Tilburg University

Dominated Strategies and Common Knowledge

Samuelson, L.

Publication date:
1991

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Samuelson, L. (1991). Dominated Strategies and Common Knowledge. (CentER Discussion Paper; Vol. 199110). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

No. 9110

DOMINATED STRATEGIES AND COMMON KNOWLEDGE

by Larry Samuelson

March 1991

ISSN 0924-7815

DOMINATED STRATEGIES AND COMMON KNOWLEDGE*

Larry Samuelson
Department of Economics University of Wisconsin 1180 Observatory Drive Madison, WI 53706 USA

January 1991

HEADNOTE

This paper establishes five results. First, the common knowledge of admissibility is not equivalent to iterated admissibility. Second, there exist games in which the common knowledge of admissibility does not uniquely determine which strategies should be eliminated on admissibility grounds. Third, there exist games in which assuming that admissibility is common knowledge yields a contradiction. Fourth, admissibility can be common knowledge without the players knowing the choice sets implied by this knowledge. Finally, difficulties with the common knowledge of admissibility can arise even in games in which each player has a unique dominant strategy.

KEYWORDS: Dominated Strategies, Common Knowledge, Admissibility, Iterated Admissibility

JEL Classification number 026
*I am grateful to Glacomo Bonnano, Tilman Börgers, In-Koo Cho, Ron Harstad, George Mailath, Herve Moulin, Ariel Rubinstein, and two anonymous referees for helpful comments on an earlier version of this paper. Financial support from the Hewlett Foundation is gratefully acknowledged. This work was finished while I was visiting the CentER for Economic Research at Tilburg University. I am grateful to the CentER for its generous support and gracious hospitality.

DOMINATED STRATEGIES AND COMAON KNOWLEDGE

I. Introduction

The prescription that players in a game should avoid playing weakly dominated strategies (should play "admissible" strategies) is one of the most basic tenets of game theory. ${ }^{1}$ It is widely recognized, however, that if players in a game are assumed to not choose dominated strategies, and this is common knowledge, then one derives implications which are potentially much stronger than simply removing dominated strategies from the game. ${ }^{2}$ In particular, if player 1 knows that others will not play dominated strategies, then 1 will presumably shun not only strategies which are dominated but also those which become dominated once the dominated strategies of others have been eliminated from consideration. Further iterations of this type of reasoning are possible, yielding the iterated elimination of weakly dominated strategies (or iterated admissibility). Iterated admissibility thus appears to be an implication of the common knowledge of admissibility and has been taken to be equivalent to the common knowledge of admissibility (e.g., Rath (1988)). ${ }^{3}$

The point of departure for this paper is the observation that some intuitive puzzles appear when applying iterated admissibility. First, it is well known that the order in which dominated strategies are eliminated can affect the outcome of the process. Second, cases arise in which agents

[^0]eliminate strategies on the strength of the presence of opponents' strategies which are themselves subsequently eliminated. Finally, the process appears to Initially call for agents to assume that opponents may play any of their strategies but to subsequently assume that opponents will certainly not play some strategies. These anomalies suggest that a more careful examination of What it means to assume that admissibility is common knowledge would be useful.

This paper begins this examination. We embed a game in a framework in which the common knowledge of admissibility can be explicitly modeled and its implications derived. We establish five results.

First, the common knowledge of admissibility is not equivalent to iterated admissibility. Games exist in which iterated admissibility eliminates more strategies than can be justified by an appeal to common knowledge of admissibility as well as games in which iterated admissibility eliminates fewer strategies than does common knowledge of admissibility.

Second, there exist games in which assuming that admissibility is common knowledge does not provide players with sufficient information to determine which strategies should be eliminated on admissibility grounds. Instead, multiplicity or coordination problems arise. It is important to note that the difficulty is not that the common knowledge of admissibility fails to eliminate sufficient strategies to reduce strategy sets to singletons, but rather that iterated admissibility does not provide sufficient information to determine which (if any) strategies should be eliminated.

Third, there exist games in which assuming that admissibility is common knowledge yields a contradiction. Admissibility can thus be inconsistent with common knowledge, calling into question two of the seemingly most basic concepts in game theory.

Fourth, suppose that admissibility is common knowledge and that this implies that player 1 chooses from a strategy set given by Z_{1} and player 2 chooses from a set given by Z_{2}. Does it necessarily follow that player 1
knows Z_{2} and player 2 knows Z_{1} ? If so, we say that the implications of common knowledge of admissibility are known. We show that admissibility can be common knowledge without the implications of common knowledge of admissibility being known.

Finally, we compare the common knowledge of admissibility with familiar admissibility notions. We show that if both players in a game have dominant strategies, then it is always possible for admissibility to be common knowledge in that game. However, the common knowledge of admissibility need not imply that players choose only their dominant strategies, and games exist in which dominant strategies are the sole implications of common knowledge of admissibility but this cannot be known by the players. We also attempt to extend these results to games with slightly less structure by examining the common knowledge of admissibility in dominance solvable games. It may be impossible for admissibility to be common knowledge in such a game.

The common knowledge of admissibility is thus a paradoxical construction. These results are not surprising. Admissibility and common knowledge are concepts which readily conflict. The usual motivation for admissibility is that one cannot be entirely certain as to an opponent's strategy choice and hence should choose only "safe" or admissible strategies. The implication of common knowledge is that in certain circumstances players can know something about opponents' choices, where knowing is a degree of certainty surpassing even that of a probability-one belief. It is then to be expected that these concepts clash, and we have merely made this expectation explicit. ${ }^{4}$
${ }^{4}$ The only potential surprise in our results is that the common knowledge of admissibility may not select unique dominant strategies (or dominance solvable outcomes) when they exist. Notice, however, that we are working with weak rather than strict dominance, so that even with unique dominant strategies, alternative best replies may exist. Common knowledge arguments can then cause these alternative best replies to be essentially equivalent to the dominant strategy, given what is known about opponents, causing the outcome of common knowledge of admissibility to yield more than simply the dominant strategy.

It is useful to examine our notion of common knowledge of admissibility. Our formulation of common knowledge is standard. In particular, we say that an event A is common knowledge if each agent knows A, each agent knows each agent knows A, each agent knows each agent knows each agent knows A, and so on. To further verify that our formulation of common knowledge is not problematic, we show that it is equivalent to Aumann's (1976) definition involving agents' information partitions. Our paradoxical findings thus cannot be traced to difficulties with the definition of common knowledge.

Attention then turns to our definition of admissibility. We say that if player 1 applies admissibility, then 1 chooses from the set of strategies which are not weakly dominated given the set of possible strategies for player 2. This is again the standard definition. We impose no further conditions, with all implications being derived from the assumption that this definition of admissibility is common knowledge.

The only potential difficulty here is the presumption that player 1 's choice set consists of all of 1 's undominated strategies. Why not allow player 1's choice set to be a subset of 1 's undominated strategies? Players would then still respect dominance considerations while some of the paradoxes we discover would be eliminated. For example, our finding that the common knowledge of admissibility is an inconsistent concept in some games would no longer hold.

Two responses arise. First, not all of our paradoxes would be resolved. For example, multiplicity problems would still arise. Second, if we allow players to choose from sets Z_{1} and Z_{2}, with each set containing a subset of the player's undominated strategies but not containing all undominated strategies, then admissibility (and the common knowledge of admissibility) provides an explanation for why the elements of Z_{1} and Z_{2} are included in players' choice sets, but the exclusion of some of the elements not contained in Z_{1} and Z_{2} must be motivated by some other considerations. We accordingly have not identified the implications of admissibility, but rather have
identified the implications of admissibility coupled with some additional criterion. We would like to identify the implications of admissibility only, and hence must examine the choice sets that remain after admissibility and no other considerations have been applied. The relevant choice sets then include all undominated strategies.

Is it an interesting question to examine the implications of admissibility only? The answer is clearly yes. For example, it has of ten been noted (Kohlberg and Mertens (1986)) that equilibrium concepts such as properness perform well in all respects except admissibility calculations. In particular, the set of proper equilibria can be affected by the deletion of a dominated strategy from a game. One possible response is to construct a two-stage procedure. In the first step, the common knowledge of admissibility is applied to possibly eliminate some strategies. The second step then consists of the application of a solution concept such as properness to the resulting strategy sets. ${ }^{5}$ The first step ensures that the resulting equilibrium concept exhibits desirable admissibility properties. In order to implement such a procedure, the first stage must identify all of each player's strategies which are not eliminated by dominance considerations. Hence, our admissibility calculations are the appropriate first stage.

Section II of this paper provides some necessary definitions. Section III constructs the formal model of common knowledge of admissibility. Section IV derives the main results. Section V discusses the implications of these results and their connection to the literature.
${ }^{5}$ Kohlberg and Mertens (1986) consider such a procedure, but reject it because a cell of a game's payoff matrix can be replaced with a constant-sum game that has a value matching that payoffs of the cell but which disrupts the dominance calculations of the initial stage. We do not address this difficulty (though it might be solved by a second-stage solution concept which is not "fooled" by constant-sum games, instead replacing them by their value and returning the game to the first stage). Instead, we consider a prior problem: For a fixed game, what is the outcome of the first-stage admissibility calculation? Hence, we will be concerned with whether this procedure is well defined rather than with its desirability.

II. Definitions.

We restrict attention to finite, two-player normal-form games of complete information. Let the players be denoted 1 and 2; pure strategy sets, S_{1} and S_{2}; pure strategies s_{1} and s_{2}; mixed strategy sets, Δ_{1} and Δ_{2}; mixed strategies δ_{1} and δ_{2}; and payoff functions, π_{1} and π_{2}. Letting $N=\{1,2\}, S=$ $S_{1} x S_{2}$, and $\pi=\left(\pi_{1}, \pi_{2}\right)$, we represent the game as $(N, S, \pi) \equiv G$.

We now define:

Definition 1. Let $X_{1} \subseteq \Delta_{1}$. Then a strategy δ_{1} is weakly dominated in X_{1} given X_{2} if $\delta_{1} \in X_{1}$ and if there exists $\delta_{1}^{\prime} \in \Delta_{1}$ such that

$$
\begin{equation*}
\pi_{1}\left(\delta_{1}^{\prime}, \delta_{2}\right) \geq \pi_{1}\left(\delta_{1}, \delta_{2}\right) \quad \forall \delta_{2} \in X_{2} \tag{1}
\end{equation*}
$$

with strict inequality holding for some $\delta_{2} \in X_{2}$. Strategy δ_{1} is strictly dominated in X_{1} given X_{2} if strict inequality holds in (1) for all δ_{2}.

Let $D_{1}\left(X_{1}, X_{2}\right)$ be the subset of the strategies in X_{1} which are not weakly dominated in X_{1} given X_{2} and let $D_{2}\left(X_{1}, X_{2}\right)$ be analogous. Now construct a sequence $\theta_{1}(t), t=1, \ldots, T, 1=1,2$, by

$$
\begin{gather*}
\theta_{1}(1)=\Delta_{1} \tag{2}\\
\theta_{i}(t)=D_{i}\left(\theta_{1}(t-1), \theta_{2}(t-1)\right), \quad t=2, \ldots, T \tag{3}
\end{gather*}
$$

where T is chosen large enough that

$$
\begin{equation*}
\theta_{1}(T)=\theta_{1}(T-1) \tag{4}
\end{equation*}
$$

Because the game is finite, such a T exists. Let $\bar{D}_{1}\left(\Delta_{1}, \Delta_{2}\right) \equiv \theta_{1}(T)$. Then:

Definition 2. The set of admissible strategies for player 1 (player 2 is analogous), given X_{2}, is given by

$$
\begin{equation*}
D_{1}\left(\Delta_{1}, X_{2}\right) \tag{5}
\end{equation*}
$$

The set of iterated admissible strategies for player i is given by

$$
\begin{equation*}
\overline{\mathrm{D}}_{1}\left(\Delta_{1}, \Delta_{2}\right) \tag{6}
\end{equation*}
$$

If weak domination is replaced by strict domination in definition 2 then we obtain strict admissibility and strict iterated admissibility.

Admissibility requires that weakly dominated strategies not be played. Iterated admissibility, also referred to as the iterated removal of weakly dominated strategies, requires that a sequence of moves be made in which weakly dominated strategies (given the remaining strategy sets) are removed at each step. ${ }^{6}$ The process continues until no further removals can be made, at which point the remaining strategy sets are referred to as the sets of iterated admissible strategies. In two-player games, the outcome of strict iterated admissibility is the set of rationalizable strategies (Bernheim (1984), Pearce (1984)).

III. Common Knowledge of Admissibility

This section constructs a model in which we can examine the common knowledge of admissibility.
(III. 1) Modal Logic

We require a model rich enough to capture what players know, what Inferences they can draw from their knowledge, and what it means for players to apply admissibility. Hence, we require a sygtem of epistemic modal logic. We work with the system commonly referred to as 55 . This system has its origins in Hintikka (1962); it is discussed in Chellas (1980) and Snyder (1971).
${ }^{6}$ Our definition of iterated admissibility requires that at each step, each player eliminates all dominated strategies. One easily conceives of alternative formulations in which players eliminate only some dominated strategies at each step. It is well known that the outcome of iterated admissibility can depend upon the order of eliminations.

Let L be a formal language, of ten called the "object" language, which includes the logical operators or constants \neg (negation), \wedge (conjunction), \vee (disjunction) \Rightarrow (implication), \Leftrightarrow (equivalence), \oplus (tautology), (®) (contradiction), K_{1}, K_{2}, P_{1}, and P_{2}; the auxiliary symbols " (", ")", and ","; and countable numbers of statement constants, predicate constants, function constants, and variables. In our application, the variables will be used to represent subsets of strategy sets. The function constants we will require include D_{1} and D_{2}, where D_{1} associates, with the sets X_{1} and X_{2}, the set $D_{1}\left(X_{1}, X_{2}\right)$ of strategies which are undominated in X_{1} given X_{2}. The predicate constant we will require is the equal sign $=$. Statement constants allow the language to include propositions. The two required in our applications are D_{1} and D_{2}, where D_{1} is the statement that player i chooses only admissible strategies. The four operators K_{1}, K_{2}, P_{1}, and P_{2} are modal operators and are to be interpreted as "player 1 knows," "player 2 knows," "player 1 thinks it is possible," and "player 2 thinks it is possible." From this basic vocabulary sentences are formed according to familiar rules.

A model (sometimes called a metalanguage) is a structure $M \equiv$ $\left\{W,\left\{M^{W}\right\}_{w \in W^{\prime}}, R_{1}, R_{2}\right\}$, where W is a set of possible worlds, M^{W} is a set of sentences in language L which are taken to be true in world w, and R_{i} is an equivalence relation on W. Intuitively, R_{1} captures the information agent i has about the state of the world. Definition 3 makes this intuition formal.

We now let W be a world in W and let " $M, W \quad \mid=\phi$ " be interpreted as "proposition ϕ is true in world w of model M." To make this precise, we offer:

Definition 3.

$$
\begin{align*}
& M, W \quad \mid=\phi \quad \text { iff } \quad \phi \in M^{W} \tag{7}\\
& M, W \quad \mid=\oplus \tag{8}\\
& \neg[M, W \quad \mid=\otimes] \tag{9}\\
& M, W \quad \mid=\neg A \quad \text { iff } \quad \neg[M, W \quad \mid=A] \tag{10}
\end{align*}
$$

$$
\begin{align*}
& M, W \quad \mid=A \wedge B \quad \text { iff } \quad[(M, w \mid=A) \wedge(M, w \mid=B)] \tag{11}\\
& M, w \quad \mid=A \vee B \quad \text { iff } \quad[(M, w \quad \mid=A) \vee(M, w \mid=B)] \tag{12}\\
& M, W \quad \mid=A \Rightarrow B \quad \text { iff } \quad[(M, W \quad \mid=A) \Rightarrow(M, W \quad \mid=B)] \tag{13}\\
& M, w \quad \mid=A \Leftrightarrow B \quad \text { iff } \quad[(M, w \quad \mid=A) \Leftrightarrow(M, w \quad \mid=B)] \tag{14}\\
& M, w \quad \mid=K_{1} A \quad \text { iff } \quad\left[\left(M, w^{\prime} \quad \mid=A \quad \forall w^{\prime} \in W \text { s.t. } w^{\prime} R_{1} w^{\prime}\right)\right] \tag{15}\\
& M, w \quad \mid=P_{1} A \quad \text { iff } \quad\left[\left(\exists w^{\prime} \in W \text { s.t. } w^{\prime} R_{1} w \text { and } M, w^{\prime} \quad \mid=A\right)\right] \text {. } \tag{16}
\end{align*}
$$

Statements (7)-(14) are straightforward. (8)-(9) save us from logical nonsense by ensuring that tautologies are true and contradictions false. (10)-(14) ensure that the logical operations of negation, conjunction, disjunction, implication and equivalence work in familiar ways.
indicates that player i knows A at world w if A is true in each world w for which $w^{\prime} R_{1} w$. Intuitively, $\left\{w^{\prime}: w^{\prime} R_{1} w\right\}$ is the set of possible worlds for i given W, and i knows something at w if it is true in all possible worlds given w. (16) indicates that i considers A to be possible at w if there exists some possible world (given w) at which A is true.

(III.2) Admissibility and Common Knowledge

We now introduce admissibility into our model. First, we fix a game $(N, S, \pi) \equiv G$. We then associate with each world α a pair of variables $Z_{1}^{\alpha} \subseteq \Delta_{1}$ and $z_{2}^{\alpha} \leqslant \Delta_{2}$, where these identify the choice sets of players 1 and 2 . We assume that $\alpha R_{1} \beta \Rightarrow Z_{1}^{\alpha}=Z_{1}^{\beta}$, which (given (15)) is equivalent to assuming that players know their own choice sets. This knowledge is essential to a theory of how agents play games.

Let D_{1}^{α} be interpreted as the statement that player i applies admissibility in world α. Formally we assume that in each world α the following hold:

$$
\begin{align*}
& D_{1}^{\alpha} \Leftrightarrow z_{1}^{\alpha}=D_{1}\left(\Delta_{1}, \bigcup_{\beta R_{1} \alpha} z_{2}^{\beta}\right) \tag{17}\\
& D_{2}^{\alpha} \Leftrightarrow z_{2}^{\alpha}=D_{2}\left(U_{\beta R_{2} \alpha} Z_{2}^{\beta} \Delta_{1}\right) \tag{18}
\end{align*}
$$

Condition (17) states that if player 1 applies admissibility in world α, then player 1 's choice set consists of those strategies which are not weakly dominated given the set of possible strategies played by player 2 , which is $U_{\beta R_{1} \alpha^{2}} \alpha_{2}^{\beta}$ (cf. (16)). Notice that these are straight-forward definitions of admissibility. Notice also that these conditions define admissibility but make no statement about whether players apply admissibility when choosing strategies. Hence, we must offer:

Definition 4. Admissibility holds in world α (or the players apply admissibility in α) if D_{1}^{α} and D_{2}^{α} are true in α (i.e., $D_{1}^{\alpha}, D_{2}^{\alpha} \in M^{\alpha}$).

We now introduce common knowledge. In particular:

Definition 5. Admissibility is common knowledge in α if the following are true in α :

This is again a standard formulation, defining an event to be common knowledge if everyone knows it, everyone knows everyone knows it, everyone knows every one knows everyone knows it, and so on.

It will be helpful to explore the properties of this formulation of common knowledge of admissibility. We offer two results. First, we develop an equivalent statement of (19), i.e., an equivalent statement of what it means for admissibility to be common knowledge.

Lemma 1. The collection of statements in (19) holds, and hence admissibility is common knowledge, in world α if and only if:

$$
\begin{align*}
& z_{1}^{\alpha}=D_{1}\left(\Delta_{1}, \underset{\beta R_{1} \alpha}{U} z_{2}^{\beta}\right) \tag{20}\\
& Z_{1}^{\alpha}=D_{1}\left[\Delta_{1}, \underset{\beta R_{1} \alpha^{2}}{U} D_{2}\left(\underset{\beta^{\prime} R_{2} \beta^{\prime}}{U} Z_{1}^{\beta^{\prime}}, \Delta_{2}\right)\right] \tag{21}\\
& Z_{1}^{\alpha}=D_{1}\left(\Delta_{1}, \cup_{\beta R_{1} \alpha^{2}}^{U} D_{2}\left[\mathcal{B}_{\beta^{\prime} R_{2} \beta^{\prime}}^{U} D_{1}\left(\Delta_{1}, \underset{\beta^{\prime \prime} R_{1} \beta^{\prime}}{U} Z_{2}^{\beta^{\prime \prime}}\right), \Delta_{2}\right]\right) \tag{22}\\
& Z_{1}^{\alpha}=D_{1}\left(\Delta_{1}, \underset{\beta R_{1} \alpha^{\prime}}{\cup} D_{2}\left(\underset{\beta^{\prime} R_{2} \beta^{\prime}}{U} D_{1}\left[\Delta_{1}, \underset{\beta^{\prime \prime} R_{1} \beta^{\prime}}{U} D_{2}\left(\underset{\beta^{*} R_{2} B^{\prime \prime}}{U} Z_{1}^{\beta^{*}}, \Delta_{2}\right)\right], \Delta_{2}\right)\right) \tag{23}
\end{align*}
$$

$$
\begin{align*}
& z_{2}^{\alpha}=D_{2}\left(\underset{\beta R_{2} \alpha}{U} z_{1}^{\beta}, \Delta_{2}\right) \tag{24}\\
& Z_{2}^{\alpha}=D_{2}\left[\bigcup_{\beta R_{2} \alpha^{\alpha}} D_{1}\left(\Delta_{1},{ }_{\beta^{\prime} R_{1} \beta^{\prime}}^{U} Z_{2}^{\beta^{\prime}}\right), \Delta_{2}\right] \tag{25}\\
& Z_{2}^{\alpha}=D_{2}^{\alpha}\left(\underset{\beta R_{2} \alpha^{2}}{U} D_{1}\left[\Delta_{1}, \underset{\beta^{\prime} R_{1} \beta^{\prime}}{\cup} D_{2}\left(\underset{\beta^{\prime \prime} R_{2} \beta^{\prime}}{U} Z_{1}^{\beta^{\prime \prime}}, \Delta_{2}\right)\right], \Delta_{2}\right) \tag{26}\\
& Z_{2}^{\alpha}=D_{2}\left(\underset{\beta R_{2} \alpha^{\prime}}{U} D_{1}\left(\Delta_{1},{ }_{\beta^{\prime} R_{1} \beta^{\prime}}^{U} D_{2}\left[\underset{\beta^{n} R_{2} \beta^{\prime}}{U} D_{1}\left(\Delta_{1},{ }_{\beta^{*} R_{1} \beta^{n}}^{U} Z_{2}^{\beta^{*}}\right), \Delta_{2}\right]\right), \Delta_{2}\right) \tag{27}
\end{align*}
$$

Proof. (20) duplicates the consequent of (17), so D_{1}^{α} and (17) give (20). Consider (21). From (15), $K_{1} D_{2}^{\alpha}$ is equivalent to the statement that the consequent of (18) holds for all β with $\beta R_{1} \alpha$. Substitution into (20) then ylelds (21). Similarly, (24) duplicates the consequent of (18) and hence follows from D_{2}^{α} and (18). From (15), $K_{2} D_{1}^{\alpha}$ is equivalent to the statement that the consequent of (17) holds for all β with $\beta R_{2} \alpha$. Substitution in (24) then yields (25). $K_{1} K_{2} D_{1}^{\alpha}$ and $K_{2} K_{1} D_{2}^{\alpha}$ can now be used, again with (15), to establish that (25) and (21) hold for all $\beta R_{1} \alpha$ and $\beta R_{2} \alpha$. Substitution into (20) and (24) gives (22) and (26). Iteration of this argument yields the result.

We can next provide a check that our formulation of common knowledge is standard. Let R_{1} and R_{2} be the partitions of W induced by R_{1} and R_{2}. Let \mathbb{R} be the finest common coarsening (meet) of R_{1} and R_{2}. Let a typical element of R be denoted r.

Lemma 2. Let $\alpha \in \Omega \in \mathcal{R}$. Then admissibility is common knowledge at α if and only if D_{1}^{β} and D_{2}^{β} hold for all $\beta \in \eta$ or, equivalently, for all $\beta \in \Omega$:

$$
\begin{align*}
& z_{1}^{\beta}=D_{1}\left(\Delta_{1}, U_{\beta^{\prime} R_{1} \beta^{\prime}}^{U} z_{2}^{\beta^{\prime}}\right) \tag{28}\\
& z_{2}^{\beta}=D_{2}\left(\cup_{\beta^{\prime} R_{2} \beta_{1}}^{U} z_{1}^{\beta^{\prime}} \Delta_{2}\right) \tag{29}
\end{align*}
$$

Proof. If Let (28)-(29) hold. We derive (20)-(27). First, letting $\beta=\alpha$ in (28)-(29) gives (20) and (24). Noting that (28)-(29) hold for all β with $\beta R_{i} \alpha$, and substituting, then gives (21) and (25). Iteration of this argument gives the remaining conditions. Only if Let (19) hold. Then the repeated application of (15) gives (28)-(29).

To see the implications of Lemma 2, note that it immediately yields:

Corollary 1. Admissibility is common knowledge at world α if and only if admissibility holds at each world in the element of the meet of R_{1} and R_{2} containing α.

This shows that the concept of common knowledge used in our formulation of common knowledge of admissibility is equivalent to the well-known formulation of Aumann (1976).

(III.3) Necessary and Sufficient Conditions

Lemmas 1 and 2 provide conditions for admissibility to be common knowledge, given by (20)-(27) or (28)-(29). These conditions are intuitive but are not especially easy to work with. It will be very helpful to derive conditions which can be expressed solely in terms of the structure of the game

G and which are necessary and sufficient for the ability to construct a model (given G) with a world in which admissibility is common knowledge. This section derives such conditions.

We begin, in Theorem 1, with conditions on a game which are both necessary and sufficient for the ability to construct a model with a world in which admissibility is common knowledge. The requirement that these conditions be both necessary and sufficient causes them to be complicated, and the statement and proof of Theorem 1 are tedious. Our subsequent results will follow from a simpler sufficient condition (presented in Theorem 2) and necessary condition (Theorem 3). Readers who are less interested in technical details may thus want to skip to Theorem 2 on page 16 (though Theorem 1 is used in the proof of Theorem 3).

Theorem 1. A model exists with a world α at which admissibility is common knowledge if and only if there exist sequences

with

$$
Z_{1 j k} \leqslant \Delta_{1}
$$

and sequences

$$
\begin{gathered}
\left\{I_{1 n k}\right\}_{n=1}^{\infty} N_{1 n} n_{k=1} \\
\left\{I_{2 n k}\right\}_{n=1}^{\infty} \sum_{2 n}^{N}
\end{gathered}
$$

with

$$
\begin{align*}
& I_{\text {ink }} \subseteq\left(1, \ldots, N_{j n+1}\right\} \tag{32}\\
& U_{k=1}^{n} I_{i n k}=\left\{1, \ldots, N_{j n+1}\right\}
\end{align*}
$$

such that

$$
\begin{align*}
& Z_{1 n k}=D_{1}\left(\Delta_{1}, U_{k^{\prime} \in I_{1 n k}}^{U} Z_{2 n+1 k^{\prime}}\right) \tag{34}\\
& Z_{2 n k}=D_{1}(\underbrace{U}_{k^{\prime} \in I_{2 n k}} Z_{1 n+1 k^{\prime}}, \Delta_{2}) \tag{35}\\
& k^{\prime} \in I_{1 n k} \Rightarrow \Rightarrow Z_{1 n k} \in\left\{Z_{1 n+2 k^{\prime \prime}}: k^{\prime \prime} \in I_{2 n+1 k^{\prime}}\right\} \tag{36}\\
& k^{\prime} \in I_{2 n k} \Rightarrow Z_{2 n k} \in\left\{Z_{2 n+2 k^{\prime \prime}}: k^{\prime \prime} \in I_{1 n+1 k^{\prime}}\right\} \tag{37}\\
& Z_{211} \in\left\{Z_{21 k}: k \in I_{111}\right\} \tag{38}\\
& Z_{111} \in\left\{Z_{11 k}: k \in Z_{211}\right\} \tag{39}
\end{align*}
$$

Let us first intuitively describe (30)-(39). When constructing our model in which admissibility will be common knowledge at world α, we will take $z_{1}^{\alpha}=$ Z_{111} and $Z_{2}^{\alpha}=Z_{211}$. (30) then requires that we find a sequence of sets, where this sequence begins with Z_{1}^{α}, then includes a collection of strategy sets for player 2, then a collection for player 1, then a collection for player 2, and so on. Two relationships must hold between these collections of sets. First, (34)-(35) indicate that Z_{1}^{α} must be 1 's set of undominated strategies given that 2 chooses from $U_{k=1}^{N} Z_{22 k}$. Similarly, each $Z_{22 k}$ must be the set of $2^{\prime} s$ undominated strategies given that 1 chooses from the union of some subset of the sets in $\left\{Z_{13 k}\right\}_{k=1}^{N_{13}}$. Each $Z_{13 k}$ must in turn be 1 's undominated strategies given that 2 chooses from the union of some subset of the sets in $\left\{Z_{24 k}\right\}_{k=1}^{n}$, and so on. Second, (36)-(37) require the following. If $Z_{13 k}$ (for example) is the set of 1 's undominated strategies given that 2 chooses from $U_{k \in I} Z_{13 k} Z_{2}$, then $Z_{13 k}$ must appear in each of the collections of player 1 strategy sets which generate the various $Z_{24 k}$. (31) gives a similar sequence starting with a set $Z_{2}^{\alpha} \quad$ (38)-(39) link these sequence together, indicating that Z_{1}^{α} must be one of the sets generating Z_{2}^{α} and vice versa.

Theorem 1 states that iff sequences satisfying (30)-(39) exist, then we can construct a model in which (20)-(27) hold. From the structure of (20)-(27) it is no surprise that we need sequences of sets linked together by relationships like (34)-(35). Why must (36)-(37) hold? To see this, let

$$
\begin{gathered}
-15 \\
Z_{13 k}=U_{k^{\prime} \in I_{13 k}} Z_{24 k^{\prime}}
\end{gathered}
$$

When constructing our model in which admissibility is common knowledge, $Z_{13 k}$ W111 be player 1 's choice set in some world γ and the sets in $\left\{Z_{24 k^{\prime}}: k^{\prime} \in I_{13 k}\right\}$ will be the choice sets of player 2 in those worlds which player 1 cannot distinguish from γ. Fix a $Z_{24 k}$. This is then the value of Z_{2} in some world, say β, with $\beta R_{1} \gamma$. Now if admissibility is to be common knowledge then $Z_{24 k}$, must be 2^{\prime} s undominated strategies given that 1 chooses from $U_{\beta^{\prime} R_{2} \beta} Z_{1}^{\beta^{\prime}}$. But $Z_{1}^{\beta}=Z_{13 k}^{\gamma}$ (since $\beta R_{1} \gamma$ and $Z_{1}^{\gamma}=Z_{13 k}$). Then $Z_{13 k}$ must be one of the sets generating $Z_{24 k^{\prime}}$, as ensured by (36)-(37).

We now prove Theorem 1.

Proof. If Let (30)-(39) hold. We show that a model satisfying (20)-(27) at some world α can be constructed. First, we set

$$
\begin{aligned}
z_{1}^{\alpha} & =z_{111} \\
z_{2}^{\alpha} & =z_{211}
\end{aligned}
$$

Now create a collection of N_{22} worlds $\beta_{1}, \ldots, \beta_{n_{22}}$, with $\beta_{1} R_{1} \alpha$ and $Z_{2}^{\beta_{1}}=Z_{221}$, $1=1, \ldots, N_{22}$. Let no other worlds satisfy $\beta R_{1} \alpha$. From (38)-(39), there exists a world β_{1}, for which $Z_{2}^{\beta_{1}^{\prime}}=Z_{2}^{\alpha}$ and which can be renamed so that β_{1}, = α. (34)-(35) then give (20). Next, for each β_{1} create a collection of worlds $\beta_{11}^{\prime}, \ldots, \beta_{1 n^{\prime}}^{\prime}$ with $n^{\prime}=\left|I_{221}\right|$ and with $\beta_{1 j}^{\prime} R_{2} \beta_{1}$. Let no other worlds satisfy $\beta R_{2} \beta_{i}$. Let $Z_{13 k}=\beta_{i k}^{\prime}$ for each $k \in I_{22 i}$. From (36)-(37), one of $\beta_{i j}^{\prime}$, can be taken to be identical to β_{i}, and (34)-(35) now give (21). Iteration of the argument yields the result.

Only If Let (28)-(29) hold. Then we can construct sequences satisfying (30)-(39). Let

$$
\begin{aligned}
z_{111} & =z_{1}^{\alpha} \\
z_{211} & =z_{2}^{\alpha}
\end{aligned}
$$

Then let

$$
\begin{aligned}
\left\{Z_{22 k}\right\}_{k=1}^{N_{22}} & =\left\{Z_{2}^{\beta}: \beta R_{1} \alpha\right\} \\
\left\{Z_{12 k}\right\}^{N}{ }_{k=1}^{n} & =\left\{Z_{1}^{\beta}: \beta R_{2} \alpha\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{111} & =\left\{1, \ldots, N_{22}\right\} \\
I_{211} & =\left\{1, \ldots, N_{12}\right\} .
\end{aligned}
$$

Then (38)-(39) hold by construction and (28)-(29) ensure (34)-(35). Now let

$$
\begin{aligned}
& \left\{Z_{13 k}\right\}_{k=1}^{N_{13}}=\left\{Z_{1}^{\beta^{\prime}}: \beta^{\prime} R_{2} \beta \text { for some } \beta R_{2} \alpha\right\} \\
& \left\{Z_{23 k}\right\}_{k=1}^{\}_{23}}=\left\{Z_{2}^{\beta^{\prime}}: \beta^{\prime} R_{2} \beta \text { for some } \beta R_{1} \alpha\right\}
\end{aligned}
$$

and let

$$
\begin{aligned}
& I_{22 k}=\left\{k: Z_{13 k}=z_{1}^{\beta^{\prime}} \text { for some } \beta^{\prime} R_{2} \beta \text { with } z_{2}^{\beta}=Z_{22 k}\right\} \\
& I_{12 k}=\left\{k: Z_{23 k}=z_{2}^{\beta^{\prime}} \text { for some } \beta^{\prime} R_{1} \beta \text { with } Z_{1}^{\beta}=Z_{12 k}\right\}
\end{aligned}
$$

Then (28)-(29) again ensure (34)-(35). Fix $Z_{22 k}$. By construction, $I_{24 k}$ includes z_{1}^{β} for a value of β for which $z_{2}^{\beta}=z_{22 k}$ and for which $Z_{1}^{\beta}=z_{111}$. This gives (36). (37) is similarly verified. The iteration of this technique gives the result.

The conditions given by (30)-(39) satisfy our requirement that they refer only to the structure of the game G, but are complicated. We can develop a convenient simpler sufficient condition for admissibility to be common knowledge.

Theorem 2. A model can be constructed in which admissibility is common knowledge in world α if there exists a pair of sets $Z_{1} \subseteq \Delta_{1}$ and $Z_{2} \leq \Delta_{2}$ which satisfy:

$$
\begin{align*}
& z_{1}=D_{1}\left(\Delta_{1}, Z_{2}\right) \tag{40}\\
& z_{2}=D_{2}\left(z_{1}, \Delta_{2}\right) . \tag{41}
\end{align*}
$$

Proof. Given a pair of sets Z_{1} and Z_{2} satisfying (40)-(41), we construct a model. Fix W, R_{1} and R_{2} and choose a world α. Let $\alpha \in r \in \mathcal{R}$. For each $\beta \in$
r, let

$$
\begin{aligned}
z_{1}^{\beta} & =z_{1} \\
z_{2}^{\beta} & =z_{2} .
\end{aligned}
$$

Then (20)-(27) will obviously hold for each $\beta \in \pi$ and hence admissibility will be common knowledge in α.

A pair of sets satisfying (40)-(41) will be referred to as a consistent pair.

Remark 1. Notice that we have not established the uniqueness of consistent pairs for a game, and note that if $\left(Z_{1}^{\alpha}, z_{2}^{\alpha}\right)$ and $\left(Z_{1}^{\beta}, z_{2}^{\beta}\right)$ are consistent pairs, then $z_{1}^{\alpha} \neq z_{1}^{\beta} \Rightarrow z_{2}^{\alpha} \neq z_{2}^{\beta}$.

Examples $10-11$ will show that the sufficient condition given by (40)-(41) is not necessary for admissibility to be common knowledge. We can find a relatively straightforward necessary condition:

Definition 6. A pair of sets $\left\{Z_{11}, \ldots, Z_{1 n(1)}\right\} \equiv Z_{1}$ and $\left\{Z_{21}, \ldots, Z_{2 n(2)}\right\} \equiv Z_{2}$, with $Z_{1 i} \subseteq \Delta_{1}$ and $Z_{2 j} \subseteq \Delta_{2}$, is a generalized consistent pair if Z_{1} and Z_{2} are nonempty and, for every $Z_{1 i} \in Z_{1}$, there is a subset θ_{11} of $Z_{\mathbf{2}}$ such that

$$
\begin{equation*}
Z_{11}=D_{1}\left(\Delta_{1}, \mathcal{Z}_{2 k} \in \theta_{11} Z_{2 k}\right) \tag{42}
\end{equation*}
$$

and for every $Z_{2 j} \in Z_{2}$ there exists a subset $\theta_{2 j}$ of Z_{1} such that

$$
\begin{equation*}
z_{2 j}=D_{2}\left(Z_{1 k} \in \theta_{2 j} Z_{1 k}, \Delta_{2}\right) \tag{43}
\end{equation*}
$$

and if

$$
\begin{align*}
& Z_{2 k} \in \theta_{1 i} \quad \Rightarrow \quad Z_{1 i} \in \theta_{2 k} \tag{44}\\
& Z_{1 k} \in \theta_{2 j} \quad \Rightarrow \quad Z_{2 j} \in \theta_{1 k} \tag{45}
\end{align*}
$$

A generalized consistent pair is a collection of strategy sets for player 1 and a similar collection for player 2 with the property that each set in player 1's collection is the set of player 1's undominated strategies given that player 2 chooses from some subcollection of player 2 's choice sets. In
addition, these subcollections must be linked by the conditions given in (44)-(45). A consistent pair is the special case in which each collection contains only a single set.

Theorem 3. Let a model exist in which admissibility is common knowledge for game G in world α. Then there exists a generalized pair of consistent sets for G.

Proof. Let (30)-(39) hold. Then define:

$$
\begin{aligned}
Z_{1 n} & \equiv\left\{Z_{1 n k}\right\}_{k=1}^{N_{1 n}} \\
Z_{2 n} & \equiv\left\{Z_{1 n+1 k}\right\}_{k=1}^{N_{2 n+1}}
\end{aligned}
$$

for $n=3,5, \ldots$. Then (36)-(37) ensure that $Z_{1 n}$ and $Z_{2 n}$ are ascending, i.e.,

$$
\begin{array}{lll}
z_{1 n} & \leq z_{1 n+2} \\
z_{2 n} & \leq z_{2 n+2}
\end{array}
$$

Because the game is finite, there exists an N such that

$$
\begin{array}{ll}
z_{1 n}=z_{1 m} & \forall n, m \geq N \\
z_{2 n}=z_{2 m} & \forall n, m \geq N .
\end{array}
$$

Let

$$
\begin{aligned}
& z_{1} \equiv z_{1 N} \\
& Z_{2} \equiv z_{2 N}
\end{aligned}
$$

(34)-(37) then ensure that Z_{1} and Z_{2} are a generalized consistent pair.

Finally, we turn to the question of what it means for players to know the outcome of common knowledge of admissibility.

Definition 7. The outcome of common knowledge of admissibility is known at world α if the common knowledge of admissibility holds at α and if the players know z_{1}^{α} and z_{2}^{α}, or, from (15):

$$
\begin{align*}
&-19 \\
& z_{2}^{\alpha}=U_{\beta R_{1} \alpha} z_{2}^{\beta} \tag{46}\\
& z_{1}^{\alpha}=U_{\beta R_{2} \alpha} z_{1}^{\beta} \tag{47}
\end{align*}
$$

Theorem 4. Let common knowledge of admissibility hold in world α. Then the outcome of common knowledge of admissibility is known in world α if and only if (40)-(41) hold at α.

Proof. Substitution of (46)-(47) into (17)-(18) gives (40)-(41).

(III.4) Examples

Much of our analysis will make us of the idea of a consistent pair, which is the sufficient condition for common knowledge of admissibility developed in Theorem 2. It is accordingly useful to illustrate (40)-(41).

Example 1. Consider the game given by

Depending upon the order of eliminations, iterated admissibility can be used to give the pair $\{T\},\{L\}$, the $\operatorname{pair}\{T\},\{R\}$, or the $\operatorname{pair}\{T\}, \Delta\{L, R\}$. The unique pair of consistent sets given by $\{T\}$ and $\Delta\{L, R\}$.

Example 2. Consider the matching coins game:

The unique consistent pair consists of $\Delta\{T, B\}$ and $\Delta\{L, R\}$, or the entire strategy sets.

Example 3. Consider the prisoners dilemma:

$$
2
$$

The unique consistent pair consists of $\{B\}$ and $\{R\}$.

IV. Implications

This section explores the implications of the common knowledge of admissibility.
(IV.1) Common Knowledge of Admissibility and Iterated Admissibility

We begin with the question of whether iterated admissibility is equivalent to the stipulation that admissibility is common knowledge. We answer this question negatively:

Theorem 5. Iterated Admissibility is not equivalent to the common knowledge of admissibility.

To prove this, it suffices to present an example in which the outcome of iterated admissibility differs from the outcome of common knowledge of admissibility. In particular, we can significantly simplify the analysis by noticing that it suffices to present examples of cases in which a consistent pair z_{1}^{α} and Z_{2}^{α} exists which is not the outcome of iterated admissibility. We find it convenient to present two examples.

Example 4.

		Y_{1}	Y_{2}
Y_{3}			
X_{1}	2,4	5,4	$-1,0$
X_{2}	3,4	2,4	$-2,0$
X_{3}	1,2	0,0	2,2
X_{4}	0,2	2,0	0,4

(iv)
(i) (iii)

Regardless of assumptions made about order of eliminations, iterated admissibility eliminates strategies in the order shown (first 1 , then $i 1$, and so on) to yield a unique outcome of $\left(\left\{X_{2}\right\},\left\{Y_{1}\right\}\right)$. (In particular, if only one of strategies X_{1} or X_{3} is removed by player 1 at the fourth round, then the other strategy from this pair must be removed at the next round.) Common knowledge of admissibility, in contrast, yields a unique consistent pair of $\Delta\left\{X_{1}, X_{2}\right\}$ and $\Delta\left\{Y_{1}, Y_{2}\right\}$. The difference in these two outcomes reflects the fact that once a strategy such as Y_{2} is eliminated by iterated admissibility, it cannot return even if the reason for its elimination has been purged. If admissibility is common knowledge, however, the knowledge that player 1 limits choices to $\left\{X_{1}\right\}$ provides player 2 with an admissibility-based reason to avoid Y_{3} but not Y_{2}, yielding $\Delta\left\{Y_{1}, Y_{2}\right\}$ for player 2. Admissibility calculations then lead player 1 to reject X_{3} and X_{4} but not X_{2}, yielding $\Delta\left\{X_{1}, X_{2}\right\}$. We conclude that iterated admissibility and the common knowledge of admissibility are distinct concepts.

Example 5. Consider the following game:

Iterated admissibility eliminates strategies in the order shown, regardless of
order considerations, to yield (T,L). The unique pair of consistent sets of this game is $\Delta\{T, M\}$ and $\{L\}$. The two concepts thus again diverge with payoff relevance.

In Examples 4-5, the outcome of common knowledge of admissibility is a superset of the outcomes of iterated admissibility. One might conjecture that this result holds in general. Examples 7-9 and Theorem 7 will show that it does not. Notice also the Examples 4-5 have only shown that the outcomes of common knowledge of admissibility and iterated admissibility can differ, in the sense that the unique consistent pair does not match the unique outcome of iterated admissibility. There remains the possibility that a sequence of sets exists satisfying the conditions of Theorem 1 in which Z_{111} and Z_{211} do not yield a consistent pair but do match the outcome of iterated admissibility. However, no such sequence exists for the games given in Examples 4-5. The verification of this is straightforward but tedious and is hence omitted.

(IV.2) Common Knowledge of Admissibility and Uniqueness

We now turn to a second property of the common knowledge of admissibility.

Theorem 6. There exist games in which the common knowledge of admissibility admits multiple solutions.

It is important to clarify what is meant by "multiple solutions." We are not referring to the fact that after dominance considerations have been applied, players may be left with sets from which to choose rather than singletons. Instead, multiplicity refers to the fact that simply assuming admissibility to be common knowledge may provide insufficient information to identify the pair of implied choices sets Z_{1} and Z_{2}.

We again prove this by example. It suffices to exhibit games with multiple consistent pairs.

Example 6. Consider the following game:

		L	
		R	
	T	3,3	1,3
1	B	3,1	0,0

There are two consistent pairs for this game, given by $\Delta\{T, B\}$ and $\{L\}$ and by $\{T\}$ and $\Delta\{L, R\}$

Example 7. The game given by

		L		
2	R			
	T	1,2	2,1	0,0
	M	2,1	1,2	0,0
	B	0,0	0,0	1,1

has three consistent pairs, consisting of $(\Delta\{T, M\}, \Delta\{L, C\}),(\{B\},\{R\})$, and the entire game. Notice that analogous result holds for a coordination game:

A Nash equilibrium is strict if each player's equilibrium strategy gives a strictly larger payoff than all alternative strategies. This property allows us to identify immediately an obvious connection between strict Nash equilibria and consistent sets, stated in the following proposition. In the process, we generate a host of additional examples of games with multiple consistent sets: games with multiple strict Nash equilibria.

Theorem 7. If s^{*} is a strict Nash equilibrium, then letting $Z_{i}=\left\{s_{1}^{*}\right\}$ yields a consistent pair.

These results ensure that one cannot first apply the common knowledge of admissibility and then apply a solution concept to the remaining sets.

Instead, there may be multiple outcomes consistent with admissibility, and the outcome of the solution concept may differ across these sets. The determination of the implications of admissibility man then fail to be independent of the subsequent solution concept. Equivalently, the outcome of the common knowledge of admissibility depends upon beliefs that may also be linked to the solution concept, destroying the independence between the two. The conclusion is that common knowledge of admissibility is no longer a coordination-free concept and hence loses a fundamental virtue.

The examples offered in proof of Theorem 6 indicate that in certain games, simple rules might be adopted to resolve the multiplicity inherent in the common knowledge of admissibility. However, these examples also make it clear that no obvious, general rule exists. If faced only with Example 6, one might advocate taking the intersection of the consistent pairs, but this will not work in the game given in Example 7 or games with multiple strict Nash equilibria, where the intersection is empty. Example 7 may suggest taking the largest consistent pair, but this will not work in the game given in Example 6 or again in many games with multiple strict Nash equilibria, where a largest pair does not exist. One might be tempted to resolve multiplicity problems by letting \bar{Z}_{1} be the union of all sets Z_{1} possessing the property that Z_{1} is a member of a consistent pair and then taking $\left(\bar{Z}_{1}, \bar{Z}_{2}\right)$ as the outcome of common knowledge of admissibility. ${ }^{7}$ However, applying this method to Example 6 shows that it has the unappealing property of failing admissibility!

(IV.3) Existence of Common Knowledge of Admissibility

We now turn to a third question. Is the common knowledge of admissibility a consistent concept, i.e., can one assume that admissibility is common knowledge without implying a contradiction? The answer is no:

7This might be defended on the ground that player i could reasonably expect any of the possible consistent pairs to be the "right" one and hence should regard any element of player j 's component of any consistent pair as a potential candidate for play. This reasoning exhibits some of the flavor of rationalizability.

Theorem 8. There exist games for which no generalized consistent pair exists.

From Theorem 3, the absence of a generalized consistent pair precludes the common knowledge of admissibility, so Theorem 8 implies that games exist in which one cannot consistently assert that admissibility is common knowledge. For the proof, it is again sufficient to offer an example:

Example 8. Consider the following game:
2

	C	R
C	1,1	1,0
	1,0	0,1

A pair of generalized consistent sets does not exist for this game. The difficulty here is that T dominates B for player 1. However, the two differ only if 2 plays R with positive probability, and R is strictly inferior iff 1 plays T. Admissibility then leads 1 to play T if there is any chance of 2 playing R, but 2 is then led to play only L, at which point admissibility now recommends T or B to 1 , causing L and R to be the recommendation for player 2, and so on. To make this more precise, we first show that a consistent pair $\left(Z_{1}, Z_{2}\right)$ does not exist. If Z_{2} contains only L, then Z_{1} must contain both T and B, in which case Z_{2} must contain both L and R, a contradiction. Similarly, if $Z_{2}=\{R\}$, then it must be that $Z_{1}=\{T\}$, at which point $z_{2}=$ $\{L\}$, a contradiction. Finally, If Z_{2} contains any mixtures over L and R, then we must have $Z_{1}=\{T\}$, in which case $Z_{2}=\{L\}$, again a contradiction. Now extend this to the question of a generalized consistent pair. \mathbf{z}_{1} can potentially contain $\{T\}$ and $\Delta\{T, B\}$ for player 1 and $\{L\}$ and $\Delta\{L, R\}$ for player 2, since these are the potential outcomes of the operators D_{1} and D_{2}. Suppose $\Delta\{T, B\} \in Z_{1}$. Then the associated θ_{1} (cf. Definition 6) must contain \{L\}. However, the θ_{2} associated with $\{\mathrm{L}\}$ can include only $\{\mathrm{T}\}$ if (43) is to hold, a contradiction (since $\Delta\{T, B\}$ is then not contained in θ_{2}, falsifying (44)). Similarly, Z_{2} cannot include $\Delta\{\mathrm{L}, \mathrm{R}\}$. Then we must have $\mathrm{Z}_{1}=\{\mathrm{T}\}$ and $\mathrm{Z}_{2}=\{\mathrm{L}\}$.

Then (\{T\}, $\{\mathrm{L}\}$) would have to constitute a consistent pair, which it does not, so there is no generalized consistent pair.

Example 9. Consider again the game given in

Depending on order, iterated admissibility can be used to select (T,L), (B,L), or (T,R). This game has no generalized consistent pair. We again first examine the existence of a consistent pair. We must consider seven cases. First, let $Z_{1}=\Delta\{T, M, B\}$. Then $Z_{2}=D_{2}\left(Z_{1}, \Delta_{2}\right)=\Delta\{L, R\}$ and $D_{1}\left(\Delta_{1}, Z_{2}\right)=\{T\} \neq$ Z_{1}, a contradiction. Similarly,

$$
\begin{array}{llll}
Z_{1}=\Delta\{T, M\} & \Rightarrow Z_{2}=\{R\} & \Rightarrow D_{1}\left(\Delta_{1}, Z_{2}\right)=\{T\} & \neq Z_{1} \\
Z_{1}=\Delta\{T, B\} & \Rightarrow Z_{2}=\{L\} & \Rightarrow D_{1}\left(\Delta_{1}, Z_{2}\right)=\Delta\{T, M, B\} & \neq Z_{1} \\
Z_{1}=\Delta\{M, B\} & \Rightarrow Z_{2}=\Delta\{L, R\} & \Rightarrow D_{1}\left(\Delta_{1}, Z_{2}\right)=\{T\} & \neq Z_{1} \\
Z_{1}=\{T\} & \Rightarrow Z_{2}=\Delta\{L, C, R\} & \Rightarrow D_{1}\left(\Delta_{1}, Z_{2}\right)=\Delta\{T, B\} & \neq Z_{1} \\
Z_{1}=\{M\} & \Rightarrow Z_{2}=\{R\} & \Rightarrow D_{1}\left(\Delta_{1}, Z_{2}\right)=\{T\} & \neq Z_{1} \\
Z_{1}=\{B\} & \Rightarrow Z_{2}=\{L\} & \Rightarrow D_{1}\left(\Delta_{1}, Z_{2}\right)=\Delta\{T, M, B\} & \neq Z_{1} .
\end{array}
$$

In each case, $D_{1}\left(\Delta_{1}, Z_{2}\right) \neq Z_{1}$, ylelding a contradiction and showing that there is no consistent pair. One similarly shows that there is no generalized consistent pair for this game.

The conclusion is clear. There exist games in which admissibility cannot be common knowledge. The assumptions of the application of admissibility and the common knowledge of its application yield logical inconsistencies.
(IV.4) Knowing the Outcome of Common Knowledge of Admissibility

One's initial impression might be that if it is common knowledge that players apply admissibility in world α, then the players must know the outcome of the common knowledge of admissibility in world α. However:

Theorem 9. There exist games in which a world α can arise in which it is common knowledge at α that players apply admissibility but the outcome of common knowledge of admissibility is not known in α.

Example 10 now proves Theorem 9. A similar phenomenon appears in Example 11.

Example 10. Consider the game: ${ }^{8}$

	2		
T	1,1	1,1	2,1
1 M	1,1	0,0	3,1
B	1,2	1,3	1,1

Then construct a model with three possible worlds, α, β, and γ, with

$$
\begin{array}{rlrl}
\mathbf{R}_{1}=\{\{\alpha, \beta\},\{\gamma\}\} \\
& \mathbf{R}_{2}= & \{\{\alpha, \gamma\},\{\beta\}\} \\
Z_{1}^{\alpha}= & \Delta\{T, M\} & Z_{2}^{\alpha}=\Delta\{L, C\} \\
Z_{1}^{\beta}= & \Delta\{T, M\} & Z_{2}^{\beta}=\Delta\{L, R\} \\
Z_{1}^{\gamma}= & \Delta\{T, B\} & Z_{2}^{\gamma}=\Delta\{L, C\}
\end{array}
$$

It is then easy to verify that (28)-(29) hold in every possible world, so that (by Lemma 2) admissibility is common knowledge in every world. However, player 1 does not know Z_{2} in worlds α and β and player 2 does not know Z_{1} in worlds α and γ, or, equivalently, (46)-(47) fail to hold, so that the players do not know the outcome of common knowledge of admissibility.

This result again raises problems for a decision procedure which first applies the common knowledge of admissibility and subsequently applies a solution concept. In order to compute the latter, it may be necessary for each player
$8_{\text {I am grateful to Tilman Börgers for suggesting this example and }}$ prompting the analysis of this section. It is interesting to note that two consistent pairs for this game do exist, given by ($\Delta\{T, B\},\{C\}$) and ($\{\mathrm{M}\}, \Delta\{\mathrm{L}, \mathrm{R}\}$).
to know each of the players' choice sets implied by the common knowledge of admissibility. Example 10 shows that players may not have this knowledge.

(IV.5) Admissibility and Common Knowledge of Admissibility

This section examines the relationship between the common knowledge of admissibility and conventional admissibility. First, suppose each player has a dominant strategy. One might expect the common knowledge of admissibility to select these strategies.

Theorem 10.

(10.1) If a game contains unique dominant strategies for both players 1 and 2 then it contains a consistent pair, though this consistent pair need not be given by the unique dominant strategies.
(10.2) There exist games with the property that s_{1} and s_{2} are unique dominant strategies for players 1 and 2 and such that there exists a model and a world α with the common knowledge of admissibility holding at α, with $Z_{1}^{\alpha}=\left\{s_{1}\right\}$ and $z_{2}^{\alpha}=\left\{s_{2}\right\}$, but with it being impossible for this to hold with the players knowing z_{1}^{α} and z_{2}^{α}.
(10.3) There exist games in which s_{1} and s_{2} are unique dominant strategies for players 1 and 2 in which it is impossible to achieve common knowledge of admissibility at world α with $Z_{1}^{\alpha}=$ $\left\{s_{1}\right\}$ and $z_{2}^{\alpha}=\left\{s_{2}\right\}$.

Proof. Example 11 proves (10.2) and the second statement in (10.1) while Example 12 proves (10.3). It then remains to consider (10.1). Let the strategies s_{1} and s_{2} be unique dominant strategies for player 1 and 2. Construct a following sequence of sets $Z_{11}, Z_{22}, Z_{13}, Z_{24}, Z_{15}, Z_{26}, \ldots$ by:

$$
\begin{gathered}
Z_{11}=\left\{s_{1}\right\} \\
Z_{22}=D_{2}\left(Z_{11}, \Delta_{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
- & 29 \\
z_{13} & =D_{1}\left(\Delta_{1}, z_{22}\right) \\
z_{24} & =D_{2}\left(z_{13}, \Delta_{2}\right)
\end{aligned}
$$

Now observe that the sets $Z_{11}, Z_{13}, Z_{15}, \ldots$ are ascending $\left(Z_{1 n} \subseteq Z_{1 n+2}\right)$ and $Z_{22}, Z_{24}, Z_{26}, \ldots$ are descending $\left(z_{2 n}, ~ Z_{2 n+2}\right)$. To verify this, note that we must have $Z_{11} \subseteq Z_{1 n}$ for $n=3,5, \ldots$ because $Z_{11}=\left\{s_{1}\right\}$ and s_{1} is a dominant strategy. Next, let $s_{2}^{\prime} \notin Z_{22}$, which holds if and only if

$$
\begin{equation*}
\pi_{2}\left(s_{1}, s_{2}^{\prime}\right)<\pi_{2}\left(s_{1}, s_{2}\right) \tag{48}
\end{equation*}
$$

We then have that $s_{1} \in Z_{1 n}$ for odd n, that s_{2} dominates s_{2}^{\prime}, and that (48) holds. These ensure that $s_{2}^{\prime} \& Z_{2 n}$ for even n, and hence $Z_{2 n} \subseteq Z_{22}$ for $n=$ $4,6, \ldots$ Iteration of this argument gives the result. We next note that because the Z_{11} and ascending and the Z_{21} are descending, there must exist an n such that

$$
\begin{array}{ll}
Z_{1 n}=Z_{1 m} & m=n+2, n+4, \ldots \\
Z_{2 n+1}=Z_{2 m} & m=n+3, n+5, \ldots
\end{array}
$$

It is then clear that $\left(Z_{1 n}, Z_{2 n+1}\right)$ yields a consistent pair.

Example 11. Consider the game of example 6:

The strategies T and L are dominant for players 1 and 2. However, consistent pairs include ($\{T, B\},\{L\}$) and ($\{T\},\{L, R\}$) but exclude ($\{T\},\{L\}$). Hence, we can achieve common knowledge of admissibility at world α with $Z_{1}^{\alpha}=\{T\}$ and z_{2}^{α} $=\{L\}$ only if z_{1}^{α} and z_{2}^{α} are not known (cf. Theorem 4). To show that common knowledge of admissibility at world α with $Z_{1}^{\alpha}=\{T\}$ and $z_{2}^{\alpha}=\{L\}$ can be achleved, construct a model with three worlds, denoted α, β, and γ. Let

$$
\begin{array}{rlrl}
& \mathbf{R}_{1}=(\{\beta\},\{\alpha, \gamma\}) \\
& \mathbf{R}_{2}= & (\{\beta, \alpha\},\{\gamma\}) \\
z_{1}^{\beta}= & \Delta\{T, B\} & z_{2}^{\beta} & =\{\mathrm{L}\} \\
z_{1}^{\alpha}= & \{T\} & z_{2}^{\alpha}= & \{\mathrm{L}\} \\
z_{1}^{\gamma}= & \{T\} & z_{2}^{\gamma}=\Delta\{\mathrm{L}, \mathrm{R}\} .
\end{array}
$$

Then admissibility is common knowledge in each world and in world $\alpha, z_{1}^{\alpha}=$ and $z_{2}^{\alpha}=\{\mathrm{L}\}$.

Example 12. Consider

The unique dominant strategies for the players are T and L. Notice that \{T\} and $\Delta\{\mathrm{L}, \mathrm{C}\}$ constitute a consistent pair but ($(\mathrm{T}\},\{\mathrm{L}\})$ does not. Can we get common knowledge at some world α with $Z_{2}^{\alpha}=\{L\}$? If so, we must have

$$
\underset{\beta R_{2}^{\alpha}}{U} Z_{1}^{\beta}=\Delta\{\mathrm{T}, \mathrm{~B}\}
$$

Then there must exist some world β with strategy $B \in Z_{1}^{\beta}$ and with

$$
z_{1}^{\beta}=D_{1}\left(\Delta_{1}, \underset{\beta^{\prime} R_{1} \beta^{\prime}}{U} Z_{2}^{\beta^{\prime}}\right)
$$

This in turn can occur only if each $Z_{2}^{\beta^{\prime}}$ with $\beta^{\prime} R_{1} \beta$ excludes L. However, from Lemma 2, L must be a member of z_{2} in each world in the element of the meet of R_{1} and R_{2} which contains α, since 2 applies admissibility in such worlds and L is dominant, yielding a contradiction.

We thus find that admissibility can always be made common knowledge in games in which each player has a unique dominant strategy, though this may require either that the outcome of common knowledge of admissibility contains more than simply the dominant strategies or that it contains only the dominant strategies but is not known.

The dominance considerations in (49) are straightforward, but the interplay between dominance and knowledge considerations is not straightforward. Dominance arguments may initially lead the players to $\{T\}$ and $\{\mathrm{L}\}$, but then the knowledge of these same arguments (in particular, 2's knowledge of $\{T\}$) leads 2 to $\Delta\{\mathrm{L}, \mathrm{C}\}$, and it is ($\{\mathrm{T}\}, \Delta\{\mathrm{L}, \mathrm{C}\}$) that emerges from common knowledge of admissibility. The dominance arguments that might appear to lead 2 to reject C are rendered irrelevant by knowledge considerations, with the interplay between dominance and knowledge considerations yielding $\Delta\{\mathrm{L}, \mathrm{C}\}$.

Can we generalize these results? We can consider games which are dominance solvable (cf. note 3).

Example 13. Consider

		L	
		R	
	T	2,2	1,1
	B	2,2	0,3

Common knowledge of admissibility again cannot obtain in this game. Dominance solvability for this game gives (T, L).

v. Discussion

This paper has examined the concept of the common knowledge of admissibility. Our first finding is that iterated admissibility is not equivalent to the common knowledge of admissibility and the differences may have significant payoff implications. There is no general, simple relationship between iterated admissibility and the common knowledge of admissibility.

In light of these findings we turn to the task of characterizing the implications of common knowledge of admissibility. Here, deeper results emerge. In some games, there are multiple pairs of strategy sets consistent with the presumption that admissibility is common knowledge. The common knowledge of admissibility thus yields ambiguous prescriptions. In other
games, it is impossible to presume that admissibility is common knowledge Without encountering logical inconsistencies. This calls into question two of the seemingly most basic assumptions in game theory. We also find that admissibility can be common knowledge without players knowing the implied choice sets. Finally, admissibility can always be made to be common knowledge in games where each player has a unique dominant strategy, but it may not always be possible to do this with the players knowing the outcome of common knowledge of admissibility and may not always be possible to have the common knowledge of admissibility select only the dominant strategies.

It is important to note that our inconsistency result appears because we require (17)-(18) to hold rather than

$$
\begin{align*}
& D_{1}^{\alpha} \Leftrightarrow z_{1}^{\alpha} \subseteq D_{1}\left(\Delta_{1}, U_{\beta R_{1} \alpha} z_{2}^{\beta}\right) \tag{51}\\
& D_{2}^{\alpha} \Leftrightarrow z_{2}^{\alpha} \subseteq D_{2}\left(\cup_{\beta R_{2}^{\alpha}} z_{1}^{\beta}, \Delta_{2}\right) \tag{52}
\end{align*}
$$

Conditions (51)-(52) require only a pair of sets with the property that once attention is limited to those sets, admissibility provides no further motivation for excluding strategies. Conditions (17)-(18) also require it to be the case that all excluded strategies are excluded because of admissibility. Condition (51), for example, requires a strategy to appear in Z_{1} only if it is not dominated. Condition (17) strengthens the "only if" to "if and only if". Conditions (17)-(18) thus require the sets Z_{1} and Z_{2} to exhibit the admissibility analogues of Greenberg's (1990) internal consistency (the "only if" part) and external consistency (the "if" part) and hence form what Greenberg calls a consistent system.

If we were content to require only conditions (51)-(52), then some of our difficulties would be eliminated (though not all of them; multiplicity problems, for example, would persist). Why do we insist on (17)-(18)? We are interested in the implications of admissibility, and would like to determine
the implications of applying only admissibility. If a pair of sets Z_{1} and Z_{2} exists satisfying (51)-(52) but not (17)-(18), then admissibility (and the common knowledge of admissibility) provides an explanation for why the elements of Z_{1} and Z_{2} are included in players' choice sets, but the exclusion of some of the elements not contained in Z_{1} and Z_{2} must be motivated by some other considerations. We accordingly have not identified the implications of admissibility, but rather have identified the implications of admissibility coupled with some additional criterion.

A comment on previous studies is now useful. Pearce (1984) and Bernheim (1984) examine the implications of assuming it to be common knowledge that players are rational. Tan and Werlang (1988) continue this line of inquiry. These studies find that the implications of the common knowledge of rationality are that players will employ the iterated elimination of strictly dominated strategies, or strict iterated admissibility. In two-player games, this yields the set of rationalizable strategies. Our work differs in that we begin directly with admissibility. We strengthen strict admissibility to weak admissiblity, but we then conduct the less severe test of examining the internal consistency of the common knowledge of (weak) admissibility rather than deriving admissibility properties as an implication of the common knowledge of rationality. Our finding that it may be impossible for admissibility to be common knowledge is reminiscent of Binmore's (1987-88) finding that perfect rationality is an inconsistent concept. ${ }^{9}$

[^1]Finally, notice that it is the combination of admissibility and common knowledge that yields difficulties. It remains an open question which is the best candidate for deletion from the model. The intuitive appeal of admissibility and the counter intuitive nature of many of the arguments associated with common knowledge suggest that perhaps the latter should be reconsidered. One approach along these lines is provided by Dekel and Fudenberg (1987), who presume that players are uncertain about opponents' payoffs. Strategies are selected by applying iterated admissibility to perturbed games and taking limits as the perturbations shrink. The implications for the original game are that players should apply one round of admissibility and then apply strict iterated admissibility. A somewhat similar prescription is provided by Pearce's (1984) cautious rationalizability, in which players at each step first iteratively eliminate strictly dominated strategies and then delete weakly dominated strategies. An alternative approach may be allowed by evolutionary arguments (e.g., Samuelson (1988)).

REFERENCES

Aumann, R. (1976). "Agreeing to Disagree," The Annals of Statistics 4, 1236-39.

Börgers, Tilman (1989a). "Bayesian Optimisation and Dominance in Normalform Games," mimeo, University of Basel.

Börgers, Tilman (1989b). "Undominated Strategies and Coordination in Normalform Games," mimeo, University of Basel.

Bernheim, B. Douglas (1984),."Rationalizable Strategic Behavior," Econometrica 52, 1007-28.

Binmore, Kenneth G. (1987-88). "Modelling Rational Players: I and II," Economics and Philosophy 3, 179-214 and 4, 9-55.

Binmore, Kenneth G. and Brandenburger, Adam (1988). "Common Knowledge and Game Theory," CREST Working paper 89-06, University of Michigan.

Chellas, Brian F. (1980). Modal Logic, Cambridge University Press.
Dekel, Eddie and Fudenberg, Drew (1987). "Rational Behavior with Payoff Uncertainty," Working Paper 471, Massachusetts Institute of Technology.

Greenberg, Joseph (1990). The Theory of Social Situations, Cambridge University Press.

Hintikka, J. (1962). Knowledge and Belief, Cornell Universitiy Press.
Kohlberg, Elon and Mertens, Jean-Francois (1986). "On the Strategic Stability of Equilibria," Econometrica 54, 1003-38.

Luce, R. D. and Raiffa, H. (1957). Games and Decisions, John Wiley and Sons.
Moulin, Herve (1986). Game Theory for the Social Sciences, New York University Press.

Pearce, David G. (1984). "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica 52, 1029-50.

Rath, Kali (1988). "Dominated Strategies, Axioms and Solutions to Games," Working Paper 705, Department of Economics, Johns Hopkins University.

Samuelson, Larry (1988). "Evolutionary Foundations of Solution Concepts for Finite, Two-Player, Normal-Form Games," in Moshe Y. Vardi, ed., Theoretical Aspects of Reasoning About Knowledge, Morgan Kaufman Publishers, 211-26.

Snyder, D. Paul (1971). Modal Logic, Van Nostrand Reinhold.
Tan, Tommy Chin-Chiu and Werlang, Sergio Ribero da Costa (1988). "The Bayesian Foundations of Solution Concepts of Games," Journal of Economic Theory 45, 370-91.

Tan, Tommy Chin-Chiu and Werlang, Sergio Ribero da Costa (1985). "On Aumann's Notion of Common Knowledge: An Alternative Approach," Working Paper 85-26, University of Chicago.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:
(For previous papers please consult previous discussion papers.)

No. Author(s)
8954 A. Kapteyn,
S. van de Geer,
H. van de Stadt and
T. Wansbeek

8955 L. Zou

8956 P.Kooreman and
A. Kapteyn

8957 E. van Damme

9001 A. van Soest.
P. Kooreman and
A. Kapteyn

9002 J.R. Magnus and
B. Pesaran

9003 J. Driffill and
C. Schultz

9004 M. McAleer, M.H. Pesaran and
A. Bera

9005 Th. ten Raa and M.F.J. Steel

9006 M. McAleer and C.R. McKenzie

9007 J. Osiewalski and M.F.J. Steel

9008 G.W. Imbens

9009 G.W. Imbens

9010 P. Deschamps

9011
W. Guth and
E. van Damme

9012 A. Horsley and
A. Wrobel

Title
Interdependent Preferences: An Econometric Analysis

Ownership Structure and Efficiency: An Incentive Mechanism Approach

On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply

Signaling and Forward Induction in a Market Entry Context

Coherency and Regularity of Demand Systems with Equality and Inequality Constraints

Forecasting, Misspecification and Unit Roots: The Case of AR(1) Versus ARMA $(1,1)$

Wage Setting and Stabilization Policy in a Game with Renegotiation

Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment

A Stochastic Analysis of an Input-Output Model: Comment

Keynesian and New Classical Models of Unemployment Revisited

Semi-Conjugate Prior Densities in Multivariate t Regression Models

Duration Models with Time-Varying Coefficients

An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling

Expectations and Intertemporal Separability in an Empirical Model of Consumption and Investment under Uncertainty

Gorby Games - A Game Theoretic Analysis of Disarmament Campaigns and the Defense Efficiency-Hypothesis

The Existence of an Equilibrium Density for Marginal Cost Prices, and the Solution to the Shifting-Peak Problem

No. Author(s)

9013 A. Horsley and
A. Wrobel

9014 A. Horsley and
A. Wrobel

9015 A. van den Elzen,
G. van der Laan and
D. Talman

9016 P. Deschamps

9017 B.J. Christensen and N.M. Kiefer

9018 M. Verbeek and Th. Nijman

9019 J.R. Magnus and B. Pesaran

9020 A. Robson

9021 J.R. Magnus and B. Pesaran

9022 K. Kamiya and
D. Talman
J. Bai, A.J. Jakeman and M. McAleer

9029 Th. van de Klundert

Title

The Closedness of the Free-Disposal Hull of a Production Set

The Continuity of the Equilibrium Price Density: The Case of Symmetric Joint Costs, and a Solution to the Shifting-Pattern Problem

An Adjustment Process for an Exchange Economy with Linear Production Technologies

On Fractional Demand Systems and Budget Share Positivity

The Exact Likelihood Function for an Empirical Job Search Model

Testing for Selectivity Bias in Panel Data Models

Evaluation of Moments of Ratios of Quadratic Forms in Normal Variables and Related Statistics

Status, the Distribution of Wealth, Social and Private Attitudes to Risk

Evaluation of Moments of Quadratic Forms in Normal Variables

Linear Stationary Point Problems

Good Times, Bad Times, and Vertical Upstream Integration

The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations

Variable Dimension Simplicial Algorithm for Balanced Games

Efficiency Wages, Mark-Up Pricing and Effective Demand

The D_{1}-Triangulation in Simplicial Variable Dimension Algorithms for Computing Solutions of Nonlinear Equations

Discrimination Between Nested Two- and ThreeParameter Distributions: An Application to Models of Air Pollution

Crowding out and the Wealth of Nations

No.	Author(s)	Title
9030	Th. van de Klundert and R. Gradus	Optimal Government Debt under Distortionary Taxation
9031	A. Weber	The Credibility of Monetary Target Announcements: An Empirical Evaluation
9032	J. Osiewalski and M. Steel	Robust Bayesian Inference in Elliptical Regression Models
9033	C. R. Wichers Squares	The Linear-Algebraic Structure of Least
9034	C. de Vries Processes	On the Relation between GARCH and Stable
9035	M.R. Baye, D.W. Jansen and Q. Li	Aggregation and the "Random Objective" Justification for Disturbances in Complete Demand Systems
9036	J. Driffill	The Term Structure of Interest Rates: Structural Stability and Macroeconomic Policy Changes in the UK
9037	F. van der Ploeg	Budgetary Aspects of Economic and Monetary Integration in Europe
9038	A. Robson	Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs Need not Be Continuous in Pure Strategies
9039	A. Robson	An "Informationally Robust Equilibrium" for Two-Person Nonzero-Sum Games
9040	M.R. Baye, G. Tian and J. Zhou	The Existence of Pure-Strategy Nash Equilibrium in Games with Payoffs that are not Quasiconcave
9041	M. Burnovsky and I. Zang	"Costless" Indirect Regulation of Monopolies with Substantial Entry Cost
9042	P.J. Deschamps	Joint Tests for Regularity and Autocorrelation in Allocation Systems
9043	S. Chib, J. Osiewalski and M. Steel	Posterior Inference on the Degrees of Freedom Parameter in Multivariate-t Regression Models
9044	H.A. Keuzenkamp	The Probability Approach in Economic Methodology: On the Relation between Haavelmo's Legacy and the Methodology of Economics
9045	I.M. Bomze and E.E.C. van Damme	A Dynamical Characterization of Evolutionarily Stable States
9046	E. van Damme	On Dominance Solvable Games and Equilibrium Selection Theories

No.	Author(s)	Title
9047	J. Driffill	Changes in Regime and the Term Structure: A Note
9048	A.J.J. Talman	General Equilibrium Programming
9049	H.A. Keuzenkamp and F. van der Ploeg	Saving, Investment, Government Finance and the Current Account: The Dutch Experience
9050	C. Dang and A.J.J. Talman	The D_{1}-Triangulation in Simplicial Variable Dimension Algorithms on the Unit Simplex for Computing Fixed Points
9051	M. Baye, D. Kovenock and C. de Vries	The All-Pay Auction with Complete Information
9052	H. Carlsson and E. van Damme	Global Games and Equilibrium Selection
9053	M. Baye and D. Kovenock	How to Sell a Pickup Truck: "Beat-or-Pay" Advertisements as Facilitating Devices
9054	Th. van de Klundert	The Ultimate Consequences of the New Growth Theory; An Introduction to the Views of M. Fitzgerald Scott
9055	P. Kooreman	Nonparametric Bounds on the Regression Coefficients when an Explanatory Variable is Categorized
9056	R. Bartels and D.G. Fiebig	Integrating Direct Metering and Conditional Demand Analysis for Estimating End-Use Loads
9057	M.R. Veall and K.F. Zimmermann	Evaluating Pseudo- R^{2} 's for Binary Probit Models
9058	R. Bartels and D.G. Fiebig	More on the Grouped Heteroskedasticity Model
9059	F. van der Ploeg	Channels of International Policy Transmission
9060	H. Bester	The Role of Collateral in a Model of Debt Renegotiation
9061	F. van der Ploeg	Macroeconomic Policy Coordination during the Various Phases of Economic and Monetary Integration in Europe
9062	E. Bennett and E. van Damme	Demand Commitment Bargaining: - The Case of Apex Games
9063	S. Chib, J. Osiewalski and M. Steel	Regression Models under Competing Covariance Matrices: A Bayesian Perspective
9064	M. Verbeek and Th. Nijman	Can Cohort Data Be Treated as Genuine Panel Data?

\(\left.$$
\begin{array}{lll}\text { No. } & \text { Author(s) } & \text { Title } \\
9065 & \begin{array}{l}\text { F. van der Ploeg } \\
\text { and A. de Zeeuw }\end{array}
$$ \& International Aspects of Pollution Control

9066 \& \begin{array}{l}F.C. Drost and

Th. E. Nijman\end{array} \& Temporal Aggregation of GARCH Processes\end{array}\right]\)| | |
| :--- | :--- |
| 9067 | Y. Dai and D. Talman |\quad| Linear Stationary Point Problems on Unbounded |
| :--- |
| Polyhedra |

$P \cap R \cap X$ an15. $50 \cap \cap$ I F TII RIIRG THF NFTHFRLANDS Bibliotheek K. U. Brabant

17000011175156

[^0]: ${ }^{1}$ Kohlberg and Mertens (1986) provide a discussion of admissibility. Dekel and Fudenberg (1987) observe that the (iterated) deletion of weakly dominated strategies "clearly incorporates the intuitive objectives of rationality postulates".
 ${ }^{2}$ The concept of common knowledge was popularized by Aumann (1976). See Binmore and Brandenburger (1988) and Tan and Werlang (1985) for discussions of common knowledge.
 ${ }^{3}$ Iterated admissibility is examined in Luce and Raiffa (1957) and Moulin (1986). These treatments do not discuss the common knowledge of admissibility. If the outcome of iterated admissibility yields a set of strategies over which players' payoffs are invariant, then Moulin identifies the game as dominance solvable.

[^1]: ${ }^{9}$ Börgers (1989a) argues that the concepts of weak admissibility and common knowledge are inherently contradictory, since the former involves an implicit assumption that any of an opponents' strategies are possible while the latter yields cases in which it is known that some strategies will not be played. Börgers responds by constructing a model in which rationality is "approximately" common knowledge, finding that the implications of such a model to be that players will apply one round of admissibility and then apply strict iterated admissibility. Börgers (1989b) examines the possibility of designing efficient collective choice procedures with the usual Nash (or stronger) equilibrium assumption replaced by the assumption that players will not play dominated strategies.

