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DOMINATED STRATEGIES AND COMMON KNOWLEDGE

I. Introduction

The prescription that players in a game should avoid playing weakly
dominated strateglies (should play “admissible" strategies) 1s one of the most
basic tenets of game theory.1 It 1s widely recognized, however, that 1if
players in a game are assumed to not choose dominated strategies, and this is
common knowledge, then one derives implications which are potentially much
stronger than simply removing domlnated strategies from the game.z In
particular, if player 1 knows that others will not play dominated strategies,
then 1 will presumably shun not only strategies which are dominated but also
those which become dominated once the dominated strategies of others have been
eliminated from consideration. Further iterations of this type of reasoning
are possible, ylelding the lterated elimination of weakly dominated strategies
(or 1iterated admissibility). Iterated admissibility thus appears to be an
implication of the common knowledge of admissibility and has been taken to be
equivalent to the common knowledge of admissibility (e.g., Rath (1988)).3

The point of departure for this paper is the observation that some
intuitive puzzles appear when applying iterated admissibility. First, it is
well known that the order in which dominated strategles are eliminated can

affect the outcome of the process. Second, cases arise in which agents

1Kohlberg and Mertens (1986) provide a discussion of admissibility.
Dekel and Fudenberg (1987) observe that the (iterated) deletion of weakly
dominated strategles "clearly Incorporates the intuitive objectives of
rationality postulates".

2The concept of common knowledge was popularized by Aumann (1976). See
Binmore and Brandenburger (1988) and Tan and Werlang (1985) for discussions of
common knowledge.

3lterated admissibility 1s examined in Luce and Raiffa (1957) and Moulin
(1986). These treatments do not discuss the common knowledge of
admissibility. If the outcome of iterated admissibility ylelds a set of
strategies over which players’ payoffs are invariant, then Moulin identifies
the game as dominance solvable.



eliminate strategies on the strength of the presence of opponents’ strategies
which are themselves subsequently eliminated. Finally, the process appears to
initially call for agents to assume that opponents may play any of their
strategies but to subsequently assume that opponents will certainly not play
some strategles. These anomalles suggest that a more careful examination of
what 1t means to assume that admissibility 1is common knowledge would be
useful.

This paper begins this examination. We embed a game in a framework in
which the common knowledge of admissibility can be explicitly modeled and its
implications derived. We establish five results.

First, the common knowledge of admissibility 1is not equivalent to
iterated admissibility. Games exist 1Iin which iterated admissibility
eliminates more strategies than can be Jjustified by an appeal to common
knowledge of admissibility as well as games in which iterated admissibility
eliminates fewer strategies than does common knowledge of admissibility.

Second, there exist games in which assuming that admissibility is common
knowledge does not provide players with sufficient information to determine
which strategiles should be eliminated on admissibility grounds. Instead,
multiplicity or coordination problems arise. It is important to note that the
difficulty 1s not that the common knowledge of admissibility fails to
eliminate sufficlent strategles to reduce strategy sets to singletons, but
rather that iterated admissibility does not provide sufficient information to
determine which (if any) strategles should be eliminated.

Third, there exist games in which assuming that admissibility is common
knowledge ylelds a contradiction. Admissibility can thus be inconsistent with
common knowledge, calling 1into question two of the seemingly most basic
concepts in game theory.

Fourth, suppose that admissibility is common knowledge and that this

implies that player 1 chooses from a strategy set given by Z, and player 2

1

chooses from a set given by 2 Does it necessarily follow that player 1

2
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knows 22 and player 2 knows Zl? If so, we say that the implications of common
knowledge of admissibility are known. We show that admissibility can be
common knowledge without the implications of common knowledge of admissibility
being known.

Finally, we compare the common knowledge of admissibility with familiar
admissibility notions. We show that if both players in a game have dominant
strategies, then 1t 1is always possible for admissibility to be common
knowledge in that game. However, the common knowledge of admissibility need
not imply that players choose only their dominant strategies, and games exlst
in which dominant strategles are the sole implications of common knowledge of
admissibility but this cannot be known by the players. We also attempt to
extend these results to games with slightly less structure by examining the
common knowledge of admissibility in dominance solvable games. It may be
impossible for admissibility to be common knowledge in such a game.

The common knowledge of admissibility is thus a paradoxical construction.
These results are not surprising. Admissibility and common knowledge are
concepts which readily conflict. The usual motivation for admissibility is
that one cannot be entirely certain as to an opponent’s strategy choice and
hence should choose only “safe" or admissible strategies. The implication of
common knowledge is that in certain circumstances players can know something
about opponents’ choices, where knowing is a degree of certainty surpassing
even that of a probability-one belief. It is then to be expected that these

concepts clash, and we have merely made this expectation expllclt.4

4The only potential surprise in our results is that the common knowledge
of admissibility may not select unique dominant strategles (or dominance
solvable outcomes) when they exist. Notice, however, that we are working with
weak rather than strict dominance, so that even with unique dominant
strategies, alternative best replies may exist. Common knowledge arguments
can then cause these alternative best replies to be essentlally equivalent to
the dominant strategy, given what 1is known about opponents, causing the
outcome of common knowledge of admissibility to yield more than simply the
dominant strategy.



It is useful to examine our notion of common knowledge of admissibility.
Our formulation of common knowledge is standard. In particular, we say that
an event A 1s common knowledge if each agent knows A, each agent knows each
agent knows A, each agent knows each agent knows each agent knows A, and so
on. To further verify that our formulation of common knowledge is not
problematic, we show that it 1s equivalent to Aumann's (1976) definition
involving agents’ Iinformation partitions. Our paradoxical findings thus
cannot be traced to difficulties with the definition of common knowledge.

Attention then turns to our definition of admissibility. We say that if
player 1 applies admissibility, then 1 chooses from the set of strategies
which are not weakly dominated given the set of possible strategies for player
2. This 1s again the standard definition. We impose no further conditions,
with all implications being derived from the assumptlon that this definition
of admissibility is common knowledge.

The only potential difficulty here 1is the presumption that player 1’s
choice set consists of all of 1’'s undominated strategles. Why not allow
player 1’'s choice set to be a subset of 1's undominated strategies? Players
would then still respect dominance considerations while some of the paradoxes
we discover would be eliminated. For example, our finding that the common
knowledge of admissibility is an inconsistent concept in some games would no
longer hold.

Two responses arise. First, not all of our paradoxes would be resolved.
For example, multiplicity problems would still arise. Second, if we allow
and Z,, with each set containing a subset of

)& 2
the player’'s undominated strategies but not containing all undominated

players to choose from sets 2Z

strategles, then admissibility (and the common knowledge of admissibility)

provides an explanation for why the elements of Z.  and Z2 are included in

1

players’ choice sets, but the exclusion of some of the elements not contained

in 21 and Z, must be motivated by some other considerations. We accordingly

2
have not 1identified the 1implications of admissibility, but rather have



identified the implications of admissibllity coupled with some additional
criterion. We would like to identify the implications of admissibility only,
and hence must examlne the choice sets that remain after admissibility and no
other considerations have been applied. The relevant cholce sets then include
all undominated strategies.

Is it an Iinteresting question to examine the 1implications of
admissibility only? The answer 1s clearly yes. For example, it has often
been noted (Kohlberg and Mertens (1986)) that equilibrium concepts such as
properness perform well in all respects except admissibility calculations. In
particular, the set of proper equilibria can be affected by the deletion of a
dominated strategy from a game. One possible response 1s to construct a
two-stage procedure. In the first step, the common knowledge of admissibility
is applied to possibly eliminate some strategies. The second step then
consists of the application of a solution concept such as properness to the
resulting strategy sets.5 The first step ensures that the resulting
equilibrium concept exhibits desirable admissibility properties. In order to
implement such a procedure, the first stage must identify all of each player’s
strategies which are not eliminated by dominance considerations. Hence, our
admissibility calculations are the appropriate first stage.

Section II of this paper provides some necessary definitions. Section
II1I constructs the formal model of common knowledge of admissibility. Section
IV derives the main results. Section V discusses the implications of these

results and their connection to the literature.

sKohlberg and Mertens (1986) consider such a procedure, but reject it
because a cell of a game’s payoff matrix can be replaced with a constant-sum
game that has a value matching that payoffs of the cell but which disrupts the
dominance calculations of the initial stage. We do not address this
difficulty (though it might be solved by a second-stage solution concept which
is not "fooled" by constant-sum games, instead replacing them by their value
and returning the game to the first stage). Instead, we consider a prior
problem: For a fixed game, what is the outcome of the first-stage admissi-
bility calculation? Hence, we will be concerned with whether this procedure
is well defined rather than with its desirability.



II. Definitions.

We restrict attention to finite, two-player normal-form games of complete

information. Let the players be denoted 1 and 2; pure strategy sets, S1 and

Sz; pure strategies s, and Sy mixed strategy sets, A1 and A2; mixed

and payoff functions, m, and m,. Letting N = (1,2}, S =

strategies 8, and & 1 2

1 2"
S1 x Sz, and & = (ul.nz), we represent the game as (N,S,n) = G.

We now define:

Definition 1. Let X1 < Ai' Then a strategy 61 is weakly dominated in X1
given X2 if 61 € X1 and 1f there exists Gi € A1 such that
’
ul(sl,az) z 11(61,62) v 62 € X2 (1)

with strict inequality holding for some 62 € XZ. Strategy 61 is strictly

dominated in x1 given x2 if strict inequality holds in (1) for all 62.

Let Dl(Xl.XZ) be the subset of the strategies in X1 which are not weakly

dominated in X, given X

1 2
sequence Bi(t). t=1,...,T i=1,2, by

and let DZ(XI,XZ) be analogous. Now construct a

61(1) = A1 (2)

8,(t) = D, (e,(t-1),8,(t-1)), t=2,...,T (3)
where T 1s chosen large enough that
GI(T) = BI(T-I). (4)
Because the game is finite, such a T exists. Let BI(AI'AZ) = 91(T). Then:

Definition 2. The set of admissible strategies for player 1 (player 2 is

analogous), given X is given by

2
Dl(AI'xz)' (5)



The set of iterated admissible strategies for player i 1s given by

DI(AI'AZ)' (6)

If weak domination 1is replaced by strict domination in definition 2 then we
obtain strict admissibility and strict iterated admissibility.

Admissibility requires that weakly dominated strategies not be played.
Iterated admissibility, also referred to as the iterated removal of weakly
dominated strategles, requires that a sequence of moves be made 1in which
weakly dominated strategies (given the remaining strategy sets) are removed at
each step.6 The process continues until no further removals can be made, at
which point the remaining strategy sets are referred to as the sets of
iterated admissible strategles. In two-player games, the outcome of strict

iterated admissibility 1is the set of rationalizable strategies (Bernheim

(1984), Pearce (1984)).
I1I. Common Knowledge of Admissibility

This section constructs a model in which we can examine the common

knowledge of admissibility.
(III.1) Modal Logic

We require a model rich enough to capture what players know, what
inferences they can draw from their knowledge, and what it means for players
to apply admisslibility. Hence, we require a system of eplstemic modal loglc.
We work with the system commonly referred to as SS. This system has lits
origins in Hintikka (1962); it is discussed in Chellas (1980) and Snyder

(1971).

6Our definition of iterated admissibility requires that at each step,

each player eliminates all dominated strategies. One easily concelves of
alternative formulations in which players eliminate only some dominated
strategles at each step. It is well known that the outcome of iterated
admissibility can depend upon the order of eliminations.



Let L be a formal language, often called the "object" language, which
includes the logical operators or constants -~ (negation), A (conjunction), v
(disjunction) = (implication), = (equivalence), ® (tautology), @
(contradiction), Kl. KZ' Pl‘ and PZ; the auxiliary symbols " (", ")", and “,";
and countable numbers of statement constants, predicate constants, function
constants, and variables. In our application, the variables will be used to
represent subsets of strategy sets. The function constants we will require
include D1 and D2. where D1 assocliates, with the sets X1 and XZ' the set
DI(XI,XZ) of strategies which are undominated in Xl given XZ. The predicate
constant we will require is the equal sign =. Statement constants allow the
language to include propositions. The two required in our applications are D1

and Dz. where D, 1is the statement that player i1 chooses only admissible

|
strategies. The four operators Kl, Kz, Pl' and Pz are modal operators and are
to be interpreted as “player 1 knows," "player 2 knows," "player 1 thinks it
is possible,” and "player 2 thinks it 1s possible." From this basic
vocabulary sentences are formed according to familiar rules.

A model (sometimes called a metalanguage) 1is a structure M =
(w’(”w)ueu'Rl'RZ)' where W is a set of possible worlds, MY is a set of
sentences 1in language L which are taken to be true in world w, and Ri is an
equivalence relation on W. Intuitively, Ri captures the information agent 1
has about the state of the world. Definition 3 makes this intuition formal.

We now let w be a world in W and let "M,w |= ¢" be Interpreted as

"proposition ¢ is true in world w of model M." To make this precise, we

offer:

Definition 3.

W

Mwil=¢ Iff ¢eM (7)
Mwi|=e (8)
A [Mw |= @] (9)

M,w |= =A iff - [M,w |= A] (10)



= @9 =

Mw |=AAB iff [(M,w |= A) A (M,w |= B)] (11)
M,w |=AVvB iff [(Mw |=A)vV (M,w |=B)] (12)
M,w |=A=B |Iff [(M,w |= A) » (M,w |= B)] (13)
Mw  |=A e B iff [(Mw |=A) &= (Mw |=B)] (14)
Mw |= KIA iff [(M,w" |=A V weW s.t. V’le)] (15)
Mw |= PlA iff [(3w'eW s. t. H'le and M,w' |= A)]. (16)
Statements (7)-(14) are straightforward. (8)-(9) save us from logical

nonsense by ensuring that tautologies are true and contradictions false.
(10)-(14) ensure that the logical operations of negation, conjunction,
disjunction, implication and equivalence work in familiar ways. (15)
indicates that player i knows A at world w if A is true in each world w' for
which w'Riv. Intuitively, (w’:w'le) is the set of possible worlds for 1
given w, and i knows something at w if it is true in all possible worlds given
w. (16) indicates that i considers A to be possible at w if there exists some

possible world (given w) at which A is true.
(I1I.2) Admissibility and Common Knowledge
We now introduce admissibility into our model. First, we fix a game

(N,S,n) = G. We then assoclate with each world a a pair of variables Z‘: 4 A1

and Z; < Az, where these 1dentify the choice sets of players 1 and 2. We
assume that a.Rlﬁ » ZT = Zf. which (given (15)) 1s equivalent to assuming

that players know their own cholce sets. This knowledge is essential to a

theory of how agents play games.

Let D‘; be interpreted as the statement that player i applies admissi-

bility in world a. Formally we assume that in each world a the following

hold:
o o
D, « Zl-Di(Al. U zg) (17)
BRlu
o o
DY e Z5=D,(U 2, A (18)

U
BR o
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Condition (17) states that if player 1 applies admissibility in world «, then
player 1's cholce set consists of those strategies which are not weakly
dominated given the set of possible strategies played by player 2, which is

UBR azg (ef. (16)): Notice that these are straight-forward definitions of
1

admissibility. Notice also that these conditions define admissibility but
make no statement about whether players apply admissibility when choosing

strategies. Hence, we must offer:

Definition 4. Admissibility holds in world a« (or the players apply
admissibility in a) if D‘; and D; are true in « (i.e., D‘;.D; e M%).

We now introduce common knowledge. In particular:

Definition S. Admissibility is common knowledge in « if the following are

true in a:
3 (1
Dl DZ
o o
K,D K, D
. 2 2 :L (19)
KIKZDI l(ZKIDZ
o o
KIKZKIDZ K2K1K2D1 8

This is again a standard formulation, defining an event to be common knowledge
if everyone knows it, everyone knows everyone knows it, everyone knows every
one knows everyone knows it, and so on.

It will be helpful to explore the properties of this formulation of
common knowledge of admissibility. We offer two results. First, we develop
an equivalent statement of (19), i.e., an equivalent statement of what it

means for admissibility to be common knowledge.

Lemma 1. The collectlion of statements 1n (19) holds, and hence admissibility

is common knowledge, in world « if and only if:



z‘; = D,(a, U 2‘23) (20)
BRII
z‘;‘ = Dl[l,UD( UZ‘B A)] (21)
ﬁﬂzﬂ
a a
# - Dl[ p Ul Uuba, v 2 ).AZ]] (22)
BR a nzp Vgwr g
o« -
2% - DI[AI, AN u[ U py U 2z .Az)].AZ]] (23)
BRZB RB" * B*RB
z°2‘ = D, (U z‘:.Az) (24)
BR_«a
2
2* = p,| U Da,, UzB'),A] (25)
2 Bl 13’;1132 2
2 - [U D[ , Ubp(u 22 )].A] (26)
2 ZBRa 1B,ana..nzp.1 20|85
z“-D[UD[A. UD[EU D, (a4, U ZB‘).A]].A] (27)
2 2 R 1A bR g 2 ‘R g 1 (84 bR " 2 ):85]):8,

Proof. (20) duplicates the consequent of (17), so D'; and (17) give (20).

Consider (21). From (15), KIDZ is equivalent to the statement that the

consequent of (18) holds for all B with BRla. Substitution into (20) then
ylelds (21). Similarly, (24) duplicates the consequent of (18) and hence
follows from D; and (18). From (15), 2 1 is equivalent to the statement that
the consequent of (17) holds for all B with BR «. Substitution in (24) then
ylelds (25). K1K2D1 and KZKIDZ can now be used, again with (15), to establish
that (25) and (21) hold for all BRla and ﬂRza. Substitution into (20) and

(24) gives (22) and (26). Iteration of this argument yields the result. ]
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We can next provide a check that our formulation of common knowledge is
standard. Let Rl and R2 be the partitions of W induced by R1 and RZ' Let R
be the finest common coarsening (meet) of Rl and Rz. Let a typical element of

R be denoted n.

Lemma 2. Let « € n € R. Then admissibility is common knowledge at a« if and

only if D‘3 and DB hold for all B € n or, equivalently, for all B € n:

1 2
2 = b, U Z) (28)
B'R B
2 -« b UZB:A). (29)
2 2'gpp ! 2

Proof. Let (28)-(29) hold. We derive (20)-(27). First, letting B8 = «
in (28)-(29) gives (20) and (24). Noting that (28)-(29) hold for all B with
BRia, and substituting, then gives (21) and (25). Iteration of this argument
glves the remaining conditions. Let (19) hold. Then the repeated

application of (15) gives (28)-(29). ']
To see the implications of Lemma 2, note that it immediately ylelds:

Corollary 1. Admissibility 1s common knowledge at world « if and only if
admissibility holds at each world in the element of the meet of Rl and R2

containing «.

This shows that the concept of common knowledge used in our formulation of
common knowledge of admissibility is equivalent to the well-known formulation

of Aumann (1976).
(III.3) Necessary and Sufficient Conditions
Lemmas 1 and 2 provide conditions for admissibility to be common
knowledge, given by (20)-(27) or (28)-(29). These conditions are intuitive

but are not especially easy to work with. It will be very helpful to derive

conditions which can be expressed solely in terms of the structure of the game
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G and which are necessary and sufficlent for the ability to construct a model
(given G) with a world in which admissibility 1is common knowledge. This
section derives such conditions.

We begin, in Theorem 1, with conditions on a game which are both
necessary and sufficlent for the ability to construct a model with a world in
which admissibility is common knowledge. The requirement that these
conditions be both necessary and sufficlient causes them to be complicated, and
the statement and proof of Theorem 1 are tedious. Our subsequent results will
follow from a simpler sufficlent condition (presented in Theorem 2) and
necessary condition (Theorem 3). Readers who are less Interested in technical
detalls may thus want to skip to Theorem 2 on page 16 (though Theorem 1 is

used in the proof of Theorem 3).

Theorem 1. A model exists with a world « at which admissibility is common
knowledge if and only if there exist sequences

N N N N

411 2yt C 2y tin Zyg ey - (30}
N N N N
211 LC2P Zym ha AP Zygto (31)
with
By 5 B
and sequences
] Nln
(Ilnk)nnl k=1
] "Zn
(Ian)nsl k=1
with
B & Wooesaly ) (32)
"in
U s ™ (1.....NJM1) (33)

such that
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s = By, U By (34)

k'€l

ink
Bao = B 2 o0 (35)
k'€l

2nk
K € lox » Zink € Cypeop k" € Lt (28]
k!’ € Ian = Zan € (22n+2k“:k € Iln+1k’) (37)
By & MZpgrk € g} (38)
Z111 € (lek:k € 2211) (39)

Let us first intuitively describe (30)-(39). When constructing our model in

which admissibility will be common knowledge at world «, we will take Z? =
a

2111 and 22 = 2211.

this sequence begins with Z

(30) then requires that we find a sequence of sets, where

o
1’

player 2, then a collection for player 1, then a collection for player 2, and

then includes a collection of strategy sets for

so on. Two relationships must hold between these collections of sets. First,

(34)-(35) indicate that ZT must be 1's set of undominated strategies given

that 2 chooses from LL:: Z Similarly, each 222k must be the set of 2's

22k’

undominated strategies given that 1 chooses from the union of some subset of

N

13 ,
the sets in (213k)k=f Each 213k must in turn be 1's undominated strateg:es
given that 2 chooses from the union of some subset of the sets in (Zz4k)kf}

and so on. Second, (36)-(37) require the following. If Z13k (for example) is

the set of 1’s undominated strategies given that 2 chooses from L&El 224k”
13k

then Z13k must appear in each of the collections of player 1 strategy sets

which generate the various 224k” (31) gives a similar sequence starting with
a set 2;. (38)-(39) link these sequence together, indicating that ZT must be
one of the sets generating Z; and vice versa.

Theorem 1 states that iff sequences satisfying (30)-(39) exist, then we
can construct a model in which (20)-(27) hold. From the structure of
(20)-(27) it is no surprise that we need sequences of sets linked together by

relationships like (34)-(35). Why must (36)-(37) hold? To see this, let



13k 24k’

When constructing our model in which admissibility 1is common knowledge, Z13k

will be player 1's cholce set in some world y and the sets in {2 }

24k X €Ty g

will be the cholce sets of player 2 in those worlds which player 1 cannot
distinguish from y. Fix a 224k" This 1s then the value of 22 in some world,

say B, with Ber. Now if admissibility is to be common knowledge then Z

24k’
must be 2's undominated strateglies given that 1 chooses from Lk'Rzﬂ Z?,. But
Z? Z13k (since Ble and Z1 213k)‘ Then Z13k must be one of the sets

generating 2 as ensured by (36)-(37).

24k’ "’

We now prove Theorem 1.

Proof. Let (30)-(39) hold. We show that a model satisfying (20)-(27) at

some world « can be constructed. First, we set

ZT = 41
Z; = Ty
Bl
Now create a collection of N22 worlds Bl.....anz, with BiRla and Z2 = 2221.

1 =1 Let no other worlds satisfy BRla. From (38)-(39), there

,...,sz.

ﬁl’ a
exists a world Bl' for which 22 =

2 and which can be renamed so that Bl‘ =
«. (34)-(35) then give (20). Next, for each Bi create a collection of worlds

’Bin' with n’ = | | and with BIJRZBI' Let no other worlds satisfy

e 221
BRZBI' Let lek = Bik for each k € 1221. From (36)-(37), one of BlJ can be
taken to be identical to Bl' and (34)-(35) now give (21). Iteration of the
argument ylields the result.

Only If Let (28)-(29) hold. Then we can construct sequences satisfying

(30)-(39). Let

N
L}
HNR

N
Py
-
N R

Then let



22
Zpotes = (zg : BRya}

N
12 .
.32 - <z‘f . BRa}

12k " x=1

and
Ly = (1.....N22)
12“ = (1,...,N12).

Then (38)-(39) hold by construction and (28)-(29) ensure (34)-(35). Now let

"13 i
{Z. = {Z? 5 B‘RZB for some BRza}

13k 5-1
{2z } <3 = (ZBI : B’R,B for some BR, «}
23k k=1 2 2 1
and let
s = i 4 =
I22k = {k: Z13k ZT for some B RZB with Zg zZZk)
’
I, = {ki 2, =725 for some B'R/B with zf =z,

Then (28)-(29) again ensure (34)-(35). Fix 222k' By construction, 124k
includes Zf for a value of B for which Zg = Z22k and for which Zq = ler
This gives (36). (37) is similarly verified. The iteration of this technique

glives the result. =

The conditions given by (30)-(39) satisfy our requirement that they refer
only to the structure of the game G, but are complicated. We can develop a
convenient simpler sufficient condition for admissibility to be common

knowledge.

Theorem 2. A model can be constructed 1n which admissibllity 1is common
knowledge in world « if there exists a pair of sets 21 < A1 and 22 < A2 which
satisfy:

z = DI(AI.ZZ) (40)

z = DZ(ZI'AZ)' (41)

Proof. Given a pailr of sets Z1 and 22 satisfying (40)-(41), we construct a

model. Fix W, R1 and R2 and choose a world . Let « € n € R. For each B €



n, let

Then (20)-(27) will obviously hold for each B € n and hence admissibility will

be common knowledge in «. [
A palr of sets satisfying (40)-(41) will be referred to as a consistent pair.

Remark 1. Notice that we have not established the uniqueness of consistent
pairs for a game, and note that if (ZT.Z;) and (Z?.Zg) are consistent pairs,

then Zj= z‘i’ - 25 zg

Examples 10-11 will show that the sufficient condition given by (40)-(41)
is not necessary for admissibility to be common knowledge. We can find a

relatively straightforward necessary condition:

Definition 6. A pair of sets (211""'21n(1)) = Z1 and ‘221""'22n(2)} = 22.
with Z11 < Al and Z2J < Az. is a generalized consistent pair if Z1 and 22 are
nonempty and, for every Z11 € Zi, there is a subset 911 of Z2 such that
Z11 = DI(AI'Z 26 ZZk) (42)
2k 11
and for every ZZJ € Z2 there exists a subset eZJ of Z1 such that
2y = Dz(2 Lele 2y 85) (43)
1k 2]
and 1if
Z2k €6, = Z11 €6, (44)
2lk € 623 » ZZJ € eik' (45)

A generalized consistent pair is a collection of strategy sets for player 1
and a similar collection for player 2 with the property that each set in
player 1's collection is the set of player 1's undominated strategies given

that player 2 chooses from some subcollection of player 2’'s choice sets. In
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addition, these subcollections must be linked by the conditions given 1in
(44)-(45). A consistent pair is the special case in which each collectlon

contains only a single set.

Theorem 3. Let a model exist In which admissibllity 1s common knowledge for
game G in world «a. Then there exists a generalized pair of consistent sets

for G.

Proof. Let (30)-(39) hold. Then define:

N
in
Zin ® Zinhen
None1
zZn = (Zlnolk)k=1
for n = 3,5,... . Then (36)-(37) ensure that Z1n and 22n are ascending, 1i.e.,
Zin € Zine2
zZn < zZn*Z'

Because the game is finite, there exists an N such that

zln = zlm VnmzN
zZn = 22_ ¥V nmz N.
Let
5 * N
Z2 = ZZN'

(34)-(37) then ensure that Z1 and Z_, are a generalized consistent pair. [

2

Finally, we turn to the question of what it means for players to know the

outcome of common knowledge of admissibility.

Definition 7. The outcome of common knowledge of admissibllity is known at
world a if the common knowledge of admissibility holds at a« and if the players

know ZT and Z;, or, from (15):



U zf,_’ (46)
ﬂRla

U (a7)
BR_a
Theorem 4. Let common knowledge of admissibility hold in world «. Then the

outcome of common knowledge of admissibility is known in world a« if and only

if (40)-(41) hold at a.
Proof. Substitution of (46)-(47) into (17)-(18) gives (40)-(41). =

(I1I.4) Examples

Much of our analysis will make us of the idea of a consistent pair, which
is the sufficient condition for common knowledge of admissibility developed in

Theorem 2. It is accordingly useful to illustrate (40)-(41).

Example 1. Consider the game given by

2
L R
T 3,2 2,2
1 M 1,0 0,1
B 0,1 1,0

Depending upon the order of eliminations, iterated admissibility can be
used to give the pair {(T},{L}, the pair {T},{R}, or the pair ({T},A{L,R}.

The unique pair of consistent sets given by {T} and A{L,R}. =

Example 2. Consider the matching colins game:

The unique consistent pair consists of A{T,B} and A{L,R}, or the entire

strategy sets. ™



Example 3. Consider the prisoners dilemma:

2
L R
i 22 0,3
1
B 3.0 1,1
The unique consistent pair consists of {B} and {R}. =

IV. Implications

This section explores the implications of the common knowledge of

admissibility.
(IV.1) Common Knowledge of Admissibility and Iterated Admissibility

We begin with the question of whether iterated admissibility is
equivalent to the stipulation that admissibility is common knowledge. We

answer this question negatively:

Theorem 5. Iterated Admissibility 1s not equivalent to the common knowledge

of admissibility.

To prove this, it suffices to present an example in which the outcome of
iterated admissibility differs from the outcome of common knowledge of
admissibility. In particular, we can significantly simplify the analysis by
noticing that it suffices to present examples of cases in which a consistent
pair ZT and Zg exists which is not the outcome of iterated admissibility. We

find it convenient to present two examples.



Example 4.
Y Y Y,
X1 2,4 S.4 =10 (1v)
X, 3,4 2,4 -2,0
Xa 1,2 0,0 2,2 (iv)
X‘ 0,2 2,0 0,4 (11)
(1) (111)

Regardless of assumptions made about order of eliminations, iterated
admissibility eliminates strategies in the order shown (first i, then 1ii, and
so on) to yield a unique outcome of ((Xz).(Yl)). (In particular, if only one
of strategies X1 or X3 is removed by player 1 at the fourth round, then the
other strategy from this pair must be removed at the next round.) Common
knowledge of admissibility, in contrast, ylelds a unique consistent pair of
A(Xx.xz) and A(YI.YZ). The difference in these two outcomes reflects the fact
that once a strategy such as Y2 is eliminated by iterated admissibility, it
cannot return even if the reason for its elimination has been purged. If
admissibility is common knowledge, however, the knowledge that player 1 limits
choices to (Xi) provides player 2 with an admissibility-based reason to avoid
Y3 but not Yz' ylelding A{Y1'Y2) for player 2. Admissibility calculations
then lead player 1 to reject X3 and X‘ but not Xz. yielding A(Xl,xz). We
conclude that iterated admissibility and the common knowledge of admissibility

are distinct concepts. ™

Example 5. Conslder the following game:

2
L € R
T 3,5 2,1 2,0
1 M 3,1 0,0 0,1 (1)
B 0,-1 252 3,0 (111)
(iv) (110

Iterated admissibility eliminates strategies in the order shown, regardless of
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order consliderations, to yield (T,L). The unique pair of consistent sets of

this game is A{T,M)} and {L}. The two concepts thus again diverge with payoff

relevance. [

In Examples 4-5, the outcome of common knowledge of admissibility is a
superset of the outcomes of iterated admissibility. One might conjecture that
this result holds in general. Examples 7-9 and Theorem 7 will show that it
does not. Notice also the Examples 4-5 have only shown that the outcomes of
common knowledge of admissibility and iterated admissibility can differ, in
the sense that the unique consistent pair does not match the unique outcome of
iterated admissibility. There remains the possibility that a sequence of sets

exists satisfying the conditions of Theorem 1 in which Z and 2211 do not

111
yleld a consistent pair but do match the outcome of iterated admissibility.
However, no such sequence exists for the games given in Examples 4-5. The

verification of this is straightforward but tedious and is hence omitted.
(IV.2) Common Knowledge of Admissibility and Uniqueness

We now turn to a second property of the common knowledge of admissi-

bility.

Theorem 6. There exist games in which the common knowledge of admissibility

admits multiple solutions.

It is important to clarify what is meant by "multiple solutions." We are not
referring to the fact that after dominance considerations have been applied,
players may be left with sets from which to choose rather than singletons.
Instead, multiplicity refers to the fact that simply assuming admissibility to
be common knowledge may provide insufficlient information to identify the palr
of implied cholices sets Z1 and 22.

We again prove this by example. It suffices to exhibit games with

multiple consistent pairs.



Example 6. Consider the following game:

L R
T 3,3 1,3

B 3,1 0,0

There are two consistent pairs for this game, given by A{T,B} and {L} and by

{T} and A{L,R} ]

Example 7. The game given by

2
L c R
T 1,2 2,1 0,0
1 M 2,1 1,2 0,0
B 0,0 0,0 1,1

has three consistent pairs, consisting of (A{T,M},A{L,C}), ({B},{R}), and the

entire game. Notice that analogous result holds for a coordination game:

A Nash equilibrium is strict if each player’s equilibrium strategy gives
a strictly larger payoff than all alternative strategies. This property
allows us to identify immediately an obvious connectlon between strict Nash
equilibria and consistent sets, stated in the following proposition. In the
process, we generate a host of additional examples of games with multiple

consistent sets: games with multiple strict Nash equillbria.

Theorem 7. If s* is a strict Nash equilibrium, then letting Z1 = {s;) yields

a consistent pair.

These results ensure that one cannot first apply the common knowledge of

admissibility and then apply a solution concept to the remaining sets.
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Instead, there may be multiple outcomes consistent with admissibility, and the
outcome of the solution concept may differ across these sets. The determi-
nation of the implications of admissibility man then fall to be independent of
the subsequent solution concept. Equivalently, the outcome of the common
knowledge of admissibility depends upon beliefs that may also be linked to the
solution concept, destroying the independence between the two. The conclusion
is that common knowledge of admissibility is no longer a coordination-free
concept and hence loses a fundamental virtue.

The examples offered in proof of Theorem 6 indicate that in certain
games, simple rules might be adopted to resolve the multiplicity inherent in
the common knowledge of admissibility. However, these examples also make it
clear that no obvious, general rule exists. If faced only with Example 6, one
might advocate taking the intersection of the consistent pairs, but this will
not work in the game given in Example 7 or games with multiple strict Nash
equilibria, where the intersection is empty. Example 7 may suggest taking the
largest consistent pair, but this will not work in the game given in Example 6
or again in many games with multiple strict Nash equilibria, where a largest
pair does not exist. One might be tempted to resolve multiplicity problems by

letting Z. be the union of all sets Z1 possessing the property that 21 is a

i
member of a consistent pair and then taking (El’iz) as the outcome of common
knowledge of admissibility.7 However, applying this method to Example 6 shows

that it has the unappealing property of failing admissibility!
(IV.3) Existence of Common Knowledge of Admissibility

We now turn to a third question. Is the common knowledge of admissi-
bility a consistent concept, i.e., can one assume that admissibility is common

knowledge without implying a contradiction? The answer is no:

7This might be defended on the ground that player 1 could reasonably
expect any of the possible consistent pairs to be the "right" one and hence
should regard any element of player j's component of any consistent pair as a
potential candidate for play. This reasoning exhibits some of the flavor of
rationalizability.



Theorem 8. There exist games for which no generalized consistent pair exists.

From Theorem 3, the absence of a generalized consistent pair precludes the
common knowledge of admissibility, so Theorem 8 implies that games exist in
which one cannot consistently assert that admissibility 1s common knowledge.

For the proof, it is again sufficlent to offer an example:

Example 8. Consider the following game:

2
L R
T 1,1 1,0
1
B 1,0 0,1
A pair of generalized consistent sets does not exist for this game. The

difficulty here 1s that T dominates B for player 1. However, the two differ
only if 2 plays R with positive probability, and R is strictly inferior iff 1
plays T. Admissibility then leads 1 to play T if there is any chance of 2
playing R, but 2 is then led to play only L, at which point admissibility now
recommends T or B to 1, causing L and R to be the recommendation for player 2,
and so on. To make this more precise, we first show that a consistent pair

(21,22) does not exist. If Z2 contains only L, then Z1 must contain both T

and B, in which case Z2 must contain both L and R, a contradiction.

Similarly, if Z2 = {R}, then it must be that Z1 = {T}, at which point Z2 =

{L}, a contradiction. Finally, If Z2 contains any mixtures over L and R, then

we must have 21 = {T}, in which case Z2 = (L}, again a contradiction. Now

extend this to the question of a generalized consistent pair. Z1 can

potentially contain {T} and A{T,B} for player 1 and {L} and A{L,R} for player

2, since these are the potential outcomes of the operators D1 and Dz. Suppose

A{T,B} € 2 Then the assocliated 6, (cf. Definition 6) must contain {L}.

1 1
However, the 92 associated with {L} can include only {T} if (43) is to hold, a

contradiction (since A{T,B} is then not contained in 62, falsifying (44)).

Similarly, Z

2 cannot include A{L,R}. Then we must have 21 = {T} and Z2 = {L}.
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Then ({T},{L}) would have to constitute a consistent pair, which it does not,

so there is no generalized consistent pair. [ ]

Example 9. Consider again the game given in

2
L C R
T 7 (8 | 0,1 11,1
1 M 1,0 10, 10 111
B 1,11 1151 10,10

Depending on order, iterated admissibility can be used to select (T,L), (B,L),
or (T,R). This game has no generalized consistent pair. We agaln flirst
examine the existence of a consistent pair. We must consider seven cases.
First, let Z1 = A{T,M,B}. Then 22 = DZ(ZI’AZ) = A{L,R} and Dl(AI'ZZ) = {T} =

Zl. a contradiction. Similarly,

Z1 = A{T,M} - 22 = {R} - DI(AI'ZZ) = {T} * Z1
21 = A{T,B} » Z2 = {L} - DI(AI'ZZ) = A{T,M, B} 2 21
Z1 = A{M,B} = 22 = A{L,R} > DI(AI'ZZ) = {T} # Z1
Z1 = {T} > 22 = A{L,C,R} > DI(AI'ZZ) = A{T,B} # Z1
21 = {M} = 22 = {R} » Dl(Al'ZZ) = {T} # Z1
21 = {B} > Z2 = {L} » DI(AI’ZZ) = A{T,M,B} #* Zl.

In each case, DI(AI'ZZ) # 21. ylelding a contradiction and showing that there

is no consistent pair. One similarly shows that there is no generalized

consistent pair for this game. @

The conclusion is clear. There exist games in which admissibility cannot be
common knowledge. The assumptions of the application of admissibility and the

common knowledge of its application yield logical inconsistencies.
(IV.4) Knowing the Outcome of Common Knowledge of Admissibility

One’s initial impression might be that if it 1s common knowledge that
players apply admissibility in world «, then the players must know the outcome

of the common knowledge of admissibility in world «. However:




Theorem 9. There exist games in which a world « can arise in which it is
common knowledge at « that players apply admissibility but the outcome of

common knowledge of admissibility is not known in a.

Example 10 now proves Theorem 9. A similar phenomenon appears in Example

11.

Example 10. Consider the gane:8

2
L C R
T 1,1 1,1 Z:1
1 M 11 0,0 3,1
B 1,2 1,3 14 |

Then construct a model with three possible worlds, «, B, and 7, with

R = {{e,B}, {7}}

1
Rz =  {{a,7},{B}}
(4 o
z¥ = ATM zy = A(LC)
z'? = A{T.M} zg =  A{L,R}
¥ - LA
2! A{T, B} 2 A{L,C}.

It is then easy to verify that (28)-(29) hold in every possible world, so that
(by Lemma 2) admissibility 1s common knowledge in every world. However,
player 1 does not know 22 in worlds « and B and player 2 does not know Z1 in
worlds a and 7, or, equivalently, (46)-(47) fail to hold, so that the players

do not know the outcome of common knowledge of admissibility. ]

This result again raises problems for a decislon procedure which first applles
the common knowledge of admissibility and subsequently applies a solution

concept. In order to compute the latter, it may be necessary for each player

81 am grateful to Tilman Borgers for suggesting this example and
prompting the analysis of this section. It 1is interesting to note that two
consistent pairs for this game do exist, given by (A{T,B},{C}) and
({M}, A{L,R}).
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to know each of the players’ choice sets implied by the common knowledge of

admissibility. Example 10 shows that players may not have this knowledge.
(IV.5) Admissibility and Common Knowledge of Admissibility

This section examines the relationship between the common knowledge of
admissibility and conventional admissibility. First, suppose each player has
a dominant strategy. One might expect the common knowledge of admissibility

to select these strategies.

Theorem 10.
(10.1) If a game contains unique dominant strategies for both players 1
and 2 then it contains a consistent pair, though this consistent
pair need not be given by the unique dominant strategies.

(10.2) There exist games with the property that sy and s, are unique

dominant strategles for players 1 and 2 and such that there
exists a model and a world a with the common knowledge of

admissibility holding at a«, with z‘;‘ = {s,} and 2; = {s,}, but

with it being impossible for this to hold with the players

knowing z‘; and z‘;.

(10.3) There exist games in which Sy and s, are unique dominant
strategies for players 1 and 2 in which it is impossible to

achieve common knowledge of admissibility at world o« with Z‘ll =

o
(sl) and Z2 = (sz).

Proof. Example 11 proves (10.2) and the second statement in (10.1) while

Example 12 proves (10.3). It then remains to consider (10.1). Let the
strategles Sy and S, be unique dominant strategies for player 1 and 2.
Construct a following sequence of sets Z“, 222, 213, 224. 215, 226"" by:
211 = (sl)
z = D,(2 )

22 2(211°85



- 29 -

2,3 = Dy(8,.Z,;)

Z,, = D2(213’A2)

Now observe that the sets Z 213. le, are ascending (zln €2 ) and

IE* 1n+2

222. 224, 226' are descending (Z2n ] 22n+2)' To verify this, note that we
must have 211 < 2ln for n =3, 5, ... because Z11 = (sl) and sy is a dominant
strategy. Next, let sé [ 222, which holds if and only if

uz(sl,sz) < '2(51'52)‘ (48)

We then have that s, € Zln for odd n, that s

1 dominates sé. and that (48)

2
holds. These ensure that s € Z2n for even n, and hence Z2n < Z22 for n =

BB anes Iteration of this argument gives the result. We next note that

because the Z and ascending and the Z are descending, there must exlst an

11 21

n such that

21n = 21- m = n+2, n+4,
22n+1 = ZZm m = n+3, n+5,
It is then clear that (zln'22n+l) ylelds a consistent pair. L]

Example 11. Consider the game of example 6:
2
L R

T 3,3 1,3

B 3,1 0,0

The strategies T and L are dominant for players 1 and 2. However, consistent

pairs include ({T,B},{L}) and ({T},{L,R}) but exclude ({T},{L}). Hence, we

o
2

and 2; are not known (cf. Theorem 4). To show that common

can achleve common knowledge of admissibility at world « with ZT = {T} and Z

@
1

knowledge of admissibility at world « with 2? = {T} and Z; = (L} can be

= {L} only if 2

achieved, construct a model with three worlds, denoted «, B, and 7. Let



R, = (BN {a7))
R, = (B.ah{z))
z‘l3 =  A{T,B) A = w
o o
= m 2 = L
¥ . 5
Z1 {T} 22 A{L,R}.

Then admissibility is common knowledge in each world and in world «, ZT= {T}

and 2; = {L}. [

Example 12. Consider

2
L C R (49)
y i 1,1 0,1 0,0
1
B 0,1 0,0 9,1

The unique dominant strategies for the players are T and L. Notice that {T}
and A{L,C} constitute a consistent pair but ({T},{L}) does not. Can we get
common knowledge at some world « with 2; = {L}? If so, we must have

u 2 = amB

BRza

Then there must exist some world B with strategy B € Zf and with

’
B o= mE D 2)
B'Rlﬂ
This in turn can occur only if each Zg with B'RIB excludes L. However, from
Lemma 2, L must be a member of Z2 in each world in the element of the meet of

31 and R, which contains «, since 2 applies admissibility in such worlds and L

2
is dominant, ylelding a contradiction. [ ]

We thus find that admissibility can always be made common knowledge in
games in which each player has a unique dominant strategy, though this may
require either that the outcome of common knowledge of admissibility contains
more than simply the dominant strategies or that it contains only the dominant

strategies but i1s not known.
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The dominance considerations 1in (49) are straightforward, but the
interplay between dominance and knowledge considerations 1is not straight-
forward. Dominance arguments may initially lead the players to {T} and {L},
but then the knowledge of these same arguments (in particular, 2’'s knowledge
of (T)) leads 2 to A{L,C}, and it 1is ({T},A{L,C}) that emerges from common
knowledge of admissibility. The dominance arguments that might appear to lead
2 to reject C are rendered irrelevant by knowledge consideratlions, with the
interplay between dominance and knowledge considerations yielding A{L,C}.

Can we generalize these results? We can consider games which are

dominance solvable (cf. note 3).

Example 13. Consider

L R (50)
T 2,2 y 1 |

B 2:2 0,3

Common knowledge of admissibility again cannot obtain in this game. Dominance

solvability for this game gives (T,L). »

V. Discussion

This paper has examined the concept of the common knowledge of admissi-
bility. Our first finding is that iterated admissibility is not equivalent to
the common knowledge of admissibility and the differences may have significant
payoff implications. There 1is no general, simple relationship between
iterated admissibility and the common knowledge of admissibility.

In light of these findings we turn to the task of characterizing the
implications of common knowledge of admissibility. Here, deeper results
emerge. In some games, there are multiple pairs of strategy sets consistent
with the presumption that admissibility 1s common knowledge. The common

knowledge of admissibility thus yields ambiguous prescriptions. In other
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games, it is impossible to presume that admissibility 1is common knowledge
without encountering logical inconsistencies. This calls into question two of
the seemingly most basic assumptions in game theory. We also find that
admissibility can be common knowledge without players knowing the implied
choice sets. Finally, admissibility can always be made to be common knowledge
in games where each player has a unique dominant strategy, but it may not
always be possible to do this with the players knowing the outcome of common
knowledge of admissibility and may not always be possible to have the common
knowledge of admissibility select only the dominant strategies.

It is important to note that our inconsistency result appears because we

require (17)-(18) to hold rather than

D‘;‘ - z‘;‘ s D8, U zg) (51)
BRla
(+4 o
0} = Z5sD,(U Z,a). (52)
BRzu

Conditions (51)-(52) require only a pair of sets with the property that once
attention 1is 1limited to those sets, admissibility provides no further
motivation for excluding strategies. Conditions (17)-(18) also require it to
be the case that all excluded strategles are excluded because of admissi-

bility. Condition (51), for example, requires a strategy to appear in Z, only

1
if it is not dominated. Condition (17) strengthens the "only if" to "if and
only if". Conditions (17)-(18) thus require the sets Z1 and 22 to exhibit the
admissibility analogues of Greenberg's (1990) internal consistency (the "only
if" part) and external consistency (the "if" part) and hence form what
Greenberg calls a consistent system.

If we were content to require only conditions (51)-(52), then some of our
difficulties would be eliminated (though not all of them; multiplicity
problems, for example, would persist). Why do we insist on (17)-(18)? We are

interested in the implications of admissibility, and would like to determine
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the implications of applying only admissibility. If a pair of sets Z, and Z

1 2
exists satisfying (51)-(52) but not (17)-(18), then admissibility (and the
common knowledge of admissibility) provides an explanation for why the
elements of Z1 and Z2 are included in players’ choice sets, but the exclusion
of some of the elements not contained in Z1 and 22 must be motivated by some
other considerations. We accordingly have not identified the implications of
admissibility, but rather have identified the implications of admissibility
coupled with some additional criterion.

A comment on previous studies is now useful. Pearce (1984) and Bernheim
(1984) examine the implications of assuming it to be common knowledge that
players are rational. Tan and Werlang (1988) continue this line of inquiry.
These studies find that the implications of the common knowledge of ration-
ality are that players will employ the Iiterated ellimination of strictly
dominated strateglies, or strict iterated admissibility. In two-player games,
this yields the set of rationalizable strategies. Our work differs in that we
begin directly with admissibility. We strengthen strict admissibility to weak
admissiblity, but we then conduct the less severe test of examining the
internal consistency of the common knowledge of (weak) admissibility rather
than deriving admissibility properties as an implication of the common
knowledge of ratlionality. Our finding that it may be impossible for
admissibility to be common knowledge is reminiscent of Binmore's (1987-88)

finding that perfect rationality is an inconsistent concept.9

9B§rgers (1989a) argues that the concepts of weak admissibility and
common knowledge are inherently contradictory, since the former involves an
implicit assumption that any of an opponents’ strategles are possible while
the latter ylelds cases in which it 1s known that some strateglies will not be
played. Bdrgers responds by constructing a model in which rationality is
"approximately” common knowledge, finding that the implications of such a
model to be that players will apply one round of admisslibility and then apply
strict iterated admissibility. Borgers (1989b) examines the possibility of
designing efficient collective cholce procedures with the usual Nash (or
stronger) equllibrium assumption replaced by the assumption that players will
not play dominated strategies.
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Finally, notice that it is the combination of admissibility and common
knowledge that yields difficulties. It remains an open question which is the
best candidate for deletion from the model. The 1intuitive appeal of
admissibility and the counter intuitive nature of many of the arguments
associated with common knowledge suggest that perhaps the latter should be
reconsidered. One approach along these lines is provided by Dekel and
Fudenberg (1987), who presume that players are uncertain about opponents’
payoffs. Strategies are selected by applying iterated admissibility to
perturbed games and taking limits as the perturbations shrink. The impli-
cations for the original game are that players should apply one round of
admissibility and then apply strict iterated admissibility. A somewhat
similar prescription is provided by Pearce's (1984) cautious rationaliza-
bility, in which players at each step first iteratively eliminate strictly
dominated strategies and then delete weakly dominated strategies. An
alternative approach may be allowed by evolutionary arguments (e.g., Samuelson

(1988)).
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