

Tilburg University

A Comment on Shaked and Sutton's Model of Vertical Product Differentiation

Han, X.; Webers, H.M.

Publication date: 1996

Link to publication in Tilburg University Research Portal

Citation for published version (APA): Han, X., & Webers, H. M. (1996). *A Comment on Shaked and Sutton's Model of Vertical Product Differentiation.* (CentER Discussion Paper; Vol. 1996-66). Microeconomics.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Center for Economic Research

90

No. 9666

A COMMENT ON SHAKED AND SUTTON'S MODEL OF VERTICAL PRODUCT DIFFERENTIATION

By Xiangzhu Han and Harry Webers

R40

July 1996

t product differentiation t game theory

ISSN 0924-7815

A Comment on Shaked and Sutton's Model of Vertical Product Differentiation

Xiangzhu Han and Harry Webers*

May 6. 1996

Abstract

In a duopoly model with vertical differentiation, it is assumed that two firms play a two-stage non-cooperative game, first quality-then-price, and there is a feasible quality spectrum from which two firms can choose for their product selection. A tazonomy of the degree of product differentiation is pursued. We demonstrate that there exists a unique subgame perfect equilibrium in pure strategies. This equilibrium exhibits maximum product differentiation if the quality of the 'outside good' is sufficiently low or if both the quality of the outside good is sufficiently high and the difference between it and the lowest feasible quality is sufficiently large; otherwise if the quality of the outside good is sufficiently high but the difference between it and the lowest feasible quality small, then this equilibrium exhibits some degree of product differentiation.

Keywords: quality-then-price game, vertically differentiated market, product differentiation.

1 Introduction

In their pathbreaking paper, Shaked and Sutton (1982) demonstrate how the existence of quality differences relaxes price competition between competing firms, so that profits are positive in equilibrium. Quality differences are formalized in terms of a framework for preferences due to Gabszewicz and Thisse (1979) in which individuals with identical preferences may, nevertheless, choose different goods because their respective marginal utilities of income differ.

^{*}Department of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. Telephone +31 13 4662753 (2457). Fax +31 13 4663280, E-mail: x.han@kub.nl, h.m.webers@kub.nl. We thank Dolf Talman and Maria Pilar Montero for their comments and suggestions.

While Shaked and Sutton (1982) focus on relaxing price competition through product differentiation, the uniqueness of this subgame perfect equilibrium is not shown, and most importantly, the degree of product differentiation is not analyzed there. Donnenfeld and Weber (1992) solve the degree of product differentiation problem by introducing entry into Shaked and Sutton's (1982) model. They consider a slightly modified Shaked and Sutton (1982) model, in which every thing remains except that $Q \equiv [q_m, q_M]$ is assumed to be the feasible quality interval, the quality of outside good is set zero, and a consumer is identified by the his or her income, which is uniformly distributed over the interval [0, I]. They show that there exists a unique equilibrium, at which

"... the first two firms to enter the industry, select the extreme qualities that are technologically feasible, thus exhibiting maximal product differentiation among incumbents".

Therefore

"... the threat of later entry further increases the degree of product differentiation."

We focus on duopoly case in this paper, and extend Shaked and Sutton's discussion to give an explicit proof of the existence of a unique subgame perfect equilibrium. We extend the work of Shaked and Sutton (1982) by the following main results. First, we show that the subgame perfect equilibrium not only exists, but is also unique. Secondly, the unique subgame perfect equilibrium exhibits maximum product differentiation even in a model without entrants provided that the quality of the outside good is sufficiently low or both the quality of the outside good is sufficiently high and the difference between it and the lowest feasible quality is sufficiently large; otherwise if the quality of the outside good is sufficiently large but the difference between it and the lowest feasible quality is sufficiently small this equilibrium exhibits some degree of product differentiation. This specifies the result of Shaked and Sutton (1982), in which it is demonstrated that at any subgame perfect equilibrium one firm chooses the highest available quality while the other firm chooses an available quality somewhere between the two quality extremes. Finally, we show that Shaked and Sutton's proof of the existence of subgame perfect equilibria is incomplete¹, in the sense that they do not include the monopoly case into their consideration when they derive the equilibrium prices at the second stage of the game.

¹To put it in another way, we argue that without exclusion of the case in which a subgame perfect equilibrium of the two-stage game results in a monopoly and creates a higher monopoly profit than any one of the duopoly profits, a subgame perfect equilibrium derived from the assumption that two firms exist and segment the market as did in Shaked and Sutton (1982) may not be true.

The remainder of the paper is organized as follows. The model is described in Section 2. In Section 3 we give a complete proof of the existence of the unique subgame perfect equilibrium for the quality-then-price game and a taxonomy of the degree of product differentiation in this equilibrium. Section 4 concludes.

2 The model

We employ a variant of the Shaked and Sutton (1982) model. Suppose some good can be produced in a continuous range of quality levels, represented by a technologically feasible interval $Q = [q_m, q_M]$, where $0 \le q_0 < q_m < q_M < +\infty$, q_0 being the quality of the outside good, q_m being the lowest possible quality level and q_M being the highest one. We differ from Shaked and Sutton by using a lower bound q_m of the feasible quality interval which is independent of the quality of the outside good while they use the latter as the lower bound of the quality interval. There are two firms in the industry, each producing a single quality at zero costs. The firms play a two-stage game, first quality, then price, and compete for consumers by offering packages of price and quality $(p_i, q_i), i \in I = \{1, 2\}$. With $q_1 = q_2$, Bertrand competition results zero prices and profits for both firms, and this is obviously not an interesting case. So, we assume away it in this paper, and let $q_1 < q_2$. The prices are in terms of the numeraire good.

A continuum of consumers is identical in taste but differs in income. Income t is uniformly distributed on an interval [a, b] where $0 < a < b < +\infty$.

Consumers make indivisible and mutually exclusive purchases from the interval of qualities Q, in the sense that a consumer either makes no purchase, or else buys exactly one unit of the product from either suppliers. If a consumer with income t buys one unit of the commodity from firm $i \in I$ with quality $q_i \in Q$ at price p_i , his utility is given by

 $U_i(t, q_i, p_i) = q_i(t - p_i)$

where $t - p_i$ is the consumer's disposable income devoted to the consumption of the numeraire good after the purchase of the differentiated good of quality q_i . Each consumer buys from the firm by maximizing his or her utility. If a consumer does not buy his or her utility is given by consuming the outside good, i.e., $U_0(t, q_0, 0) = q_0 t$. This specification of the consumers' utility functions implies that individuals with higher income enjoy quality improvement more than low income consumers. The market area of the product of firm $i \neq j \in I$ at qualities q_i and q_j and at prices p_i and p_j is therefore given by

 $M_i(q_i, q_j, p_i, p_j) = \{t \in [a, b] \mid U_i(t, q_i, p_i) \ge max\{0, U_j(t, q_j, p_j)\}\},$ i.e., the set of consumers that prefer to buy from firm *i*. At qualities q_i and q_j and at prices p_i and p_j , $i \neq j$, and $i, j \in I$, the demand $D_i(q_i, q_j, p_i, p_j)$ for the commodity of firm $i \in I$ is equal to

$$D_i(q_i, q_j, p_i, p_j) = \int_{\mathcal{M}_i(q_i, q_j, p_i, p_j)} dt.$$

In Figure 1 we give an interpretation of the market segmentation between Firm 1 and Firm 2 in case $p_1 \leq p_2$ and $q_0 = 0$, where $t_{12} \in [a, b]$ denotes the marginal consumer who is indifferent between buying from firm 1 and buying from firm 2. For a concrete and complete description of the firms' demand functions we refer to the Appendix.

The corresponding profits are

 $\pi_1(q_1,q_2,p_1,p_2) = p_1 D_1(p_1,p_2,q_1,q_2)$ for firm 1 and

 $\pi_2(q_1,q_2,p_1,p_2) = p_2 D_2(p_1,p_2,q_1,q_2)$ for firm 2.

3 Quality and price competition

It has been shown in Shaked and Sutton (1982) that for given product quality specification, if the income distribution interval [a, b] satisfies the condition 2a < b < 4a, then of any N firms offering distinct products, exactly two will have positive market shares at the equilibrium of price competition. Moreover, at equilibrium, the market is covered, i.e., no consumer stays out of the market.

Our work in this section is to extend the above result. We focus on the duopoly case, and explicitly prove that under the assumption of 2a < b < 4a there is a unique subgame perfect equilibrium, at which the two firms maximally differentiate their products if the quality of the outside good is sufficiently low or if both the quality of the outside good is sufficiently high and the difference between it and the lowest feasible quality is sufficiently large; otherwise if the quality of the outside good is sufficiently large but the difference between it and the lowest feasible quality is sufficiently small some degree of product differentiation arises.

3.1 The case $q_0 = 0$

Lemma 1 Suppose $q_0 = 0$ and 2a < b < 4a. Then for any given quality specification q_1 and q_2 in Q of firm 1 and firm 2, respectively, the Nash-Bertrand equilibrium (p_1^N, p_2^N) at the second stage of the game is such that both firms are in the market and

$$\begin{array}{ll} p_1^N = \frac{q_2 - q_1}{3q_1}(b - 2a) & and \ p_2^N = \frac{q_2 - q_1}{3q_2}(2b - a) & if \ q_1/q_2 \ge \frac{b - 2a}{b + a}; \\ p_1^N = a & and \ p_2^N = \frac{b(q_2 - q_1) + aq_1}{2q_2} & if \ \frac{b - 2a}{b + a} \ge q_1/q_2 \end{array}$$

Proof. The proof is divided into two parts.

(i) First we prove that for any given quality specification, any Nash-Bertrand equilibrium at the second stage of the game, if it exists, denoted by (p_1^N, p_2^N) , can not happen at the case when one of the two firms stays out of the market.

It is straightforward to prove that firm 2 can not stay out of the market at (p_1^N, p_2^N) , because firm 2 can always set a price $p'_2 = p_1^N$ and take over the market from firm 1 or at worst share the market with firm 1. Next we need to prove that firm 1 can not stay out of the market at (p_1^N, p_2^N) , for which we follow a graphical proof and distinct between three cases:

<u>case 1</u>: $p_2^N < p_1^N$. Then $D_1(q_1, q_2, p_1^N, p_2^N) = 0$, and so $\pi_1(q_1, q_2, p_1^N, p_2^N) = 0$.

From (a) of Figure 2, it is found that if $p_2^N < a$, then firm 2 has an incentive to deviate from p_2^N , because by charging an infinitesimal higher price, its demand is not affected, and consequently its profit is increased. Similarly from (b) of Figure 2, it is found that

if $p_2^N \ge a$, then firm 1 has an incentive to deviate from p_1^N by setting its price at p_1' with $0 < p_1' < a$, because then firm 1 gains a positive market share.

case 2:
$$p_2^N = p_1^N$$
. Then $D_1(q_1, q_2, p_1^N, p_2^N) = 0$, and so $\pi_1(q_1, q_2, p_1^N, p_2^N) = 0$.

From (a) of Figure 3 it is found that if $p_2^N \ge a$, then firm 1 has an incentive to deviate by setting its price at p'_1 with $0 < p'_1 < a$, because then firm 1 gains a positive market share. Similarly from (b) of Figure 3, it is found that if $p_2^N < a$, firm 2 has an incentive to deviate, because by charging an infinitesimal higher price, its demand is not affected, and consequently its profit is increased.

<u>case 3</u>: $p_2^N > p_1^N$. Then firm 1 stays out of the market if and only if $t_{12} \le a$, and so $\pi_1(q_1, q_2, p_1^N, p_2^N) = 0$.

From (a) of Figure 4 it is found that if $t_{12} < a$, then firm 2 has an incentive to deviate, because by charging an infinitesimal higher price, its demand is not affected, and consequently its profit is increased. If $t_{12} = a$ and $p_1^N > 0$, then firm 1 has an incentive to deviate, because then firm 1 gains a positive market share, so a positive profit. Otherwise if $t_{12} = a$ but $p_1^N = 0$, then firm 2 has an incentive to deviate. In fact, if firm 2 does not deviate, its profit π^{nd} is given by $\pi^{nd} = p_2^N(b - t_{12})$, where $t_{12} = a$ satisfies the equation $q_1(t_{12} - 0) = q_2(t_{12} - p_2^N)$. Solving the equation for p_2^N and then substituting p_2^N and t_{12} into the equation for π^{nd} , we derive the profit $\pi^{nd} = a(b-a)(q_2-q_1)/q_2$ for firm 2 in case it does not deviate. But if firm 2 deviates by maximizing its profit $p_2(b - t'_{12})$, where t'_{12} is given by the equation $q_1(t'_{12} - 0) = q_2(t'_{12} - p_2)$, then its profit π^d equals $\pi^d = b^2(q_2 - q_1)/(4q_2)$. For 2a < b, we have $\pi^d > \pi^{nd}$, so firm 2 has an incentive to deviate.

(ii) Secondly we prove that in case of a duopoly the Nash-Bertrand equilibrium exists and is as given in the lemma. This directly follows from the proof of lemma 2 of Shaked and Sutton (1982).

Figure 2. $p_2^N < p_1^N$

Figure 3. $p_2^N = p_1^N$

Consider the profit of firm i, $i \in \{1, 2\}$, at the first stage conditional on the quality specification q_i , $i \in \{1, 2\}$. From Lemma 1 we can calculate the firms' profits associated with the equilibrium prices as follows

The the equilibrium prices to follows $\pi_1^N(q_1, q_2) = \frac{q_2-q_1}{9q_1}(b-2a)^2$ and $\pi_2^N(q_1, q_2) = \frac{q_2-q_1}{9q_2}(2b-a)^2$ if $q_1/q_2 \geq \frac{b-2a}{b+a}$; otherwise, $\pi_1^N(q_1, q_2) = \frac{a}{2}(b-a-\frac{aq_2}{q_2-q_1})$ and $\pi_2^N(q_1, q_2) = \frac{b(q_2-q_1)+aq_1}{4q_2}(b+a\frac{q_1}{q_2-q_1})$ From now on let $\underline{\alpha} = q_m/q_M$ and $\alpha = q_1/q_2$, so $0 < \underline{\alpha} \leq \alpha \leq 1$. Then α denotes the degree of product differentiation. The firm's profit associated with the equilibrium prices can be rewritten as follows: If $\alpha \geq \frac{b-2a}{b+a}$, then

$$\pi_1^N(\alpha) = \frac{(1-\alpha)(b-2a)^2}{9\alpha}$$
(1)

$$\pi_2^N(\alpha) = \frac{(1-\alpha)(2b-a)^2}{9}.$$
(2)
Otherwise if $\frac{b-2a}{2} \ge \alpha$, then

$$\pi_1^N(\alpha) = \frac{a}{2}(b-a-\frac{a}{1-\alpha})$$
(3)

$$\pi_2^N(\alpha) = \frac{1}{4}(b(1-\alpha) + a\alpha)(b-a + \frac{a}{1-\alpha}).$$
(4)

To establish our proposition we first claim the following

Lemma 2 The firms' reduced profit function forms satisfy

$$\frac{\partial \tau_i^N(\alpha)}{\partial \alpha} < 0 \text{ for every } \alpha \in (\underline{\alpha}, 1] \text{ and } i \in \{1, 2\}.$$

Proof.

Differentiating the firms' reduced profit function forms in qualities of equations (1), (2) and (3) with respect to α , it is straightforward to prove that $\frac{\partial \tau_1^N(\alpha)}{\partial \alpha} < 0$ for all α and $\frac{\partial \tau_2^N(\alpha)}{\partial \alpha} < 0$ for $\alpha \ge \frac{b-2a}{b+a}$. Then we are left with proving that $\frac{\partial \tau_2^N(\alpha)}{\partial \alpha} < 0$ for $\frac{b-2a}{b+a} \ge \alpha \ge \alpha$. Differentiation of $\pi_2^N(\alpha)$ in (4) with respect to α yields

$$\frac{\partial \tau_2^N(\alpha)}{\partial \alpha} = \frac{1}{4} [(a-b)(b+\frac{a\alpha}{1-\alpha}) + (b(1-\alpha)+a\alpha)\frac{a}{(1-\alpha)^2}] = -\frac{1}{4} [(b-a)(b+\frac{a\alpha(2-\alpha)}{(1-\alpha)^2}) - \frac{ab}{(1-\alpha)^2}].$$

To prove that $\frac{\partial \tau_2^N(\alpha)}{\partial \alpha} < 0$, it is equivalent to prove that $(b-a)(b+\frac{a\alpha(2-\alpha)}{(1-\alpha)^2}) > \frac{ab}{(1-\alpha)^2}$, which requires that $\alpha < \frac{2b-3a}{2(b-a)}$. But $\alpha \leq \frac{b-2a}{b+a}$, and for b > 2a we have $\frac{2b-3a}{2(b-a)} > \frac{b-2a}{b+a}$, so $\frac{\partial \pi_2^N(\alpha)}{\partial \alpha} < 0$.

Given Lemma 2. it is straightforward to establish the following

Proposition 1 Suppose $q_0 = 0$ and 2a < b < 4a. Then there exists a unique subgame perfect equilibrium when firms act non-cooperatively in first choosing qualities then prices, in which the two firms maximally differentiate their product specifications, so $q_1^N = q_m$ and $q_2^N = a_M$.

Proof.

Consider the first stage of the quality-then-price game. The firms' reduced profit functions are given in equations (1) and (2) or (3) and (4). From Lemma 2 firm 2 always benefits by leaving its product quality from any given product quality of firm 1 as far as possible. So, $q_2^N = q_M$. Similarly from Lemma 2 firm 1 always benefits by keeping its product quality as far from any given product quality of firm 2 as possible, so $q_1^N = q_m$.

The case $q_0 > 0$ 3.2

Lemma 3 Suppose $q_0 > 0$ and 2a < b < 4a. Then for any given quality specification q_1 and q_2 in Q of firm 1 and firm 2, respectively, the Nash-Bertrand equilibrium (p_1^N, p_2^N) at the second stage of the game is such that both firms are in the market and

 $\begin{array}{ll} p_1^N = \frac{b-2a}{3}\frac{q_2-q_1}{q_1} & and \ p_2^N = \frac{2b-a}{3}\frac{q_2-q_1}{q_2} & if \ \frac{q_2-q_0}{q_2-q_1} \geq \frac{b+a}{3a}; \\ p_1^N = a\frac{q_1-q_0}{2} & and \ p_2^N = \frac{1}{2a}\left[b(q_2-q_1) + a(q_1-q_0)\right] & otherwise. \end{array}$

Proof.

The proof directely follows the proof of Lemma 1.

Given the Nash-Bertrand equilibrium (p_1^N, p_2^N) at the second stage of the game, we can calculate the firms' profits associated with the equilibrium prices as follows

 $\pi_1^N(q_1,q_2) = \frac{(b-2a)^2}{9} \frac{q_2-q_1}{q_1} \quad \text{and} \quad \pi_2^N(q_1,q_2) = \frac{(2b-a)^2}{9} \frac{q_2-q_1}{q_2}$ if $\frac{q_2-q_0}{q_2-q_1} \ge \frac{b+a}{3a}$; otherwise, $\pi_1^N(q_1, q_2) = \frac{a}{2} \frac{q_1 - q_0}{a_1} (b - a \frac{2q_2 - q_1 - q_0}{a_2 - a_1})$ and $\pi_2^N(q_1, q_2) = \frac{1}{4q_2(q_2 - q_1)} [b(q_2 - q_1) + a(q_1 - q_0)]^2.$ From the above profit functions of firm 1 and firm 2 associated with the equilibrium

prices it is straightforward to show through simple calculation that the following holds $\partial \pi_1^N(q_1,q_2)/\partial q_1 < 0$ for any given $q_1, q_2 \in [q_m, q_M]$ satisfying $\frac{q_2-q_0}{q_2-q_1} \ge \frac{b+a}{3a}$, and

 $\partial \pi_2^N(q_1,q_2)/\partial q_2 > 0$

for any given $q_1, q_2 \in [q_m, q_M]$ if $\frac{q_m}{q_M} \ge \frac{b-2a}{2b-a}$, i.e., the gap between the highest feasible quality and the lowest feasible quality is not 'too big'.

So, to focus on the degree of product differentiation in the case for $q_0 > 0$ is equivalent to focus on specifying the sign of $\partial \pi_1^N(q_1, q_2)/\partial q_1$ for any given $q_1, q_2 \in [q_m, q_M]$ satisfying $\frac{q_2-q_0}{3\alpha} \leq \frac{b+\alpha}{3\alpha}$. The following lemma gives a characterization of this sign.

Lemma 4 Suppose $q_0 > 0$ and 2a < b < 4a. Then for any given quality specification q_1 and q_2 of firm 1 and firm 2. respectively, satisfying $q_1, q_2 \in [q_m, q_M]$ and $\frac{q_2-q_0}{q_2-q_1} \leq \frac{b+a}{3a}$, there exists $q, \overline{q} > 0$ with $q < \overline{q}$ such that

 $\begin{array}{ll} \partial \pi_1^N(q_1,q_2)/\partial q_1 < 0 & \text{if } q_0 < \underline{q}, \\ \partial \pi_1^N(q_1,q_2)/\partial q_1 > 0 & \text{if } q_0 > \overline{q}, \\ \end{array}$ whereas for $q_0 \in [q,\overline{q}]$ the sign of $\partial \pi_1^N(q_1,q_2)/\partial q_1$ is ambiguous.

Proof.

Given $q_1, q_2 \in [q_m, q_M]$ and $\frac{q_2-q_0}{q_2-q_1} \leq \frac{b+a}{3a}$, we have from the above derived profit function of firm 1 associated with its equilibrium price that

$$\pi_1^N(q_1, q_2) = \frac{a}{2} \frac{q_1 - q_0}{q_1} (b - a \frac{2q_2 - q_1 - q_0}{q_2 - q_1}) = \frac{a^2}{2} \frac{q_1 - q_0}{q_1} (\frac{b}{a} + \frac{q_1 + q_0 - 2q_2}{q_2 - q_1}).$$

Then

$$\begin{split} \partial \pi_1^N(q_1,q_2)/\partial q_1 &= \frac{a^2}{2} [\frac{q_0}{q_1^2} (\frac{b}{a} + \frac{q_0 + q_1 - 2q_2}{q_2 - q_1}) + (1 - \frac{q_0}{q_1}) (\frac{q_2 - q_1 + q_0 + q_1 - 2q_2}{(q_2 - q_1)^2})] \\ &= \frac{a^2}{2q_1^2(q_2 - q_1)^2} [q_1^2 (\frac{b}{a}q_0 - q_2) + q_1((4 - \frac{2b}{a})q_0q_2 - 2q_0^2) + q_2q_0^2 + (\frac{b}{a} - 2)q_0q_2^2]. \end{split}$$

Thus we have

$$\partial [\partial \pi_1^N(q_1, q_2) / \partial q_1|_{\frac{b}{a}=4}] / \partial q_0 > 0 \tag{5}$$

and

$$(\partial \pi_1^N(q_1, q_2)/\partial q_1|_{\frac{b}{a}=4})_{q_0=q_2} > 0.$$
(6)

But from section 3.1 we have

$$\left(\partial \pi_1^N(q_1, q_2) / \partial q_1 \right|_{\frac{b}{a} = 4}\right)_{q_0 = 0} < 0.$$
(7)

So, from (5), (6) and (7) there exists a \underline{q} such that $(\partial \pi_1^N(q_1, q_2)/\partial q_1)_{\frac{b}{a}=4} < 0$ for $q_0 < \underline{q}$ and $(\partial \pi_1^N(q_1, q_2)/\partial q_1)_{\frac{b}{a}=4} > 0$ for $q_0 > \underline{q}$. Since $\partial \pi_1^N(q_1, q_2)/\partial q_1$ is increasing in $\frac{b}{a}$, we have $\partial \pi_1^N(q_1, q_2)/\partial q_1 < 0$ for $q_0 < \underline{q}$ and 2a < b < 4a. Similarly, we can derive the follows

$$\partial[\partial \pi_1^N(q_1, q_2)/\partial q_1|_{\frac{b}{a}=2}]/\partial q_0 > 0 \tag{8}$$

and

$$\left(\partial \pi_1^N(q_1, q_2) / \partial q_1 |_{\frac{b}{2}=2}\right)_{q_0=q_2} > 0.$$
(9)

But from section 3.1 we have

$$(\partial \pi_1^N(q_1, q_2) / \partial q_1|_{\mathfrak{b}=2})_{q_0=0} < 0.$$
⁽¹⁰⁾

From (8), (9) and (10) there exists a \overline{q} such that $\partial \pi_1^N(q_1, q_2)/\partial q_1|_{\frac{b}{a}=2} < 0$ for $q_0 < \overline{q} < 0$ and $(\partial \pi_1^N(q_1, q_2)/\partial q_1)|_{\frac{b}{a}=2}$ for $q_0 > \overline{q}$. Since $\partial \pi_1^N(q_1, q_2)/\partial q_1$ is increasing in $\frac{b}{a}$, we have $\partial \pi_1^N(q_1, q_2)/\partial q_1 > 0$ for $q_0 < \overline{q}$ and 2a < b < 4a.

It should be clear that for $q_0 \in [\underline{q}, \overline{q}]$ the sign of $\partial \pi_1^N(q_1, q_2)/\partial q_1$ is ambiguous.

Proposition 2 Suppose $q_0 > 0, 2a < b < 4a$, and $\frac{2m}{q_M} \ge \frac{b-2a}{2b-a}$. Then there exists a unique subgame perfect equilibrium in pure strategies when firms act non-cooperatively in first choosing qualities then prices. There exist also \underline{q} , \overline{q} and \underline{q}_1^* with $\underline{q} < \overline{q}$ and $\underline{q}_1^* = q_M - \frac{3a}{b+a}(q_M - q_0)$ such that maximum product differentiation holds in this equilibrium if $q_0 < \underline{q}$ or if $q_0 > \overline{q}$ and $q_m \ge q_1^*$; and some degree of product differentiation is exhibited in this equilibrium with firm 1 locating at q_1^* and firm 2 locating at q_M if $q_0 > \overline{q}$ and $q_m < q_1^*$.

Proof.

From the statement above and Lemma 4 it is straightforward that for any given feasible quality interval $[q_m, q_M]$, firm 2 always chooses q_M for its product selection. And for firm 1 there exist \underline{q} and \overline{q} such that if $q_0 < \underline{q}$ (see also Figure 5 (a), without loss of generality, lines are used instead of curves, the same for Figure 5 (b)), then the profit

 $\pi_1^N(q_1, q_M)$ of firm 1 is always decreasing in q_1 , so firm 1 chooses q_m ; otherwise if $q_0 > \overline{q}$ (see also Figure 5 (b)), then the profit function $\pi_1^N(q_1, q_M)$ of firm 1 is increasing in q_1 satisfying $\frac{q_M-q_0}{q_M-q_1} \leq \frac{b+a}{3a}$ (called region 1) but decreasing in q_1 satisfying $\frac{q_M-q_0}{q_M-q_1} \leq \frac{b+a}{3a}$ (called region 2). So, the profit $\pi_1^N(q_1, q_M)$ of firm 1 is maximized at the intersection of its profit curves from region 1 and 2, defined by $\frac{q_M-q_0}{q_M-q_1} = \frac{b+a}{3a}$, i.e., $q_1^* = q_M - \frac{3a}{b+a}(q_M - q_0)$. If $q_m \geq q_1^*$, then the profit function $\pi_1^N(q_1, q_M)$ of firm 1 is also always decreasing in q_1 , so firm 1 chooses q_m . Otherwise if $q_m < q_1^*$ then firm maximizes its profit by choosing q_1^* . In any case the equilibrium is unique and subgame perfect.

4 Conclusions

While Shaked and Sutton (1982) focus on relaxing price competition through product differentiation, the degree of product differentiation is not analyzed there. In this paper we focus on the degree of product differentiation, and demonstrate that firms maximally differentiate their products if the quality of the outside good is sufficiently low or if both the quality of the outside good is sufficiently high and the difference between it and the lowest feasible quality is sufficiently large; otherwise if the quality of the outside good is sufficiently high but the difference between it and the lowest feasible quality is sufficiently large; otherwise if the quality is sufficiently small this equilibrium exhibits some degree of product differentiation. Thus we give a taxonomy of product differentiation in Shaked and Sutton's framework in case 2a < b < 4a. The reasons behind this product selection are quite intuitive. Because

firm 2 enjoys higher quality advantage, it is always profitable for firm 2 to choose the highest possible quality. Therefore, we need only to consider the product selection of firm 1. If q_0 is sufficiently small, then price competition from the fall back good faced by firm 1 is very weak, and firm 1 finds it profitable to differentiate itself from firm 2 as far as possible, which yields maximum product differentiation. An alternative reason for the maximum product differentiation is found in case when q_0 , the quality of the outside good, is sufficiently high, but the difference between q_0 and the lowest feasible quality is sufficiently large (in the sense that q_0 is on the left side of q_1^* while q_m is on the right side of q_1^*). Then price competition from the fall back good faced by firm 1 is offsetted by price competition of firm 2 from above and the isolation by q_1^* from the outside good (where q_1^* acts just like a fence which isolates price competition from the outside good). Finally, if the quality of the outside good is sufficiently high and the difference between it and the lowest feasible quality is not too large, price competition from the fall back good faced by firm 1 will outweigh price competition from firm 2 from above and the isolation from the outside good, thus forces firm 1 to the inside of the feasible quality interval, and some degree of product differentiation shows up. The above discussion in case $q_0 > 0$ crucially depends on the assumption that the gap between the highest feasible quality and the lowest quality is not too big.

Appendix

The demand functions of Firm 1 and Firm 2

We may distinguish three different types of indifferent consumers, namely a consumer being indifferent between buying from firm 1 and not buying at all, a consumer being indifferent between buying from firm 2 and not buying at all, and, finally, a consumer being indifferent between buying from firm 1 and buying from firm 2. We denote $t_{12} = \frac{p_2q_2-p_1q_1}{q_2-q_1}$ and $t_i = (\frac{q_i}{q_i-q_0})p_i$ for all $i \in I = \{1, 2\}$.

If q_0 is relatively small, as in Figure 6(a), there exists a consumer t_1 being indifferent between buying from firm 1 and not buying if $t_1 \ge a$, otherwise all consumers prefer to buy. Furthermore, there exists a consumer t_{12} being indifferent between buying from firm 1 and firm 2 if $a \le t_{12} \le b$.

If q_0 is relatively high, as in Figure 6(b), there does not exist a consumer t_1 being indifferent between buying from firm 1 and buying from firm 2. The reason is that all consumers prefer the outside option or the commodity of firm 2 to the commodity of firm 1. Clearly, there does exist a consumer t_2 being indifferent between buying from firm 2 and not buying if $t_2 \ge b$.

Consequently, the demand for the firms can be written as

 $D_1(q_1, q_2, p_1, p_2) = 0$, for $p_1 \ge p_2$.

$$D_1(q_1, q_2, p_1, p_2) = \begin{cases} t_{12} - t_1 & \text{if } a \le t_1 \le t_{12} \le b \\ t_{12} - a & \text{if } t_1 \le a \le t_{12} \le b \\ b - t_1 & \text{if } a \le t_1 \le b \le t_{12} & \text{for } p_1 < p_2 \\ b - a & \text{if } t_1 \le a, b \le t_{12} \\ 0 & \text{otherwise,} \end{cases}$$

and

and

$$D_2(q_1, q_2, p_1, p_2) = \begin{cases} b-a & \text{if } a \ge t_2 \\ b-t_2 & \text{if } a \le t_2 \le b & \text{for } p_1 \ge p_2 \\ 0 & \text{otherwise,} \end{cases}$$

and

$$D_2(q_1, q_2, p_1, p_2) = \begin{cases} b-a & \text{if } a \ge max\{t_{12}, t_2\} \\ b-max\{t_{12}, t_2\} & \text{if } a \le t_{12} \le b \\ 0 & \text{otherwise.} \end{cases} \text{ for } p_1 < p_2$$

References

- DONNENFELD, S. AND S., WEBER, 1992, Vertical Product Differentiation with Entry, International Journal of Industrial Organization 10, 449-472.
- GABSZEWICZ, J. AND THISSE, J.-F., 1979, Price Competition. Quality and Income Disparities. Journal of Economic Theory, Vol. 20, 340-359.
- SHAKED, A. AND SUTTON, J., 1982. Relaxing Price Competition Through Product Differentiation. Review of Economic Studies XLIX, 3-13.

No.	Author(s)	Title
95116	F. Kleibergen and H. Hoek	Bayesian Analysis of ARMA models using Noninformative Priors
95117	J. Lemmen and S. Eijffinger	The Fundamental Determiniants of Financial Integration in the European Union
95118	B. Meijboom and J. Rongen	Clustering, Logistics, and Spatial Economics
95119	A. de Jong, F. de Roon and C. Veld	An Empirical Analysis of the Hedging Effectiveness of Currency Futures
95120	J. Miller	The Effects of Labour Market Policies When There is a Loss of Skill During Unemployment
95121	S. Eijffinger, M. Hoeberichts and E. Schaling	Optimal Conservativeness in the Rogoff (1985) Model: A Graphical and Closed-Form Solution
95122	W. Ploberger and H. Bierens	Asymptotic Power of the Integrated Conditional Moment Test Against Global and Large Local Alternatives
95123	H. Bierens	Nonparametric Cointegration Analysis
95124	H. Bierens and W. Ploberger	Asymptotic Theory of Integrated Conditional Moment Tests
95125	E. van Damme	Equilibrium Selection in Team Games
95126	J. Potters and F. van Winden	Comparative Statics of a Signaling Game: An Experimental Study
9601	U. Gneezy	Probability Judgements in Multi-Stage Problems: Experimental Evidence of Systematic Biases
9602	C. Fernández and M. Steel	On Bayesian Inference under Sampling from Scale Mixtures of Normals
9603	J. Osiewalski and M. Steel	Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models
9604	J. Potters and J. Wit	Bets and Bids: Favorite-Longshot Bias and Winner's Curse
9605	H. Gremmen and J. Potters	Assessing the Efficacy of Gaming in Economics Educating
9606	J. Potters and F. van Winden	The Performance of Professionals and Students in an Experimantal Study of Lobbying
9607	J.Kleijnen, B. Bettonvil and W. van Groenendaal	Validation of Simulation Models: Regression Analysis Revisited
9608	C. Fershtman and N. Gandal	The Effect of the Arab Boycott on Israel: The Automobile Market
9609	H. Uhlig	Bayesian Vector Autoregressions with Stochastic Volatility

No.	Author(s)	Title
9610	G. Hendrikse	Organizational Change and Vested Interests
9611	F. Janssen, R. Heuts and T. de Kok	On the $(R.s.Q)$ Inventory Model when Demand is Modelled as a compound Bernoulli Process
9612	G. Fiestras-Janeiro P. Borm and F. van Megen	Protective Behaviour in Games
9613	F. van Megen, G. Facchini, P. Borm and S. Tijs	Strong Nash Equilibria and the Potential Maximizer
9614	J. Miller	Do Labour Market Programmes Necessarily Crowd out Regular Employment? - A Matching Model Analysis
9615	H. Huizinga	Unemployment Benefits and Redistributive Taxation in the Presence of Labor Quality Externalities
9616	G. Asheim and M. Dufwenberg	Admissibility and Common Knowlegde
9617	C. Fernández, J. Osiewalski and M. Steel	On the Use of Panel Data in Bayesian Stochastic Frontier Models
9618	H. Huizinga	Intrafirm Information Transfers and Wages
9619	B. Melenberg and B. Werker	On the Pricing of Options in Incomplete Markets
9 <mark>6</mark> 20	F. Kleibergen	Reduced Rank Regression using Generalized Method of Moments Estimators
9621	F. Janssen, R. Heuts and T. de Kok	The Value of Information in an (R,s,Q) Inventory Model
9622	F. Groot, C. Withagen and A. de Zeeuw	Strong Time-Consistency in the Cartel-Versus-Fringe Model
9623	R. Euwals and A. van Soest	Desired and Actual Labour Supply of Unmarried Men and Women in the Netherlands
9624	M. Khanman, M. Perry and P.J. Reny	An Ex-Post Envy-Free and Efficient Allocation Mechanism: Imperfect Information Without Common Priors
9625	C. Eaves, G. van der Laan D. Talman and Z. Yang	Balanced Simplices on Polytopes
9626	H. Bloemen and A. Kalwij	Female Employment and Timing of Births Decisions: a Multiple State Transition Model
9627	P. Bolton	Strategic Experimentation: a Revision
9628	C. Fershtman and Y. Weiss	Social Rewards, Externalities and Stable Preferences

No.	Author(s)	Title
9629	P.M. Kort, G. Feichtinger R.F. Hartl and J.L. Haunschmied	Optimal Enforcement Policies (Crackdowns) on a Drug Market
9630	C. Fershtman and A. de Zeeuw	Tradeable Emission Permits in Oligopoly
9631	A. Cukierman	The Economics of Central Banking
9632	A. Cukierman	Targeting Monetary Aggregates and Inflation in Europe
9633	F. de Roon, C. Veld and J. Wei	A Study on the Efficiency of the Market for Dutch Long Term Call Options
9634	B. van Aarle, L. Bovenberg M. Raith	Money, Fiscal Deficits and Government Debt in a Monetary Union
9635	G. van der Laan, D. Talman and Z. Yang	Existence of and Equilibrium in a Competitive Economy with Indivisibilities and Money
9636	I. Brouwer, J. van der Put C. Veld	Contrarian Investment Strategies in a European Context
9637	M. Berg, F. van der Duyn Schouten and J. Jansen	Optimal Service Policies to Remote Customers with Delay-Limits
9638	F.C. Drost and C.A.J. Klaassen	Efficient Estimation in Semiparametric GARCH Models
9639	A.G. de Kok and F.B.S.L.P. Janssen	Demand Management in Multi-Stage Distribution Chain
9640	D.A. Freund, T.J. Kniesner A.T. LoSasso	How Managed Care Affects Medicaid Utilization A Synthetic Difference-in-Differences Zero-Inflated Count Model
9641	M.J. Lee	Instrumental Variable Estimation For Linear Panel Data Models
9642	W. Härdle, E. Mammen and M. Müller	Testing Parametric versus Semiparametric Modelling in Generalized Linear Models
9643	C. Dustmann, N. Rajah and A. van Soest	Part-Time Work, School Success and School Leaving
9644	S.C.W. Eijffinger and M. Hoeberichts	The Trade Off Between Central Bank Independence and Conservativeness
9645	R. Sarin and P. Wakker	A Single-Stage Approach to Anscombe and Aumann's Expected Utility

No.	Author(s)	Title
9646	J.P. Ziliak and T.J. Kniesner	The Importance of Sample Attrition in Life Cycle Labor Supply Estimation
9647	P.M. Kort	Optimal R&D Investments of the Firm
9648	M.P. Berg	Performance Comparisons for Maintained Items
9649	H. Uhlig and Y. Xu	Effort and the Cycle: Cyclical Implications of Efficiency Wages
9650	M. Slikker and A. van den Nouweland	Communication Situations with a Hierarchical Player Partition
9651	H.L.F. de Groot	The Struggle for Rents in a Schumpeterian Economy
9652	R.M. de Jong and J. Davidson	Consistency of Kernel Estimators of heteroscedastic and Autocorrelated Covariance Matrices
9653	J. Suijs, A. De Waegenaere and P. Borm	Stochastic Cooperative Games in Insurance and Reinsurance
9654	A.N. Banerjee and J.R. Magnus	Testing the Sensitivity of OLS when the Variance Matrix is (Partially) Unknown
9655	A. Kalwij	Estimating the Economic Return to Schooling on the basis of Panel Data
9656	M. Lind and F. van Megen	Order Based Cost Allocation Rules
9657	A. van Soest, P. Fontein and Rob Euwals	Earnings Capacity and Labour Market Participation
9658	C. Fernández and M.F.J. Steel	On Bayesian Modelling of Fat Tails and Skewness
9659	R. Sarin and P. Wakker	Revealed Likelihood and Knightian Uncertainty
9660	J.R. Magnus and J. Durbin	A Classical Problem in Linear Regression or How to Estimate the Mean of a Univariate Normal Distribution with Known Variance
9661	U. Gneezy and J. Potters	An Experiment on Risk Taking and Evaluation Periods
9662	H.J. Bierens	Nonparametric Nonlinear Co-Trending Analysis, with an Application to Interest and Inflation in the U.S.
9663	J.P.C. Blanc	Optimization of Periodic Polling Systems with Non- Preemptive, Time-Limited Service
9664	M.J. Lee	A Root-N Consistent Semiparametric Estimator for Fixed Effect Binary Response Panel Data
9665	C. Fernández, J. Osiewalski and M.F.J. Steel	Robust Bayesian Inference on Scale Parameters

No. Author(s)

Title

9666 X. Han and H. Webers

A Comment on Shaked and Sutton's Model of Vertical Product Differentiation

