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ABSTRACT: In this paper we describe the use of Gibbs sampling methods for drawing posterior
inferences in a cost frontier model with an asymptotically ideal price aggregator, non-constant
returns to scale and composed error. An empirical example illustrates the sensitivity of efficiency
measures to assumptions made about the functional form of the frontier. We also examine the
consequences of imposing regularity through parametric restrictions alone.
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1. INTRODUCTION
Cost or production functions with composed error aze commonly used by microeconomists

in the measurement of firm inefficiency. At the same time, the development of
seminonparametric methods has allowed researchers to work with very flexible cost functions
without composed error. In this paper, we unite these two strands of the literature and develop
Bayesian techniques for analyzing flexible functional form cost functions with composed error.
We argue that such techniques allow for better understanding of firm efficiency than do
traditional methods.

The paper is organized as follows. Section 2 discusses composed error models. Section 3
describes the asymptotically ideal model (AIM) which forms [he basis of the seminonparametric
approach we use in the paper..Section 4 introduces the AIM cost function with composed error
and develops the Gibbs sampler. Section 5 applies our method to an empirical example, and
Section 6 concludes.

2. COMPOSED ERROR MODEIS
Composed error mode]s were first introduced by Meeusen and van den Broeck (1977) and

Aigner, Lovell and Schmidt (1977). Bauer (1990) provides a survey of the literature. The basic
model is given by:

ln(C~)-h(Si,Y)`ZZ}vZ, i-1,...,N. (1)

This model decomposes the log of observed costs for firm i(C;) into three parts: i) The log of
the actual frontier which depends on S;, a vector of exogenous variables, and which represents
the minimum possible cost of producing a given level of output with certain input prices. Since
the example used in this paper involves electrical utility companies, we believe the assumption
of [he exogeneity of S; is reasonable and will not be discussed further. ii) A non-negative
disturbance, z~, which captures the level of firm inefficiency. iii) A symmetric disturbance, v;,
which captures other effects due, for instance, to measurement error.

In an empirical exercise assumptions aze commonly made about these three components.
Usually one takes the v;s to be i.i.d. N(O,az) and independent of the z;s, an assumption we
maintain throughout this paper. Assumptions, which are not so innocuous, must also be made
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about h(.,.) and z;. Typically, z; is taken to be i.i.d. D(.), where D(.) is some one-sided

distribution on ~t}. Common choices for D(.) are truncated Normal, exponential or Gamma.

Since interest usually centers on firm inefficiency, accurate estimation of the z;s is essential, and

choosing an inappropriate D(.) may have harmful consequences. In a previous paper (van den

Broeck, Koop, Osiewalski and Steel (1994), hereafter BKOS), four different choices for D(.)

were used: [runcated Normal, and Gamma with shape parameters 1, 2 and 3(The Gamma with

shape parameter 1 is the exponential distribution). We were able to take weighted averages

across our four choices for D(.) by using posterior model probabilities as weights, and azgued

that such an approach was preferable to choosing one particular distribution for D(.).

Although BKOS addressed the issue of uncertainty about D(.), it assumed that h(.,.) was

linear in y, an assumption we propose to relax in this paper. The exact functional form used is

described in Section 3. For present purposes it is sufficient to note that estimates of z; can be

sensitive to choice of h(.,.), and that most of the existing literature assumes tha[ h(.,.) takes a

simple form (eg. Greene (1990) and BKOS use a variant of the Cobb-Douglas cost function).

Accordingly, we intend to examine to what extent inferences on firm efficiencies, usually the

prime objective of composed error models, can depend on the functional form of the frontier.

By using seminonparametric methods, we intend to let the data reveal what h(.,.) should be.

The use of panel data can eliminate the need for distributional assumptions to be made for

z;. However, even with panel data it is important to specify h(.,.) correctly. Thus, the techniques

of this paper are relevant even without the composed error framework. Indeed, it is worth

stressing that the Gibbs sampling techniques developed here aze innovative even for the analysis

of standard cost functions. By eliminating the z; term, our [echniques provide an exact Bayesian

analysis of the standazd Asymptotically Ideal Model with nonconstant returns to scale. In

addition, they can be extended quite easily to other nonlinear models such as the generalized

translog.

3. THE ASYMPTOTICALLY IDEAL MODEL

The large amount of reseazch that has gone into finding flexible funciional forms testifies

to the great importance of avoiding gross specification error. This is especially so in the case

of composed error models since measures of inefficiency can be very misleading if an
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inappropriate choice for h(.,.) is made. The separation of the two error terms is the main

challenge in these models, and generally proves to be least robust to arbitrary assumptions made

by the user. In view of this problem, we propose using seminonparametric techniques to

approximate the underlying cost function.

Such techniques involve taking an expansion of a parametric form for the cost function. If

properly chosen, the resulting seminonparametric cost function can, as the order of expansion

increases, approach any possible function. The seminonparametric approximation we use in this

paper is based on the Miintz-Szatz ezpansion and results in the Asymptotically Ideal Model

(AIM) discussed in Barnett, Geweke and Wolfe (1991b). To motivate the advantages of the

AIM, let us consider two criteria for judging a cost function: regularity and flexibility. If a cost

function is regular, it satisfies the restrictions implied by economic theory; if it is flexible, it

includes a wide variety of functional forms. A cost function such as the translog, which involves

taking a second order Taylor Series expansion about a point, is locally flexible but not, in

general, regular (although, if the underlying technology is Cobb-Douglas, then the translog is

globally regular, see, eg., Caves and Christensen (1980)). The translog may be made regular

at a particular data point by imposing restrictions. However, since such restrictions involve both

parameters and the data, they can only be imposed at a point. In contrast, the AIM model uses

the Miintz-Szatz expansion, which is globally flexible. Global regularity can be imposed on the

AIM model through parametric restrictions alone, albeit at the cost of losing global flexibility.

Seminonparametric methods are useful in that [hey allow for the data to determine what the

key properties of the cost function should be. A danger associated with some seminonparametric

methods is the possibility of overfitting. Early seminonparametric models (Gallant (1981)) used

Fourier expansions such that economic functions of interest were approximated using sines and

cosines. Since cost functions are concave, many terms in the Fourier expansion are typically

necessary, increasing greatly the risk of overfitting. It is for this reason that we favor the Muntz-

Szatz expansion over the Fourier expansion; it allows for the approximation of globally regular

cost functions with an expansion globally regulaz at every degree. The AIM model fits only that

part of the data that is globally regular, thereby eliminating the risk of overfitting. For a more

detailed discussion of overfitting see Barnett, Geweke and Wolfe (1991a) pp. 433-434 or

Barnett, Geweke and Wolfe (]991b) p. 12.
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More specifically, consider the model with one output (Q) and three input prices
(p-(pi,p2,p3)'). If constant returns to scale hold, then there exists a price aggregator, f(p), such
that the frontier cost function takes the form:

C([2,P) -Qf (P) . (2)

A seminonparametric approach to this simple case would involve choosing an expansion to
model f(p). Barnett, Geweke, and Wolfe (19916) use the Muntz-Szatz expansion and call theresulting model the AIM model. Note that, while the model given above is globally flexible, in
the absence of restrictions it is not globally regular, since f(p) can be any function, including
non-concave or non-homogeneous (or even negative outside the range of the data). Bamett,
Geweke and Wolfe describe how linear homogeneity can be imposed on f(p) in a simple way.
In addition, the au[hors ensure that C(Q,p) is concave and increasing in input prices by requiring
that all the ccefficients of f(p) be positive. Their resulting AIM model is globally regular in [hatany order expansion will satisfy the restrictions implied by economic theory.

It is worth noting that the restriction that the ccefficients of f(p) be positive is a sufficient
but not necessary condition for monotonocity and concavity. Hence the AIM model with thisrestriction is not globally flexible; that is, there exist some regulaz functions which cannot be
approximated by C(Q,p) once the ccefficients aze constrained to be positive. For instance, the
inequality constraints force all inputs to be substitutes. Since it is very simple to impose, we use
this positivity restriction. However, we also investigate another way of imposing regularity.

This second way involves imposing regularity only at all data points in the sample, instead
of globally. The classic article which discusses the imposition of regularity conditions on flexible
functional forms is Gallant and Golub (1984). These authors develop computational methods for
imposing curvature restrictions at any arbitrary set of points. Their methods can be used to
ensure that a cost function is concave at each data point. Imposing regularity over a grid of
prices was investigated in Terrell (1993a), who describes a Bayesian method using Monte Carlo
integration. The technique we use in [his paper ensures [hat the cost function is increasing in
output and nondecreasing and concave in input prices at each point i-- n th~~nle. In practice,
at each draw from the Gibbs sampler we check whether all of the regularity conditions hold at
each data point. If any of the regularity conditions are violated at any data point, then the Gibbs
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draw is discarded. This method ensures that we do not reject any cost function that is regular
at all the data points, and thus retains the global flexibility of the Muntz-Szatz expansion in the
space of all locally regular cost functions.

Non-constant returns to scale that vary with output can be incorporated by specifying the
frontier cost function as:

C(Q.P) -(1Q~'pZln4f(P) . (3)

The above cost frontier will be adopted here with an AIM(q) form for f(p), where q is the
order of the expansion. The Miintz-Szatz expansion has yet to be ezplicitly defined, as its
general formulation is complicated. Once we impose linear homogeneity, however, it can be
greatly simplified. Below we give the linearly homogenous Miintz-Szatz expansion for f(p) for
q-1 and 2, in the case with three inputs. ('The evidence we obtain in our empirical example
clearly suggests that q-2 is sufficient for our application).
f(p) for use in AIM(~

1 1 1 1 1 1

f!P) -alp1}azpztasp3}aaPizPzz taSPizP3z taóPzzP3z

f(pl for use in AIM(2~

1 1 1 1 1 1
fÍP) -alpitazpz}asP3}aaPizPzz'asPizP3z tabPzzp3z

1 3 1 3
ta,Pl Pz 'aePl Ps tayPz P3 ta1aPlaPza }a11P1aP3a

1 J 1 1 1 1 1 1 1 1 1ta1zpz4P~a ta á á a ta a i 9 ta a a zi3P1 Pz P3 laPl Pz P~ isPl Pz P3

Linear homogeneity in input prices is assured, since the exponents in each term sum to one. If
each element of a-(ai,..,ak)', (k-6 for AIM(I) and k-15 for AIM(2)) is positive, then f(p)
is positive, increasing and concave for all positive input prices. Global regularity is thus ensured
by imposing aE Rtk, whereas for local regularity we check the neoclassical conditions for each
data point whenever a lies outside the positive orthant yet leads to f(p) ~ 0 for all observed
prices. It is worth noting that the first degree expansion yields a cost function identical to the
commonly used generalized Leontief model.

3 1 3 1 3 1
9 a 9 4 4 4
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4. THE GIBBS SAMPLER
The Gibbs sampler is a technique for obtaining a random sample from a joint distribution

by taking random draws only from the full conditional distributions. A detailed description of
the technique can be found in Casella and George (1992) and Gelfand and Smith (1990).

If we use (3) to model the log of the cost frontier, h(S;,ry) in (1), we obtain the model used
in this paper.

ln(C,:) -~iln(Q~) t~21n2 (Qi) tlníf (Pi) ) tzZt~i, (4)

where v; is i.i.d. N(0,~), z; is chosen to be i.i.d. exponential with parameter ~ and

p;-(pi;,p2;,p3;)'. It would be trívial to allow z; to take other forms. However, we do not do so
here in order to focus analysis on the modelling of the frontier. The exponential stochastic
specification was found in BKOS to be most robust to changes in prior assumptions about ~. In
all cases, we assume a prior density which is flat on In(a2) and a-(~t,~~'.For the first set of
results the elements of a aze restricted to be positive. This imposes the global regularity
restrictions described in Section 3. In addition, we impose restrictions on S to ensure that the
cost function is increasing in output, but, in the present example, this is a non-binding
constraint. The second set of results is based upon a prior which ensures that the regularity
conditions aze satisfied at each data point. In order to ensure that the posterior is proper, we put
an informative prior on ~-t (see Ritter and Simar (1993)). That is,

P(a,az~Q,)`-i) a a-2P(~-1)P(a) ,

where p(a) takes two different forms: i) p(a)-1 if all the elements of a are positive and -0
otherwise (we shall call this [he global re u~ larity~rior); and ii) p(a)-1 if all of the regularity
conditions are satisfied for every observation and -0 otherwise (the local regulari Rrior). We
take a Gamma prior for ~-t where the hyperparameters are elicited as described in BKOS. It
suffices to note here that we select the prior median (r`) for the efficiency, r;-exp(-z;), to be
.875, which leads to p(1`-~)-fo(~~~ ~ 1,-In(r`)), where f~(. ~b,c) denotes the Gamma density with
mean blc and variance blc2. These assumptions define our Bayesian model from which posterior
inferences on the parameters or the r;s can be made.

In BKOS we carried out a Bayesian analysis of a similar model using Monte Carlo



integration with importance sampling. In a subsequent paper (Koop, Steel and Osiewalski (1993),
hereafter KSO), we argued that the computational difficulties surrounding Monte Carlo
integration with importance sampling were truly daunting and recommended the use of Gibbs
sampling methods instead. The Gibbs sampler derived in KSO was found to work very well and
yielded very accurate results with a relatively light computational burden. However, the Gibbs
sampler in KSO was derived for a Cobb-Douglas price aggregator in (3), implying that h(.,.)
was linear in y. Because the log of the AIM cost function used in this paper is not lineu in a,
the Gibbs sampler is different from that developed in KSO. It is worth emphasizing that,
although the Gibbs sampler derived here is for the extension to the AIM cost function given in
(3), similar methods can be used to carry out a Bayesian analysis of other nonlinear cost
functions.

To develop our Gibbs sampler we begin with some notation: let y;--ln(C;), x;-(-In(Q;) -
1n2(Q~))', and w;'a-f(p~) (i.e. let w~ contain the decreasing fractional powers of p; given in
Section 3). Furthermore, let X, z, y and wa indicate the vectors or matrices containing data on
all firms for x;, z;, y; and In(w;'a). Since, conditionally on a, the frontier is linear, we can draw
on results from KSO to state:

P(~, a-2 I Data, z , a, ~-1) -P(~, a-2 I Data, z, a) -
fo(a-2 I N22 ~ 2 (~,tZtN,a-X~)~ (Y}Ztwa-X~) ) fN(~ I ~.a2(X~x) - i) ~ (5)

where

Q-(X~X)-lX~(YtZtWa),

and fN(. ~a,A) denotes the Normal density with mean vector a and covariance matrix A.
Furthermore, given z, 1` is independent of all the data and the other parameters such that:

P(~-1 I Data,Z,a,Q,o-2) -P(~-i I Z) -f~(),-1 I ptl z~i - ln(r })), (6)

where ~ is an Nx 1 vector of ones. The conditional posterior for z takes the form of a product
of independent truncated Normal densities:
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x
P(z ~ Data,a,Q,~-i~a-zl ~N(Z I X~-N,~-~,-~~ azI N) 7-r r(Zi~O) (7)

i~-11

where I(.) is the indicator function and IN is the NxN identity matrix.

Given R, à2 and z we have a nonlinear regression model in a, which leads to:

P(a ~ Data.z,Q.i`-l~a-z) -P(a ~ Data~z~Q.a-2)
x

a`P(a)eXPI-1z~, (Yi'X;.S'zifln(Wia))z].
2a i-1

(6)

A Gibbs sampler can be set up in terms of conditional densities (5), (6), (7) and (8). Note

that, with the exception of (8), it is easy to take random draws from all of these densities. To

take draws from (7) we use the truncated Normal random number generator suggested in

Geweke (1991), while (5) and (6) involve Normal and Gamma distributions only.

It remains to discuss random number generation from (8), which dces not take the form of

any standard density. To this end, we set up an independence Metropolis atgorithm (see Tierney

(1991) for a theoretical discussion and Chib and Greenberg (1992) and Mamott, Ravishanker,

Gelfand and Pai (1993) for applications). Like the Gibbs sampler, the Metropolis algorithm,

originally proposed by Metropolis et al. (1953), is based on a Markov chain. We use a special

case of the Metropolis implementation in Hastings (1970). A Markovian transition kernel drives

the chain by generating candidate values for the next draw. These candidates are then either

accepted with a certain probability, or rejected, in which case the chain remains at the current

value. The independence Metropolis chain draws candidates independently and always from the

same density, B(.). So, on the ith pass, this algorithm generates a candidate, a~`, from B(a). The

random draw from (8), a', is then either a~` or a'-I with a certain probability. If the procedure

stays at the same value for a over several passes, this value acquires more and more weight. As

a consequence, the algorithm will generate a serially correlated sample from (8). Tierney stresses

that this method works best if B(a) is a good approximation to the actual posterior.

Since equation (S) takes the form of a nonlinear regression model in a, we let B(a) be a

multivariate Student-t distribution multiplied by the appropriate prior (i.e. for the global

regularity prior the Student-t is truncated to the non-negative orthant and for the local regularity

prior it is truncated to the region where regularity is imposed at all sample points). We use the
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algorithm described in Geweke (1991) to draw from the truncated Student distribution. The
mean, ao, and covariance matrix, ft, are calibrated on the basis of an iterative procedure starting
with approximate generalized least squares results. The approximate GLS procedure is based on
the fact that y`-exp(XQ-y-z) is approximately linear in a. In particular,

y `-w~aexP(~) -W~a(1'~) -W~at~ `.

where v` is Normal with standazd deviation w'aa. Hence, given starting values for S and z, we

can use two- or three-step GLS to obtain an estimate for a as well as a covariance matrix. When

we impose global regularity, nega[ive values in ap aze restricted to zero due to the truncation

of a.

Thus, we take candidate draws from

9(a) a P(a)fs (a ~ ~,ao.A) ,

where p(a) is our prior for a which ensures nonnegativity or regularity in all data points and
fsk(. ~ v,ap,A) is the k-variate Student-t density with u degrees of freedom, location vector ao and
precision matrix A(ie. covariance matrix i2-(ulu-2)A-i). Moreover, we denote by r(a) the ratio

of the kemels of p(a ~ Data,z,Q,d2) and 6(a):

N

ex 1 ~ x~Qtz.tln(W~a))2]P[-2 (Yi- i i i
r (a1 - 2a j-1

v -k
[lt 1(a-ac)~A(a-ap)] ~v

The degrees of freedom parameter, u, is chosen on the basis of computational considerations.

It is important that 9(a) have tails at least as fat as (8) to avoid the algorithm getting stuck at a

tail value for a with very high r(a). Here, we set u-3. Our independence Metropolis algorithm

for drawing a' can then be defined as follows:

Step 1: Take a draw, a~`, from B(a).

Step 2: Calculate K-r(a')Ir(a'-~).

Step 3: Take a draw, u, from the uniform (0,1) distribution.
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Step 4: If K~ u then á-a', else a'-a'-t.

In practice, this algorithm works quite well, provided ao and A are chosen carefully. Relative
to a, the Gibbs sampler seems much less sensitive to the choice of initial values for (3, à2 and
~-t. Tierney (1991) mentions the combination of Gibbs and Metropolis steps in a single Markov
chain strategy, as used here, and notes that such a hybrid chain is uniformly ergodic provided
r(a) is bounded, which leads to the strongest form of convergence.

5. EMPIRICAL RESULTS
The application discussed in this section is the same as that analyzed in BKOS, KSO and

Greene (1990), who provides a complete listing of the data. The data set contains observations
from N-123 electric utility companies in the United States in 1970. In addition to output and
cost figures, the data set con[ains information on three input prices: labor price (pt), capital
price (pZ) and fuel price (p3).

The version of the Gibbs sampler we adopt is that described in Gelfand and Smith (1990).
That is, instead of starting the Gibbs sampler and then taking one long run, we take several
shorter runs each starting at the same initial values. We carry out M runs, each containing L
passes, and keep only the Lth pass out of these runs.

The issue of whether to use one long run from the Gibbs sampler (sequential Gibbs
sampling) or to restart every Lth pass (parallel Gibbs sampling) has been discussed in the
literature (see, for example, Tanner (1991), Carlin et a[. (1992), Casella and George (1992),
Gelman and Rubin (1992) and Raftery and Lewis (1992)). The question of which variant is
preferable is no doubt a problem-specific one, but in our application, the restarting method was
found to work best. As in KSO, restarting is required to break serial correlation and to prevent
the path from becoming "temporarily trapped in a nonoptimal subspace" (Tanner (1991), p. 91;
see also Zeger and Karim (1991) and Gelman and Rubin (1992)). Furthermore, some
experimentation revealed that the relative numerical efficiencies from the parallel sampler were
roughly ten times as big as those from the sequential sanipler.

We set starting va]ues for a in AIM(1) to ap detetmined by the procedure described in
Section 4 and choose posterior means from KSO as starting values for the other parameters and
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r~-exp(-z~), i-1,..,N. For AIM(2) we start a at the posterior means from the AIM(1) model
for al,..,ab and at zero for the other elements of a, retaining KSO starting values for the rest
of the parameters and for the r~s.

It is extremely important to evaluate the accuracy of our Gibbs sampling methods. To ihis
end, we present numerical standazd errors (NSEs) calculated using the formula given in Geweke
(1992). This formula involves the use of spectral methods for which we use a Pazzen window
with truncation point 2M~~. For a more thorough discussion of the practical details required to
implement our Gibbs sampler, the reader is referred to KSO.

We have experimented with different starting values and values for L. In addition, we
allowed for the Metropolis chain on a to generate R proposals for every drawing of (a,d2,
~-t,z). Finally, we settled on L-50 and R-1. Results with R11 (up to 50) were virtually
identical, provided we did parallel Gibbs sampling with large enough L.

Results with L-50 are given in Tables 1 to 3 and Figures 1 to 4. Tables 1 and 2 contain
posterior means and standard deviations of all the parameters along with NSEs corresponding
to the means. In Table 3, results from KSO (based on M-10,000 with L-5) are added for
comparison. From Tables 1 and 2, we note that: i) NSEs aze very small; hence our estimates
are quite accurate and RNEs (not presented here) indicate that the restarting has partly broken
the positive serial correlation of the draws, leading to roughly the same numerical efficiency as
i.i.d. sampling from the posterior for all the parameters. ii) Both under global and local
regularity, the results of AIM(1) and AIM(2) are very similaz in the sense that both models lead
to essentially identical frontiers and efficiency measures. This indicates that we need not proceed
with higher order approximations (ie. q~ 2). Moreover, the AIM(3) specification already
involves 45 parameters in the price aggregator. However, posterior moments of common
parameters clearly indicate substantial differences between the AIM specifications used here and
the Cobb-Douglas frontier used in KSO (KSO posterior moments are not reported here).

Returns to scale (RTS) can vary across firms. The RTS, corresponding to the posterior

means of ~3, for the minimum, median and maximum output firms aze 2.42, 1.05 and .89,

respectively, for the locally regular AIM(1) and AIM(2) specifications. These results indicate
that average sized firms tend to exhibit roughly constant RTS while small (large) firms tend to

exhibit increasing (decreasing) RTS.
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Table 3 and Figure 1 present evidence on the efficiency measures. We define r~-exp(-z;)
as our measure of firm specific efficiency and rr as the efficiency of a hypothetical average
unobserved firm (see BKOS for details). Table 3 presents posterior moments of rf and r~
(i-1,..,5) for the AIM(1) and AIM(2) expansíons. Two major findings are immediately
appazent: using the AIM model, efficiency measures are much closer to full efficiency than in
KSO as well as showing much less variation over firms. These results are reinforced in Figure
1 which plots rf for all three models considered. Finally, we note that AIM(1) and AIM(2) lead
to virtually identical inference on efficiencies, regardless of the way we impose regularity
conditions. In particular, the posterior densities of rf corresponding to these models aze
indistinguishable (see Figure I).

It cannot be overemphasized that the results presented in this section are not caused by
overfitting, since the restrictions imposed on our cost frontier ensure that it is regular. Hence
our frontier only fits that part of the data that is regular. Evidence obtained for AIM models
without imposing the regularity restrictions on a indicates that these restrictions aze indeed
binding. However, there is an important difference between imposing these regularity conditions
locally and globally. Positivity restrictions on a lead to substantially lower values of
p(y~X,z,a,a,o2,~), and thus to an estimated integrating constant four orders of magnitude
smaller than in the case of imposing regularity at all data points only. The measure of fit
described in the Appendix is 0.028 for the globally regular AIM(1) and is improved to 0.026
when regularity is imposed locally. However, both AIM(1) models fit better than the Cobb-
Douglas frontier in KSO, which leads to a fit measure of 0.030. The most striking difference
between the two ways of imposing regularity involves the posterior mean of a, as shown in
Table 1. Even though there is virtually no posterior evidence of complementarity of inputs in
the locally regular model, restricting a to the positive orthant is by no means innocuous. In the
AIM(1) specification complementarity of inputs pairs corresponds to negative values for ay to
ab. Figures 2-4 plot the posterior density function of these ccefficients, and clearly illustrate
both the lack of complementarity and the influence of restricting the entire a-vector to lie in the
positive orthant (see, in particular, Figure 2).

Analogously, imposing the regularity conditions locally improves the fit for AIM(2) from
0.029 to 0.026, and induces substantial changes in the posterior characteristics of a. In both the
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locally regular AIM(I) and AIM(2), most of the rejected a-vectors violated the monotonicity
condition (48qo of all drawings for AIM(1) and 59qo for AIM(2)). The concavity restriction was
only violated in 1 qo and 2qa of all drawings for AIM(1) and AIM(2), respec[ively. In view of
the negative means of at and especially aZ, this result is not surprising.

On the basis of simulated data, Terrell (1993b) also concludes that global regularity comes
at a great cost of flexibility, even when all inputs are substitutes.

In our parallel Gibbs setup with L-50, the computational requirements of checking the
regularity restrictions at each data point aze, in fact, quite moderate. As these conditions are only
checked at the end of every parallel Gibbs chain of length 30, CPU time required is less than
20qo higher than in the case of global regularity. All computations were performed using Gauss
on a 486-50 PC and typically ran overnight.

Finally, if we consider the proportion of the ]ack of fit that derives from the symmetric
error component, v~, we observe substantial differences between the AIM frontiers used here and
the Cobb-Douglas specification for KSO. These proportions are 82R'o (78q) for AIM(1)
(AIM(2)) under global regularity and 76qo (78qa) under local regularity, but only 454'o for the
KSO specification. Thus, apart from fitting the data worse, the Cobb-Douglas specification
allocates more of the residual to inefficiency than do the AIM specifications.

Insofaz as they hold in other data sets, the findings of this section convey a serious warning
to empirical researchers working with stochastic frontier models. Estimated efficiency measures
are found to be quite sensitive to the choice of functional form for the frontier.

6. CONCLUSIONS
This paper carries out a Bayesian analysis of the AIM cost function with composed error.

Three important contributions to the existing literature aze made: 1) On a theoretical level, the
paper develops a Gibbs sampler for analyzing the AIM cos[ function with non-constant retums
to scale and with composed error. It emphasizes that the techniques developed can be easily
extended to other nonlinear models as well as to models without composed error. 2) Empirical
results presented here indicate that measured efficiencies can be very sensitive to the choice of
functional form for the frontier. In fact, the cost function based on the AIM aggregator
corresponds to a very different frontier from that based on the Cobb-Douglas aggregator. This
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latter finding should be a warning to researchers working with stochastic frontier models. 3)
Imposing regularity conditions in AIM specifications through nonnegativity restrictions is found
to reduce the span of the Miintz-Szatz expansion to a subset substantially smaller than the space
of all neoclassical functions, even in the case of substitutability of inputs.
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Appendix: Measuring Fit in Composed Error Models

The actual deviation from the theoretical frontier is e~-v~tz~, where v~ and z~ have the
properties described in the body of the paper. Thus, a natural sampling characteristic of fit is

E(Ei ~ a2.~) -E(~í ~ aZ)'E(Zí ~~)
-aZfvar(zi ~~) tEZ(zí ~ ~) -oZt2)`2.

From a Bayesian standpoint, this is a random variable, so that we use as a measure of lack of
fit the posterior expectation:

E(az}2~Z~Data)-E(az~Data)t2[var(~~Data)tEZ(~~Data)].

All the quantities in the equation above can easily be calculated in our Gibbs sampling
procedure.

The same posterior measure of fit can be obtained in a predictive Bayesian fashion.
Consider an unobserved (forecasted) firm, for which the deviation is ef-vftzf. Assuming
independent sampling, the posterior expected squared deviation for this unobserved firm is

E(et ~ Data) -~ rE(ef ~ az,1`) p(a2,)` ~ Data) daZd~

d-E(a2t2~Z~Data).

It should be stressed that this is not the same measure of fit as that used in BKOS. All the
models in that paper used the same theoretical frontier and, hence, ignored the systematic part
of the deviation. The measure used in BKOS is given by

TVf-var(ep~Data)-E(ef~Data)-EZ(zflData).

For stochastic frontier models, E(efZ ~ Data), which measures the dis[ance from the

theoretical frontier of the average firm, seems a more sensible goodness of fit measure than
var(ef~ Data).
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Table 1: Posterior Moments of AIM(1) Parameters

Globall Re ular AIM(1) Locall Re ulaz AIM(1)
Mean NSE St. Dev. Mean NSE St. Dev.

(i~ .293 3.86E-4 .016 .311 3.64E-4 .015

RZ .038 3.80E-5 1.51E-3 .037 3.40E-5 1.43E-3

á2 44.162 .179 6.942 51.155 .189 8.445

~-~ 23.862 .222 9.123 22.098 .179 9.047

~ .023 ---- 3.62E-3 .020 ---- 3.26E-3

1` .048 ---- .017 .052 ---- .019

a~ 1.66E-6 2.10E-8 I.OSE-6 -2.70E-6 3.61E-8 1.77E-6

aZ 1.12E-4 2.04E-6 7.53E-5 -2.64E-4 3.27E-6 1.36E-4

a3 9.95E-4 9.OSE-6 3.68E-4 1.21E-3 8.47E-6 4.OSE-4

a4 1.31E-5 2.57E-7 9.59E-6 6.60E-5 5.13E-7 2.47E-5

as 9.84E-5 9. ] OE-7 3.51 E-5 1.09E-4 7.90E-7 4.OSE-5

ab 3.41E-4 4.18E-6 2.01 E-4 3.76E-4 5.36E-6 2.48E-4

Note to Table 1: Results are based on L-50 and M-1600 for the globally regulaz and L-50
and M-2091 for the locally regulaz case.
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Table 2: Posterior Moments of AIM(2) Parameters

Globall Re ular AIM(2) Locall Re ular AIM(2)
Mean NSE St. Dev. Mean NSE St. Dev.

(3 .324 4.35E-4 .019 .312 3.95E-4 .019
~ .036 3.80E-5 1.68E-3 .037 3.65E-5 1.65E-3
áZ 45.029 .153 7.793 49.867 .176 8.490
)`-~ 21.739 .204 8.626 22.737 .280 9.507
~ .023 ---- 4.O1E-3 .021 ---- 3.46E-3
~ .053 ---- .019 .051 ---- .019
a 1.OSE-6 1.76E-8 7.97E-7 -2.89E-6 6.15E-8 2.19E-6
a 6.64E-5 1.39E-6 5.43E-5 -2.74E-4 3.60E-6 1.58E-4
a 9.80E-4 6.62E-6 3.04E-4 1.19E-3 1.38E-5 4.80E-4
a 1.04E-5 2.24E-7 8.22E-6 7.29E-5 6.84E-7 3.09E-5
a 5.91E-5 6.18E-7 2.72E-5 1.09E-4 1.18E-6 4.87E-5
a 1.68E-4 3.27E-6 1.19E-4 3.79E-4 7.00E-6 2.79E-4
a 2.87E-6 5.36E-8 2.26E-6 -6.08E-7 1.70E-7 6.96E-6
a 5.06E-6 6.61E-8 3.24E-6 -2.45E-7 1.64E-7 7.15E-6
a 4.13E-6 7.40E-8 3.11E-6 -1.68E-7 1.75E-7 7.35E-6
a 6.48E-6 9.44E-8 4.11E-6 -1.88E-7 1.89E-7 7.64E-6
a 3.62E-6 5.66E-8 2.79E-6 -9.SOE-8 2.08E-7 7.48E-6
a 5.83E-6 8.76E-8 3.84E-6 7.08E-8 1.84E-7 7.39E-6
a 4.53E-6 7.47E-8 3.15E-6 1.16E-7 1.98E-7 7.39E-6
a 5.15E-6 8.68E-8 3.56E-6 1.87E-7 1.79E-7 7.43E-6
a 4.69E-6 9.O1E-8 3.34E-6 9.57E-8 1.89E-7 7.67E-6

Note to Table 2: Results are based on L-50 and M-1600 for the globally regular and L-50
and M-1615 for the locally regular case.
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Table 3: Posterior Moments of Efficiency Measures

r- r r r r r
Globall Re ular AIM 1

Mean .955
[3.6E-4]

.958 .976 .952 .960 .969

St. Dev. .048 .042 .023 .046 .039 .030
Locall Re ular AIM(1)

Mean .951
[3.5E-4]

.943 .974 .951 .958 .970

St. Dev. .052 .053 .025 .047 .041 .030
Globall Re ular AIM(2)

Mean .950
[4.4E-4]

.947 .974 .947 .957 .966

St. Dev. .052 .050 .024 .051 .041 .033
Locall Re ular AIM(2)

Mean .952
[4.8E-4]

.945 .975 .954 .957 .970

St. Dev. .051 .051 .025 .045 .041 .028
KSO
Mean .918

[8.9E-4
.736 .972 .943 .925 .963

St. Dev. .079 .112 .027 .049 .059 .034

Note to Table 3: KSO indicates results from the exponential model with lineaz frontier analyzed
in KSO (M-10,000 and L-5). Values in square brackets are NSEs.



FIGURE 1: POSTERIOR EFFICIENCIES
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FIGURE 2: POSTERIOR OF ALPHA4 IN AIM(1)
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FIGURE 3: POSTERIOR OF ALPHAS IN AIM(1)
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FIGURE 4: POSTERIOR OF ALPHA6 IN AIM(1)
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