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Abstract

In a duopoly model with vertical differentiation. it is assurned that two firms play
a two-stage non-cooperative game, first quality-then-price, and there is a feasible
quality spectrum from which two firms can choose for their product selection. A
taronomy of the degree of product differentiation is pursued. We demonstrate
that there erists a unique subgame perfect equilibrium in pure strategies. This
equilibrium erhibits marimum product differentiation if the quality of the ‘outside
good " is sufficiently low or if both the quality of the outside good is sufficiently high
and the difference between it and the lowest feasible quality is sufficiently large;
otherwise if the quality of the outside good 1is sufficiently high but the difference
between 1t and the lowest feasible quality is sufficiently small, then this equilibrium
erhibits some degree of product differentiation.

Keywords: quality-then-price game, vertically differentiated market, product
differentiation.

1 Introduction

In their pathbreaking paper, Shaked and Sutton (1982) demonstrate how the existence
of quality differences relaxes price competition between competing firms, so that profits
are positive in equilibrium. Quality differences are formalized in terms of a framework
for preferences due to Gabszewicz and Thisse (1979) in which individuals with identical
preferences may, nevertheless. choose different goods because their respective marginal

utilities of income differ.
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The Netherlands. Telephone +31 13 4662753 (2457), Fax +31 13 4663280, E-mail: x.han@kub.nl,
h.m.webers@kub.nl. We thank Dolf Talman and Maria Pilar Montero for their comments and
suggestions.



While Shaked and Sutton (1982) focus on relaxing price competition through product
differentiation. the uniqueness of this subgame perfect equilibrium is not shown, and most
importantly. the degree of product differentiation is not analyzed there. Donnenfeld and
Weber (1992) solve the degree of product differentiation problem by introducing entry
into Shaked and Sutton’s (1982) model. They consider a slightly modified Shaked and
Sutton (1982) model. in which every thing remains except that Q@ = [¢,, qu] is assumed
to be the feasible quality interval, the quality of outside good is set zero, and a consumer
is identified by the his or her income, which is uniformly distributed over the interval
[0.]]. They show that there exists a unique equilibrium, at which

"... the first two firms to enter the industry, select the extreme qualities
that are technologically feasible, thus exhibiting maximal product differenti-
ation among incumbents”.

Therefore

"

the threat of later entry further increases the degree of product
differentiation.”

We focus on duopoly case in this paper, and extend Shaked and Sutton’s discussion
to give an explicit proof of the existence of a unique subgame perfect equilibrium. We
extend the work of Shaked and Sutton (1982) by the following main results. First, we
show that the subgame perfect equilibrium not only exists, but is also unique. Secondly.
the unique subgame perfect equilibrium exhibits maximum product differentiation even
in a model without entrants provided that the quality of the outside good is sufficiently
low or both the quality of the outside good is sufficiently high and the difference between
it and the lowest feasible quality is sufficiently large: otherwise if the quality of the outside
good is sufficiently large but the difference between it and the lowest feasible quality is
sufficiently small this equilibrium exhibits some degree of product differentiation. This
specifies the result of Shaked and Sutton (1982), in which it is demonstrated that at
any subgame perfect equilibrium one firm chooses the highest available quality while the
other firm chooses an available quality somewhere between the two quality extremes.
Finally, we show that Shaked and Sutton's proof of the existence of subgame perfect
equilibria is incompletel. in the sense that they do not include the monopoly case into
their consideration when they derive the equilibrium prices at the second stage of the

game.

!To put it in another way, we argue that without exclusion of the case in which a subgame perfect
equilibrium of the two-stage game results in a monopoly and creates a higher monopoly profit than any
one of the duopoly profits, a subgame perfect equilibrium derived from the assumption that two firms
exist and segment the market as did in Shaked and Sutton (1982) may not be true.



The remainder of the paper is organized as follows. The model is described in Section
2. In Section 3 we give a complete proof of the existence of the unique subgame perfect
equilibrium for the quality-then-price game and a taxonomy of the degree of product

differentiation in this equilibrium. Section 4 concludes.

2 The model

We employ a variant of the Shaked and Sutton (1982) model. Suppose some good can
be produced in a continuous range of quality levels. represented by a technologically
feasible interval Q = [g...qys]. where 0 < gy < ¢ < qyr < +2<. o being the quality of
the outside good. g, being the lowest possible quality level and gxs being the highest
one. We differ from Shaked and Sutton by using a lower bound g, of the feasible quality
interval which is independent of the quality of the outside good while they use the
latter as the lower bound of the quality interval. There are two firms in the industry,
each producing a single quality at zero costs. The firms play a two-stage game, first
quality, then price, and compete for consumers by offering packages of price and quality
(pivq.),1 € I = {1.2}. With ¢, = ¢,. Bertrand competition results zero prices and profits
for both firms, and this is obviously not an interesting case. So, we assume away it in
this paper. and let q; < ¢;. The prices are in terms of the numeraire good.

A continuum of consumers is identical in taste but differs in income. Income t is
uniformly distributed on an interval [a.b] where 0 < a < b < +2c.

Consumers make indivisible and mutually exclusive purchases from the interval of
qualities Q. in the sense that a consumer either makes no purchase, or else buys exactly
one unit of the product from either suppliers. If a consumer with income ¢ buys one unit
of the commodity from firm : € I with quality ¢, € Q at price p;, his utility is given by

Ui(t.qi.p:) = qi(t — pi)
where t — p, is the consumer’s disposable income devoted to the consumption of the
numeraire good after the purchase of the differentiated good of quality ¢;. Each consumer
buys from the firm by maximizing his or her utility. If a consumer does not buy his or her
utility is given by consuming the outside good, i.e.. U5(¢.qo,0) = got. This specification
of the consumers’ utility functions implies that individuals with higher income enjoy
quality improvement more than low income consumers. The market area of the product
of firm ¢ # j € I at qualities ¢; and ¢, and at prices p, and p; is therefore given by
Mi(qi.q;,p:,p;) = {t € [a.8] | Ui(t, qi, pi) 2 maz{0,U,(t,q;,p;)}},
i.e., the set of consumers that prefer to buy from firm z.



At qualities g, and g, and at prices p, and p,;, 7 # j, and 7,j € I, the demand
D.(q..q,.p.-p,) for the commodity of firm i € I is equal to

Di(g:.q,-pi-p)) =/ dt.

M. (3..9;.P.P;)
In Figure 1 we give an interpretation of the market segmentation between Firm 1 and
Firm 2 in case p; < p; and go = 0, where t;; € [a.}] denotes the marginal consumer who
is indifferent between buying from firm 1 and buying from firm 2. For a concrete and

complete description of the firms' demand functions we refer to the Appendix.

Ll ga(t = pa)

a(t—p1)

0 pa P2t b t
Figure 1: py <a<pyand ¢ =0

The corresponding profits are
71(q1.92.p1-p2) = p1D1(pr.p2- q1. q2)
for firm 1 and

72(q1.92. p1-p2) = p2D2(p1. p2. 1. q2)
for firm 2.

3 Quality and price competition

It has been shown in Shaked and Sutton (1982) that for given product quality specifica-
tion, if the income distribution interval [a, b] satisfies the condition 2a < b < 4a, then of

any N firms offering distinct products, exactly two will have positive market shares at



the equilibrium of price competition. Moreover. at equilibrium, the market is covered,
i.e.. no consumer stays out of the market.

Our work in this section is to extend the above result. We focus on the duopoly case.
and explicitly prove that under the assumption of 2a < b < 4a there is a unique subgame
perfect equilibrium, at which the two firms maximally differentiate their products if the
quality of the outside good is sufficiently low or if both the quality of the outside good is
sufficiently high and the difference between it and the lowest feasible quality is sufficiently
large: otherwise if the quality of the outside good is sufficiently large but the difference
between it and the lowest feasible quality is sufficiently small some degree of product

differentiation arises.

3.1 The case ¢y =0

Lemma 1 Suppose qo =0 and 2a < b < 4a. Then for any given quality specification q,
and q; in Q of firm I and firm 2, respectively, the Nash-Bertrand equilibrium (Y. py)

at the second stage of the game is such that both firms are in the market and

pi = &E(b—2a) andpy

n

ii(2b-a) ifqi/q 2 T

Il
Il

b(32—91)+29; if b

Y =3
a and p; - e 2 01/ %

Proof. The proof is divided into two parts.

(i) First we prove that for any given quality specification, any Nash-Bertrand equilibrium
at the second stage of the game, if it exists, denoted by (py.py). can not happen at the
case when one of the two firms stays out of the market.

It is straightforward to prove that firm 2 can not stay out of the market at (B2 )
because firm 2 can always set a price p, = py’ and take over the market from firm 1 or at
worst share the market with firm 1. Next we need to prove that firm 1 can not stay out
of the market at (p;.py ), for which we follow a graphical proof and distinct between

three cases:

case 1: py < py. Then Di(q1.q2.pY . py) = 0, and so (g1, g2, pY.pyY) = 0.

From (a) of Figure 2, it is found that if p}" < a, then firm 2 has an incentive to deviate
from py, because by charging an infinitesimal higher price, its demand is not affected.

and consequently its profit is increased. Similarly from (b) of Figure 2, it is found that



if py > a. then firm 1 has an incentive to deviate from py by setting its price at p; with

0 < p; < a. because then firm 1 gains a positive market share.
case 2: py = py. Then D,(q;.q2.p7.py) = 0, and so 7,(q1,¢2.py . p3 ) = 0.

From (a) of Figure 3 it is found that if p) > a, then firm 1 has an incentive to deviate
by setting its price at p, with 0 < p; < a, because then firm 1 gains a positive market
share. Similarly from (b) of Figure 3, it is found that if p)’ < a, firm 2 has an incentive
to deviate, because by charging an infinitesimal higher price. its demand is not affected,

and consequently its profit is increased.

case 3: py > py. Then firm 1 stays out of the market if and only if t;; < a, and so

71(‘11-‘]2-Pi\"ap'2\') =0.

From (a) of Figure 4 it is found that if ¢;; < a, then firm 2 has an incentive to de-
viate, because by charging an infinitesimal higher price, its demand is not affected, and
consequently its profit is increased. If t;; = a and py¥ > 0, then firm 1 has an incentive
to deviate. because then firm 1 gains a positive market share, so a positive profit. Oth-
erwise if t;; = a but py¥ = 0. then firm 2 has an incentive to deviate. In fact, if firm 2
does not deviate. its profit ™ is given by 7" = py' (b — t13), where t;; = a satisfies the
equation ¢;(t;2—0) = q2(ti2 —p3 ). Solving the equation for py’ and then substituting p3’
and t into the equation for 7™, we derive the profit =" = a(b—a)(q2 — q1)/qz for firm
2 in case it does not deviate. But if firm 2 deviates by maximizing its profit p,(b — t,,),
where t,, is given by the equation ¢, (t;, —0) = ga(t;, —p2), then its profit 7% equals 7% =

b%*(g2 — q1)/(4¢2). For 2a < b. we have #? > =" so firm 2 has an incentive to deviate.

(ii) Secondly we prove that in case of a duopoly the Nash-Bertrand equilibrium exists
and is as given in the lemma. This directly follows from the proof of lemma 2 of Shaked
and Sutton (1982).
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(a) iz < a

tiz=a

Figure 4. p} > p¥ a

Consider the profit of firm i. 1 € {1.2}. at the first stage conditional on the quality
specification ¢;, ¢ € {1.2}. From Lemma 1 we can calculate the firms’ profits associated
with the equilibrium prices as follows

¥ (qr,0) = B=2(b—2a) and 7 (qr.qn) = B2 (26— a)?
if q1/q2 > =28 otherwise,

b+a i
(g q) = 3(b—a—- 22) and 7)(qy.q) = Hupltan(p4q_u)
From now on let @ = g./qy and o = q1/q2. 500 < a < a < 1. Then a denotes the
degree of product differentiation. The firm’s profit associated with the equilibrium prices
can be rewritten as follows:

fa> "bf:, then




v, (1=a)(b—2a)?
¢ (1 —a)(2b—a)?
w5 = S=eie el 2
Otherwise if Lb 23 > a. then
. a
:1\(0)::(b—a—1_0) (3)
v L ‘ a
T (Q):I(bl‘l—o)-f-ao)(b—aﬁ-?). (4)

To establish our proposition we first claim the following
Lemma 2 The firms' reduced profit function forms satisfy

o= l))

—— < 0 for every a € (a.1] and i € {1,2}.
Proof.

Differentiating the firms’ reduced profit function forms in qualities of equations (1), (2)

and (3) with respect to a, it is straightforward to prove that —— Selle)

< 0 for all @ and
a_-z(_a < 0for a > 42, Then we are left with proving that ——2—(1 <0for2 >a>a.

Dlﬂ'eremlatlon of 72\ (o) in (4) with respect to a yields

3= (o) r \ 1 2-
-—50& = i[(a —b)(b+ %i +(b(1—-a) +GO)“—_’J_)—);] =- ]I(b— a)(b+ %%;;l) (—l_a—)Z}
Arsy .Y P =
To prove that —1,—)(32 < 0.t is equl\'alent to prove that (b — a)(b+ ‘%%’;2 ﬁ
which requires that a < 22("5’_3:) Buta <2 = :. and for b > 2a we have 22(5!; 3:) - b+: . S0
_2\(_0 <0
=]

Given Lemma 2. it is straightforward to establish the following
Proposition 1 Suppose qo = 0 and 2a < b < 4a. Then there exists a unique subgame
perfect equilibrium when firms act non-cooperatively in first choosing qualities then prices,
in which the two firms mazimally differentiate their product specifications, so g = qm

and gy = avy.

Proof.



Consider the first stage of the quality-then-price game. The firms’ reduced profit func-
tions are given in equations (1) and (2) or (3) and (4). From Lemma 2 firm 2 always
benefits by leaving its product quality from any given product quality of firm 1 as far
as possible. So. ¢; = gyr. Similarly from Lemma 2 firm 1 always benefits by keeping

its product quality as far from any given product quality of firm 2 as possible. so g;¥ = ¢,,.

=]

3.2 The case ¢5 > 0

Lemma 3 Suppose qo > 0 and 2a < b < 4a. Then for any given quality specification q
and q; in Q of firm I and firm 2. respectively. the Nash-Bertrand equilibrium (py,py’)

at the second stage of the game is such that both firms are in the market and

N _ b-2a33-¢ N _ 2b-aga-g 2-1% y
= 3a q andpz— 34 72 lfcz lef‘
= ah—q’;ﬂ and py = t[b(q; —q) +a(q; — qo)] otherwise.

Proof.

The proof directely follows the proof of Lemma 1.

Given the Nash-Bertrand equilibrium (py. py) at the second stage of the game, we
can calculate the firms’ profits associated with the equilibrium prices as follows
N _(b=2a)q@-q
“1(‘11-?2)—_5_—
if 2= > ”“ ; otherwise.

i =
e A=, 2e-a-9
”1 (Q1-Q2)=; (b—a )

< Q1 92— q1

. (2b—a)?q, —
and 7 (q1.q2) = e nowm
9 9 q2

and 1
3 (@1.92) = —[b(qz - @) +ala = qo)]"
From the above progt functlons of firm 1 and firm 2 associated with the equilibrium
prices it is straightforward to show through simple calculation that the following holds
37"?(‘71“12)/3‘11 <0
for any given q,q; € [gm. qrr] satisfying g—g-‘ll > ";;“, and
07 (q1,92)/892 > 0
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for any given ¢1,qz € [gm-qu] if fﬁ > gbi i.e., the gap between the highest feasible
quality and the lowest feasible quality is not ‘too big’.

So. to foc'1s on the degree of product differentiation in the case for go > 0 is equivalent
to focus on specifving the sign of 977 (q1,¢2)/8g, for any given ¢, ¢ € [gm.qys] satisfving
H L3 5“ . The following lemma gives a characterization of this sign.

Lemma 4 Suppose g0 > 0 and 2a < b < {a. Then for any given quality specification
q1 and g, of firm 1 and firm 2. respectively, satisfying q1.q2 € [gm.quv] and =82 < -‘f—

91=g1 —
there exists q.q > 0 with ¢ < g such that

977 (q1.92)/9q1 <0 ifgo < g
07 (q1.@) /0 >0 f g0 > 7.
whereas for go € [q.7] the sign of 977 (q1.q2)/Oq s ambiguous.

Proof.

Given q,.q; € [gm.qar] and %HT S . we have from the above derived profit function

of firm 1 associated with its equlhbrlum price that

Cq—doy 2= 0 =, gjqa—qo(§+q1+qo—2qz)
2 q @2—q 2 ¢ a @2 —q

(1. 42) =
Then

2 5 7y
b _a’q b qo+q1 2q, 9, 92— +9%+q — 29
07 (91.92)/0q = 5[5 (= + S B )+(1-;1-)( P )]

a? .. 2b. 5 & g 3
Sl T— ql( 9 — @2) + ({4 — —)q0q2 — 295) + 9290 + (= — 2)qog;).
24i(g2 — q1)* a a
Thus we have
9(07;" (q1.92)/ Oau | b_4]/a€{o >0 (3)
and
(6“1 q91-92 /6(]1 bog)p=g > 0. (6)

But from section 3.1 we have

(a"'i\.(%l}z)/a(hI§=4)qo=o <) (7)
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So. from (5). (6) and (7) there exists a ¢ such that (07" (91,92)/091)e_q < 0forgo < g
and (877 (¢1.92)/0q1)e_q > 0 for go > ¢. Since 07:¥(q1.92)/0qy is increasing in f we
have 977 (1. 72)/8q) < 0 for go < g and 2a < b < 4a.

Similarly, we can derive the follows

91077 (91-92)/0q1|2.5)/ 990 > 0 (8)

and

(67'1\‘(‘11472)/3(71lgzz)%:,, > 0. (9)
But from section 3.1 we have
(37’1\.(‘11~<12)/aql|§= )ao=0 < 0. (10)

From (8), (9) and (10) there exists a § such that awi\'(ql,qz)/aql)gﬂ < 0 for go <
7 < 0 and (87 (q1.q2)/0q1)s, for go > 7. Since 077 (g1.q2)/dqy is increasing in g, we
have 97 (¢y.¢2)/8q: > 0 foraqo < gand 2a < b < 4a.

It should be clear that for go € [g.7] the sign of 871(q1.¢2)/dq: is ambiguous.

Proposition 2 Suppose go > 0,2a < b < 4a, and = 2> ;;_22

unique subgame perfect equilibrium in pure strategies when firms act non-cooperatively

Then there ezists a

in first choosing qualities then prices. There exist also q. § and q; with ¢ < q and ¢f =
qy — %(q.\, — qo) such that mazimum product differentiation holds in this equilibrium if
go < g or if go > 7 and g, > q;; and some degree of product differentiation is erhibited
in this equilibrium with firm 1 locating at ¢ and firm 2 locating at qx if o > q and
9m < q1-

Proof.

From the statement above and Lemma 4 it is straightforward that for any given
feasible quality interval [gm,ga]. firm 2 always chooses gy for its product selection. And
for firm 1 there exist ¢ and g such that if go < g (see also Figure 5 (a), without loss of

generality, lines are used instead of curves, the same for Figure 5 (b)), then the profit
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7 (q1-qy) of firm 1 is always decreasing in g, so firm 1 chooses g.: otherwise if go > 7

(see also Figure 5 (b)), then the profit function =y (gi.qy) of firm 1 is increasing in

¢ satisfyiug gﬁ < 5;: (called region 1) but decreasing in ¢, satisfying L4=1¢ < =

(called region 2). So. the profit :i\A(ql‘qM) of firm 1 is maximized at the intersection of
its profit curves from region 1 and 2. defined by gﬁ = ";—: i.e., q] = qv— &—“ﬁ(q,\, —qo)-
If ¢, > g;. then the profit function ’1‘ (q1.qus) of firm 1 is also always decreasing in ¢,
so firm 1 chooses ¢.,. Otherwise if ¢ < ¢j then firm maximizes its profit by choosing

¢;. In any case the equilibrium is unique and subgame perfect.
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R2(qm-q2]

909m
(a)

55
sy
ey
-
=
)

Ra(q3. 92)

q9 Qv 4
(b)

Figure 3

4 Conclusions

While Shaked and Sutton (1982) focus on relaxing price competition through product
differentiation. the degree of product differentiation is not analyzed there. In this paper
we focus on the degree of product differentiation, and demonstrate that firms maximally
differentiate their products if the quality of the outside good is sufficiently low or if both
the quality of the outside good is sufficiently high and the difference between it and
the lowest feasibie quality is sufficiently large; otherwise if the quality of the outside
good is sufficiently high but the difference between it and the lowest feasible quality is
sufficiently small this equilibrium exhibits some degree of product differentiation. Thus
we give a taxonomy of product differentiation in Shaked and Sutton’s framework in case

2a < b < 4a. The reasons behind this product selection are quite intuitive. Because
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firm 2 enjoyvs higher quality advantage, it is always profitable for firm 2 to choose the
highest possible quality. Therefore, we need only to consider the product selection of
firm 1. If g is sufficiently small. then price competition from the fall back good faced
by firm 1 is very weak, and firm 1 finds it profitable to differentiate itself from firm 2 as
far as possible. which yields maximum product differentiation. An alternative reason for
the maximum product differentiation is found in case when go. the quality of the outside
good. is sufficiently high. but the difference between go and the lowest feasible quality
is sufficiently large (in the sense that go is on the left side of g; while g is on the right
side of ¢7). Then price competition from the fall back good faced by firm 1 is offsetted
by price competition of firm 2 from above and the isolation by ¢j from the outside good
(where g} acts just like a fence which isolates price competition from the outside good).
Finally, if the quality of the outside good is sufficiently high and the difference between it
and the lowest feasible quality is not too large, price competition from the fall back good
faced by firm 1 will outweigh price competition from firm 2 from above and the isolation
from the outside good, thus forces firm 1 to the inside of the feasible quality interval, and
some degree of product differentiation shows up. The above discussion in case go > 0
crucially depends on the assumption that the gap between the highest feasible quality

and the lowest quality is not too big.

Appendix
The demand functions of Firm 1 and Firm 2

We may distinguish three different types of indifferent consumers, namely a consumer
being indifferent between buying from firm 1 and not buying at all, a consumer being
indifferent between buying from firm 2 and not buying at all, and, finally, a consumer
being indifferent between buying from firm 1 and buying from firm 2. We denote t;; =

23%:?331 and t; = (q—'_'qu)p, for alli e I = {1,2}.



. 5 t —
) gt =) U(.) 4t — p2)
1(t=p1)
. 9ot
a(t—p)
™
C==GH bt C— T &% 6 5t
Figure 6 (a): p1 < a < p;. go small Figure 6 (b): py < a < pa, qo large

If go is relatively small. as in Figure 6(a). there exists a consumer ¢, being indifferent
between buyving from firm 1 and not buying if t; > a, otherwise all consumers prefer
to buy. Furthermore, there exists a consumer ¢, being indifferent between buying from
firm 1 and firm 2 if a < t, < b.

If go is relatively high, as in Figure 6(b), there does not exist a consumer ¢; being
indifferent between buying from firm 1 and buying from firm 2. The reason is that all
consumers prefer the outside option or the commodity of firm 2 to the commodity of
firm 1. Clearly. there does exist a consumer ¢, being indifferent between buying from
firm 2 and not buying if ¢, > b.

Consequently. the demand for the firms can be written as

Di(q1.92.p1.p2) = 0, for py 2 pa.

and
tiz—t ifa<t;<tp<b
tip—a ift;<a<t; <b
Di(q1.q2,p1.p2) = b—t; ifa<t, <b<ty, forp; <p;
b—a iftlsﬂ,bstlz
0 otherwise,
and
b—a ifa>t,
Dy(q1.q2.p1.p2) =4 b—t, ifa<t,; <b forp >p;
0 otherwise,
and
b—a if @ > maz{ty,t2}
Dy(q1.92.p1.p2) = { b—maz{tisty} ifa<t;p<b for py < p2

0 otherwise.
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