Barten	Rejection without Falsification - On the History of Testing the Homogeneity Condition in the Theory of Consumer Demand
9130	G. Mailath, L. Samuelson and J. Swinkels	Extensive Form Reasoning in Normal Form Games
9131	K. Binmore and L. Samuelson	Evolutionary Stability in Repeated Games Played by Finite Automata
9132	L. Samuelson and J. Zhang	Evolutionary Stability in Asymmetric Games
9133	J. Greenberg and S. Weber	Stable Coalition Structures with Uni- dimensional Set of Alternatives
9134	F. de Jong and F. van der Ploeg	Seigniorage, Taxes, Government Debt and the EMS
9135	E. Bomhoff	Between Price Reform and Privatization - Eastern Europe in Transition
9136	H. Bester and E. Petrakis	The Incentives for Cost Reduction in a Differentiated Industry
9137	L. Mirman, L. Samuelson and E. Schlee	Strategic Information Manipulation in Duopolies
9138	C. Dang	The D [*] -Triangulation for Continuous Deformation Algorithms to Compute Solutions of Nonlinear Equations
9139	A. de Zeeuw	Comment on "Nash and Stackelberg Solutions in a Differential Game Model of Capitalism"
9140	B. Lockwood	Border Controls and Tax Competition in a Customs Union
9141	C. Fershtman and A. de Zeeuw	Capital Accumulation and Entry Deterrence: A Clarifying Note

.

.

No.	Author(s)	Title
9142	J.D. Angrist and G.W. Imbens	Sources of Identifying Information in Evaluation Models
9143	A.K. Bera and A. Ullah	Rao's Score Test in Econometrics
9144	B. Melenberg and A. van Soest	Parametric and Semi-Parametric Modelling of Vacation Expenditures
9145	G. Imbens and T. Lancaster	Efficient Estimation and Stratified Sampling
9146	Th. van de Klundert and S. Smulders	Reconstructing Growth Theory: A Survey
9147	J. Greenberg	On the Sensitivity of Von Neuman and Morgenstern Abstract Stable Sets: The Stable and the Individual Stable Bargaining Set
9148	S. van Wijnbergen	Trade Reform, Policy Uncertainty and the Current Account: A Non-Expected Utility Approach
9149	S. van Wijnbergen	Intertemporal Speculation, Shortages and the Political Economy of Price Reform
9150	G. Koop and M.F.J. Steel	A Decision Theoretic Analysis of the Unit Root Hypothesis Using Mixtures of Elliptical Models
9151	A.P. Barten	Consumer Allocation Models: Choice of Functional Form
9152	R.T. Baillie, T. Bollerslev and M.R. Redfearn	Bear Squeezes, Volatility Spillovers and Speculative Attacks in the Hyperinflation 1920s Foreign Exchange
9153	M.F.J. Steel	Bayesian Inference in Time Series
9154	A.K. Bera and S. Lee	Information Matrix Test, Parameter Heterogeneity and ARCH: A Synthesis
9155	F. de Jong	A Univariate Analysis of EMS Exchange Rates Using a Target Zone Model
9156	B. le Blanc	Economies in Transition
9157	A.J.J. Talman	Intersection Theorems on the Unit Simplex and the Simplotope
9158	H. Bester	A Model of Price Advertising and Sales
9159	A. Özcam, G. Judge, A. Bera and T. Yancey	The Risk Properties of a Pre-Test Estimator for Zellner's Seemingly Unrelated Regression Model

