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DOltINATED S1iUTEGIES AND COlO(ON KNO{fLEDGE

I. Introduction

The preacrlptlon that players Sn a game should avold playing weakly

dominated strategies (ehould play "admissible" strategies) Ss one of the most

basic teneta of game theory.l It ls wldely recognized, however, that Sf

players in a game are assumed to not choose dominated strategies, and this is
common knowledge, then one derives implications which are potentlally much

stronger than simply removing dominated etrategies from the game.2 In
partlcular, if player 1 knows that others wlll not play dominated strategies,

then 1 w111 preawaably shun not only strategies which are dominated but also

those which become doeinated once the dorlnated strategies of others have been

eliminated from consideration. Further iterations of this type of reasoning

are posslble, yielding the lterated ellmination of weakly dominated strategles

(or Sterated admiss1b111ty). Iterated admissibllity thus appears to be an

implication of the common knowledge of admissibility and has been taken to be

equlvalent to the common knowledge of admissiblllty (e.g., Rath (1988)).3

The polnt of departure for this paper Sa the observation that some

lntuitive puzzles appear when applying iterated admiesibilíty. First, it is

well known that the order in whlch dominated strategies are elininated can

affect the outcome of the process. Second, cases arise in which agents

iKohlberg and Mertens (1986) provide a discussion of admissibility.
Dekel and Fudenberg (1987) observe that the (iterated) deletion of weakly
dominated strategies "clearly Sncorporates the SntuStive ob~ectives of
rationallty postulates".

ZThe concept of common knowiedge xas popularized by Aumann (1976). See
Blnmore and Brandenburger (1988) and Tan and Werlang (1985) for dlscussions of
common knoxledge.

3Iterated admleaibillty is examined in Luce and Raiffa (1957) and Moulin
(1986). These treatments do not discuss the common knowledge of
admissibility. If the outcome of iterated admissibility yields a set of
strategles over which players' payoffs are invarlant, then Moulln Sdentifies
the game ae dominance solvable.



eliminate strategles on the strength of the presence of opponents' strategles

which are themselves subsequently eliminated. Finally, the process appears to

Snitially call for agents to assume that opponents may play any of their

strategles but to subsequently asaume that opponents will certainly not play

some strategies. These anomalies suggest that a more careful examínation of

what it means to assume that admisslbllity is common knowledge would be

useful.

Th1s paper begins this examinatlon. We embed a game in a framework in

which the common knowledge of admissibllity can be exp11c1t1y modeled and its

implications derived. Ne establieh five results.

First, the common knowledge of admissibility ls not equlvalent to

iterated admiselb111ty. Gamea exlst in which iterated admísslbility

ellminates more strategiee than can be ~ustified by an appeal to common

knowledge of admiseibility as well as games Sn which iterated admissibility

eliminates fewer strategles than does common knowledge of admissibility.

Second, there exlst games !n which aesuming that admissibility is common

knowledge does not provide players with sufficlent informatlon to determíne

whích strategies should be eliminated on admissiblllty grounds. Instead,

multipliclty or coordlnatlon problems ariae. It is important to note that the

difficulty Ss not that the common knowledge of admissibility faíls to

eliminate sufficient strategles to reduce strategy sets to singletons, but

rather that iterated admissibility doea not provide sufficient information to

determine whlch (if any) strategies should be eliminated.

Third, there exist games in which assumíng that admissibility is common

knowledge yielda a contradlction. Admiss1b111ty can thus be inconsistent wlth

common knowledge, calling Snto questlon two of the seemingly most baslc

concepts Sn game theory.

Fourth, suppose that admissibility is common knowledge and that thls

implles that player I chooaes from a strategy set given by Zl and player 2

chooses from a set given by Z2. Does lt necessarlly follow that player 1
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knows 22 and player 2 knoxs 21? If so, we say that the impllcations of common

knowledge of admíssibillty are known. We show that admiasibility can be

common knowledge without the implications of common knoxledge of admissibility

being known.

Finally, we compare the common knowledge of admissibility with familiar

admissibility notions. We show that if both players in a game have dominant

strategies, then it is always possible for admissibility to be common

knowledge in that game. However, the common knowledge of admissibillty need

not lmply that players choose only their dominant strategles, and games exlst

ín which dominant strategíes are the sole implications of common knowledge of

admisslbllity but thls cannot be known by the players. We also attempt to

extend these reaults to games with alightly less structure by examining the

common knowledge of admiss1b111ty in dominance solvable games. It may be

impossible for admisslbilíty to be common knowledge in such a game.

The common knowledge of admissíbllity is thus a paradoxlcal constructlon.

These results are not surprising. Admissibilíty and common knowledge are

concepts whlch readily conflict. The usual motivatíon for admissibility is

that one cannot be entirely certain as to an opponent's strategy choice and

hence should choose only "safe" or admissible strategies. The Smplication of

common knowledge is that in certain circumstances players can know something

about opponents' cholces, where knowing Ss a degree of certainty surpassing

even that of a probablllty-one belief. It is then to be expected that these

concepts clash, and we have merely made this expectation expllcit.4

4The only potential surprlse ln our results ls that the common knowledge
of admissiblllty may not select unique dominant strategies (or dominance
solvable outcomes) when they exlst. Notice, however, that we are working with
weak rather than strlct dominance, so that even wlth unlque dominant
strategies, alternatlve best replies may exist. Common knowledge arguments
can then cause these alternative best replies to be essentially equivalent to
the dominant strategy, glven what is known about opponents, causing the
outcome of common knowledge of admisslbility to yleld more than simply the
dominant strategy.



It is useful to examine our notion of common knowledge of admíssibillty.

Our formulation of common knowledge ls standard. In particular, we say that

an event A is common knowledge lf each agent knoxs A, each agent knows each

agent knows A, each agent knows each agent knows each agent knows A, and so

on. To further verify that our formulation of common knowledge is not

problematic, we show that it is equivalent to Aumann's (1976) definition

lnvolving agents' information partítions. Our paradoxical findings thus

cannot be traced to difficulties with the definition of common knowledge.

Attentíon then turns to our deflnltlon of admisslbility. We say that if

player 1 applles admissibllity, then 1 chooses from the set of strategles

which are not weakly dominated given the set of possible strategies for player

2. This Ss again the standard defínitlon. We impose no further conditions,

with all Smpllcations being derived from the assumption that this definition

of admissibility is common knowledge.

The only potential difficulty here is the presumption that player 1's

choice set conslsts of all of 1's undominated strategles. Why not allow

player 1's choice set to be a subset of 1's undomínated strategies7 Players

would then stlll respect dominance considerations while some of the paradoxes

we discover would be eliminated. For example, our finding that the common

knowledge of admissibilíty is an inconsistent concept in some games would no

longer hold.

Two responses arise. First, not all of our paradoxes would be resolved.

For example, multiplícity problems xould still arise. Second, Sf we allow

players to choose from sets Zi and ZZ, with each set containing a subset of

the player's undominated strategies but not containing all undominated

etrategiea, then admisslbllity (and the common knowledge of admissibility)

provides an explanation for why the elements of Zi and ZZ are included in

players' choice sets, but the exclusion of some of the elements not contained

in Zi and ZZ must be motivated by some other considerations. We accordingly

have not identified the Smplications of admissibilíty, but rather have



identified the implicatíons of admissibility coupled with some additional

criterion. We would like to ldentify the impllcations of admissibility only,

and hence must examine the choice sets that remain after admissibility and no

other conslderations have been applied. The relevant choice sets then include

all undominated strategies.

Is St an Snteresting questíon to examine the impllcatlons of

admissibility onlyl The answer is clearly yes. For example, it has often

been noted (Kohlberg and Mertens (1986)) that equilibrlum concepts such as

properness perform well Sn all respects except admisslbillty calculations. In

particular, the set of proper equillbria can be affected by the deletion of a

dominated strategy from a game. One possible response is to construct a

two-stage procedure. In the first step, the common knowledge of admisslbllity

Ss applied to posslbly eliminate some strategíes. The second step then

conslsts of the appllcation of a solutlon concept such as properness to the

resulting strategy sets.s The first step ensures that the resulting

equilibrium concept exhibíts desirable admissib111ty properties. In order to

implement such a procedure, the first stage must ldentífy all of each player's

strategies which are not eliminated by dominance considerations. Hence, our

admissibility calculations are the appropriate first stage.

Section II of this paper provides some necessary definitions. Sectlon

III constructs the formal model of common knowledge of admisslbillty. Sectlon

IV derives the main results. Sectlon V discusses the implications of these

results and thelr connection to the llterature.

SKohlberg and Mertens (1986) consider such a procedure, but reJect it
because a cell of a game's payoff matrlx can be replaced wlth a constant-sum
game that has a value matching that payoffs of the cell but xhich disrupts the
dominance calculatlons of the inltial stage. Ne do not address this
difficulty (though ít might be solved by a second-stage solutlon concept which
is not "fooled" by constant-sum games, instead replacing them by their value
and returning the game to the first stage). Instead, we consider a prior
problem: For a fixed game, what is the outcome of the first-stage admissí-
bility calculatlon? Hence, we will be concerned xith whether this procedure
ls well defined rather than with its desirability.



6

II. Definitions.

We restrict attentlon to fínite, two-player normal-form games of complete

ínformatlon. Let the players be denoted 1 and 2; pure strategy sets, S1 and

52; pure strategies s1 and s2; mixed strategy sets, A1 and A2; míxed

strategies ó1 and á2; and payoff functions, R1 and a2. Letting N a{1,2), S-

S1 x S2, and R~(al,a2), we represent the game as (N,S,x) : G.

We now define:

Definition 1. Let XS t eí. Then a strategy ó 1 Ss weakly dominated in X1

given X2 if á1 E X1 and if there exists áí e e1 such that

n1(ái,á2) z R1(ái,á2) V ë2 E X2 (1)

with strict inequality holding for some ó2 E X2. Strategy á1 is strictly
dominated in X1 given X2 if stríct Snequallty holds in (1) for all ó2.

Let D1(XS,X2) be the subset of the strategles in X1 whích are not weakly

dominated ín X1 given X2 and let DZ(X1,X2) be analogous. Now construct a

sequence 61(t), t- 1,...,T, 1~1,2, by

eí(1) ~ ei
B1(t) - D1(91(t-1),B2(t-1)), t - 2,...,T

cz)
(3)

where T is chosen large enough that

OS(T) - 91(T-1).

Because the game Ss finlte, such a T exísts. Let DS(e1,A2) 3 e1(T). Then:

(4)

Definition 2. The set of admisaible strategies for player 1(player 2 ís

analogous), glven X2, Ss given by

D1(e1,X2). (5)



The set of iterated admissible strategiea for player 1 is glven by

D1(A1.G2). (6)

If weak domination 1s replaced by strict doilnation in definitlon 2 then we

obtain strict admissibility and strict iterated admissibility.

Admissibility requires that weakly dominated strategies not be played.

Iterated admisslbility, also referred to as the iterated removal of weakly

dominated strategies, requires that a sequence of moves be made in which

weakly dominated strategies (given the remaining strategy sets) are removed at

each step.ó The process continues until no further removals can be made, at

which point the remaining atrategy sets are referred to as the sets of

Sterated admisslble strategles. In two-player games, the outcome of strLct

Sterated admisslblllty Ss the set of ratlonalizable strategles (Bernheim

(1984), Pearce (1984)).

III. Common Knowledge of Admiseibility

Thís section constructs a model Sn which we can examine the common

knowledge of admissibillty.

(III.1) Modal Logic

We require a model rich enough to capture what players know, what

inferences they can draw from their knowledge, and what it means for players

to apply admiss1b111ty. Hence, we requlre a syetem of epletemlc modal loglc.

We work wlth the system commonly referred to as S5. Thís system has its

origins ln Hintikka (1962); lt is dlacussed ín Chellas (1980) and Snyder

(1971 ) .

ó0ur definltion of lterated admissibllity requires that at each step,
each player eliminates ail dominated strategles. One easily concelves of
alternatlve formulatíons Sn whlch players eliminate only some dominated
strategies at each step. It is well known that the outcome of iterated
admisslbility can depend upon the order of ellmínatíons.



Let L be a formal language, often called the "ob~ect" language, which
includes the logical operators or constants ~(negatíon), n(con~unctíon), v

(dísjunction) r (implicatíon), b (equlvalence), m (tautology), e

(contradiction), K1, K2, P1, and PZ; the auxilíary symbols "(", ")", and ", ,

and countable numbers of statement constants, predicate constants, function

constants, and variables. In our application, the variables wlll be used to

represent subsets of strategy sets. The function constants we will require

ínclude D1 and D2, where D1 associates, with the sets X1 and XZ, the set

D1(X1,X2) of strategies which are undominated in X1 given X2. The predicate

constant we will require is the equal sign ~. Statement constants allow the

language to include propositions. The two required in our applicatíons are D1

and DZ, where D1 is the statement that player 1 chooses only admissible

strategies. The four operators K1, K2, P1, and PZ are modal operators and are

to be interpreted as "player 1 knows," "player 2 knows," "player 1 thinks lt

is possible," and "player 2 thinks ít Ss possible." From this basic

vocabulary sentences are formed according to familiar rules.

A model (sometimes called a metalanguage) is a structure M a

{W,{Mw)wEU,R1,R2}, where W is a set of possíble worlds, Mw is a set of

sentences in language L which are taken to be true Sn world w, and Ri is an

equlvalence relation on W. Intultively, R1 captures the ínformation agent 1

has about the state of the world. Definition 3 makes this íntuition formal.

We now let w be a world 1n W and let "M,w ~- ~" be interpreted as

"propositlon ~ is true in world x of model M." To make this precíse, we

offer:

Definition 3.

M,w Is ~ iff ~ e Mw (7)

M,w 1- ~ (8)
~ (M,w 1- ~1 (9)

M,w 1- ~A iff ~(M,w ~- A1 (10)



M,w ~~ A n B Sff I(M,w Im A) n(M,w [~ B))

M,w I~ A v B íff [(M.w la A) v(M,u ~: B)]

M,w ~~ A r B iff [(M,w Iz A) y(M,w 1- B)1

M,w 1- A w B iff [(M,w I~ A) w(M,w I~ B))

M,w I~ KSA iff [(M,w' [~ A V w'EV s.t. w'Riw))

(12)

(13)

(14)

(IS)

M,w IL P1A iff [(3w'EU s.t. w'RSw and M,w' I~ A)1. (16)

Statements (7)-(14) are straightforward. (8)-(9) save us from logical

nonsense by ensuring that tautologles are true and contradlctions false.

(10)-(14) ensure that the logícal operations of negatlon, con,Junction,

dls~unction, impllcation and equivalence work in familiar ways. (15)

indicates that player i knows A at world w if A is true in each world w' for

which w'Riw. Intuitively, {w':w'RSw} is the set of possible worlds for 1

glven w, and i knows something at w if it is true in all posslble worlds given

w. (16) indicates that 1 considere A to be possible at w if there exists some

posslble world (given w) at whích A is true.

(III.2) Admiseibillty and Common Knowledge

Ue now introduce admisslbility into our model. Flrst, we fix a game

(N,S,n) m G. Ue then assoclate with each world a a pair of variables 2i t A1

and Z2 L G2, where these identify the choice sets of players 1 and 2. Ue

assume that aRis y Zi - ZS, which (given (15)) is equivalent to assuming

that players know theír own choice sets. This knowledge is essential to a

theory of how agents play games.

Let Di be lnterpreted as the statement that player 1 applies admissi-

billty in world a. Formally we assume that in each world a the following

hold:

Di w Zi ~ D1(A1. U Z2)
SRla

DZ H ZZ s D2( U Z?. A1).
SRza

(17)

(18)
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Condltion (17) statee that If player 1 applies admisslbility in world a, then

player 1's choice set conslsts of those strategies whlch are not weakly

dominated given the set of posslble strategies played by player 2, which Ss

USR1aZ'2 (cf. (16)). Notice that these are straíght-forward definitions of

admissibility. Notice also that these conditions define admissibility but

make no statement about whether players apply admisslbility when choosing

strategies. Hence, we must offer:

Definition 4. Admissibility holda in world a (or the players apply

admissibillty in a) Sf Di and DZ are true Sn a(i.e., Di,D2 e!ia).

We now introduce common knowledge. In particular:

Definition 5. Admissibility is common knowledge in a if the following are

true in a:

a aD1 DZ
a aK1D2 K2D1
a aKiKZDl K2KiDz
a aKiK2KiD2 KZKiK2Di.

(19)

This is again a standard formulatíon, defining an event to be common knowledge

if everyone knows it, everyone knows everyone knows lt, everyone knows every

one knows everyone knows it, and so on.

It will be helpful to explore the properties of this formulation of

common knowledge of admissibility. We offer two results. Fírst, we develop

an equivalent statement of (19), i.e., an equivalent statement of what it

means for admissibillty to be common knowledge.

Lemma 1. The collection of statements Sn (19) holds, and hence admissíbility

is common knowledge, ín world a if and only if:
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zi - D1(nl, U zz)
~Rla

Za .1

(zo)

D11G1, U D2( U Z'1~,G2)J (21)
L ~Rla ~'R29

Z1 ~ D11~1. U D2 U D1(G1. U ZZ").~2J1 (22)
l RRla 'R~ R"R3S

Z1 - D11C1. U D21 U D1~G1, U D2( U"Z~..~Z)1.A211 (23)ll SRIa llR'RZR R"Rls R'RZB 11

ZZ - D2( U ZS,AZ)
~RZa

z2 - D2 ~U D1(n1, U z2~).n2]
RZa ~' Rl~

ZZ ~ Dz( U D1rA1, U D2( U i.62)J.A21
IRRZa L R'R1R S'~RY

(24)

(zs)

(26)

Z2 ~ D2( U D11A1, U D2r U DI(G1, U Z2~),A2JJ,A2J (27)lsR2a lll y' Rls I.~"R g ~~Rl~ 1

Proof. ( 20) duplicates the consequent of (17), so Di and ( 17) give (20).

Coneider (21). From (15), KiD2 is equivalent to the statement that the

consequent of (18) holds for all S with SRla. Substítution into (20) then

ylelds (21). Similarly, (24) duplicates the consequent of (18) and hence

follows from Dz and (18). From (IS), K2DÍ ís equivalent to the statement that

the consequent of (17) holds for all S with SR2a. Substitution in (24) then

yields (25). K1K2Di and K2KiD2 can now be used, again with (15), to establish

that (25) and (21) hold for all sRla and SR2a. Substitution Snto (20) and

(24) gives (22) and (26). Iteration of thís argument yields the result. ~
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1Je can next províde a check that our formulation of common knowledge is

standard. Let R1 and R2 be the partltions of W induced by R1 and R2. Let R

be the flnest common coarsening ( meet) of R1 and R2. Let a typical element of

il be denoted n.

Lemma 2. Let a e n e R. Then admisslblllty ís common knowledge at a lf and

only if O1 and Z hold for all p E n or, equivalently, for all ~ E n:

~ - n1(n1, U zz)
s~R,s

tz - n2( U z~,nZ).
S'RzB

Proof. If

(2s)

(29)

Let (28)-(29) hold. We derlve (20)-(27). Flrst, letting ~- a

in (28)-(29) gives (20) and (24). Noting that (28)-(29) hold for all ~ with

SRSa, and substituting, then gives (21) and (25). Iteration of this argument

glves the remaining conditlons. Only if

appllcation of (15) glves (28)-(29).

Let (19) hold. Then the repeated

To see the implicatlons of Lemma 2, note that it Smmedlately ylelds:

Corollary 1. Admíssibllity is common knowledge at world a íf and only íf

admissibility holds at each world in the element of the meet of R1 and R2

contalning a.

This shoWS that the concept of common knowledge used in our formulation of

common knowledge of admissibility ls equlvalent to the well-known formulatíon

of Aumann (1976).

(III.3) Necessary and Sufficíent Conditions

Lemmas 1 and 2 províde condltions for admissibility to be common

knowledge, gíven by (20)-(27) or (28)-(29). These condítions are íntuitíve

but are not especially easy to work with. It will be very helpful to deríve

conditions which can be expressed solely in terms of the structure of the game
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G and which are necessary and sufficient for the abllity to construct a model

(given G) wlth a world in which admissibility is common knowledge. This

section derives such conditions.

Ye begin, in Theorem 1, with conditlons on a game which are both

necessary and aufficient for the ability to construct a model with a world ln

whích admissibility is common knowledge. The requirement that these

condltlons be both necessary and sufficlent causes them to be complicated, and

the statement and proof of ?heorem 1 are tedíous. Our subsequent results will

follow from a simpler sufficlent condltion (presented in Theorem 2) and

necessary condltion (Theorem 3). Readers who are less interested Sn technical

detalls may thus want to skip to Theorem 2 on page 16 (though Theorem 1 is

used in the proof of Theorem 3).

Theorem 1. A model exists with a world a at which admisslbility is common

knowledge if and only if there exlst sequences
N N N N

Zlll tZ22k)t~ {Z13k)tt11 {Z24k)t21 {Z15k)tc31
N N N M

Z211 {Z12k)r-1 ~Z23k)t.1 {Z14k)r.1 (Z25k)r~

with

Z1,Jk ~ el

and sequences
ro N Sn

{Ilnk)n~1 t~t
an N 2n

~I2nk)n-1 t-1
with

I1~ t (I,....N~nfl)
n
In

U Ii~ ~ (1....,N~nt1)

(30)

(31)

(32)

(33)

such that
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Z1~ - D1(A1. ~1 Z2ntlk')k'EI Ink
22~ ~ D1 ( l~ Zln41k" A2)

k'EI
2nk

k' E Ilnk y 21nk E{Zlnt2k".k E I2nrlk'}
k' E I2~ y Z2nk E{22nt2k":k" E Ilntlk')

Z211 E {221k'k E I111)

Z111 E {Zllk'k E 2211)

(34)

(35)

(36)

(37)

(38)

(39)

Let us first intultively descrlbe (30)-(39). When constructing our model in

which admissibillty will be common knowledge at world a, we will take Zi z

Z111 and ZZ s 2211. (30) then requires that we fínd a sequence of sets, where

this sequence beglns with Zi, then includes a collection of strategy sets for

player 2, then a collectlon for player 1, then a collection for player 2, and

so on. Two relationshlps must hold between these collectíons of sets. First,

(34)-(35) indlcate that Zi must be 1's set of undominated strategies gíven
N

that 2 chooses from Uk2i Z22k. Similarly, each Z22k must be the set of 2's

undominated strategies gíven that 1 chooses from the unlon of some subset of
N

the sets in {Z13k)k~l' Each Z13k must Sn turn be 1's undominated strategies
n

given that 2 chooses from the uníon of some subset of the sets ln {Z24k)k?3'
and so on. Second, (36)-(37) require the following. If Z13k (for example) is

the set of 1's undominated strategies given that 2 chooses from ~lket Z24k"13k
then Z13k must appear Sn each of the collections of player 1 strategy sets

which generate the various Z24k,. (31) gives a similar sequence starting with

a set Z2. (38)-(39) llnk these sequence together, lndicating that Zi must be

one of the sets generating ZZ and vice versa.

Theorem 1 states that iff sequences satlsfying (30)-(39) exist, then we

can construct a model in which (20)-(27) hold. From the structure of

(20)-(27) it is no surprise that we need sequences of sets llnked together by

relationshlps like (34)-(35). Nhy must (36)-(37) hold? To see thls, let
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Z13k a U Z24k't'iI 13k

Wt1en constructing our model in which admissibility is common knowledge. Z13k
wlll be player 1's cholce set in some xorld q and the sets Sn {22~,:k'EI13k)

will be the cholce aets of player 2 in those worlds which player 1 cannot

dlstingulsh from 7. FSx a 22~,. Thie ls then the value of Z2 ln some world,

say S, with SRIr. Now if admissib111ty is to be common knowledge then Z24k'
must be 2's undominated strategies given that 1 chooses from U~,R B Z'1~. But

ZS - Z13k ( since ~R1y and Z1 - Z13k)'
generatíng 22~„ as ensured by (36)-(37).

We now prove Theorem 1.

Proof. If

Then Z13k must be one of the sets

Let (30)-(39) hold. We show that a model satisfying (20)-(27) at

some world a can be constructed. First, we set

ZL s Z111
a

Z2 ~ Z211'

Now create a collectlon of N22 worlds R1" "'~n 'zz
1 - 1,...,N22.

with SiRla and Z21 S Z221'

Let no other worlds satisfy SRla. From (38)-(39), there

exlsts a world Si, for which Z21~ ~ ZZ and whlch can be renamed so that ~1, z

a. (34)-(35) then give (20). Next, for each ~1 create a collection of worlds

sll" "'Sin' with n' ~ II2211 and wíth Si'R2S1. Let no other worlds satisfy

SR2~1. Let Z13k ~~ik for each k E I221. From (36)-(37), one of Si~ can be

taken to be Sdentical to ~i, and (34)-(35) now give (21). Iteratlon of the

argument yíelds the result.

Only If Let (28)-(29) hold. Then we can construct sequences satisfying

(30)-(39). Let
a

Z111 s Z1

Z211 L Z2'
Then let
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{Z22k}k31 - {ZZ : SRla}

N12
{Z12k}ital - (Z~ : (3R2a}

and

illl - {1,...,N22}

1211 - {1,...,N12}.

Then (38)-(39) hold by construction and (28)-(29) ensure (34)-(35). Now let

{Z13k}t.1 s {~1, ~ S~R2s tor some SR2a?

{Z23k}k~1 : {~2' : ~'R2~ for some sRla}

and let

122k -{k' Z13k 3~' for some S'R2S with ZZ - 222k}

I12k z{k' Z23k - z2~ for some S'Rls wíth i- Z12k}'

Then (28)-(29) again ensure ( 34)-(35). Fix Z22k. By construction, I24k
includes i for a value of ~ for which Z2 : 222k and for whích Z~ - Z111'
This gives (36). (37) is similarly verified. The iteratíon of thls techníque

glves the result. ~

The condltions given by (30)-(39) satisfy our requlrement that they refer

only to the structure of the game G, but are complicated. We can develop a

conveníent simpler sufficient condition for admissibility to be common

knowledge.

Theorem 2. A model can be constructed ln whích admiss1b111ty is common

knowledge in world a Sf there exísts a pair of sets 21 t A1 and 22 s A2 whích

satisfy:

Z1 - D1(A1,Z2)

Z2 - D2(Z1.~2).

(40)

(41)

Proof. Glven a palr of sets Z1 and 22 satisfying (40)-(41), we construct a

model. Fix W, R1 and R2 and choose a world a. Let a e n e R. For each ~ e
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n, let

1 3 Zl

G'2 3 Z2.

Then (20)-(27) wlll obviously hold for each y E n and hence admissibíllty will

be common knowledge in a. ~

A palr of sets satlsfying (40)-(41) wlll be referred to as a consistent pair.

Remark 1. Notlce that we have not establlshed the uniqueness of consistent

pairs for a game, and note that Sf (Zi,Z2) and (i,Z2) are consistent

then Zi~ z~1 r Z2 s Z2.

paírs,

Examples 10-11 will show that the sufficlent condition given by (40)-(41)

is not necessary for admissibility to be common knowledge. We can find a

relatlvely straightforward necessary condition:

Ilefinition 6. A pair of sets (Z11' "" Zln(1)) a Z1 and {Z21" " 'Z2n(2)~ ! Z2'
with 211 S C1 and Z2~ s A2, Ss a aeneralized consistent pair if 21 and ZZ are
nonempty and, for every Z11 e Zi, there ís a subset 611 of ZZ such that

21i a D1(A1, U Z2k)
Z2kEeli

and for every ZZ~ e ZZ there exists a subset 92~ of Z1 such that

Z2~ - D2( U Z1k.A2)
Z1kEA2J

and if

Z2k E eli y Z11 E e2k
ZSk e 92~ r Z2~ E elk.

(42)

(43)

(44)

(45)

A generalízed consistent pair is a collection of strategy sets for player 1

and a similar collectlon for player 2 with the property that each set in

player 1's collection Ss the set of player 1's undominated strategies given

that player 2 chooses from some subcollection of player 2's choice sets. In
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addition, these subcollections must be linked by the conditions given ln

(44)-(45). A conslstent pair 1s the speciai case ín which each collection

containa only a single set.

Theorem 3. Let a model exist ln which admisslbllity ls common knowledge for

game G in world o. Then there exists a generalized pair of consístent sets

for G.

Proof. Let (30)-(39) hold. Then define:

N ln
Z1R m {Zlnk)r-t

M2n~1
Z2n e ~Zlntlk)r-1

for n Then (36)-(37) ensure that Z1n and 22n are ascending, i.e.,

Zln ~ Zinf2

ZZn L ZZntZ.
Because the game is flnite, there exists an N such that

Zln a Zlm V n.m z N

Zzn ~ 22m V n,m Z N.

Let

ZS m Z1N
ZZ m Z~.

(34)-(37) then ensure that Z1 and ZZ are a generallzed consístent pair. m

Flnally, we turn to the question of what it means for players to know the

outcome of common knowledge of admissibility.

Definition 7. The outcome of common knowledge of admíssiblllty is known at

world a if the common knowledge of admisslbility holds at a and Sf the players

know Zi and Z2, or, from (15):
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~RZa

(46)

(a7)

Theorem 4. Let common knowledge of admissibility hold in world a. Then the

outcome of common knowledge of admissíbilíty is known Sn xorld a if and only

if (40)-(41) hold at a.

Proof. Substitution of (46)-(47) Snto (17)-(18) gives (40)-(41). ~

(III.4) Examples

Much of our analysis vill make us of the idea of a consistent palr, whlch

is the sufficlent condition for common knouledge of admisslbillty developed Sn

Theorem 2. It is accordingly useful to illustrate (40)-(41).

Example 1. Consider the game given by

2? ~ U "L'2
SRla

zi - U ~.

L
3, 2

1,0

0, 1

Depending upon the order of ellminatlons, Sterated admiaslbility can be

used to give the palr {T},{L}, the pair {T},(R}, or the palr {T},A{L,R}.

The unlque palr of conslstent sets glven by {T} and 0{L,R}. m

Example 2. Consíder the matching coíns game:
2

1

L
T

2
R

2, 2

0, 1

1,0

R

B

The uníque consistent pair consists of A{T,B1 and A{L,R}, or the entire

strategy sets. ~
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Example 3. Conslder the prisoners dllemaa:
2

1
T

L R

B

The unique consistent pair consists of (B} and {R}, ~

IV. Implications

This section explores the impllcations of the common knowledge of

admissibility.

(IY.1) Common Knovledge of Admieaibility and Iterated Admissibility

We begin with the question of whether iterated admissibility is

equivalent to the stipulation that admissibility is common knowledge. We

answer this question negatively:

Theorem 5. Iterated Admissibillty ls not equlvalent to the common knowledge

of admissibility.

To prove this, it suffices to present an example in which the outcome of

iterated admissibility differs from the outcome of common knowledge of

admissibllity. In particular, we can significantly simplify the analysis by

noticing that it suffices to present examples of cases in which a consistent

pair Zi and Z2 exists which is not the outcome of Sterated admissíbilíty. We

2, 2

3, 0

0, 3

find it convenient to present two examples.
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Ezample 4.

X1

Xa

X3

X

Y 1

2,4 5,4 -1,0

3,4 2,4 -2,0

1,2 0,0 2,2

0, 2 2. 0 0. 4

Y 2

(i)

Y 3

(SV)

(Sv)

(ii)

Regardless of assumptíons made about order of eliminations, iterated

admissibility ellminates strategies Sn the order shown (flrst 1, then 11, and

so on) to yleld a unlque outcome of ({XZ},{Y1}). ( In particular, if only one

of strategies X1 or X3 is removed by player 1 at the fourth round, then the

other strategy from this pair must be removed at the next round.) Common

knowledge of admisslbllity, ln contrast, ylelds a unique consistent pair of

A{X1,XZ} and G{Y1,Y2}. The dlfference in these two outcomes reflects the fact

that once a strategy such as YZ is eliminated by iterated admissíbillty, 1t

cannot return even if the reason for its ellmination has been purged. If

admissibility ís common knowledge, however, the knowledge that player 1 limits

choices to (X1} provides player 2 with an admissibility-based reason to avoid

Y3 but not Y2, yielding A{Y1,Y2} for player 2. Admissibility calculations

then lead player 1 to re~ect X3 and X4 but not X2, yielding A{X1,X2}. We

conclude that iterated admissibility and the common knowledge of admissibility

are dlstlnct concepts. ~

Example 5. Consider the following game:
2

L
3, S 2, 1 2, 0

3, 1 0, 0 0, 1

0, -1 2, 2 3, 0

C

iv 11

R

(i)

Iterated admíssibility eliminates strategies in the order shown, regardless of
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order consíderations, to yleld (T,L). The unique pair of consistent sets of

thls game is A(T,M} and {L}. The two concepts thus again díverge wlth payoff

relevance. ~

In Examples 4-5, the outcome of common knowledge of admissibillty is a

superset of the outcomes of iterated admissíblllty. One might conjecture that

this result holds in general. Examples 7-9 and Theorem 7 will show that it

does not. Notice also the Examples 4-5 have only shown that the outcomes of

common knowledge of admissibility and iterated admissibility can differ, in

the sense that the unique consistent paly does not match the unique outcome of

iterated admisslbillty. There remalns the possibility that a sequence of sets

exlsts satisfying the conditions of Theorem 1 in which Z111 and 2211 do not

yleld a conslstent pair but do match the outcome of iterated admisslbility.

However, no such sequence exists for the games given in Examples 4-5. The

verification of thís is straíghtforward but tedious and is hence omitted.

(IV.2) Common Knowledse of Admissibility and Uniqueness

We now turn to a second property of the common knowledge of admissi-

bllity.

Theorem 6. There exist games in which the common knowledge of admissibility

admits multiple solutions.

It is ímportant to clarify what Ss meant by "multlple solutions." We are not

referring to the fact that after dominance considerations have been applied,

players may be left wíth sets from which to choose rather than síngletons.

Instead, multiplicity refers to the fact that simply assuming admissibility to

be common knowledge may provide insufflclent Snformation to identify the pair

of Smplied choices sets Z1 and Z2.

We again prove thls by example. It suffices to exhibit games wíth

multiple consistent pairs.
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Exampla 6. Conslder the following game:

1
T

L
2

R

B

There are two consistent pairs for this game, given by A{T,B) and {L} and by

{T} and A{L,R} ~

Example 7. The game given by

L

1,3

0,0

2
C R

1,2 2,1 0,0

2,1 1,2 0,0

0, 0 0, 0 1, 1

has three consistent pairs, consisting of (0{T,M),A{L,C}), ({B},{R)}, and the

entire game. Notice that analogous result holds for a coordination game:
2

1
T

L
1, 1

B 0, 0

R

0, 0

1, 1

A Nash equilibrium is strict if each player's equllibrlum strategy gives

a strictly larger payoff than all alternative strategies. This property

allows us to identify immediately an obvious connectlon between strict Nash

equllibria and conslstent sets, stated Sn the following propositlon. In the

process, we generate a host of additional examples of games with multiple

consistent sets: games with multiple strict Nash equ111bria.

Theorem 7. If s' Ss a strict Nash equilibrium, then letting Zi ~{si} yíelds

a consistent pair.

These results ensure that one cannot first apply the common knowledge of

3, 3

3, 1

adn~lssíbllity and then apply a solution concept to the remaining sets.
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Instead, there may be multlple outcomes conslstent wlth admisslblllty, and the

outcome of the solution concept may differ across these sets. The determi-

nation of the Smplications of admissibility man then fall to be independent of

the subsequent solution concept. Equivalently, the outcome of the common

knowledge of admissibillty depends upon bellefs that may also be linked to the

solution concept, destroyin~ the independence between the two. The conclusion

is that common knowledge of admissibilíty is no longer a coordination-free

concept and hence loses a fundamental virtue.

The examples offered in proof of Theorem 6 indicate that in certain

games, simple rules might be adopted to resolve the multipliclty Snherent Sn

the common knowledge of admisslbility. However, these examples also make it

clear that no obvious, general rule exlsts. If faced only with Example 6, one

might advocate taking the intersection of the consistent pairs, but thís wíll

not work in the game given in Example 7 or games with multiple sirict Nash

equilibria, where the intersection is empty. Example 7 may suggest taking the

largest consistent pair, but this will not work in the game given in Example 6

or agaln ln many games with multiple strict Nash equilibria, where a largest

pair does not exist. One mlght be tempted to resolve multíplicity problems by

letting Z1 be the unlon of all sets Z1 possessing the property that Z1 is a

member of a consistent pair and then taking (Z1,Z2) as the outcome of common

knowledge of admissibility.? However, applying this method to Example 6 shows

that it has the unappealing property of failing admissibility!

(IV.3) Existence of Common KnowledYe of Admissibility

We now turn to a third question. Is the common knowledge of admissí-

bility a consístent concept, i.e., can one assume that admissibility is common

knowledge wíthout implying a contradiction? The answer is no:

?This might be defended on the ~round that player 1 could reasonably
expect any of the possible consistent paírs to be the "right" one and hence
should regard any element of player ~'s component of any consístent pair as a
potential candidate for play. Thís reasoning exhíbits some of the flavor of
rationalizability.
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Theorem 8. There exist games for which no generalized consistent pair exlsts.

From Theorem 3, the absence of a generalized conslstent pair precludes the

common knowledge of admissibillty, so Theorew 8 implies that games exist in

which one cannot consistently assert that admissibility is common knowledge.

For the proof, it is agaln sufficient to offer an example:

Example 8. Consider the following Bame:

1
T

B

L

1,0

2
R

1,0

0, 1

A pair of generalized consistent sets does not exlst for this game. The

dlfficulty here !s that T dominates B for player 1. However, the two differ

only if 2 plays R with positive probability, and R is strictly inferlor iff 1

plays T. Admissibility then leads 1 to play T if there is any chance of 2

playfng R, but 2 is then led to play only L, at whlch point admissibillty nox

recommends T or B to 1, causinY L and R to be the recommendation for player 2,

and so on. To make this more precise, we first show that a consistent pair

(Z1,22) does not exist. If Z2 contalns only L, then Z1 must contain both T

and B, in which case Z2 must contain both L and R, a contradiction.

Simílarly, if ZZ ~{R), then it must be that Zl L{T), at whlch point 22 -

{L), a contradiction. Flnally, If Z2 contains any mixtures over L and R, then

we must have Zl z{T}, ín which case Z2 -{L), again a contradiction. Now

extend this to the question of a generalized conslstent pair. Zi can

potentially contaln {T} and G{T,B} for player 1 and iL} and A{L,R} for player

2, since these are the potentlal outcomes of the operators D1 and D2. Suppose

A{T,B} e 21. Then the associated 81 (cf. Defínition 6) must contain {L}.

However, the 92 associated with {L} can include only {T) if (43) ls to hold, a

contradiction (since A{T,B) is then not contained in 82, falsifyíng (44)).

Similarly, 22 cannot ínclude A{L,R). Then we must have Zi a{T) and 22 ~{L}.
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Then ({T},{L}) would have to constitute a consistent paír, which it does not,

so there is no generalized consistent pair.

Example 9. Consider agaln the game given in

L
1,1 0,1 11,1

1, 0 10, 10 1, 11

1,11 11,1 10,10

2
C R

0

Dependíng on order, Sterated admíssíbility can be used to select (T,L), (B,L),

or (T,R). This game has no generalized consístent pair. We again first

examine the existence of a consistent pair. We must consider seven cases.

Flrst, let Z1 a A{T,M,B}. Then ZZ s

Z1, a contradíction. Similarly,

D2(Z1,A2) L A{L,R} and D1(A1,22) -{T} s

Z1 ~ A(T,M} r Z2 z{R}

Z1 s p{T, B} .~ ZZ z{L}

Z1 - A{M,B} ~ Z2 - ~{L.R}

Z1 - {T} ~ Z2 - A{L,C,R}

Z1 - {M} y Z2 - {R}

Z1 z {B} y Z2 - {L}

each case. D1(A1'Z2) x Z1, YSeldínYIn

r D1(A1.ZZ) ~ {T} x Z1

~ D1(A1.Z2) a ~{T,M.B} x Z1

r D1(A1.Z2) - {T) s Z1

y D1(A1.Z2) a A{T.B} s Z1

s D1(G1,ZZ) - {T} x Z1

y D1(G1,22) z A{T,M,B} x Z1.

a contradiction and showing that there

Ss no consístent paír. One aímilarly shows that there is no generalized

consistent palr for thls game.

The conclusion ls clear. There exlst games in whlch admissibíllty cannot be

common knowledge. The assumptions of the applícatíon of admissíbility and the

common knowledge of its applicatíon yield logical lnconsistencles.

(IV.4) Knowing the Outcome of Co~on Knowledge of Admissibility

One's initlal impression might be that Sf it is common knowledge that

players apply admissíbílíty in world a, then the players must know the outcome

of the common knowledge of admissíb111ty in world a. However:
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Thsorem 9. There exiat 8ames in which a world a can arise ln xhich lt Ss

common knowledge at a that players apply admissibillty but the outcome of

common knowledYe of admissibllity is not known in a.

Example 10 now proves Theorem 9. A similar phenomenon appears in Example

Example S0. Consider the game:8

11.

T

1 M

B

L
2
C R

1,1 1,1 2,1

1, 1 0, 0 3, 1

1,2 1,3 1,1

Then construct a model with three posslble worlds, a, (3, and 7, wlth

Za1
Z~

271

g1 : {{a.R}.(7}}

RZ a {{a.7). {R}}

A{T,M} ZZ a A{L,C}

A{T.M) Z~ s A{L.R}

A{T,B} ZZ L A{L.C}.

It Ss then easy to verify that (28)-(29) hold Sn every possible world, so that

(by Lemma 2) admissibillty Ss common knowledge ln every world. However,

player 1 does not know Z2 in worlds a and ~ a~ player 2 does not know Z1 in

worlds a and 7, or, equivalently, (46)-(47) fail to hold, so that the players

do not know the outcome of common knowledge of admissibllity. m

This result agaln raises problema for a declsion procedure whlch flrst applles

the common knowledge of admisslbility and subsequently applies a solutlon

concept. In order to compute the latter, it may be necessary for each player

8I am grateful to Tilman Bórgers for suggesting thls example and
prompting the analyeis of this section. It is ínteresting to note that two
consistent pairs for this game do exist, given by (G{T,B},{C}) and
((M).A{L,R}).
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to know each of the players' cholce sets ímpiled by the common knouledge of

admissíbillty. Example 10 shous that players may not have this knowledge.

(IV.S) Admieaibility and Common Knowledge of Admisaibility

This section examines the relationship betueen the common knowledge of

admissibility and conventional admissíbility. First, suppose each player has

a dominant strategy. One might expect the common knowledge of admissibillty

to select these strategies.

Theorem 10.
(10.1) If a game contalns unlque domínant strategies for both players 1

and 2 then it contaíns a consistent pair, though this consistent

palr need not be given by the unique dominant strategies.

(10.2) There exist games with the property that sl and s2 are unique

dominant strategles for players 1 and 2 and such that there

exlsts a model and a uorld a wlth the common knouledge of

admissibillty holding at a, uith Zi -{sl} and ZZ - {s2}, but

xith St being impossíble for this to hold with the players

knowing Zi and ZZ.

(10.3) There exist games in which sl and s2 are unique dominant

strategies for players 1 and 2 Sn which St Ss lmposslble to

achieve common knouledge of admissibility at world a uith Zi -

{sl} and Z2 - {s2}.

Proof. Example 11 proves (10.2) and the second statement in (10.1) uhile

Example 12 proves (10.3). It then remains to consider (10.1). Let the

strategies sl and s2 be unlque dominant strategies for player 1 and 2.

Construct a fo11ow1ng sequence of sets Z11' Z22' Z13' Z24' ZIS' Z26"" by'
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213 ~ D1(~1'Z22)
224 ~ D2(213,~2)

Now observe that the sets Z11' Z13' Z15' '~. are ascending (21n L 21nt2) and

Z22' Z24' Z26' ". are descending (Z2n ~ Z2nt2). To verify thls, note that we

must have Z11 ~ Zln for n- 3, 5, ... because Z11 ~{sl) and sl is a domínant

strategy. Next, let s? E Z22, which holds if and only if

n2(s1,s2) ~ x2(sl,s2). (48)

We then have that s1 E Z1n for odd n, that 52 dominates sZ, and that (48)

holds. These ensure that s2 E Z2n for even n, and hence Z2n ~ Z22 for n~

4,6,.... Iteration of this argument gives the reault. We next note that

because the 211 and ascendíng and the Z2i are descending, there must exist an

n such that

ZIn s Zlm

Z2nt1 - Z2m

m s nt2, nt4, ..

m - nt3, nt5, ..

It is then clear that ( Zln'Z2nt1) ylelda a conslstent pair.

Example 11. Consider the game of example 6:
2

1
T

B

L
3, 3

3, 1

R

1,3

0, 0

The strategíes T and L are dominant for players 1 and 2. However, consistent

paírs include ({T,B},{L}) and ({T1,{L,R)) but exclude ({T},{L)). Hence, we

can achieve common knowledge of admiss1b111ty at world a with Zi ~{T) and 22

a(L} only if Zi and Z2 are not known (cf. Theorem 4). To show that common

knowledge of admisslbillty at world a with Zi a{T} and ZZ ~{L) can be

achleved, construct a model with three worlds, denoted a, ~, and 7. Let



R1 - ({R}.{a.7})

R2 - ({R.a},{7})

z~ s n(T,B} ~ z {L}

Zi 3 {T} ZZ z {Ll

Zi z {T} 22 ~ A{L,R}.

Then admissíbility is common knowledge in each world and in world a, Zi- {T}

and ZZ z {L).

Example 12. Conslder

1
T

B

L
2
C R

1, 1

0, 1

0, 0

(49)
0,1

0, 0

The unique dominant strateaies for the players are T and L. Notice that {T}

and G{L,C} constitute a consistent palr but (( T},{L}) does not. Can we get

common knowledge at some world a with ZZ s(L}? If so, we must have

U Z~ - n{T,B}.
~RZa

Then there must exíst some world S with strategy B E Z~ and wíth

z~ ~ D1(nl. U z2~).
s~Rl~

This in turn can occur only lf each ZZ, with S'Rls excludes L. Nowever, from

Lemma 2, L must be a member of ZZ Sn each world Sn the element of the meet of

R1 and R2 whlch contains a, since 2 applies admissibility in such worlds and L

is dominant, yielding a contradiction. ~

We thus find that admissibility can always be made common knowledge in

Qames in which each player has a unique dominant strateYy, though this may

require elther that the outcome of common knowledge of admissibility contains

more than simply the dominant strate~ies or that it contains only the dominant

strategies but Ss not known.

0, 1
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The dominance considerations Sn (49) are straightforxard, but the

interplay between dominance and knowledge considerations ís not straíght-

forvard. Dominance arguments may ínitially lead the players to {T} and {L},

but then the knowledge of these same argumenta (in particular, 2's knowledse

of (T} ) leads 2 to A{L, C}, and it is ({T}, ~(L, C) ) that emerges from common

knoxledge of admisslbility. The dominance arguments that might appear to lead

2 to reJect C are rendered irrelevant by knowlsdge conaíderatlona, with the

interplay between dominance and knowledge consideratíons yielding G(L,C}.

Can we Penerallze these results7 Ne can consider Yames whích are

dominance solvable (cf. note 3).

Example 13. Conslder

T

L
2

1
B

2, 2

2, 2

R (50)

0, 3

Common knowledge of admissíbility agaín cannot obtain in this game. Dominance

solvablllty for this game gives (T,L). ~

V. Discuasion

This paper has examined the concept of the common knowledge of admissl-

billty. Our first finding is that iterated admissibility is not equivalent to

the common knowledge of admíssibilíty and the differences may have si~nificant

payoff implications. There Ss no general, slmple relatlonship between

iterated admissibilíty and the common knoxledge of admisslbility.

In light of these findings we turn to the task of characterizíng the

implications of common knowledge of admissibility. Here, deeper results

emerge. In some gamea, there are multiple pairs of strategy sets consistent

with the presumption that admiesibility Ss common knowledge. The common

knowledge of admissibílity thus yields amblguous prescriptions. In other
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games, it is Smpossible to presume that admisslblllty is common knowledge

without encountering logical inconsistencies. Thls calls into question two of

the seeminYly most basíc assumptions Sn game theory. We also find that

admissibillty can be common knowledge without players knowing the Smplied

choice sets. Finally, admissíbility can always be made to be common knowledge

in games where each player has a uníque dominant strategy, but it may not

always be posslble to do thls wlth the players knowing the outcome of common

knowledge of admissibillty and may not always be possible to have the common

knowledge of admisslblllty select only the dominant strateyíes.

It is important to note that our inconsistency result appears because we

require (17)-(18) to hold rather than

Di H Zi s DS(A1, U ZZ)
~Rla

D2 a.~ ZZ s D2( U ZS,02).
~Rza

(51)

(52)

Conditlons (SI)-(52) require only a pair of sets with the property that once

attention is limited to those sets, admissibility provides no further

motivation for excludíng strate8les. Conditions (17)-(18) also require it to

be the case that all excluded strategles are excluded because of admissi-

bility. Condition (S1), for example, requires a strategy to appear Sn 21 only

Sf it is not dominated. Condltion (17) strengthens the "only if" to "íf and

only if'. Condltlons (17)-(18) thus require the sets Z1 and 22 to exhibit the

admíssibilíty analogues of GreenberY's (1990) internal consistency (the "only

if" part) and external consistency (the "if" part) and hence form what

Greenberg calls a consistent system.

If we were content to require only conditions (51)-(52), then some of our

dlfflculties would be ellminated (thou~h not all of them; multiplicity

problems, for example, would persist). Ifiy do we Snsist on (17)-(18)7 Ne are

interested in the implications of admisslbility, and would like to determine
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the lmpllcations of applyin~ only admlas1b111ty. If a pair of sets Z1 and Z2

exists satisfying (51)-(s2) but not (17)-(18), then admissibility (and the

common knowledge of admissib111ty) provídes an explanation for why the

elements of Z1 and 22 are lnclud~d in players' choice sets, but the exclueion

of some of the elements not contained in Z1 and Z2 must be motivated by some

other conslderations. We accordingly have not identified the Smplications of

admissibility, but rather have identified the implicatlons of admisslbility

coupled with some additlonal criterion.

A comment on previous studies is now useful. Pearce (1984) and Bernheim

(1984) examine the Smpllcations of assuming it to be common knowledge that

players are rational. Tan and Werlany (1988) continue thls line of lnquíry.

These studies find that the implicatlons of the common knowledHe of ratlon-

ality are that players will employ the iterated elimination of strictly

dominated strateHles, or strict Sterated admissíbility. In two-player Hames,

this yields the set of rationalízable strategies. Our work differs in that we

begln directly wlth admissib111ty. We strengthen strict admissíbility to weak

admisslblity, but we then conduct the less severe test of examinlnH the

Snternal consistency of the common knowledge of (weak) admíssibility rather

than deriving admissibility propertles as an implication of the common

knowledge of rationality. Our findíng that it may be impossible for

admissibility to be common knowledge is reminiscent of Binmore's (1987-88)

flnding that perfect rationallty Ss an inconsistent concept.9

9Bórgera (1989a) argues that the concepts of weak admissibllity and
common knowledge are inherently contradictory, since the former involves an
impllcit assumptíon that any of an opponents' strategies are possible while
the latter yields cases in which it is known that some strategies will not be
played. BórHers responds by constructing a model in whích ratlonality is
"approximately" common knowledge, finding that the implícations of such a
model to be that players will apply one round of ndmisalbllity and then apply
strict lterated admissibility. BSrgers (1989b) examínes the posslbility of
designing efflcient collective cholce procedures with the usual Nash (or
stronger) equ111brium assumption replaced by the assumption that players will
not play dominated strategies.
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Finally, notice that it is the combination of admissibilíty and common

knowledge that yields difficulties. It remains an open questlon which is the

best candidate for deletion from the model. The intuitive appeal of

admissibillty and the counter intuitive nature of many of the arguments

associated with common knowledge suggest that perhaps the latter should be

reconsidered. One approach along these lines is provided by Dekel and

Fudenberg (1987), who presume that players are uncertain about opponents'

payoffs. Strateyies are selected by applying iterated admissibility to

perturbed games and taking límits as the perturbations shrink. The impll-

cations for the ori81na1 game are that players should apply one round of

admissibility and then apply strict iterated admisslbility. A somewhat

similar prescriptíon is provided by Pearce's (1984) cautious ratíonaliza-

bility, in which players at each step first iteratively eliminate strictly

dominated strate8les and then delete weakly dominated strategies. An

alternative approach may be allowed by evolutionary arguments (e.g., Samuelson

(1988)).
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