Tilburg University

A constructive proof of a unimodular transformation theorem for simplices

Yang, Z.F.

Publication date:
1995

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Yang, Z. F. (1995). A constructive proof of a unimodular transformation theorem for simplices. (CentER
Discussion Paper; Vol. 1995-3). CentER, Center for Economic Research.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM

 HER Discussion for8414 1995 mor 3

Center

for
Economic Research

No. 9503

A CONSTRUCTIVE PROOF OF A UNIMODULAR TRANSFORMATION THEOREM FOR SIMPLICES

By Zaifu Yang

R4S

January 1995

A Constructive Proof of a Unimodular Transformation Theorem for Simplices *

Zaifu Yang ${ }^{\dagger}$

November, 1994

[^0]Abstract In a recent paper, the following theorem was proved by the author. Given an arbitrary n-dimensional simplex

$$
P=\left\{x \in R^{n} \mid A x \leq c\right\}
$$

where $\Lambda=\left(a_{i j}\right)$ is an $n+1$ by n integer matrix and $c=\left(c_{1}, \cdots, c_{n+1}\right)^{\top}$ is an integer vector in the ($n+1$)-dimensional Euclidean space R^{n+1}, then there exists an $n \times n$ unimodular matrix U such that the matrix $B=\left(b_{i j}\right)=A U$ has the following properties:
(1) $b_{i i}>0$ for all $i=1, \cdots, n$;
(2) for each $i=1, \cdots, n$, it holds that $b_{i j} \leq 0$ and $\left|b_{i j}\right|<b_{i i}$ for all $j \neq i ;$
(3) $b_{(n+1) j} \leq 0$ for $j=1, \cdots, n$.

The above theorem extends an carlier result of Scarf for $n=2$. In this note a constructive proof of the theorem is proposed.

Keywords: Simplices, unimodular transformation, combinatorial theorem, integer lincar programming.

1 Main results

Let R^{n} denote the n-dimensional Euclidean space. $Z^{n}\left(Z_{+}^{n}\right)$ denotes the set of all (nonnegative) integer vectors in R^{n}. Moreover, we denote the identity matrix of rank n by I_{n}. Throughout the paper we consider an n-dimensional simplex

$$
P=\left\{x \in R^{n} \mid A x \leq c\right\}
$$

where $A=\left(a_{i j}\right)$ is an $(n+1) \times n$ integer matrix, and $c=\left(c_{1}, \ldots, c_{n+1}\right)^{\top}$ is an integer vector of R^{n+1}.

A matrix U is unimodular if the entries of U are integral and the determinant of U is equal to 1 or -1 .

Matrices which transform A as described by the following elementary column operations are unimodular:
(i) Interchange two columns.
(ii) Reverse the sign of a column.
(iii) Add an integral multiple of one column to another.

In [4], the following basic theorem was proved. This theorem extends an earlier result of Scarf [2] for $n=2$ and has an important application in integer linear programming and economies with indivisibilities (sec Scarf [2] and Yang [4]). Λ weaker version of an equivalent form of this theorem can be found in White $[3]^{\dagger}$. Here a constructive proof of the following theorem is given.
${ }^{\dagger}$ Formally White proves by induction that for any given n-dimensional simplex

$$
\prime^{\prime}=\left\{x \in R^{\prime \prime} \mid A x \leq c\right\},
$$

there exists an $n \times n$ unimodular matrix U such that the matrix $B=A U=\left(b_{i j}\right)$ satisfies
(1) $b_{1 i} \leq 0$ for all $i=1, \cdots, n$;
(2) $b_{(i+1) i}>0$ for all $i=1, \cdots, n$;

Theorem 1.1

For any given n-dimensional simplex

$$
P=\left\{x \in R^{n} \mid \Lambda x \leq c\right\}
$$

there exists an $n \times n$ unimodular matrix U such that the matrix $B=A U=\left(b_{i j}\right)$ satisfics.
(1) $b_{i i}>0$ for all $i=1, \cdots, n$;
(2) for each $i=1, \cdots, n$, it holds $b_{i j} \leq 0$ and $\left|b_{i j}\right|<b_{i i}$ for all $j \neq i$;
(3) $b_{(n+1) j} \leq 0$ for all $j=1, \cdots, n$.

Proof:
Let a_{i} denote the i-th row of the matrix Λ for $i=1, \cdots, n+1$. Notice that the origin of R^{n} is in the interior of the convex hull of the vectors a_{1}, \ldots, a_{n+1}. It implies that there are $n+1$ strictly positive convex combination coefficients λ_{1}, \ldots, λ_{n+1} such that

$$
\begin{equation*}
\sum_{i=1}^{n+1} \lambda_{i} u_{i}=0 . \tag{1.1}
\end{equation*}
$$

Moreover, the corresponding convex combination coefficients remain unchanged under any unimodular transformation of Λ. The subsequent proof consists of four phases.

Phase I :
We first implement the procedure I for A :

Step (0) Sel $i=n+1$.
Step (1) Set $j=i-1$. If $a_{i j}=0$, choose $a_{i l} \neq 0$ for some $1 \leq l \leq j-1$ and switch column j with columu l. Sel $k=j-1$.
(3) for each $i=1, \cdots, n$, it holds $b_{(i+1) j} \leq 0$ for all $j \neq i$.

Step (2) If $a_{i k}=0$, do nothing. Otherwise use the Euclidean algorithm to find the greatest common divisor of $a_{i j}$ and $a_{i k}$, denoted by $r=g \cdot c . d\left(a_{i j}, a_{i k}\right)$, and p, q relatively prime such that $p a_{i j}+q a_{i k}=r$. Set $\Lambda^{\prime}=\Lambda I$, where D is the indentity matrix I_{n} in all but columns k and j. In column k, we have $d_{j k}=-a_{i k} / r, d_{k k}=a_{i j} / r$, and $d_{s k}=0$ otherwise. In column j, we have $d_{j j}=p, d_{k j}=q$, and $d_{s j}=0$ otherwise. If $k>1$, return to Step (2) with $k=k-1$. Otherwise check whether $a_{i j} \leq 0$. If not, reverse the sign of column j. Set $i=i-1$ and $A=A^{\prime}$. Go to Step (3).

Step (3) If $i=1$, stop. Otherwise go to Step (1).
Let us consider Step (2) where $A^{\prime}=\left(a_{s t}^{\prime}\right)=A D$. Note that

$$
d\left(c(1)=p a_{i j} / r+q a_{i k} / r=1 .\right.
$$

Hence l) is a unimodular matrix. Morcover, for $s=1, \cdots, n+1$

$$
\begin{aligned}
& a_{s t}^{\prime}=a_{s t}, t \neq j, k \\
& a_{s j}^{\prime}=p a_{s j}+q a_{s k}
\end{aligned}
$$

and

$$
a_{s k}^{\prime}=-a_{i k} a_{s j} / r+a_{i j} a_{s k} / r
$$

In particular, $a_{i j}^{\prime}=r$ and $a_{i k}^{\prime}=0$. It is clear that all other operations are also unimodular transformations. Therefore, after a finite number of steps, the procedure I brings A into the form:

$$
\left(a_{i j}\right)=\left[\begin{array}{ccccc}
+ & ? & \cdots & ? & ? \tag{1.2}\\
- & ? & \cdots & ? & ? \\
0 & - & \cdots & ? & ? \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & - & ? \\
0 & 0 & \cdots & 0 & -
\end{array}\right]
$$

where " + " stands for a positive entry, and " - " for a zero or negative entry. Notice that in the above matrix entries " - " can not be zero.

For $k=2, \cdots, n+1$, we denote the submatrix of A obtained by taking rows I through k and columns 1 through $k-1$ of A by A_{k}, i.e.,

$$
A_{k}=\left[\begin{array}{ccccc}
+ & ? & \cdots & ? & ? \tag{1.3}\\
- & ? & \cdots & ? & ? \\
0 & - & \cdots & ? & ? \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & - & ? \\
0 & 0 & \cdots & 0 & -
\end{array}\right]
$$

being a $k \times(k-1)$ matrix.
Phase $I I$:
Suppose that for some $k, 2 \leq k \leq n$, we have unimodularly transformed A_{k} into A_{k}^{\prime} satisfying (1), (2), and (3). It implies that Λ_{k+1} is brought into the form:

$$
\bar{A}_{k+1}=\left[\begin{array}{ccccc}
+ & - & \cdots & - & ? \\
- & + & \cdots & - & ? \\
\vdots & \vdots & & \vdots & \vdots \\
- & - & \cdots & + & ? \\
- & - & \cdots & - & ? \\
0 & 0 & \cdots & 0 & -
\end{array}\right]
$$

of which the first k rows and $k-1$ columns form the matrix Λ_{k}^{\prime} and the last column is the last columen of Λ_{k+1}. Let a_{i}^{\prime} denote the i th row of Λ_{k}^{\prime} for $i=1, \cdots, k$. Note that the zero row vector of R^{k-1} is in the interior of the convex hull of all rows of Λ_{k}^{\prime}. More precisely, the corresponding convex combination coefficients are $\lambda_{i}^{\prime}=\lambda_{i} / \sum_{h=1}^{k} \lambda_{h}$ for $i=1, \cdots, k$. It is known that Λ_{k}^{\prime} is a productive Leontief matrix. Thus there exists a positive integral combination of columns one through $k-1$ of \bar{A}_{k+1} for which the last element is zero, the k-th element is strictly negative
and the other elements are strictly positive. These positive integral combination coefficients are solutions of the following system of linear equations:

$$
\begin{align*}
& a_{1}^{\prime} x \geq 1 \tag{1.4}\\
& \vdots \\
& a_{k-1}^{\prime} x \geq 1 \\
& x \in Z_{+}^{k-1}
\end{align*}
$$

A solution of system (1.4) can be found by the basic algorithm in [1] within a finite number of steps from any starting point v in Z_{+}^{k-1}. More preciscly, we adopt the following labeling rule:

To $y \in Z^{k-1}$, we assign y with the label $l(y)=i$ if i is the smallest index for which

$$
a_{i}^{\prime} y-1=\min \left\{a_{h}^{\prime} y-1 \mid a_{h}^{\prime} y-1<0, h \in\{1, \cdots, k-1\}\right\} .
$$

If $a_{h}^{\prime} y-1 \geq 0$ for all $h=1, \cdots, k-1$, then the label $l(y)=0$ is assigned to y.
Furthermore, we define

$$
q(i)=E(i), \quad i=1, \cdots, k-1
$$

where $E(i)$ is the i-th unit vector of R^{k-1}.
By subtracting a large positive integral multiple of the above combination from the last column of $\bar{\Lambda}_{k+1}$, we can therefore transform Λ_{k+1} (hence Λ_{k+1}) into the form:

$$
\hat{A}_{k+1}=\left(\hat{a}_{i j}\right)=\left[\begin{array}{ccccc}
+ & - & \cdots & - & - \tag{1.5}\\
- & + & \cdots & - & - \\
\vdots & \vdots & & \vdots & \vdots \\
- & - & \cdots & + & - \\
- & - & \cdots & - & + \\
0 & 0 & \cdots & 0 & -
\end{array}\right] .
$$

Phase III:
Next we shall give a procedure to transform the matrix \hat{A}_{k+1} to the form satisfying (1), (2) and (3). The procedure is described as follows:

Step (a) If there are indices i and $j(i \neq j)$ for some $1 \leq i, j \leq k$ with $\hat{a}_{i i} \leq\left|\hat{a}_{i j}\right|$, we can find a positive integer e and an integer $d \in\left\{0,1, \ldots, \hat{a}_{i i}-1\right\}$ such that $\left|\hat{a}_{i j}\right|=e \hat{a}_{i i}+d$, where e is the lower integer part of $\left|\hat{a}_{i j}\right| / \hat{a}_{i i}$, and then add e multiple of column i to column j.

Step (b) Repeat Step (a) until there are no indices i and $j(i \neq j)$ for $1 \leq i, j \leq k$ with $\hat{a}_{i i} \leq\left|\hat{a}_{i j}\right|$.

It is easy to see that the above operation is a unimodular transformation. It is shown in [4] that the above procedure will bring \hat{A}_{k+1} to the desired form satisfying (1), (2) and (3), denoted by A_{k+1}^{\prime}, within a finite number of steps.

Phase IV:
Step (0) Implement Phase I and obtain A as in (1.2). Set $k=2$ and $\Lambda_{2}^{\prime}=\Lambda_{2}$ as in (1.3).

Step (1) Implement Phase $I I$ for A_{k}^{\prime} and obtain \hat{A}_{k+1} as in (1.5). Implement Phase $I I I$ for \hat{A}_{k+1} and obtain A_{k+1}^{\prime}. Set $k=k+1$.

Step (2) If $k=n+1$, set $B=\Lambda_{n+1}^{\prime}$ and stop. Otherwise, go to Step (1).
It is obvious that Λ_{2} has the desired form and Step (1) always brings Λ_{k+1} to the desired form A_{k+1}^{\prime} within a finite number of steps.

Hence the procedure produces the matrix $B=A U$ satisfying all conditions in the theorem where l is a umimodular matrix. This completes the proof.

We shall conclude this note with three examples to illustrate the proof. In the sequel, $(d) f \rightarrow g,(-1) f$, and $f \leftrightarrow g$ denote the addition of d multiple of column f
to column g, the reversal of the sign of column f, and the interchange of columns f and g, respectively.

Example 1. We are given

$$
A=\left[\begin{array}{ccc}
5 & 7 & -1 \\
-4 & 3 & 2 \\
3 & -12 & 1 \\
-4 & 2 & -2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& (1) 3 \rightarrow 2: A=\left[\begin{array}{ccc}
5 & 6 & -1 \\
-4 & 5 & 2 \\
3 & -11 & 1 \\
-4 & 0 & -2
\end{array}\right] \\
& (-2) 3 \rightarrow 1: A=\left[\begin{array}{ccc}
7 & 6 & -1 \\
-8 & 5 & 2 \\
1 & -11 & 1 \\
0 & 0 & -2
\end{array}\right] \\
& 1 \leftrightarrow 2: A=\left[\begin{array}{ccc}
6 & 7 & -1 \\
5 & -8 & 2 \\
-11 & 1 & 1 \\
0 & 0 & -2
\end{array}\right] \\
& (11) 2 \rightarrow 1: \Lambda=\left[\begin{array}{ccc}
83 & 7 & -1 \\
-83 & -8 & 2 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (-1) 2: A=\left[\begin{array}{ccc}
83 & -7 & -1 \\
-83 & 8 & 2 \\
0 & -1 & 1 \\
0 & 0 & -2
\end{array}\right] \\
& (-1) 1 \rightarrow 2: A=\left[\begin{array}{ccc}
83 & -90 & -1 \\
-83 & 91 & 2 \\
0 & -1 & 1 \\
0 & 0 & -2
\end{array}\right] \\
& (1) 1 \rightarrow 2: A=\left[\begin{array}{ccc}
83 & -7 & -1 \\
-83 & 8 & 2 \\
0 & -1 & 1 \\
0 & 0 & -2
\end{array}\right] \\
& (10) 2 \rightarrow 1: A=\left[\begin{array}{ccc}
13 & -7 & -1 \\
-3 & 8 & 2 \\
-10 & -1 & 1 \\
0 & 0 & -2
\end{array}\right] \\
& (-1) 1 \rightarrow 3: A=\left[\begin{array}{ccc}
13 & -7 & -14 \\
-3 & 8 & 5 \\
-10 & -1 & 11 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

Finally,

$$
(-1) 2 \rightarrow 3: B=A U=\left[\begin{array}{ccc}
13 & -7 & -7 \\
-3 & 8 & -3 \\
-10 & -1 & 12 \\
0 & 0 & -2
\end{array}\right]
$$

where

$$
U=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
-1 & 2 & 0
\end{array}\right]
$$

Example 2. We are given

$$
A=\left[\begin{array}{cccc}
-7 & 3 & 10 & -6 \\
-8 & -2 & 1 & -5 \\
9 & -6 & -7 & 6 \\
-1 & 6 & -3 & 1 \\
7 & -1 & -1 & 1
\end{array}\right]
$$

Then

$$
U_{1}=\left[\begin{array}{cccc}
-5 & 1 & 0 & 0 \\
-31 & 6 & 0 & 0 \\
165 & -31 & -1 & 0 \\
169 & -32 & -1 & -1
\end{array}\right]
$$

brings A to

$$
F_{1}=\left[\begin{array}{cccc}
578 & -107 & -1 & 6 \\
-578 & 109 & 1 & 5 \\
0 & -2 & 1 & -6 \\
0 & 0 & -1 & -4 \\
0 & 0 & 0 & -1
\end{array}\right] .
$$

Then

$$
U_{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 4 & 0 & 0 \\
10 & -11 & -1 & 0 \\
9 & -14 & -1 & -1
\end{array}\right]
$$

brings A to

$$
F_{2}=\left[\begin{array}{cccc}
43 & -21 & -4 & 6 \\
-33 & 43 & 4 & 5 \\
-10 & -22 & 1 & -6 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Then

$$
U_{3}=\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
-1 & 4 & -3 & 0 \\
10 & -11 & 0 & 0 \\
9 & -14 & 4 & -1
\end{array}\right]
$$

brings A to

$$
F_{3}=\left[\begin{array}{cccc}
43 & -21 & -26 & 6 \\
-33 & 43 & -6 & 5 \\
-10 & -22 & 33 & -6 \\
0 & 0 & -1 & -4 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

We now have to solve the following system of equations:

$$
\begin{array}{cl}
43 x_{1}-21 x_{2}-26 x_{3} & \geq 1 \\
-33 x_{1}+43 x_{2}-6 x_{3} & \geq 1 \\
-10 x_{1}-22 x_{2}+33 x_{3} & \geq 1 \\
x \in Z_{+}^{3}
\end{array}
$$

Some solutions of equation (1.6) found by the algorithm in [4] (see its computer code in [1]) are listed in Table 1.

Table 1. Some solutions of equation (1.6) found by the algorithm.

starting point	solution	number of stcps
$(0,0,0)$	$(23,21,21)$	72
$(20,19,18)$	$(23,21,21)$	9
$(21,20,19)$	$(23,21,21)$	6
$(18,20,19)$	$(23,21,21)$	9
$(18,19,20)$	$(23,21,21)$	9
$(-10,5,10)$	$(23,21,21)$	65
$(39,1,-77)$	$(39,35,36)$	171
$(20,-43,33)$	$(39,35,36)$	104
$(55,31,16)$	$(56,51,51)$	69
$(-10,5,-10)$	$(23,21,21)$	89
$(34,19,-21)$	$(34,31,31)$	72
$(-10,-20,10)$	$(23,21,21)$	94
$(10,-20,-30)$	$(23,21,21)$	126
$(-100,-100,-100)$	$(23,21,21)$	401
$(-100,100,-200)$	$(110,100,101)$	533
$(200,300,-200)$	$(328,300,300)$	642
$(200,300,500)$	$(539,484,500)$	553
$(600,300,500)$	$(600,536,540)$	293
$(700,300,1)$	$(700,625,629)$	1170
$(1000,1000,1000)$	$(1661,1490,1542)$	9492

We choose $(23,21,21)$. Then

$$
U_{4}=\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
-1 & 4 & -3 & 6 \\
10 & -11 & 0 & 3 \\
9 & -14 & 4 & 8
\end{array}\right]
$$

brings A to

$$
F_{4}=\left[\begin{array}{cccc}
43 & -21 & -26 & 0 \\
-33 & 43 & -6 & -49 \\
-10 & -22 & 33 & -9 \\
0 & 0 & -1 & 59 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Finally,

$$
U=\left[\begin{array}{cccc}
0 & 1 & -1 & 1 \\
-1 & 4 & -3 & 10 \\
10 & -11 & 0 & -8 \\
9 & -14 & 4 & -6
\end{array}\right]
$$

brings A to

$$
B=A U=\left[\begin{array}{cccc}
43 & -21 & -26 & -21 \\
-33 & 43 & -6 & -6 \\
-10 & -22 & 33 & -31 \\
0 & 0 & -1 & 59 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Example 3. We are given

$$
A=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

Then

$$
U=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right]
$$

such that

$$
B=\Lambda U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
-1 & 0 & 2 \\
-3 & -2 & -2
\end{array}\right]
$$

References

[1] F.B. Janssen and Z. Yang, " Λn implementation of a simplicial algorithm for testing the integral property of polytopes", in preparation.
[2] H. Scarf, "Production sets with indivisibilities-part II: the case of two activities", L'conometrica 49 (1981) 395-423.
[3] P.M. White, Discrete Activity Analysis, Ph.D. Thesis, Yale University, New Haven, 1983.
[4] \%. Yang, " Λ simplicial algorithm for testing the integral property of polytopes: Parts I and II", CentER Discussion Papers No. 9475 and No. 9489, Tilburg University, Tilburg, 1994.
Discussion Paper Series, CentER, Tilburg University, The Netherlands:
(For previous papers please consult previous discussion papers.)

No. Author(s)

Title

9440 J. Arin and V. Feltkamp

9441 P.-J. Jost
9442 J. Bendor, D. Mookherjee, and D. Ray

9443 G. van der Laan, D. Talman and Z. Yang

9444 G.J. Almekinders and S.C.W. Eijffinger

9445 A. De Waegenaere
E. Schaling and D. Smyth

9447 G. Koop, J. Osiewalski and M.F.J. Steel

9448 H. Hamers, J. Suijs, S. Tijs and P. Borm

9449 G.-J. Otten, H. Peters, and O . Volij

9450 A.L. Bovenberg and
S.A. Smulders
F. Verboven

9453 D. Diamantaras, R.P. Gilles and
S. Scotchmer

9454 F. de Jong, T. Nijman and A. Röell

The Nucleolus and Kernel of Veto-rich Transferable Utility Games

On the Role of Commitment in a Class of Signalling Problems
Aspirations, Adaptive Learning and Cooperation in Repeated Games

Modelling Cooperative Games in Permutational Structure

Accounting for Daily Bundesbank and Federal Reserve Intervention: A Friction Model with a GARCH Application

Equilibria in Incomplete Financial Markets with Portfolio Constraints and Transaction Costs

The Effects of Inflation on Growth and Fluctuations in Dynamic Macroeconomic Models

Hospital Efficiency Analysis Through Individual Effects: A Bayesian Approach

The Split Core for Sequencing Games

Two Characterizations of the Uniform Rule for Division Problems with Single-Peaked Preferences

Transitional Impacts of Environmental Policy in an Endogenous Growth Model

International Price Discrimination in the European Car Market: An Econometric Model of Oligopoly Behavior with Product Differentiation

A Globally and Universally Stable Price Adjustment Process
A Note on the Decentralization of Pareto Optima in Economies with Public Projects and Nonessential Private Goods

Price Effects of Trading and Components of the Bid-ask Spread on the Paris Bourse

No.	Author(s)	Title
9455	F. Vella and M. Verbeek	Two-Step Estimation of Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9456	II.A. Kewzenkamp and M. Menleer	Simplicity, Scientific Inference and Eiconometric Modelling
9457	K. Chatterjee and B. Dutta	Rubinstein Auctions: On Competition for Bargaining Partners
9458	A. van den Nouweland, B. Peleg and S . Tijs	Axiomatic Characterizations of the Walras Correspondence for Generalized Economics
9459	T. ten Raa and E.N. Wolff	Outsourcing of Services and Productivity Growth in Goods Industries
9460	G.J. Almekinders	A Positive Theory of Central Bank Intervention
9461	J.P. Choi	Standardization and Experimentation: Ex Ante Versus Ex Post Standardization
9462	J.P. Choi	Herd Behavior, the "Penguin Effect", and the Suppression of Informational Diffusion: An Analysis of Informational Externalities and Payoff Interdependency
9463	R.H. Gordon and A.L. Bovenberg	Why is Capital so Immobile Internationally?: Possible Explanations and Implications for Capital Income Taxation
9464	E. van Damme and S. Hurkens	Games with Imperfectly Observable Commitment
9465	W. Güth and E. van Damme	Information, Strategic Behavior and Fairness in Ultimatum Bargaining - An Experimental Study -
9466	S.C.W. Eijffinger and J.J.G. Lemmen	The Catching Up of European Money Markets: The Degree Versus the Speed of Integration
9467	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm for Markovian Queueing Networks
9468	II. Webers	The Location Model with Two Periods of Price Competition
9469	P.W.J. De Bijl	Delegation of Responsibility in Organizations
9470	T. van de Klundert and S. Smulders	North-South Knowledge Spillovers and Competition. Convergence Versus Divergence
9471	A. Mountford	Trade Dynamics and Endogenous Growth - An Overlapping Generations Model
9472	A. Mountford	Growth, History and International Capital Flows
9473	L. Meijdam and M. Verhoeven	Comparative Dynamics in Perfect-Foresight Models

No.	Author(s)	Title
9474	L. Meijdam and M. Verhoeven	Constraints in Perfect-Foresight Models: The Case of Old-Age Savings and Public Pension
9475	Z. Yang	A Simplicial Algorithm for Testing the Integral Property of a Polytope
9476	H. Hamers, P. Borm, R. van de Leensel and S. Tijs	The Chinese Postman and Delivery Games
9477	R.M.W.J. Beetsma	Servicing the Public Debt: Comment
9478	R.M.W.J. Beetsma	Inflation Versus Taxation: Representative Democracy and Party Nominations
9479	J.-J. Herings and D. Talman	Intersection Theorems with a Continuum of Intersection Points
9480	K. Aardal	Capacitated Facility Location: Separation Algorithms and Computational Experience
9481	G.W.P. Charlier	A Smoothed Maximum Score Estimator for the Binary Choice Panel Data Model with Individual Fixed Effects and Application to Labour Force Participation
9482	J. Bouckaert and H. Degryse	Phonebanking
9483	B. Allen, R. Deneckere, T. Faith and D. Kovenock	Capacity Precommitment as a Barrier to Bintry: A Bertrand -Edgeworth Approach
9484	J.-J. Herings, G. van der Laan, D. Talman, and R. Venniker	Equilibrium Adjustment of Disequilibrium Prices
9485	V. Bhaskar	Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems
9486	K. Aardal, M. Labbé, J. Leung, and M. Queyranne	On the Two-level Uncapacitated Facility Location Problem
9487	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm for a Wide Class of Markov Processes
9488	F.C. Drost, C.A.J. Klaassen and B.J.M. Werker	Adaptive Estimation in Time-Series Models
9489	Z. Yang	A Simplicial Algorithm for Testing the Integral Property of Polytopes: A Revision
9490	H. Huizinga	Real Exchange Rate Misalignment and Redistribution

No. Author(s)
9491 A. Blume, D.V. DeJong, Y.-(i. Kim, and
G.B. Sprinkle

9492 R.-A. Dana, C. Le Van, and F. Magnien

9493 S. Eijffinger, M. van Rooij, and
E. Schaling

9494 S. Eijffinger and M. van Keulen
H. Huizinga

9496 V. Feltkamp, S. Tijs and S. Muto

9497 J.P.J.F. Scheepens
9498 A.L. Bovenberg and R.A. de Mooij

9499
J. Ashayeri, R. Heuts,
A. Jansen and
B. Szczerba

94100 A. Cukierman and S. Webb
94101 G.J. Almekinders and S.C.W. Eijffinger

94102 R. Aalbers
94103 H. Bester and W. Güth
94104 II. Iluizinga

94105 F.C. Drost, T.E. Nijman, and B.J.M. Werker

94106 V. Feltkamp, S. Tijs, and S . Muto

94107 D. Diamantaras, R.P. Gilles and P.H.M. Ruys

Title

Evolution of the Meaning of Messages in Sender-Receiver Games: An Experiment

General Equilibrium in Asset Markets with or without ShortSelling

Central Bank Independence: A Paneldata Approach

Central Bank Independence in Another Eleven Countries

The Incidence of Interest Withholding Taxes: Evidence from the LDC Loan Market

Minimum Cost Spanning Extension Problems: The Proportional Rule and the Decentralized Rule

Financial Intermediation, Bank Failure and Official Assistance Environmental Tax Reform and Endogenous Growth

Inventory Management of Repairable Service Parts for Personal Computers: A Case Study

Political Influence on the Central Bank - International Evidence The Ineffectiveness of Central Bank Intervention Extinction of the Human Race: Doom-Mongering or Reality? Is Altruism Evolutionarily Stable?

Migration and Income Transfers in the Presence of Labor Quality Externalities

Estimation and Testing in Models Containing both Jumps and Conditional Heteroskedasticity

On the Irreducible Core and the Equal Remaining Obligations Rule of Minimum Cost Spanning Extension Problems

Efficiency and Separability in Economies with a Trade Center

The Reform and Design of Commodity Taxes in the Presence of Tax Evasion with Illustrative Evidence from India

No. Author(s)
94109 F.H. Page

94110 F. de Roon and C. Veld

94111 P.J.-J. Herings

94112 V. Bhaskar
94113 R.C. Douven and J.E.J. Plasmans

94114 B. Bettonvil and J.P.C. Kleijnen

94115 H . Uhlig and N. Yanagawa 9501 B. van Aarle, A.L. Bovenberg and M. Raith

9502
B. van Aarle and N. Budina

9503

Title

Optimal Auction Design with Risk Aversion and Correlated Information

An Empirical Investigation of the Factors that Determine the Pricing of Dutch Index Warrants

A Globally and Universally Stable Quantity Adjustment Process for an Exchange Economy with Price Rigidities

Noisy Communication and the Fast Evolution of Cooperation

S.L.I.M. - A Small Linear Interdependent Model of Eight EU-Member States, the USA and Japan

Identifying the Important Factors in Simulation Models with Many Factors

Increasing the Capital Income Tax Leads to Faster Growth Monetary and Fiscal Policy Interaction and Government Debt Stabilization

Currency Substitution in Eastern Europe

A Constructive Proof of a Unimodular Transformation Theorem for Simplices

[^0]: *This research is part of the VF-program "Competition and Cooperation". I am very grateful to Dolf 'Talman for his helpful comments on the previous drafts. I am, however, solely responsible for any remaining errors.

 TDepartment of Ficonometrics and CentFlR for Ficonomic Rescarch, 'Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands, email: yang@kub.nl

